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Abstract

This note provides a brief introduction to π-calculi and their application to concurrent
and distributed programming. Chapter 1 introduces a simple π-calculus and discusses
the choice of primitives, operational semantics (in terms of reductions and of indexed
early labelled transitions), operational equivalences, Pict-style programming and typing.
Chapter 2 goes on to discuss the application of these ideas to distributed systems, looking
informally at the design of distributed π-calculi with grouping and interaction primitives.
Chapter 3 returns to typing, giving precise definitions for a simple type system and
soundness results for the labelled transition semantics. Finally, Chapters 4 and 5 provide
a model development of the metatheory, giving first an outline and then detailed proofs
of the results stated earlier. The note can be read in the partial order 1.(2 + 3 + 4.5).
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Chapter 1

Pi Calculi

Concurrency and communication are fundamental aspects of distributed systems;
a great deal of work in process calculi and other areas has developed techniques for
programming, specification and reasoning about them. Another basic distributed phe-
nomenon is name generation – many computational entities are dynamically created with
fresh names; these names can often be communicated within or between machines. The
π-calculus of Milner, Parrow and Walker [MPW92] generalised earlier process calculi by
allowing fresh channel names to be dynamically created and communicated. This gives
rise to great expressive power, allowing a very simple π-calculus to be used as the basis
for a concurrent programming language. It also involved the development of semantic
techniques which can be directly applied to distributed systems. This chapter introduces
some of the theory of π-calculi and their applications to concurrent programming. It
provides only a brief and somewhat idiosyncratic introduction – for more detailed texts
and pointers into the literature one should refer to Section 1.7.

We begin in Section 1.1 with a core π-calculus, giving some examples and defining
the operational semantics in a reduction-semantics style. In Section 1.2 we review the
main design choices that give rise to the wide variety of π-calculi in use. Many are
driven by a particular theoretical result or application, particularly by whether the focus
is on modelling or programming. In Section 1.3 we return to the operational semantics,
defining a labelled transition semantics and relating it to the earlier reduction semantics.
In Section 1.4 we consider the (concurrent, but not distributed) Pict programming
language, closely based on a π-calculus. In Section 1.5 we return again to semantics,
defining operational congruences. A very brief introduction to typing for π-calculi is
given in Section 1.6.

1.1 An Introduction to π

The π-calculus is a calculus (an idealised modelling/programming language) in which
communication between parallel processes is fundamental. Communication is on named
channels: a process that offers an output of value v on the channel named c, written
cv , may synchronise with a parallel process that is attempting to read from c, written
cw .P . It differs from earlier process calculi in that new channel names can be created
dynamically, passed as values along other channels, and then used themselves for com-
munication. This gives rise to great expressive power – many computational formalisms,
e.g. λ-calculi, can be smoothly translated into π-calculus.

Many different π-calculi have been introduced. Some of the differences are essentially
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6 CHAPTER 1. PI CALCULI

minor choices of notation and style; some are important choices that are driven by the
application or theory desired. In this section we introduce a core π-calculus which still
exhibits the essential phenomenon of new channel creation.

Syntax We take an infinite set N of names of channels, ranged over by a, b etc. The
process terms are then those defined by the grammar

P,Q ::= 0 nil
P |Q parallel composition of P and Q
cv output v on channel c
cw .P input from channel c
new c in P new channel name creation

In cw .P the ‘formal parameter’ w binds in P ; in new c in P the c binds in P , with scope
as far to the right as possible (so new c in P |Q should be read as new c in (P |Q)). We
will work up to alpha renaming of bound names, so whenever we write a term we actually
mean its alpha equivalence class. We write fn(P ) for the set of free names of P , defined
by fn(0) = ∅, fn(P |Q) = fn(P ) ∪ fn(Q), fn(cv) = {c, v}, fn(cw .P ) = {c} ∪ (fn(P ) − w),
fn(new c in P ) = fn(P )− c. We write {a/x}P for the process term obtained from P by
replacing all free occurrences of x by a, renaming as necessary to avoid capture.

Semantics – Examples The simplest form of semantics for this calculus consists of a
reduction relation – a binary relation between process terms, written P−→Q, indicating
that P can perform a single step of computation to become Q. The definition of −→ will
be given later; here are some examples.

The calculus allows communication between an output and an input (on the same
channel) in parallel. Here the value a is being sent along the channel x:

xa | xu.yu −→ {a/u}(yu) = ya

There can be many outputs on the same channel competing for the same input – only
one will succeed, introducing nondeterminism:

xb | ya

xa | xb | xu.yu

xa | yb

Similarly, there can be many inputs on the same channel competing for an output:

ya | xu.zu

xa | xu.yu | xu.zu

xu.yu | za

A restricted name is different from all other names outside its scope – below the x bound
by the new x in is different from the x outside. Note that (using alpha equivalence)
the term on the left below is the same term as xa |new x ′ in (x ′b | x ′u.yu).

xa |new x in (xb | xu.yu) −→ xa |new x in yb

A name received on a channel can then be used itself as a channel name for output or
input – here y is received on x and then used to output c:

xy | xu.uc −→ yc
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Finally (and most subtlely), a restricted name can be sent outside its original scope. Here
y is sent on channel x outside the scope of the new y in binder, which must therefore
be moved (with care, to avoid capture of other instances of y). This is known as scope
extrusion:

(new y in xy | yv .P ) | xu.uc −→ new y in yv .P | yc
−→ new y in {c/v}P

The combination of sending channel names and scope extrusion is the essential difference
between the π-calculus and earlier process calculi such as ACP, CCS and CSP.

Semantics – Definition of Reduction The reduction relation can be defined rather
simply, in two stages. First we define a structural congruence, written ≡. This is an
equivalence relation over process terms that allows the two parts of a potential commu-
nication to be brought syntactically adjacent. It is the smallest equivalence relation that
is a congruence and satisfies the axioms:

P | 0 ≡ P
P |Q ≡ Q |P

P |(Q |R) ≡ (P |Q) |R
new x in new y in P ≡ new y in new x in P

P |new x in Q ≡ new x in (P |Q) x 6∈ fn(P )

The reduction relation −→ is then the smallest binary relation over process terms satis-
fying the following.

Com cv | cw .P−→{v/w}P

Par
P−→P ′

P |Q−→P ′ |Q

Res
P−→P ′

new x in P−→new x in P ′

Struct
P ≡ P ′−→P ′′ ≡ P ′′′

P−→P ′′′

Note that reduction under input prefixes is not allowed – there is no rule

P−→P ′

cw .P−→cw .P ′

It is a useful exercise to check that the example reductions can actually be derived.

1.2 Modelling vs Programming: choices of primitives

A good deal of early work on process calculi was focussed around modelling protocols (and
other systems) and reasoning about those models; this fed into work e.g. on Lotos and
its descendents. Some recent developments from the π-calculus, in contrast, have used
it as the basis for a programming language: a significant shift of emphasis which affects
the design of the calculi used. The programming language view is discussed further in
Section 1.4 below; this subsection reviews some of the main calculus-design choices. They
are here described rather informally – in some cases precise results have been proved,
showing that a particular calculus is encodable in another, but great care must be taken
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in interpreting such results. There are many possible senses of ‘encoding’; the results do
not automatically transfer from the precise calculi they have been proved for to minor
variants thereof. In general, we have only the beginnings of a theory of expressiveness
for π-based calculi (but see the recent EXPRESS meetings such as [PC98]).

Choice Many process calculi have explicit choice or summation operators for nonde-
terminism, allowing for example P + Q which can behave either as P or as Q (this is
imprecise – in fact several different operators are possible). Explicit choice is useful for
modelling and reasoning about systems, especially for writing loose specifications and for
developing complete axiomatisations of operational congruences, but seems to be both
unnecessary and expensive to implement from the programming language view. In some
cases a form of choice is encodable in a choice-free calculus – for example a purely internal
choice can be encoded in the π-calculus given in Section 1.1 above by

[[P ⊕Q]]
def
= new c in (cx | cx .P | cx .Q) c, x not free in P,Q

but in other cases non-encodability results can be proved (see work of Nestmann and
Pierce [NP96] and of Palamidessi [Pal97]).

Asynchrony The calculus of Section 1.1 is asynchronous – it has only a bare output
cv as opposed to an output prefix cv .P that starts P when the output has been received.
Again, for programming it seems that prefixing (or synchronous) output can be uncom-
mon; it can generally be encoded by using explicit acknowledgements (see work of Honda
and Tokoro [HT91] and of Boudol [Bou92]). Moreover, the asynchronous calculi have a
closer fit to the asynchronous message delivery of packet-switched networks, and so are
used as starting points for distributed calculi. Note that this usage of ‘synchronous’ is
different from that in work on SCCS (Synchronous CCS) by Milner – there the two sides
of a parallel composition were required to execute in lock-step, whereas here it refers
only to synchronisation of pairs of an output prefix and an input.

Replication The calculus of Section 1.1 is rather inexpressive – it contains no way
to construct infinite computations, and so is clearly not Turing-powerful (to make this
precise requires care). One can add either recursion, e.g. with process variables X
and a recursion operator recX.P , or replication !P , which loosely behaves as infinitely
many copies of P in parallel. In some sense (again, not made precise here), the two
are inter-encodable. Generally theoretical work is simpler with replication; describing
actual systems may be simpler with either. A limited form of replication, allowing only
replicated input terms such as !cx .P , is sometimes used.

Values The calculus of Section 1.1 is further limited in that only single names can be
communicated on channels – it is monadic. Many variants are polyadic, allowing tuples
of names to be sent, or allow more general data, e.g. arbitrary pairs or tuples. For precise
results on encoding a polyadic calculus into a monadic one see work of Yoshida [Yos96]
and of Quaglia and Walker [QW98]. The addition of basic values such as booleans and
natural numbers is straightforward.

Higher-Order Processes A very significant extension is to allow communication not
just of basic data but also of processes themselves, or even higher-order abstractions
– see work of Sangiorgi [San93] and of Thomsen [Tho93]. Many authors have studied
encodings of λ calculi within a π calculus; see e.g. the work of Milner [Mil92].
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Matching For some purposes constructs to test equality (matching) and inequality
(mismatching) of names are added, often written [x = y]P and [x 6= y]P , or if x =
y then P else Q. These can have delicate effects on the theory of operational congru-
ences.

Join Patterns π-calculus channels may have many receivers. It has been argued that
for a programming language a better choice of primitive is the join pattern that syntac-
tically gathers together all receivers on a channel (see work of Fournet, Gonthier and
others, e.g. [FG96]). Join patterns combine restriction, replicated input and linearity –
def x (w ).P in Q is similar to new x in Q | !xw .P . For expressiveness one must gener-
alise to multi-inputs such as def (x1 (w1 ) ∧ .. ∧ xn (wn )).P in Q, or even to disjunctions
of multi-inputs. An example reduction would be

def (x1 (w1 ) ∧ x2 (w2 )).P in Q | x1 3 | x2 7
−→
def (x1 (w1 ) ∧ x2 (w2 )).P in Q |{3, 7/w1 ,w2}P

Concrete Syntax Many minor variations of concrete syntax are used in the literature.
Most significantly, if one wishes a syntax with a good representation in plain ascii, then
outputs and inputs can be written as c!v and c?w .P instead of the cv and cw .P used in
Section 1.1. The exclamation mark would then confusingly be used both for output and
replication, so replication (or replicated input) can be written ∗P (or ∗c?w .P ) instead
of !P (or !cw .P ). Restriction has been written either with a greek nu as (νc)P or as
new c in P . Some work uses small round brackets to indicate binders and angle brackets
to indicate free names, so writing outputs and inputs as c〈v 〉 and c(w ).P

1.3 Styles of Operational Semantics

The basic semantic theory for a π-calculus comprises four main parts which we describe
in order of increasing sophistication, usefulness and technical complexity. Most simply,
one can define the internal reduction relation of processes by means of reduction axioms
and a structural congruence, as above. This builds on the Chemical Abstract Machine
ideas of Berry and Boudol [BB92], and the π semantics of Milner [Mil92]. To describe
the interactions of processes with their environment one requires more structure: some
labelled transition relation, specifying the potential inputs and outputs of processes. Sev-
eral different forms of labelled transition system are discussed in this subsection below.
Reduction and labelled transition relations are both very intensional, keeping the alge-
braic structure of process terms. One can abstract from the internal states of processes
by quotienting by some operational congruence, such as bisimulation, defined using the
labelled transition relations or in terms of barbs (a degenerate form of labelled transi-
tions). Bisimulation equivalence classes are still rather intensional, however. They may
be appropriate when working with models of concurrent systems, and may provide use-
ful proof techniques, but to obtain a clear relationship to the behaviour of programming
languages one must abstract further, quotienting by an observational congruence. The
identification of an appropriate notion of observation for a given programming language
may be non-trivial. Operational congruences and observations are discussed further in
Section 1.5 below. We now give a labelled transition semantics for the calculus of Section
1.1.

A Labelled Transition Semantics The labelled transition relation has the form

A ` P `−→Q
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where A is a finite set of names, fn(P ) ⊆ A, and ` is a label ; it should be read as ‘in
a state where the names A may be known by process P and by its environment, the
process P can do ` to become Q. The labels ` are

` ::= τ internal action
xv output of v on x
xv input of v on x

The transition relation is defined as the smallest relation satisfying the rules below.

Out

A ` xv xv−→0
In

A ` xp.P xv−→{v/p}P

Par
A ` P `−→P ′

A ` P |Q `−→P ′ |Q
Com

A ` P xv−→P ′ A ` Q xv−→Q′
A ` P |Q τ−→new {v} −A in (P ′ |Q′)

Res
A, x ` P `−→P ′ x 6∈ fn(`)

A ` new x in P
`−→new x in P ′

Open
A, x ` P yx−→P ′ y 6= x

A ` new x in P
yx−→P ′

Struct Right
A ` P `−→P ′ P ′ ≡ P ′′

A ` P `−→P ′′

In all rules with conclusion of the form A ` P `−→Q there is an implicit side condition
fn(P ) ⊆ A. Symmetric versions of Par and Com are elided. Here the free names of a label
are fn(τ) = {}, fn(xv) = fn(xv) = {x, v}. We write A, x for A ∪ {x} where x is assumed
not to be in A. If A = {a1, . . . an} then new A in P denotes new a1 in . . .new an in P
(note that if A is not empty or a singleton then strictly this is only well-defined up to
structural congruence).

It is a good exercise to derive τ transitions for the example reductions above – espe-
cially for the scope extrusion example. Note that there is a transition

{x} ` new z in xz xw−→0

for any w 6= x, as we are working up to alpha equivalence. A more substantial exercise
is to extend both this and the reduction semantics with richer values, e.g. with arbitrary
tupling.

This should now be compared with the reduction semantics. Firstly, one can show
that structurally congruent processes have the same labelled transitions (equivalently,
that a Struct Left rule is admissible).

Theorem 1 If P ′ ≡ P then A ` P ′ `−→Q iff A ` P `−→Q.

One can then show that the reduction and transition semantics give exactly the same
internal steps.

Theorem 2 If fn(P ) ⊆ A then P−→Q iff A ` P τ−→Q.

The reduction semantics is probably easier to understand – it is common when designing
a new calculus to first specify its reductions. It does not, however, tell us how an
arbitrary subprocess can interact with its environment; for that, and hence for explicit
characterisations of operational congruences, we need the LTS. Moreover, the labelled
transitions of a process P are defined inductively on its term structure, whereas the
reductions are not – broadly, to show that some particular reduction exists it is easier to
use the reduction semantics, but to enumerate all the reductions the LTS is appropriate.
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One can choose to define either the explicitly-indexed transitions A ` P
`−→Q, as

here, or un-indexed transitions of the form P
µ−→Q. In the former, an output of a free

name and an output of a new name can be distinguished by reference to A – we have

{x, y} ` new z in xy
xy−→0 and {x, y} ` new z in xz xw−→0

with y ∈ {x, y} and w 6∈ {x, y} respectively. In the latter, the distinction must be
carried in the label µ and the rules require more delicate side-conditions. The explicitly-
indexed style seems (to this author) to be conceptually slightly clearer, though at some
notational cost; it also leads to simpler notions of trace and generalises to typed systems
with subtyping.

The transition system above is expressed as relations over the process syntax (as
are most π-calculus semantics). In contrast one can take a more model-theoretic view,
axiomatising the structure required of a π-LTS with an arbitrary set of states. This is
developed in [CS00]. Another semantic choice is that between early and late transition
systems. We have given an early system, with inputs instantiated immediately – see the
overview of Quaglia [Qua99] for discussion of early, late and open semantics.

1.4 Language Implementation: the Pict experiment

The π-calculus is sufficiently expressive to be used as the basis for a programming lan-
guage. The literature contains a number of encodings of λ-calculi and data structures
into π. For some theoretical work one can therefore combine the benefits of a rather small
calculus, having a simple semantics, with the flexibility of high-level constructs, provided
by encodings. More practically, the language Pict has been developed since 1992, mostly
by Pierce and Turner, to experiment with programming in the π-calculus, with rich type
systems for communicating concurrent objects, and with efficient implementation tech-
niques. Loosely, it has the same relationship to the π-calculus as functional languages
do to the λ-calculus:

Sequential (functional) Concurrent
λ-calculus π-calculus
functions processes
function application parallel composition
beta reduction communication
LISP, ML, Haskell, etc. Pict

Documentation and an implementation are available electronically [PT98]; descriptions
of the design and implementation are in [Tur96, PT00]. See also implementations and
papers on the Join Language [Joi].

