
Technical Report
Number 489

Computer Laboratory

UCAM-CL-TR-489
ISSN 1476-2986

Designing a reliable
publishing framework

Jong-Hyeon Lee

April 2000

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2000 Jong-Hyeon Lee

This technical report is based on a dissertation submitted
January 2000 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Summary

Due to the growth of the Internet and the widespread adoption of easy-to-

use web browsers, the web provides a new environment for conventional as

well as new businesses. Publishing on the web is a fundamental and impor-

tant means of supporting various activities on the Internet such as commercial

transactions, personal home page publishing, medical information distribu-

tion, public key certification and academic scholarly publishing. Along with

the dramatic growth of the web, the number of reported frauds is increasing

sharply. Since the Internet was not originally designed for web publishing, it

has some weaknesses that undermine its reliability.

How can we rely on web publishing? In order to resolve this question, we need

to examine what makes people confident when reading conventional publica-

tions printed on paper, to investigate what attacks can erode confidence in web

publishing, and to understand the nature of publishing in general.

In this dissertation, we examine security properties and policy models, and

their applicability to publishing. We then investigate the nature of publishing

so that we can extract its technical requirements. To help us understand the

practical mechanisms which might satisfy these requirements, some applica-

tions of electronic publishing are discussed and some example mechanisms

are presented.

We conclude that guaranteed integrity, verifiable authenticity and persistent

availability of publications are required to make web publishing more reliable.

Hence we design a framework that can support these properties. To analyse

the framework, we define a security policy for web publishing that focuses

on the guaranteed integrity and authenticity of web publications, and then

describe some technical primitives that enable us to achieve our requirements.

Finally, the Jikzi publishing system—an implementation of our framework—is

presented with descriptions of its architecture and possible applications.

Declarations

This dissertation does not exceed the limit of sixty thousand words prescribed

by the Computer Laboratory Degree Committee.

Except where otherwise stated in the text, this dissertation is the result of my

own work and is not the outcome of work done in collaboration.

It is not substantially the same as any I have submitted for a degree, diploma

or any other qualification at any other university, and no part of it has been, or

is currently being, submitted for any such qualification.

Note 1. All products and company names mentioned in this dissertation may

be the trademarks of their respective owners.

2. Web links which appear in footnotes and the bibliography of this disserta-

tion are correct at the time of going to press. (Printed on 7 January 2000)

i

Acknowledgements

First, I am deeply indebted to Dr Ross J. Anderson, my supervisor, for his ad-

vice, sincere support, helpful comments and for enabling me to have financial

support under the grant ‘Resilient Security Mechanisms’ from the Engineering

and Physical Sciences Research Council for which I am very grateful. Without

his support, this dissertation would have never been finished.

Some of the ideas presented here were clarified during meetings of the security

research group in the Computer Laboratory. I am grateful to Prof. Bruce Chris-

tianson, Prof. Dieter Gollmann, Prof. E. Stewart Lee, Prof. Roger M. Needham

and Prof. David J. Wheeler for their insightful comments and discussions in

the meetings.

Many thanks to Dr Bruno Crispo, Charalampos Manifavas, Dr Václav Matyáš

Jr and Dr Fabien A. P. Petitcolas for the enjoyable collaboration in ‘the Global

Trust Register’, to Prof. Francesco Bergadano for his collaboration in ‘the Guy

Fawkes protocol’, to Tutor Patricia Hyndman at Wolfson College, Cambridge

for her kind support and to Prof. Sungpyo Hong and Prof. Youngju Choie at

POSTECH for their advice and encouragement.

The helpful support of the system administrators and the secretaries of the

Computer Laboratory were appreciated. I should also thank all the persons

who make my stay in Cambridge much more meaningful and enjoyable.

Special thanks to Che-Hao Albert Chang, Shaw C. Chuang, Abida Khattak,

Markus G. Kuhn, Ulrich Lang, Susan Pancho, Dr Michael R. Roe, Francesco

M. Stajano, Kan Zhang, Shireen Anderson and Graeme Fairhurst. Especially, I

thank Dr Geraint Price for his careful proofreading and helpful discussions.

Finally my deepest heartfelt thanks to my parents, grandmother and wife, to

whom I dedicate this dissertation, and warmest thanks to my daughters with

love. Without their sincere support I could have never come this far.

ii

Contents

List of figures vi

List of tables vii

Glossary viii

1 Introduction 1

1.1 The thesis . 1

1.2 Motivation . 1

1.3 Previous work . 4

1.4 Direction . 6

1.5 Synopsis . 7

2 Security properties and policies 9

2.1 Integrity . 10

2.2 Authenticity . 11

2.3 Confidentiality . 13

2.4 Publicity . 14

2.5 Anonymity . 15

2.6 Availability . 17

2.7 Security policy models . 19

2.8 Properties and policy models . 22

2.9 Properties and publishing . 24

2.10 Notes on security primitives . 26

2.11 Summary . 31

iii

3 The nature of publishing 32

3.1 Changing paradigm . 32

3.2 Electronic publishing . 35

3.3 Long-lasting publishing . 37

3.4 Persistent browsing . 38

3.5 Evidence of authorship . 40

3.6 Requirements of publishing . 41

3.7 Publishing and security . 43

3.8 Summary . 44

4 Applications of publishing 45

4.1 Electronic commerce . 45

4.2 Electronic voting . 47

4.3 Certification authority . 48

4.4 Medical application . 49

4.5 Contribution 1: Customer-centric payment 50

4.6 Contribution 2: Big Brother ballot 57

4.7 Contribution 3: The Guy Fawkes protocol 64

4.8 Contribution 4: The Global Trust Register 67

4.9 Summary . 71

5 Publishing policy and technical primitives 72

5.1 Policy model for publishing . 72

5.2 Analysis of the model . 74

5.3 Append-only file system . 75

5.4 Security markup language . 78

5.5 Repository clustering . 79

5.6 Summary . 82

6 The Jikzi publishing system 83

6.1 Background . 83

6.2 Goal of the system . 85

6.3 Architecture . 87

6.4 The Jikzi markup language . 90

6.5 Application-level services . 91

iv

6.6 Summary . 97

7 Conclusions 98

7.1 A conclusion of the thesis . 98

7.2 Future work . 99

Bibliography 101

Appendixes 113

v

List of figures

1.1 Overview of the structure of the dissertation 7

4.1 Principals and their interfaces in the customer-centric payment

scheme . 52

5.1 An example of the document distribution scheme 81

6.1 The architecture for controlled documents in the Jikzi system . . 88

6.2 The Jikzi preprocessor . 89

C.1 The entrance screen for the Jikzi service 127

C.2 Publish menu . 128

C.3 Directory menu . 128

C.4 Search menu . 128

C.5 Revision menu . 128

C.6 Information pages . 129

C.7 Notary menu . 129

C.8 Witness service result . 129

vi

List of tables

4.1 Information stored in each principal 57

vii

Glossary

This list defines some technical terms used in this dissertation.

anonymity the state of one’s identity being or remaining unknown to most

others

authenticity the quality of being known to be genuine

authentication the action of demonstrating a proof of genuineness

availability the capability of being made use of

confidentiality the condition of being kept secret

digital signature a value that enables to identify the originator and the con-

tent integrity of a digital object

hash function a function that produces outputs of a fixed length for inputs of

arbitrary length

integrity the condition of not having been modified

object a passive entity used by subjects

one-way function a function that is easy to compute but whose inverse is

computationally infeasible

one-way hash function a hash function that is one-way

principal a subject who uses a system or service

publication an object that has been published

publicity the state of being known to the public

publishing the action of making publicly known

reliability the quality of being able to have confidence

resilience the ability of a system to recover quickly from a fault

security model abstract description of system behaviour

security policy a set of rules governing how principals can access the system

subject an active entity that can initiate requests for resources and use them

viii

Chapter 1

Introduction

1.1 The thesis

The thesis of this research is that web publishing can be more reliable when

its integrity, authenticity and availability are improved. In order to prove our

thesis, we construct a framework that improves these properties of web pub-

lishing and present an implementation of the framework.

Note that throughout the dissertation, we use the term ‘reliable’ publishing in

the sense that people can have confidence in using publications. In this disser-

tation, we will examine what makes people confident in using conventional

publications, investigate what attacks undermine confidence in web publish-

ing, and understand the nature of publishing including both conventional and

web publishing. As a result, we will propose a framework and implementa-

tion that help us improve the reliability of web publishing.

1.2 Motivation

How can we rely on web publishing? The web is now a common environment

for network services and traditional services are migrating onto the web; the

1

web is becoming a part of our life and its territory keeps growing. Simultane-

ously we face a number of fraud cases on the web, and we presume that the

number of frauds is going to increase sharply along with the rapid expansion

of the Internet. Furthermore, the web is not ready to convey the level of relia-

bility provided by conventional publishing media, since web publishing is at

quite an early stage.

The web is a valuable tool for publishing on the Internet, but carries little guar-

antee of the publication’s reliability. Since the original purpose of the Internet

was neither commercial transactions nor personal publishing, the problems of

web publishing and its reliability were not considered seriously.

When the project ‘World Wide Web’ started at CERN1 in 1990, some naı̈ve

HTTP2 browsers were developed but not used worldwide. With a click-and-

connect graphical user interface, Mosaic for X Windows, developed by An-

dreessen in 1993, became a trigger to wide use of the Internet. The adoption

of the simple but strong markup language HTML3 is another success factor of

the web. In March 1993, HTTP traffic measured 0.1% of NSF4 backbone traffic

and became 1% of it in six months;5 now it dominates Internet traffic.

The development of web technologies means that people can publish their

ideas widely, easily, quickly and cheaply. This benefit attracts more people

and many businesses online. The Internet is no longer a place for academics

and is becoming a part of general public’s life. Commercial services migrating

to the web include banking, shopping and entertainment, but on the other

hand, we face many frauds attacking weaknesses of web publishing.

In the 1997 Annual Report6 of the US Securities and Exchange Commission

(SEC), three Internet publishing fraud complaints are filed; these cases are

about publishing investment newsletters on the web which distribute false

1The European Laboratory for Particle Physics
2HyperText Transfer Protocol, the base protocol for the web; see [42].
3HyperText Markup Language, the base language for the web; see [89].
4The National Science Foundation; the NSF backbone is a wide area network which mainly

connects academic organisations.
5<http://www.w3.org/History.html>
6<http://gopher.sec.gov/asec/annrep97/annrep97.htm>

2

and misleading information to subscribers. The number of such frauds has

been increasing. On 28 October 1998, the SEC announced the filing of 23 en-

forcement actions against 44 individuals and companies across the USA for

frauds over the Internet and deceiving investors.7 Most of the alleged frauds

were about the distribution of false information and they have undermined

confidence in Internet publishing. The SEC regards these frauds as a serious

threat8 and is now running a central database that provides certified informa-

tion. However, there is no unique information source to satisfy the demand of

stock investors. Providing a means to verify the authenticity of a newsletter is

more important than proving a central database controlled by the authority.

In 1997, Mentor Network, a California-based firm, opened a web site to collect

money with the name of a children’s charity and set up a classical pyramid

marketing scheme9— the victim invests money, then recruits others so that a

stream of cash flows back to older investors from new ones. The US Federal

Trade Commission reacted when it found the online charity scam had misused

investment out of a million dollars. Mentor was not alone and such a fraud

makes people unwilling to rely on any charity asking help over the Internet.

On the Internet, we are not confident about to whom we are talking, the best

we can do is just assume we are talking with the person to whom we want to

talk.

In 1998, a California man, Bowin, was sentenced to ten years in prison for

conducting a fake stock offering over the Internet.10 It is perhaps the harshest

jail sentence for Internet securities fraud in history. He offered to sell shares

of a technology company over the Internet from late 1996 to early 1997. He

advertised his company with false information and about 150 people fell for

it.

We have seen some publishing fraud cases on the Internet but they are the tip

of the iceberg. We need to consider what the weaknesses of web publishing

are, i.e., what makes frauds easier on the web than in real world.

7<http://techlawjournal.com/seclaw/81028secpr.htm>
8<http://www.sec.gov/consumer/cyberfr.htm>
9<http://www.zdnet.com/yil/content/mag/9708/pappas97 08.html>

10Wall Street Journal, 9 November 1998

3

The lack of evidential force is one worry. Although there is a huge amount

of information on the web and people regard it useful, people are reluctant to

accept it as legal evidence. By its very nature, web publishing is a dynamic

process and nothing is guaranteed. Can we find a way to provide evidential

force for web publishing? This is one of the problems tackled by this research.

On the other hand, there are problems caused by misbehaviour of users with-

out bad intentions; for example, it is common to find links on web pages that

have wrong or out-dated references, so called ‘link rot’, since people keep

changing their web sites without notice and they also change address fre-

quently. Nowadays web links are cited in news articles and even in scientific

papers but there is no guarantee that the cited links will last long. The web

links used in footnotes in this dissertation may not be exceptions.

How do we obtain reliable web publishing? We believe that reliability on the

web cannot be simply imposed by some existing authority such as the govern-

ment or banks. Reliability can be established by the accumulation of empirical

successes from trials, and empirical success is achieved by a plausible sys-

tem design. System designers should clarify what attacks the reliability of a

system and which properties are required to make it reliable. We will inves-

tigate threats and weaknesses of web publishing and extract requirements for

reliable publishing on the web. Then we will design a mechanism that can

perform web publishing successfully under these requirements.

1.3 Previous work

Web publishing has not been intensively studied from the security point of

view and we cannot find many related works, but some work on electronic

publishing and publishing frameworks inspired us.

Apart from security concerns, electronic publishing has been considered and

developed in the context of academic scholarly journal publishing by Ginsparg’s

preprint server [46] and Loughborough University’s ELVYN [98]. Snook’s

DODA [102] presents a document management scheme in view of systems

security.

4

Ginsparg’s preprint server, the Los Alamos e-print archives, is a repository

for the circulation of academic paper preprints mainly in physics; preprints

are a form of pre-publishing before refereeing for journal publication. This

speeds up discussion of preprints. Mechanically, the server accepts all preprint

submissions, stores them and makes them available on the web. In Science,

Taubes [104] pointed out that this service shows a possible model to cut the

high cost of scholarly journal publishing. Its success inspired similar services

in other fields, such as Southampton’s Cognitive Science Eprint Archive.11 In

order to compete with major commercial journal publishers and meet aca-

demics’ demands, these services are evolving and adding features, such as

peer review to enhance the quality of preprints. They satisfy the basic needs

of academics—fast communication and low cost publishing—but no security

aspect is considered. Security of these services is maintained by academic trust

not by mechanisms.

Loughborough University’s ELVYN12 is an electronic journal publishing and

distribution mechanism for libraries. They are mainly interested in displaying

and browsing publications since multimedia publishing could not be easily

achieved when the project started in 1990. The project has evolved through

three stages. In the report on the third stage, they expect that combining

ELVYN with web publishing will boost its usage. It also deals with analysis of

usage patterns and costs of publishing.

