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1. INTRODUCTION

In this dissertation some topics in programming language design are
explored. Several recent languages are examined and the design and

implementation of a new language, Poly, is explained.

This chapter provides some background information on programming

languages and contains an overview of the dissertation.

1.1 Motivation and Results

The basic motivation for the research was the desire for a simple yet
general way of expressing many of the concepts used in modern programming
languages. It was felt that many of the features of a language like Ada
are presented by the language as a haphazard collection of facilities
rather than a consistent whole. Recent work on type systems could be
expected to provide the basis for a practical general purpose language

with similar expressive power but in a language which was conceptually

much simpler.

While it is possible to discuss programming language theory in the
abstract, it was felt that a concrete design for a language was the best
method for expressing my ideas, It would provide a means to test the
ideas against other parts of the language and, if the language were

implemented, allow practical testing of the whole system.

The result of the research was the design and implementation of a
language known as Poly., Poly was designed to be a general purpose
programming language which could be reasonably easily and efficiently
implemented. It was designed around a type system which, by allowing far
more flexibility than in conventional languages, should permit simpler

and, hopefully, more reliable, programming.




1.2 Background

In order to put the research in perspective the remainder of this
chapter is a discussion of various topics which are common to a number of

programming languages.

The primary use of a programming language is as a tool for instructing
a computer, but this is not its only purpose. It is important that
programs should be readable, both for documentation and to aid
modification. A language should make it easy to write correct programs
and difficult to write wrong ones., This is, of course, extremely difficult
to achieve, but developments in programming methodologies and languages

are attempting to improve the situation,

1.2.1 Types

Much research on programming languages has concentrated on the concept
of a type., A name in a program is often used to represent a value which is
computed dynamically. It is not possible to predict what that value will
be, it may depend on some values to be read in when the program is run, but
certain information will be known about it beforehand. In many cases this
information concerns the range of values which it may take or the
operations which will be performed on it, Such information can be
described as the type of the object associated with the name, or simply the

type of the name,

For instance an object which can have only two possible values, "true"
or "false" is described as being of type "boolean", whereas a value which
can have any of the integral values in a certain (large) range may have
type "integer". Alternatively we can say that "boolean" values are
characterised by having "and" and "or" operations available on them, and
that these operations have the property that only the values "true" or
"false" can be produced. These two views of a type, as a set of all the
possible values which an object of the type can take, or as a set of

operations which manipulate values, are complementary views which will be
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explored in more detail later,

Types perform two functions in a programming language, They are used
to ensure that operations are applied only to values of the appropriate
type, and they can be used to select a particular operation from those with
the same name (overloaded operations). Both type checking and operation
selection can be performed when the program is run (dynamic typing) by
associating a "type field" or "tag" with each value, but in all the
languages to be considered in this dissertation the checking and selection
are done at compile-time (strong typing). Performing the checking at
compile-time has the advantages that less space is used at run-time since
the type fields are not required and also that the type errors can be
detected before the program is put into service. The disadvantage is that
some programs which would be type correct if they were run will be
rejected by a type system which works at compile-time, This is because
the general case of whether a program is type correct is undecidable, so a
compile-time type checking scheme which will reject all type incorrect

programs must also reject some type correct ones as well,

1.2.2 Overloading and Polymorphism

Types have another use apart from for checking., An identifier may
often represent more than one value, the correct one being found by using
type information. A common example in many languages is that the symbol
"e" can represent both the addition of integer values and real values,
The selection of the correct operation to apply is done by the compiler on
the basis of the types of the operands. This 1is an example of

"overloading" (the name "+" is overloaded with more than one definition).

A related concept is polymorphism., A polymorphic operation can be
applied to values of any type with a given structure and does not require
a separate procedure for each type. For instance the identity function,
which just returns the value of its argument, should be the same for all
types. Most programming languages do not permit full polymorphism, though

some languages have a restricted form, It is often possible to write a




procedure with a parameter which is an array of arbitrary size. Among the

languages to be discussed in chapter 2, two of them, Russell and ML,

provide full polymorphic operations,

1.2.3 Abstraction

Work on programming methodologies has emphasised the development of
programs by successively developing an abstract concept through various
layers of abstractions to a concrete realisation as a program, For many
years languages have included subroutines or procedures which implement
an abstraction of control. Calling the procedure performs an operation
which, while conceptually very simple, such as writing a value to a file,

may in practice be extremely complex.

Data abstraction is a much more recent development but it can be viewed
in the same way as procedural abstraction, Just as a procedure is a name
for a potentially complex computation, so an abstract object is the name
for a potentially complex data structure. As a procedure can be called in
a very simple fashion to perform the computation, so an abstract object
can be operated on by operations which manipulate the data structure which

implements the abstract object.

Abstract objects can be written in many languages. A list structure
can simulated in Fortran using arrays, and an array simulated in LISP
using lists. Provided the abstract objects are manipulated using only the
operations written specifically for the purpose they will faithfully
represent their abstraction, However, if through mischief or just through
a mistake, the structures are modified by an operation which goes "behind
the back" of the specially written operations, the representation may no

longer work properly.

1.2.4 Abstract Types

The use of abstract types combines the concept of abstract objects with
a type system which ensures that an object is only modified by operations

which preserve its integrity., An abstract type consists of information
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which gives the representation of an object of the type in terms of other
types, and additional operations which will implement the abstract
operations. Only the abstract operations are exported from the abstract
type so none of the internal details are visible outside it, This means
that an object declared to be of this type has an internal structure which
is hidden from the wuser. There 1is no way that its internal data
structures can be altered, or even examined, except by use of the abstract

operations,

The use of abstract types has another advantage. Because the internal
details are hidden it is much easier for the implementor of an abstract
type to change its implementation., Provided ¢the external interface
remains the same any programs which make use of it should continue to work

unchanged.

1.2.5 Parameterised Types

Just as procedures can be parameterised to allow them to perform a
range of operations so an abstract type should be able to be parameterised
to generate a range of types. Several of the languages to be discussed in
chapter 2 allow parameterised (or "generic" types) but of those only
Russell allows parameterisation at run-time, The others regard
parameterised types as macros which must be expanded at compile-time,
Parameterised types can present problems for type checking and the
checking rules are often complex, Further complexity is introduced by the
need to parameterise with types as well as with more conventional values,
For instance, the type "stack" might be written as a type parameterised
with the type of the elements which it could hold. As we shall see, it is
possible to treat a parameterised type as a procedure, which allows a

great deal more generality than macro expansion.




1.2.6 Exception Handling

A frequent problem in programs concerns the handling of errors. The
most common example 1s attempting to divide a number by zero. This is
usually detected by the hardware and results in some form of hardware
trap, followed, in many languages, by catastrophic failure of the program,
A program which forms part of an operating system, for instance, cannot be
allowed to fail in this way so either the program must be proved never to
fail or there must be a mechanism for recovering from such errors. A
scheme for handling these kinds of errors is wusually known as an
"exception" system. An operation is said to "raise" an exception when it
fails, Languages with exception systems usually allow a user program to

raise an exception by a special statement.

There are many variations of exception system but they can generally be
divided into two groups. One group, exemplified by PL/1, treats exceptions
essentially as asynchronous events., Whenever an exception (error) occurs
a handling procedure for that exception is entered which can return a
suitable default value or set an error flag. Control then returns to a

point immediately after the exception was raised.

The other method of dealing with exceptions, which is used in more
modern languages, is to treat an exception almost as an "error" value
which can be returned from a failing operation. Whenever an exception is
raised the normal control flow is abandoned and a search is made for the
nearest "exception handler". The handler can perform some tidying-up and
raise the exception again or it can return a value suitable for the
context in which it appears. In this scheme control continues after the

handler rather than after the point at which the exception is raised.

1.2.7 Separate Compilation amd Modularity

The use of abstract types has been discussed from the point of view of

convenience for the programmer and programming methodology. Another

reason for their use is concerned with separate compilation.
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Being able to compile parts of a program separately has two main
advantages, First, it allows libraries of subprograms to be written and
used by many other programs., Obvious examples are numerical subroutine
libraries and input-output packages. Secondly, it allows a program to be
developed, and often tested, in stages, so that it does not require the
complete program to be written before testing can begin., Testing a single

subroutine is generally easier than testing a complete system,

A module or package, as a unit of separate compilation is often called,
is very similar to an abstract type. It has an interface which gives its

properties while its internal implementation is usually hidden.

1.3 Other Topics in Programming Language Research

Two other topics which will be touched on in this dissertation but not
explored in depth are program verification and parallel processing. They
are both areas which have influenced programming language design, but

where there is much scope for research,

1.3.1 Verification

An area of research which has had an influence on programming languages
in recent years has been the attempts to prove the correctness of
programs. The use of abstract types was prompted, particularly in the
design of Alphard, by the help that they give to structuring a proof.
Since the abstraction is separated from its implementation a proof of a
program using the abstract type can be written in terms of the abstract
properties, and it is only necessary to prove once that the implementation
satisfies the abstraction. A change of implementation which does not
change the abstraction requires only the implementation to be re-verified

and not the uses of the abstraction,




1.3.2 Parallel Processing

Another area of research in programming languages concerns the
handling of multiple processes, Languages intended for operating systems
or embedded systems (the software part of a machine to perform a
particular task) usually include some method of running and synchronising
multiple processes., The choice of mechanism for synchronisation and
multiple exclusion (monitors, messages, rendezvous, CSP's) has varied from
one language to another and there seems to be no consensus on the "best"

method to use,

1.4 Overview

The remainder of the dissertation contains a survey of several
programming languages (chapter 2) and a description of the programming
language Poly (chapter 3). Chapter 4 describes the design decisions which
resulted in Poly and the type-system. In chapter 5 the implications of
the type~system and the rest of the language are described. Chapter 6

covers the implementation and finally chapter 7 summarises the work and

discusses areas for future research on Poly.




2. SURVEY OF PROGRAMMING LANGUAGES

This chapter consists of a survey of modern programming languages, Ada,
CLU, Russell, ML and the Cedar Mesa Kernel. Similar concepts, particularly
abstract types, appear in most of the languages so only the differences

between the languages will be described.

2.1 Ada

Ada [DOD80, ICH79] was designed to a set of requirements issued by the
American Department of Defense to provide a language for "embedded
computer systems" [DOD77). These requirements specified large parts of
the lahguage fairly closely so that, in effect, the language was designed
by those who drew up the requirements. The one area where the designers
of Ada where able to use their discretion was the mechanism for

multitasking, since the requirements were least specific about them,

2.1.1 Type System

The Dod requirements which resulted in Ada were heavily influenced by
Pascal. The conventional parts of the language therefore resemble Pascal.
The language is "strongly typed" which is taken to mean that "the type of
each expression shall be determinable at translation time". However a
precise definition of type is not given except to say that differences of
type excludes differences of range, precision, scale or representation, at
least as far as the need for explicit type conversion is concerned. In
practice the type checking rules are quite complex to deal with the

various possibilities.




2.1.2 Overloading

Ada allows some names to be overloaded so that the same name can denote
different operations. Only procedures, functions, operators and constants
can be overloaded but unlike other languages (such as Algol68) which allow
operators or functions ¢to be overloaded this requires algorithms

involving repeated scans over the parse tree to resolve the overloading.

2.1.3 Generics

A generic procedure or type in Ada is a template for a class of related
objects. Types and procedures are not normally allowed as parameters but

they can be used as parameters of a generic,

2.1.4 Packages

A package is the term used to describe a module in Ada. It can be
regarded as a unit for separate compilation and also as a form of abstract
type. A package has an external interface (the "public part" of the
package) and a private internal representation., It is not a type in
itself but it may export one or more types whose representations are

hidden in the package.

2.1.5 Tasking

Parallel processing or "tasking” in Ada is one of the few areas in
which the designers were able to use their initiative. The "Iromman"
requirements were fairly vague on the subject and did not specify the

mechanism to be used.

Processes communicate by means of "rendezvous". A rendezvous occurs
when two processes, one executing an "entry" to a task and the other
"accepting" it, run synchronously. The "accept" statement is similar to a

procedure body and the "entry" to a procedure call. When a task executes
an "entry" or "accept" it is suspended until the corresponding "accept" or

"entry". The tasks then run in synchrony while executing the body of the
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"accept”" and then can continue asynchronously, Parameters can be passed

with the entry to transfer data between tasks.

2.1.6 Exceptions

Exceptions in Ada follow the pattern of most modern languages. An
exception may be raised explicitly by the user or by an operation. An
exception is associated with a name which describes the form of failure.
When an exception is raised normal sequential control flow is abandoned
and a search is made for the nearest handler, If this handler includes a
trap for this named exception, or includes a default handler then the
statement associated with the handler is executed, If the handler re-
raises the exception, or does not include a trap for the exception, then
the search resumes for the next handler, otherwise normal control resumes

from the next statement.

A further complexity is introduced by the tasking mechanism, An
exception raised in an "accept" statement causes an exception in both of

the tasks involved in the "rendezvous",

2.1.7 Implementation

Various groups are working on implementations of Ada. So far no full
implementation has been produced although several have been reported as
being close to completion. As Ada is a large and complicated language

compilers for it will be large and probably slow,

2.2 CLU

CLU [LIS81] is an object orientated language which resulted from work
on abstract data types. It was one of the first languages with a true

abstract type.
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2.2.1 Objects in CLU

There are two basic elements in CLU, variables and objects. Objects
are handled by references which can be stored in variables. A variable is
simply a name for an object., Several variables can refer to the same
object: this is the mechanism for parameter passing. An object can refer

to another object and even to itself,

Instead of distinguishing between variables and constants CLU
distinguishes mutable and immutable objects. An immutable object is one
which, once it is created cannot be changed, whereas a mutable object can.
An immutable object can contain a reference to a mutable object. It will
always refer to the same object, though that object itself may change its

val ue,

2.2.2 Clusters

A "cluster" is the CLU term for an abstract data type. It is a set of
related procedures which have access to the implementation of an abstract
type. A user of the cluster has access to the object only through those
procedures. A cluster may be parameterised, but only by values which can
be computed at compile-time. The values must belong to one of a few
primitive types (integer, boolean etc.) or must be types themselves. The
reason for this restriction is that these values are all immutable so that
a parameterised cluster with certain parameter values will always denote
the same value (see Russell below). When a type is used as a parameter it
is possible to specify that it must possess certain operations, by means

of a "where" clause, For instance

set = cluster[t:typel] is create,insert,elements

where t has equal:p;';ctype(t,t)retur‘ns(bool)

is the header for a parameterised cluster implementing a set. The type
parameter is required to have an "equal" operation which will compare two
values of the type. Since the integer type, int, has such an operation

setl int] is legal.

-12-




"Where" clauses can be used for particular operations inside a cluster.
For instance the definition of a vector might contain operations such as
"equal which would compare two vectors elements by element and return
"true" only if all the corresponding elements were the same, This
requires the element type to have a suitable "equal" operation. "equal"
will only be required by the vector comparison operation so it is not
included in the "where" clause for "vector", but it must appear in the
where clause assoclated with the comparison operation. This allows
vectors to be made from types which do not have an "equal" operation,

though it will not be possible to compare them,

2.2.3 Exceptions

Exceptions in CLU have similar semantics to Ada exceptions. Raising an
exception causes normal sequential execution to be abandoned and control
to be transferred to a handler for the exception. A handler can catch
particular named exceptions or all the exceptions raised in a block.
Exceptions can have parameters associated with them so as to return
results to the handler. The corresponding handler can then either discard

the values or use them,

The exceptions raised by a routine must be listed as part of its type
specification., It is therefore possible to compute the exceptions which
may be raised by a piece of program and check that only the exceptions
listed in the header of a routine can be raised in it, There is a default
exception "failure" which can be raised by any routine and any exceptions

not caught are converted into "failure",

2.2.4 Implementation

CLU has been successfully implemented on a number of machines.
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2.3 Russell

Russell [DEMT79a, DEM79b, DEM80a, DEM80b] was based on the idea that a
type is a set of operations and that it is a value in the same way as a
number or a procedure., "The world" is viewed as a single value space
which can be interpreted in many different ways, This is very similar to
what happens in practice inside most conventional computers. A word can
be regarded as a fixed-point value, an address or an instruction depending
on how it is handled., The Russell view is that a type is a set of
operations which gives an interpretation to this value space. For
instance the type "boolean" is the set of operations "and", "or", "not" and
two nullary functions (constants) "true" and "false". The actual
representation of the two values "true" and "false" is irrelevant, it is
sufficient that the operations of "boolean" have a consistent
interpretation of the value space (i.e. that abstract properties such as

"true and false = false" hold for all time),

2.3.1 Type Checking and Signatures

In order to ensure that the interpretation of a value is consistent,
Russell imposes a type system on these values, To distinguish this type
system, which works entirely at compile-time, from "types" which, being
values, can exist at run-time, the word "signature" is used to denote the
compile-time "type" of an object. For instance a boolean value has
signature "val boolean", The signature checking rules allow only
operations belonging to the type "boolean" to interpret these values: such
operations have signatures with parameters whose signatures are also

"_v_a_l_ boolean", For instance the "and" operation of boolean will have

signature

func [val boolean; val boolean] val boolean

in other words a function from two boolean values yielding a boolean
value. The checking rules for values are simply that only operations with
signatures "val T" can interpret values with signatures "val T", where "T",

as well as being a name like "boolean", can be an arbitrary expression,
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However the comparison is made on the basis of the static form of the
expression "T" (i.e. the symbols which make it up) and not on the value

which it represents, since the value may not be known at compile-time.

2.3.2 Type Completeness

One of the principles on which Russell was based was that of "type
completeness", This essentially says that every expression should have a
type which is expressible in the type system, and that it should be
possible to write an expression in the language with any type which can be
expressed. 1i.e. the type system should be a complete description of the

language.

One consequence of this is that, if types are to be considered as
values, the type system must be capable of specifying them, and the values
which can be produced from those types. We have seen that type parameters
in CLU can be specified by a "where" clause which requires a type to have
one or more operations of particular forms., Although in CLU clusters with
type parameters are always instantiated at compile-time, the same
principle can be used if types are values at run-time, The signature of a
type is expressed in Russell as the set of signatures of the operations
which make up the type. Just as a "type" of a value in other languages
gives information about a value which allows the compiler to check that it
is correctly used, so this signature ensures that a type which may be the
result of an expression can be correctly specified at compile-time. A
type can be used as a parameter only if its signature contains all the
‘operations, with the correct signatures, listed in the signature of the
formal parameter. i.e. a subset of a type can be taken. In this way types
as parameters and types as results of expressions are given signatures,
Parameterised types are treated as procedures which return types as their

results.
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2.3.3 Signatures of Values from Type Expressions

There is a serious problem with allowing types as run-time values and
that concerns the values which may be created by them., We have seen that
the signature of a boolean value is "Xfl boolean" which means that it can
be correctly interpreted by the type "boolean", The signature checking
system, working entirely at compile-time, must be certain that the word
"boolean" always represents the same type at compile-time, More
precisely, it must always represent a type which has the same
interpretation of the value space, For example, if "boolean" were a
variable which was initially set to a type which interpreted a word
containing 0 as true and =1 as false and then changed to a type which made
the reverse interpretation, then a value with signature "val boolean"
created before the change would be misinterpreted. Worse situations can
be envisaged, This problem does not occur in the other languages with

parameterised types discussed in this chapter because the types are always

parameterised at compile-time by values which must be constants.

2.3.4 Variable-Free Expressions

The solution to this problem in Russell is to prevent types from being
variables, This is more complicated than it might at first appear, since
types may be expressions. This means that any expression which returns a
type must not contain a variable, but even this is not strong enough. In
Russell no procedure may import a variable except as a parameter, since
any procedure could be used in an expression which would return a type,
even if it does not itself return one. An expression which does not
involve any global variables has the property that its value is always the
same in a particular scope. This is known as the "substitution property"
because such an expression can be replaced with an identifier having that
value in any other expression., This means that if types are always
variable=-free expressions then two type expressions give the same value if

they have the same syntactic form,
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The "import restriction" has a very serious impact on the rest of the
language, making variables extremely difficult to use., For example input
of data requires a file, treated as a variable, to be passed as a parameter
to the "read" procedure. Since the file cannot be imported, any call to
"read" inside a procedure requires that procedure to take the file as a
parameter., A similar problem arises with the pointer type which requires

a "heap" variable in order to indirect on a pointer,

2.3.5 Variables

The most obvious effect of the import rule is that variables must have
a different signature from other values., The type completeness principle
means that variables can be passed as parameters and returned from
procedures just like other values. Variables are created by an operation
called "New" which is a component of most types and constructors 1like
"record". The "New" operation of a type returns a variable of the type.
That is "T¢New[ 1" returns a value with signature "ia-r: T". (T$ means, as in
CLU, the operation belonging to the type T). The primitive operations on
variables have to be carefully framed to preserve the substitution
property. Operations like subscripting an array to give an element which
may be assigned to, or selecting a field of a record, can only be applied
to variables of the array or record types. This requires, for example, the
subscript operation of an array to be overloaded so that an array value
when subscripted gives a value of the element type, and a variable of the
element type can only be obtained by subscripting an array variable,

Pointer (or reference) values cannot be indirected on (dereferenced)

directly to give a variable because that could break the substitution
property. Instead the indirection operation takes a pointer and a "heap"
variable to give a variable of the base type, in much the same way as

subscripting an array.
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2.3.6 Parameterisation

The ability of procedures to take types as parameters and return types
as results in Russell allows parameterised types to be treated simply as
procedures, It is possible to write a procedure "list" which takes a type
as a parameter and returns a type with operations for manipulating lists

of values of that type. It would have a signature similar to

func [base: type ()]

type 1 ( nil : val 1 .....