A number of programming idioms turn out to be useful – we will now touch on a
couple (here we use a polyadic π-calculus, not precisely specified, with tuples 〈x1 .. xn〉,
tuple patterns 〈x1 .. xn〉, replicated input !c〈x1 .. xn 〉.P , and basic arithmetic). One can
define process abstractions, analogous to local function definitions, as follows:

new plustwo in
!plustwo〈x r 〉.r 〈x + 2 〉
| new r in

plustwo〈56 r 〉 | r 〈z 〉.printi 〈z 〉

Here one can send on the plustwo channel a number x and a result channel r; the server
will send back x+2 on r. Channels can also be used to implement locking rather directly –
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here is an approximation to a two method object implementation, with mutual exclusion
between the bodies of the methods:

new lock in
lock 〈〉
| !method1 〈arg〉.

lock 〈〉.
. . .

lock 〈〉

| !method2 〈arg〉.
lock 〈〉.
. . .

lock 〈〉

Access to the implementation could be passed around as a simple tuple of method (chan-
nel) names, e.g. as 〈method1 method2 〉.

The reduction semantics of the π-calculus is highly nondeterministic. There is there-
fore a basic design decision for any language implementation: how should that nondeter-
minism be resolved? There are several possible choices:

1. One could consult a pseudo-random number generator (or a true source of quantum-
mechanical randomness) at every choice. This might be desirable for a simulation
language, but is prohibitively expensive for a programming language.

2. One could fix an evaluation strategy (as one does in ML, say). This would highly
constrain future compiler writers, who would always have to schedule π-processes
in the same way. It would prevent optimisations and severely constrain distributed
implementations.

3. One could allow a compiler to use any ‘reasonable’ evaluation strategy. This
is delicate, as some fairness conditions are required, e.g. to ensure the process
new x in

(
x | ! x .x | x .print“ping”

)
does eventually print the ‘ping’.

Pict adopts the third approach. The current implementation has a scheduler as follows:
it maintains a state consisting of a run queue of processes to be scheduled (round robin)
together with channel queues of processes waiting to communicate. It executes in steps,
in each of which the process at the front of the run queue is removed and processed.
This internal behaviour of the implementation is described by Turner in [Tur96, Ch. 7]
and incorporated into the abstract machine given in [Sew97]. When an output or input
on a library channel reaches the front of the run queue some special processing takes
place. For many library channels this consists of a single call to a corresponding Unix
IO routine. The implementation is thus entirely deterministic.

Note that a minor syntactic change to a program in such a language, such as swapping
two parallel components, may result in completely different behaviour. This can make
debugging difficult, but it seems to be inescapable.

1.5 Operational Congruences

A reduction or labelled-transition semantics gives only a rather intensional notion of the
behaviour of processes. One often needs a more extensional semantics, abstracting from
the syntax of the calculus, for example to make precise any of the following questions:
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• when do two processes have the same behaviour?

• when does a process meet a specification (itself expressed as a process)?

• when is a program transformation correct?

• when is an abstract machine correct?

• when are two calculi equally expressive?

An extensional semantics is often defined as a quotient of the syntax by some operational
equivalence or operational preorder, itself defined using reductions or labelled transitions.
Much of the π literature involves either a bisimulation congruence defined over labelled
transitions or barbed bisimulation congruence, defined using reductions and barbs – ves-
tigial labelled transitions. We will sketch definitions for the π-calculus given earlier.

Take bisimulation ∼̇ to be the largest family of relations indexed by finite sets of
names such that each ∼̇A is a symmetric relation over {P | fn(P ) ⊆ A } and for all
P ∼̇A Q,

• if A ` P `−→P ′ then ∃Q′ . A ` Q `−→Q′ ∧ P ′ ∼̇A∪fn(`) Q
′

(one must check that ∼̇ exists uniquely, but we omit a rigorous formulation here). In-
tuitively this says that P is equivalent to Q if any transition of one can be matched by
a transition of the other, with the resulting states also equivalent. On occasion a finer
relation, obtained by closing up under substitutions, is required. Define ∼ by P ∼A Q
iff for all substitutions σ with dom(σ) ∪ ran(σ) ⊆ A we have σP ∼̇A σQ.

On the other hand, to define barbed bisimulation first take barbs as follows: P↓x if
P can do an input on channel x and P↓x if P can do an output on x. Now ∼̇b is the
largest symmetric relation such that for all P ∼̇b Q,

• if P−→P ′ then ∃Q′ . Q−→Q′ ∧ P ′ ∼̇b Q′, and moreover

• P↓α implies Q↓α.

This requires only the reductions and immediate offers of communication to be matched.
Barbed bisimulation congruence is defined by closing under all contexts – say P ∼b Q iff
for contexts C we have C[P ]∼̇bC[Q].

These are rather different styles of definition, yet they sometimes define the same
equivalence, giving one confidence that one is dealing with a robust notion [San93, MS92].
Both have advantages. The definition of barbed bisimulation congruence does not depend
on an LTS, and so may be readily given for novel calculi in which labelled transitions
are not well-understood. On the other hand, the definition involves quantification over
all contexts, making it harder to prove instances of the equivalence (but see techniques
in the thesis of Fournet [Fou98]) and to have a clear intuition as to its significance.

For several of the questions at the beginning of this subsection it is important to
have an equivalence or preorder that is a congruence – i.e. that is preserved by the
constructors of the calculus. This enables (in)equational reasoning to be used freely.
The fact that ∼b is a congruence is immediate from the definition; the fact that ∼̇ or ∼
is may require some delicate proof. Indeed, working with an indexed relation requires
a little care even to state the congruence property, to keep the A-indexing straight.
Consider a family S of relations indexed by finite sets of names such that each SA is
a relation over {P | fn(P ) ⊆ A }. Say S is an indexed congruence if each SA is an
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equivalence relation and the following hold.

In
P SA,w P ′ c ∈ A

cw .P SA cw .P ′
Res

P SA,c P ′
new c in P SA new c in P ′

Par
P SA P ′ Q SA Q′
P |Q SA P ′ |Q′

Theorem 3 Bisimulation ∼̇ is an indexed congruence.

This result depends on the exact calculus used; in many variants one must move to ∼ to
obtain a congruence for input prefixing.

Work on operational congruences for process calculi without scope extrusion showed
that there are many more-or-less plausible notions of equivalence, differing e.g. in their
treatment of linear/branching time, of internal reductions, of termination and divergence,
etc. Some of the space is illustrated in the surveys of van Glabbeek [Gla90, Gla93]. Much
of this carries over to π-calculi. For example, we can define trace-based equivalences
straightforwardly. For partial traces (aka prefix-closed traces) write

A1 ` P1
`1−→ . . .

`n−→Pn+1

to mean ∃P2, . . . , Pn, A2, . . . , An . ∀i ∈ 1..n . Ai+1 = Ai ∪ fn(`i) ∧ Ai ` Pi
`i−→Pi+1. If

fn(P,Q) ⊆ A then the partial A-traces of P and partial trace equivalence are defined by

ptrA(P )
def
= { `1 .. `n | ∃P ′ . A ` P

`1−→ . . .
`n−→P ′ }

P =ptr
A Q

def⇔ ptrA(P ) = ptrA(Q)

Standard facts such as P ∼̇A Q =⇒ P =ptr
A Q go through as usual. For π-calculi

there are also other choices, e.g. between open, late and early bisimulations.
All this diversity raises a problem: how, in some particular application of a π-calculus,

should one choose an appropriate equivalence or congruence? This was studied for Pict-
like programming languages in [Sew97]. From the discussion of the scheduling behaviour
of implementations described in Section 1.4 above it is immediate that no realistic im-
plementation will be bisimilar (in any sense) to the labelled transition semantics; several
other choices are arguably determined by more subtle implementation properties.

1.6 Typing

In the monadic π-calculus of Section 1.1 the value sent on a channel is always of the
form expected by a receiver – a single name. In calculi with more interesting values this
no longer holds, for example a polyadic π process might contain an output of a pair in
parallel with an input expecting a triple:

c〈a b〉 | c〈x y z 〉.P

Intuitively this should be regarded as an execution error, just as an application to a pair
of a function that takes a triple of arguments would be. In both cases such errors can be
prevented by imposing a type system. The types for a simple calculus with tuples might
be

T ::= chanT type of channel names carrying T
〈T1 .. Tn〉 type of tuples of values of types T1 .. Tn
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with a typing judgement Γ ` P proc, where Γ is a finite partial function from names
to types, read as ‘under the assumptions Γ on names the process P is well-typed’. If Γ
takes c to be a channel carrying pairs

Γ = c : chan 〈T U〉, a :T, b :U

then we would expect Γ ` c〈a b〉 proc to hold but Γ ` c〈x y z 〉.P proc not to hold.
Note that types are the types of values, not of processes – in contrast to λ-calculus type
systems a process here does not have a type but is simply well-formed or not.

To make this precise requires the definition of the syntax and semantics (reduction
and/or labelled transition) of a π-calculus with polyadic or tuple communication, a def-
inition of execution error and a definition of the typing rules. One should then state
and prove that well-typed processes do not have execution errors and that typing is pre-
served by reductions or (a stronger result) by labelled transitions. This is carried out in
Chapter 3.

More sophisticated type systems are an active research area, addressing polymor-
phism, linearity, deadlock freedom, locality and security. We refer the reader to [Pie98]
for details and pointers into the literature.

1.7 Further Reading

The interested reader is referred to the book Communicating and Mobile Systems: the
π-Calculus by Milner [Mil99] and to the Mobility web page maintained by Uwe Nestmann
[Nes], from which much of the literature is accessible electronically. The page includes
pointers to the introductory papers by Milner, Parrow and Walker [MPW92], a tutorial
by Parrow, a text on Foundational Calculi for Programming Languages by Pierce, an
annotated bibliography by Honda, and many other useful pointers.
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Chapter 2

Distributed π calculi

A body of recent research has applied techniques derived from π-calculi to address prob-
lems in distributed systems and programming languages. In some ways there is a good
match between the asynchronous π-calculus and distributed systems:

• π gives a very clear treatment of concurrency, fundamental to distributed systems;

• π asynchronous message passing is close to reliable datagram communication, which
lies not far above IP;

• the π treatment of naming is widely applicable. Most obviously, there are tight
analogies between

– communication channels (with read/write operations)

– references (with deref/assign)

– cryptographic keys (with decrypt/encrypt)

The essential point is that π-style semantics provide a tractable and compositional
way of describing systems that can locally generate fresh names. Note that π names
are pure, in the sense of Needham [Nee89]; they are not assumed to contain any
information about their creation.

On the other hand, there are many important issues that standard π-calculi do not
address, such as:

• point-to-point and multicast communication

• failure (of machines and communication links), time and timeouts

• code and agent migration

• security (secrecy, integrity, trust, cryptography)

• the distinction between local and non-local performance

• quality of service

These cannot be abstracted away – there are many interesting language design/semantics
problems, and in some cases delicate protocol design problems. It has proved fruitful to
study these problems in the context of particular calculi, designed for the purpose. In
the remainder of this chapter we highlight some of the choices in the (rather large) design
space of such calculi, focussing on the possible grouping and interaction primitives. This

17
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discussion is only a starting point – we touch on some example calculi but cannot here
do justice even to these, let alone to the many other works in the field. Our examples
are taken from:

– The πl calculus of Amadio and Prasad [AP94], for modelling the failure semantics
of Facile [TLK96].

– The Distributed Join Calculus of Fournet et al [FGL+96], intended as the basis for
a mobile agent language.

– The Spi calculus of Abadi and Gordon [AG97], for reasoning about security proto-
cols.

– The Dπ calculus of Riely and Hennessy [RH99], used to study typing for open
systems of mobile agents.

– The dpi calculus of Sewell [Sew98], used to study locality enforcement of capabilities
with a subtyping system.

– The Ambient calculus of Cardelli and Gordon [CG98], used for modelling security
domains.

– The Agent and Nomadic π calculi of Sewell, Wojciechowski and Pierce [SWP98],
introduced to study communication infrastructures for mobile agents.

– The Seal calculus of Vitek and Castagna [VC98], focussing on protection mecha-
nisms including revocable capabilities.

– The Box-π calculus of Sewell and Vitek [SV99, SV00], used to study secure encap-
sulation of untrusted components and causality typing.

Grouping The first point is that standard π-calculi do not have any notion of the
identity of processes; the syntax describes only collections of atomic processes (outputs,
inputs etc.) in parallel. For example, suppose we have two processes P and Q. In π we
might have

P |Q −→ . . .−→ (R1 | .. |Rn)

for some Ri; the calculus does not have any association between these Ri and the original
P and Q, so the identity of the components is lost. For many purposes, therefore, one
must add primitives for grouping process terms, into units of:

• failure (e.g. machines or runtime system instances);

• migration (e.g. mobile agents);

• trust (e.g. large administrative domains or small secure critical regions);

• synchronisation (i.e. regions within which an output and an input on the same
channel name can interact).

The π-calculus is often referred to as a calculus of mobile processes, but it is perhaps more
accurate to view it as a calculus in which the scopes of names are mobile — processes
can move only in the sense that their interaction possibilities, represented as the set of
channel names they know, can change.

Hierarchy Grouping primitives can either be given a flat structure, so a whole system
is simply a set of groups, or some hierarchy – either two-level or an arbitrary tree. To
simply model a flat set of named machines, each of which is running some π-style process
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code, one might take a new syntactic category of configuration, e.g. defined by

C,D ::= m[[P ]] machine m running process P
0 nil
C |D parallel composition of C and D
new c in C new name binder

This would support a semantics with machine failure, or (as in Dπ) systems with code
mobility. If one wishes to consider migration of part of the process running at a machine
then a more elaborate hierarchy is required. A two-level hierarchy suffices: a system of
named agents, each containing a π-style process and running on a named machine, can
be described by configurations

C,D ::= a@m[P ] agent a on machine m running process P
0 nil
C |D parallel composition of C and D
new c in C new name binder

This is roughly the approach of Nomadic π. There are primitives for agent creation and
migration:

P,Q,R ::= agent b = Q in R create a new agent with body Q
migrate to m.P migrate to machine m
. . .

with b binding in P and Q, and reductions such as

a@m[P |agent b = Q in R] −→ new b in a@m[P |R] | b@m[Q]
a@m[P |migrate to n.R] −→ a@n[P |R]

(where b 6∈ fn(P, a,m)) for creation and migration respectively. In the first, the new
agent b is created on the same machine as the creating agent a; in the second note that
the whole of agent a migrates to machine n. In both reductions the continuation process
R can execute only after the creation/migration.

A two-level hierarchy provides a simple setting for considering inter-agent communica-
tion (the goal of the Nomadic π work), but for several purposes an arbitrary tree-shaped
hierarchy is preferable. One might wish to represent larger units than machines, e.g.
intranets delimited by firewalls; to model smaller units of software, e.g. untrusted com-
ponents of an application that must be securely encapsulated; or to support a smooth
programming style, in which applications automatically take their subcomponents with
them on migration. The Distributed Join, dpi, Ambient, Seal and Box-π calculi all take
tree-shaped hierarchies. The latter three add a named-group primitive to the syntax of
processes

P ::= . . .
a[P ] ambient/seal/box named a containing P

– they do not require a separate notion of configuration. The hierarchy is determined
by the nesting structure of terms. In the Distributed Join and dpi calculi groups (there
called locations) have unique names and the hierarchy is determined by the binding
structure; we omit the details here.

Group Naming Grouped entities can be anonymous or named; if named, the names
may be unique or non-unique (this, as many other things, might be enforced either by the
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design of the calculus syntax or by some additional well-formedness or typing condition).
Unique naming simplifies some programming and so was adopted in the Distributed Join,
dpi and Nomadic π calculi. One should note, however, that in a network with potentially
malicious components a machine (or larger administrative unit) may not have control of
the namespace used by incoming entities. In this case non-unique names are appropriate
and were adopted in the Ambient, Seal and Box π calculi.

Interaction There is a vast range of possible primitives for the movement of groups
and for interaction between them. We consider three aspects below.

Interaction across the group hierarchy Calculi differ in the extent to which communi-
cation, migration or other interaction is allowed across the group hierarchy. There are
three main alternatives, which we discuss in the context of π-style communication.

– Location-independent. An output cv can interact with a corresponding input on c
irrespective of their relative position in the hierarchy. This was adopted in the Dis-
tributed Join and High-level Nomadic π calculi, for the ease of programming that it
supports. Its implementation requires complex distributed infrastructure, however,
and the high level of abstraction makes failure and attack semantics problematic.

– Local. An output can interact only with a ‘nearby’ input. One might take a subset
of the following primitives.

c?v output v on channel c within this group
c↑v output v on channel c to parent
c↓nv output v on channel c to child n
c→nv output v on channel c to sibling n
c↑nv output v on channel c to parent if a child of n
ca@mv output v on channel c to agent a on machine m

Local primitives can be implemented more simply (the last was adopted in Low-
level Nomadic π for this reason). They also support encapsulation – constraining
the interaction possibilities of untrusted code by containing it within a group. This
is important in the Ambient, Seal and Box-π calculi (Box-π adopts the first three
local output primitives).

– Path-based. An intermediate possibility allows non-local output but requires the
sender to specify an explicit path to the receiver.

cpathv follow path p then output v on channel c

where paths are sequences of local movements:

path ::= ? output within this group
↑.path go to parent and then follow path
↓n.path go to child n and then follow path

This is a variant of the Ambient calculus mobility primitives, in which an ambient
must acquire a path of capabilities in order to migrate; restricting the spread of
such capabilities is a basic mechanism for secure programming.