Usually studies of electronic scholarly publishing deal with issues of copy-

right, economic structure and success-failure models; they help us understand

the nature of publishing but do not cover the interests of the nature and further

security issues of web publishing.

Snook’s Distributed Office Document Architecture (DODA) is a security archi-

tecture for document management in a distributed environment. It presents a

broad range of features for document handling. In order to handle parts of a

document, she defines a ‘folio’ as a functional object of the document which

can be text, graphic material, multimedia objects, or a composite of them, i.e., a

document can be represented by a composite of folios. Object-wise document

11<http://cogprints.soton.ac.uk> , also known as CogPrints
12ELVYN is an acronym for ELectronic Versions – whY Not.

5

control is the main idea of DODA and its security features are also controlled

through folios. Web documents can be handled object-wise by the nature of

hypertext and it is now easier to get object-level control of documents than in

the time of DODA.

These previous works related to electronic publishing, document management

and security set the stage for us to investigate web publishing.

1.4 Direction

We will examine factors that weaken the reliability of web publishing and try

to understand the nature of web publishing in three directions: first, we will

clarify the meaning of security properties and review security policy models;

secondly, we will investigate the nature of publishing and make comparisons

between conventional publishing and electronic publishing; thirdly, we will

see major concerns of practical electronic publishing applications.

To reach the essence of the problem, we will ask fundamental questions: why

is web publishing a problem?; in which respects is it different from conven-

tional publishing on paper?; how can we rely on web publishing?; eventually,

how can we build conventional publishing-level reliability in web publishing?

We will then construct a publishing framework that can improve reliability.

Our framework consists of a publishing policy and some technical primitives

that enable us to realise our policy. In order to verify our framework, we will

present an implementation of the framework.

The structure of this dissertation is shown in Figure 1.1. We present the thesis

of the dissertation in Section 1.1. In order to understand the thesis, we in-

vestigate related subjects to web publishing in three directions in next three

chapters. We present our answer to the thesis in Chapter 5, and provide an

implementation in Chapter 6. Conclusions of the thesis and each chapter are

given in the last chapter.

6

Chapter 1

Chapter 2 Chapter 3 Chapter 4

Chapter 5

Chapter 6

Chapter 7

Figure 1.1. Overview of the structure of the dissertation: Chapter 1 describes the thesis

of the dissertation, motivation and some background studies, and Chapter 2, 3 and 4 run

almost parallel to reach our hypothesis, by examining fundamental security properties, the

nature of publishing and publishing applications, respectively. Chapter 5 sets the thesis up

and proposes our solution, and Chapter 6 presents an implementation of our proposal to show

our proposal is valid and the thesis is achieved. Chapter 7 provides conclusions of the thesis

and each chapter.

1.5 Synopsis

The rest of this dissertation is arranged as follows:� Chapter 2 examines definitions of security properties to clarify the nature

of the properties, reviews major security policy models and discusses the

relationship between the properties and the security policies.� Chapter 3 investigates the nature of publishing and the publishing pro-

cess by investigating conventional and electronic publishing mechanisms.

It extracts publishing requirements from the investigation and examines

the relationship between security and publishing.� Chapter 4 presents a series of web publishing applications and some ex-

ample publishing mechanisms which we have proposed in conferences

7

and journals; the mechanisms include electronic payment, voting, digital

signature and key certification services.� Chapter 5 presents a framework for web publishing which consists of

a publishing policy and some technical primitives; the policy requires

integrity and authenticity of web publications; the primitives support

the policy and availability of publications.� Chapter 6 presents an implementation of the framework proposed in

Chapter 5 and discusses design and implementation issues; application-

level services of the mechanism are also described.� Chapter 7 presents the conclusion of the thesis and conclusions of other

chapters.

8

Chapter 2

Security properties and policies

In order to clarify the requirements of security systems, we examine security

properties and policy models relevant to publishing. This helps us understand

the relationship between security properties and security policies, and shows

what we can achieve when we support a certain security property. For exam-

ple, when a policy model supports only integrity, the definition of integrity

will clarify what we can do and what cannot within the model.

First, we will deal with three major security properties: integrity, authenticity

and confidentiality. From their dictionary definition to others’ interpretation

and practical implementation, we investigate their properties, which are fun-

damental in systems requiring security and a publishing system is no excep-

tion.

We then investigate three concepts which are desirable properties of publish-

ing systems: publicity, anonymity and availability. We focus on these prop-

erties as seen from a publishing perspective and subsequently there may be

discrepancies between our concepts and the conventional understanding of

them. Unlike other properties listed here, availability is a system issue and we

examine methods to provide it.

This investigation will help us understand what the concerns of a publishing

system are and how such systems can be made more reliable.

9

2.1 Integrity

Integrity1 is the condition of not having been modified. It assumes timeliness;

when we mention integrity, it implies the uncompromised condition of an ob-

ject in a certain period. When any object in a system is not modified in a certain

period, we say the system provides the quality ‘integrity’ of the object. The in-

tegrity of an object is independent of the subject who created it. Even though

the creator of an object modifies it, its integrity is lost. Whether the creator can

change it or not is not an integrity issue but an authorisation issue. Integrity is

a fundamental property of the object itself.

Mayfield et al. [73] attribute integrity to two terms: data and systems. Data

integrity is concerned with preserving the meaning of information, with pre-

serving the completeness and consistency of its representations within the sys-

tems, and with its correspondence to its representations external to the system.

Systems integrity is defined as the successful and correct operation of comput-

ing resources; in their definition, systems integrity is related more closely to

high availability, fault-tolerance and robustness rather than data and informa-

tion processing. In this dissertation, we do not use the terminology ‘integrity’

in its systems definition.

In their seminal paper [32], Clark and Wilson define integrity in a practical

way: no user of the system, even if authorised, may be permitted to modify

data items in such a way that assets or accounting records of the company are

lost or corrupted, thus compromising their integrity.

Schneier [101, p. 2] describes integrity intuitively in the context of message

exchange as follows: it should be possible for the receiver of a message to

verify that it has not been modified in transit; an intruder should not be able

to substitute a false message for a legitimate one. This description applies to

integrity-preserving communications but is not enough for us since integrity

is independent of principals.

1integrity 1. the condition of having no part or element taken away or wanting; undivided

or unbroken state; material wholeness, completeness, entirety 2. the condition of not being

marred or violated; unimpaired or uncorrupt condition; original perfect state; soundness [105]

10

Gollmann [48, p. 5] defines integrity as the prevention of unauthorised mod-

ification of information. Unlike other definitions above, his definition assumes

an authorisation in the context of integrity. Similarly, the International Telecom-

munication Union defined data integrity as the property that data has not

been altered or destroyed in an unauthorized manner in the Recommendation

X.800 [56], but dropped the requirement for authorisation in the Recommen-

dation T.411 [57], which is similar to our understanding.

To keep the integrity of an object, we can think about two approaches: pro-

tecting an object from tampering and detecting the tampering. The former is

active protection against tampering and the latter passive. The study of tam-

per resistance focuses on the protection of an object from tampering and the

tamper evidence approach on the detection of tampering.

Initially, tamper resistance was studied for military purposes and tamper re-

sistant devices were designed to be destroyed when tampered; at the most

attackers can break the device but cannot obtain the secret inside.

Tamper evidence is focused on the detection of changes. To see changes in the

object, it is clear that we need a mechanism to compare the current condition

and the original condition. Some techniques have been developed to make

the comparison such as cryptographic hashing, fingerprinting [71] and digital

watermarking [63].

2.2 Authenticity

Authenticity2 is the quality of being known to be genuine. In other words, it

is a quality that can be verified to be original. That we say the authenticity of

something assumes that there is a way to prove that it is genuine. The action

of demonstrating this proof is called authentication.

2authenticity 1. as being authoritative or duly authorised. 3. as being what it professes in

origin or authorship; as being genuine; genuineness

genuine 3. really proceeding from its reputed source or author; not spurious 4. having the

character or origin represented; real, true, not counterfeit, unfeigned [105]

11

From the definition, we can think about genuineness in two types : genuine-

ness of an object and that of the author of the object. We call the authenticity of

them object authenticity and subject authenticity, respectively. Object authen-

ticity includes the integrity of an object; authentication of an object includes

verification of both its authorship and whether it has been modified or not.

Message authentication is an example of verifying object authenticity.

Unlike object authenticity, subject authenticity is defined by physical and log-

ical characteristics of a subject. Authentication of a subject is the process used

to identify the subject using its characteristics, including height, fingerprints,

iris patterns, names, addresses, affiliation information, cryptographic keys,

email addresses and some identification numbers. Because such metrics of au-

thentication are predominantly used as a means of facilitating access control,

when authentication and authorisation are used in actual implementations,

their scope often overlaps considerably. Whenever we use an identifier to rep-

resent a subject such as public key or email address, a gap between the subject

and its identifier is introduced. This gap represents the precision of the au-

thentication scheme; it is believed that logical identifiers are less tightly bound

with the subject than physical identifiers.

The International Telecommunication Union defines standard recommenda-

tions about various telecommunication applications and their interoperabil-

ity. Their major concern is communication and definitions are mainly derived

from practical applications. Recommendation T.411 [57] defines authenticity

by the property that the claimed data source can be verified to the satisfaction

of the recipient; the satisfaction may depend on applications. Authentication

is defined by the provision of assurance of the claimed identity of an entity in

Recommendation X.811 [58]. They also define data origin authentication by

the corroboration that the source of data received is as claimed in Recommen-

dation X.800 [56].

Gollmann [48] defined subject authentication as the process of verifying a

claimed identity. Schneier [101, p. 2] roughly explains authentication as fol-

lows: it should be possible for the receiver of a message to ascertain its origin,

while an intruder should not be able to masquerade as someone else.

12

2.3 Confidentiality

Confidentiality3 is the condition of being kept secret. The statement “an object

is secret” means that an object is known to only a certain number of people

specified. So confidentiality assumes a partition of principals: one group of

people knows the object and the other group of people does not. We observe

that the movement between the two groups is always one-way; the only thing

that passes is knowledge, not ignorance. When there is an unauthorised com-

munication, the confidentiality of the object is broken.

Authorisation procedures for access to an object are important to maintain its

confidentiality. A method to achieve confidentiality is to restrict access by us-

ing a conventional security policy, and another method is to control keys for

cryptographic algorithms. The combination of both methods is also common.

In the world of conventional publishing, information is written on paper and

its confidentiality largely depends on physical access control to its repository,

such as a safe or vault. For highly confidential paper documents, mechanical

or hand-written ciphers had been used to make it difficult to read them. In

electronic publishing, the superficial situation is not so different: access con-

trol is still important and ciphers are used for higher secrecy. However, there

are some changes: the use of ciphers is much easier than before, the knowl-

edge about cryptography becomes more public and as a result, there is a wide

choice of high quality ciphers4 publicly available on the Internet. The general

public can easily access ciphers to encrypt their documents. There are also

cryptographic tools widely used on the network such as SSL [43], SSH [110]

and PGP [111]; the first two provide encrypted channels during communi-

3confidentiality 1. confidential quality; state of being confidential

confidential 2. of the nature of confidence; spoken or written in confidence; characterised by

the communication of secrets or private matters – confidential communication: a communica-

tion made between parties who stand in a confidential relation to each other, and therefore

privileged in law [105]
4For example, the Advanced Encryption Standard (AES) candidates; AES will be the re-

placement of DES [79]. The National Institute of Standards and Technology in the USA has

been organising a contest to select the replacement and announced five finalists including

MARS, RC6, Rijndael, Serpent and Twofish.

13

cation on the network and the last provides various cryptographic functions

such as key generation, encryption and digital signature. Cryptography is be-

coming common.

Though we agree with Gollmann’s argument [48, p. 203] that cryptography

just translates a communication confidentiality issue to a key management is-

sue, it is an important building block to support confidentiality of electronic

data. He describes confidentiality as capturing the aspect of computer security

that unauthorised users should not be learning sensitive information [ibid., p.

6]. Pfleeger [88] characterised confidentiality as follows: only authorised peo-

ple can see protected data. Recommendation T.411 [57] of the International

Telecommunication Union defines it by the property that information is not

made available or disclosed to unauthorized individuals, entities or processes.

We found that the definition of confidentiality is convergent.

Although confidentiality is an important issue in computer security and many

studies have been made so far, we believe that confidentiality is not an essen-

tial property of publishing, and hence we do not investigate it further. Unlike

other properties, confidentiality will be only partially discussed later.

2.4 Publicity

Publicity5 is the state of being known to the public. It has a complementary

aspect to confidentiality in terms of knowledge transfer; publicity does not

limit knowledge transfer but confidentiality does. Publishing is the action of

realising publicity. Note that since publicity is not usually considered in a

security context, there is no agreed terminology.

Let us consider the conventional publishing process. An author has an idea

and writes a draft of the idea; if his writing is good enough and he is lucky,

5publicity the quality of being public; or the condition or fact of being open to public

observation or knowledge

public 1. of pertaining to the people as a whole. 4. that is open to, may be used by, or may or

must be shared by, all members of the community; generally accessible or available. 5. open

to general observation, sight, or cognizance [105]

14

the draft is accepted by a publisher to print in a tangible form, say a book.

Then the book is delivered to book shops through the publisher’s distribution

network. Here, we see another aspect of publishing which will change in the

computer network era.

Firstly, publishing conventionally implies the distribution of frozen copies of

an idea; at the time of publishing, the fact that the author said what was

printed in the publication becomes frozen and can never be changed. Al-

though there is a means by which the author can change his mind later in

the form of errata or revisions, a clear rule is that previously printed and dis-

tributed copies are not changed; they become a part of the history of his idea

and evidence of what he said. Published matter is accumulated not destroyed.

Secondly, computer networks widely adopted throughout the world change

the whole structure of the publishing process. Neither selection by a publisher

nor the distribution network of the publisher is necessary. If one has an idea,

one can publish it through the network to the world at the speed of light. This

changes the nature of publishing, but we can hardly call the published mat-

ter ‘frozen’ since we can change it at any time; nobody keeps a history. We

have obtained a low-cost method of publishing, but coincidentally we lost the

immutability of published matter.

We pointed out a couple of fundamental problems caused by the media change

from paper to the computer network. In Chapter 3, the nature of publishing

will be investigated and discussed, and a more extensive comparison between

paper and web publishing will be given.

2.5 Anonymity

Anonymity6 is the state of an object’s identity – or even its existence – being

or remaining unknown to most others. If the object’s existence is not known

6anonymity the state of being anonymous

anonymous 1. nameless, having no name; of unknown name 2. bearing no author’s name; of

unknown or unavowed authorship [105]

15

to people, anonymity may look similar to confidentiality, but it is clear that

the mechanism is different. Confidentiality of an object is usually maintained

using shared secrets to access the object, and the sharing methods define the

group of principals who know the secret and can access the object. Anonym-

ity of an object is not defined by the same means; anonymity is usually kept

by blocking knowledge transfer and the blocking methods define the group

of principals who do not know the object. Consider a message transfer. If we

can block all metadata transfer, except message transfer itself between prin-

cipals involved, we can send a message anonymously. To avoid the leakage

of metadata, such as the identity of the sender, recipients, sending time and

intermediate relaying principals, we usually assume some trust relationship

between principals.