2.3.7 Image

In Russell types are regarded as values which can be manipulated at
run-time. They do not, however, have a "type" in the same way as a value
such as a number, This means that variables which can directly contain
types cannot be written because the operations which manipulate variables
belong to the type of the variable. (e.g. integer variables, those with
signature var integer, are manipulated by "integer$New" and "integer$:="),
Since a type does not belong to a type there can be no type-valued

variables.

In addition there are certain other operations which could be applied
to types if they had a "type". For instance a list creating function can
be written which takes a type as parameter and returns a type with
operations for making lists of values of that type. This cannot be used

to make lists of type values because type values do not have a type.

Instead of giving types a "type", the "image" construction is provided
to "package up" types (or functions) as values of a type. "image" takes a
signature of a type (or function) and returns a type with operations which
allow the type (or function) to be packaged up into a value of the image
type. For example if we wanted a variable which could contain different
types with the "boolean" operations "and, or, not ete,' then we would first

have to create a type by using
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image ( type bool ( and: func [val bool; val boollval bool

)
The type created has operations "In" and "Out" which map values from the
"boolean" type to the image, and back again, The image type also has "New"
and assignment operations so variables can be created and manipulated. To
assign a particular "boolean" type to an image variable the type must
first be "packaged up" by using the "In" operator, and then assigned to the

variable,

"image" essentially provides a way of "circularising" the type-system
so that instead of an infinite hierarchy of types, types of types, types of
types of types etc. the "type" of a type can be expressed as a type. The

type created by
image ( type () )

is the type of all types, including itself, since all types can be reduced

to "type ()" by taking the empty subset.

2.3.8 Implementation

There is no current implementation of Russell although some work on it

has been done,

2.4 ML

ML [GOR78] was based on Milner's [MIL78] theories that a program
contains enough information for the type of any expression to be inferred
without giving explicit type information. The type of any expression can
be expressed as a set of equations involving "type variables" which can be

solved. For instance the declaration

let fn= mi;

-e

declares "f" as a function of n. The type of "f" can be deduced by solving

the following set of equations. (T(n) denotes the type of n, # denotes
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Cartesian product and x and z are type variables).

T(f) = x => y;

T(1) = int;

T(+) = int # int => int;

T(h) = T(first argument of +);
X = T(n);

y = T(result of +);
Hence f has type int => int

H

This type inference system can be applied to more complicated

expressions including recursive declarations,

2.4.1 Polymorphism

The set of equations which give the type of an expression may, like any
other set of simultaneous equations, be inconsistent or insufficient, An
inconsistent set of equations means that the expression 1is not type
correct. An insufficient set means that the expression is polymorphic,

For instance the declaration

EEE f = \n.ny;;

declares "f" to be a function which returns its argument (™" represent

lambda). The set of equations for the type of "f" are

T(f) = x => y;

T(n) = z;
X = Z3
X= Y

Hence T(f) = z -> z, or using ML notation ¥ =) #

This means that the function can be applied to an argument of any type and

returns a value of the same type as its argument,
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2.4.2 Type Operators

A type operator is similar to a type returning procedure in Russell.
For instance "list" is a type operator which can be used to represent the
type of all lists, "int list" is a list of integers, "¥ list" is a list of
objects of any type (but all objects in the list have the same type). This
is not quite the same as a list constructing function in Russell, 1In
Russell an object can have type "list(integer)" and "1list" can be passed
as a function, so achieving the effect of "¥ 1list". Unlike a type
-r'etur'ning function in Russell a type operator does not actually take a
type as a parameter, indeed there is no concept of a particular

instantiation of the type operator for a particular type.

Type operators can be written only in terms of records, unions,
functions or other type operators, This ensures that a type operator
always denotes the same value for particular parameters without requiring

an import rule as in Russell., 1In fact, since a type operator does not
depend on its "argument", it need never be instantiated with a particular
type. It is does not need the import rule since, unlike a procedure in

Russell, it is instantiated only once. A type operator is essentially a

polymorphic type.

2.4.3 Exceptions

ML has an exception mechanism in which an expression can raise an
exception instead of returning an ordinary result. An exception is a name
which usually indicates the form of failure or the failing operation. An

exception can be caught otherwise it propagates back to the caller,

2.4.4 Implementation

There are at least two distinct implementations of ML in existence.
One implementation, developed at Edinburgh, compiles down to LISP, while

the other, written in Pascal, compiles to machine code,
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2.5 Cedar Mesa and the Cedar Kernel

Cedar Mesa is a development of the Mesa language [MIT79] designed and
implemented at Xerox PARC, It is basically the same as Mesa but has among
other things a garbage collector. Both Cedar and Mesa are large languages
designed to support systems programming. They have a module system,

parallel processing and coroutines, The basic language is fairly

conventional and so will not be discussed in detail.

2.5.1 Cedar Mesa

Cedar Mesa is a development of the original Mesa language. There is
very little difference at the language level but it supports a garbage
collector and a form of dynamic typing. The facilities for dynamic type
checking allow a pointer to be converted from pointing to a value of a
particular type (ref T) to a pointer to any type (ref any) and back again.
The conversion from ref any to ref T (narrowing) requires a dynamic check

which is performed using information provided for the garbage collector.

2.5.2 The System Modeller

The System Modeller (SM) [SCH821] in the Cedar system has replaced the
C/Mesa language used to describe the interfaces between Mesa modules. A
Mesa (or Cedar) module may make use of other modules (import them) and it
defines some routines, types or values for use outside (exports them). An
interface file gives the names and types of objects, but no implementation.
A module which claims to implement a particular interface file must export
an implementation of every object in the file. There may be several
implementations of an interface, for example a symbol-table may be

implemented in different ways.

SM is a polymorphic applicative language which treats modules as
functions which are parameterised by the modules and interfaces they
import and return a value (the fully bound module) as the result.

Treating the interface files as types and their implementations as values
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of those types means that the functions must be polymorphic.

2.5.3 The Cedar Kernel

The Cedar Kernel [LAM82] is an attempt to design a very small language
by removing non-essentially facilities from Cedar. A Cedar program can be
translated into a Kernel program by applying rewriting ("desugaring")

rules.

It is intended that Ced'ar should eventually be a superset of the Kernel
but at the moment the Kernel has several facilities not available in
Cedar., The most important of these are that the Kernel allows types and
bindings to be passed to and returned from procedures, while Cedar
restricts them to the literal forms., This means that the Kernel, unlike
Cedar, allows polymorphic operations so SM can also be considered as a

(specialised) superset of the Kernel.

2.5.4 Types in the Kernel

Types in the Cedar Kernel are regarded as a cluster of operations (as
in Russell) together with a predicate, The predicate is a test which can

be applied to a value to determine whether it belongs to the type. This is

a very general view and includes such things as range-checking as part of

type~checking, but it will in general require run~time action.

2.5.5 Implementation

Mesa has been implemented on several machines at Xerox and large
software projects have been developed in it. Cedar is currently under
development., The Kernel is still in the design stage and there are no

immediate plans to implement it.
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2.6 Other Languages

The remainder of this chapter contains a brief description and critique

of some other relevant languages.

2.6.1 Simula

The first language %to provide any form of abstract type was Simula
[DAH66, BIRT3 . Simula was designed for writing discrete-event
simulations and provided a process mechanism to represent the events. The
"class" mechanism provided a form of abstract type since the operations on
an object could be associated with the object. However the absence of any
information hiding meant that a fully abstract type, with implementation
details hidden from the user, was not possible, Simula allowed classes to
be extended to make a new class with all the properties of the old one

together with the additional properties.

2.6.2 Algol68

Algol68 [WIJ76] was the result of attempts to bring Algol60 more up to
date with developments in language design. Like Ada it 1is a large
language incorporating many features such as parallel-processing which
.are of limited use for most applications., It has no facilities for
abstract types, and types (or '"modes") are compared using a form of
structural equality (i.e. two types are the same if they represent the same
structure). The language relies heavily on automatic type conversion
("coercions") which have the advantage of conciseness but the risk of
misunderstandings. It has infix and prefix operators, which may be
overloaded, but unlike Ada all overloading must be resolvable on the basis
of the argument types, and must not depend only on the result type. The
concept of "orthogonality", that there should be one construction for each
concept, and each construction should be applicable to any value, has had a

.considerable influence on language designers.

24~




2.6.3 Pascal

Pascal [JEN75] was designed to a large extent as a reaction against
Algol68., It stresses simplicity rather than power, possibly too strongly,
but since it was designed as a teaching language, this is reasonable., It
“\has no facilities for abstract types or separate compilation., It has some
interesting features, such as sets and subrange types, which allow bit-
strings and different lengths of integers to be treated in the language as
high level concepts. Perhaps its most significant contribution has been
as a way of introducing many users to high-level languages by providing
them with an easily implemented and easily learnt language. It has been

the basis, with Simula, of many of the modern high-level languages.

2.6.4 Euclid

Euclid [LAM77] was based on Pascal but designed for systems programs
which are to be verified, It contains a module construction which allows
abstract types to be made and contains facilities for machine code
sections, necessary in an operating system. In order to make verification
possible it has restrictions to prevent aliasing of variables. Those
cases that the compiler cannot check by simple analysis result in legality

assertions being generated which should be proved by a verifier,

2.6.5 Al phard

Alphard [SHA81] was designed to test some theories in program
verification. While it was never implemented the work on it considerably
influenced many languages, particularly CLU., It was based round the
"form", an implementation of an abstract type or abstract procedure.
Since verification was the primary aim, a form had pre- and post-
conditions and invariants in both the abstract and implementation parts.
The abstract properties could be used outside the form in verifying uses
of it without needing to know the implementation. They were considered as
much a part of the interface to the form as the types of the arguments,

Alphard, like CLU, is variable-based in that all values are held in
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objects, which are potentially updatable. There are no "naked values".
Alphard had many novel features which were incorporated in other
(languages. For example iteration was done by "for" and "first"
constructions which were based around specialised forms called
"iterators", The "first" loop, which selected the first element from a
set satisfying some condition, is one of the few new control constructions

to appear in recent languages.
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3. INTRODUCTION TO POLY

In this chapter the programming language, Poly, is explained by means of

a number of examples,

3.1 Commands and Declarations

There are three types of instructions which can be given to Poly;
declarations of identifiers, statements (commands), or expressions. An

example of a command and the output it produces is

> print("Hello");
Hello

An example of an expression is
> "Hi " ;
Hi

Poly prints the value of an expression without the need to type the word

'print!,

Commands can be grouped by enclosing them with the bracketing symbols

begin and end or { and ). For instance

> begin

# print("Hello");
# print(" again")
# end;

Hello again

Any object in Poly can be bound to an identifier by writing a

declaration. For instance

> let message == "Hello "
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declares an identifier 'message' to have the value of the string 'Hello '.

It can be printed in the same way as the string constant.

> message;

Hello

Names can be either a sequence of letters and digits starting with a
letter, or a sequence of the special characters + - ¥ = < > ete. Certain
names are reserved to have special meanings and cannot be used in
declarations, Those words can be written in upper, lower or mixed case,
all other words are considered to be different if written in different
cases. Comments are enclosed in curly brackets { and }. They are ignored
by the compiler and are equivalent to a single space or newline between

words.

3.2 Procedures

Statements or groups of statements can be declared by making them into

procedures,
> let printmessage ==

# proc()
# (print("A message "));

A procedure consists of a procedure header (in this case the word proe and
parentheses ( and ) ) and a body. The procedure body must be enclosed in

bracketing symbols (in this case '(' and ')') even if there is only one

statement.

This is simply another example of a declaration. Just as previously
'message' was declared to have the value "Hello ", 'printmessage' has been

declared with the value of the procedure.

The procedure is called by typing the procedure name followed by ().

> printmessage();
A message

The effect of this is execute the body of the procedure and so print the
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string.

Procedures can take arguments so that values can be passed to them when

they are called.

> let pmessage ==
# proc(m : string)

i beg in

i print("The message is :");
# print(m)

# end;

This can be called by typing

> pmessage("Hello");
The message is :Hello

or by typing

> pmessage("Goodbye");
The message is :Goodbye

3.3 Specifications

As well as having a value all objects in Poly have a specification,
analogous to a type in other languages., It is used by the compiler to
ensure that only meaning ful statements will be accepted. You can find the

specification of a declared name x by typing ? "x";,

> ? "message";

message : string

This means that message is a constant belonging to the type 'string'.
> 7?7 "pmessage";

pmessage : PROC(string)

This means that pmessage is a procedure taking a value of type string as

its argument. Since message has that specification the call
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> pmessage(message);
The message is :Hello

will work. Likewise the call

> pmessage("Hi");
The message is :Hi

will work because "Hi" also belongs to type string. However

> pmessage(pmessage);
Error - specifications have different forms

will fail because 'pmessage' has the wrong specification., Incidently, the

specification of the procedure is the same as the header used when it was

declared, ignoring the differences in the case of some of the words.

3.4 Integer and Boolean

So far the only constants used have been those belonging to the type

string. Another type, integer provides operations on integral numbers,

> print(42);
u2

The usual arithmetic operations +, -, ¥, div, mod, succ and pred are

available,

> 42+410-2;
50

However, unlike other languages all infix operators have the same

precedence so0

> 44+3%2;
14

prints 14 rather than 10, Also - is an infix operator only, there is a

procedure neg which complements its argument,

Another 'standard' type is boolean which has only two values true and

false. Its main use is in tests for equality (the = operator), inequality
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(©) and magnitude (» < >= <).

> let two == 2;

> 1 = two;
false

> 2 = twoj
true
>3 O U
true

> U4 >= 5;
fal se

The expression '! = two' has type boolean., Identifiers can be declared to

have boolean values in the same way as integers and strings.

> let testtwo == two > 1;

declares testtwo to be 'true' since 'two' is greater than 1. There are
three operators which work on boolean values, & )} and =, ~ is a prefix
operator which complements its argument (i.e. if its argument was false the
result is true, and vice-versa). & is an infix operator which returns true
only if both its arguments are true. | is also an infix operator which

returns true if either of its arguments is true.

3.5 If=Statement

Boolean values are particularly useful since they can be tested using
if, The if-statement causes different statements to be obeyed depending

on a condition,

> if two = 2

# then print("It is two")

## else print("It isn't two");
It is two

tests the value of the expression 'two = 2' and executes the statement

after the word then if it is true, and the statement after the word}else if

it is false. This could be written as a procedure,
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> let iszero ==

# proc(i: integer)

# (if i = 0 then print("It is zero")
# else print("It isn't zero"));

which could then be called to test a value.

> iszero(4);

It isn't zero

since 4 is not zero, If-statements can return values as well as perform
actions in the then and else parts. An alternative way of writing 'iszero!

could have been

> let iszero ==
# proc(i: integer)

# (print(

f# ifi=20

# then "It is zero"

# else "It isn't zero"

# ));

This version tests the condition, and returns one or other of the strings
for printing., This can only be used if both the then and else parts return
values with similar specifications (in this case both sides return string
constants), The version of the if-statement which does not return a value
can be written with only a then-part. If the then-part returns a value
there must be an else-part (otherwise what value would be returned if the

condition were false?).

3.6 More on Procedures

Procedures can be written which return results. For instance a further

way of writing 'iszero' would be to allow it to return the value of the

string.
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> let iszero ==

# proc(i: integer)string

# (if i = 0 then "It is zero"

# else "It isn't zero");

> 7 "iszero";

iszero : PROC(integer) string

Calling it would then cause it to return the appropriate string which

would then be printed.

> iszero(0);
It is zero

Another example is a procedure which returns the square of its argument,

> let sqr ==
# proc(i: integer)integer (i¥i);

declares sqr to be a procedure which takes an argument with type integer
and returns a result with type integer, The body of the procedure

evaluates the square of the argument i, and the result is the value of the

expression, The call

> sqr(l);
16

will therefore print out the value 16,

Procedures in Poly can be written which call themselves, i.e. recursive

procedures. These are declared using letrec rather than let.

> letrec fact ==

# proc(i: integer) integer
# (if i = 1 then 1
# else i¥fact(i-1));

This is the recursive definition of the factorial function. The procedure

can be called by using

> fact(5);
120

which prints the result, 1letrec has the effect of making the name being
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declared available in the expression following the ==, whereas let does

not declare it until after the closing semicolon.

3.7 Variables

Constants are objects whose value cannot be changed. There are also
objects whose value can change, these are variables, Variables are

created by declarations such as

> let v == new(0);

The procedure 'new' returns a variable whose initial value is the argument,

> v
0

A new value can be given to v by using the assignment operator.

> v = 33
> v

3
Thus v now has the value 3. The new value can depend on the old value,
> v o1z (w2);

Sets the value to be 5, The parentheses are necessary because otherwise
the order of evaluation would be strictly left=to=-right. Variables can be

of any type.

> let sv == new("A string");

declares sv to be a string variable. The specification of a variable is

not as simple as it may seem and will be dealt with later.
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3.8 The While Loop

It is often necessary to repeat some statements more than once. This

can be done using the while statement. For instance

> let X == new(10);
> while x > 0

# do

# begin

# print(x*¥x);

# print(" ");

# X := pred(x)

# end;

100 81 64 49 25 16 9 4 1

prints the square of all the numbers from 10 down to 1. The body of the
loop (the statement after the word do) is executed repeatedly while the
condition (the expression after the word while) is true. The condition is

tested before the loop is entered, so

> while false
# do print("Looping");

will not print anything.

3.9 Operators

We have already seen examples of operators such as + and &. In Poly
operators are just procedures whose specifications include the words
infix or prefix. They are declared in a similar way to procedures, for

instance

> let sq == proc prefix (i : integer)integer (i¥i);

has declared sq as a prefix operator. It can be used like any other prefix

operator:

> 8q 33
9
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The difference between a prefix operator and other procedures is that the

argument to a prefix operator does not need to be in parentheses. Infix

operators can be defined similarly.

3.10 The Specifications of Types

All objects in Poly have specifications. This includes types such as

string, integer and boolean.

> ? "boolean";
boolean : TYPE (boolean)
& : PROC INFIX (boolean; boolean)boolean;
false : boolean;
print : PROC (boolean);
true : boolean;
| ¢+ PROC INFIX (boolean; boolean)boolean;
~ s+ PROC PREFIX (boolean)boolean

END

Types in Poly are regarded as sets of "attributes". These attributes are
usually procedures or constants but could be other types. The attributes
of a type can be used exactly like ordinary objects with the same
specification, However, since different types may have attributes with
the same name, it is necessary to prefix the name of the attribute with the

name of the type separated by $.

> integer$print(5);

5

This invokes the attribute 'print' belonging to integer and prints the
number, Most types have a print attribute which prints a value of that
type in an appropriate format. $ acts a selector which finds the
attribute belonging to a particular type. It is not an operator so

operators always work on the selected name rather than the type name,

> ™ boolean$ true;

false
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3.11 Records

Poly allows new types to be created in the same way as new procedures,
constants or variables. One way of creating a new type is by making a

record. A record is a group of similar or dissimilar objects.

> let rec == record(a, b: integer);

This declares 'rec' to be a record with two components, a and b, both of

type integer.

> 7 "rec";
rec : TYPE (rec)
a ¢ PROC(rec) integer;
b : PROC(rec) integer;
constr : PROC(integer;iinteger)rec
END
'constr' is a proceduhe which makes a record by taking two integers, and '&

and 'Y are procedures which return the 'a' and 'b' values of the record.

> let recv == rec$constr(3, 4);

creates a new record with 3 in the first field (a) and 4 in the second

field (b). The result is given the name 'recv’.

> rec$alrecv);

3
> rec$b(recv);
y

show that the values of the individual fields can be found by using 'a' and
'Y as procedures. They must of course be prefixed by 'rec$' to show the

type they belong to.

Records can be made with fields of any specification, not just

constants.

> let arec ==
# record(x:integer; p: proc(integer) integer);

declares a record with fields x and p, x being an integer constant and p a
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procedure,

> let apply ==

# proc(z : arec)integer
i begin

# let pp == arec$p(z);
# pp(arec$ x(z))

# end;

is a procedure which takes a constant of this record type and applies the
procedure p to the value x and returns the result. In fact, it is not

necessary to declare pp in the body of the procedure., An alternative way

of writing apply is

> let apply ==
# proc(z : arec)integer
# (arec$ p(z) (arec$ x(z)));

3.12 Unions

Another way of constructing a type is using a 'union'., A union is a
type whose values can be constructed from the values of several other
types. For instance a value of a union of integer and string could be

either an integer or a string.