Inputs At the receiver end, one might allow inputs from any source or from a specified
source:

cp.P input on channel c from any sender
c↓np.P input on channel c from child n
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The guarantee of authenticity implied by the latter is used in the Seal and Box-π work
on encapsulation. Most flexibly, one can input from a set of sources but bind the actual
source to a variable, e.g. with the primitive below in which n binds in P and is replaced
by the actual source child name in a communication.

c↓(n)p.P input on channel c from any child

Communicated values Finally, we turn to the values which may be involved in a com-
munication or migration. Most simply, one might communicate basic values as in a
polyadic π-calculus – names and tuples of names. Generalising to higher-order commu-
nication would allow code – processes and abstractions – to be communicated. A rather
different generalisation allows an executing process to migrate with all of its state. This
is sometimes referred to as strong migration, with code mobility as weak migration. The
two can be unified by introducing a grab primitive for capturing the state of a group into
a first-class value.

Semantics The detailed design of a syntax and reduction semantics for a distributed
π-calculus can be delicate, depending on the choice of primitives (indeed, the desire for
a clean reduction semantics may affect that choice). We do not give a full discussion
here, but refer the reader to the papers introducing particular calculi cited above. For
each, it may be interesting to consider whether the syntax keeps the parts of a group
syntactically adjacent or not (and why!), whether a grouping hierarchy is maintained in
the term or binding structure, how uniqueness of naming is enforced, and the locality of
the interactions that are permitted.
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Chapter 3

Simple Types

To discuss typing we must first extend the calculus to allow communication of richer
values than single names. In the subsequent sections we define a simple type system and
state its soundness properties with respect to the reduction semantics, and then with
respect to labelled transition semantics.

3.1 Polyadicity and Tuples

The calculus of Section 1.1 is monadic, i.e. outputs xv and inputs xy .P send and re-
ceive only single names – here the value v and binder y are single names. Much work
uses polyadic calculi, allowing outputs x 〈v1 .. vn 〉 of n-tuples of names and corresponding
inputs x 〈y1 .. yn 〉.P that have n binders. Reductions

x 〈v1 .. vn 〉 | x 〈y1 .. yn 〉.P−→{v1/y1, ..., vn/yn}P

involve simultaneous substitution of names for names. A mild generalisation allows
communication not just of flat tuples of names, but also of nested tuples. It seems
that this eases programming enough to outweigh the slight notational complexity above
polyadic calculi, and supports cleaner type systems. We introduce syntactic classes of
values and corresponding patterns:

v ::= x name x
〈v1 .. vn〉 tuple of v1 .. vn, with n ≥ 0

p ::= x name x
〈p1 .. pn〉 tuple pattern, with n ≥ 0 and distinct names

Henceforth v and p will range over arbitrary values and patterns respectively, not just
over names. Processes are as before except that outputs and inputs involve values and
patterns, and new-binders are annotated by a type T (defined in the next section):

P,Q ::= 0 nil
P |Q parallel composition of P and Q
cv output v on channel c
cp.P input from channel c
new c : T in P new channel name creation

We write bn(p) for the names of p. Note that the channel used in an output or input
must still be a name, not an arbitrary value. Applying a substitution {v/x} of a value for
a name to a process P may therefore be undefined, e.g. in the expression {〈ww〉/x}xy ,

23
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as 〈w w 〉y is not in the syntax. There is a technical choice here – one could instead
allow outputs and inputs on any value in the syntax, perhaps defining the semantics to
allow communication actually take place only on names. Here we prefer to syntactically
exclude such pathological processes.

A substitution {v/p} of a value for a pattern may also be undefined if v does not
match the shape of p, for example {〈x〉/〈y z〉}. We define a partial function { / }, taking
a pattern and a value and giving, where it is defined, a partial function from names to
values.

{v/x} = {x 7→ v}
{〈v1 .. vk′ 〉/〈p1 .. pk〉} = {v1/p1} ∪ . . . ∪ {vk/pk} if k = k′

undefined, otherwise

If σ is a finite partial function from names to values we define the application of σ to a
value in the obvious way, and to process as follows.

σ(0) = 0
σ(P |Q) = σ(P ) |σ(Q)
σ(cv) = σ(c)σ(v) if σ(c) a name

σ(cp.P ) = σ(c)p̂.σ(P̂ ) if σ(c) a name
σ(new c : T in P ) = new ĉ : T in σ(P̂ )

undefined, otherwise

where in the input case cp.P = cp̂.P̂ and bn(p̂) ∩ (dom(σ) ∪ fn(ran(σ))) = ∅, and in the
new case new c : T in P = new ĉ : T in P̂ and ĉ 6∈ (dom(σ) ∪ fn(ran(σ))).

Semantics – Definition of Reduction The reduction relation can now be defined
as before except that the structural congruence axioms must carry types:

new x : T in new y : U in P ≡ new y : U in new x : T in P x 6= y
P |new x : T in Q ≡ new x : T in (P |Q) x 6∈ fn(P )

and the (Com) and (Res) rules, which become

Com cv | cp.P−→{v/p}P if {v/p}P defined

Res
P−→P ′

new x : T in P−→new x : T in P ′

Semantics – Definition of Runtime Error Processes that contain execution errors,
such as the c〈a b〉 | c〈x y z 〉.P of §1.6, can now be identified. We write P err to mean that
P contains an execution error, as defined by the rules below.

Err Com
{v/p}P not defined

cv | cp.P err Err Par
P err

P |Q err

Err Res
P err

new x : T in P err Err Struct
P err P ≡ P ′

P ′ err
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3.2 Typing

As in §1.6, we take types

T ::= chanT type of channel names carrying T
〈T1 .. Tn〉 type of tuples of values of types T1 .. Tn

We take type environments, ranged over by Γ and ∆, to be finite partial functions from
names to types. We write Γ,∆ for the union of type environments that have disjoint
domains. The type system has three judgments:

Γ ` v :T value v has type T in environment Γ
` p :T B ∆ pattern p matches type T , giving bindings ∆
Γ ` P proc process P is well-typed in environment Γ

These are defined by the rules below.

Values:

Γ, x :T ` x :T
Γ ` v1 :T1 .. Γ ` vk :Tk
Γ ` 〈v1 .. vk〉 : 〈T1 .. Tk〉

Patterns:

` x :T B x :T
` p1 :T1 B ∆1 .. ` pk :Tk B ∆k

` 〈p1 .. pk〉 : 〈T1 .. Tk〉 B ∆1, ..,∆k

Processes:

Out

Γ ` x : chanT
Γ ` v :T
Γ ` xv proc In

Γ ` x : chanT
` p :T B ∆
Γ,∆ ` P proc
Γ ` xp.P proc Par

Γ ` P proc
Γ ` Q proc

Γ ` P |Q proc

Nil Γ ` 0 proc Res
Γ, x : chanT ` P proc

Γ ` new x : chan T in P proc

The properties of a well-typed process with respect to the reduction semantics are as
one would expect. Firstly, well-typing is preserved by reduction.

Theorem 4 (Subject Reduction) If Γ ` P proc and Γ atomic and P → Q then
Γ ` Q proc.

Moreover, a well-typed process cannot contain a runtime error.

Theorem 5 (Absence of Runtime Errors) If Γ ` P proc and Γ atomic then ¬(P err).

Here our use of arbitrary tuple patterns requires a further constraint – observe that

c : chan 〈〈〉 〈〉〉, x :〈〈〉 〈〉〉 ` cx | c〈y1 y2 〉.0 proc

holds but the substitution {x/〈y1 y2〉} is not defined. To exclude such free names with
non-empty tuple types, we say T atomic iff T = 〈〉 or T = chanT ′ for some T ′, and
Γ atomic iff all the types in the range of Γ are atomic.

Note that the (Res) rule allows new-binding only at types of the form chanT – it
would be counter-intuitive to allow new values of tuple types to be dynamically generated.
In general, we say a type T is extensible if it allows new-binding, so for the calculus above
T extensible iff ∃T ′ . T = chanT ′. Extending the calculus and type system with base
types such as Int or Bool is straightforward. These are not extensible.
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3.3 Typing and Labelled Transitions

The properties of well-typed processes with respect to labelled transition semantics are
more delicate. Broadly, one can either define a typed LTS, allowing only well-typed inputs
and outputs with the environment, or an untyped LTS, allowing badly-typed inputs and
outputs. In either case the definition must support communication of tuples, not just of
names. An untyped LTS may be required where one wishes to consider interaction with
badly-typed processes, e.g. a malicious attacker. Otherwise, a typed LTS gives a tighter
notion of behaviour, definitionally excluding pathological inputs and outputs. Note that
for an untyped LTS it is best to take a syntax without type annotations on new-binders,
i.e. with new x in P instead of new x : T in P , whereas for a typed LTS the converse
is preferable.

For either LTS the labels ` now allow arbitrary values:

` ::= τ internal action
xv output of v on x
xv input of v on x

Typed LTS The typed labelled transition relation has the form

Γ ` P `−→
∆
Q

which should be contrasted with untyped relation A ` P `−→Q of §1.3. The typed tran-
sitions are with respect to a type environment Γ for P , not merely a set of free names A
that includes those of P – we should expect Γ ` P proc. Moreover, the labelling includes
a type environment ∆ for the new names extruded or intruded by this transition – we
should expect, e.g. if ` = xv , that x has a channel type chanT with respect to Γ and
that Γ,∆ ` v :T . For example, there will be transitions

x : chan chan 〈〉, y : chan 〈〉 ` xy
xy−→∅ 0

x : chan chan 〈〉 ` (new y : chan 〈〉 in xy)
xy−→

y : chan 〈〉 0

For the calculus of §3.1 the typed transitions are defined as the smallest relation satisfying
the rules below.

Out

Γ ` xv xv−→∅ 0
In

Γ ` x : chanT
Γ,∆ ` v :T
dom(∆) ⊆ fn(v)
∆ extensible

Γ ` xp.P xv−→
∆
{v/p}P

Par

Γ ` P `−→
∆
P ′

Γ ` P |Q `−→
∆
P ′ |Q

Com

Γ ` P xv−→
∆
P ′ Γ ` Q xv−→

∆
Q′

Γ ` P |Q τ−→∅ new ∆ in (P ′ |Q′)

Res

Γ, x :T ` P `−→
∆
P ′ x 6∈ fn(`)

Γ ` new x : T in P
`−→
∆

new x : T in P ′
Open

Γ, x :T ` P yv−→
∆
P ′ x ∈ fn(v) \ {y}

Γ ` new x : T in P
yv−→

∆,x :T
P ′

Struct Right

Γ ` P `−→
∆
P ′ P ′ ≡ P ′′

Γ ` P `−→
∆
P ′′
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In all rules with conclusion of the form Γ ` P `−→
∆
Q there are implicit side conditions

Γ atomic and Γ ` P proc. The only other changes are that (Com) involves the free
names of v and in (Open), which allows x to be extruded if it occurs anywhere in v.
Note that in the (In) axiom the expression {v/p}P is guaranteed to be well-defined.

Note that (just as in the statement of subject reduction above) we must consider
transitions only with respect to atomic type environments to rule out all run-time errors.
Note also that the (In) rule requires ∆ to be extensible, so all intruded new names are
of channel types. For this calculus T extensible implies T atomic, and we expect this to
be true in general – extensible types often have values which are simply names, perhaps
not just of channels but also of boxes or agents (c.f. Nomadic and Box π).

Theorem 6 (Subject Reduction – Typed LTS) If Γ ` P `−→
∆
Q then

1. Γ,∆ ` Q proc

2. if ` = xv or ` = xv then there is T such that Γ ` x : chanT and Γ,∆ ` v :T .

In fact, in this calculus the ∆ of a transition Γ ` P `−→
∆
Q is uniquely determined –

it is either empty for a τ transition or determined by the type of x for an output xv or
input xv . The semantics can therefore be simplified by omitting all type environment
labels and replacing new ∆ in P ′ |Q′ in the (Com) rule by new tc(Γ, v ,T ) in P ′ |Q′,
where Γ ` x : chanT and the type environment tc(Γ, v, T ) is defined as follows.

tc(Γ, x, T ) = x :T if x 6∈ dom(Γ) and T atomic
tc(Γ, x, T ) = ∅ if Γ ` x :T
tc(Γ, 〈v1 .. vk〉, 〈T1 .. Tk〉) =

⊔
1..k tc(Γ, vi, Ti)

tc(Γ, v, T ) undefined elsewhere

Here
⊔
i∈1..k Γi is the union of the Γi if these agree on all common names (i.e. if for all

x ∈ dom(Γi) ∩ dom(Γj) we have Γi(x) = Γj(x)) and is undefined otherwise.
In systems with subtyping, where a process may be able to extrude a name at different

types, the ∆s may be essential. We do not pursue this here.

Untyped LTS The alternative, of untyped transitions, has a simpler definition of the
transition relations but more complex statement of subject reduction. For the calculus
of §3.1 (but now without type annotations on new-binders) transitions can be defined
as the smallest relation satisfying the rules below. We leave the statement of subject
reduction as an exercise for the reader.

Out

A ` xv xv−→0
In

A ` xp.P xv−→{v/p}P

Par
A ` P `−→P ′

A ` P |Q `−→P ′ |Q
Com

A ` P xv−→P ′ A ` Q xv−→Q′
A ` P |Q τ−→new fn(v)−A in (P ′ |Q′)

Res
A, x ` P `−→P ′ x 6∈ fn(`)

A ` new x in P
`−→new x in P ′

Open
A, x ` P yv−→P ′ x 6= y x ∈ fn(v)

A ` new x in P
yv−→P ′

Struct Right
A ` P `−→P ′ P ′ ≡ P ′′

A ` P `−→P ′′

In all rules with conclusion of the form A ` P `−→Q there is an implicit side condition
fn(P ) ⊆ A. In the (In) axiom there is now an implicit side condition that {v/p}P is
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well-defined. The only other changes from §1.3 are that (Com) involves the free names
of v and in (Open), which allows x to be extruded if it occurs anywhere in v.



Chapter 4

Metatheory: Overview

We now develop the basic metatheory for the π-calculi of the previous chapters. We
first give basic properties of the labelled transition system, then show the τ -transitions
of the labelled transition semantics coincide with the reduction semantics, and show that
bisimulation is a congruence. We go on to show subject reduction and type-soundness
results for the calculus and simple type system of Chapter 3.

The aim is to provide a model development of this theory for simple π-calculi, so that
it can be understood clearly and generalized as required. We do not discuss variations
of calculus or semantics in any detail – for that, the reader should refer to the literature
cited earlier, and to the forthcoming monograph of Sangiorgi and Walker. In particular,
we work mostly with a monadic calculus without choice, replication, or matching, and
use only explicitly-indexed early labelled transition semantics.

The exposition is divided into two parts. The first gives an overview, with statements
of lemmas, sketch proofs and discussion. The second, in the following chapter, repeats
the statements and gives full proofs.

4.1 Basic Properties of the LTS

Structural congruence preserves free name sets and is closed under substitutions.

Lemma 7 If P ≡ Q then fn(P ) = fn(Q).

Lemma 8 If P ≡ Q then for any substitution f we have fP ≡ fQ.

Lemma 9 (Naming) If A ` P `−→Q then

1. fn(P ) ⊆ A and fn(Q) ⊆ fn(P, `)

2. if ` = xv then x ∈ fn(P ) and fn(`) ∩A ⊆ fn(P )

3. if ` = xv then x ∈ fn(P ).

Proof Sketch By induction on the derivation of A ` P `−→Q. 2

The calculus has no mismatching – it does not allow inequality testing of names – so
transitions are preserved by arbitrary substitutions as follows. Note that only injective

29
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substitution, as stated in Lemma 11, is required for the correspondence between reduction
and labelled transition semantics (all of the section leading to Theorem 2), and for the
congruence of bisimulation with respect to parallel and new (Lemma 31).

Lemma 10 (Substitution) If A ` P `−→Q, f :A→B, and g :(fn(`)−A)→N , and fur-

ther if ` is an output then g is injective and B ∩ ran(g) = ∅, then B ` fP (f+g)`−→ (f + g)Q.

Proof Sketch Induction on derivations of transitions. 2

Lemma 11 (Injective Substitution) If A ` P `−→P ′, and f :A→B and g :(fn(`) −
A)→(N −B) are injective, then B ` fP (f+g)`−→ (f + g)P ′.

Proof Sketch One can either prove this as a corollary of Lemma 10 or give a direct
proof (by induction on derivations of transitions) if in a calculus where Lemma 10 does
not hold. 2

Lemma 12 (Shifting) (A ` P zv−→P ′ ∧ v 6∈ A) iff (A, v ` P zv−→P ′ ∧ v 6∈ fn(P )).

Proof Sketch By two inductions on derivations of transitions. 2

The transitions of an injectively-substituted process fP are determined by the tran-
sitions of P as follows. This Lemma is used to show that bisimulation is preserved by
injective substitution (Lemma 30). It is not required for the correspondence between
reduction and labelled transition semantics (all of the section leading to Theorem 2),
although the corollary Lemma 14 (Strengthening) is.

Lemma 13 (Converse to Injective Substitution) For f :A→B injective, if B `
fP

`′−→Q′ then (at least) one of the following two cases applies

1. there exist `, Q, g :(fn(`)−A)→bij B̂ such that B̂ ∩B = ∅ and `′ = (f + g)(`) and

A ` P `−→Q and Q′ = (f + g)Q.