Another aspect of anonymity that distinguishes it from confidentiality is its

goal. Assume that there is a leaflet on a table. In terms of confidentiality, the

content of the leaflet is open, but from an anonymity point of view, we might

not know the author of the leaflet or the person who put it on the table. The

goal of confidentiality can be principals or data used by principals; i.e., we

want to keep principals themselves or data itself secret, but that of anonymity

is mainly the trace of data or the relationship between a principal and his data,

i.e., metadata.

Anonymity is applicable for principals and metadata. A principal includes a

person or process which carries out an action, and metadata include a deed,

event, timestamp and involved principals. Principal anonymity usually means

source anonymity, i.e., the source of an action is not known to its destination.

Anonymous mail is an example of principal anonymity.

Protecting metadata depends on the group of people who know it. Suppose

a person in a city under siege wants to inform people outside of the current

situation, and sends a message through an anonymiser on the Internet. Par-

tial metadata can remain in the intermediate message relaying servers. Some

servers may collude to trace the message source or another party may collect

traffic data between them. This constructs a data transfer chain, and we have

a way to trace back to the origin of the transferred knowledge along with the

chain; anonymity is hard to control.

16

Although metadata anonymity plays an important role in electronic commerce,

anonymity has been commonly regarded in terms of principal anonymity rather

than metadata anonymity.

2.6 Availability

Availability7 is the capability of being made use of. In computer terms, ‘avail-

able’ means a service should be provided whenever requested; depending on

system requirements, it may converge to the nonstop service. Since it is always

possible to face arbitrary faults, it is natural to assume faults and system stops.

In this respect, availability is closely related to fault-tolerance, resilience, or

high speed recovery.

International Standard ISO 7498-2 [55] gives a definition of availability as the

property of being accessible and usable upon demand by an authorised en-

tity. The Canadian Trusted Computer Product Evaluation Criteria [26] gives a

similar definition: availability is the property that a product’s services are ac-

cessible when needed and without undue delay. Recommendation G.972 [59]

of the International Telecommunication Union defines it by the ability of the

system to be in a state to perform adequately at a given instant of time within

a given time interval.

For common Internet services, it is necessary to provide the service continu-

ously without interruption since customers are worldwide and the service is

used 24 hours a day. Previously, high availability, nonstop service or fault-

tolerance had been asked of only a few critical systems such as military and

aerospace systems. The Internet makes us consider this issue within the com-

mercial sector.

Recently value-added services have been implemented based on the Internet,

such as electronic payment, intelligent databases and network-based value-

7availability the quality being available; capability of being employed or made use of

available 1. capable of producing a desired result; of avail, effectual, efficacious 2. of advan-

tage; serviceable, beneficial, profitable 3. capable of being employed with advantage or tuned

to account; capable of being made use of, at one’s disposal, within one’s reach [105]

17

added telecommunication services. It is almost infeasible to keep a system

from failing in a networked service environment; we should assume that sys-

tems can often fail. Even though computer systems which provide a virtually

nonstop service are available on the market, the cost will not be affordable for

average Internet service providers. Building a system in which recovery can

happen quickly, i.e., which is highly resilient, is more practical and efficient for

average commercial use, especially web publishing.

We survey two types of mechanisms to obtain such resilience: process-group

mechanisms and application-layer mechanisms. The former is a way to obtain

resilience via a group of processes8 executing redundant functions. The latter

has each principal performing separate functions and playing a different role

in the whole service.

Two prototypes of process-group resilience mechanisms are reported: Proac-

tive Security and Rampart. The former was studied by a group of researchers

[45, 53, 54] at the IBM Research Center. Their main ideas are two-fold: peri-

odic refreshment of secret data and distribution of the secret data. The latter

has been mainly studied by Reiter and his colleagues [90, 91, 92] at the AT&T

Labs–Research. Redundancy to mask corrupt servers and build high-integrity

services is the main concept in their prototype system, Rampart. Brief descrip-

tions of both prototypes appear in Section 2.10.

Conventionally, application-layer mechanisms have been used in secure sys-

tems under a distributed computing environment. We find trials and imple-

mentations of application-layer resilience mechanisms in fault tolerant system

design and distributed system design. For such mechanisms, each module in

the system plays a different role and no heavy redundancy is assumed. These

mechanisms share the idea ‘separation of duty’.

An example of separation of duty in security applications is Crispo and Lo-

mas’s certification authority [36] that the function of the conventional certifi-

cation authority is split into two subfunctions: revocation authority and cer-

tification authority. This sort of mechanisms can be reinforced by technical

measures against local failures.

8A process is a principal that participates in group operations

18

2.7 Security policy models

The security policy in a system defines the conditions under which subject

accesses are mediated by the system reference monitor [3, p. 91]; it is a state-

ment of the security we expect the system to enforce [88, p. 271]; it provides

the foundation of a security infrastructure and provides important guidance

to assist with the increasing interconnection among organisations [25, p. 63].

It is usually represented as a set of principles or rules governing how to access

the system and how to operate it.

A security model is an abstract description of system behaviour. A security

policy describes system-specific dependencies; a security model is more ab-

stract than a security policy. If it is intended as a general guide for many dif-

ferent types of computing applications and environments, then we refer to it

as a model. If it is a specific description of required computing behaviour, then

we refer to it as a policy.

In the description of security models, a subject is defined as an active computer

system entity that can initiate requests for resources and use the resources to

complete some computing task. In an operating system, subjects are typically

processes or tasks. An object is defined as a passive computer system repos-

itory that is used to store information. In an operating system, objects are

typically files and directories.

We present a survey of security models and their corresponding policies.

Bell-LaPadula model

In 1973, Bell and LaPadula [15] devised a security model to prevent disclo-

sure threats, especially from Trojan horse attacks, which is known as the Bell-

LaPadula, or BLP model. It was proposed for military purposes and its main

concern is confidentiality preservation in data access. This model has become

the most influential security model and stimulated researchers to consider

many variants such as Biba, System Z and Chinese Wall.

19

The BLP model is a multi-level security model which has the property that

subjects can read down and write up, but never vice versa. The BLP model

enforces two properties:

The simple security property subjects may not read objects at a higher level;

it is also known as no read up (NRU) property.

The *-property subjects may not write objects to a lower level; it is also known

as no write down (NWD) property.

System Z: tranquillity

McLean turned the Bell-LaPadula model into System Z [74] by adding the

property that a user can ask the security officer to temporarily declassify any

object from high to low; thus the low level subject can read any high level ob-

ject without breaking the BLP rules. System Z was the first serious critique of

BLP.

It shows the virtue of introducing a property called tranquillity; the strong

tranquillity property states that security labels never change during system

operation, while the weak tranquillity property states that labels never change

in such a way to violate a defined security policy.

Chinese Wall

In 1989, Brewer and Nash [24] introduced a policy model for the commercial

sector called Chinese Wall. The Chinese Wall model is based on commercial

discretion and legally enforceable mandatory control. Although it is designed

for commercial organisations, this model is based on the BLP model. It defines

the simple security property and the *-property in a different way.

The Chinese Wall model is mainly concerned about conflicts among datasets

under competing relations. For example, when a subject in an accountancy

firm who accessed a dataset of an oil company A would like to access a dataset

20

of another oil company B, this is prohibited since B is A’s competitor. If the

subject wants to access a dataset of an advertisement agency C, the knowledge

of oil company A’s dataset does not matter. In this case, the Chinese Wall is

created for that particular subject around the dataset in company A, and any

dataset within the same conflict of interest class is regarded as being on the

wrong side of this wall.

Biba integrity model

Confidentiality and integrity are in some sense dual concepts: confidentiality

is a constraint on who can read a message, while integrity is a constraint on

who may have written or altered it.

In the sense of such duality, Biba [21] introduced an integrity model in a dual

form of the BLP model in the mid 1970s, known as the Biba integrity model.

The goal of the model is to protect corruption of high level objects from low

level subjects. In terms of integrity, information may only flow downwards.

The Biba model is the BLP model upside-down. We refer to these rules as the

no write up (NWU) and no read down (NRD) rules: subjects may not write

objects at a higher level and subjects may not read objects at a lower level,

respectively.

Clark-Wilson model

In 1987, Clark and Wilson [32] introduced an integrity model motivated by the

way commercial organisations control the integrity of their paper records in a

non-automated office setting. This is known as the Clark-Wilson model, or the

CW model.

The CW model is expressed in terms of a finite set D (for data) that includes

all the data items on a given computer system. Clark and Wilson partitioned

D into two disjoint subsets, a set of constrained data items (CDI) and a set of

unconstrained data items (UDI).

21

Subjects are included in the model as a set of entities that can initiate so-

called transformation procedures. A transformation procedure is defined as

any non-null sequence of atomic actions. An atomic action is defined as a non-

interruptible execution that may result in a change to some data item. A CDI

can only be changed via transformation procedures.

In the Clark-Wilson model, integrity validation procedures are introduced to

validate that any given CDI has the proper degree of integrity and authentica-

tion procedures are mandatory to initiate a transformation procedure.

British Medical Association model

In 1996, Anderson [8] investigated threats in current medical information man-

agement for the British Medical Association, and proposed a security policy

for clinical information systems. This model focuses on access control, patient

privacy and confidentiality management. It has a horizontal structure in access

control rather than a vertical hierarchy as used in the BLP model. The model

consists of nine security principles that describe use of the access control list

for each clinical record, patients’ right to access the list, clinicians’ responsibil-

ity to inform any modification to the list of the patient, integrity condition for

the record before the expiry date and the need of audit trails for all access to

the records.

2.8 Properties and policy models

The Bell-LaPadula model is designed for confidentiality of objects and restricts

read and write access between different security levels. According to the sim-

ple security property (NRU), low subjects are not allowed to read high objects;

it implies that there are objects whose existence is not known to low subjects

and hence BLP requires confidentiality of high objects. The *-property (NWD)

prevents high subjects from writing high information on an objects which can

be accessible by low subjects.

22

The Chinese Wall model changed the hierarchical model of BLP to a horizon-

tal model with classes with different interests; depending on the interest of the

class, access is granted. Between the classes that conflict their interests, con-

fidentiality of an object must be kept to subjects of the other. Integrity is not

considered.

The Biba model is designed for integrity as a dual concept of BLP. Integrity

here means that information may only flow downwards unlike in BLP. The

model prevents any compromise of high level objects from low level subjects,

but it does not specify any rule to restrict attacks on integrity by subjects at

the same level. Furthermore, we cannot control integrity failure carried out by

the creator of an object in this model. However if the integrity of an object is

defined independently of its creator, this model cannot provide proper control.

In applications where even the creator of an object cannot break its integrity,

such as publishing, this model is not appropriate.

The Clark-Wilson model introduces a partition of data items: CDI and UDI.

It is required that subjects must be identified and authenticated; that objects

must be manipulated by authorised programs and subjects must execute al-

lowed programs. An audit log has to be maintained. The main property to

protect in this model is integrity and the model requires procedures for au-

thentication and integrity validation. This model also protects the integrity

of system invariants, e.g., total amount of money in the system and enforces

separation of duty.

In the British Medical Association model, the existence of the access control list

implies the need for confidentiality and authenticity of subjects on each object.

By the nature of medical records, integrity of objects for a specified period is

mandatory.

Any security policy which restricts access on resources requires authorisation

procedures which need identification of subjects. Since subject authentication

is a strong means of identification, authenticity of subject can be assumed as a

fundamental property in security models.

In view of the time scale, we can see integrity in two types: temporary in-

tegrity and persistent integrity. The former means integrity which is required

23

for a specified finite period and the latter for eternity. Persistent integrity is ap-

propriate for history-accumulating applications such as newspapers and leg-

islation, but does not fit for applications that need consecutive revisions and

disposal after document expiry such as customer billing data. Integrity control

must be done in a different manner depending on its purpose.

As demonstrated in Section 2.1 and 2.2, integrity can be regarded as a part of

object authenticity, and authenticity is a primary requirement for publishing

such as authorship of publications. Both are fundamental properties for pub-

lishing. Confidentiality is not a major concern in publishing since knowledge

distribution is its main purpose.

2.9 Properties and publishing

Consider typical publishing applications: newspapers, medical directories,

legislation and certificates. Every case requires not only integrity but also

authenticity, or authorship. It is commonplace that we wish to identify the

reporter who wrote an article,9 the doctor who wrote a treatment protocol, the

legislator who voted for an amendment proposal in a legislation process and

the issuer of a certificate. The name of the person in charge usually has a strong

influence on the trustworthiness of the object. As mentioned above, object au-

thenticity interacts with integrity and subject authenticity can be used to verify

authorship. Authenticity is mandatory in publishing as well as integrity.

There has always been a need for applications which collect and analyse his-

torical information for public reference. Nineteen Eighty-Four [86] by George

Orwell shows a potential threat from a totalitarian regime: a single-party dic-

tatorship in which Big Brother controls everything, changing the past (and

facts already published) to control the public. A cluster of globally distributed

publishing servers providing concrete integrity may help prevent such manip-

ulation of history.

9Although, in some circumstances such as whistle-blowing, maintaining anonymity is a

highly desirable property.

24

Publishing-specific properties like publicity and anonymity must be consid-

ered in secure publishing frameworks. We have criticised the negative influ-

ence of anonymity in Chapter 1, but it is clear that anonymity exists on the

Internet and some applications require it. Let us discuss its positive aspects

and ways to control it. Among the major security models, anonymity is not

considered at all but there are anonymous publishing applications. Electronic

voting is one case: it needs anonymity of voters to achieve secret ballots, but

voting schemes should support universal verifiability. So these schemes usu-

ally publish some information to check the number of votes or their integrity.

Auction systems are similar.

There is additional value to anonymity when the conventional paradigm mi-

grates to a digital paradigm. For example, when we use banknotes, we do not

care about the traceability of our spending not because of technical reasons

but because of economic reasons. Since each banknote has its own serial num-

ber, there is a way to trace all banknotes. However, nobody does it because

it is both expensive and not usually necessary. The situation with electronic

cash is different; basically each transaction party has a facility to record trans-

action details and the cost is not high at all. Even duplicating digital money

costs nothing. Furthermore, each party’s logging facility can be connected and

accessible on the network. This increases the probability of transaction infor-

mation leakage. Being digital makes many things simpler and easier to use,

which can make them vulnerable.