> let un == union(int: integer; str: string);

This has created a type which is the union of integer and string. A value
of the union type can be constructed by using an injection function. This
union type has two such functions, their names made by appending 'int' and
'str' onto the letters 'inj_ ', making 'inj_int' and 'inj str'., (‘int' and
'str' were the 'tags' given in the declaration, in a similar way to fields

in a record).

> let intunion == un$inj int(3);
This has created a value with type 'un' containing the integer value 3.

> let stringunion == un$inj str("The string");
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creates a value, also with type 'un', but this time containing a string,
Given a value of a union type it is often useful to be able to decide which
of its constituent types it was made from., For each of the 'tags' there is
a procedure whose name is made by prefixing with the letters 'is ', which
returns "true' or 'false' depending on whether its argument was made from

the corresponding injection function,

> un$is_int(intunion);

true

prints 'true' because intunion was made from 'inj int'. However

> un$is_str(intunion);

false

Values of the original types can be obtained by using ‘'projection
functions, which are the reverse of the 'injection' functions., Their names
are made by prefixing the tags with 'proj ' to make names like 'proj str'

and 'proj_int'.

> un$proj_int(intunion);

3
> un$proj_str(stringunion);
The string

print the original values. It is possible to write

> un$proj_str(intunion);
Exception projecte raised
because 'intunion' has type 'un', just 1like 'stringunion', However,
'proj_str' is expected to return a value with type string so when this is
run it will cause an error, The effect will be to raise an 'exception'
called 'projecterror' which means that a projection procedure was given an

argument constructed using a different injection procedure.

> let unprojstr == un$proj_str;
> 7 "unprojstr";
unprojstr : PROC(un)string RAISES projecterror

shows that 'proj str' may raise 'projecterror'. Exceptions will be dealt

with in more detail later on.
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3.13 The Type-~Constructor

It is often useful to be able to construct a type which is similar to an
~existing one but with additional attributes. This can be done by using

the type-~constructor.

> let nrec ==
# type (r) extends rec;
i let print ==

# proc(v : r)

# begin

# print(r$a(v));
# print(",");

# print(r$b(v))
i end

# end;

> ? "nrec";

nrec : TYPE (nrec)
a : PROC (nrec)integer;
b : PROC (nrec)integer;
constr : PROC (integer; integer)nrec;
print : PROC (nrec) |
END

This declares 'nrec' to be a new type which is an 'extension' of an existing
type 'rec'. It then lists the new attributes, in this case just the
procedure 'print', which are declared just as though they were ordinary
declarations. The name 'r' in parentheses which follows the word 'type' is
the name for the new type within the body of the type constructor, so the
argument of the procedure 'print' is given the type 'r'. It is important to
remember that the new type is a completely separate type from 'rec',
Values can be changed from the old to the new type and‘vice versa, but they
cannot be used interchangeably. The specification of nrec is similar to

that of rec except that there is now an extra procedure 'print',

> let nrecv ==z nrec$constr(5,6);
> nrec$print(nrecv);
5,6
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makes a value with type nrec, and prints it using the new 'print' attribute.

It is possible to write simply

> print(nrecv);

5,6

because there is a procedure 'print' which looks for the 'print' attribute
of the type of the value given, and then calls it, This 1is the way
integers and strings are printed (they both have 'print' attributes)., Many
of the other operations such as ':=' and '+' work in a similar way. A

further alternative is to write an expression,

> nrecv;
5,6

In this case the compiler looks for the 'print' attribute and applies it.

3.14 A Further Example

This record could be extended in a different way, to make a double-
precision integer. Suppose that the maximum range of numbers which could
be held in a single integer was from =9999 to 9999. Then a double-
precision number could be defined by representing it as a record with two
fields, a high and low order part, and the actual number would have value

(high) ¥10000 + (low). This can be implemented as follows.

> let dp ==
# type (d) extends record(hi, lo: integer);
# let succ ==

# proc(x:d)d

i begin

# if d$lo(x) = 9999

# then d$constr(suce(dbhi(x)), 0)

# else if (dbhi(x) < 0) & (dplo(x) = 0)

# then d$constr(suce(dbhi(x)), neg(9999))
# else d$constr(dihi(x), suce(dplo(x)))

i end;
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# let pred ==

# proc(x:d)d

# begin

# if d$lo(x) = neg(9999)

i then d$ constr(pred(dbhi(x)), 0)

# else if (dbhi(x) > 0) & (dflo(x) = 0)
# then d$ constr(pred(dhi(x)), 9999)
# else dyconstr(dbhi(x), pred(dslo(x)))
# end;

# let print ==

# proc(x:d)

{# begin

i if d$hi(x) © 0

# then

# begin

# print(dshi(x)):

# if abs(dplo(x)) <10

# then print("000")

# else if abs(dplo(x)) <100

# then print("o0oM)

# else if abs(dplo(x)) < 1000

# then print("0");

# print(abs(d$lo(x)))

# end

# else print(d$lo(x))

# end;

# let zero == d$ constr(0,0);

# let iszero ==

# proc(x:d) boolean
# ((d$hi(x) = 0) & (d$lo(x) = 0))
# end;

This is sufficient to provide the basis of all the arithmetic operations,

since +,-,% etc, can all be defined in terms of sucec, pred, zero and iszero,
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3.15 Exceptions

In the section on union types above mention was made of exceptions., 1In
the case of the projection operations of a union type an exception is
raised when attempting to project a union value onto a type which was not
-the one used in the injection. An exception is simply a name and any
‘exception can be raised by writing 'raise' followed by the name of the

exception,

> raise somefault;

Exception somefault raised

raises an exception called 'somefault',

> let procraises
# == proc(b: boolean)
# (if b then raise afault);

has specification

PROC(b: boolean) RAISES afault

Various operations, as well as projection, may raise exceptions, For
instance many of the attributes of integer, such as 'suce' raise the
gexception 'rangeerror' if the result of the operation is outside the range
which can be held in an integer constant, 'div' will raise 'divideerror' if

it is asked to divide something by O,

As well as being raised exceptions can also be caught, which allows a
program to recover from an error. A group of statements enclosed in
brackets or 'begin' and 'end' can have a 'catch phrase' as the last item., A
catch phrase is the word cateh followed by a procedure. e.g. 'catch p' will
catch any exception raised in the group of statements and apply p to its

name,
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>let proccatches ==

# proc(excp: string) (print(excp));
> begin

# procraises(true);

# catch proccatches

# end;

afault

'proccatches' has been declared as a procedure which takes a argument of
type string. The exception is raised by 'procraises' and, since it is not
caught in that procedure it propagates back to the point at which
'procraises' was called. The catch phrase catches the exception and calls
the procedure with the name of the exception as the argument., The

catching procedure can then look at the argument and decide what to do.

> begin
# procraises(false);
# catch proccatches

# end;
does not print anything because an exception has not been raised and so

the procedure is not called,

If the block containing the catch phrase returns a value, then the

catching procedure must return a similar value.

> let infinity == 99999;
> let divi ==
# proc infix(a, b: integer) integer

i begin

i adiv b

i catch proc(string)integer (infinity)
# end;

This declares 'divi' to be similar to 'div' except that instead of raising
an exception it returns a large number. Since 'a div b' returns an integer

value the catch phrase must also return an integer.
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3.16 The Specification of Variables

The specification of a variable in Poly is not, as one might expect, a
constant of some reference type or a separate kind of specification, but
each variable is in fact a separate type. Since a type in Poly is simply a
set of constants, procedures or other types, a type can be used simply as a

way of conveniently grouping together objects,

> let intpair ==

# type

# let first == 13
# let second == 2
# end;

This has declared 'intpair' to be a pair of integers containing the values
1 and 2,7 'intpair$ first' and 'intpair$ second' can be used as integer values

directly,

The specification of an integer variable is

TYPE
assign: PROC(integer);
content: PROC() integer
END

A variable is a pair of procedures, 'assign' which stores a new value in the
variable, and 'content' which extracts the current value from it. The
standard assignment operator ':=' simply calls 'assign' on the variable,
The compiler inserts a call to 'content' automatically when a variable is
used when a constant is expected. 'assign' and 'content! can both be called

explicitly,

> let vx == new(5);

> vx$assign(vx$content() + 1);
> vx$content();

6

As an example of a more complicated variable, suppose we wanted to write a
subrange variable, similar to a subrange in Pascal, which could hold values

between 0 and 10,
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> let sr ==

it beg in

#  let varbl =z new(0);

it type

i let content == varbl$content;
i let assign ==

# proc(i: integer)

# (if (1 <0) | (1> 10)
# then raise rangeerror
# else varbl$assign(i))
# end

# end;

'varbl' is an integer variable which is initially set to 0, 'assign' checks
the value before assigning it to 'varbl', and raises an exception if it is
out of range. 'content'! is just the 'content' procedure of the variable,

It can be used in a similar way to a simple variable.

> sr = 203

Exception rangeerror raised
> srg

2

3.17 Specifications in Declarations

The double-precision type declared above has one drawback. The
specification contains the 'hi', 'lo' and ‘'constr' attributes in the
specification of the type which would allow someone to construct a value
which had the type 'dp', but had, for instance, fields outside the range
-9999 to 9999 or with different signs. This could make some of the
operations fail to work., We need a way of hiding details of the internals
of a type declaration so that they do not appear in the specification, and
so cannot be used outside. In Poly a specification can be given to

something explicitly as well as having it inferred from the declaration.
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> let aconst: integer =z 2;

declares 'aconst' and forces it to have type 'integer'. The specification
is written in the same way as the specification of the argument of a

procedure.

> let quote : proc(string)

# == proc(x: string)
i beg in

# print(" "),
# print(x);

# print(m"'m)

i end;

is another example of explicitly giving a specification to a value. An
explicitly written specification is the specification of the name which is
being declared., It need not be identical to the specification of the
value following the '=='., However it must be possible to convert the

specification of the value to the explicit specification (the 'context').

> let avar == new(3);

> let bconst: integer == avar;

declares 'avar' to be an integer variable and 'beconst' to be an integer
constant. In the latter case the specification is necessary, otherwise
'beonst! would have been a variable and would have been another name for
'avar'., The conversion of a variable to a constant in order to match a
given specification is one example of a 'coercion' of a value to match a
'context'., There are several others which can be applied depending on the
particular specification., For instance the specification of a procedure

may be changed from an operator to a simple procedure or vice versa,

> let plus:
# proc{integer ;integer) integer raises rangeerror

i == integer$+ ;

declares 'plus' as a procedure which is the same as the '+' attribute of

integer except that it is not an infix operator.

> plus(3,4);
7
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The list of exceptions raised by the procedure must be included in the
specification, The exception list in the specification given must include
all the exceptions which may be raised, but may include others as well, A
special exception name amy can be used to indicate that a procedure can
raise any exception, Any exception 1list will match a context with
exception list 'raises any'.

The specifications of the arguments and result must all match.

> let dble:

# type (d)

i suce, pred: proc(d)d raises rangeerror;
# print: proc(d) raises rangeerror;

# zero: d;

{ iszero: proc(d)boolean;

i end

# == dp;

creates a new type 'dble' with the specification given. The specification

is the same as that of 'dp' but with some of the attributes of dp missing.

In the case of types the specification of the value must possess all
the attributes of the explicit specificatioﬁ, but the explicit
specification need not include all the attributes of the value. If a type
is regarded as a set of named attributes then it is possible to take a
subset of them and make them into a new type, simply by giving the new type
the required specification. The specification of each attribute must

itsel f match the specification that is given for it.,

This mechanism provides a way of 'hiding' internal operations from the
specification of a type. The specification of 'dble' above has only those

attributes which are necessary to use it, and none of the operations which

are used internally.,
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3.18 Types as Results of Procedures

So far we have considered procedures which take constants as arguments
or return constants as results., In Poly values of any specification can

be passed to or returned from a procedure,

> let subrange

# == proc(min, max, initial: integer)
# type (s)

# content: proc() integer;

it assign: proc(integer) raises outofrange
# end

i begin

# type

# let varbl == new(initial);

## let content == varbl$content;
# let assign ==

# proc(i: integer)

# (if (i < min) | (i > max)
# then raise outofrange

# else varbl$assign(i))

i end

i end;

This procedure is similar to the definition of the subrange type 'sr!
previously, However the bounds of the type are now arguments of a

procedure so their values can be supplied when the program is run. Also

new subrange variables can be created by calling the procedure.

> let sv == subrange(0,10,0);

This creates 'sv' as a variable of this subrange type. As with any

procedure the arguments can be arbitrary expressions provided they return

results with the correct specification,
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3.19 Types as Arguments to Procedures

Types can be passed as arguments as well as

procedures.

> let copy ==

#
#
#
#
#
#
#
#
#
#
#

proc(atype: type end)
type (t)
into: proc(atype)t;
outof: proec(t)atype
end

begin
type (t) extends atype;
let into == t$up
let outof == t$down
end

end;

being returned from

This procedure takes a type and returns a type with two operations 'into'

and 'outof?,

'up' and 'down' are procedures which are created when 'extends

is used, and provide a way of converting between the original and the

resulting types.

The specification of 'atype' merely says that it must be

passed a type as an argument, but since it does not list any attributes

then any type can be used as an actual argument (this is effectively

saying that the empty set is a subset of every set).

called, giving it an actual type as argument.

> let copyint == copy(integer);

The specification of the result is

TYPE (copyint)

into: PROC(integer) copyint;
outof: PROC(copyint)integer
END;

The procedure can be

The specification of copyint allows mapping between integer and copyint

since the type integer has been included in the specification.
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> let copy5 == copyint$into(5);
> copyint$ outo f(copy5);
5

has mapped the integer constant 5 into and out of 'copyint!.

> let copychar == copy(char);

creates a similar type which maps between char and copychar.

3.20 Polymorphic Procedures

There are often cases where, in addition to passing a type as a
argument, one or more values of that type are passed as well, For instance

a procedure to find the second successor of a value might be written as

> let add2 ==

# proc(atype:

# type (t)

# succ: proc(t)t raises rangeerror
# end;

# val: atype)

# (atype$ succ(atype$ suce(val)));

The specification of 'val' is that it must be a constant, and its type is
'atype'. However 'atype' is also an argument to the procedure so the
specification really means that this procedure could be called by giving
it any type with the required attributes, and a constant which must be of

the same type as the first argument.

> add2 (integer, 2);
4

Similarly

> add2 (char, 'A');
C

However

> add2 (integer, 'A');
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and

> add2 (string, "A string");

both fail, in the first case because 'A' is not integer, and in the second

because string does not have a successor function,

3.21 Implied Arguments

Many types have a 'print' attribute wﬁich prints a constant of the type.

> let pri ==
# proc(printable: type (t) print(t) end; val: printable)
i (printable$print(val));

declares 'pri' as a procedure which takes as arguments a type and a

constant of that type and prints the constant using the 'print' attribute.

This can be called by writing

> pri(integer, 3);

or

> pri(char, 'a');

since both 'integer' and 'char' have a 'print' attribute. Having to pass the
type explicitly is really unnecessary, since it is possible for the sys@em
‘to find the type from the specification of the constant. It would be
possible for the system to convert 'pri(3)' into 'pri(integer,3)' since '3!
has type integer. In Poly types which can be deduced from the
specifications of other arguments can be declared as 'implied' arguments.
A argument list written in square brackets, [ and J, can precede the normal
argument 1list and those parameters, which must be all be types, are

inferred from the other actual arguments when the procedure is called.

> let prin ==

# proc [printable: type (t) print: proc(t) end]
# (val: printable)

# (printable$print(val))s

This can now be called by writing
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> prin(3);

or

> prin("hello");

and is in fact the definition of 'print' in the standard 1library.
Alternatively 'prin' could have been declared by giving it an explicit

specification and using 'pri',

> let prin: proclprintable: type (t) print: proc(t) endl

# (printable)

f == pri;

This is another form of conversion which can be made using an explicit
specification. Using implied parameters can simplify considerably the
use of procedures with types as arguments, and allow infix or prefix
operators to be used in cases where they could not otherwise be used. For

instance, consider an addition operation defined as

> let add ==

## proc(summ: type (s) + : proc infix (s;s) raises rangeerror
# end;

# i, j: summ) summ

# (i + 3

would be used by writing

> add(integer, 1, 2);
3

However, by writing

> let +

# : proc infix [summ: type(s)

i + : proc infix (sj;s)raises rangeerror
# end]

i (i, j: summ)summ raises rangeerror

# z= add;

“+' can become an infix operator, since it has only two actual arguments.
Similar definitions are used for many of the other declarations in the

library.
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3.22 Literals

We have already seen how constants can be written as '"Hello" or A2,
These are known as literal constants, because their values are given by
the characters which form them, rather than by some previous declaration.
They are however, only sequences of characters, it is only by convention
that "Hello" is a string constant and 42 an integer constant. This is
only important when we wish to use some other definition than the
'standard' one. For instance, if the type integer were restricted to the
range =9999 to 9999 then the constant 100000 would be an error if it were
treated as an integer. The definition of double-precision integer above,

would, however, be able to represent it.

In Poly, therefore, literals have no intrinsic type, they must be
converted into a value by the use of a conversion routine. The compiler
recognises certain sequences of characters as literals rather than names
or special symbols, The three forms of literal constants recognised by
the compiler are 'numbers', 'double-quoted sequences' and 'single-quoted
sequences', 'Numbers' begin with a digit and may consist of numbers or

letters.

42 OH3F6A 3p14159

are examples of 'numbers'., 'Double-quoted sequences' are sequences of
characters contained in double-quotes. A double-quote character inside

the sequence must be written twice.

"Hel 10" nn "He sa id nn Hel 10" nn

'Single-quoted sequences' are similar to double-quoted sequences but

single rather than double-quotes are used.

'Hello! L 'He said ''Hello'"™!

When the compiler recognises one of these literals it tries to construct a
call to a conversion routine which can interpret it as a value of some
type. For instance, the standard 1library contains a definition of

'convertn' which the compiler calls if it finds a 'number', That definition
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has specification

PROC (string) integer

All conversion routines must have similar specifications, but the result
type will differ and some exceptions may be raised. The literal is
supplied as a constant of type 'string'. The conversion routine can
examine the characters which form the literal and return the appropriate
value, It may of course raise an exception if the characters do not form a
valid value, if either the value would be out of range or if the literal

contains illegal characters.

There are also two other conversion routines in the standard library,
'converts' which converts double-quoted sequences into string values, and
'converte' which converts single-quoted sequences into values of the type
'char'., These definitions can be overridden by preceding the literal by

the name of a type and a $ sign. For instance

> let int == integer;
> let one == int$1;
applies the 'convertn' routine belonging to 'int', so that 'one' has type int

rather than integer.

3.23 Early

As far as the meaning of a program is concerned it does not matter
whether the conversion procedures are evaluated when the program is
compiled or when it is eventually run. However the program is likely to
run much more quickly if the literals are converted at compile-time. This
is particularly important if a literal is used in a loop or in a procedure
which will be evaluated many times, The conversion procedures, or indeed
any procedure, can be evaluated at compile-time by adding the word EARLY

to its specification.

let convertn: proc early (string)integer == integer$convertn;

Applying "convertn" to an argument which is a constant (either a literal
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or a previously evaluated expression) will cause "convertn" to be

evaluated at compile-time,

Other procedures can be declared as "early" if they do not use any
values which are not known at compile-time, Procedures, such as "print",
which write out messages, can be evaluated early, in which case the message
will appear when the program is compiled. This can be useful for

reporting errors which can be detected at compile-time,

3.24 Lists

Lists are a convenient example for polymorphic operations., List types

can be constructed by the following procedure.

> let list ==
# proc(base: type end)

# type (list)

# car : proc(list)base raises nil_ 1list;
# cdr : proc(list)list raises nil_list;
# cons: proc(base; 1list)list;

# nil : list;

# null: proc(list)boolean

# end

# begin

# type (list)

i let node == record(cr: base; cd: list);
# extends union(nl : void; nnl : node);

#

# let cons ==

i proc(bb: base; 11: 1ist) list

# (list$inj_nnl(node$ constr(bb, 11)));
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it let car ==

# proc(1l: list) base

i begin

# node$ cr( list$ proj nnl(11))

# catch proc(string)base (raise nil_list)
# end;

#

# let cdr ==

# proc(1l: 1ist) list

# beg in

# node$ed(list$proj nnl(1l))

# catch proc(string) list (raise nil_1list)
# end;

#

# let nil == list$inj nl(void$empty);
i

i let null == list$is nl

i end

# end;

'yvoid' is a standard type which has only one value (empty), and is used to
represent the 'nil' value of the list. The list structure is made using a
recursive union with each node containing a value of the 'base' type and
the next item of the list, or containing a nil value. 'cons' makes a new
node of the list, 'car' and 'edr' find the 'base' and 'list' parts of a node
respectively, and "null' tests for the value 'nil', 'car' and 'cdr' both trap
the exception which would be raised if a projection error occurred and

raise 'nil_value' in its place,

A particular list type can now be created, for instance a list of

integers.