2. there exist x ∈ A, y 6∈ A, z ∈ B − ran(f) and Q such that `′ = f (x )z and A `
P

xy−→Q and Q′ = (f + {z/y})Q.

Proof Sketch Induction on derivations of transitions, using Lemmas 8, 9 and 11. 2

Lemma 14 (Strengthening) If A,B ` P
`−→P ′ and B ∩ fn(P, `) = ∅ then A `

P
`−→P ′.

Proof Sketch This is a simple corollary of Lemmas 13 and 11. We also give a direct
proof by induction on derivations of transitions. 2

Lemma 15 (Weakening and Strengthening) (A ` P
`−→P ′ ∧ x 6∈ A ∪ fn(`)) iff

(A, x ` P `−→P ′ ∧ x 6∈ fn(P, `)).
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Proof Sketch This is a corollary of Lemmas 14 and 11. 2

As we are working up to alpha conversion some care is required when analysing
transitions. We need the following lemma (of which only the input and restriction cases
are really interesting).

Lemma 16 (Transition Analysis)

1. A ` xv `−→Q iff fn(xv) ⊆ A, ` = xv and Q ≡ 0.

2. A ` xp.P `−→Q iff there exists v such that fn(xp.P ) ⊆ A, ` = xv, and Q ≡ {v/p}P .

3. A ` P |Q `−→R iff either

(a) there exists P̂ such that fn(Q) ⊆ A, A ` P `−→P̂ and R ≡ P̂ |Q.

(b) there exist x, v, P̂ and Q̂ such that ` = τ , A ` P xv−→P̂ , A ` Q xv−→Q̂, and
R ≡ new {v} −A in (P̂ | Q̂).

or symmetric cases.

4. A ` new x in P
`−→Q iff either

(a) there exist x̂ 6∈ A ∪ fn(`) ∪ (fn(P ) − x) and Q̂ such that A, x̂ ` {x̂/x}P
`−→Q̂

and Q ≡ new x̂ in Q̂.
(b) there exist y, x̂ 6∈ A ∪ {y} ∪ (fn(P ) − x), and Q̂ such that ` = yx̂ , A, x̂ `
{x̂/x}P

yx̂−→Q̂, and Q ≡ Q̂.

Proof Sketch The right-to-left implications are all shown using a single transition
rule together with (Trans Struct Right). The left-to-right implications are shown by
induction on derivations of transitions. 2

Note that the alpha conversion in the restriction case 4 is essential. To see why,
we give examples to show why A ` new x in P

`−→Q does not imply that one of the
following hold.

1. there exists Q̂ such that A, x ` P `−→Q̂ and Q ≡ new x in Q̂.

2. there exists y and Q̂ such that ` = yx , A, x ` P yx−→Q̂, y 6= x, and Q̂ ≡ Q.

For the first, there is a transition

{x, y, z} ` new x in yz
yz−→new x in 0

but {x, y, z}, x is not well-formed. For the second, if y ∈ A then there is a transition

A ` new x in yx
yz−→0

for any z 6∈ A. Here we may have x ∈ A or x 6∈ A. In constrast, alpha conversion in the
input case 2 is not essential.

It will be convenient to have more particular results for analysing transitions A `
new B in P

`−→Q, under the assumptions B ∩ A = ∅ and B ∩ (A ∪ fn(`)) = ∅. These
rename the label and resulting process as required, in contrast to Lemma 16 which keeps
the label fixed but renames the source process. For completeness we also give results
making only the first assumption.
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Lemma 17 (Transition Analysis – Unary Disjoint New) If A ` new x in P
`−→Q

and x 6∈ A ∪ fn(`) then either

1. there exists Q′ such that A, x ` P `−→Q′ and Q ≡ new x in Q′

2. there exist y ∈ A, x̂ 6∈ A and Q′ such that ` = yx̂ , A, x ` P
yx−→Q′, and Q ≡

{x̂/x}Q′.

Proof Sketch The transition can be analysed by Lemma 16, then Lemma 11 (injec-
tive substitution) and Lemma 9 used. 2

Lemma 18 (Transition Analysis – n-ary Disjoint New) If A ` new B in P
`−→Q,

A ∩B = ∅ and fn(`) ∩B = ∅ then either

1. there exists Q′ such that A,B ` P `−→Q′ and Q ≡ new B in Q′

2. there exist y ∈ A, x̂ 6∈ A, x ∈ B and Q′ such that ` = yx̂ , A,B ` P yx−→Q′, and
Q ≡ {x̂/x}new B − x in Q′.

Proof Sketch Induction on the size of B using Lemma 17. 2

The following two lemmas, which assume the restricted names are disjoint from the
name context A but may occur in the label, are included for completeness – they are not
used later.

Lemma 19 (Transition Analysis – Unary A-Disjoint New) If A ` new x in P
`−→Q

and x 6∈ A then either

1. For any C ⊆fin N −A, x there exists g :(fn(`)−A)→(N −A, x,C) injective and Q′

such that A, x ` P (idA+g)`−→ Q′ and Q ≡ (idA + g−1)new x in Q′.

2. There exists y ∈ A, x̂ 6∈ A and Q′ such that ` = yx̂ , A, x ` P yx−→Q′ and Q ≡
{x̂/x}Q′.

Proof Sketch The transition can be analysed by Lemma 16, then injective substitu-
tion (Lemma 11) used. 2

Lemma 20 (Transition Analysis – n-ary A-Disjoint New) If A ` new B in P
`−→Q

and A ∩B = ∅ then either

1. there exist g :(fn(`)−A)→(N−A,B) injective and Q′ such that A,B ` P (idA+g)`−→ Q′

and Q ≡ (idA + g−1)new B in Q′.

2. there exist y ∈ A, x̂ 6∈ A, x ∈ B and Q′ such that ` = yx̂ , A,B ` P yx−→Q′, and
Q ≡ {x̂/x}new B − x in Q′.

Proof Sketch We prove a slightly stronger result, with ran(g) disjoint from an arbi-
trary C ⊆fin N −A,B, by induction on the size of B using Lemma 19. 2
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4.2 Coincidence of the Two Semantics

Reductions Imply Transitions This direction of the equivalence has two main parts:
we must show that transitions are invariant under structural congruence and construct
τ -transitions for each reduction axiom.

Take the size of a derivation of a structural congruence to be number of instances of
inference rules contained in it.

Lemma 21 For any derivation of P ′ ≡ P there is a derivation of the same size of
{v/p}P ′ ≡ {v/p}P .

The following lemma is stated as Theorem 1 in §1.

Lemma 22 If P ′ ≡ P then A ` P ′ `−→Q iff A ` P `−→Q.

Proof Sketch Induction on the size of derivation of P ′ ≡ P , with case analysis using
the transition analysis Lemmas 16 and 17 for the axioms. 2

Lemma 23 If fn(P ) ⊆ A and P → Q then A ` P τ−→Q.

Proof Sketch Induction on derivations of P → Q, constructing derivations of τ -
transitions for the reduction axiom (Com), and using Lemma 22 for the (Struct) case.
2

Transitions Imply Reductions For the converse direction we first show that if a
process has an output or input transition then it contains a corresponding output or
input.

Lemma 24 (Term Structure – Output Transition) If A ` P zv−→P ′ then we have
P ≡ new {v} −A in (zv |P ′)

Lemma 25 (Term Structure – Input Transition) If A ` Q xv−→Q′ then there exist
B, p,Q1 and Q2 such that B ∩ (A ∪ fn(xv)) = {}, Q ≡ new B in (xp.Q1 |Q2) and
Q′ ≡ new B in ({v/p}Q1 |Q2).

Lemma 26 If A ` P τ−→Q then P → Q.

Proof Sketch Induction on derivations of A ` P
τ−→Q, using the preceding Lem-

mas 24 and 25 for the (Com) case. 2

We also show the following lemma here, giving the term structure of a τ -transition,
for use in Lemma 33.

Lemma 27 (Term Structure – Tau Transition) If A ` P
τ−→Q and B ⊆fin N

then there exist C, x, v, p,Q1, Q2 such that C ∩ (A ∪ B) = ∅, p 6∈ A ∪ B ∪ C, P ≡
new C in (xv | xp.Q1 |Q2) and Q ≡ new C in ({v/p}Q1 |Q2).



34 CHAPTER 4. METATHEORY: OVERVIEW

Proof By Lemma 26 P−→Q. One can show the result for empty B by induction on
derivations of reductions, and then use alpha-renaming. 2

Theorem 2 If fn(P ) ⊆ A then P−→Q iff A ` P τ−→Q.

Proof This is immediate from Lemmas 23 and 26 above. 2

4.3 Strong Bisimulation and Congruence

We first give a rigorous definition of bisimulation as a greatest fixed point. Say an
indexed relation R is a family of relations RA indexed by finite sets of names with each
RA a binary relation over {P | fn(P ) ⊆ A }. The indexed relations are clearly closed
under pointwise unions. Define a endofunction Φ over indexed relations by P Φ(R)A Q
if

• fn(P,Q) ⊆ A,

• if A ` P `−→P ′ then ∃Q′ . A ` Q `−→Q′ ∧ P ′ RA∪fn(`) Q
′, and

• if A ` Q `−→Q′ then ∃P ′ . A ` P `−→P ′ ∧ P ′ RA∪fn(`) Q
′.

Say an indexed relation R is a bisimulation if R ⊆ Φ(R).
Take bisimulation ∼̇ to be

⋃
{R | R ⊆ Φ(R) }. As usual, this is a fixed point and an

equivalence relation:

Lemma 28 Φ(∼̇) = ∼̇ and ∼̇ is an equivalence.

Proof Sketch Standard reasoning, albeit here for indexed relations. 2

The rest of this section is devoted to showing that ∼̇ is an indexed congruence. We
begin by proving the soundness of an ‘up-to’ proof technique. We then show that bisim-
ulation is preserved by injective substitution, and hence by weakening. Both of these
results are used in a proof that bisimulation is preserved by parallel and new contexts.
That result in turn is used in a proof that bisimulation is preserved by arbitrary substi-
tutions, and hence by input-prefix contexts. This depends critically on the asynchrony of
the calculus, as manifested in Lemma 32. In a richer calculus, e.g. with output prefixing,
one would expect to have to close ∼̇ up under substitution to obtain a congruence.

If R is a relation over process terms such that P R Q =⇒ fn(P ) = fn(Q), for example
≡, then we can regard R as an indexed relation with P RA Q iff fn(P,Q) ⊆ A ∧ P R Q.

To check bisimulation we need consider extrusion and intrusion only of some new
names. Say an indexed relation R is a loose bisimulation up to structural congruence and
bijective renaming (or just loose bisimulation for short) if whenever P RA Q there exists
D ⊆fin (N −A) such that

• fn(P,Q) ⊆ A,

• if A ` P `−→P ′ and fn(`) ∩D = ∅ then there exists Q′, C, and a bijection f :A ∪
fn(`)→C such that A ` Q `−→Q′ and fP ′ ≡RC≡ fQ′, and

• if A ` Q `−→Q′ then the symmetric condition holds.
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Lemma 29 If R is a loose bisimulation then R ⊆ ∼̇.

Proof Sketch We check SA
def
= { f−1P, f−1Q | f :A→bijB ∧ P ≡RB≡ Q } is a

bisimulation. 2

Lemma 30 (Injective Substitution – Bisimulation) If P ∼̇A Q and f :A→B is
injective then fP ∼̇B fQ.

Proof Sketch By checking RB= { fP1, fP2 | f :A→injB ∧ P1∼̇AP2 } is a bisimula-
tion, using Lemma 13 to go from transitions of fP1 to transitions of P1, and then using
Lemmas 11 and 12. 2

Lemma 31 (Congruence – Par and New) If P ∼̇A,B P ′ and Q ∼̇A,B Q′ then
new B in (P |Q) ∼̇A new B in (P ′ |Q′).

Proof Sketch By checking RA= {new B in (P |Q),new B in (P ′ |Q′) | P ∼̇A,B
P ′ ∧ Q ∼̇A,B Q′ } is a loose bisimulation, using Lemmas 18 and 16 to analyse transitions
of new B in (P |Q), and also using Lemmas 30 and 11. 2

Lemma 32 (Asynchrony) If A ` P zv−→Q zv−→R then A ` P τ−→new {v} −A in R.

Proof Sketch By Lemmas 24 and 25. 2

Lemma 33 (Substitution – Bisimulation) If P ∼̇A Q and σ :A→B then σP ∼̇B
σQ.

Proof Sketch We check RB = {σP, σP ′ | ∃A . σ :A→B ∧ P ∼̇A P ′ } is a bisimu-
lation up to ≡. We use Lemmas 24, 25 and 27 to analyse transitions of σP (one could
alternatively develop an explicit converse to the substitution lemma for transitions). The
interesting case is that in which σ creates a τ -transition by identifying two names. Here
the asynchrony property stated in Lemma 32 is crucial, and in one subcase the new-
congruence part of Lemma 31 is also required. 2

Lemma 34 (Congruence – Input Prefix) If P ∼̇A,pQ and x ∈ A then xp.P ∼̇Axp.Q.

Proof Sketch We check the union of ∼̇ and the pair (xp.P, xp.Q) at A is a bisimu-
lation up to ≡. 2

Theorem 3 Bisimulation ∼̇ is an indexed congruence.

Proof Immediate from Lemmas 31 and 34. 2

4.4 Type Soundness and Subject Reduction

We now prove the type soundness results stated in Chapter 3, namely subject reduction
(for the reduction semantics), absence of runtime errors, and subject reduction for the
typed labelled transition semantics. These results are for the calculus with tuples defined
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in that chapter. We do not develop analogues of the reduction/LTS and bisimulation
congruence results for this calculus – they would be fairly straightforward adaptations
of the results of §4.1–4.3. For simplicity we have chosen to work with atomic type
environments everywhere.

The first 4 lemmas, for weakening and strengthening of typing judgements, are all
proved by routine inductions on type derivations.

Lemma 35 (Weakening – Values) If Γ ` v :T ′ and x 6∈ dom(Γ) then Γ, x :T ` v :T ′.

Lemma 36 (Weakening – Processes) If Γ ` P proc and x 6∈ dom(Γ) then Γ, x :T `
P proc.

Lemma 37 (Strengthening – Values) If Γ, x :T ` v :T ′ and x 6∈ fn(v) then Γ `
v :T ′.

Lemma 38 (Strengthening – Processes) If Γ, x :T ` P proc and x 6∈ fn(P ) then
Γ ` P proc.

Lemma 39 (Type Soundness of Structural Congruence) If P ≡ Q then Γ `
P proc iff Γ ` Q proc.

Proof Sketch By induction on the derivation of P ≡ Q, using Lemmas 36,38 for the
scope extrusion axiom. 2

Lemma 40 (Injective Substitution – Reductions) If P → Q and f : fn(P )→N is
injective then fP → fQ.

Proof Sketch This can be proved either directly or as a corollary of the results for
labelled transitions (Theorem 2 and Lemma 11), if those are adapted for the calculus
with tuples. 2

We define well-typed substitutions as follows. Say Γ ` σ : ∆ iff dom(σ) = dom(∆)
and ∀x ∈ dom(∆) . Γ ` σ(x) : ∆(x).

Lemma 41 (Good Substitutions) If Γ atomic and Γ ` v :T and ` p :T B ∆ then
{v/p} is defined and Γ ` {v/p} : ∆.

Proof Sketch By induction on the two typing derivations. 2

Lemma 42 (Substitution – Values) If Γ,∆ ` v :T and Γ ` σ : ∆ then Γ ` σv :T .

Proof Sketch By induction on the value typing derivation. 2

Lemma 43 (Substitution – Processes) If Γ,∆ ` P proc and Γ ` σ : ∆ then σP is
defined and Γ ` σP proc.

Proof Sketch By induction on the type derivation for P , using Lemma 42. 2

Theorem 4 (Subject Reduction) If Γ ` P proc and Γ atomic and P → Q then
Γ ` Q proc.
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Proof Sketch By induction on the derivation of P → Q, using Lemmas 41, 43 and
Lemma 39 in the (Com) and (Struct) cases. 2

Theorem 5 (Absence of Runtime Errors) If Γ ` P proc and Γ atomic then
¬(P err).

Proof Sketch By induction on derivations of P err. 2

Theorem 6 (Subject Reduction – Typed LTS) If Γ ` P `−→
∆
Q then

1. Γ,∆ ` Q proc

2. if ` = xv or ` = xv then there is T such that Γ ` x : chanT and Γ,∆ ` v :T .

Proof Sketch By induction on derivations of transitions, using Lemmas 41, 36 and
43 in the (In) case, Lemma 36 in the (Par) case, Lemma 35 in the (Res) and (Open)
cases, and Lemma 39 in the (Struct) case. 2
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Chapter 5

Metatheory: Detailed Proofs

5.1 Basic Properties of the LTS

Lemma 7 If P ≡ Q then fn(P ) = fn(Q).

Proof Routine induction on derivation of P ≡ Q. 2

Lemma 8 If P ≡ Q then for any substitution f we have fP ≡ fQ.

Proof Routine induction on derivation of P ≡ Q. 2

Lemma 9 (Naming) If A ` P `−→Q then

1. fn(P ) ⊆ A and fn(Q) ⊆ fn(P, `)

2. if ` = xv then x ∈ fn(P ) and fn(`) ∩A ⊆ fn(P )

3. if ` = xv then x ∈ fn(P ).