If the tracing process can be done at a low price, it may interest organisations

like market research firms and advertisement agencies as well as the Inland

Revenue and the World Bank. It may reveal criminal activities, but it will

attack privacy simultaneously. Eventually, abuse of such traces will lead to

distrust in electronic transactions. This is a completely different environment

for users and it is an obstacle to the uptake of electronic economy. Potential

threats also reside in people’s minds; they are afraid of being accused by ac-

cident. It is not easy to persuade people to move to the electronic economy.

Anonymity can help reduce the threats in their minds.

25

2.10 Notes on security primitives

We present brief notes for some security primitives to supplement investiga-

tion on security properties carried out in the prior part of this chapter. This

notes include descriptions about digital signatures, one-way hash functions,

Proactive security and the Rampart. The first two are related to authenticity

and integrity, and we survey their definitions as given by others. The last two

are ways to obtain resilience and high availability, and we describe their de-

sign ideas.

2.10.1 Digital signatures

A digital signature10 is a value that enables to identify the originator and verify

the content integrity of a digital object. Public key cryptography is the typical

way to provide such signatures.

Digital signatures are used in subject authentication; we can identify the signer

using his key. It may not be a perfect problem-solver; the key may be stolen,

and the mapping between the key holder and the key is vulnerable. Tempo-

rary possession of a key is sufficient to impersonate the original key holder.

Digital signatures are also used in object authentication. Signature schemes

enable us to check whether the object has been compromised or not. They

play a role in integrity verification as well as in subject authentication; digital

signatures are comprehensive means of authentication.

Digital signatures are one of the most widely used methods of authentication

as well as passwords and a series of important studies have been carried out

on in this topic. We survey the definitions of digital signature offered in the

literature to date.

Diffie and Hellman introduced the concept of digital signature in their sem-

10signature 2. the name or special mark of a person written with his or her own hand as an

authentication of some document or writing

4b. a distinguish mark of any kind [105]

26

inal ‘New Directions’ paper [40]: it must be easy for anyone to recognise

the signature as authentic, but impossible for anyone other than the legitimate

signer to produce it. At the time when this paper was written, the only

known way of doing this was using Lamport’s one-time signature [67].

A decade later, Diffie gave another definition [39]: a way of demonstrating

to other people that (a message) had come from a particular person.

Goldwasser, Micali and Rivest gave a more involved description that explic-

itly mentions a number of algorithms and their properties: a key genera-

tion algorithm, a signature algorithm, and a verification algorithm. The

signature algorithm produces a signature using as input, the message,

the key and possibly other information (such as a random input); how-

ever, in their definition [47], the algorithm produces only a single output.

This definition excludes the large class of arbitrated signatures that were

already well known and in use by that time (for example, Akl’s signa-

ture [2]) as well as most of the special purpose signature constructions

that require interaction, such as undeniable signatures, designated con-

firmer signatures and oblivious signatures [101].

Naor and Yung refined the approach of Goldwasser, Micali and Rivest, by

cutting the complexity theoretic requirement of the construction [78]; it

was finally reduced by Rompel [95] to the existence of one-way func-

tions. However, like Goldwasser, Micali and Rivest, their definitions also

fail to deal with signatures that use interaction.

Pfitzmann provided an extensive study of disparate signature schemes in [87].

She concluded that the general definition of signature is a process with

a number of access points — typically for the signer, the recipient and

the court. Time is a necessary component, although logical time—in the

sense of a ‘global notion of numbered rounds’—is sufficient [87, p. 54].

Special access points can be added for risk bearers such as certification

and revocation authorities.

The ITU (International Telecommunication Union) defined digital signature

in the following two ways: a form of seal associated with a specified part

of a document which provides proof of uniqueness of the identity of the

27

originator, or source, who applied the seal; it supports non-repudiation

of origin of the sealed, i.e., signed, part, in Recommendation T.411 [57]; a

cryptographic transformation of a data unit that allows a recipient of the

data unit to prove the source and integrity of the data unit and protect

against forgery, e.g. by the recipient, in Recommendation X.800 [56].

2.10.2 One-way hash functions

A one-way function is a function that is easy to compute but computationally

infeasible to find any of the values that may have been supplied to the com-

putation; a hash function is a function that maps values of arbitrary length

to values of a fixed length. A one-way hash function is a hash function that

is one-way. It is a fundamental building block in cryptography and plays an

important role in subject authentication and object integrity validation.

We list a series of authentication schemes using one-way hash functions.

Needham introduced a subject authentication scheme [108, pp. 129–132] with-

out transmitting a password in the Cambridge time-sharing system: the

server stores the user’s password p; when authenticating, the user sends

h(p) where h is a one-way hash function and the server calculates h(p); if

they match, the user is authenticated. In 1997, Needham [81] introduced

a similar scheme for banking transactions.

Haller developed S/Key [51] that provides subject authentication, especially

authorisation. Its operation is as follows: a user chooses a random num-

ber r and calculates hi(r) for 1 � i � n with a one-way hash function h;

the user keeps all hi(r) and the server stores hn+1(r); when request autho-

risation, the user provides hn(r) and then the server calculates h(hn(r))
and compares it with hn+1(r); if they match, the user is authorised. This

is an extension of Needham’s scheme.

Molva et al. designed is an authentication and key distribution system named

KryptoKnight [76]. It uses a message authentication code mac that can

be either a block cipher DES [79] or a one-way hash function MD5 [94].

28

Authentication in KryptoKnight is carried out by challenges and their

responses: a user A chooses a nonce Na and sends fA, Nag to a server

S; the server challenges with fmac(Na, Ns, Na � S), Nsg where Ns is a

nonce chosen by S; then the user responses with mac(Na, Ns). Hence

both sides can authenticate each other.

Anderson et al. introduced the Guy Fawkes protocol [9] applicable to sub-

ject and object authentication. Its operation is as follows: a principal

chooses a random codeword X, calculates Y = h(X) where h is a one-

way hash function and constructs a message M containing Y and some

job description; then the principal computes Z = h(M) and publishes

it anonymously; the principal does the job specified in M and then re-

veal M. When he provides the message M and the codeword X, people

can verify whether he did the job by calculating the published hash Z.

The Guy Fawkes protocol provides a serialised mode and this mode can

be used to detect main-in-the-middle attacks on Diffie Hellman key ex-

change and thus to set up an confidential channel indirectly. In this chan-

nel, if a attacker cannot participate in it from the start, he cannot join in

the channel later. A detailed description of this scheme will appear in

Section 4.7.

2.10.3 Proactive security

As a result of recent advances in cryptography and the integration of cryp-

tographic algorithms into secure communication protocols, it becomes more

effective to attack the end systems and the weaknesses of the protocol imple-

mentation. With the openness of the Internet, these attacks have become more

feasible.

Two plausible solutions to these threats arise: one is periodic refreshment of se-

cret data, and the other is to distribute the secret data among multiple servers

using secret sharing and threshold techniques.

Periodic replacement of data is not always feasible, specifically for long-standing

secret data, such as long-term keys, signatures and certificates. Also, the dis-

29

tribution of data among several servers does not secure against breaks into the

entire system throughout the lifetime of the system, which may be very long.

Proactive security is designed to handle such situations. The model of proac-

tive security does not assume that all systems are always secure, i.e., they are

never controlled by the attackers. Instead, it considers cases where some com-

ponents of the system may be broken into. Furthermore, these protocols do not

even require identification of when the system is broken into; instead, some-

times they proactively invoke recovery procedures, hoping to restore security

to systems and cause the attacker to lose control. These proactive protocols

combine the idea of periodic updates with techniques of secret sharing.

We can find examples of proactive security which already exist, such as pe-

riodic change of password, one-time passwords and key refresh protocols.

Server synchronisation is also an application: a group of servers performs se-

cret sharing and is connected to a broadcasting medium. The system is syn-

chronized by a global clock. Time is divided into epochs of time (e.g., day,

week, month, etc.) and each epoch starts with a refresh phase – shares are

refreshed in every epoch.

2.10.4 Rampart-based services

Rampart is a toolkit for such services including techniques of atomic group

multicast, reliable group multicast of Byzantine agreement11-type, group mem-

bership and output voting. Basically it uses state machine replication which

provides outputs from replicated servers to a client; the servers in a process

group perform output voting. The Rampart toolkit is located between net-

11In 1982, Lamport, Pease and Shostak [68] introduced a basic problem in distributed com-

puting by taking a historical example of a battle in Constantinople (former Byzantium) be-

tween the Roman Empire and Ottoman battalions. The problem known as Byzantine agreement

is like that: can a set of concurrent processes achieve coordination in spite of the faulty be-

haviour of some of them? The faults to be tolerated can be of various kinds. The most strin-

gent requirement for a fault-tolerant protocol is to be resilient to so-called Byzantine failures: a

faulty process can behave in any arbitrary way, even conspire together with other faulty pro-

cesses in an attempt to make the protocol work incorrectly. The identity of faulty processes is

unknown and it reflects the fact that faults can happen unpredictably.

30

work and application layers; it is mainly in the transport layer. On the top of

the Rampart layer, one can build applications using the Rampart features.

As an application of the Rampart toolkit, the Ω service [93] provides interfaces

for managing public and private keys in a distributed environment; for public

keys, it supports registration, retrieval and revocation, while for private keys,

key escrow, recovery and message decryption with escrowed keys. The goal

of the Ω service is to provide a set of policy-dependent functions that can be

tailored to fit a wide range of key management policies.

2.11 Summary

We examined definitions and underlying concepts of properties related to pub-

lishing including integrity, authenticity, confidentiality, publicity, anonymity

and availability. As a preliminary study to construct a publishing policy, we

reviewed major security models including the Bell-LaPadula model, System Z,

Chinese Wall, the Biba integrity model, the Clark-Wilson model and the British

Medical Association model. Both security properties and policy models were

reviewed.

31

Chapter 3

The nature of publishing

In this dissertation, we use the term classical publishing to mean the conven-

tional method of making printed books or periodicals on paper, distributing

them via physical transport to shops, and selling them in shops on the street.

In contrast, electronic publishing means authoring and distributing an idea

through an electronic means over a networked environment. Here, we will

investigate the nature and requirements of publishing along with the contrast

between these two methods. The security aspect of publishing is also investi-

gated.

3.1 Changing paradigm

As we pointed out in Section 2.4, classical publishing takes many steps to

deliver a writer’s idea to readers of a publication. It requires some physical

equipment, professional printing skills and distribution networks which all

keep the publishing cost high.

The high cost deters copying and alteration. High quality editorial and pub-

lishing techniques require expensive efforts to forge; for example, quality pic-

ture display, sophisticated font design, long-lasting paper and special purpose

ink can all be expensive to imitate.

32

Any publisher has a target market and will investigate the customer’s interest

when selecting what to publish. As a result, readers usually have books meet-

ing their expectation. Successful publishers can obtain authority in the market

and the reader’s expectation for their forthcoming publications is high. The

more successful they want to be, the more carefully they have to select authors.

The selectivity of publication is driven by the market. This is the conventional

means of quality control in publishing.

An important aspect of classical publishing is persistence. When a book is

published once, it lasts physically and its content is unchanged. It is like a

word engraved on a stone. If we have enough distributed issues of a book, we

can be sure that, once printed, the content of the book cannot be altered. Even

though a fake copy is found, we can easily identify it and prove that it is not

genuine.

Another advantage of classical publishing is that paper is easy and comfort-

able to carry and browse anywhere without additional apparatus. Neither

electricity nor a specialised browser is necessary. Some electronic alternatives

to paper books, such as Compaq’s Virtual Book [28], have been developed and

provide various functions, but they assume some additional resources such as

a power source, network connection or remote document server. Their display

is not as comfortable as paper yet. By far, paper has been the most comfortable

medium for humans.

After the advent of the first moveable type printing press, leading to Jikzi

in the east and the Gutenberg Bible in the west, the cost of publishing de-

creased. The typewriter reduced the cost of self-publishing and the photo-

copier cut the duplication cost. Computer-aided publishing tools make it af-

fordable for individuals to publish high quality books at home. People could

achieve commercial-level printing quality when they use these tools, but still

lacked a means of distribution. As the photocopier provided a means of pas-

sive attacks on publishers, computer-aided publishing gave a means of active

attacks, but the distribution problem still remained.

Electronic publishing provides the needed distribution capability; as a result,

people can play a similar role to classical publishers. Electronic publishing

33

removes all the barriers to displaying and distributing one’s ideas; it changes

almost all the characteristics of classical publishing. The Internet explosion is

fundamentally about publishing; it is an electronic version of the Cambrian

explosion and will provide huge diversity. People with access to the network

can write their ideas without following any selection process and publish them

worldwide at once. Electronic publishing redefines the power balance be-

tween authors and publishers and challenges all cost-relevant issues.

Because of the many benefits of electronic publishing, it will change many

parts of the classical publishing world such as newspapers; in fact, there is

a newspaper1 which gave up publishing on paper and moved to electronic

publishing altogether. It seems that the movement of major publishing sectors

from classical media to online media will be fast.

We can also find a trial to make a link between the classical and the electronic.

In his popular book ‘Creating Wealth’ [106], Thurow does not include foot-

notes in the book but provides a web link to reach it. Obviously the book was

no longer self-contained and partially lost the benefit that it can be read with-

out any apparatus, although the author can provide more detailed informa-

tion to readers using hyperlinks in the electronic footnote. This hybrid trial is

not completely successful, but is meaningful in the era of changing publishing

paradigms.

However there is no system without drawbacks. One drawback with the web

is that if an author wishes to change what he published yesterday, he can do

so without any cost and accountability. This leads to a problem in publishing,

namely the reliability of the publication. Under these circumstances we cannot

verify whether a copy of the publication is current or not, and we cannot build

the same level of reliability as paper media have nor achieve the same legal

authenticity. This is important in electronic commerce; if documents lack legal

authenticity, they cannot replace paper-based transactions completely.

The quality of publications is another problem. With the rapid growth of the

1Associated Press (AP) reported that Orem Daily Journal in Utah, USA gave up paper

publication and turned to an electronic publishing only system on 5th August 1999. Professor

Pryor at University of Southern California commented this is the first case where a newspaper

turned to an online medium exclusively.

34

Internet, the quantity of electronic publishing is increasing enormously. Si-

multaneously, this increases the time taken to find trustworthy information.

Odlyzko [84] pointed out that demonstrative electronic writing led to a flood

of information, much of it of poor quality, and lowered the levels of under-

standing.

Even though we may have found reasonable-looking information, sometimes

we suspect that the publication was not written by the claimed author or that

the content is not as it was first published. So electronic publishing is no longer

evidence of what the author said. Without evidential power, electronic pub-

lishing cannot replace conventional publishing.

Since copying electronically published materials does not cost anything, elec-

tronic publishers have lost a barrier against illegal copying. Copyright protec-

tion has become one of the central issues in electronic publishing. It requires

fundamental changes in conventional understanding. We find a change in the

status of copyrighted material: if we buy a book, then we can resell it after use

and it is completely legal. All rights to handle this instance belong to the buyer

of the instance. However we cannot buy a digital instance but a licence to use

it. Hence reselling the licence is allowed but not reselling the instance itself.