> let ilist == list(integer);
> let il == ilist$cons(1, ilist$cons(2, ilist$cons(3, ilist$nil)));

A polymorphic 'cons' function could be declared to work on lists of any

base type.
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> let cons ==
# proc[ base: type end;

# list: type (1) cons: proc(base; 1)1 end]
# (bb: base; 1l: list)list
i (1list$cons(bb, 11));

It is now possible to write simply

> let il == cons(1, cons(2, cons(3, ilist$nil)));

Polymorphic 'car', 'edr' and 'null' functions can be written similarly,

further examples some other polymorphic list functions are given.

> letrec append ==
## proclbase: type end;

# list: type (1)

# car: proc(1)base raises nil list;

# cdr: proc(1)1 raises nil list;

# cons: proc{base; 1)1;

# null: proc(1l)boolean end]

# (first, second: list)list

# ( if null(first) then second

# else cons(car(first), append(ecdr(first), second))');

> letrec reverse ==

# procl base: type end;

# list: type (1)

# car: proc(1l) base raises nil_ list;
# cdr: proc(1)1 raises nil list;

# cons: proc(base; 1) 1

f nils 1;

# null: proc(1) boolean end]

# (11: list) list
# ( if null(1l) then list$nil
# else append(reverse(cdr(1l)), cons(car(1l), list$nil)) );

A useful function would be one which would print the data part of a list

the base type could be printed.
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> letrec pr ==
# proc [base: type(b) print: proc(b) end;

# list: type(1) car: proc(l)base raises nil list;
# cdr: proc(1)1 raises nil list;
# null: proc(l)boolean

# end ]

# (11: list)

# begin

# if null(1l)

# then print("nil")

i el se

# begin

# print("( ");

# print(list$car(1l));

# print(", ");

# pr(list$edr(1l));

# print(") m)

# end

# cateh proc(string) ()

i end;

The list created above can now be printed.

> pr(il);
(1. (2., (3. nil) ) )

Other polymorphic functions on lists can be declared in a similar way.

3.25 A More Formal Description

So far in this chapter Poly has been described informally by a series
of examples. To complete the description a more formal definition of
certain parts of the language, and in particular the checking rules for

specifications, will be given.

The language as presented to the user can be divided up into three
areas. The "core language" is the minimal system capable of supporting
the full language. In particular the core language contains all the

specification-checking rules for any constructions that can be written.
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It is augmented by a set of "library objects" which are either written in
the core language or provided by means of assembly-coded routines. These
objects all have specifications in the Poly type system, and any use of
them is subject to the standard checking rules. Finally there are some
"sugarings" which allow the user to write programs in a more convenient
fashion than the core language allows. These are simply rewriting rules

and any sugared construction can be rewritten in the core language,

3.25.1 The Poly Core

The core language is an applicative subset of the user-level language.
It supports values, procedures and types as first-class objects and
ensures that operations on them satisfy the checking rules for their
specifications, The core language contains only those parts of the user-
level language which cannot be provided either in the library or by

sugaring.

The only types in the core language are "void" and "boolean", Void is
required as the type of a statement which returns no result, and boolean is
required for a conditional., The procedure and type constructors, the
record and union constructors are part of the core language. Exceptions

also form part of it.

The core language allows polymorphic operations, but type parameters
must be passed explicitly. The core language has only one coercion: Where
a type is used as a parameter to a procedure, attributes may be "forgotten"
from the actual type parameter to make it match the formal. (i.e. a type

with more attributes than required may be used as a parameter),

3.25.2 The Library

The library consists of a set of objects, usually types and procedures,
which are used in many programs. They may be written in Poly or in
assembly language but they all have specifications {in the Poly
specification system and so any use of them is subject to the normal

checking rules. The library contains standard types such as integer and
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string and procedures to create variables and vectors, Since variables
cannot be provided by constructions in the core language the procedure to

create them must be written in assembly language.

3.25.3 Syntactic Sugaring

The core language, even with the standard library routines added, is not
a particularly convenient language to program in because of the lack of
coercions, The user-level language allows certain expressions to be
written in a more convenient notation than the core 1language by
essentially providing a set of rewriting rules which allow a user-level

language program to be translated into a core language one,

The rewriting rules allow infix and prefix operators, implied type
parameters and use of a variable where a value is required. 1Infix and
prefix operators are rewritten in the functional form. Procedures using
implied parameters are rewritten with the types as explicit parameters.
Variables used where values are required are rewritten as applications of
the "content" procedure of the variable (remember that variables are

types).

3.26 Specification Checking

Every object in Poly has both a value and a specification. The value
is what is used when the object is used, the specification describes what
can be done with it. There are three main classes of objects; constants,
procedures and types. Exceptions (signals) could be regarded as a fourth

class though they cannot be used in the same way as the other classes,

Constants are simple values which can be manipulated but have no
visible structure of their own., A constant is the implementation of an

abstract object.

Procedures are operations which can manipulate constants, other

procedures or types. They may return objects which may be constants,
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procedures or types or they may raise exceptions. A procedure implements

an abstract operation.

Types are simply sets of named objects. They may, like conventional
types, have values belonging to them or they may be simply modules. A type
implements an abstract set of cooperating operations which can together

manipulate objects.

The specification of an object is checked when it is used in some
context, either as a parameter to a procedure, or when an identifier is
declared with an explicit specification. The object and the context must
be of the same class (constant, procedure or type) and must satisfy the
rules for that class, The rules themselves are given in the following

sections,

3.26.1 Constants

The specification of a constant is T where T is some type name. It is
then said to have type T. A value with type T can only be used in a
context requiring a value of type T. This rule is similar to the name
equivalence rule for type checking in other languages. Two different type

names are incompatible even if they are derived from the same declaration.

e.g. let 3,T == integer

creates S and T with all the operations of integer but values of types S

and T cannot be combined with integer values or with each other.

3.26.2 Procedures

Procedures constitute the most complex class of objects. In the core
language a procedure takes objects as parameters and returns a result or
raises an exception. In the user-level language, which has variables, a
procedure may also alter the global state., The specification of a
procedure contains the specifications of its arguments and of its result.

It also indicates what exceptions, if any, may be raised in the procedure,
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Any arguments which are types may be used in the specifications of
subsequent arguments or in the result. This allows polymorphic
procedures. A procedure matches a given context if corresponding
arguments in the value and the context have the same specifications and
the result specifications are the same. For the specifications to match
they must be the same except that where a specification refers to a
preceding type name in one argument list the corresponding specification
in the other list must refer to the corresponding name. Apart from this
the names of the arguments are ignored in the matching process. The
exception lists have to match in that every exception listed with the
procedure value must appear in the exception list of the context. An
exception list with the word any is considered being the set of all

possible exceptions.

3.26.3 Types

A type is a collection of attributes: procedures, constants or types.
Its specification is the list of the names of the attributes, together
with their specifications. The specification of a type is Ezg_e_‘ (T) x ¢ A;
y ¢t By z ¢ Che Er_xcl where t, the internal name, represents the type within
the specifications A;BiC... The ordering of the attributes is irrelevant.
A type value matches a context if every attribute in the specification of
the context appears in the specification of the value. In other words,
attributes may be lost from a type value to make it match a context, but if
any required attribute is not present or has the wrong specification then

the value will not match,
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4, THE DESIGN OF POLY

The previous chapter described Poly as it currently exists. In this
chapter we consider the requirements which guided the language design and
wnich wunderlie all the subsequent design decisions. The way these
decisions influenced the choice of type-system and the rest of the

language, is then described,

4,1 Defects of Large Languages

The underlying motivation for the design was to find a simpler way of
expressing, and in particular type-checking, the kinds of expressions
which occur in modern high-level languages. Languages like Ada have a
large number of special constructions to perform conceptually similar

‘ operations, the aim was to try to generalise them without too much loss of

efficiency.

In his Turing Award lecture [HOA81] C. A. R, Hoare singled out three
languages PL1, Algol68 and Ada as being too obscure, complex and
overambitious and praised their respective predecessors Fortran, Algol60
and Pascal for their simplicity. In all these three cases, but most
particularly Ada, the large language is Jjust the smaller language

~overloaded with special facilities which are wuseful in special

circumstances.

Building facilities into a language makes it large and complicated to
,learn and to implement., This means that the chances of bugs in the
Yimplementation and misunderstandings by users are much higher than in a

small language. Just as important is that building these facilities into
the language means that the user cannot override the standard definitions

with his own if the standard definitions are not appropriate.
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B.1.1 Specific Examples

As examples of the way languages tend to build in special facilities

and impose restrictions consider the following.

In Algol68 procedures can be treated almost as first-class values. The
exception is that the most useful case of returning a procedure "out of
scope" is forbidden because it cannot easily be implemented using a stack.
Similarly in Pascal procedures may not return structured values because
many implementations use a single register to return a result, In Ada
procedures cannot even be used as parameters to normal procedures. They

can only be used as parameters to generics.

Most languages provide standard definitions of types which cannot be
overridden. For instance most provide rectangular arrays but no way of
defining triangular or sparse arrays. Shaw, London and Wulf in [SHA81]
give several examples of this, It means that the programmer, far from
designing a program from the top down, has design decisions made for him by

the language designer,

In almost every language particular forms of literal constant are tied
to particular types, Any numerical literal is automatically of type
‘vinteger,and the conversion is done at compile~time, There is no way a user
ycan write an arbitrary-precision integer package and provide a routine to
read and convert an arbitrary length numerical literal, and no way to

ensure that it is evaluated at compile~time.

In Pascal and Ada the user cannot define new symbols for infix and
prefix operators and in Pascal operators cannot be used for any user-
defined procedures. The designers of these languages restricted a very
convenient notation so that it cannot be used except at the lowest level

of programming,

Some languages which allow abstract types will allow constructions
such as sparse arrays, which can behave almost like variables, Different

operations are performed depending on whether they appear on the left or
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right-hand side of an assignment. They cannot, however, be treated exactly
as variables, and passed as reference parameters to procedures, because
most languages assume that variables are the addresses of storage

locations,

4,2 Simplifying the Design of Languages

The above examples show how facilities which are built into a language

restrict the programmer. Some of the problems illustrated will be

discussed in greater detail in this and the following chapter.

4.2.1 The Kernel Language

It should be possible to design a kernel 1language making use of
extension facilities to build up to a user-level language. The kernel
must have powerful extension facilities and type system, but be as small

as possible. It would then have simple semantics and bhe easy to transport.

4,2.2 The Use of Libraries

Languages would be simpler if many facilities normally built into the
language could be provided by standard library routines. They can then
easily be redefined by the user because they are not treated specially by
the compiler, To do this requires the language to have suitable extension
facilities and in particular a powerful enough type system to be able to
describe all the objects in the library. For example if "array" is not
built in but provided in the library it must have a type which can be
expressed in the type system, A simple kernel language may not have all
the primitives required for a particular application area. It will
usually be necessary to add extra primitives by means of procedures or
objects written in, say, assembly language, (for example input/output or
parallel processing primitives) but they must have an external interface
and type consistent with the language. They can then be treated exactly
as though they had been written in the kernel language, and the type
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system, by preventing the user any knowledge of the implementation, will

ensure that they cannot be distinguished from kernel language routines,

4.2.3 Generalisation

Another, complementary, way of simplifying a language is to generalise
constructions so that one general mechanism covers several special cases.
Generalisation of a construction may provide additional facilities not
covered by any of the special cases, For instance allowing a procedure to
be used anywhere that a conventional value can be used is conceptually
simpler than having special rules for procedures. It also allows higher-

order procedures which are sometimes extremely useful,

The main argument against generalisation is that special cases can be
implemented more efficiently than the general case, and that in any case
the vast majority of cases can be handled by the special case., For
instance most procedures are not polymorphic and do not return procedures

as their results.

This is not a satisfactory argument against providing the general case.
Polymorphic and higher-order procedures are sufficiently useful that they
should not be forbidden on efficiency grounds. The aim should be to
ensure that a suitable optimising compiler can recognise when a procedure
does not require the completely general implementation and use a more
efficient implementation in those cases. Recognising special cases is a
well-known operation in optimising compilers for conventional languages
and there is no reason to believe that it would be any more difficult in a
language like Poly., The efficiency can then be close to that in languages
in which only the special cases are allowed (see below for a description
<°f the implementation of procedures in Poly). In any case the increase in
évailability and use of microprogrammable personal computers means that

operations which may be expensive on a conventional computer can be made
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cheap. [1]

§.2.4 Requirements for the Type System

The most important part of the language is therefore the type-system
which must allow abstractions to be handled and type-checked., The type-
system should not know about the internals of the objects but should be
able to decide whether an operation is type-correct only on the basis of
information about its external specification. The language must provide a
means of constructing abstract types and operations and manipulating them

;n a way which does not require knowledge of their implementations.

4,3 The Basic Design Rules

It is possible to summarise the conclusions reached in the previous

section as rules for a language design. These were the guiding principles

behind Poly. The primary rule was that nothing should be built into the

language which cannot be built on top of it. 1In practice this cannot be
iachieved for various reasons (e.g. "boolean" must be built into the "while"
and "if" constructions), but an aim should be that types such as "integer",
which are often built into a language, should not be, Of course for
efficiency reasons certain types have to be treated specially as far as

code~generation is concerned, but this is a separate issue.

Other requirements of the language were that it should be capable of

complete compile-time type checking, This is important because a great

many faults can be picked up by type-~checking which would not be detected
until a program was being tested if it were untyped. Run-time checking is
not satisféctory because by the time a fault is detected it is too late to
do anything about it. This is connected with another requirement, which

is that there should be no such thing as a program 'failing'. Any failures

[1] The implementations of Mesa at Xerox PARC use a microprogrammed
storage allocator to allocate frames for procedure calls rather than
using a stack.
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at run-time should be able to be handled within the 1language as

exceptions, This allows the whole system, compiler and operating system,

to be written in Poly or at least regarded as Poly procedures or types.

Efficiency of the compiled code is regarded as a secondary goal to be

achieved after all the above requirements have been satisfied. This does
not mean that it is not important, but thgt it is a mistake to design a

language from the point of view of the implementation,

4,4 The Type System

In the previous sections we arrived at some rules which guided the
design of Poly. We now see how they influenced the choice of type-system
and how the Poly type-system developed, In particular we see why Poly
treats types as first-class values and how this affects the checking of

simple values.

4,41 Parameterised Types

One of the aims of Poly was to avoid building things into the language.
For instance, it should be possible to define "array" in the standard
library. Among other things this means that the type-system must be

capable of expressing the type of "array",

"Array" is what is sometimes called a "type-constructor", that is
something which makes a particular type. It is parameterised by the
element type and the bounds of the array. In CLU it would be represented
as a parameterised cluster, in other words the set of operations, in

particular subscripting, which comprises an array, parameterised by the

element type and the range.

A parameterised cluster, and its analogue in Ada the generic type, are
.both instantiated at compile-time, Hence they behave like macros., They
cannot be instantiated at run-time using values computed at run-time, for

instance this version of array could not have bounds which were run-time
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val ues, because the type-checking scheme would not work., The reasons for

this are described below,

4,42 Parameterised Types as Procedures

A disadvantage of parameterised types and generics is that they provide
an alternative method of parameterisation from procedures. The principle
of simplicity would seem to suggest that the same mechanism could be used
for both, "Array" could then be regarded as a procedure which took a type
(the element type) and two integers (the bounds) as parameters and

returned a type as its result.

The problems with this scheme are more to do with type-checking than
with the efficiency of parameterising at run~time compared with compile-
time. There are two real problems with the type-checking scheme, The
first, and simpler, is how to specify the "type" of a type. Since one of
the parameters of "array" is a type, and the result is also a type, there
must be some way of giving the "type" of these parameters., To avoid
further confusion the term specification, which corresponds to signature
in Russell, will be used to mean the properties checked by the type-
checking system, and reserve "type" for the value which is passed as a
parameter and returned as a result, at run-time, by a procedure 1like

"array". The question then is how to give the specification of a type?

A second, and more serious problem, concerns the checking of values
belonging to types returned by procedures. If any procedure can in
principle return a type as its value how is it possible to guarantee, at
compile-time, that two values belong to the same type? It is undecidable
‘whether' two procedures return the same type so without run-time type-
checking there must be some restrictions on the forms of type=returning

procedures.

Procedures are the only method of parameterisation in Russell and Poly.

The Russell solution to the type~checking problems have been described

above. The Poly solution, and the differences from Russell will be

discussed below.
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K.4.3 Specifying a Type

In order to give its specification we must consider exactly what is
meant by a type. A type in Poly is very similar to a package in Ada or a
module in Mesa, or indeed to types in other languages which support
abstract types to a greater or lesser extent. A package in Ada has a
public part which lists the operations provided by the package which are
available to the user, and a private part which contains details of the
implementation hidden from the user. Two packages with identical public
parts but differing in their implementations are to all intents and
purposes indistinguishable, The specification of a type is then the
"public part" of the type definition i.e. the attributes which are

available to the user.

The specification of a type in its most general form is the abstraction
which the type implements, This includes assertions about the values or
operations e.g. suce(pred(x))=%x, suce(x)>x ete. Since such checking cannot
in practice be done by a compiler, the specification is reduced to naming
and specifying the attributes as procedures with given argument and result
types or constants or variables of a given type. The argument here,
assumed in Ada, is that suitable choice of names will reflect the expected
semantics of the attributes, So that while it may not be possible to
check that the procedure "+" corresponds semantically with the addition
function the programmer is expected to use the name in that way in any

abstract type he might develop.

444 Specifying Walues When Types are First-Class Values

The general principle of type checking in any strongly typed language
is that a value of one type is only compatible with a value of the same
type. This means that passing a value as a parameter or assigning a value
to a variable involves checks that the value has a suitable type for the
parameter or the variable, For simplicity the word context will be used
to describe the requirements of the formal parameter or the variable which

a particular value must match if it is to be type-correct. There are
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often coercions pr‘ovided which allow a value to be used in a context which
requires a different type, but they can be regarded as procedures which
\take a parameter of the type of the value and return a value which matches

the context exactly.

There are various definitions of '"matching” wused in different
languages., Some of these are more formalised than others, most consist of
a fairly complex set of rules, nearly all have rules which ensure that the
compiler can make the checks. This is simple if types cannot be created
at run-time because the compiler can examine the structure of the types

and decide whether the values match.

If types can be created at run-time then the matching is in general
undecidable. Two possible approaches can be taken. One, used in the Cedar
Kernel design, requires in general run-time checking but can make use of
static checking in many, possibly most cases. It has the disadvantage
that some type~faults may not be detected until run-time when it is often
too late to fix them, Whether run-time type-faults result in exceptions
or some other form of failure is unclear.'. The second alternative, used in
Russell and Poly, is to make restrictions on the types which will match so
that the types can be checked at compile-time, This will result in some
types which are in fact the same being regarded as different, but all types
which the type-checker considers to be the same will be the same. Rather
than being a disadvantage this restricted matching actually can be useful
as a way of hiding implementation details, The matching rules can be
arranged so that when an abstract type is constructed from a
\repr‘esentation the two types, though in practice the same, will not be
type-compatible outside the representation. Russell and Poly differ in
\the matching rules between types and this is the basis for most of the

differences between the languages.
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34,5 Type Matching in Poly and Russell

As an example of the differences between the type matching rules,

consider the following function, written in a modified form of Poly.

let f == proc(a: boolean) type +,-:...; =! ... end

begin
if a then integer
else real

ends

It returns a type with +, - and other operations, in fact, integer if a is

true otherwise real. Suppose it is used in the following pieces of
program, all of which would be type correct if dynamic typing were used

since in each case the result of the function is the type integer.

a) let t == f(true):;

var i & t3

b) var i : f(true);
beg in
var j : f(true);

.

i:= 35

¢) var i : f(true);
J @ integer;

is:= 3

d) var x : boolean;
%x s= <{complex expression returning trued;
begin |
var i : f(x);

var j : integer;

is:= 3

If the compiler is to check that all expressions are type correct then in

the most general case it must attempt to evaluate every type-returning
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function. In case (d) for instance it would have to verify that x was true
for every path through the program leading to the assignment, but not

necessarily if the assighment were not executed,

Case (c) is a simpler example but it still requires the compiler to be

able to verify that passing "true" to the function returns the result

"integer",

Case (b) is simpler still. It no longer relies on the function
returning type "“integer" since it would work equally well if "false" were
used in both cases. It could be checked by merely comparing the syntactic
form of the expressions, provided it is known that the function always
returns the same result if given the same arguments. This requires that
no function which could be used in a type~returning expression may use a
non-local variable, otherwise its value might change from one call to the
next. This kind of type~checking is possible at compile-time but it is at
the expense of reporting type errors in cases where more extensive

checking would show that the types were in fact correct.