Proof By induction on the derivation of A ` P `−→Q. The first clause of Part 1 is
immediate in all cases by the implicit condition on the transition rules. For the other
parts:

(Out) By the condition fn(xv) ⊆ A.

(In) For Part 1, fn({v/p}P ) ⊆ (fn(P ) − {p}) ∪ {v} ⊆ fn(xp.P ) ∪ fn(xv). For Part 3,
x ∈ fn(xp.P ).

(Par) By the induction hypothesis.

(Com) Part 1 is by parts 1, 2 and 3 of the induction hypothesis.

(Res) By the induction hypothesis.

(Open) For Part 1, by Part 1 of the induction hypothesis fn(P ′) ⊆ fn(P ) ∪ fn(yx ).
As x ∈ fn(yx ) we have fn(P ′) ⊆ fn(new x in P ) ∪ fn(yx ). For the first clause
of Part 2, by the induction hypothesis y ∈ fn(P ) so by the side condition y 6= x
we have y ∈ fn(new x in P ). For the second clause, by the induction hypothesis
fn(yx ) ∩ (A, x) ⊆ fn(P ) so fn(yx ) ∩A ⊆ fn(new x in P ).

39
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(Struct Right) By the induction hypothesis and Lemma 7.

2

Lemma 10 (Substitution) If A ` P `−→Q, f :A→B, and g :(fn(`)−A)→N , and fur-

ther if ` is an output then g is injective and B∩ran(g) = ∅, then B ` fP (f+g)`−→ (f + g)Q.

Proof Induction on derivations of transitions.

(Out) immediate.

(Par),(Struct Right) Straightforward uses of the induction hypothesis.

(In) Consider A ` xp.P xv−→{v/p}P . We have fn(xp.P ) ⊆ A. Take some p̂ and P̂ such
that xp.P = x p̂.P̂ and p̂ 6∈ (A∪B∪(fn(`)−A)∪ran(g)), then f(xp.P ) = f(x p̂.P̂ ) =
f (x )p̂.f(P̂ ) and fn(f (x )p̂.f(P̂ )) ⊆ B.

By (In) B ` f (x )p̂.f(P̂ )
f (x)(f +g)v−→ {(f+g)v/p̂}f(P̂ ).

Now fn(P̂ ) ⊆ A, p̂ so fn(P̂ )∩dom(g) = ∅, so fP̂ = (f+g)P̂ . Hence {(f+g)v/p̂}fP̂ =
{(f+g)v/p̂}(f + g)P̂ = (f + g)({v/p̂}P̂ ) = (f + g)({v/p}P ), so we have the transition

B ` f(xp.P )
(f+g)xv−→ (f + g)({v/p}P ).

(Com) fn(τ) = ∅, so we have f :A→B and g : ∅→N . Take some ĝ :(fn(xv)−A)→(N −
B) injective. By the induction hypothesis and (Com) we have

Com
B ` fP (f+ĝ)(xv)−→ (f + ĝ)P ′ B ` fQ(f+ĝ)(xv)−→ (f + ĝ)Q′

B ` f(P |Q) τ−→new {(f + ĝ)v} − B in ((f + ĝ)(P ′ |Q′))

Now {(f + ĝ)v}−B = ran(ĝ), so B ` f(P |Q) τ−→new ran(ĝ) in ((f + ĝ)(P ′ |Q′)).
We have f(new dom(ĝ) in (P ′ |Q′)) = (new ran(ĝ) in (f + ĝ)(P ′ |Q′)), so B `
f(P |Q) τ−→f(new {v} −A in (P ′ |Q′)).

(Res) Take some x̂ 6∈ B ∪ ran(g) and define f̂ :(A, x)→(B, x̂) by

f̂(x) = x̂

f̂(z) = f(z), for z ∈ A.

By the induction hypothesis B, x̂ ` f̂P (f̂+g)`−→ (f̂ + g)P ′. By (Res) we have B `

new x̂ in f̂P
(f̂+g)`−→ new x̂ in (f̂ + g)P ′, soB ` f(new x in P )

(f+g)`−→ (f + g)new x in P ′.

(Open) Define f̂ :(A, x)→(B, g(x)) and ĝ as f+(x 7→ g(x)) and g � (fn(yx )−(A, x)) = ∅

respectively. By the induction hypothesis B, g(x) ` f̂P
(f̂+ĝ)yx−→ (f̂ + ĝ)P ′, so by

(Open) B ` new g(x ) in f̂P
(f̂+ĝ)yx−→ (f̂ + ĝ)P ′, so as f + g = f̂ + ĝ we have B `

f(new x in P )
(f+g)yx−→ (f + g)P ′.

2

Lemma 11 (Injective Substitution) If A ` P `−→P ′, and f :A→B and g :(fn(`) −
A)→(N −B) are injective, then B ` fP (f+g)`−→ (f + g)P ′.

Proof This is a simple corollary of Lemma 10, but we also give a direct proof by
induction on derivations of transitions.
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(Out) immediate.

(Par),(Struct Right) Straightforward uses of the induction hypothesis.

(In) Consider A ` xp.P xv−→{v/p}P . We have fn(xp.P ) ⊆ A. Take some p̂ and P̂ such
that xp.P = x p̂.P̂ and p̂ 6∈ (A∪B∪(fn(`)−A)∪ran(g)), then f(xp.P ) = f(x p̂.P̂ ) =
f (x )p̂.f(P̂ ) and fn(f (x )p̂.f(P̂ )) ⊆ B.

By (In) B ` f (x )p̂.f(P̂ )
f (x)(f +g)v−→ {(f+g)v/p̂}f(P̂ ).

Now fn(P̂ ) ⊆ A, p̂ so fn(P̂ )∩dom(g) = ∅, so fP̂ = (f+g)P̂ . Hence {(f+g)v/p̂}fP̂ =
{(f+g)v/p̂}(f + g)P̂ = (f + g)({v/p̂}P̂ ) = (f + g)({v/p}P ), so we have the transition

B ` f(xp.P )
(f+g)xv−→ (f + g)({v/p}P ).

(Com) fn(τ) = ∅, so we have f :A→B and g : ∅→(N − B). Take some ĝ :(fn(xv) −
A)→(N −B) injective. By the induction hypothesis and (Com) we have

Com
B ` fP (f+ĝ)(xv)−→ (f + ĝ)P ′ B ` fQ(f+ĝ)(xv)−→ (f + ĝ)Q′

B ` f(P |Q) τ−→new {(f + ĝ)v} − B in ((f + ĝ)(P ′ |Q′))

Now {(f + ĝ)v}−B = ran(ĝ), so B ` f(P |Q) τ−→new ran(ĝ) in ((f + ĝ)(P ′ |Q′)).
We have f(new dom(ĝ) in (P ′ |Q′)) = (new ran(ĝ) in (f + ĝ)(P ′ |Q′)), so B `
f(P |Q) τ−→f(new {v} −A in (P ′ |Q′)).

(Res) Take some x̂ 6∈ B ∪ ran(g) and define f̂ :(A, x)→(B, x̂) by

f̂(x) = x̂

f̂(z) = f(z), for z ∈ A.

By the induction hypothesis B, x̂ ` f̂P (f̂+g)`−→ (f̂ + g)P ′. By (Res) we have B `

new x̂ in f̂P
(f̂+g)`−→ new x̂ in (f̂ + g)P ′, soB ` f(new x in P )

(f+g)`−→ (f + g)new x in P ′.

(Open) Define f̂ :(A, x)→(B, g(x)) and ĝ as f+(x 7→ g(x)) and g � (fn(yx )−(A, x)) = ∅

respectively. By the induction hypothesis B, g(x) ` f̂P
(f̂+ĝ)yx−→ (f̂ + ĝ)P ′, so by

(Open) B ` new g(x ) in f̂P
(f̂+ĝ)yx−→ (f̂ + ĝ)P ′, so as f + g = f̂ + ĝ we have B `

f(new x in P )
(f+g)yx−→ (f + g)P ′.

2

Lemma 12 (Shifting) (A ` P zv−→P ′ ∧ v 6∈ A) iff (A, v ` P zv−→P ′ ∧ v 6∈ fn(P )).

Proof By two inductions on derivations of transitions.

(Out),(Com),(Open) vacuous.

(Par),(Struct Right) Straightforward uses of the induction hypothesis.

(In) Straightforward.

(Res) Consider

A, y ` P zv−→P ′

A ` new y in P
zv−→new y in P ′

(Res)
A, x, y ` P zv−→P ′

A, x ` new y in P
zv−→new y in P ′

(Res)

y 6∈ fn(zv) y 6∈ fn(zv)
x ∈ fn(v)−A x ∈ fn(v)− fn(new y in P ))
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For the left-to-right implication, note that x ∈ fn(v) − (A, y), so by the induction
hypothesis A, y, x ` P zv−→P ′ and x ∈ fn(v)−fn(P ). For the right-to-left implication,
note that as A, x, y is well-formed we have x ∈ fn(v) − fn(P ), so by the induction
hypothesis A, y ` P zv−→P ′ and x ∈ fn(v)− (A, y).

2

Lemma 13 (Converse to Injective Substitution) For f :A→B injective, if B `
fP

`′−→Q′ then (at least) one of the following two cases applies

1. there exist `, Q, g :(fn(`)−A)→bij B̂ such that B̂ ∩B = ∅ and `′ = (f + g)(`) and

A ` P `−→Q and Q′ = (f + g)Q.

2. there exist x ∈ A, y 6∈ A, z ∈ B − ran(f) and Q such that `′ = f (x )z and A `
P

xy−→Q and Q′ = (f + {z/y})Q.

Proof Induction on derivations of transitions.

(Out) We have B ` f(xv)
f (x)f (v)−→ 0. Taking ` = xv , Q = 0 and g : ∅→∅ gives clause 1.

(In) Suppose wlg that p 6∈ A ∪B. We have B ` f(xp.P )
f (x)z−→{z/p}fP .

Case z ∈ ran(f). Take some y ∈ A such that f(y) = z, then A ` xp.P
xy−→{y/p}P .

Taking ` = xy , Q = {y/p}P and g : ∅→∅ gives clause 1, as {z/p}fP =
f({y/p}P ).

Case z 6∈ B. Take some y 6∈ A, then A ` xp.P
xy−→{y/p}P . Taking ` = xy , Q =

{y/p}P , B̂ = {z} and g :{y}→{z} gives clause 1, as {z/p}fP = (f+g)({y/p}P ).

Case z ∈ B − ran(f). Take some y 6∈ A, then A ` xp.P
xy−→{y/p}P . Taking Q =

{y/p}P gives clause 2, as {z/p}fP = (f + {z/y})({y/p}P ).

(Par) By the induction hypothesis.

(Com) Consider an instance

Com
B ` fP xv−→P ′ B ` fQ xv−→Q′

B ` fP | fQ τ−→new {v} − B in (P ′ |Q′)

By Lemma 9 either v ∈ ran(f) or v 6∈ B, so clause 2 of the induction hypothesis
cannot apply. The first case is by two routine uses of the induction hypothesis. For
the second case, by the induction hypothesis for the output transition there exist
x1, v1, P̂ , g1 :{v1}→{v} such that f(x1) = x and A ` P x1 v1−→P̂ and P ′ = (f + g1)P̂ .

By the induction hypothesis for the input transition there exist x2, v2, Q̂, g2 :{v2}→{v}
such that f(x2) = x and A ` Qx2 v2−→Q̂ and Q′ = (f + g2)Q̂.

By f injective x1 = x2.

By Lemma 11 A ` Qx1 v1−→{v1/v2}Q̂.

By (Com) A ` P |Q τ−→new {v1} −A in (P̂ |{v1/v2}Q̂).

It remains only to note that

new {v} − B in (P ′ |Q′) = fnew {v1} −A in (P̂ |{v1/v2}Q̂)



5.1. BASIC PROPERTIES OF THE LTS 43

(Res) Consider an instance

Res
B, x′ ` P ′ `

′

−→Q′ x′ 6∈ fn(`′)

B ` new x ′ in P ′
`′−→new x ′ in Q′

where fP = new x ′ in P ′. There exist x 6∈ A and P0 such that P = new x in P0

and P ′ = (f + {x′/x})P0. By the induction hypothesis either

1. there exist `, Q0, g :(fn(`) − A, x)→bij B̂ such that B̂ ∩ (B, x′) = ∅ and `′ =

(f + {x′/x} + g)(`) and A, x ` P0
`−→Q0 and Q′ = (f + {x′/x} + g)Q0. It

follows that x 6∈ fn(`).

By (Res) A ` P `−→new x in Q0.
Taking Q = new x in Q0 gives clause 1.

2. there exist w ∈ A, x, y 6∈ A, x, z ∈ B, x′ − ran(f + {x′/x}) and Q0 such that
`′ = ((f + {x ′/x})w)z and A, x ` P0

wy−→Q0 and Q′ = (f +{x′/x}+{z/y})Q0.
It follows that w 6= x.
By (Res) A ` P wy−→new x in Q0.
Taking Q = new x in Q0 gives clause 2.

(Open) Consider an instance

Open
B, x′ ` P ′ yx ′−→Q′ y 6= x′

B ` new x ′ in P ′
yx ′−→Q′

where fP = new x ′ in P ′. There exist x 6∈ A and P0 such that P = new x in P0

and P ′ = (f + {x′/x})P0.

By the induction hypothesis there exist y0 ∈ A and Q such that f(y0) = y and

A, x ` P0
y0 x−→Q and Q′ = (f + {x′/x}+ ∅)Q.

By (Open) A ` P y0 x−→Q.

Taking ` = y0 x and g :{x}→{x′} gives clause 1.

(Struct Right) Consider an instance

Struct Right
B ` fP `′−→Q′ Q′ ≡ Q′′

B ` fP `′−→Q′′

By the induction hypothesis there exists ` and Q (and other data, depending on
whether case 1 or 2 holds) such that A ` P `−→Q and Q′ = (f + g)Q (writing g
for {z/y} in 2). Regarding (f + g)−1 as a bijection with domain ran(f) ∪ ran(g),
we have (f + g)−1Q′ = Q and by Lemma 8 (f + g)−1Q′ ≡ (f + g)−1Q′′, so by
(Struct Right) A ` P `−→(f + g)−1Q′′.

2

Lemma 14 (Strengthening) If A,B ` P
`−→P ′ and B ∩ fn(P, `) = ∅ then A `

P
`−→P ′.

Proof This is a simple corollary of Lemmas 13 and 11. We also give a direct proof by
induction on derivations of transitions.
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(Out), (In) All immediate.

(Par),(Struct Right) Straightforward use of the induction hypothesis.

(Com) We have a rule instance of the form

Com
A,B ` P xv−→P ′ A,B ` Q xv−→Q′

A,B ` P |Q τ−→new {v} − (A,B) in (P ′ |Q′)

By Lemma 9.2 fn(xv) ∩ (A,B) ⊆ fn(P ) and by assumption B ∩ fn(P ) = ∅ so
fn(xv) ∩ B = ∅. By the induction hypothesis and (Com) we then have A `
P |Q τ−→new {v} −A in (P ′ |Q′), but {v} − A = {v} − (A,B), so we have the
transition A ` P |Q τ−→new {v} − (A,B) in (P ′ |Q′) as required.

(Res) We have a rule instance of the form

Res
A,B, x ` P `−→P ′

A,B ` new x in P
`−→new x in P ′

with x 6∈ fn(`). By A,B, x well-formed we have x 6∈ B, so B ∩ fn(new x in P ) = ∅
implies B ∩ fn(P ) = ∅. By the induction hypothesis A, x ` P `−→P ′ so by (Res)
A ` new x in P

`−→new x in P ′.

(Open) Similar to (Res), noting that the sidecondition is a predicate on x and the label
only.

2

Lemma 15 (Weakening and Strengthening) (A ` P `−→P ′ ∧ x 6∈ A ∪ fn(`)) iff
(A, x ` P `−→P ′ ∧ x 6∈ fn(P, `)).

Proof The right-to-left implication follows from the well-formedness of A, x and from
Lemma 14. The left-to-right implication follows from the condition fn(P ) ⊆ A in the
definition of the transition rules and from Lemma 11, taking f to be the inclusion from
A to A, x and g the identity on fn(`)−A. 2

Lemma 16 (Transition Analysis)

1. A ` xv `−→Q iff fn(xv) ⊆ A, ` = xv and Q ≡ 0.

2. A ` xp.P `−→Q iff there exists v such that fn(xp.P ) ⊆ A, ` = xv, and Q ≡ {v/p}P .

3. A ` P |Q `−→R iff either

(a) there exists P̂ such that fn(Q) ⊆ A, A ` P `−→P̂ and R ≡ P̂ |Q.

(b) there exist x, v, P̂ and Q̂ such that ` = τ , A ` P xv−→P̂ , A ` Q xv−→Q̂, and
R ≡ new {v} −A in (P̂ | Q̂).

or symmetric cases.

4. A ` new x in P
`−→Q iff either

(a) there exist x̂ 6∈ A ∪ fn(`) ∪ (fn(P ) − x) and Q̂ such that A, x̂ ` {x̂/x}P
`−→Q̂

and Q ≡ new x̂ in Q̂.



5.1. BASIC PROPERTIES OF THE LTS 45

(b) there exist y, x̂ 6∈ A ∪ {y} ∪ (fn(P ) − x), and Q̂ such that ` = yx̂ , A, x̂ `
{x̂/x}P

yx̂−→Q̂, and Q ≡ Q̂.

Proof The right-to-left implications are all shown using a single transition rule to-
gether with (Trans Struct Right). The left-to-right implications are shown by in-
duction on derivations of transitions. Only the input and restriction cases are at all
interesting; we give just the restriction case.