Electronic publishing requires a different type of copyright protection system

from conventional publishing.

3.2 Electronic publishing

The advantages of electronic publishing are overall-cost savings, speed and

huge potential extendibility. As discussed in Section 3.1, electronic publishing

reduces expense in all steps of publishing. It minimises the capital cost and

thus makes publishing affordable for a large number of people. It deskills the

process; a primary school student can publish his homework to the world. The

speed is such that we can encourage active remote discussion. This is espe-

cially helpful in academia; an example of this is Ginsparg’s eprint archives [46,

103] that stores and distributes academic paper preprints, mainly in physics.

Furthermore, electronic publishing may incorporate several multimedia tech-

35

niques and software engineering techniques for more flexible and versatile

features.

Scholarly journals can move earlier to electronic publishing than other classical

publications, since most of users of the archives are involved in non-profit ac-

tivities, and want faster communication and collaboration. Although journal

publication itself is a profit-making enterprise, the profit mainly comes from

libraries not from individual researchers or students. The main purpose of

journal publishing is communication between scholars; for faster and more ef-

ficient research with a smaller budget, electronic publishing is a desirable sub-

stitute. Odlyzko [83] pointed out that the cost burden of the research libraries

for journal subscription is serious, and made a prediction that the libraries will

be a strong driving force for electronic journal publishing.

Since we do not need to have screening by the publisher, we can publish any

idea without hindrance. This has privacy aspects; at the same time it has en-

larged the freedom of speech and expression. People in Kosovo used the web

to demonstrate their situation to the world in the Kosovo conflict. During the

democratic process in Indonesia in 1998, electronic publishing was adopted by

Indonesian students to present their ideas despite government censorship.

Electronic publishing will replace a significant part of classical publishing.

Classical publishing will keep some territory because of its fundamental mer-

its, such as the material benefits of paper, the selected quality of the content,

persistent reference and straightforward evidence of authorship. Material fac-

tors such as browsing without additional devices and the familiarity of paper

printing may not be replaced shortly, but the other advantages can be matched

in the electronic world. To provide a system that does this is a goal of this dis-

sertation.

Consider the quality issue of electronic publishing. It can be an issue of au-

thority; if there is an authority who publishes selected articles or reports, the

quality of its publications is recognised by consumers. In classical publish-

ing, successful publishers have been a source of such authority and they have

built their authority with reliable publications meeting the consumer’s expec-

tation. In the electronic world, there are numerous small publishers and the

36

competition to achieve better recognition from consumers is harder than in the

classical publishing market. Furthermore, the lack of reliability of publications

is an obstacle to build such authority. However given reliability, authority will

emerge in time.

Persistence is an important robustness issue within electronic publishing; if

published material is only available for a short period, we cannot expect an

accumulation of knowledge, which is a serious problem for scholarly publi-

cation. This issue will be discussed in Section 3.3. In addition to long-lasting

publishing features, we need an infrastructure to browse old publications as

well as new ones to achieve persistent reference and this issue will be dis-

cussed in Section 3.4.

Masquerading is another aspect; when an article is published by Mallory with

the name of Alice, how can we know that this article is not written by Alice?

There is thus an authenticity issue. On the other hand, Alice might later falsely

claim that Mallory forged her article, so there is also a non-repudiation issue.

The evidence of authorship needs to be guaranteed; we will discuss this issue

further in Section 3.5.

The frozen copy issue, i.e., integrity issue of once published copy, will be dis-

cussed and a solution for the problem will be addressed in Section 5.3.

3.3 Long-lasting publishing

We have some hand-written books one millennium old in the library. Some

modern books may last as long but there are a number of problems for per-

sistence of publications, such as material weaknesses, the small number of

printed issues and limited distribution area.

Consider threats to conventional publications. Paper can get wet and damaged

easily because of its physical nature. Quality acid-free paper and long-lasting

ink are expensive. Book maintenance needs attention to the surrounding en-

vironment such as temperature and humidity. Because of the cost of book

manufacture and the size of book market, the number of printed issues is lim-

ited.

37

For these reasons, most books are destroyed over time. If a large number of

issues of a book could be distributed in a wide area, local incidents may not

affect its lifetime so much.

In electronic publishing, we still have the weakness of media; magnetic storage

is not robust enough to survive its centenary. Persistent maintenance is needed

even though the refresh process for the old copies is much simpler than in con-

ventional publishing. Although electronic means help us overcome cost, ge-

ographic and mass-publishing restrictions, the lesson from conventional pub-

lishing is still valuable: electronic publications should be stored in a safe place

and well-maintained and they have multiple copies in distributed areas. The

point here is the need for a safe repository and wide distribution of the publi-

cation.

A cluster of geographically distributed repositories, periodic backup, and re-

freshment for stored publications in each repository can constitute an infras-

tructure for long-lasting publishing. For such a cluster of repositories, the

recovery of faulty publications is an important issue. A mechanism for dis-

tributed storage and recovery will be presented in Section 5.5.

3.4 Persistent browsing

Although electronic publishing increases the feasibility of long-lasting pub-

lishing, it introduces a new problem, namely browsing environment preser-

vation. Classical publications only need our eyes to read them, but electronic

publishing requires additional apparatus. Sometimes this apparatus includes

hardware systems and the operating system on which the browsing appli-

cation can run. For example, keeping a VisiCalc2 file for the Apple II is not

helpful for later use because the program VisiCalc is obsolete and the runtime

environment, the Apple II computer, has become an antique. If we do not

keep the program and the computer, it is hard to browse the file. This is a

2VisiCalc is an early spreadsheet program running on a 32 KB Apple II and was developed

by Personal Software Inc. in 1979. An enhanced version for IBM PC DOS is available at the

original developer’s web site <http://www.bricklin.com/visicalc.htm> .

38

general phenomenon in the computer market and is becoming more and more

common since computer and software companies appear and disappear every

day. Since VisiCalc was a dominant program in its age, we may find some

proprietary emulators running on current computing environments. If we use

a less popular program, we cannot even expect such a favour. Even using a

dominant program in the market cannot be a solution to the problem.

Link rot is is a common inconvenience on the web; over time, hyperlinks may

become invalid or point to irrelevant content. Unlike the threats mentioned

above, this is mainly caused by mistakes rather than environmental hazards

or malice, and also caused by the transient nature of web content. It is a se-

rious enough factor to threaten persistent reference. Many causes of link rot

can be listed: not paying attention to management, intentional hiding of pub-

lished information, lack of resources, and critical changes of its working en-

vironment. These factors make web links transient; the destination document

pointed to by a web link can be frequently changed. It is a part of the nature of

web publishing. If a publication is both valuable and not intentionally hidden,

it is better to have a repository which enables us to keep public.

As we can see in the case of VisiCalc, keeping the browsing environment is not

efficient. It can be a solution to have a flexible mechanism that can support the

instructions used in browser applications, add new instructions easily and ex-

port files to any environment supporting the mechanism. Markup languages

can provide us with an answer to the problem. With the wide use of HTML,

markup languages have been regarded as a proper infrastructure for web pub-

lishing. XML3 is another standardised markup language supported by major

web browsers and provides flexible extensibility and functionality.

As well as the infrastructure for long-lasting publishing discussed in Section 3.3,

we now consider an infrastructure for persistent reference: distributed reposi-

tories on the network with highly flexible markup functionality. In each repos-

itory, we store published information which is backed up periodically. These

repositories are networked and share information with one another. They pro-

vide information on request with a unique identifier throughout the network

3Extensible Markup Language, see [23].

39

like the URI.4 The information published in these repositories is written in

a flexible markup language which can be made extensible by defining and

adding functions when necessary. We then can read published information in

the repository without keeping all the browsing environment. One mechanism

is the electronic equivalent of a conventional library.

Such a mechanism helps us maintain persistent reference and public availabil-

ity; we can cite publications held in the server in academic papers and thus

accumulate our knowledge. As a library, it provides public availability.

3.5 Evidence of authorship

In the past, authorship was regarded as an honour. The publisher’s selection

procedure makes it hard to publish one’s ideas without serious effort, which

is a way to maintain the quality of publications. In electronic publishing, the

value of authorship is falling as authoring becomes easier and the quality of

publishing is less controlled. In fact, it is not easy to distinguish a quality

article from a personal memo full of unproven arguments before reading it

carefully. Moreover, it is hard to know whether the idea presented in an article

is genuine or copied from other publications.

Copying other web publications without permission or notice is common-

place. When we search a topic on the web, we can find several links containing

the same paragraph in different sites. A copy-and-paste procedure produces a

seemingly good quality article in few seconds. Authorship in web publishing

is less clear than with conventional publishing.

The wide use of anonymity on the network blurs the definition of authorship;

some believe that it is a virtue of the Internet. Even high quality publications

can be found anonymously on the Internet: troubleshooting guides for some

systems and survey papers on specific subjects. Presumably, such authors re-

4Uniform Resource Identifier; it consists of Uniform Resource Locator (URL) and Uniform

Resource Name (URN); URL identifies resources via a representation of their primary access

mechanism and URN is required to remain globally unique and persistent even when the

resource ceases to exist or becomes unavailable. For more detail, see [20].

40

gard that their publications are pure contribution to the community and that

revealing the authorship is not necessary since they do not want material re-

wards. Technically, we have numerous ways and facilities to obscure the origin

of publications such as anonymisers and spam mailers.

The commercialisation of the Internet is another reason to make people stay

anonymous. If they reveal their email addresses or affiliation, they may receive

numerous unsolicited commercial mails. A number of web crawling robots are

in operation to collect identities on the Internet to sell to advertisers.

As a result, we have a complex situation with impersonation, unsolicited mails,

anonymous publishing and unauthorised copying. To make authorship clear,

it is helpful to have an authentication procedure to verify authorship, such

as digital signatures. When the author wants to protect his authorship, the

problem is simple, but we cannot expect that there are only fair players. As

in the case of false stock market research newsletters shown in Chapter 1, if

there is a publication that people want to believe but does not bear any proper

authorship, it is not simple to attribute.

3.6 Requirements of publishing

Along with the understanding obtained in previous sections in this chapter,

we list common requirements of both classical and electronic publishing.

Integrity of content The content of published material must not be altered af-

ter the publication. If it is necessary to change the content, errata or re-

vised editions may be published but they do not overwrite the original

publication. They are separate but linked to the original. In conventional

publishing, high cost and large distribution helps reduce compromises

of published content, but electronic publishing has no cost restriction, so

another protection mechanism is necessary.

Persistent reference Each publication has a permanent identifier of reference.

For example, the combination of book title, author’s name, publisher,

41

published year and edition can be an identifier. On the web, a URL can

do a similar work, but it is not enough to cope dynamically changing

web pages. A universally unique identifier like URI is necessary; we can

define it by the combination of the server URL and a server-wide unique

identifier.

Public availability The publication should be stored somewhere people can

easily access such as libraries and government document offices. When

a published document has a small number of instances, the repository is

of utmost importance. The lack of a reliable repository reduces the avail-

ability and credibility of publications. The quantity and area of distribu-

tion are also important. When one has a large and wide distribution, we

may not need a specific repository because we can find the original copy

in many places; the distribution itself plays the role of the repository.

Revision history preservation In conventional publishing, it is straightforward

to maintain a strict revision history. All revisions are published as an in-

dependent publication whatever the format is, e.g., errata, poster, leaflet,

another edition of the book, etc. Electronic publishing is very fragile in

this respect; no guarantee of strict revision control can be achieved with-

out appropriate tools.

Evidence of authorship Publication without explicit authorship is rarely found

in classical publications, although we may find some cases of anony-

mous publishing such as political leaflets and newsletters in a town un-

der siege. Most publications are made by registered publishers and there

is no motivation for them to hide the authorship. In electronic publish-

ing, we have no strong means to identify the author of a published ma-

terial. Anonymous writing is quite common on the Internet.

Copyright protection As discussed in Section 3.1, copyright of classical pub-

lications had been protected by the high cost of copying, but in electronic

publishing this is not the case. The nature of digital data makes it easier

to copy; we can hardly see the difference between copied and original

digital media. There have been various approaches to solve this problem

including digital watermarking and fingerprinting.

42

Collaboration support Before 1960, a large number of papers were written by

a single author, but this has changed; for example, the proportion of sin-

gle authored mathematical papers was 92.95% in the 1940s but it became

57.18% in 1994 [82]. This reflects the fact that collaboration among schol-

ars is becoming more commonplace. Publishing should support shared

document creation since it is a dominant means of communication and

collaboration.

Distribution The essence of publishing is a way to propagate knowledge and

the heart of publishing is the distribution network. For classical pub-

lishing, the network is supplied by the publisher and is maintained by

physical interactions. In electronic publishing, it is sufficient to have ac-

cess to the Internet in order to distribute ideas, and no further physical

interaction is needed. Electronic publishing provides a wider and easier

distribution means.

The requirements discussed here will be a guideline to design our publishing

framework.

3.7 Publishing and security

In Chapter 1 and previous sections in this chapter, we have seen fraud cases

and threats to authenticity, trustworthiness and immutability in electronic pub-

lishing. We found that they are related to integrity. Many frauds involve break-

ing the integrity of published information. If the content published on the web

is far different from the original, the publication cannot be credible any more.

Even for free academic services like Ginsparg’s eprint archives [46], such a

threat may be critical; if a significant number of preprints turn out to be fake

or not genuine, people will not use it any more. Although a service is freely

available and is provided with good will, it cannot be useful any more if it

loses credibility. In commercial applications, such as web auction or purchase

on the web, fraud can be more serious; it may become a crime rather than a

credibility issue.

43

Authorship becomes more important in electronic publishing than in classical

publishing. Under a fragile state of credibility, users need to decide which

information is credible and which is not. Since the author of a publication is a

major criterion of quality and value, a means to verify the author is desirable.

In a legal case, if we can identify the author, we know, at least, which person

to accuse.

From the system’s point of view, high availability or accessibility of the pub-

lished information is another security issue, although it is not the same level

issue as integrity or authenticity. Persistent access to publications strength-

ens their immutability and makes attacks against their integrity more difficult;

long-lasting publishing mentioned in Section 3.3 and persistent browsing in

Section 3.4 support persistent access.

We discussed security properties that can make web publishing credible and

reliable. The points made here will be used in the design of our publishing

policy and framework.

3.8 Summary

We investigated the nature of publishing in the era of changing publishing

paradigms. By comparing conventional and electronic publishing, we could

understand the similarity and the difference more clearly. We also presented

important points in web publishing including long-lasting publishing, persis-

tent browsing and evidence of authorship. Finally, we presented a series of

requirements for publishing and discussed the security issues.

44

Chapter 4

Applications of publishing

We present a series of applications of electronic publishing including electronic

commerce, electronic voting, public key certification and a medical applica-

tion. Following the description of publishing applications, we present related

research published by the author and his colleagues as example applications

including an electronic payment scheme [69], a voting scheme [70], an authen-

tication scheme [9] and the Global Trust Register [4, 5].