Case (a) is the simplest of all to check. Since the value of the
function is bound to an identifier and i and j declared with type t rather
than f(true), checking the types reduces to checking that type "t" is used

in both cases and has not been redefined in between,

Case (b) illustrates the form of type expression permitted in Russell,
In Russell no function may refer to non=local variables except as
parameters, even if the function is never used in type-returning
expressions, Note that it is not sufficient for functions that directly
return types to be variable-free, since in the example above, if f(true)
were replaced by f(g(1)), say, then 'g' must also be variable-free, The
restriction that all functions must be variable-free is so severe as to
make many conventional imperative programs virtually impossible to write.
For instance, a program which does input or output must pass the file as a
parameter to the "read" or "write" procedure and it must be passed

explicitly through every procedure in the calling sequence,
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An improvement on this scheme, which would still permit values to have
types which were expressions, is to distinguish two kinds of procedure,
those which were variable-free and could be used in type-expressions, and
those which imported variables and could not be, In practice this could
work quite satisfactorily since the functions which appear in type
expressions are only a small class of the functions in a program, It

seems likely that a future version of Poly would use this system,

The current scheme used by Poly is illustrated by case (a). In Poly a

value can only be declared with a type which has been bound to a name.
This was the simplest and so, initially at any rate, the best choice. It

is restrictive, but not as seriously as might be thought. To explain why

requires an explanation of how polymorphism works in Russell and Poly.

4,5 Polymorphism

We have already seen that procedures can be written which take types as
parameters and/or return types as results, Treating types as parameters

can have another use, allowing polymorphic procedures.

4.5.1 Polymorphism in Poly and Russell

In Russell the actual parameters of a procedure are tested for matching
their formal parameters, not in isolation but in the context of all the
other procedures. To explain this consider the following example (written

in Poly).

f: proc(t: type +,-,... end; val: t)

The parameter "val" has a type which is not a global, but another
parameter. Using the Russell (and indeed Poly) matching rules this

procedure can be applied as

f(integer, i)

provided that "i" has type "integer". This 1is because the signature

(specification in Poly) of each actual parameter is matched with the
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signature obtained by renaming any formal parameters with all the other
actual parameters, Therefore the type of "i" is compared with "integer"
rather than "t", In Russell this renaming applies to all parameters e.g.

if there is a procedure with specification (in modified Poly)

p: proc(vec: array(l, n, integer); n: integer)

then it will match

p(v, 10) if v has type "array(1,10,integer)"

This example, however, can also be used to illustrate some of the problems

with the Russell type matching scheme, The above procedure will not match

a) p(v, ten) if v has type "array(1, 10, integer)" even if
"ten" always has the value 10.

b) p(v, 10) if v has type "vecl10" even if "vec10" had been
set to "array(1, 10, integer)"

¢) plv, 2%) unless v has type "array(1, 2%, integer)"
and not if it has type "array(1, 5%, integer)"

The reason that none of the above examples will type check is that the
checking is done purely by a comparison of the syntactic forms (after any
renaming) so that if the expressions differ at all in the written forms
then they are not regarded as the same. These examples illustrate the
limitations of the Russell scheme and suggest that allowing values to have
types which are expressions is probably not a significant advantage over

the Poly scheme,

In Poly a similar form of polymorphic procedure can be written. Since
all values belong to named types there are no type expressions and so no
need to rename every formal parameter with the corresponding actual, Only
types can appear as part of the specification of other parameters so it is

only necessary to rename parameters which are types. In keeping with the

rest of the language, where an identifier cannot be used before it has been
declared, type parameters must always precede any use of them in an

argument list. This means that a simple left to right scan of the
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argument list can be used by the compiler,

The solution in Poly to the problem of the procedure taking an array of
unspecified size as a parameter would be to look at the problem slightly
differently. If the procedure were written to take a type and a value it

could be expressed in Poly. Its specification would then be something

like

p: proc(vectype: type length:...; subscript:... end; vec: vectype)

In both Poly and Russell, the result specification of a procedure may
refer to the parameters and is obtained by the same process of renaming as
is used to check the parameters., e.g. the procedure "f" declared above

could be made to return a result

f: proc(t: type +,-,... end; val: £)t

If it is called as
f(integer, 1)

the result will be a value of type "integer", since "t" has been renamed as

"integer".

4.5,2 Implied Parameters

One of the disadvantages of polymorphism in Russell was the need to
write the types out explicitly. Since they could be inferred from the

signatures (specifications) of the other arguments they were really

superfluous. In Poly there is a mechanism for indicating that parameters
which are types can be inferred from the specifications of other

arguments. They are known as "implied arguments",

To see how this works consider the following example, Suppose there is

‘a value belonging to a type "t" which has an operation called "print",

which prints a representation of it, That procedure will have

specification (in Poly)

print: proc(val:t)
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If there are several types with such a procedure we might want to write a

polymorphic operation to print a value of any of them. That procedure can

be written in Poly as

let print == proc (ptype: type print: proc(val: ptype) end;
T T value: ;';_y;e) o o

begin ptype$print(value) end;
"ptype" is declared as being a type with a "print" procedure with the
given form, and "value" is a value of that type. The procedure simply
applies the "print" operation of "ptype" to "value". (the $ symbol means

selection of an operation from a type). This can then be applied as

print(integer, 3) or print(char, 'A') or print(string, "Hello")

or applied to any user-defined type with a suitable "print" operation. It
would, however, be more convenient if the type did not need to be written
in each case, especially because it can perfectly well be inferred from

the type of the value. For instance we would like to be able to write

print(3) or print('A') or print("Hello")

In Poly this shorter notation can be used by writing the type as an

implied parameter, which causes the compiler to insert its value

automatically., The procedure is written as

let print == proclptype: type print: proc(val: ptype) end]
(value: ptype)
begin ptype$print(value) end;

The only difference from the previous definition is that "ptype" has been

written in square brackets. The implied parameters, written in square

brackets, are not passed explicitly but are inferred from the types of the

 explicit parameters, It is now possible to write
print(3) or print("Hello")
This is a purely notational convenience and makes no difference to the

semantics of Poly. It provides exactly the same facilities as overloading

in languages like Algol68, where the overloading can be resolved from the
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arguments alone and ignoring the result. It does make the restriction
that the type must be uniquely determinable from the actual argument which
a) prevents overloading of names, particularly constants and b) makes
restrictions on the kinds of coercions that can be employed in the

language.

In Poly all the implied parameters must be determinable from the
explicit parameters. If they were allowed to be determined from the
result type then the kind of overloading found in Ada dould be simulated.
This would of course require the same kinds of algorithms required for
resolving overloading in Ada to find the implied parameters. It would

also lead to the possibility of ambiguous expressions.

4,5.3 Polymorphism in ML

The language which became Poly was not designed as an exercise in
polymorphism but polymorphism came naturally out of the requirements for
the language., It is however useful to consider Poly in the light of
another language which provides polymorphic operations based on a
different system, ML, Consider the definitions of the identity function

in Poly and ML,

ML: let f = \n.nj;;
Poly: let f == proc [t: type end] (n: £)t (n)

The difference between the Poly and ML versions is that in Poly the
polymorphism must be expressed explicitly, by declaring the type to be a
parameter, whereas in ML it comes from insufficient specification of the

types of the arguments. Any polymorphic ML procedure can be written in

Poly simply by declaring suitable type parameters as "type end", In

addition Poly allows attributes of a type to be passed, which is not

possible in ML because there is no way of associating a procedure with a

type.

The notion of "type operators" does however allow ML to express some
polymorphic procedures in a more convenient way than Poly. A type

operator is similar to a type returning procedure in Poly. For instance
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"1ist" is a type operator which can be used to represent the type of all
lists, "int list" is a list of integers, "# 1list" is a list of objeqté of
any type (but all objects in the list have the same type). This is not
quite the same as a list constructing function in Poly or even in Russell.
In Russell an object can have type "list(integer)" and "list" can be
passed as a function, so achieving the effect of "¥ 1list". 1In Poly an
object can only have a type which is "1listint", since types must be simple
names and ™% 1ist" can only be represented by specifying a type with
properties like hd, tl, nil ete., Unlike a type returning function in Poly
or Russell a type operator does not actually take a type as a parameter,
indeed there is no concept of a particular instantiation of the type
operator for a particular type. Type operators can be written only in
terms of records, unions, functions or other type operators. This ensures
that a type operator always denotes the same value for particular
parameters without requiring an import rule as in Russell. In fact, since
a type operator does not depend on its "argument", it need never be
instantiated with a particular type. It is does not need the import rule
since, unlike a procedure in Russell, it is instantiated only once. A type

operator is essentially a polymorphic type.

As an example of the advantages and disadvantages of the different

kinds of polymorphism consider the following definitions of "append".

ML

letrec append a b =
if null a then b else cons(hd a, append(tl a, b));;
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Poly

letrec append == proc [base: type end;
list: type hd: proc(list) base;

tl: proc(list) list;
null: proc(list) boolean;
cons: proc(base; list) list
end] (a, b: list) list
begin if null(a) then b
else cons(hd(a), append(tl(a), b))
end;

Russell

let append ==
func[base: type(); a, b: val list(base)] val list(base)
{ if list(base)$null(a) ==> b
[] else ==> list(base)$cons(list(base)$hd(a),
append ( base, 1ist(base)$tl(a), b))
end K

This example shows the merits of the various systems of polymorphism. The
ML example is obviously the most concise, but it relies, 1ike the Russell
version, on a global definition of a list. This is fine provided that we
do not want to use this function on any other list type. If, for instance,
we wanted to define a list type using any other implementation (say an
array) then we would have to define a new append function., While this is
not a problem in many applications there are plenty of cases where a
structure can be regarded as a list for some purposes while not being
constructed using the normal list type. The Poly example while being more
verbose than the other two, gives a more abstract definition since it is
independent of the implementation. The Russell example requires the base
type of the list to be passed explicitly since Russell does not have
implied parameters. It also relies on the signature of the argument being
precisely "list(x)" where "x" is any expression. It will not work on any
type which is not of this form. It is of course possible to pass the list
type as a parameter as well as the base type which will achieve the same

effect as the Poly example.
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4,6 Further Development of the Type System

The type-system of Poly as it is at the moment is general enough to
allow any expression in either Russell or ML to be written in Poly.
However it is sometimes necessary to add extra declarations and/or
parameters when type operators (in ML) or type-returning functions (in
Russell) are used. Also the requirement that the number of attributes in
a type be known at compile-time can sometimes be restrictive. These
problems are discussed in the this section, and finally there is a
discussion of the problem of whether procedures and types themselves

belong to types.

4.6.1 Type Inference in Poly

It seems likely that a future version of Poly would incorporate some of
the features of ML. It would be possible for the compiler to infer the
attributes required of a type and so build up the specifications of type
arguments. For instance suppose the above definition of "append" were

written as follows,

letrec append == proc [list] (a,b:list)list

begin if null(a) then b
else cons(hd(a), append(tl(a), b))

end
Each of the polymorphic operations "cons", "hd", "tl" and "null" require
that their argument type possess corresponding attributes, This will
cause the specification of "1list" to be computed with those attributes.
It would even be possible to remove types entirely and allow type
inference as in ML, but with the difference that the types would be

specified with attributes, rather than as now in ML, simply as "#",

While Poly does allow types to be inferred in many cases, there are
cases where it will not work, and the type has to be passed explicitly.
This only occurs where the type of the result of a function cannot be

found directly from the arguments, For example, consider the function
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"map" which returns a list formed by applying a function to every element
of a list. Since the function may have different argument and result

types the list types may be different. 1In ML 'map' has type
¥ list # (¥ > ¥¥) > #% Jist

i.e. a function taking a list of one type and a function from that type to
another, and returning a list of that other type. In Poly the result type
cannot be expressed as, say, "list(integer)", and must be passed
explicitly. This is essentially saying that the result type could be any
type which possesses "cons" and "nil" and not necessarily the same form of

list type as the argument,

4.6.2 Attribute Selection

A formal type parameter is specified by listing the names of the
attributes the actual type must have together with their specifications.
Any type which has all those attributes can be used as an actual parameter,
This is the best way of specifying a type which is being used as a,
probably implied, parameter to a polymorphic procedure. The body of the
procedure will make use of, presumably, all of the attributes so they must

all be present,

An alternative use of a type parameter is as a parameter to a type
returning function such as "vector" or "list", Here the attributes have a
somewhat different purpose. In both these cases the simple definitions of
fyector" and "list" will not require any attributes since vectors or lists
can be constructed from any type. If, however, we want to define a list
which can be printed by printing the individual elements of a list, there
is no way it can be incorporated in the basic list constructor without
requiring all types from which lists can be constructed to have a "print"
attribute. What we would like would be able to specify that the result of
the list type has a "print" attribute with the given specification if and
only if the base type had a "print" attribute with suitable specification.
This argument can be extended to operations to compare lists or any other

such operation. In CLU a parameterised cluster can specify the parameter
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type using a "where" clause, which is similar to a type specification in
Poly. Individual operations in the cluster can have their own "where"
clauses and they will only be included in the resulting cluster if the
actual type satisfies them. Parameterised clusters in CLU are not
procedures so there is no problem of dynamic instantiation. It would be
much harder to implement in Poly, and there is also the problem of writing

the specification of the "list" function,

There is another, related, form of attribute selection which might be
employed. Suppose we wanted to define a vector creating function which
took a type as a parameter and returned a vector with the unary and binary
operations of the base type written as corresponding unary and binary
operations of the vector type. This would require the specifications of
the base type and the vector type to be written as expressions which would
pose the same kind of problems as with the other form of conditional

specification,

4,6.3 The Type of Procedures and Types

Procedures and types in Poly have specifications which describe their
parameters and attributes. They do not have "types" in the same way as a
value. A values has a specification which contains the name of a type
which is a physical object at run-time, The specifications of procedures
and types do not have the same kind of physical object associated with
them, but it would sometimes be convenient to pretend that they do. This

can best be explained by means of an example.

Suppose we write a function which constructs a variable and initialises
it with a given value.
e.g. new(10) returns a variable initialised to 10, Its "type" is integer
because it contains the integer value 10, We will denote the
specification of the variable by "var(integer)" but this must be read as a
shorthand (a macro) for a more complicated specification and not as a

function call. "new" has specification

proc [base: type end] (init: base) var(base)
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This will work with a value of any type since any type can be coerced to

"type end",

A type defined as

type a: proc...; b: proc... end

has a value which is the procedures a and b, A type specified as type end
has no such value because it contains no attributes. It is simply a

marker which is used, in the case of the "new" procedure above, to give the

specification of the result in terms of the argument.

Suppose now we wanted to create procedure valued variables (i.e. a
variable to which a procedure could be assigned). We cannot write simply
"new( integer$ suce) " because "integerd suce" is a procedure not a value of a
type. It is possible to "package up" a procedure so that it is a value of
a type but there is an alternative, Suppose we considered "integer$ suce"
as a value whose type was "Efgg(integer)integer EEEEEE rangeerror" in the
same way that "10" has type "integer". While "integer" has attributes
"print", "+" ete, "Eggg(integer)”ﬂ' has no attributes at all, unless we
count the ability to apply it. This is no problem if we use it in a
context where it need have no attributes, for instance as a parameter to

"new", The result of "new(integer$ suce)" would then be a

var(proc(integer) integer raises rangeerror)

Similarly types could be considered as having types. e.g. integer would

have type

type sucec: proc ... j print: proc ... end

and "new( integer)" would return

var(type succ..... end)

If types are values belonging to other types, then what is the type of

type succ: proc ... ; ... end

i.e. the type of the type integer? One could say that, since there is
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nothing that can be done with it, it has no attributes and so has type

"type end", "type end" is of course also a type and belongs to itself.

An alternative view of the type of a type is as a set of the operations

which map a type into a type with fewer attributes,

Treating procedures and types in this way does have advantages in that
they then become truly "first class" values, but it can also lead to

complications with coercions,

4,7 Exceptions

The exception system of Poly is fairly conventional, providing similar
facilities to exceptions in Ada and ML. The principal difference is that
the exceptions raised in a procedure are considered as part of its

specification in a similar way to exceptions in CLU.

4.7.1 Exceptions in Poly

Exceptions in Poly are similar to exceptions in ML. That is an
exception is a token returned as the result of an operation which
indicates that a result could not be returned and/or the post-condition of
the operation satisfied either because its pre-condition was not
satisfied or the representation had failed. It is thus similar to an
exception in Ada or CLU and to an "error" as opposed to a "signal" in Mesa.
Unlike a Mesa signal there is no possibility of resuming the procedure
which raised the exception. Unlike CLU an exception does not have

parameters so a single handler can catch all exceptions.

4.7.2 Exceptions as Part of the Type of a Procedure

Like CLU the exceptions raised by a procedure are considered as part of
its type. This means that the specification of a procedure contains a
list of all the exceptions which may be raised if it is called. In CLU any
procedure may raise "failure" and any exceptions not listed in the result

of a procedure are converted to "failure", In Poly if an explicit list of
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exceptions is given then it is an error (detectable at compile~time) if
any others can be raised., This means that a procedure whose exception
list is empty, is guaranteed never to raise an exception. The main reason
behind treating exceptions as part of the type of a procedure is that it
makes it easier to detect when details of the implementation of an
abstract object would appear outside it. Failures of the representation
of an abstract object should not appear to the user of the object in terms

of the implementation but in terms of the abstraction,

To simplify the process the exceptions raised by a procedure do not
need to be explicitly listed by the user when a procedure is declared.
Instead the compiler will create a list from the exceptions found in the
body, removing, of course those trapped by a handler. This is easy in Poly
for several reasons. Since the exception set of every procedure is knowun,
any call to a procedure results in its exception set being added to the
set, The only problem is with a recursive call. Since there is no mutual
recursion in Poly only a simple recursive call need be considered and this
can be dealt with by assuming that the procedure does not raise any
exceptions when it is called. [2] There is also an exception "EEZ" which
is the set of all possible exceptions, It is useful for procedures which
take procedures as parameters. If the exceptions which may be raised by

the actual procedure parameters are unknown then the formal parameter may

be given an exception list of "any", This will allow a procedure to be

[2] This can be proved to give the correct answer as follows. Let S be the
set of exceptions raised by the procedure call, and A be the
exceptions raised by any other procedure calls or explicit "raise"

statements (i.e. the set obtained by assuming that S is empty). Then

either

S =S + A
or

S =z A

depending on whether there is a recursive call outside the range of a
handler (since in Poly a handler catches all the exceptions raised in
its block), The least solution in both cases is

S =A

and hence the correct exception set will be found by assuming that a
recursive call does not raise any exceptions., More complicated cases
can arise with recursive procedures nested within recursive
procedures but the correct result will be obtained for the outer
procedure which is the only one which can be used outside.
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used as a parameter which raises any exceptions. Of course a call to the
formal procedure will cause the compiler to compute the exception set as
"ﬂ“, so unless a handler is used the calling procedure will have an
exception list of "any", In practice many of the polymorphic operators

like ":=" appear to raise "any" because they take procedure parameters, and

so most procedures without handlers have exception lists of "irls_/". A more
complicated scheme, in which the exceptions raised by a procedure
parameter could be passed as an additional parameter, would allow a better
estimate of the exception sets to be made. The exceptions raised by a
procedure would then be an expression involving some or all of the

exception parameters and possibly other exceptions,
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5. APPLYING THE TYPE SYSTEM

The previous chapter described how types in Poly are specified and how
values of the types can be type-checked, This chapter is concerned with
the implications of the type system for the rest of the language. The
parts of the system which are actually built into the language are
described first, followed by the standard 1library definitions. The
effects of a polymorphic type system on both of these aspects is covered.
There is a description of some convenient syntactic constructions and

finally the mechanism of binding Poly modules.

5.1 Type Constructor

In the discussion above we have said that types can be constructed
without describing how this can be done. Since a type is a set of named
objects the mechanism for constructing a type, the "type constructor"
ought to be simply a block consisting of a number of declarations which
returns the objects declared as its result. This will suffice for types
which are simple collections of objects where a value of the type is not
required, but if the type is to have values belonging to it, the situation

is complicated.