Case 4a, (⇐) By Lemma 9, fn({x̂/x}P ) ⊆ A, x̂, so we have fn(new x̂ in {x̂/x}P ) ⊆
A. By (Trans Res), A ` new x̂ in {x̂/x}P

`−→new x̂ in Q̂. By x̂ 6∈ fn(P ) −
x we have new x̂ in {x̂/x}P = new x in P . By (Trans Struct Right), A `
new x in P

`−→Q.

Case 4b, (⇐) Again by Lemma 9, fn({x̂/x}P ) ⊆ A, x̂, so we have fn(new x̂ in {x̂/x}P ) ⊆
A. By (Trans Open), A ` new x̂ in {x̂/x}P

yx̂−→Q̂. Again by x̂ 6∈ fn(P ) − x,
we have new x̂ in {x̂/x}P = new x in P so by (Trans Struct Right) A `
new x in P

`−→Q.

Case 4, (⇒) Suppose A ` new x in P
`−→Q. Let

Φ(A,R, `,Q)
def⇔ R = new x in P =⇒ (4a ∨ 4b)

We show Φ is closed under the rules defining labelled transitions.

(Trans Res) An instance of (Trans Res) with conclusion A ` new x in P
`−→Q

must be of the form

Res
A, x̂ ` P̂ `−→Q̂

A ` new x̂ in P̂
`−→new x̂ in Q̂

x̂ 6∈ fn(`)

for some x̂, P̂ , Q̂ with new x̂ in P̂ = new x in P , new x̂ in Q̂ = Q and
fn(new x̂ in P̂ ) ⊆ A. By A, x̂ defined and x̂ 6∈ fn(`) we have x̂ 6∈ A ∪ fn(`).
By new x̂ in P̂ = new x in P we have x̂ 6∈ fn(P ) − x and P̂ = {x̂/x}P , so
A, x̂ ` {x̂/x}P

`−→Q̂. By reflexivity of ≡, we have Q ≡ new x̂ in Q̂. So clause
4a holds.

(Trans Open) An instance of (Trans Open) for A ` new x in P
`−→Q must be

of the form

Open
A, x̂ ` P̂ yx̂−→Q

A ` new x̂ in P̂
yx̂−→Q

y 6= x̂

for some y, x̂, and P̂ with new x̂ in P̂ = new x in P , yx̂ = ` and also
fn(new x̂ in P̂ ) ⊆ A. As before x̂ 6∈ A ∪ (fn(P ) − x) and P̂ = {x̂/x}P , so
taking Q̂ = Q clause 4b holds.

(Trans Struct Right) An instance of (Trans Struct Right) with conclu-
sion A ` new x in P

`−→Q must be of the form

Struct Right
A ` new x in P

`−→Q′ Q′ ≡ Q
A ` new x in P

`−→Q

for some Q′ with fn(new x in P ) ⊆ A. By Φ(A,new x in P, `,Q′) either
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Case 4a there exist x̂ 6∈ A ∪ fn(`) ∪ (fn(P ) − x) and Q̂ such that A, x̂ `
{x̂/x}P

`−→Q̂ and Q′ ≡ new x̂ in Q̂. By ≡ an equivalence we have Q ≡
new x̂ in Q̂, so clause 4a holds.

Case 4b there exist y, x̂ 6∈ A ∪ {y} ∪ (fn(P ) − x), and Q̂ such that ` = yx̂ ,

A, x̂ ` {x̂/x}P
yx̂−→Q̂, and Q′ ≡ Q̂. By ≡ an equivalence we have Q ≡ Q̂,

so clause 4b holds.

The cases for all other rules are vacuous.

2

Lemma 17 (Transition Analysis – Unary Disjoint New) If A ` new x in P
`−→Q

and x 6∈ A ∪ fn(`) then either

1. there exists Q′ such that A, x ` P `−→Q′ and Q ≡ new x in Q′

2. there exist y ∈ A, x̂ 6∈ A and Q′ such that ` = yx̂ , A, x ` P
yx−→Q′, and Q ≡

{x̂/x}Q′.

Proof By Lemma 16.4 either

1. there exist x̂ 6∈ A ∪ fn(`) ∪ (fn(P ) − x) and Q̂ such that A, x̂ ` {x̂/x}P
`−→Q̂ and

Q ≡ new x̂ in Q̂. By Lemma 11 with (idA + {x/x̂}) :A, x̂→A, x and id fn(`)−A we

have A, x ` P `−→{x/x̂}Q̂. Taking Q′ = {x/x̂}Q̂ gives clause 1.

2. there exist y, x̂ 6∈ A ∪ {y} ∪ (fn(P ) − x), and Q̂ such that ` = yx̂ , A, x̂ `
{x̂/x}P

yx̂−→Q̂, and Q ≡ Q̂. By Lemma 9 y ∈ A, x̂ so y ∈ A. By Lemma 11

A, x ` P yx−→(idA + {x/x̂})Q̂. Taking Q′ to be the target of this transition gives
clause 2.

2

Lemma 18 (Transition Analysis – n-ary Disjoint New) If A ` new B in P
`−→Q,

A ∩B = ∅ and fn(`) ∩B = ∅ then either

1. there exists Q′ such that A,B ` P `−→Q′ and Q ≡ new B in Q′

2. there exist y ∈ A, x̂ 6∈ A, x ∈ B and Q′ such that ` = yx̂ , A,B ` P yx−→Q′, and
Q ≡ {x̂/x}new B − x in Q′.

Proof Induction on the size of B. The empty case is immediate, giving clause 1.
Otherwise, consider A ` new b in new B in P

`−→Q. By Lemma 17 either

1. there exists Q′′ such that A, b ` new B in P
`−→Q′′ and Q ≡ new b in Q′′

By the induction hypothesis either

(a) there exists Q such that A, b,B ` P `−→Q and Q′′ ≡ new B in Q. Clause 1
holds.

(b) there exist y ∈ A, b, x̂ 6∈ A, b, x ∈ B and Q′ such that ` = yx̂ , A, b,B `
P

yx−→Q′, and Q′′ ≡ {x̂/x}new B − x in Q′. By the assumption fn(`)∩b, B =
∅ we have y ∈ A. Now, Q ≡ new b in Q′′ ≡ new b in {x̂/x}new B − x in Q′ ≡
{x̂/x}new (b,B)− x in Q′, giving clause 2.
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2. there exist y ∈ A, x̂ 6∈ A and Q′′ such that ` = yx̂ , A, b ` new B in P
yb−→Q′′, and

Q ≡ {x̂/b}Q′′.

By the induction hypothesis there exists Q′ such that A, b,B ` P yb−→Q′ and Q′′ ≡
new B in Q′ (case 2 leads to a contradiction). Taking x = b we have clause 2.

2

Lemma 19 (Transition Analysis – Unary A-Disjoint New) If A ` new x in P
`−→Q

and x 6∈ A then either

1. For any C ⊆fin N −A, x there exists g :(fn(`)−A)→(N −A, x,C) injective and Q′

such that A, x ` P (idA+g)`−→ Q′ and Q ≡ (idA + g−1)new x in Q′.

2. There exists y ∈ A, x̂ 6∈ A and Q′ such that ` = yx̂ , A, x ` P yx−→Q′ and Q ≡
{x̂/x}Q′.

Proof By Lemma 16.4 either

1. there exist x̂ 6∈ A ∪ fn(`) ∪ (fn(P ) − x) and Q̂ such that A, x̂ ` {x̂/x}P
`−→Q̂ and

Q ≡ new x̂ in Q̂. Consider C ⊆fin N −A, x and an arbitrary g :(fn(`)−A)→(N −
A, x,C) injective.

As x̂ 6∈ fn(`) we can regard g as a function g :(fn(`)−A, x̂)→(N−A, x,C) and more-

over (idA+{x/x̂}+g)` = (idA+g)`, so by Lemma 11A, x ` P (idA+g)`−→ (idA + {x/x̂}+ g)Q̂.
Take Q′ to be the target of this transition. Now (idA + g−1)new x in Q′ =
(idA + g−1)new x in (idA + {x/x̂}+ g)Q̂ = new x̂ in Q̂ ≡ Q.

2. there exist y, x̂ 6∈ A ∪ {y} ∪ (fn(P ) − x), and Q̂ such that ` = yx̂ , A, x̂ `
{x̂/x}P

yx̂−→Q̂, and Q ≡ Q̂. By Lemma 9 y ∈ A, x̂ so y ∈ A. By Lemma 11

A, x ` P yx−→(idA + {x/x̂})Q̂. Take Q′ to be the target of this transition.

2

Lemma 20 (Transition Analysis – n-ary A-Disjoint New) If A ` new B in P
`−→Q

and A ∩B = ∅ then either

1. there exist g :(fn(`)−A)→(N−A,B) injective and Q′ such that A,B ` P (idA+g)`−→ Q′

and Q ≡ (idA + g−1)new B in Q′.

2. there exist y ∈ A, x̂ 6∈ A, x ∈ B and Q′ such that ` = yx̂ , A,B ` P yx−→Q′, and
Q ≡ {x̂/x}new B − x in Q′.

Proof We prove a stronger result, with clause 1 replaced by

1. for any C ⊆fin N −A,B there exist g :(fn(`)−A)→(N −A,B,C) injective and Q′

such that A,B ` P (idA+g)`−→ Q′ and Q ≡ (idA + g−1)new B in Q′.

by induction on the size of B. The empty case is immediate from Lemma 11 (giving
clause 1). Otherwise, consider A ` new b in new B in P

`−→Q and C ⊆fin N−A, (b, B).
By Lemma 19 either
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1. (as C ⊆fin N − A, b) there exists ĝ :(fn(`) − A)→(N − A, b, C) injective and Q̂′

such that A, b ` new B in P
(idA+ĝ)`−→ Q̂′ and Q ≡ (idA + ĝ−1)new b in Q̂′. By the

induction hypothesis either

(a) for any Ĉ ⊆fin N − (A, b), B there exist ˆ̂g :(fn((idA + ĝ)`) − (A, b))→(N −

(A, b), B, Ĉ) injective and Q′ such that (A, b), B ` P
(id(A,b)+ˆ̂g)(idA+ĝ)`

−→ Q′ and
Q̂′ ≡ (id (A,b) + ˆ̂g

−1
)new B in Q′. Using this for Ĉ = C and taking g = ˆ̂g ◦ ĝ

gives clause 1.
(b) there exist y ∈ (A, b), ˆ̂x 6∈ (A, b), x ∈ B and Q′ such that (idA + ĝ)` = yˆ̂x ,

(A, b), B ` P yx−→Q′, and Q̂′ ≡ {ˆ̂x/x}new B − x in Q′.
We have y ∈ A by Lemma 9. Taking x̂ = ĝ−1(ˆ̂x) gives clause 2.

2. There exists y ∈ A, x̂ 6∈ A and Q̂′ such that ` = yx̂ , A, b ` new B in P
yb−→Q̂′

and Q ≡ {x̂/b}Q̂′. Trivially b ∈ b, B. By the induction hypothesis (clause 1 must
hold, so taking C empty and g the empty function) there exists Q′ such that

A, b,B ` P
yb−→Q′ and Q̂′ ≡ new B in Q′. It remains only to note that Q ≡

{x̂/b}Q̂′ = {x̂/b}new (b,B)− b in Q′ to show clause 2.

2

5.2 Coincidence of the Two Semantics

Take the size of a derivation of a structural congruence to be number of instances of
inference rules contained in it.
Lemma 21 For any derivation of P ′ ≡ P there is a derivation of the same size of
{v/p}P ′ ≡ {v/p}P .

Proof Routine induction. 2

Lemma 22 If P ′ ≡ P then A ` P ′ `−→Q iff A ` P `−→Q.

Proof Induction on the size of derivation of P ′ ≡ P . In symmetric cases we show
only the right-to-left direction of the conclusion.

(Struct Cong Refl) By the reflexivity of iff.

(Struct Cong Sym) By the symmetry of iff.

(Struct Cong Tran) By the induction hypothesis and transitivity of iff.

(Struct Cong Input) Consider P ′ ≡ P and A ` xp.P `−→Q. By Lemma 16.2, there
exists v such that fn(xp.P ) ⊆ A, ` = xv , and Q ≡ {v/p}P . Using Lemma 7,
fn(xp.P ′) = fn(xp.P ). By Lemma 21 {v/p}P ′ ≡ {v/p}P , so Q ≡ {v/p}P ′. Finally by

Lemma 16.2, A ` xp.P ′ `−→Q.

(Struct Cong Par) Consider P ′ ≡ P , Q′ ≡ Q and A ` P |Q `−→R. By Lemma 16.3
one of the following holds.

Case 16.3a there exists P̂ such that fn(Q) ⊆ A, A ` P `−→P̂ and R ≡ P̂ |Q. By
Lemma 7, fn(Q′) = fn(Q). By the inductive hypothesis A ` P ′

`−→P̂ and
clearly P̂ |Q ≡ P̂ |Q′, so by Lemma 16.3, A ` P ′ |Q′ `−→R.
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Case 16.3b there exist x, v, P̂ and Q̂ such that ` = τ , A ` P xv−→P̂ , A ` Q xv−→Q̂,
and R ≡ new {v} −A in (P̂ | Q̂). By the induction hypothesis A ` P ′ xv−→P̂
and A ` Q′ xv−→Q̂. By Lemma 16.3, A ` P ′ |Q′ `−→R.

or symmetric cases.

(Struct Cong Res) Consider P ′ ≡ P and A ` new x in P
`−→Q. By Lemma 16.4

one of the following holds.

Case 16.4a there exist x̂ 6∈ A ∪ fn(`) ∪ (fn(P ) − x) and Q̂ such that A, x̂ `
{x̂/x}P

`−→Q̂ and Q ≡ new x̂ in Q̂. By Lemma 21 {x̂/x}P ′ ≡ {x̂/x}P (with a
derivation of the same size). By the induction hypothesis A, x̂ ` {x̂/x}P ′

`−→Q̂.
By Lemma 16.4 A ` new x in P ′

`−→Q.

Case 16.4b there exist y, x̂ 6∈ A ∪ {y} ∪ (fn(P ) − x), and Q̂ such that ` = yx̂ ,

A, x̂ ` {x̂/x}P
yx̂−→Q̂, and Q ≡ Q̂. By Lemma 21 {x̂/x}P ′ ≡ {x̂/x}P , with a

derivation of the same size. By the induction hypothesis A, x̂ ` {x̂/x}P ′
yv−→Q̂.

By Lemma 7 fn(P ′) = fn(P ), so x̂ 6∈ A ∪ {y} ∪ (fn(P ′)− x). By Lemma 16.4,
A ` new x in P ′

`−→Q.

(Struct Par Nil), (Struct Par Com), (Struct Par Assoc), (Struct Res Res)
These are straightforward. We check the other axiom in detail.

(Struct Res Par) Consider new x̂ in (P | Q̂) ≡ P |new x̂ in Q̂ where x̂ 6∈ fn(P ).

For the left-to-right direction, suppose A ` new x̂ in (P | Q̂) `−→R.

Take Q and x 6∈ A ∪ fn(`) such that new x in (P |Q) = new x̂ in (P | Q̂) and
P |new x in Q = P |new x̂ in Q̂.

We therefore have A ` new x in (P |Q) `−→R.

By Lemma 17 either

1. there exists R′ such that A, x ` P |Q `−→R′ and R ≡ new x in R′. By
Lemma 16.4 this transition holds iff one of the following holds:

(a) (Par)[Left] there exists P ′ such that fn(Q) ⊆ A, x, A, x ` P `−→P ′ and
R′ ≡ P ′ |Q.

(b) (Par)[Right] there exists Q′ such that fn(P ) ⊆ A, x, A, x ` Q `−→Q′ and
R′ ≡ Q′ |P .

(c) (Com)[Left] there exist z, v, P ′ and Q′ such that ` = τ , A, x ` P zv−→P ′,
A, x ` Q

zv−→Q′, and R′ ≡ new {v} −A, x in (P ′ |Q′). By Lemma 9
v 6= x.

(d) (Com)[Right] there exist z, v, Q′ and P ′ such that ` = τ , A, x ` Q zv−→Q′,
A, x ` P zv−→P ′, and R′ ≡ new {v} −A, x in (Q′ |P ′).

2. there exist y ∈ A, x̂ 6∈ A and R′ such that ` = yx̂ , A, x ` P |Q yx−→R′, and
R ≡ {x̂/x}R′. By Lemma 16.4 this transition holds iff one of the following
holds:

(a) (Par)[Left] there exists P ′ such that fn(Q) ⊆ A, x, A, x ` P yx−→P ′ and
R′ ≡ P ′ |Q. By Lemma 9 this leads to a contradiction.
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(b) (Par)[Right] there exists Q′ such that fn(P ) ⊆ A, x, A, x ` Q yx−→Q′ and
R′ ≡ Q′ |P .

For the right-to-left direction, suppose A ` P |new x̂ in Q̂
`−→R.

Take Q and x 6∈ A ∪ fn(`) such that new x in (P |Q) = new x̂ in (P | Q̂) and
P |new x in Q = P |new x̂ in Q̂.

We therefore have A ` P |new x in Q
`−→R.

By Lemma 16.4 this transition holds iff one of the following holds:

1. (Par)[Left] there exists P ′ such that fn(new x in Q) ⊆ A, A ` P `−→P ′ and
R′ ≡ P ′ |new x in Q.