4.1 Electronic commerce

Recently, the most popular publishing application on the network may be elec-

tronic commerce. The merchant displays products and the customer buys

them on the network. Sometimes, the bank plays a role in clearing transac-

tions between the customer and merchant. The action of displaying products

on the network is a typical example of publishing.

In electronic commerce, we can see two types of publishing: one is descrip-

tions of products and the other is promotions to assist sales. Product-relevant

information includes price lists, specifications, billing and payment methods,

company policy and customer support. It must be reliable as any violation of

published information can be a breach of contract. Promotion is about adver-

45

tisement of products or notices of events. Such information is usually vague

and temporary by its nature. We focus on the protection of former type pub-

lishing.

In commercial transactions, trading conditions are critical publications. The

trading conditions may describe product price and specification. Hence a ref-

erence to these conditions should appear in the receipt. In conventional com-

merce, we usually do not have detailed specification of products because the

transaction is done face-to-face. However in electronic commerce, we pay for

products before delivery without seeing them and so fear that delivered goods

might be different from those advertised. When the fear turns out to be real,

we need a receipt with detailed specification so that we can protect our inter-

est. If we cannot get such a receipt, it may be an alternative to have evidence

such as a frozen copy of the electronic offer including the detailed specification

and perhaps the signature of a witness or a notary.

A number of real transaction cases that fail due to the lack of evidence can be

found. According to the Internet Fraud Watch,1 operated by the US National

Consumers League, complaints about Internet transactions have increased 600

percent since 1997. The occurrence of fraud on the Internet is becoming a se-

rious threat to Internet businesses. In this report,2 web auction and merchan-

dise are the two most frequent of the top ten online scams; for example, items

bought are never delivered or are not the same as advertised. In many cases,

proper invoices for legal claims are not provided; even though a buyer has

an invoice or a receipt by printing the invoice/receipt page on the web, he

cannot claim that it was generated by the merchant’s server. In the case of

non-delivery of items bought, using a credit card with a purchase protection

insurance may be a potential answer, since some credit card companies repay

the customer when problems happen, but this service is not universal. Eventu-

ally the high fraud rate of Internet transactions may increase transaction costs.

The case of items which are not as advertised is more tricky. Invoices usually

include only the name of the ordered product rather than detailed specifica-

tion but sometimes the specification is essential, e.g., the amount of memory,

1<http://www.fraud.org>
2<http://www.zdnet.com/anchordesk/story/story_2724.h tml>

46

or the main processor in a computer. It is not easy to accuse a merchant with-

out trustworthy evidence.

Payment is an important issue of electronic commerce and has been studied

in various ways. The requirements of payment schemes usually include the

evidence of transactions, the confidentiality of payment information and the

collusion prevention. We present a mechanism for payment in Section 4.5.

4.2 Electronic voting

Electronic voting is not exactly the same as publishing but its implementations

in practical schemes adopt various publishing mechanisms such as bulletin

boards, remailers and public channels.

Among the requirements of electronic voting as will appear in Section 4.6.3,

there are features that enable voters to check their voting process such as uni-

versal verifiability and precise tally. The universal verifiability is for voters to

verify that their votes are processed without any compromises by other par-

ties. To make voters ensure that the final tally is precise, voting schemes should

provide a means of verifying the total number of votes and the detailed result.

Bulletin boards are a popular means to publish the result of the vote.

Basically, the reason to use publishing mechanisms in a vote is to ensure in-

tegrity of votes. They also provide public availability and distribution. De-

pending on the purpose of a vote, persistent reference for the voting result

may be needed.

Anonymity is another aspect of electronic voting, since the majority of elec-

tronic votes are of the secret ballot type. We do not want to reveal the rela-

tionship between voters and their votes during or after the voting process. So

most voting schemes have or assume anonymising processes such as Chaum’s

MIX [29] or cryptographic alternatives. Shuffling the order of published votes

in a network of bulletin boards is a way of blurring the trace of votes.

An electronic voting scheme with an escrow-like feature is given in Section 4.6.

The scheme provides evidence of authorship, or who voted for what, when

47

there is an authoritative order to reveal it.

4.3 Certification authority

A certification authority is a public-key repository that certifies the ownership

of public keys. It plays a major role in the public key infrastructure. Recently,

the number of security products using public key algorithms is increasing sig-

nificantly and the role of certification authorities is becoming more important.

This application shares many aspects with publishing and needs most of the

publishing requirements such as integrity of content, persistent reference, pub-

lic availability, revision and revocation history, evidence of key ownership and

distribution.

Once keys have been registered in a certification authority, they should not be

contaminated or compromised. If a key can be changed without the certifica-

tion authority doing it, its authority will be undermined.

All the revocation information should be recorded and browsable on demand

so that users can see all the revocation history of keys. Since keys are usually

generated with a lifetime and secret keys may be exposed by accidents or at-

tacks, sometimes we need to revoke keys and we do not want to use obsolete

keys. When a key is revoked, its certificate should become invalid for future

signatures. Such information should be available from the authority.

As well as certificates, the information necessary to verify certificates should

also be available from the certification authority such as certificate specifi-

cations, certificate issuing procedures, used algorithms and related technical

primitives.

By definition, a certification authority is a means to distribute public keys.

Evidence of authorship, i.e., in this case, key-ownership certification, is the

main job of a certification authority.

We describe the Global Trust Register in Section 4.8. This is a certification

authority printed on paper. It is an example of a conventional publication

48

that supports electronic transactions and thus provides them with some of the

advantages of conventional publishing.

4.4 Medical application

The volume of medical information published on the network is growing rapidly

and the Internet is starting to be regarded as a proper medium to disseminate

medical information because of easy and wide access, multimedia data han-

dling, easy presentation and transparency over systems. When there is sen-

sitive information not proper to publish, people may use their organisation’s

intranet with some access control. For public or private information, in any

case, web publishing methods are an efficient means of sharing medical infor-

mation.

The British National Formulary is an application that illustrates the merits and

the problems of web publishing. It is a directory of medicines allowed in the

United Kingdom and is the authoritative source of prescribing information.

It is published every six months on paper by the British Medical Association

and the Royal Pharmaceutical Society of Great Britain. Since 1994, it is also

available online for doctors and pharmacists.

Unlike patient or prescription information, the formulary is not sensitive in

view of privacy and confidentiality. Its integrity and authenticity are the con-

cerns; its publishing requirements include integrity of content, persistent refer-

ence, public availability (with an access control), revision history preservation,

evidence of authorship, copyright protection and distribution.

It is clear that a compromised formulary can be a mortal danger, as it contains

drug dosage and other data. If this is wrong or obsolete, it may cause dan-

gerous prescriptions. Availability of the formulary is also important if doctors

are to rely on it in emergency cases. The formulary is updated periodically.

When an incident that involves the formulary happens, we need to identify

who was responsible for the incident and verify whether a genuine copy of

the formulary was used.

49

The online formulary has a proprietary user interface running on Microsoft

Windows3 operating system and is available for limited users; in fact, the on-

line version is written in a type of SGML and is browsed by its own client soft-

ware called Q browser.4 If it migrates to XML, the service can use freely avail-

able XML-enabled web browsers since current major web browsers support

XML. Hence, without additional client software, the online formulary could

be seen on usual web browsers.

Another concern is that in local hospitals, doctors use their local formulary in

the hospital as well as the British National Formulary. It is necessary to merge

or link information for the same medicine even though they reside on different

databases. Since the local formulary is confidential because it reflects decisions

on rationing, we should provide a distinction between the local formulary and

the national formulary. From the user’s point of view, it is necessary to see

both formularies in one screen but with a distinct interface. A hierarchical

definition of document types and their inheritance can make this job easy and

XML supports such functions.

4.5 Contribution 1: Customer-centric payment

We present an electronic payment scheme focused on personal secret man-

agement and customer-centric transactions; this example application is sum-

marised from our work [69] presented in the USENIX workshop on electronic

commerce in 1998.

4.5.1 Motivation

As a means of authentication, shared secrets have been used. In such cases,

the leakage of the secret is a significant threat. Hence sharing the same secret

between the communication principals is not a good means of authentication.

3A trade mark of Microsoft Inc.
4A trade mark of Quartet Software Ltd.; see <http://www.quartet.demon.co.uk/

qbrowser/qbrowser.htm>

50

We suggest a way of authenticating customers without transferring explicit

customer secrets and provide a secure online transaction scheme with the au-

thentication mechanism.

For user authentication, the traditional password scheme is still one of the

most common methods, although notoriously vulnerable. To survive such

vulnerability, some interesting ideas have been put forward, such as strength-

ening passwords [1], enhancement of existing password protocols [16, 17],

protection for poorly chosen passwords [49] and one-time password schemes

[51, 99].

Basically, we extend the idea of the personal identification number manage-

ment scheme of Needham [81] which is an extension of his user-authorisation

mechanism in the Cambridge time-sharing system [108, pp. 129–132].

In access control, we have to consider who generates secrets and who main-

tains them. Some banks generate customers’ personal identification numbers

(PINs), and send them out; some online shops ask customers to generate pass-

words for their services, and keep the passwords in their database. It is com-

mon that the personal secret is known to the service provider such as banks or

online shops as a shared secret between the service provider and the customer.

However, there is no reason for customers to trust service providers; in fact,

this often turns out to be dangerous. We present a customer-centric transaction

model in which the personal secret is generated and maintained by customers.

4.5.2 The online transaction scheme

We define three procedures for online transactions: registration, transaction

and secret-revocation, and there are three principals: a customer C, a merchant

M and a bank B. The term ‘merchant’ includes online service providers and

web publishers such as shopping malls, book sellers, online travel agents and

news providers.

In the protocol description, the notation A ! B stands for protocols between

A and B, and A ! B a message from A to B. The symbol := denotes an

assignment. Let h be a one-way hash function. Figure 4.1 shows the interfaces

51

between the principals.

R
eg

is
tr
at

io
n

Tr
an

sa
ct

io
n

Se
cr

et
-r
ev

oc
at

io
n

R
egistration

Transaction

Secret-revocation

Transaction

Customer

B
ank

M
er

ch
an

t

Figure 4.1. Principals and their interfaces in the customer-centric payment scheme: in our

online transaction mechanism, we have three principals, a customer, merchant and bank,

and three procedures that are applied between these principals, registration, transaction and

secret-revocation. Between either the bank or the merchant and the customer, all the three pro-

cedures are applied; between the bank and the merchant, the transaction procedure is used.

The registration procedure

The registration procedure has two steps: registration with the bank and with

the merchant. First, the customer generates a random number rb, chooses a

secret p, and calculates a hash C := h(n, b) of her name n and date of birth b.

Note that if the combination of n and b is not sufficient to uniquely identify

the customer, more information can be adopted. The customer writes rb, B,

and C on a diskette for private use, say D, and writes C and Kb := h(rb, p)
on a different diskette for the registration to the bank, say Db. She then sends

Db to the bank B with her account number a in a reliable way such as by

registered mail or personal delivery to a branch of the bank; this submission

method may be replaced with an electronic secure channel between principals

for convenience, but it is not a prerequisite.

52

When the diskette Db is received, the bank creates a link between the cus-

tomer’s account and Kb, and sends an acknowledgement with a random num-

ber b back to the customer. The customer stores b on her private diskette D.
This is the registration procedure with the bank; the registration with the mer-

chant is similar. The customer generates a random number rm, stores it on her

private diskette D, and then sends the merchant a diskette Dm containing C

and Km := h(rm, b, p) in a similar way as with the bank. Then the merchant

registers the customer’s information, and sends an acknowledgement with a

unique merchant secret m back to the customer; m is a uniquely issued value

by the merchant for each customer and is used for the merchant verification

by the bank. The customer stores m on D, calculates Kmb := h(m, Kb),
and sends (C, m) with the merchant identity M to the bank. Then the bank

constructs Kmb by h(m, Kb).
Protocol

C ! B

C: creates rb and p and forms C := h(n, b) and Kb := h(rb, p)
stores (C, B, rb) on diskette D and (C, Kb) on Db

C! B: Db, a
B: stores C and Kb with respect to a

creates a random number b
B! C: b
C: stores b on D
C !M

C: creates rm and forms Km := h(rm, b, p)
stores (M, rm) on diskette D and (C, Km) on Dm

C!M: Dm
M: creates account for C with Km and a random number m
M! C: m
C: stores m on D

calculates Kmb := h(Kb,m)
C! B: C,M,m

53

B: constructs Kmb with m and Kb
adds Kmb and M to C’s information

The transaction procedure

When a customer wants to make a transaction, she establishes a connection to

the merchant by invoking client software; the software requests the secret p,

and establishes a connection5 to the merchant. The merchant then generates

a transaction identifier t and sends it back to the customer; t is a nonce for

preventing replay attacks and it consists of transaction time, date, and a serial

number. The software calculates h(t, Km), where rm is from D to generate

Km, and sends (C, h(t, Km)) to the merchant.

The merchant verifies h(t, Km) for customer authentication. If it is valid, the

merchant calculates h(t, m, Km), and sends it to the customer with an ac-

knowledgement; the customer then compares the received value with m for

merchant authentication.

When the customer places an order, the merchant sends the payment serial

number y and payment amount u to request payment; the customer gener-

ates a nonce n, calculates a ticket Tmb := h(t, y, u, Kmb, Kb), and confirms

payment to the merchant by sending (C, B, a, u, y, n, Tmb). The merchant re-

quests the bank to clear the amount by sending (M, C, a, u, t, y, n, Tmb) to the

bank. When Tmb is correct, the bank transfers the amount u to the merchant

with an acknowledgement including h(n, b, Kb); the value h(n, b, Kb)
is used by the merchant to generate an acknowledgement ticket for the cus-

tomer. The bank must store the ticket Tmb for some period6 so that it can

detect replays. With the bank’s acknowledgement, the merchant generates

Tbm := h(t, u, Km, h(n, b, Kb)) and sends it to the customer as an acknowl-

5A secure connection is not necessarily required, since we have the secrets Kb and Kmb; if

we use a secure channel between the customer and the merchant, the transaction identifier t

can also act a shared secret.
6For example, in UEPS/VISA COPAC [6], the merchant must request the transaction clear-

ing to the bank within 21 days from the transaction date, otherwise payment will not be made.

We may apply similar measures.

54

edgement; the customer checks it, which can be used as a proof of the purchase

order and of a proof of payment in case of dispute.

We may consider a false merchant who attacks the real merchant by taking

orders and not delivering; since Tmb contains Kmb, he cannot make monetary

gain, furthermore, he must send the ticket Tmb back to the customer so that

the customer can verify the eligibility of the merchant.