5.1.1 Type Extension

If a type is to have values then the type constructor must define the
xstructure of a value as well as the set of operations, The structure will
always be in terms of an existing type so the type constructor can be
considered as "extending" that type by adding new operations. The
resultant type has all the operations of the previous type together with
the new operations. When a type is extended all references to the

original type name in the specifications of the operations are replaced
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with the new type name, so there is no way that values of the resultant
type and the old type can be interchanged. When the previous type is a
named type, say, integer, it is sometimes useful to be able to interchange
values. The Poly type constructor creates two procedures "up" and "down"
which allow values to be converted from the previous to the new type, and
vice-versa. As an example, suppose we wanted to write a type "absolute"
"which could be used in an assembler to represent an absolute, rather than

relocatable address.

let absolute :

 type
zero: absolute;
succ: proc(absolute)absolute;
pred: proc(absolute)absolute;
+ 1 proc(absolute; integer)absolute;
- : proc(absolute; absolute)integer
end

type extends integer;
{ zero, succ and pred are inherited from integer, with renaming }
let + : proc infix (a: absolute; b: integer)absolute

begin

a absolute$+ absolute$up(b)

end;
let - : proc infix (a, b: absolute)integer

\ absolute$ down(a absolute$~ b)

_e_ng_’
end;

"ghsolute" has no other operations than the ones we have listed in the

specification of the result. In particular the "up" and "down" operations

cannot be used outside it because they do not appear in the specification.

5.1.2 Overriding and Recursive Definitions

The above example also illustrates another point. Here new versions of

"t and "-" have been declared which override the existing declarations.

They have been written using the previous declarations of "y+" and "-",
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Declaring an operation using _1_e;‘_c_ rather than letrec allows the old binding

of the name to be used in the body.

5.2 Records

A record (or structure) is a mechanism for grouping together a number
of (usually) unlike objects. A record can be regarded as a Cartesian
product of values, though it is often implemented by treating all the

fields as variables.

5.2.1 Records in Poly

Variables are implemented in Poly by means of a constructing function,
so the implementation of a record in Poly, should, if possible, separate
the treatment of records and variables. Regarding a record as a variable
as in Pascal has the advantage that construction of the record, and
initialisation, are separated, There is therefore no need for a
construction, such as the record aggregate in Ada, to make a record from
its constituents., If, on the other hand, records are treated as values,
where, once a record value has been created it cannot be changed, there
must be a function or construction to make it. Using a function for this
purpose has the advantage, in Poly, of using an existing mechanism,
Similarly the field selectors can be written as functions from the record

to the field type.

A particular record type can then have a specification as a type having
a constructor function and some selector functions. Can "record" itself
be expressed as, say, a function in the Poly type system taking a
description of the fields required and returning the record type? The
answer is, unfortunately, no, for two reasons, First it is not possible to
give the specification of a type possessing an unspecified number of
operations and with unspecified names. Secondly the specification of an
arbitrary construction function requires it to have an unspecified number

of parameters. The nearest that can be achieved is to use a polymorphic
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pairing function, as in ML, which takes two types and returns a type with
functions "makepair", "first" and "second". Repeated use of this function
can produce the equivalent of a record with any number of fields., The
inconvenience of having to remember the route to a particular field can be
reduced by defining functions with mnemonic names to return a particular
field, Similarly a constructor function can be written. However this is
still a fairly tedious process for what is after all a fairly common

operation.,

5.2.2 Becords and Images

The record constructor has another use in Poly since it allows fields
which are procedures or types. A record with a procedure or type as a
field can be used to "package it up" so as to make it a value of the record
type. This type can then be used to create variables or vectors of
procedures or types. This use of the record constructor is similar to the

"image" construction in Russell.

5.2.3 Records and Types

To a certain extent records are unnecessary in Poly because a type can
behave very much like a record. The type constructor can construct a
value composed of a set of other values and the values can be extracted
from the type using its name., With this scheme every record value is a
separate type, and there is no record type as such. To create a record
type however requires a mechanism similar to the record constructor to
"package it up" as a value. For this reason, and also because the type
constructor is not a particularly convenient notation for creating record

values, a record constructor was included in the language.

There is however one circumstance in which a record value must be
represented by a type. Suppose we wished to construct a pair consisting

of a type and a value of that type. We might try to write it as a record

let pair == record(t: type end; x:t)

but this would not work. "t" is a procedure which extracts a value from
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the record type and so "x" cannot be given "t" as its type. To get round

the problem a pair must be written as a type constructed by

let intpair ==

~ type
let t == type extends integer end;
let x == tup(2)

end;

This has constructed a pair consisting of a type (integer) and a value of
that type (2), and the values can be extracted by "intpair$t" and
"intpair$x". "t" had to be written using a type constructor so that "2"
could be converted from "integer" to type "t" by "tdup(x)". Without it

gt would have had type "integer" and not "t".

5.2.4 Structures

Records are seldom used as objects on their own but more often as part
of a structure such as a list or tree. It is possible to construct a list
using a recursive union or using variables. Since this kind of structure
is often associated with records it may be useful to define a slightly
different kind of record constructor in addition to the basic one. This
would essentially treat the record value produced as a pointer to a node.
The record type produced would have an "nil" value and operations to

compare the pointers. For instance, a 1list could be defined by

letrec list == struct(hd: integer; tl: list);

which would result in list having a specification

list: type

hd: proc(list)integer raises nilvalue;
tl: proc(list)list raises nilvalue;
constr: proc(integer; list)list;

nil: list;

=, <> : proc(list; list)boolean

end
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This constructor is not completely necessary since its effect can be
achieved by other means., Equally, it should not be the standard record
constructor since there are many circumstances in which no nil value is

needed and hence the selecting expressions do not need to raise

exceptions,

This constructor was implemented in a testing version of Poly because
it was found to be useful when translating the Poly compiler from Pascal
into Poly. Only experience will show whether it is a necessary part of

the language or can be dispensed with,

5.3 Unions and Variant Records

Unions and variant records can be considered as examples of types where
only a subset of the possible operations are available at any time, that
subset being dependent on the history (or state) of the object. For a
union of types, injection from any of the component types is possible at
any time, but projection into a particular component type can only be
performed if the last injection was from that type. A union type contains
functions which indicate the permissible projection and so it is possible
to consider these "guard functions" as pre-conditions for the projection
operations, Variant records are an extension of unions where certain

fields are accessible irrespective of the value of the guard functions.

5.3.1 Onions as Finite-State Machines

The generalisation of a union is therefore a type where certain of the
operations are permissible only in certain states., It differs from, say a

counter where the increment operation is not permitted when the counter is

about to overflow, in that all operations which change the state lead to
states which are dependent only on the operation and not on the state

before the operation. (i.e. the post-condition is not a function of the

input state).
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A union can be represented as a finite-state machine, Consider the

operations on a union of types S,T,U.

S: {ProjsS => 3; InjS => S InjT => T3 Inju => U}
T: {ProjT => T; InjS => S; InjT => T; Inju => U}
U:{ProjU => U; InjS => S; InjT => T; Inju => U}

This relatively low-level concept can be useful when dealing with
abstract objects. For instance a disc-file can have states Closed,
Reading and Writing. The state~transitions on it are similar to the union

and can be written as:

Closed: {OpenToRead => Reading; OpenToWrite => Writing}
Reading :{Read => Reading; Close => Closed}
Writing:{Write => Writing; Close => Closed}

The restrictions are more severe than for a union of types Closed, Reading

and Writing, in that there is no way to move directly from Reading to

Writing.

5.3.2 Unions as Variants

Essentially the above example is a union where the state changes are
part of the abstraction. Another use of a union or variant record is for
objects which may be created as one of several types or forms, and once
created they retain that type for the rest of their lives. Unlike the
"state~-changing" examples, most operations on the abstract object will be
valid for all states, but the implementation will have to discriminate
between the variants. The variants are much more closely associated with

the value of the object and cannot be separated out as the state of a

finite-~state machine,

This view of unions is closer to the variant record where a record has
several forms which are distinguished by a "tag field". It is possible to
represent a variant record either as a record with a union as one of its
fields or as a union of records all of which have at least one field with

the same type. Declaring suitable additional functions to extract the
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variant fields directly allows the variant record to be seen as a single-
level object. The choice of representation depends on whether access to

the fixed fields or to the variant fields is more important,

5.3.3 Onions in Poly

As with records a union could be constructed by repeated application of
a suitable pairwise uniting function, but as with records, it is
inconvenient, In Poly there is a union constructor which takes a list of

"tags" and specifications,

e.g. union(a: Tj b: S)

The tags (a and b) are simply names which are used to construct the names
of the operations of the resulting union type. For each of the tags there
are three operations whose names are made by appending "inj ", "proj_" and
"is " before the tag. These are respectively injection into the union,
projection out and a test for the variant. The injection operation is
simple and takes a value of the appropriate specification (Poly allows a
union to be constructed out of procedures and type values as we 11 as the
more conventional type values) and returns a value of the union type. The
projection operation is a reverse of this but is complicated by the fact
that the value contained in the argument may not have the same
specification as the result of the projection operation. There are two
solutions to this. One is to require that the projection operation only
be applied after a test has ensured that it is valid., The alternative is
to have the projection operation raise an exception or return an undefined
value of the appropriate specification., In Poly the projection operations
raise an exception if they are applied to an invalid value. There are
also explicit tests for the variant (the "is " operations) and a clever
compiler could check that a projection operation was used validly in many

cases,
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5.4 Control Flow

Control flow abstractions have been fairly well covered in other

languages and so Poly generally follows their conventions.

5.4.1 If

A conditional is fundamental in any language which uses call~by-value.
A language which uses call-by-need can do without it but such a language
is not easy to implement on a conventional von Neumann machine. Since
Poly was intended to be implemented on conventional machines, it follows
that an if-statement or similar is required. The simplest form is the "if
conditional then statement" form. This can be improved by allowing the
"if/then/else" form and by allowing the if-statement to return a value,
Having the if-statement return a value complicates the compilation
somewhat because it is necessary to coerce both arms to a common
specification, If, for instance, both arms return types then the if-
statement must return a type whose specification is the common factor of

the two types.

There is the question of whether there should be a closing symbol to an
if-statement ("endif" or "fi"). There seems to be no convincing argument
either for or against so the decision seems to be a matter of taste. Poly

does not use a closing symbol because it requires slightly more writing in

the simple case., This decision does lead to the so-called "dangling el se"

problem where the syntax may be ambiguous. The solution to this is well

established (an "else" is always paired with the nearest unpaired "then")

and so cannot really be considered a problem,

5.4.2 While

The while loop is the simplest form of repetitive command. It is not

strictly essential since it can be written as a procedure.

-97 -




letrec while == proc(test: proc()boolean; body: proc())

begin
if test() then begin body(); while(test(), body()) end
end;

However the need to create procedures when it is called, for instance

while(proc()boolean (x<10), proc() (x:=succ(x)));

makes it somewhat tedious to use. It could be argued that this a reason
for providing a coercion from an expression to a procedure so that the

call could be written as

while(x<10, x:=sucec(x));

however coercions are dangerous because they increase the possibilities

for ambiguity and reduce the chances of detecting errors so there must be

a strong case to justify them,

Another argument against treating a while-loop as a procedure is
efficiency. A reasonably efficient implementation would require that the
compiler be able to remove tail recursion., For these reasons a while-

statement is built into the language.

Since an expression in Poly can be built out of an arbitrary number of
statements the whole body of the while-loop can be placed between the

while and do., It then becomes equivalent to a "repeat..until" loop which

is therefore not required in Poly.

e.g. while (....; x<10) do ()3

The same arguments about whether a closing symbol ("enddo" or "od") are
needed apply as for the if-statement. The decision in Poly was again to

omit one,
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5.5 Initialisation and Finalisation

In a purely functional language values are only ever initialised and
finalisation is not necessary., In an imperative language initialisation

and finalisation of variables may or may not be provided.

5.5.1 Initialisation

Many languages provide means of giving initial values to variables.
Very few insist that all variables must be initialised. The usual
argument is that if the first value to be assighed is computed at run-time
then initialising the variable is just an unnecessary overhead., This is
true in languages where variables can only be initialised by values
computable at compile—timé, but not when they can be initialised by run-

time values,

The implementation of variables in Poly ensures that they are
initialised by making the creation of a variable a procedure which takes a
parameter. Not only does this parameter supply the initial value but its

type gives the "type" of the variable,

5.5.2 Finalisation

There have been several suggestions (e.g. [SCH81]) that languages
should provide the facility to perform the inverse of initialisation, that
is an operation which is performed on an object when it is no longer
accessible for any other operation, This is wusually referred to as
finalisation. These suggestions generally assume that variables are
implemented on a stack and so have a definite life-time. Finalisation of
objects on a stack can be done simply by executing the code just before
the procedure returns. In a language such as Poly, where variables are not
allocated on a stack, finalisation is much more of a problem., It would be
possible to devise a scheme whereby objects were finalised by the garbage
collector when they were found to be inaccessible, however this would not

be wholly satisfactory. Finalisation is not essential for the security of
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the language in the same way as initialisation, so it is not provided in

Poly.

5.6 "Standard" Definitions

The above sections have described the facilities for constructing
types and manipulating objects in Poly itself. We now consider the types
and procedures which, though not actually part of the language, must be
provided to make the system wusable, They also illustrate some

applications of the type system, It is important to realise that by not
building them into the language they can always be redefined by the user.

5.7 Variables

Variables have been part of programming languages since the earliest
high-level 1énguages, largely because they repr'esentw the idea of a storage
location in a von Neumann machine. Some languages, the functional or
applicative languages, have omitted variables completely, but they still
appear in modern programming languages. Undoubtedly a major reason is
efficiency, but this cannot account completely for their popularity. The
concept of an object which can change the value associated with it can be
considered as a reasonable abstraction to want to use and so for that

reason it should not be omitted from the language.

5.7.1 References

There are two approaches to the interpretation of expressions
involving abstract objects, where the object can be changed Dby the
operations on it. One approach, exemplified by Algol68, is to distinguish
references to an object and the value of an object. The reference to an
object can be used to obtain the value, but once the value is obtained
there is no actual object holding the value. The meaning of assignment in
this system is that the object referred to by the value on the left hand

side of the assignment has the value on the right hand side placed in it.
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5.7.2 Variables and Abstract Types

An alternative approach, found in SIMULA and CLU, is that any value must
be contained within an object. New objects may be created dynamically and
thrown away when they are no longer required, Assignment may then have
two meanings., Either the identifiers on both sides of the assignment
refer to the same object, or certain operations take a copy of the object
so that the assigmment associates a new object which is a copy of the

object on the right hand side, with the identifier on the left.

An important distinction between the two approaches is that the object
case has no concept of a reference type. Call-by-reference is then taken
to mean that the two identifiers refer to the same object while call-by-
value involves creating a new object which is a copy of the parameter.
Essentially the difference between the approaches 1s that the former
considers identifiers to be bound to constants whether of reference types,
in the case of "variables", or to values of some other type, while the
latter considers all objects to be variables, but with some having the

property that they can be assigned to only once ("constants").

5.7.3 References in Poly

The reference concept has a significant advantage as far as
implementation in Poly is concerned. That is that iﬁ can be added on to
the system without having to be built into the language. A variable
constructing function can be provided which returns a reference type. The

simplest specification of such a function would be

ref: proc (t: type end)

type (ref)

initial: proc(t)ref;
assign: proc(ref; t);
content: proc(ref)t

end

i.e. the function takes a type as a parameter and returns a type with

initialise, assign and content functions. A polymorphic infix operator
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n:=" ocould be written using implied type parameters so that expressions

like

let refint == ref(integer);
let x == refint$initial(3);
X t= 2%

would work., The initialise procedure is required to create the variable,

since in Poly every object must be created by a procedure,

5.7.4 Coercions

A problem with this scheme is that we need to write

refint$ content(x)

rather than simply "x", when we want its value., It would be convenient if
the compiler could insert a call to the "content" procedure automatically.
Since "ref" is not built into the language this requires either user-
definable coercions, or a general rule which would be applicable to any
type, but which worked in the required way for variables. User-definable
coercions could cause enormous problems unless they were very restricted,
and even coercions built into the compiler have to be very carefully

framed.

The obvious coercion rule to apply in this case would be

- If a value X of type t is found when a value of any other type is
required then try replacing x by t$content(x).
This will deal with most cases, but unfortunately there are problems when
a variable is used as the parameter to a polymorphic procedure with
implied type parameters., For instance, using the definition of "print"
above, we might want to print the current value of a variable. However
"print(x)" will not work because "x" is of type "refint" which does not
have a "print" procedure, It is possible to construct other examples
where this coercion rule will not give the expected results., The only way
of solving the problem is to make a variable into a separate class of
specification from a simple value. The solution in Russell, though

required for a different reason, is to have a special "var" specification.
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This is not the solution adopted in Poly because the language already

contains a mechanism for solving it.

5.7.5 Variables as Pairs of Procedures

Treating variables as store locations is not always convenient, since
an object which behaves like a variable may not always have a store
location associated with it. Consider a sparse array in which most of the
elements are zero and only the non-zero elements are actually held in the
structure. There will be operations to give elements new values and to
extract the value of an element, indeed such a structure will behave
exactly like a conventional array except that an element of it is not a
true variable. This is because it is not possible to subscript the array
and obtain a variable which can then be passed to a procedure to modify it.
If the procedure uses a call-by-value/result or call-by-name scheme then
it is possible for an element of a sparse array to be treated as a

variable, but not if it uses call-by-reference.

This suggests that representing an abstract variable by an address is
not general enough and that a better representation is as a pair of
procedures, one which extracts the current value and one which updates it.
Both of them have bound into them the location of the "variable" itself.
This is not just syntactic sugaring as in previous proposals along these

lines [GES75] but an actual implementation.

The untyped language Gedanken [REY70] had a facility for using pairs of
procedures as what were called "implicit references"., An implicit
reference was a pair of functions, a "setting function" which was executed
when a value was assigned to the reference and an "evaluating function"
which was executed when the reference was evaluated. The reference itself
was created by packaging up the pair of functions with a built-in function
IMPREF. The reference (or variable) could then be used exactly like a
simple reference but the appropriate setting or evaluating function would

be called.
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This scheme can be implemented in Poly without requiring built-in
functions by using a type as a way of representing a pair of procedures.
In addition the abstract variable can be statically type-checked. 1In Poly
a variable is a type consisting of two procedures, "assign" and "content".

Variables are constructed by "new" which has the following specification.

new: proc [base: type end] (initial: base)

_——EXEE assig;?~B£§§(base); content: proc()base end
This definition allows an unambiguous coercion rule:

- If a type "t" is found where a value is required, replace "t" with
"t$content ()",
This rule does not suffer from the problems of the previous rule and does
not require a special "var" specification, The definition ensures that
all variables are initialised, avoiding the need to check for
uninitialised variables, and the initial value is used to find the base

type of the variable. An assignment operator can be declared as

let := ==z proc [base: type SES]

(varbl: type assign: proc(base) end; valu: base)
begin varbl$ assign(valu) end;

It is then possible to write

let x == new(0);
X 1= 23
print(x);

The definition of '":=" illustrates a further use of this scheme., 1In
that definition only "assign" is passed in the type. Since the variable
will only be updates "content" is not required., "assign" and "content"
behave very much like "out" and "in" in Ada, except that they correspond to
call-by-reference rather than call-by-value/result. Passing "content" by
itself rather than a value of the base type is only required when side-

effects may cause the variable to change. It is possible to tell from the
specification of a procedure whether it reads, writes or modifies a

variable parameter,
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5.7.6 An Example of Abstract Variables in Poly

As an example of how this variables as pairs of procedures works in
Poly a definition of a sparse array is given. It is not a particularly
efficient implementation but it illustrates the principles. A better

implementation could be made.

let sparse ==

proc [base: { implied argument }
type
= : proc infix (base; base)boolean
end ]
(zero: const base) { actual argument }

{ returns a procedure }
proc (integer)
type
assign: proc(base);
content: proc()base

end
beg in
let indexpair == pair(integer, base);
let baselist == list(indexpair);
let root == new(baselist$nil); { the head of the list }
proc(index: integer)
type

assign: proc(base);
content: proc()base
end
begin
{ lookup returns the value associated with the index }
letrec lookup ==
proc(r: baselist) base
beg in
if null(r) then zero
else if first(car(r)) = index
then second(car(r))
else lookup(cdr(r))

end;
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{ The variable returned is a type }

type
let assign ==

proc(val: base)

begin

if ~(lookup(root) = val)

then root := baselist$cons(

indexpair$ make(index, val), root)

end;
let content ==

proc()base

begin
lookup( root)
end
end
end
end;

The procedure takes a value (zero) which is the most common value. Only
elements with a different value are actually stored. The type of this
value (base) is inferred from it and is the type of all the elements of the
array. The type must have an equality operator so that a test for zero can
be made. 'Sparse' returns a procedure which represents the array, Calling
this procedure is syntactically the same as indexing an array in other
languages. This call returns a variable which can then be assigned to or
evaluated. The array is represented by a list of non-zero values with
their index values. "pair" and "list" are both procedures which return
types. They can both be written in Poly but are omitted for simplicity.
Similarly polymorphic procedures on pairs and lists are assumed to have

been declared.