2. (Par)[Right] there exists Q′ such that fn(P ) ⊆ A, A ` new x in Q
`−→Q′

and R′ ≡ Q′ |P .
By Lemma 17 either

(a) there exists Q′′ such that A, x ` Q `−→Q′′ and Q′ ≡ new x in Q′′

(b) there exist y ∈ A, x̂ 6∈ A and Q′′ such that ` = yx̂ , A, x ` Q yx−→Q′′, and
Q′ ≡ {x̂/x}Q′′.

3. (Com)[Left] there exist z, v, P ′ and Q′′ such that ` = τ , A ` P
zv−→P ′,

A ` new x in Q
zv−→Q′′, and R′ ≡ new {v} −A in (P ′ |Q′′).

Without loss of generality v 6= x (otherwise the transitions can be renamed
by Lemma 11). By Lemma 17 there exists Q′ such that A, x ` Q zv−→Q′ and
Q′′ ≡ new x in Q′

4. (Com)[Right] there exist z, w, Q′′ and P ′ such that ` = τ , A ` new x in Q
zw−→Q′′,

A ` P zw−→P ′, and R′ ≡ new {w} −A in (Q′′ |P ′). Without loss of generality
w 6= x (otherwise the transitions can be renamed by Lemma 11).
By Lemma 17 either

(a) there exists Q′ such that A, x ` Q zw−→Q′ and Q′′ ≡ new x in Q′

(b) there exist z ∈ A, w 6∈ A and Q′ such that zw = zw , A, x ` Q zx−→Q′, and
Q′′ ≡ {w/x}Q′.

The cases correspond as follows – one can now check that in each there are matching
transitions.

new x in (P |Q) P |new x in Q
1a 1
1b 2a
1c 3
1d v 6= x 4a
1d v = x 4b
2b 2b

2

Lemma 23 If fn(P ) ⊆ A and P → Q then A ` P τ−→Q.

Proof Induction on the derivation of P → Q.
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(Red Com) For the base case we construct derivations of τ transitions:

Com

Out

A ` xv xv−→0
In

A ` xp.P xv−→{v/p}P
A ` xv | xp.P τ−→new {v} −A in (0 |{v/p}P )

By the premise fn(xv | xp.P ) ⊆ A we have v ∈ A, so using (Trans Struct Right)
we have A ` xv | xp.P τ−→{v/p}P , the right hand side of which is exactly the right
hand side of (Red Com).

(Red Par), (Red Res) require straightforward uses of induction hypothesis, using the
(Trans Par) and (Trans Res) rules.

(Red Struct) By Lemma 7, fn(P ′) ⊆ A. By the inductive hypothesis, A ` P ′ τ−→Q′.
By Lemma 22, A ` P τ−→Q′. By (Trans Struct Right), A ` P τ−→Q.

2

Lemma 24 (Term Structure – Output Transition) If A ` P zv−→P ′ then we have
P ≡ new {v} −A in (zv |P ′)

Proof Induction on the derivation of A ` P zv−→P ′.

(Trans Out) Obvious.

(Trans Par) By the induction hypothesis, P ≡ new {v} −A in (zv |P ′), so

P |Q ≡ (new {v} −A in (zv |P ′)) |Q
≡ new {v} −A in (zv |P ′ |Q) (as by fn(P |Q) ⊆ A we have fn(Q) ⊆ A)

(Trans Res) By the induction hypothesis P ≡ new {v} − (A, x ) in (zv |P ′), so

new x in P ≡ new x in new {v} − (A, x ) in (zv |P ′)
≡ new {v} −A in (zv |new x in P ′) (as x 6∈ fn(zv))

(Trans Open) By the induction hypothesis P ≡ new {v} − (A, x ) in (zv |P ′), so

new x in P ≡ new x in new {v} − (A, x ) in (zv |P ′)
≡ new {v} −A in (zv |P ′) (as x = v ∧ x 6= z)

(Trans Struct-Right) By the induction hypothesis.

All other cases are vacuous.

2

Lemma 25 (Term Structure – Input Transition) If A ` Q xv−→Q′ then there exist
B, p,Q1 and Q2 such that B ∩ (A ∪ fn(xv)) = {}, Q ≡ new B in (xp.Q1 |Q2) and
Q′ ≡ new B in ({v/p}Q1 |Q2).

Proof Induction on derivation of A ` Q xv−→Q′.

(Trans In) Obvious.



52 CHAPTER 5. METATHEORY: DETAILED PROOFS

(Trans Par) Consider A ` Q |P xv−→Q′ |P . By the induction hypothesis there exist
B, p,Q1 and Q2 such that B ∩ (A ∪ fn(xv)) = {}, Q ≡ new B in (xp.Q1 |Q2) and
Q′ ≡ new B in ({v/p}Q1 |Q2). Taking Q̂2 = Q2 |P we have

Q |P ≡ new B in (xp.Q1 |Q2) |P
≡ new B in (xp.Q1 | Q̂2)

Q′ |P ≡ new B in ({v/p}Q1 |Q2) |P
≡ new B in ({v/p}Q1 | Q̂2)

(Trans Res) Consider A ` new z in Q
xv−→new z in Q′ with z 6∈ A ∪ fn(xv). By the

induction hypothesis there exist B, p, Q1 and Q2 such that B∩(A, z∪fn(xv)) = {},
Q ≡ new B in (xp.Q1 |Q2) and Q′ ≡ new B in ({v/p}Q1 |Q2). Taking B̂ = B, z
we have

new z in Q ≡ new z in new B in (xp.Q1 |Q2)
≡ new B̂ in (xp.Q1 |Q2)

new z in Q′ ≡ new z in new B in ({v/p}Q1 |Q2)
≡ new B̂ in ({v/p}Q1 |Q2)

(Trans Struct Right) By the induction hypothesis.

All other cases are vacuous.

2

Lemma 26 If A ` P τ−→Q then P → Q.

Proof Induction on derivations of A ` P τ−→Q

(Trans Par) By the induction hypothesis and (Red Par).

(Trans Com) By Lemma 24 P ≡ new {v} −A in (xv |P ′). By Lemma 9 x ∈ A so
P ≡ new {v} −A in (xv |P ′).
By Lemma 25 there exist B, p, Q1 and Q2 such that B ∩ (A ∪ fn(xv)) = {},
Q ≡ new B in (xp.Q1 |Q2) and Q′ ≡ new B in ({v/p}Q1 |Q2). We have

P |Q ≡ new {v} −A in (xv |P ′) |new B in (xp.Q1 |Q2)
≡ new {v} −A in (xv |P ′ |new B in (xp.Q1 |Q2)) (as fn(Q) ⊆ A)
≡ new {v} −A in new B in (xv |P ′ | xp.Q1 |Q2) (as (A, v) ∩B = {})
→ new {v} −A in new B in ({v/p}Q1 |P ′ |Q2) (by Red Com)
≡ new {v} −A in (P ′ |new B in ({v/p}Q1 |Q2)) (as (A, v) ∩B = {})
≡ new {v} −A in (P ′ |Q′)

(Trans Res) By the induction hypothesis and (Red Res).

(Trans Struct Right) By the induction hypothesis and (Red Struct).

All other cases are vacuous.

2

Lemma 27 (Term Structure – Tau Transition) If A ` P
τ−→Q and B ⊆fin N

then there exist C, x, v, p,Q1, Q2 such that C ∩ (A ∪ B) = ∅, p 6∈ A ∪ B ∪ C, P ≡
new C in (xv | xp.Q1 |Q2) and Q ≡ new C in ({v/p}Q1 |Q2).
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Proof By Lemma 26 P−→Q. One can show the result for empty B by induction on
derivations of reductions, and then use alpha-renaming. 2

Theorem 2 If fn(P ) ⊆ A then P−→Q iff A ` P τ−→Q.

Proof This is immediate from Lemmas 23 and 26 above. 2

5.3 Strong Bisimulation and Congruence

Lemma 28 Φ(∼̇) = ∼̇ and ∼̇ is an equivalence.

Proof We check a sequence of simple facts:

1. Φ is monotone, i.e. if R ⊆ R′ then Φ(R) ⊆ Φ(R′)

2. 1 ⊆ Φ(1)

3. If R ⊆ Φ(R) then R−1 ⊆ Φ(R−1).

4. If R ⊆ Φ(R) then R;R ⊆ Φ(R;R).

5. If ∀i ∈ I . Ri ⊆ Φ(Ri) then ∪i∈IRi ⊆ Φ(∪i∈IRi).

6. ∼̇ is a fixed point of Φ, i.e. ∼̇ = Φ(∼̇).

7. ∼̇ is an equivalence.

Items 1–4 are immediate from the definition of Φ; the remainder follow from these as
below.

5: Suppose ∀i ∈ I . Ri ⊆ Φ(Ri). By 1, as Ri ⊆ ∪i∈IRi, we have Φ(Ri) ⊆ Φ(∪i∈IRi).
By transitivity of ⊆ we have Ri ⊆ Φ(∪i∈IRi). Hence ∪i∈IRi ⊆ Φ(∪i∈IRi).

6: By 5 ∼̇ ⊆ Φ(∼̇). By 1 Φ(∼̇) ⊆ Φ(Φ(∼̇)). By the definition of ∼̇ Φ(∼̇) ⊆ ∼̇.

7: By 2 1 ⊆ ∼̇ so have reflexivity; by 6 and 3 ∼̇−1 ⊆ ∼̇ so have symmetry; by 6 and 4
∼̇; ∼̇ ⊆ ∼̇ so have transitivity.

2

Lemma 29 If R is a loose bisimulation then R ⊆ ∼̇.

Proof We check S is a bisimulation, where

SA
def
= { f−1P, f−1Q | f :A→

bij
B ∧ P ≡RB≡ Q }

Consider P ≡ P0 RB Q0 ≡ Q, f :A→bijB and the D provided by the loose bisimu-
lation.

Suppose A ` f−1P
`−→P ′.

Take some g :(fn(`)−A)→(N −B,D) injective.

By Lemma 11 B ` P (f+g)`−→ (f + g)P ′.

By Lemma 22 B ` P0
(f+g)`−→ (f + g)P ′.

By the loose bisimulation property and Lemma 22 there exist Q̂′, C, and a bijection

h :B ∪ fn((f + g)`)→C such that B ` Q(f+g)`−→ Q̂′ and h(f + g)P ′ ≡RC≡ hQ̂′.



54 CHAPTER 5. METATHEORY: DETAILED PROOFS

By Lemma 11 A ` f−1Q
`−→(f + g)−1Q̂′.

Now h ◦ (f + g) :A ∪ fn(`)→bij C, so P ′ SA∪fn(`) (f + g)−1Q̂′. 2

Lemma 30 (Injective Substitution – Bisimulation) If P ∼̇A Q and f :A→B is
injective then fP ∼̇B fQ.

Proof We check

RB= { fP1, fP2 | f :A→
inj
B ∧ P1∼̇AP2 }

is a bisimulation.
Suppose B ` fP1

`′−→Q′1. By Lemma 13 one of the following holds.

1. there exist `, Q1, g :(fn(`)−A)→bij B̂ such that B̂ ∩B = ∅ and `′ = (f + g)(`) and

A ` P1
`−→Q1 and Q′1 = (f + g)Q1.

By bisimulation A ` P2
`−→Q2 and Q1∼̇A∪fn(`)Q2.

By Lemma 11 B ` fP2
`′−→(f + g)Q2.

Finally (f + g)Q1 RB∪fn(`′) (f + g)Q2.

2. there exist x ∈ A, y 6∈ A, z ∈ B − ran(f) and Q1 such that `′ = f (x )z and
A ` P1

xy−→Q1 and Q′1 = (f + {z/y})Q1.

By bisimulation A ` P2
xy−→Q2 and Q1∼̇A,yQ2.

By Lemma 11 (for the pair of functions f :A→B−z, g :{y}→{z}) we have B − z `
fP2

`′−→(f + {z/y})Q2.

By Lemma 12 B ` fP2
`′−→(f + {z/y})Q2.

Finally (f + {z/y})Q1 RB (f + {z/y})Q2.

2

Lemma 31 (Congruence – Par and New) If P ∼̇A,B P ′ and Q ∼̇A,B Q′ then
new B in (P |Q) ∼̇A new B in (P ′ |Q′).
Proof Let RA= {new B in (P |Q),new B in (P ′ |Q′) | P ∼̇A,B P ′ ∧ Q ∼̇A,B Q′ }.
We check R is a loose bisimulation (omitting symmetric cases).

Suppose A ` new B in (P |Q) `−→R and fn(`) ∩B = ∅.
By Lemma 18 one of the following holds.

1. There exists R̂ such that A,B ` P |Q `−→R̂ and R ≡ new B in R̂ By Lemma 16.3
either

3a (Par) there exists P̂ such that fn(Q) ⊆ (A,B), (A,B) ` P `−→P̂ and R̂ ≡
P̂ |Q.

By the definition of bisimulation we have P̂ ′ such that A,B ` P ′ `−→P̂ ′ and
P̂ ∼̇(A,B)∪fn(`) P̂

′.

By (Par) A,B ` P ′ |Q′ `−→P̂ ′ |Q′.
By (Res) A ` new B in (P ′ |Q′) `−→new B in (P̂ ′ |Q′).
Now, weakening by Lemma 30 gives Q ∼̇(A,B)∪fn(`) Q

′, so
R ≡ new B in P̂ |Q RA∪fn(`) new B in (P̂ ′ |Q′).
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3b (Com) there exist x, v, P̂ and Q̂ such that ` = τ , (A,B) ` P xv−→P̂ , (A,B) `
Q

xv−→Q̂, and R̂ ≡ new {v} − (A,B) in (P̂ | Q̂).

By the definition of bisimulation we have P̂ ′ and Q̂′ such that A,B ` P ′ xv−→P̂ ′,
A,B ` Q′ xv−→Q̂′, P̂ ∼̇(A,B)∪{x,v} P̂

′, and Q̂ ∼̇(A,B)∪{x,v} Q̂
′.

By (Com) and (Res) A ` new B in P ′ |Q′ τ−→R′
where R′ = new B in new {v} −A,B in P̂ ′ | Q̂′.
Finally, we have R ≡RA R′.

2. there exist y ∈ A, x̂ 6∈ A, x ∈ B and R̂ such that ` = yx̂ , A,B ` P |Q yx−→R̂, and
R ≡ {x̂/x}new B − x in R̂.

We have P̂ such that A,B ` P yx−→P̂ and R̂ ≡ P̂ |Q.

By the definition of bisimulation we have P̂ ′ such that A,B ` P ′ yx−→P̂ ′ and P̂ ∼̇A,B
P̂ ′.

By (Par), (Open) and (Res) A ` new B in P ′ |Q′ yx−→R′′ where
R′′ = new B − x in P̂ ′ | Q̂′.

By Lemma 11 A ` new B in P ′ |Q′ yx̂−→{x̂/x}R′′.
Finally, we have R ≡ {x̂/x}new B − x in P̂ |Q and (new B − x in P̂ |Q) RA,x
(new B − x in P̂ ′ |Q′).

2

Lemma 32 (Asynchrony) If A ` P zv−→Q zv−→R then A ` P τ−→new {v} −A in R.

Proof By Lemma 24 P ≡ new {v} −A in (zv |Q). By Lemma 25 there exist B, p,Q1

and Q2 such that B ∩ (A ∪ fn(zv) ∪ fn(zv)) = {}, Q ≡ new B in (zp.Q1 |Q2) and R ≡
new B in ({v/p}Q1 |Q2). Combining these P ≡ new {v} −A in new B in (zv | zp.Q1 |Q2),
so by the transition rules A ` P τ−→new {v} −A in R. 2

Lemma 33 (Substitution – Bisimulation) If P ∼̇A Q and σ :A→B then σP ∼̇B
σQ.

Proof Define R by

RB = {σP, σP ′ | ∃A . σ :A→B ∧ P ∼̇A P ′ }

We check R is a bisimulation up to ≡. Suppose B ` σP `−→Q.

Case ` = xv with v ∈ B.

By Lemma 24 σP ≡ xv |Q.

There exist x̂, v̂ and Q̂ (all above A) such that P ≡ x̂ v̂ | Q̂, σx̂ = x, σv̂ = v, and
σQ̂ = Q.

Note that A ∪ {x̂, v̂} = A and B ∪ {x, v} = B.

By the transition rules A ` P x̂ v̂−→Q̂.

By P ∼̇A P ′ we have Q̂′ such that A ` P ′ x̂ v̂−→Q̂′ and Q̂ ∼̇A Q̂′.

By Lemma 10 B ` σP ′ xv−→σQ̂′.
It remains only to note Q = σQ̂ RB σQ̂′.
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Case ` = xv with v 6∈ B.

By Lemma 24 σP ≡ new v in xv |Q.

There exist x̂ ∈ A, v̂ 6∈ A and Q̂ above A, v̂ such that P ≡ new v̂ in x̂ v̂ | Q̂, σx̂ = x,
and σ̂Q̂ = Q, where σ̂ = σ + (v̂ 7→ v) :A, v̂→B, v.

By the transition rules A ` P x̂ v̂−→Q̂.

By P ∼̇A P ′ we have Q̂′ such that A ` P ′ x̂ v̂−→Q̂′ and Q̂ ∼̇A∪{x̂,v̂} Q̂′.

By Lemma 10 B ` σP ′ xv−→σ̂Q̂′.

It remains only to note Q = σ̂Q̂ RB∪{x,v} σ̂Q̂′.

Case ` = xv .