Protocol

C!M: service invocation via client software

M: generates a transaction id t

M! C: t

C: calculates h(t, Km)
C!M: C,h(t, Km)
M: verifies h(t, Km) and calculates h(t,m, Km)
M! C: h(t,m, Km)
C!M: makes an order

M! C: y, u

C: generates a nonce n
calculates Tmb := h(t, y, u, Kmb, Kb)

C!M: C,B, a, u, y, n, Tmb
M! B: M,C,a, u, t, y, n, Tmb
B: verifies Tmb and calculates h(n, b, Kb)
B!M: h(n, b, Kb)

clear the payment of amount u

M: calculates Tbm := h(t, u, Km, h(n, b, Kb))
M! C: Tbm
C: verifies Tbm
The secret-revocation procedure

When the customer wants to change her secret, she has to send old informa-

tion with a new secret. We suggest a way of revocation and update of se-

crets: the customer sends a nonce nb with the identity C to the bank, then the

55

bank sends back a ticket Tb := h(nb, Kb). The customer verifies the ticket

Tb, if it is valid, she requests to update her shared information by sending(C, h(nb, Kb, b) � K
0b, h(K 0b, nb)), where K

0b is the new secret; if the cus-

tomer wants to change p as well, she can do it by following the same proce-

dure, but does not have to. When h(nb, Kb, b) is correct, the bank changes

the customer’s information. The procedure with the merchant is similar. If the

customer cannot remember her previous information, the information cannot

be revoked online so revocation must be done in off-line manner.

Protocol

C ! B

C! B: C,nb
B! C: Tb := h(nb, Kb)
C: verifies Tb

creates the new secret K
0b

C! B: C,h(nb, Kb, b)� K
0b, h(K 0b, nb)

B: verifies h(nb, Kb, b) and h(K 0b, nb)
updates C’s secret

B! C: ack

C !M

C!M: C,nm
M! C: Tm := h(nm, Km)
C: verifies Tm

creates the new secret K
0m

C!M: C,h(nm, Km,m)� K
0m, h(K 0m, nm)

M: verifies h(nm, Km,m) and h(K 0m, nm)
updates C’s secret

M! C: ack

Table 4.1 shows the information stored in each principal after these procedures.

56

Principal Stored information

Customer C, B, M, rb, b, rm, m (p is in mind)

Merchant C, B, Km
Bank C, M, Kb

Table 4.1. Information stored in each principal: all principals have the communication peer

identities such as C, B and M, and the customer creates basic secrets such as random numbers

and nonces. The merchant and the bank have basic linkage information for the transaction

such as Km and Kb.

4.6 Contribution 2: Big Brother ballot

We present an electronic voting scheme which keeps the confidentiality of

votes unless there is an authoritative order to publish the relationship of voters

and their votes; this is a sort of escrowed voting schemes and is summarised

from our work in [70]. We used a metaphor to name the scheme Big Brother

ballot since such authoritative orders seem to be commonplace in a totalitarian

regime like in the Nineteen Eighty-Four [86].

4.6.1 Motivation

Let us consider the following election model: there is a committee in Parlia-

ment and the members of the committee consist of representatives of several

counties; they mainly stay in their county except during the Parliamentary

session. Occasionally, they need to make decisions outside the session. To

vote, they would usually arrange a physical meeting but this is inconvenient.

Electronic voting can be an alternative; through the public network, they can

participate in voting and verify the result electronically. So far, many people

discussed the security requirements for electronic voting schemes.

We introduce another requirement to this model. After the voting process, if

necessary, the detailed voting result can be revealed and the members can see

who voted for or against, although voting was carried out in secret for fairness.

57

Since the members of the Parliament are representatives of their county, they

may want to demonstrate their performance to the people. In this respect, the

disclosure of votes later can be a requirement.

4.6.2 Background

Electronic voting schemes have been extensively studied in the last decade and

several schemes have been suggested, although only a relatively small num-

ber of schemes have been implemented and used. We may categorise these

with some criteria: the existence of anonymous channels or public channels

[44, 100], single voter’s vulnerability [62], method to protect privacy [19, 33],

need of a trusted authority [109], practicality or efficiency [22, 34], and crypto-

graphic features used [85].

We are interested in practical schemes with sound potential for practical imple-

mentation. The Fujioka-Okamoto-Ohta (FOO) protocol [44] is one such prag-

matic scheme; it has several implementations with minor variations [35, 38,

52]. We adopt this protocol as the skeleton of our scheme and will make a vari-

ant to satisfy the model we presented. The major problem of the FOO protocol

is that the protocol requires all the registered voters to participate in all stages

of the protocol during voting; in practice, voters can give up at any phase dur-

ing voting, and it is another way of expressing their preference which we need

to reflect.

We follow Yahalom’s representation [109] of the FOO protocol and its basic

notation is as follows: fmsggKA+ represents the public key encryption of msg

with A’s public key, and fmsggKB- represents the concatenation of msg and a

digital signature on the hash of msg with B’s private key.

The FOO scheme uses Naor’s bit-commitment [77] using a pseudorandom

number generator COMs(msg) of msg with a secret value s and Chaum’s

blind signature [30] BLIr(msg) of msg with a blinding factor r. The comma ‘,’

denotes the concatenation between two components, the arrow A ! B com-

munication from A to B via any channel, and the double arrow A) B via an

anonymous channel.

58

4.6.3 Security requirements

We list the requirements that the Parliamentary Committee model has to sat-

isfy and we describe the definition of each requirement.

Post revealability Votes can be revealed after voting by an authoritative order.

Conditional privacy All votes must be secret until officially disclosed, i.e., the

secrecy of votes shall be guaranteed before the revelation.

Universal verifiability Every action by a voter, whether initialising a vote, ac-

tual voting or publishing a vote, is verified by the proof that the action

is correctly completed; also, anyone can convince himself that the pub-

lished final tally is computed fairly from the ballots that were correctly

cast.

Precise tally All valid votes must be counted correctly; the number of invalid

votes should be also notified at the end of the voting.

Double voting protection No voter can vote twice.

Eligibility No one who is not allowed to vote can take part in the ballot; in our

scheme, we assume that members of the committee are registered by the

administrator before voting, but any masquerading should be detected

and denied.

Fairness Nothing must affect the voting; voting must present as accurately as

possible the preference of the voters [41].

4.6.4 The ballot scheme

In the scheme, there are four principals: voter, administrator, counter and ex-

poser. The voters Vi are a set of principals able to cast a vote; one vote is

admitted for each voter. The administrator A is a process that verifies eligi-

bility of voters, makes a blind signature on the bit-commitment of the vote

and publishes the blinded message for each voter. The counter C is a process

59

that verifies the administrator’s blind signature, verifies and counts votes, and

publishes final totals. The exposer X is a process that registers key information

to reveal votes, issues and publishes certificates for the registration needed in

the next phase, and reveals the relationship between voters and their votes

when it is requested.

We assume that all the cryptographic primitives are used in the conventional

sense, that all the keys are sufficiently long, and that random values are suffi-

ciently random and long.

Each principal in the scheme publishes lists; when a principal publishes a list,

the whole list should be signed by the principal; otherwise it may be possible

for attackers to manipulate it. To defend against replay attacks to later votes,

we need to adopt temporary information such as nonces or timestamps; for

brevity, we omit the description of this feature in each procedure and assume

that nonces generated by principals are combined in the communications.

The Big Brother ballot scheme consists of six phases and they are about cast-

ing votes, preparing vote-escrow information, anonymising votes, issuing re-

ceipts, counting votes and revealing votes, sequentially. The flow of each

phase is described as follows:

First Phase

1. Vi: creates her vote balloti and a random si
creates a bit-commitment COMsi(balloti) and a random ri
creates a blinded message Mi = BLIri(COMsi(balloti))
creates a bit-commitment COMri(KVi+)

2. Vi ! A: Vi, fMigKVi-, COMri(KVi+)
3. A: verifies Vi eligibility and Vi’s signature of Mi
4. A! Vi: fMigKA-
5. Vi: unblinds with ri and verifies fCOMsi(balloti)gKA-

If verification fails, claims by publishing COMsi(balloti)
and A’s response.

60

6. A: publishes a first-phase-voters list of m entries

such that each entry i is [Vi, fMigKVi- , COMri(KVi+)]
7. anyone: verifies Vi eligibility and Vi’s signature of Mi for each Vi
Second Phase

8. Vi ! X: fVi, frigKVi-gKX+
9. X: verifies ri by computing KVi+ from COMri(KVi+)

in the first-phase-votes list.

10. X! Vi: certi = fCOMri(Vi)gKX-
11. X: publishes a second-phase-certificates list of n entries

such that each entry i is [i, certi]
12. anyone: verifies certi
Third Phase

13. Vi) C: fCOMsi(balloti)gKA- , certi
14. C: verifies A’s signature of COMsi(balloti) and certi

generates a sequence number j

publishes a third-phase-votes list of p entries

such that each entry is [j, fCOMsj(ballotj)gKA- , certj]
15. Vi: verifies fCOMsi(balloti)gKA- in the published list

16. anyone: verifies A’s signature of COMsj(ballotj) for each j

Fourth Phase

17. Vi) C: j, si
18. C: publishes a final-receipts list of q entries

61

such that each entry is [j, COMsj(fjgKC-)]
19. Vi: verifies COMsi(figKC-)
Fifth Phase

20. C: obtains balloti and verifies vote validity

publishes a final-votes list of t entries and a result summary

such that each entry j is [j, fCOMsj(ballotj)gKA- , sj, ballotj, certj]
21. Vi: verifies balloti in the published list

22. anyone: verifies COMsj(ballotj) and ballotj, for each j

verifies consistency of results summary and q = t

Sixth Phase

23. X: calculates COMsj(ballotj) for each Vj from the first-phase-voters list

fetches ballotj in the final-votes list for Vj
publishes a voter-vote list such that each entry j is [Vj, rj, ballotj]

24. anyone: verifies certificates certj and voting details

The sixth phase is the revelation procedure which can be done with an author-

itative order. If there is no need to reveal votes, we terminate the voting at the

fifth phase.

4.6.5 Discussion

Our scheme satisfies the requirements mentioned in Section 4.6.3 and we dis-

cuss the scheme with respect to each requirement.

Post revealability This feature is guaranteed by the exposer; a voter Vj registers

a blinding factor rj with the exposer; nonetheless, the exposer cannot re-

veal the vote before the end of voting, since the vote is protected by the

62

bit-commitment with a random number sj; without the blinding factor

registration, the voter cannot go to the third phase since the certificate

from the exposer is required in the third phase; in order to issue a cer-

tificate for the submission of the blinding factor, the exposer verifies the

blinding factor by calculating COMrj(KVj+) from the first-phase-voters

list; upon demand, the exposer can reveal the relationship between vot-

ers and votes by referencing the first-phase-voters list and the final-votes

list; the value COMsj(ballotj) is used for validating Vj-entry in the final-

votes list.

Universal verifiability For each phase, each principal, except voters, publishes

information collected and anyone as well as the voters can verify the

information at each phase; if a voter finds any incorrect information, she

can prove where the failure happened.

Precise tally In the original FOO protocol, it has been assumed that all regis-

tered voters should follow all phases of the protocol, i.e., the number

m of published entries in the first-phase-voters list should be equal to

the number t of published entries in the final-votes list; we assume that

any voter can give up voting at any phase, but it is then possible for the

counter to make a forgery by announcing some number of votes between

p and t; in order to prevent such a forgery, we force the counter to publish

COMsj(fjgKC-) for the received sj’s; at the end of the fifth phase, anyone

can verify q = t.

Double voting protection If anyone votes more than once, it is detected by the

counter in the third phase and the multiple voting is denied; the admin-

istrator’s blind signature is used for this purpose.

Eligibility The validity of voters can be checked by the nature of the digital

signature; if a signature is incorrect, the false signer is not allowed to par-

ticipate in voting; in the first and the second phase, the voter’s signature

is used for eligibility checking and in the third phase, the administrator’s

blind signature is used for the same purpose.

Fairness Since nothing is revealed before the counting of ballots, nothing can

affect the voter’s decision; also the counting cannot be affected by the

63

previous phases, because it can be done after all the procedures in the

previous phases are completed and the procedures do not reveal any

information about ballots.

Conditional privacy Before the revelation, voting is kept secret, as is voters’

privacy; if the sixth phase is not invoked, then the ballot remains secret.

4.7 Contribution 3: The Guy Fawkes protocol

We present an authentication scheme named the Guy Fawkes protocol [9] that

uses hash operations, hash chains and publishing process. The publication

process in the scheme plays an important role in authenticating that the signer

claims.

4.7.1 Motivation

The Guy Fawkes protocol is a way of digital signature that requires only a

small number of hash function computations. The underlying idea came to us

on the 4th November 1996 while discussing how a modern day Guy Fawkes7

could arrange publicity for his cause but without getting caught.

The naı̈ve approach might be to telephone the newsroom of the Times and say

“I represent the free Jacobin army and we are going to carry out a liberation action

tomorrow. Once we have done it, I will call using the code word ‘Darnley’ to state our

demands”.

This is not a particularly secure way of doing it. The message will be passed

on to the police, who might remember that the state opening of Parliament is

imminent and double the guard. So it would be more prudent to send a hash

7Fawkes conspired to blow up King James I and the Houses of Parliament in 1605; this was

an attempt to end the persecution of Roman Catholics. Fawkes was caught as a result of a

communication security failure (a coded letter from one of the conspirators was intercepted

and deciphered). After his public execution, Parliament ordained the 5th of November as a

day of thanksgiving for their narrow escape, and it is still celebrated by bonfires and fireworks.

64

of the message. Provided that the hash function is pseudorandom, this will

not leak information. If Fawkes is now successful, he can reveal the message

and find himself in possession of a very credible codeword. However, such

a protocol is open to abuse by newspaper staff. So we replace the codeword

with its hash.

4.7.2 The protocol

A basic protocol can be described as follows:

1. Select a random codeword X and form its hash Y = h(X)
2. Construct a message M = “We are the free Jacobin army and we are going to

blow up the Houses of Parliament tomorrow. The codeword by which we will

authenticate ourselves afterwards will be the preimage of Y”

3. Compute Z = h(M) and publish it anonymously

4. Blow up the Houses of Parliament

5. Reveal M

However, the codeword X can only be used once. Our innovation is to chain

new codewords from old, so that Guy Fawkes can keep on identifying him-

self. Formally, we define this protocol by induction. Suppose that we have

published Zi followed by the message Mi containing h(Xi), where our secret

codeword is currently Xi. We wish to authenticate the message Mi+1. We fol-

low the following protocol:

1. Select a random codeword Xi+1 and form its hash h(Xi+1)
2. Compute Zi+1 = h(Mi+1, h(Xi+1), Xi) and publish it

3. Reveal Mi+1, h(Xi+1) and Xi
65

The first codeword needs to be bootstrapped by some external mechanism; in

most applications, this would be a conventional digital signature or an out-of-

band authentication, perhaps using a conventional certification authority.

In the Guy Fawkes protocol, the goal is to associate a single act of authentica-

tion with a stream of future statements rather than a stream of future events.