The procedure can be used in the following way. A particular sparse

array can be constructed by writing

let sa == sparse(0);

which constructs a sparse array in which all unset elements have the
integer value of zero and all the elements are integer. Expressions

involving the array can be written.
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sa(2) := 33
sa(1) := (sa(2) + U4);

5.7.7 Abstract Variables in Russell

Despite having types as values this scheme cannot be used in Russell
because the import rule forbids two procedures from sharing a common
variable which is not a parameter. A procedure, such as "content" which is
parameterless, must always return the same value. The sparse array is
given as an example in one of the papers on Russell [DEM79al. The example
is quite complicated, involving use of a special element type, and the
result is not precisely the same as the simple array. They admit that
"implementing a sparse array type with precisely the same signature as an
ordinary array appears to be a difficult problem, and is the subject of

current research",

5.7.8 Efficiency

A major argument in favour of references rather than procedure pairs is
that of the cost of the implementation. However using inline expansion of
"new", "agsign" and "content" could make this scheme as efficient as a
conventional implementation of references, In practice, in a language
like Pascal, variables are often used to hold intermediate result and are
only assigned to once, Since Poly allows an arbitrary expression to be
bound to an identifier, such cases can be replaced by a simple declaration,

allowing the compiler to make better optimisations than in Pascal,

In conclusion it should be noted that any other definition of a

variable can be made by the user, It is only the coercion which is

actually built in.
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5.8 Vectors and Strings

Vectors have been provided in programming languages for many years.
The simplest form of a vector is as a linear array of storage indexed by an
integer value in the range from either 0 or 1 to some positive value.
Their attraction lies in the fact that they can easily be implemented on a
conventional computer since the address of a particular element is
calculated using simply a shift (or if necessary a multiplication) and an
addition. Extensions of this scheme, multidimensional arrays, arrays with
a index range starting other than at 0 or 1, can be defined using this

primitive,

As an implementation of an abstract object an array corresponds closely
to a square or‘ rectangular matrix. It is a less satisfactory
implementation of some other abstractions., In some applications it can be
\regarded simply as a storage-efficient implementation of a list. These
kind of applications, the obvious example being a string, require the

vector to be expandable as new values are added on,

An array can be regarded as a function which maps from the index value
to a corresponding variable. The obvious implementation of an array in
Poly is therefore as a function which takes a base type and a size and

returns a vector which can hold that number of elements of the base type.

vect: proc (size: integer; base: type end)

proc (subscript: integer)

type
content: proc ()base;
assign: proc (base)

end raises subscripterror;

So "vect(10,char)" returns a prdcedure which, when subscripted by a value
in the range from 1 to 10 returns a variable which can either be assigned
to by a character or return a character value, This implementation
suffers from the problem that the values of the elements are initially

undefined., To avoid this, the actual implementation of a vector provided

in Poly is a function which takes a size and an initial value, inferring
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the base type from the value, and sets all the elements to this value. An
alternative, used in CLU, is to regard an array as a sequence which is
initially empty, but which can be extended dynamically by adding elements
at either end., This avoids the problem of undefined values but at the
expense of complication in common cases. It does allow an array to be
created as a constant and is particularly suitable for objects like

strings which are very close to the concept of a sequence,

5.9 Parallelism

Parallel processing was deliberately ignored in the basic design of the
language because it was felt that an adequate basic language could be
extended, if necessary, by adding parallel processing at a later stage.
Attempting to add the necessary operations within the type-system is an
interesting experiment. At present a simple coroutine scheme has been

implemented, but full parallelism has not been attempted.

5.9.1 Coroutines

To consider the form the parallel processing library should take we
will first consider a scheme which provides a form of parallelism, namely
a coroutine, A coroutine is mid-way between a procedure and a process in
that it can suspend itself part way through a computation so that when it
is next executed it continues from where it left off. However, unlike a
full process, it runs until it explicitly suspends itself, so it can
operate on data shared between several coroutines with no need to use

locks to protect critical operations.

In the coroutine scheme of BCPL [RIM80, RIW80] a coroutine is created
from a procedure by calling "createco". The result of this call is a
coroutine which can be entered by "callco" and this coroutine runs until
it suspends itself with "cowait", "cowait" causes control to return from
"ecallco", A subsequent "callco" on the coroutine appears to the coroutine

as though "cowait" has returned, Note that this scheme is asymmetric in
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that one side, the parent, uses "callco" to run a particular coroutine,
while the other side, the daughter, uses "cowait" to return to the parent,
Symmetric schemes, like ports in Mesa, are bound to have problems when the
coroutines are started because, unlike full processes, they cannot run in

parallel in order to synchronise,

5.9.2 Coroutines in Poly

In BCPL the "callco" and "cowait" procedures both have one parameter
which is passed when control is transferred and appears as the result of
the other procedure. This causes no problems because BCPL is a typeless
language. The problem with a similar scheme in Poly would be in ensuring
that the specifications of corresponding "cowait" and "callco" calls
matched. This essentially requires all "cowait" calls in a coroutine to

have the same specification (say proc(s)t) and the corresponding "egllco"

calls to have the "inverse" specification (proc(t)s). The solution in

Poly is to require any procedure which is to be made into a coroutine to
have a procedure as a parameter which the "oreateco" routine sets to

"oowait"., "createco" then has the specification

proc [s, t: type end] (p: proc(init:s; cowaitiproc(t)s))
proc(s)t raises coerror
"oreateco" returns a procedure so avoiding  the need for a "eallco"

routine, For instance if we declare a procedure

let writer == proc(init:char; nextch:proc(void) char)

begin

print(init);

while (let ch == nextch(); print(ch); ch = endch)

do O

end;
which prints a sequence of characters, the first being a parameter of
"writer" and the subsequent being returned by calls to "nextch", This can

be made into a coroutine by

let cowrite == createco(writer);
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which declares "cowrite" with specification

proc(char) raises coerror

We can now call "cowrite" with a sequence of characters. The first time
it is called the character is passed as "init" since "writer" is not
waiting for a return from "nextch"., If "writer" tries to return (i.e. when
the character "endch" has been written) then "cowrite" will raise an
exception ("coerror") as will any further calls. "cowrite" cannot raise
iany other exceptions because the specification of "createco" will only
take a procedure which does not raise any. It it possible for the user to
define new versions of "createco" which, for instance, start the coroutine

as well as creating it.

5.9.3 Full Parallelism

The coroutine system can be used as the basis of a true parallel
processing system, Indeed simply by changing "createco" so that instead
of creating a coroutine it started a process and making the calls which
%transfer control in the coroutine system into a rendezvous system,
processes could be provided, The initial parameter to the coroutine could
be dispensed with in the process version because the new process can run
in parallel with the old one until they are ready to rendezvous. This
scheme is similar to the rendezvous in Ada or Hoare's CSP system [HOAT8],
but it allows one process to have only one entry. Multiple entries to one
process would be possible using channels or ports, as in Occam [TAY82 ],
which could be given a specification in Poly. There is however a problem
when a process is required to wait for a message on one of a number of

channel s.

An alternative would be to provide a procedure to start a process

(fork) and semaphores. "fork" could have specification

procls, t: type end] (proc(s)t; s)proc()t

where the result of the "fork" is a procedure which when called returns

the result, waiting for it if necessary (i.e. "join"). The provision of
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semaphores rather than some higher level system such as messages or
monitors seems rather like providing "goto" rather than "while" or
"if/then/else", though in fact a monitor-based system still requires
semaphores as well, A monitor mechanism cannot be provided without
building it into the language since it requires the compiler to insert
calls to set and clear semaphores in a collection of procedures. It is of
course possible to write a monitor by explicitly writing calls to set and
clear a semaphore, or a procedure which would take a procedure "p" and a
semaphore "s" and return a procedure equivalent to the sequence
"wait(s);p(..);release(s)". However a procedure which would take a set of

procedures and so this to all of them cannot be written,

5.9.4 Other Facilities for Parallelism

Parallel processing 1is still an important area of research in

programming language design and several different approaches are possible,
The type-system of Poly should be able to support most of the alternatives

although some fit in better than others,

5.10 For and First Loops

Another example of the use of polymorphic operations is in the design
of more complex functions for iteration than the "while" loop. The "for"

and "first" loops of Alphard can be written as polymorphic functions.

5.10.1 The For Loop

A for-loop specifies that a given statement be executed with some

object (the control variable) taking all the values in some, possibly

empty, set. The number of times the statement is executed is equal to the
cardinality of the set. The order in which the control variables takes
the values from the set may or may not be defined, but for any given

implementation it must be determined.

-112-




5.10.2 The First Loop

Frequently it is necessary to write a loop which searches a list for a
particular item and exits either when the item is found or when the list
has been searched, The "first" loop was introduced into Alphard to
perform this function without the need for "goto" statements or

unnecessarily contorted programming,

first i:over(vec) until not vec(i).allocated

then allocate(vec, 1)
else error("All used"),

This loop searches for the first non allocated item and allocates it. If

no item is free it produces an error.

5.10.3 For and First Loops im Poly

For and first loops can both be written as procedures in Poly. The

simplest for-loop, corresponding to
for is= ato b

in Pascal, i.e. with an increment of one each time, can be written as

let for == proc(min, max: integer; body: proc(integer))
- begin
let x == new(min);

while x <= max
do
begin
body( x)3
x = succ(x)
end

end;

This can be generalised to any type possessing ">=", and "succ" operators
(Pascal allows a for-loop to iterate over characters and enumerated

types).
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let for == proc [base: type >= : proc(base; base)boolean;
succ: proc(base)base end]
(min, max: base; body: proc(base))

The body is the same as previously. (We ignore the problems of exceptions

to simplify the explanation).

5.10.4 Alternative Definitions

Because the for- and first- loops are written in Poly rather than built

in they can easily be extended when necessary., The Alphard definition can

be written in Poly as

let for ==
_—igggg [base: type end]
(iter: type test: proc()boolean;
value: proc()base;
next: proc()
end;
test: proc(base)boolean; body: proc(base))
begin
while (if iter$test() then test(iter$value()) else false)
do begin body(iter$value()); iter$next() end
end;

A simple first-loop for searching a list would be

letrec first == [base: type end; restype: type end;

list: type hd: proc(list)base;
tl: proc(list)list;
null: proc(list)boolean end]
(head: list; test: proc(base)boolean;
thenpt: proc(base)restype; elsept: proc()restype)
restype
begin
if null(head) then elsept()
else if test(hd(start)) then thenpt(hd(start))
else first(tl(start), test, thenpt, elsept)

end;

A version with the recursion replaced with a while~loop could be written
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fairly easily.

5.11 Syntactic Sugaring

There are several forms of expression which, though not strictly
necessary, make writing programs much more convenient. We have already
seen two examples of this in Poly. The use of implied type parameters
means that the user does not have to write the parameter to a procedure
explicitly when it can be inferred from the specifications of values.
Another case is automatic coercion of a variable to a value by applying
the "content" proceduf'e from it. Two further examples will be described
below. Literal constants are a convenient way of writing values in a

program, and prefix and infix operators make expressions more readable.

5.12 Literals

A literal is a way of denoting a value by the actual characters rather
by an explicit declaration. In most languages the literal constants are
restricted to a few built-in types such as integer and string, Poly
allows a literal constants for any type by, potentially at least,

evaluating them at run-time,

5.12.1 Overloaded Literals

The expression a+1 has a well defined meaning whether 'a' is an integer,
a real, a rational or an arbitrary precision number. There is no
particular reason to believe that the constant represented by the symbol
1! should have any of these types. It could be argued that '1' is an
integer constant in all these cases and that '+' should be defined for
(integer, integer) => integer, (real, integer) => real etc. However,
consider the problem of a+70000 on a machine where integers are 16-bits,
but 'a' is an arbitrary precision integer variable, It is essential that
_v“che compiler does not attempt to convert this to an integer, and in general

it is up to the user to define the conversion of the character string
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"70000" into a suitable representation of a number in his system.

5.12.2 Literals in Poly

The solution adopted in Poly is to consider all literals as characters
strings and have a procedure to convert the character form into the
appropriate type. Hence a+1 1is considered to be shorthand for
atconvert(™ "), and M"convert" is a procedure which takes a string and
returns an integer, real or any other type depending on its declaration.
Since the type of the result depends on the type returned by "convert"
rather than on the lexical form of the literal, three different kinds of

literal are distinguished,

A numeric literal is any sequence of digits or letters starting with a
digit. There are also two kinds of character sequence, those enclosed in
single quotes and those enclosed in double quotes. This allows the
compiler to insert "convertn", "converte" and "converts" respectively so
that suitable declarations can have the effect of returning integer,
character or string values. These declarations can be overridden by
explicitly prefixing a literal with a type name (eg. arbitrary$32) or by

redefining the appropriate conversion routine,

5.12.3 Ef ficiency and "Early Evaluation"

A problem with this scheme is that the cost of converting a character
string, into, say an integer value, is a considerable overhead if it must
be delayed until run-time. For this reason Poly allows a procedure to be
declared as "early" which allows the compiler to execute it at compile~
time, either by interpreting it or by code-generating it and running the
code. Such a procedure can only be executed at compile time if all its
parameters are constants (e.g. literals or the results of previous
computations) and if it does not refer to any values outside it which are

not constants.

This scheme also depends on the procedure terminating correctly. It is

of course impossible to guarantee against infinite loops, but other
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faults, such as use of unassigned variables, which could have
unpredictable effects on the compiler, are prevented by the design of the

rest of the language.

5.12.4 Other Uses of ®Early"

This scheme can also be used to allow other procedures involving
constants to be evaluated at compile-time achieving the effect of
tconstant folding" (e.g. replacing "14+2" by "3") in a type-independent and
user=controllable fashion, Finally it allows compiler directives to be
written as procedures which are executed at compile-time, They are
procedures written as part of the compiler and so can affect its data
structures. This may cause problems in a multipass compiler since the
"directive" may not be executed until a later pass and so an instruction

to read from a file may not take effect at the correct point. It has,

however, worked well in the current single-pass implementation of Poly.

5.13 Operators

Operators provide a convenient notation for writing procedure calls
with one or two arguments, Monadic prefix operators could be considered
as simply removing the need to put the argument in parentheses and so
could be treated as a normal procedure call, Binary (infix) operators are
more difficult since parsing an expression requires that operators be
detected during the parse. Monadic postfix operators are possible but
since they are seldom used they are probably nop worth the additional

trouble in the parser,

5.13.1 The Syntax of Operators

The most general definition of an operator would be to allow any

sequence of symbols such as "+", "-", M"EN etc, or an identifier, An

identifier used as an operator symbol has the disadvantage that the

lexical analyser cannot distinguish operators from other identifiers, so a
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multipass compiler cannot build up a parse tree until it has detected that
an identifier is an operator. There are several solutions to this
problem, ADA restricts operators to symbolic operators (i.e. "+" or "-"
but not EE or ng) which are already defined in the language. This is
clearly too restrictive for Poly. An alternative, adopted by Algol-68,
requires all operators to be lexically distinect from variables, e.g. by
writing operators in a different character case. Essentially this is the

same as treating operators as reserved words as they are in Pascal.

5.13.2 Operators in Poly

In Poly a procedure can be marked as an infix or prefix operator. This
requires the parser to be able to find this information, which is possible
in a one pass compiler but could cause problems in a multipass compiler
which did not build up the symbol table until after the program had been
parsed. In the present implementation of Poly there is only one
precedence level for infix operators, so all expressions involving infix
operators are evaluated from left to right. This has the unfortunate
effect that "x:;=a+b" is interpreted as "(x:za)+b", It seems likely that a
future revision of Poly will allow infix operators to be declared with a

particular precedence,

5,14 Module Composition

We have already seen that types in Poly are very similar to modules or
packages in other languages. There is no need for a separate construction
to represent a unit of compilation., Procedures can be used as a way of
handling the importing of modules and all module binding can be considered
as normal procedure application, Treating modules in this way avoids the
need for "definitions files" and means that a module which uses another
module does not have to be changed if facilities in the second which it is

does not use, are changed.

-118~




5.14.1 Hodule Binding in Mesa and Modula

The normal method of checking interfaces in strongly typed languages
with inter-module linkage is by the use of definitions (or interface)
modules. The mechanism for Mesa has already been described (chapter 2)
and a similar system is used for Modula [WIR82]., A definitions module
contains a description of the properties of a module which can be used by
a module which imports it. It contains enough information for the
compiler to type-check the use of the module. A module which imports an

interface can make use of any of the objects defined in it.

5.14.2 The Problems with Interface Files

The major disadvantage is that any change to a definitions file will
require all the using modules to be recompiled, even if the change is an
addition to the interface or a change to something which is not used by a
particular importer. For example, suppose that there is an error
reporting module (E) which is used by many of the other modules in the
system. For each possible error there is a distinct code and associated
message in E. There is also a procedure (E.fault) which takes a code and
puts out the associated message. E therefore has an interface which is

something like the following.

fault: proc(code);

el, e2, e3, el,...: code

Consider what happens if we wish to add another error code to the module.
Since the interface has changed, all the modules which use E must be
recompiled even though only one module, the one which actually uses the
new code and of course E itself, have actually changed, Similarly any
change to any of the definitions, for example a change of name, requires

all the modules to be recompiled.

An importing module should only have to be recompiled if there has been
a change to an interface which requires that the importing module be
changed as well, The interface should be split between the importing and

exporting modules so that the importing module gives a description of the
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properties it requires from the exporter and the exporter gives a
description of the properties it will export. In the above example each
of the modules would contain not just the name of E but the properties
(i.e. "fault" plus any error codes) that it actually uses. When the
modules are bound together the interfaces can be checked. Providing the
exporter provides everything that the importer requires, and that they
type-check, the binding will succeed.

5.14.3 Module Binding in Poly

This process is exactly the same as applying a procedure to a type in
Poly. A procedure which takes a type as a parameter lists only those
properties that it will actually use. It can take any type as an actual

parameter providing it has the necessary objects in it,

A module in Poly can be represented as a procedure which takes some
types as parameters and returns a type as its result. The parameters
include only those properties which the module actually uses. The modules
(procedures) which comprise a program can be compiled in any order because
they are self-contained. It is only when they are applied to actual
modules that the interfaces are checked, A module can be changed and the
system rebound without having to recompile any of the others, If a module
is changed in a way which changes its specification then other modules may
have to be recompiled if they depend on it. Those which are unaffected by
the change do not need to be recompiled, In particular a change which
simply involves adding to the result specification will never require any

of the using modules to be recompiled.

The System Modeller (SM) developed by E, E, Schmidt at Xerox also
regards module binding as procedure application. Because, it is based on
Mesa it has to take into account interface files. In SM the interface
file is considered as a type and an implementation of it as a value of the
type. A module is therefore a polymorphic function which takes a type (an
interface) at compile-time and generates a function which can be applied

at binding-time to an implementation, This system still means that any
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changes to an interface require recompilation of the importer.
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6. IMPLEMENTATION

The design of a fully optimising compiler for Poly would be a research
topic in itself, involving considerable work in machine~independent
optimisation. The present Poly compiler supports the full language and
the examples in chapter 3 have all been run on it., Despite doing little
optimisation it runs acceptably fast for interactive work. Much of the
implementation 1is standard compiler technology and so will not be
described in detail. The description in this chapter will concentrate on
those aspects of the language which required novel or interesting

techniques,

The Poly compiler was written in Pascal following a similar process as
I had used when modifying the Zurich Pascal compiler for the IBM 370
[MAT78]. The compiler generates a tree structure representing the code to
be generated, which is then code-generated in a second pass. The tree is a
low-level representation and most of the work of the compiler, dealing
with identifiers, specification\cheeking etc,, is done in the first pass.
The first version of the implementation had an interpreter directly
interpreting the tree, Later a code-generator was written to generate a
low-level code (essentially a flattened version of the tree) together with
an interpreter. Finally the code-generator was modified to generate VAX

[DEC81 ] machine code,

6.1 Lexical Analyser and Parser

The lexical analyser and parser are fairly conventional, The parser
uses recursive descent primarily because I had experience with it. The
only problems in parsing occur in parameter 1lists, when the syntax
requires an extra symbol of look-ahead, and with operators, where the parse

depends on the declaration of identifiers, In a parameter list the syntax
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allows either a specification or a list of identifiers followed by a

specification,
<identifier>f:{specification> ! <specificatiom>

Since a specification can consist of among other things, an identifier,
there is potential ambiguity. If an identifier is read it cannot be
declared or looked up until the next symbol has been examined, An

operator in Poly is simply an identifier which has been declared as a

procedure and marked as either an infix or prefix operator, Since the

parse of a sequence of identifiers depends on separating the operators
from the operands it is necessary to look up the declarations while

parsing.

6.2 Identifiers and Specifications

Every identifier in Poly has a specification which describes the uses
to which it may be ppt. The compiler represents a specification by a
directed graph made up of pointers and nodes. Each identifier is a node
in the graph pointed to by a symbol table if it is local to a block, and/or
pointed to by another specification. An identifier is either a constant,
a procedure or a type. Constants are defined by their type and so a
constant identifier has a pointer to the type to which it belongs (this is
always another identifier in Poly). Procedures have pointers to their
argument list and the specification of the result (represented by a dummy
identifier) and information about whether it is an operator. Types have a
1list of the identifiers which make up the attributes of the type arranged

in alphabetical order.