By Lemma 25 there exist C, p,Q1 and Q2 such that C ∩ (B ∪ fn(xv)) = {}, σP ≡
new C in (xp.Q1 |Q2) and Q ≡ new C in ({v/p}Q1 |Q2).

There exist x̂ ∈ A, a set Ĉ disjoint from A, φ : Ĉ→C a bijection, p̂ 6∈ A, Ĉ, Q̂1

above A, Ĉ, p̂, and Q̂2 above A, Ĉ such that P ≡ new Ĉ in (x̂ p̂.Q̂1 | Q̂2), σx̂ = x,
(σ + φ+ (p̂ 7→ p))Q̂1 = Q1, (σ + φ)Q̂2 = Q2.

If v ∈ ran(σ) then take some v̂ ∈ A such that σv̂ = v and let σ̂ = σ :A→B,
otherwise take some v̂ 6∈ A, Ĉ and let σ̂ = σ + (v̂ 7→ v) :A, v̂→B ∪ {v}.

By the transition rules A ` P x̂ v̂−→new Ĉ in ({v̂/p̂}Q̂1 | Q̂2).

By P ∼̇A P ′ we have Q̂′ such that A ` P ′ x̂ v̂−→Q̂′ and

new Ĉ in ({v̂/p̂}Q̂1 | Q̂2) ∼̇A∪{x̂,v̂} Q̂′

By Lemma 10 B ` σP ′ xv−→σ̂Q̂′.

Now

Q ≡ new C in ({v/p}Q1 |Q2)
= σ̂new Ĉ in ({v̂/p̂}Q̂1 | Q̂2)

RB∪{x,v} σ̂Q̂′

Case ` = τ .

By Lemma 27 there exist C, x, v, p,Q1, Q2 such that C∩(B∪A) = ∅, p 6∈ B∪A∪C,
σP ≡ new C in (xv | xp.Q1 |Q2) and Q ≡ new C in ({v/p}Q1 |Q2).

There exist x̂, ˆ̂x and v̂ in A,C, Q̂1 above A,C, p, and Q̂2 above A,C such that
P ≡ new C in (x̂ v̂ | ˆ̂xp.Q̂1 | Q̂2), (σ + idC)x̂ = x, (σ + idC)ˆ̂x = x, (σ + idC)v̂ = v,
(σ + idC,p)Q̂1 = Q1, (σ + idC)Q̂2 = Q2. Note that either v = v̂ ∈ C or else v ∈ B,
v̂ ∈ A and σ(v̂) = v.

Case x̂ = ˆ̂x By the transition rulesA ` P τ−→Q̂ where Q̂ = new C in ({v̂/p}Q̂1 | Q̂2).
Note σQ̂ ≡ Q.
By P ∼̇A P ′ we have Q̂′ such that A ` P ′ τ−→Q̂′ and Q̂ ∼̇A Q̂′.
By Lemma 10 B ` σP ′ τ−→σQ̂′.
It remains only to note Q ≡ σQ̂ RB σQ̂′.
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Case x̂ 6= ˆ̂x As the ranges of σ and idC are disjoint we have x̂ ∈ A and ˆ̂x ∈ A.
By the transition rules

A ` P x̂ v̂−→ new C − {v̂} in (ˆ̂xp.Q̂1 | Q̂2)
ˆ̂x v̂−→ new C − {v̂} in ({v̂/p}Q̂1 | Q̂2)

By P ∼̇A P ′ we have Q̂′ such that

A ` P ′ x̂ v̂−→
ˆ̂x v̂−→ Q̂′

and

new C − {v̂} in ({v̂/p}Q̂1 | Q̂2) ∼̇A∪{v̂} Q̂′

By Lemma 10, taking g = {v/v̂} if v = v̂ ∈ C and g = ∅ if v̂ ∈ A,

B ` σP ′ xv−→
xv−→ (σ + g)Q̂′

By Lemma 32 B ` σP ′ τ−→new {v} − B in (σ + g)Q̂′.
Case v = v̂ ∈ C. We have

Q ≡ new C in {v/p}Q1 |Q2

≡ new C in {v/p}(σ + idC,p)Q̂1 |(σ + idC)Q̂2

≡ σnew C in {v/p}Q̂1 | Q̂2

≡ σnew v in new C − v in {v/p}Q̂1 | Q̂2

RB σnew v in Q̂′ Using Lemma 31 for new v in cong
≡ new v − B in (σ + g)Q̂′

Case v̂ ∈ A. We have

Q ≡ new C in {v/p}Q1 |Q2

≡ new C in {v/p}(σ + idC,p)Q̂1 |(σ + idC)Q̂2

≡ new C in (σ + idC){v̂/p}Q̂1 |(σ + idC)Q̂2

≡ σnew C in {v̂/p}Q̂1 | Q̂2

RB σQ̂′

≡ new v − B in (σ + g)Q̂′

2

Lemma 34 (Congruence – Input Prefix) If P ∼̇A,pQ and x ∈ A then xp.P ∼̇Axp.Q.

Proof We check the union of ∼̇ and the pair (xp.P, xp.Q) at A is a bisimulation up
to ≡.

The cases P̂ ∼̇BQ̂ are routine.
Suppose A ` xp.P `−→P ′.
By Lemma 16 there exist v such that ` = xv and P ′ ≡ {v/p}P .
By (Inp) A ` xp.Q xv−→{v/p}Q.
By Lemma 33 {v/p}P ∼̇A∪{v}{v/p}Q. 2

Theorem 3 Bisimulation ∼̇ is an indexed congruence.

Proof Immediate from Lemmas 31 and 34. 2
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5.4 Type Soundness and Subject Reduction

Lemma 35 (Weakening – Values) If Γ ` v :T ′ and x 6∈ dom(Γ) then Γ, x :T ` v :T ′.

Proof By induction on type derivations. 2

Lemma 36 (Weakening – Processes) If Γ ` P proc and x 6∈ dom(Γ) then Γ, x :T `
P proc.

Proof By induction on type derivations, using Lemma 35. 2

Lemma 37 (Strengthening – Values) If Γ, x :T ` v :T ′ and x 6∈ fn(v) then Γ `
v :T ′.

Proof By induction on type derivations. 2

Lemma 38 (Strengthening – Processes) If Γ, x :T ` P proc and x 6∈ fn(P ) then
Γ ` P proc.

Proof By induction on type derivations , using Lemma 37. 2

Lemma 39 (Type Soundness of Structural Congruence) If P ≡ Q then Γ `
P proc iff Γ ` Q proc.

Proof By induction on the derivation of P ≡ Q.

(ParId) Γ ` P | 0 proc iff Γ ` P proc ∧ Γ ` 0 proc iff Γ ` P proc.

(ParComm),(ParAssoc) Similar.

(NewExtrude) P |new x̂ : T in Q̂ ≡ new x̂ : T in (P | Q̂) with x̂ 6∈ fn(P ).

Take Q and x 6∈ dom(Γ)∪fn(P ) such that P |new x : T in Q = P |new x̂ : T in Q̂
and new x : T in (P |Q) = new x̂ : T in (P | Q̂). We have

Γ ` P |new x : T in Q proc ⇐⇒ Γ ` P proc ∧ Γ ` new x : T in Q proc
⇐⇒ Γ ` P proc ∧ Γ, x :T ` Q proc
⇐⇒ Γ, x :T ` P proc ∧ Γ, x :T ` Q proc (∗)
⇐⇒ Γ, x :T ` P |Q proc
⇐⇒ Γ ` new x : T in P |Q proc

Here (∗) is by Lemmas 36 and 38.

(NewComm) Straightforward.

(CongIn),(CongPar),(CongNew) By the induction hypothesis and the correspond-
ing typing rule.

(Refl),(Sym),(Tran) By the induction hypothesis and the corresponding properties
of iff.

2

Lemma 40 (Injective Substitution – Reductions) If P → Q and f : fn(P )→N is
injective then fP → fQ.

We define well-typed substitutions as follows. Say Γ ` σ : ∆ iff dom(σ) = dom(∆)
and ∀x ∈ dom(∆) . Γ ` σ(x) : ∆(x).
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Lemma 41 (Good Substitutions) If Γ atomic and Γ ` v :T and ` p :T B ∆ then
{v/p} is defined and Γ ` {v/p} : ∆.

Proof By induction on the two typing derivations. Consider the last rule of the
pattern judgement.

(Var) ` x :T B x :T . Clearly {v/x} = {x 7→ v}, dom({x 7→ v}) = dom(x :T ), and
Γ ` {v/x}x :T .

(Tuple) ` 〈p1 .. pk〉 : 〈T1 .. Tk〉 B ∆1, ..,∆k. As Γ atomic the last rule of the value judge-
ment must either be the value (Tuple) rule, with conclusion Γ ` 〈v1 .. vk〉 : 〈T1 .. Tk〉,
or the value (Var) rule, with k = 0. In the first case, by the induction hypoth-
esis for each i we have {vi/pi} defined and Γ ` {vi/pi} : ∆i. By the definition of
substitution {〈v1 .. vk〉/〈p1 .. pk〉} is defined and equal to

⋃
i∈1..k{vi/pi}. As for each

i dom({vi/pi}) = dom(∆i), we have dom(
⋃
i∈1..k{vi/pi}) = dom(∆1, ..,∆k). To

check Γ ` {〈v1 .. vk〉/〈p1 .. pk〉} : ∆1, ..,∆k it remains only to observe that for each
z :T ′ ∈ ∆1, ..,∆k there is an i with z :T ′ ∈ ∆i, hence Γ ` {vi/pi}z :T ′, hence
Γ ` (

⋃
i∈1..k{vi/pi})z :T ′.

In the second case, by the definition of substitution {〈〉/〈〉} is defined and equal to
∅, and Γ ` ∅ : ∅.

Note that this result requires that the range of Γ contains no non-unit tuple types. 2

Lemma 42 (Substitution – Values) If Γ,∆ ` v :T and Γ ` σ : ∆ then Γ ` σv :T .

Proof By induction on the value typing derivation.

(Var) Γ,∆ ` x :T .

Case x :T ∈ Γ. By the second premise the domain of σ coincides with that of ∆
and hence is disjoint from Γ, so σ(x) = x, so Γ ` σ(x) :T .

Case x :T ∈ ∆. By the second premise Γ ` σ(x) :T .

(Tuple) Γ,∆ ` 〈v1 .. vk〉 : 〈T1 .. Tk〉. By the induction hypothesis for each i we have Γ `
σ(vi) :Ti hence Γ ` σ(〈v1 .. vk〉) : 〈T1 .. Tk〉

2

Lemma 43 (Substitution – Processes) If Γ,∆ ` P proc and Γ ` σ : ∆ then σP is
defined and Γ ` σP proc.

Proof We prove both parts simultaneously by induction on the type derivation for
P . For the second part we give two instances of each typing rule; in each case showing
that the premises of the right-hand instance follow from those of the left-hand instance.

(Out)

Out

Γ,∆ ` x : chanT
Γ,∆ ` v :T
Γ,∆ ` xv proc Out

Γ ` σ(x) : chanT
Γ ` σ(v) :T

Γ ` σ(x )σ(v) proc

By Lemma 42 both premises of the right-hand-side instance hold. As Γ ` σ(x) : chanT
we have that σ(x) is a name, so σ(xv) is defined.
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(In)

In

Γ,∆ ` x : chanT
` p :T B Θ
Γ,∆,Θ ` P proc
Γ,∆ ` xp.P proc In

Γ ` σ(x) : chanT
` p :T B Θ
Γ,Θ ` σ(P ) proc

Γ ` σ(x )p.σ(P ) proc

By Lemma 42 the first premise of the right-hand-side instance holds. The second
is immediate, and clearly Γ,Θ ` σ : ∆, so the third follows from the induction
hypothesis, which also tells us that σP is defined. As Γ ` σ(x) : chanT we have
that σ(x) is a name, so σ(xp.P ) is defined.

(Par)

Par

Γ,∆ ` P proc
Γ,∆ ` Q proc

Γ,∆ ` P |Q proc Par

Γ ` σP proc
Γ ` σQ proc

Γ ` σP |σQ proc

The two premises of the right-hand-side instance are immediate from the induction
hypothesis, and σ(P |Q) is defined as σP and σQ are defined.

(Nil)

Nil Γ,∆ ` 0 proc Nil Γ ` 0 proc

Trivial.

(Res)

Res
Γ,∆, x : chanT ` P proc

Γ,∆ ` new x : chan T in P proc Res
Γ, x : chanT ` σP proc

Γ ` new x : chan T in σP proc

Clearly Γ, x : chanT ` σ : ∆, so the premise follows from the induction hypothesis,
which also tells us that σP is defined and hence that σ(new x : chan T in P ) is.

2

Theorem 4 (Subject Reduction) If Γ ` P proc and Γ atomic and P → Q then
Γ ` Q proc.

Proof By induction on the derivation of P → Q.

(Com) Suppose (being cavalier about alpha equivalence) that the names of p are disjoint
from dom(Γ). By the typing rules we have T such that Γ ` c : chanT , Γ ` v :T ,
` p :T B ∆, and Γ,∆ ` P proc. By Lemma 41 {v/p} is defined and Γ ` {v/p} : ∆.
By Lemma 43 {v/p}P is defined and Γ ` {v/p}P proc.

(Par) By the typing rules we have Γ ` P proc and Γ ` Q proc. By the induction
hypothesis Γ ` P ′ proc. Using the (Par) typing rule Γ ` P ′ |Q proc.

(Res) By the typing rules we have P̂ and x̂ and T0 such that T = chanT0 and
new x̂ : T in P̂ = new x : T in P and x̂ 6∈ dom(Γ) and Γ, x̂ :T ` P̂ proc. By
Lemma 40 P̂ → {x̂/x}P ′. By the induction hypothesis (noting that Γ, x̂ :T atomic)
we have Γ, x̂ :T ` {x̂/x}P ′ proc. By (Res) Γ ` new x̂ : T in {x̂/x}P ′ proc. But
then Γ ` new x : T in P ′ proc.
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(Struct) By Lemma 39 Γ ` P ′ proc. By the induction hypothesis Γ ` P ′′ proc. By
Lemma 39 again Γ ` P ′′′ proc.

2

Theorem 5 (Absence of Runtime Errors) If Γ ` P proc and Γ atomic then
¬(P err).

Proof We show (Γ atomic ∧ Γ ` P proc ∧ P err) =⇒ ff, by induction on derivations
of P err.

(Err Com) Suppose the names of p are disjoint from dom(Γ). By the typing rules we
have T such that Γ ` c : chanT , Γ ` v :T , ` p :T B ∆, and Γ,∆ ` P proc. By
Lemma 41 {v/p} is defined and Γ ` {v/p} : ∆. By Lemma 43 {v/p}P is defined.

(Err Par) By the typing rules we have Γ ` P proc and Γ ` Q proc. By the induction
hypothesis we have ff.

(Err Res) Suppose x 6∈ dom(Γ). By the typing rules we have T0 such that T = chanT0

and Γ, x :T ` P proc. We have Γ, x :T atomic so by the induction hypothesis we
have ff.

(Err Struct) By Lemma 39 Γ ` P proc so by the induction hypothesis we have ff.

2

Theorem 6 (Subject Reduction – Typed LTS) If Γ ` P `−→
∆
Q then

1. Γ,∆ ` Q proc

2. if ` = xv or ` = xv then there is T such that Γ ` x : chanT and Γ,∆ ` v :T .

Proof By induction on derivations of transitions.

(Out) Immediate.

(In) Using the fact that typing is unique, and being cavalier about alpha equivalence,
we have the following with Γ, ∆ and Θ disjoint.

In

Γ ` x : chanT
Γ,∆ ` v :T
dom(∆) ⊆ fn(v)
∆ extensible

Γ ` xp.P xv−→
∆
{v/p}P

In

Γ ` x : chanT
` p :T B Θ
Γ,Θ ` P proc
Γ ` xp.P proc

For Part (1), by ∆ extensible we have Γ,∆ atomic. By Lemma 41 {v/p} is defined
and Γ,∆ ` {v/p} : Θ. By Lemma 36 Γ,∆,Θ ` P proc. By Lemma 43 {v/p}P is
defined and Γ,∆ ` {v/p}P proc. Part (2) is immediate.

(Par) By the induction hypothesis Γ,∆ ` P ′ proc. By the typing rules Γ ` Q proc.
By Lemma 36 Γ,∆ ` Q proc. By (Par) Γ,∆ ` P ′ |Q proc. Part (2) is immediate
from the induction hypothesis.

(Com) By the induction hypothesis Γ,∆ ` P ′ proc and Γ,∆ ` Q′ proc. By (Par) and
(Res) Γ ` new ∆ in P ′ |Q′ proc. Part (2) is vacuous.
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(Res) By the typing rules T = chanT ′ for some T ′. By the induction hypothesis and
(Res) Γ ` new x : T in P ′ proc. Also by the induction hypothesis, if ` = yv or
` = yv then there is T ′′ such that Γ, x :T ` y : chanT ′′ and Γ, x :T,∆ ` v :T ′′. By
Lemma 35 Γ ` y : chanT ′′ and Γ,∆ ` v :T ′′.

(Open) By the induction hypothesis Γ, x :T,∆ ` P ′ proc so Γ,∆, x :T ` P ′ proc.
Also by the induction hypothesis, there is T ′′ such that Γ, x :T ` y : chanT ′′ and
Γ, x :T,∆ ` v :T ′′. By x 6= y and Lemma 35 Γ ` y : chanT ′′.

(Struct) By the induction hypothesis and Lemma 39.

2
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