6.2.1 Internal Representation

The structure making up the specifications is not a tree structure

because the attributes of a type have specifications which are often in

terms of the type itself. This makes the specification of a type into a

looped structure. When a new identifier is bound to an existing type then

=123~




the whole structure is copied to refer to the new type. For instance if a

type "T" has specification

T: type p: proc(T)T end

then after binding "3" to "T" by writing
let S == H
"S" has specification

S: type p: proc(3)3 end

6.2.2 Specification Checking

The most important use of specifications is in checking the validity of
operations, The specification checking rules are written as procedures
which operate on the structures and return a result indicating either
success or the reason for the check failing. Most of the checks are
fairly simple, the only ones which could be difficult are those which

involve renaming. For instance, to check whether

p(t, x)

is valid if the specifications of p, £t and x are

p: proc (s: type q: proc(s)s; s end; s)s;
t: type n: t; q: proc(t)t; r: proc(t) end;

requires that "s" be renamed with "t" throughout the parameter list,
Renaming is done by having a list of pairs of identifiers such that any
occurrence of the first identifier is assumed to refer to the second.
When "s" and "t" are compared a pair consisting of "(s,t)" is created. The
attribute lists of "s" and "t" are scanned ignoring any attributes in "t"
but not in "s" and checking the remaining attributes using the renaming
list. Note that the list means that any occurrence of the first is
replaced by the second and not the other way round, It is possible for a
type to appear éeveral times as the second type of a pair, but it can only

appear once as the first type. A procedure which takes two types as
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parameters may take the same actual parameter twice providing the type

fits both contexts,

6.2.3 The Specification of Results

This renaming scheme applies both to subsequent arguments (e.g. x in the
above example) and to the result. As the argument list of a procedure is
matched to the actual arguments a renaming list is built up from the types
which have been matched, and subsequent arguments are compared using it.
The specification of the result is made by taking a copy of the
specification of the result of the procedure and replacing any occurrences
of the formal parameters with the actual parameter values found on the
renaming list. Implied parameters are dealt with in a similar manner to
explicit parameters. For instance using the same definitions of "t" and

"x" as before, but making "p" take an implied parameter

p: proc [s: type q: proc(s)s end J(s)s

then "p(x)" is a valid call, It is checked by first constructing a
renaming list for all the implied parameters with‘their "second" value set
to "not yet found" (i.e. in this example the list would be (s,nyf)). When
checking the types of two constants the renaming list is always checked
first to see if the "first" type is on the list. If it is set to "nyf"
then the entry is replaced with the second type, provided the types
thémselves match (e.g. while checking "x" against the actual parameter of
type "s" "s" is found on the 1list paired with "nyf". "nyf" is replaced
with "t" since "t" has all the attributes of "s" and their specifications
match). From then on the renaming rules work as for explicit parameters,
If any implied parameters are left unmatched then it is an error (this

could in fact be detected when the procedure is declared).

6.2.4 The Type Constructor

One further problem with specifications is in phe type constructor,
The type constructor takes a type and adds new operations on to it. This

first of all requires the type to be copied and renamed with the new type
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name. Any new declarations must be added on to this type as they are
declared, replacing any existing attribute of the same name. The newly
declared identifiers also become local values in the block and can be used

explicitly as such as well as being available as attributes of the new

type.

6.3 The Poly Abstract Machine

The tree structure generated by the first pass of the compiler
\corresponds to the code of a stack machine, indeed at one time the tree was
code~-generated into a low-level code for such a machine., This abstract
machine is mapped on to the actual machine by the code-generator. Before
describing the actual implementation on the VAX the representation of the

high-level objects in the abstract machine will be described.

6.3.1 The Abstract Machine

The memory of the machine is a sequence of words each of which is large
enough to hold an address to any other location. A word can also hold
other information., In addition every word has a tag which identifies the
data as either a pointer or not. A pointer always points to the start of
an object which contains information such as its length, There is at
least one stack which is used to hold link information and local values
for procedure calls. The values below the top of the stack are always
constant (i.e. once a value has been produced it is never changed) though
of course when a stack frame is deleted the old values can be overwritten.
The stacks run upwards in memory, The arguments are stored in order on
the stack below the link information and the local values are above the
link information. Because the values on the stack are always constants
all operations which return results simply leave their results on the
stack. A declaration is just a result whose offset from the base of the

frame is known to the compiler,
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6.3.2 Constants

A11 constants occupy one word in memory so that a polymorphic procedure
can operate on an object of any type. This means that objects, such as
records, which require more words have to be implemented on the heap and
treated as pointers. It would be possible for the compiler to use more
than one word for a record and only use a pointer when an object was being
passed to a polymorphic routine, This would, however, lead to much greater

complication in the compiler.

6.3.3 Procedures

A procedure is represented by a pointer to some code and the non-local
values referred to in the procedure., When a procedure is compiled a note
is made of any non-local values and these are copied into a vector when
the procedure value is constructed at run-time. This ensures that if a
procedure is returned as the result of a procedure that the non-locals it
uses are still available even though the stack frame that contained them
has disappeared. This scheme works because all local values are constants
(variables are held on the heap) so that a value can be copied and
variables will still work. Values global to all procedures do not need to
be copied into the closure, they are in fact treated as constant values and
included as 1literal values 1in the procedure text. The present
implementation uses a single word for a procedure, which points to the
vector of non-local references, The first word of this is the address of
the code, This requires a double indirection to find the code and so
slows down the procedure call., If a pair of words were used, one pointing
to the code, and one to the non-locals then the overhead would be reduced.
This would, however, cause complications when a procedure was used, say, as

a field of a record.

There are certain procedures, those which operate on primitive types
like integer, which have to be directly interpreted by the machine, These
can be provided by using values of the procedure address which are trapped

by the procedure call instruction. Alternatively they can be code-

~-127=




generated into normal procedures.

6.3.4 Types

A type is represented by the address of a vector containing a word for
each attribute of the type. As an improvement on this, types containing
only one attribute are represented by the attribute itself, It would be
possible to do without the indirection and have the type as the vector
:r'ather than its address, since the number of entries in the vector can be
found from the specification, but it would cause complications when, for

instance, a type was returned from a procedure,

6.3.5 Exceptions

Exceptions are handled by two instructions, one which raises an
exception whose name is given by a string, and the other which traps all
exceptions in the containing block, They can either be implemented by
using jumps from the raise instruction to the handler, or by having a fixed
| location (or register) holding the current handler. The situation is
complicated because uncaught exceptions must be propagated back to the
calling procedure., This requires either that all procedure calls be
followed by a jump to the handler, the jump being ignored if no exception
is raised or else procedure frames must be unwound until a handler is

found.

6.3.6 Refining Types

In Poly a new type may be constructed from an existing one by selecting
a subset of its attributes. This is known as refining the type. The
refine instruction causes the attributes to be loaded from fixed locations
in the existing type and loaded into a newly created vector. If the
ordering of the attributes in both old and new types followed a standard
‘patter'n (e.g. they were in lexicographic order) then a bit map could be
used to identify which attributes of the old type were to be loaded into

successive locations in the new one. Unfortunately, for various reasons,
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the lexicographic ordering cannot be guaranteed for all types so the
refine instruction has to be given a list with the location of each

attribute.

A further complication is that a type contained within the type may be
refined at the same time. This "nested refine" requires the inner type to
be refined first to generate a new type which can then be stored in the new
type containing it. If the vector representing an inner type were
contained as a continuous sequence of words in the containing type, rather
than as a pointer to a separate vector, then this problem would not arise,
However there is then the problem that other references to this type would
break the rule that 5 pointer may point only to the start of an object and

not into the middle of one,

The need to refine a type presents one other difficulty. Suppose we

have a procedure which returns a type as its result. A simple application
of the specification matching rules would suggest that it could be passed
as parameter to another procedure provided that the specification of the
parameter was for a procedure with the same or fewer attributes in its

result type. For instance, suppose p and r have specifications

p: proc(q: proc () type X:... end)

proc() type x,y:... end

It should be possible to call "p" with "r" as parameter since, when "q" is
called in the body of "p", "r" will return a type with both "x" and "y",
Unfortunately this will not work properly because the call to "qg" will
expect a type with only one attribute and unless this attribute happens to
be in the expected place in the vector it will pick out the wrong
attribute from the vector. The only solution to this is to construct a
function which is passed in place of "r" which calls "r" directly but on
the return refines the resulting type so that the expected type is
returned. A similar problem occurs with a procedure which takes a type as
a parameter, Since these cases occur very infrequently the present
compiler will not allow them and insists that a procedure which is being

passed as a parameter takes types as parameters or returns types which are
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exactly the same as the specification of the parameter,

6.4 Garbage Collection

Some form of garbage collection is needed since objects can be created
on the heap in an apparently random fashion., A use-counting scheme like
that used for the Cedar system could be used, where the garbage collector
is needed only for looped structures, It is however implemented using
microcoded instructions and would not be satisfactory on a machine without

microcode support,

6.4.1 Implementation of a Garbage Collector

Garbage collection requires that all pointers in an object can be found
and followed so that all the accessible objects can be marked, The Poly
machine is essentially untyped in that a pointer is simply a collection of
bits which is interpreted as a pointer by particular operations. Two
solutions to finding pointers can be used and both have been tried, One
solution is to use maps of objects such that the map shows the location of
the pointers and the map for the object pointed to. The other solution is
to tag pointers so that pointers can be distinguished from non-pointers in
all circumstances. The size of an object must be able to be found either

from the tag or from the object itself,

6.4.2 Haps of Objects

Maps have been used in various 1angﬁage systems particularly Algol68
[PEC71] and have the advantage that they can be "added on" to the system
‘and do not require special treatment of pointers in the code~generator.
They are particularly appropriate for implementing a language on a
conventional computer where all the bits of a word are significant as an
address. They do, however, require extra storage to hold the maps. They

are simpler to use with Algol68 than with Poly because the type (mode) of

a value in Algol68 gives the structure of an object, whereas in Poly a
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constant is regarded as unstructured so, for instance in a polymorphic
operation, the only way to find the map of an object is by indirecting
through the vector which represents its type. A map of a constant can be

regarded, and even implemented, as an extra, hidden marking attribute of

every type.

6.4.3 Tag Bits

The alternative system, used in the current implementation of Poly, is
to use tag bits. This is considerably simpler to implement but does lead
to some overheads at run-time., It is particularly convenient on machines
which can be microprogrammed to support the language or where some bits of
a word are ignored when it is used as an address (e.g. the IBM 360 and 370
use only the 3 lower=order bytes of a4 byte word as the address and ignore

the high-order byte).

6.4.4 The Current Implementation

The present implementation uses a simple recursive marking algorithm
to mark all the objects which are in use. The marks are held as bits in a
separate vector, This is more convenient than using a mark bit in every
word. The free store is simply pgt back onto the free chain and no

compaction is used,

6.4.5 Asynchronous Garbage Collection

At present the garbage collector runs whenever the storage allocator
receives a request that it cannot satisfy. It would be convenient if it
could run asynchronously as a low priority process so that, hopefully,
there would always be store available, This is particularly important if
Poly were used as part of an operating system where delays in responding
to interrupts are unacceptable. The major problem with an asynchronous
scheme is that a user process running during the marking phase of the
garbage collection may cause an object to be missed if, for instance, the

object is assigned into a location that the marker has already passed, and
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all other references to the object are overwritten. The solutions
proposed [STET75, DIJ78] essentially require the assignment operation to be
made more complicated than it would otherwise be, so that, for instance, it
informs the garbage collector if an unmarked object is assigned into a

marked variable,

6.5 The VAX Implementation

The VAX provides a very good environment for implementing the Poly
machine, It provides a stack and the standard procedure call instruction
corresponds closely with the requirements of the call mechanism in the
Poly machine, The stack runs downwards, but this causes nho problems as the
code-generator can easily change the sign of the offsets from the frame-

pointer,

6.5.1 The Garbage Collector

The major problem is in implementing the tag bits. The VAX uses byte
addressing and an address occupies a longword (4 bytes). The solution was
to treat the top two bits of every word as tag bits and regard all
addresses as longword addresses. Every address must therefore be shifted
two places to the left before indirection which removes the tag bits and
converts the address to a byte address. This is not as much of a problem
as it might appear because the VAX provides an index mode in which a value
contained in a register is shifted before being added to a displacement.
The amount of the shift depends on the size of the operand (1, 2 or 4 byte).
Since every operation in Poly operates on a longword value this works
quite well, The indexing mode can only be applied to a displacement so
the scheme used is to have a register (r11) pointing to the base of the

memory space used by Poly, and have all addresses as word offsets from

that.

Using two tag bits should allow up to four kinds of value to be

distinguished, In practice it is convenient to reserve 00 and 11 for
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numerical values so that a positive or negative numerical value can be

fetched without requiring sign extension. This also means that only one
bit of precision is lost, Tag bit values of 01 and 10 can be used to
indicate pointers., A value of 01 is used to indicate that the bbjeet
pointed at occupies only one word, 10 indicates that it occupies more than
.one word and that the word preceding it contains the length (low order 3
Mbytes) and a code (high order byte). The code is used to allow the garbage
collector to distinguish segments of bytes (i.e. strings or instructions)

which might appear to be tagged words but are in fact not.

An alternative to using a length field would be to have an extra bit
which could be used to mark the last word of a segment. This has the
advantage of not needing a whole word for the length of a segment, at the
expense of requiring an extra bit for every word in memory., It is
therefore cheaper if most segments have fewer words than the number of
bits in a word. It does require this bit to be masked out when a word is
loaded from a segment and set correctly when the last word is stored.
Apart from the problems of finding an extra bit in a word on the VAX the
need for masking and setting the bit mean that a length word is the better

method.

6.5.2 Operating System Interface

The VAX implementation relies on the UNIX Pascal system to provide most
of its input/output. A few functions, such as block I/0 and allocating

storage are done by direct calls to the UNIX kernel,

6.5.3 Exceptions

The VAX hardware and procedure call conventions support an exception
mechanism which is similar to but not identical to that required for Poly.
The VAX convention is that a procedure may have a handler associated which
can optionally continue from an exception., The address of the handler is
contained in the first word of a procedure activation record. When an

exception is raised the nearest handler is found and called. The handler
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can either continue from the exception or unwind the stack frame and
reraise the exception. Exceptions in Poly can never be continued from so
this scheme is not entirely satisfactory. It also does not allow a name
to be passed to the handler. The present implementation uses the address
at the base of the frame as the address of the currently active handler
for that procedure. The VAX procedure call instruction sets this word to
zero on entry and this is taken, in the Poly system, to mean that no
handler has been set up. On entry to a block which contains a handler the
address of the handler is stored in this location, after saving the
current handler address if necessary. When an exception is raised the
frames are unwound until a handler is found. On entering a handler or

exiting from a block the previous handler is reinstated,

6.6 The Poly Environment

The Poly compiler is intended to be one function in a general Poly
programming environment, Poly allows complex objects to be given
specifications which can be checked when they are bound together, It is
possible to achieve the same kind of protection afforded by, say a
capability architecture, by checking the interfaces when objects are bound
together without the overhead of repeating the checks on every reference.
These kinds of checks are also more flexible than hardware checks which
are often limited to read/write/execute permissions, It does of course
require all programs to be written in Poly, or if not to be given
specifications in a similar way to Poly routines and to be very carefully

checked,

6.6.1 The Current Poly System

The present system is arranged around a piece of store which represents
the memory of the Poly machine, All Poly objects, programs as well as
data, are contained in this store. New objects can be created by Poly
programs or by the code-generator., There is one vector which contains all

the global data and their specifications. The memory can be written out
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to disc at the end of a session and read in at the start of the next so

that declarations can be preserved from one session to the next.

The memory is initialised by the compiler with certain standard types
boolean, integer etc., which are treated specially by the code-generator,
and other declarations are read from an initialisation file. From then on
the compiler will accept input from the terminal or from a file, compile it
and execute it. All objects in the Poly memory and all operations on them
must therefore have been checked by the compiler., When a global object is
declared a structure representing its specification is created as well,
The present compiler, written in Pascal, keeps its own information about
the specification of global values, but the representation of the
specification in the Poly memory can be used by Poly programs. In
particular there is an operator which can look up a declaration and print
its specification. This representation is also used by the compiler to

build up its own information if the memory is read in from disc.

6.6.2 Future Development

At the moment some parts of the compiler, the lexical analyser and the
code-generator, have been translated from Pascal into Poly. It 1is
intended that the whole compiler should be a Poly procedure with a Poly
specification, Eventually a full programming environment will be

developed with every object having a Poly specification,

6.7 Further Implementation Work

The present implementation of Poly does not perform much optimisation.
It is intended, once the compiler has been translated into Poly, to do some
simple high=level optimisation. The most important is probably to allow
in-line insertion of the text of procedures so as to avoid the overheads
of procedure calls. This is particularly important in procedures which
are used to achieve the effect of overloading. For instance the

polymorphic "print" procedure, which merely calls the "print" operation of
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the type which is passed as its parameter, could be inserted in-line, It
would generate no more code than calling the polymorphic "print", but
would save an extra call every time it was used. Since there are many
polymorphic operations like "print" this would be a big saving. There are
several similar kinds of optimisations which have been described in this

chapter and which may be implemented if time permits,

It would be interesting to implement Poly on a machine which could be
microprogrammed to give specific support. Storage management in
particular would benefit from microcoding. An asynchronous garbage

collector would be a practical possibility.

-136~




7. SUMMARY AND FUTURE RESEARCH

This dissertation describes the design and implementation of a
programming language, Poly. The design was the result of a decision to
pare down the requirements of the language to essentials and not include
anything unless there was a clear Jjustification. Polymorphism was a
result of this decision, not a "fancy feature" added on because it might be

useful.

Many languages include generic types or procedures, and overloading of
operators, Treating types as values means that all these can be
considered simply as special cases of procedure calling. This means there
is only one mechanism for parameterisation., It also allows the user of
the language more control, since there are fewer rules built into the
compiler and more of them are incorporated in the definitions of

procedures which can easily be overridden or changed.

Making the decision to treat types as values can lead to problems with
static type checking. The only other language to take this view, Russell,
required that all procedures be "variable-free" (i.e. import no global
variables) and treated variables as very much part of the language. This
made restrictions on parts of the language which were not concerned with
types and are avoided in Poly. Poly makes a different restriction which
affects only the use of types. Two values are considered to have the same
type only if they both belong to the same EEEE? type. Some form of
restriction is necessary because, if types are values which may not be
computed until run-time, it is in general undecidable whether two
expressions represent the same value. There must be some restriction on
the forms of the expressions so that this is decidable at compile-time,
and hence that the language can be type=checked, It is important to note
that we are concerned only with whether the two expressions denote the

same value and not with what that value is. A third alternative, which may
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be explored in a future version of Poly, is to separate variable-free and
variable-importing procedures into separate classes and only allow the

former in type expressions,

Another area which could be explored by a future version of Poly is
type inference. The language ML is statically typed even though the user
gives no type information in the program. The compiler finds the most
general type for each declaration by examining the use of all the
jidentifiers in an expression. This is very convenient, particularly for
interactive working. Types in ML are not values, though they can be
considered as "empty" types in Poly (i.e. those with no attributes). It
seems likely that the same mechanism of inferring types could be used for
a version of Poly, where types have attributes associated with them. It
would require the unification algorithm used to assign types to
expressions in ML to accumulate the attributes of unified types. 1In
addition, it would allow implied type parameters to depend on the result
of a procedure as well as on other explicit parameters. (In the present
version of Poly type parameters may be inferred from other parameters, but
not from the result). This would allow the effect of overloaded literals
as well as overloaded procedures (as at present). A language combining
the Poly view of types as modules and the simplicity of type-inference

from ML would seem to have considerable advantages over many languages.

While efficiency of the resulting code is not of paramount concern in
most applications, it is important if a language is to gain serious
Vacceptance‘. [1] The decision to treat types as values and allow higher-
‘order functions was taken with some reluctance because it would require a
garbage collector to reclaim the free store. However the advantages for
the language design were considerable. The problem then was to decide how

best to compile the language to take advantage of the fact that most

procedures do obey a simple stack discipline, so that providing

[1] It is interesting that the advantages of Lisp outweigh, for a large
section of the research community, the disadvantages of its poor
speed performance (on a conventional machine) compared with
statically typed languages.
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generalised type values and higher-order functions does not severely
compromise performance. Another potential inefficiency 1is that all
operations, even those as basic as integer addition, are treated as
procedures. To gain a reasonable level of efficiency without losing
generality the compiler can use in-line insertion and a simple peep-hole
optimiser. These examples illustrate a general point, that thinking about
the implementation of a language while designing it is fine, but the

compiler-writer's job is to implement the language, not to design it.

Poly was designed as a general purpose programming language. Only with
experience of its use will it be possible to say whether it has succeeded.
In any case it has shown that treating types as values is practical and a

serious alternative to generics and overloading.
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