It would not be sufficient to simply use a hash chain as a set of different pass-

words for authenticating each political statement. Anyone who was tapping

the line when the statement and its password were sent to the newsroom could

alter the statement; staff in the newsroom could also substitute messages at

will.

In other words, the broadcast commitment step has the critical effect of pro-

viding nonrepudiation, and gives the Guy Fawkes protocol the same effect as

a digital signature. Were the Jacobins able to use asymmetric cryptography,

then their first message could just as well have read “We are going to blow up

the Houses of Parliament on the 5th November. Future demands will be digitally

signed and the public verification key is W.” This could have been encrypted and

published, with the key made known after the event.

4.7.3 Discussion

The authentication process of the Guy Fawkes protocol relies on published

hash values. It assumes an anonymous publishing service that publishes the

requested hash value transparently without exposing the publisher; this is an

example of publishing requiring anonymity. If the hash value generated by

the protocol initiator is published properly and is the same everywhere the

initiator can prove what he claimed afterwards.

Unlike other signature schemes, the protocol is not self-contained without

publishing channels, but if we can use such a publishing service, the proto-

col works efficiently with a small number of hash computations. In fact, we

can find similar publishing services on the network, such as an advertisement

section of online newspapers, newsgroups and closed user group mailing lists.

Since the protocol assumes a chronological ordering between the publication

66

of the hash value of a statement and the event claimed in the statement, we

need a means of ordering events such as a timestamping service or an ordering

certifying service.

Another aspect of this protocol is verification timing. In conventional public

key signature schemes, we can verify the signature of a document anytime; the

time of verification is decided by the verifier. In contrast, the signer can decide

the time of verification in the Guy Fawkes protocol.

The Guy Fawkes protocol may not be much of practical value compared to

conventional digital signatures but there are some applications at which it ex-

cels. One of these, signing bidirectional video streams, is discussed in our

paper [9]. Its value to this dissertation lies in illustrating an unexpected link

between publishing and signature.

4.8 Contribution 4: The Global Trust Register

The Global Trust Register [4, 5] is a book containing the fingerprints of certified

public keys and the names of key holders and other information associated

with them. It thus implements a certification authority, but using the conven-

tional route of printing on paper rather than electronic means. This project

has been carried out with Anderson et al. between 1997 and 1998, and two

editions of the register were published in 1998 and 1999.

Compiling this book was an interesting exercise in security engineering. It

helped us clarify some technical and business issues associated with public

key certification.

4.8.1 Motivation

When Diffie and Hellman published their seminal paper [40] on public key

cryptography in 1976, their vision was that people would look up public keys

in the phone book. Phone companies seized on this as an opportunity and de-

veloped this idea into a standard ITU-T X.500 [61] for a distributed electronic

67

directory. The certificate format X.509 [60] developed for this directory is com-

ing into increasingly widespread use, but the global database was never built

and now will probably not be.

One reason is the diversity of telecommunications; while Britain had two phone

companies in the 1970’s, it now has over 200 public phone service providers, as

well as many more network service providers and thousands of private corpo-

rate networks. Following this model, we find a growing number of local X.509

certification hierarchies in networks serving government, electronic document

interchange and banking, as well as a number of specialist companies offering

key certification services to the general public.

Yet these networks are still mostly isolated. Public certification authorities do

not certify each others’ keys and so there is little in the way of a general trust

infrastructure available. Some certification authorities have managed to get

their root keys bundled with common web browser software, but many cer-

tification authorities, especially outside the USA, have failed to persuade the

software companies to include them. As a result, there is no cheap and effec-

tive way for Internet users to check the validity of public keys on which they

may wish to rely. A US user, for example, cannot easily check the validity of

a certificate from a server in Korea, if this is issued by a Korean certification

authority whose root certificate is not included in the user’s browser.

Many users have turned instead to PGP, which can be used without any pre-

existing infrastructure, or to proprietary products such as various EDI systems.

This only adds to the complexity of key verification.

We therefore initiated a project in 1997 to solve this problem by making avail-

able, in a paper book, fingerprints of public keys together with the names and

addresses of their owners. This book, which we named the Global Trust Reg-

ister, contains the fingerprints of over 500 public keys and the information

associated with those keys.

The process of compiling the keys in the Global Trust Register involved three

steps: selecting which public keys to include, verifying that their owners were

as stated in their key files and were in possession of the corresponding private

key, and checking the associated information.

68

4.8.2 Conventional publishing of keys

Demonstrating the impracticality of government control of cryptography was

one motive for publishing the register in the form of a book. It was not the only

reason. The conventional book format publication provides other advantages.

The published information about keys is frozen. The nature of conventional

publishing lets us achieve a higher integrity level than electronic publishing.

The book becomes a persistence reference stored in libraries. Furthermore, it

satisfies the other requirements of publishing defined in Section 3.6: public

availability, strict revision history and strong evidence of authorship. Since

both editions of the register are available in a dominant online book shop and

the second edition is distributed by a world-class publisher, the distribution is

highly tamper resistant.

Perhaps conventional publishing can help promote the use of electronic trans-

actions with confidence; information about fragile electronic matter in a con-

ventionally reliable container provides the conventional level of reliability to

the electronic matter. The register presents a way to compensate the weak-

nesses of electronic publishing with the strengths of conventional publishing.

A weakness of book-format publishing of keys is timely revocation. Practi-

cally, key revocation can happen any time and the revocation has to be known

to the reader of the book in time. There are several reasons to change informa-

tions published in the book such as movement, change of work and obsolete

email address. For example, PGP certificates have no period of validity and

so awkward structures such as ‘year keys’ have been invented. One potential

problem is that publication dates of the Register might not always coincide

with the time important year keys such as when CERT8 keys are generated;

for example, entries for the 1999 edition was closed at the end of August 1998

and it was published in March 1999. Book publishing and distribution cannot

match the update speed of electronic media.

Today’s real-world revocation services such as the one for credit cards have

matured over many years. More and more critical certification authority prod-

8Computer Emergency Response Team; see <http://www.cert.org>

69

ucts provide functionality of online certificate status-check servers rather than

that of the simple blacklists used by X.509 Certificate Revocation Lists [60]; yet

online checks are expensive in terms of the peak communications capacity that

must be provided, and a distributed blacklist has turned out to be economic

with the world’s largest existing revocation system, the list of lost and stolen

credit cards. This is held in a distributed form with multiple levels of local

stand-in processing. So we believe that well-engineered public key infrastruc-

ture services will end up combining these ideas.

However, although we were prepared to publish revocation information for

the keys in the register on the web, there have been no revocations due to key

compromise; there have been many address changes. This was contrary to

general expectations, and may be useful to future infrastructure builders.

4.8.3 Confidentiality vs. integrity

As a side effect of versatile functionality of dominent public key algorithms,

most users of both PGP and of X.509 products use the same key for encryp-

tion and signing although confidentiality keys often need to be managed in

different ways from integrity keys. This may cause serious problems in coun-

tries which introduce key escrow or otherwise mandate government access to

decryption key material; in such a case, escrowed encryption keys which are

also signature keys can be used for generating fake signatures by a key escrow

agency.

To avoid the problem, we found that some people have been using two PGP

keys, one for confidentiality and the other integrity. It can be a warning for the

key owner himself but cannot be a proper solution if the integrity key can be

used for confidentiality by the nature of the underlying algorithm.

During the project, we found that some other public key based application

vendors started to recognise the problem and provide different key pairs for

encryption and signature.

70

4.9 Summary

In order to understand the practical aspects of publishing, we viewed a series

of publishing applications including electronic commerce, voting, certification

authority and medical application. As examples of publishing system build-

ing, we presented publishing-related mechanisms out of our reasearch includ-

ing customer-centric payment, Big Brother ballot, the Guy Fawkes protocol

and the Global Trust Register.

71

Chapter 5

Publishing policy and technical

primitives

As we have seen, integrity and authenticity are the essential concerns for pub-

lishing and both properties satisfy the requirements which appeared in Sec-

tion 3.6: integrity of content, evidence of authorship and revision history preser-

vation. From an operational viewpoint, availability and persistent reference of

publications are fundamental in a publishing system.

We will define a policy model that supports these requirements and present

technical primitives that support operational interests as well as integrity and

authenticity interests. The policy and the primitives construct a framework

that makes web publishing more reliable.

5.1 Policy model for publishing

Based on the study of security properties and policies in Chapter 2 and the

investigation of publishing in Chapter 3, we set up a policy model for reliable

web publishing. The main concerns are integrity and authenticity control.

We do not include requirements for availability and persistence of publications

72

in the policy. The mechanisms that support these properties will be presented

in later sections.

As a foundation, we assume a partition for the domain D of published doc-

uments: a set of controlled documents, CD, and a set of uncontrolled docu-

ments, UD; we define UD = D - CD and by definition, D = CD [UD and

CD \ UD = ;. A member of CD is controlled with respect to integrity and

authenticity, and a member of UD is a document that does not have any con-

trol. There is a one-way transformation from UD to CD; if a document is once

controlled, it should maintain its integrity and authenticity.

Now we define a policy for reliable web publishing. It consists of the following

six principles:

Principles

Principle 1 Neither deletion nor replacement is allowed within CD.

Principle 2 The creator of a document defines its revision access condition

and only authorised principals with respect to the condition are

allowed to revise it; all revisions in CD must be stored and brows-

able.

Principle 3 Authenticity validation procedures must be available for validat-

ing the authenticity of CD members.

Principle 4 Any action to CD members must maintain the authenticity of the

document.

Principle 5 Authentication of a member of CD can be performed by any user.

Principle 6 Transformation from UD to CD must be one-way and the princi-

pal who transformed a document becomes the creator of the doc-

ument in CD.

73

5.2 Analysis of the model

In brief, the policy model defines access control to delete, replace, revise and

authenticate documents, in fact, deletion and replacement of documents are

not allowed. A transformation map from the set of uncontrolled documents to

the set of controlled ones is also defined.

The policy assumes two separate domains, CD and UD, which will provide a

guideline of how to implement publishing systems with two different types of

document access.

The policy protects controlled documents with the following principles:

Principle 1 provides a baseline for write access; there is no limit for the creation

of new documents but any modification of existing publication is completely

prohibited. When a write event occurs for controlled documents, it lasts as

long as the system is alive and is never destroyed. If we need to modify a

document, we make a revised copy of it; the original remains without any

changes as it has been.

Principle 2 is a rule to manage revisions. The creator of a document defines

its revision access condition such as ‘no limit’, ‘only creator allowed’ or ‘edit

allowed users list’. The authorisation decision to its revision is made with

respect to this condition. All revisions are stored and accessible. The difference

between two revisions can be extracted and is browsable.

Principles 3, 4 and 5 show rules for authentication; the authentication capa-

bility must be supported; actions which conflict or can break authenticity of

published documents are not allowed; anyone can initiate the authentication

procedure. Any publication can be authenticated by anybody and any action

that can break its authenticity is not allowed.

Principle 6 assumes a transformation from UD to CD. The one-wayness of

the transform means that a controlled document cannot become uncontrolled,

since Principle 1 does not allow to either delete or replace CD; once a docu-

ment is moved to CD, it remains there alone with all its revisions. Transforms

in the reverse direction are not prohibited but they cannot affect the document

74

already in CD. If a document is transformed to UD, then the later life of the

document will not be controlled but the previous history of the document in

CD is remained unchanged. Hence we may regard document movement as

document copy; in fact, the document is remained unchanged in CD and a

copy is newly created in UD from the original image in CD.

According to Principle 2, we have a creator of each document in CD. When

we transform a document from UD to CD, we need a creator of the document.

Principle 6 defines its creator by the initiator of the transformation.

An earlier version [10] of the publishing model was presented in the Security

Protocols Workshop ’99 and it only assumed append-only file system without

an explicit policy. In the context of the policy in Section 5.1, the former model

assumed that all the published documents are of CD. Authenticity-relevant

principles were not explicitly specified either, in contrast, we now have de-

tailed rules such as Principles 2, 3, 4 and 5. Since all documents are of CD in

the former model, the transformation between CD and UD specified in Prin-

ciple 6 was not necessary.

5.3 Append-only file system

Append-only file systems are rarely considered in the research literature, but

are remarkably common in real life. Banks must keep records for a period of

time set down by law (e.g., six years in the UK), and much the same applies to

medical records, though the period for which a record must be kept depends

on the condition to which it relates – cancer records, for example, are kept for

the patient’s lifetime [8]. Business records in general are kept for the period

during which transactions can be challenged by customers or audited by tax

inspectors.

Publishing is perhaps one of the oldest applications of append-only file sys-

tems. We do not expect that the archives of a newspaper or journal will ever

have their content changed except in the shrinking number of totalitarian states.

If an issue of a publication is found to be defamatory or in breach of copyright,

75

the appropriate legal remedy is financial compensation rather than retrospec-

tive modification.

Similarly, in commerce, the need for finality of transactions dictates that if

a bank transaction is processed in error, it is not retrospectively deleted but

rather a correcting transaction is passed through the system. In the days when

bank ledgers were kept on paper, they were kept in ink using bound books.

There are many mechanisms which can be used to implement an append-only

file store, ranging from CD-WORM1 drives through revision control mecha-

nisms, which we use in our implementation, to intensive backup systems that

make copies for permanent storage. In some applications, such as retail bank-

ing, the volume of transactions is large and thus the disk capacity required

is fairly predictable; in others, such as medical records, the quantity of data

which a doctor can type into his personal computer is negligible compared

with the size of even the smallest hard disk. There might be some risk of

denial-of-service attacks involving resource exhaustion, and so one might ei-

ther use disk quota limits or insist on micropayments for disk writes. The

whole point of frameworks like ours is that failure of the underlying server

causes only service denial, not failure of integrity or authenticity.

The academic literature on append-only file systems, however, appears to be

rather sparse. The earliest mention of which we are aware is the use of a

public bulletin board by Benaloh [18] to ensure the serialisation of pseudony-

mous votes cast in a digital election. More generally, log-structured file sys-

tems [96, 97] improve the performance of some systems by ensuring faster

writes at the expense of longer read times. In systems where erasure is ex-

pensive, such as flash memory, they allow an even distribution of writes in

the media [64]. We might also mention the Eternity Service [7], a distributed

file store in which techniques of fragmentation, redundancy, scattering and

anonymity are used to provide the highest possible level of protection against

denial of service attacks: in effect, an append-only file store which is highly

resistant to deletion attempts. Append-only file storage satisfies Principle 1 in

our policy; no document once published can be deleted or replaced.

1CD-WORM stands for Compact Disk – Write Once Read Multiple devices; CD-Recordable

is of this kind.

76

Revision management is an important part of the append-only file system be-

cause it reduces the size of stored data and improves search performance. An-

other clear advantage is that a revision control system is able to show the dif-

ference between revisions easily. When we add revisions in a log-structured

manner, we only store the updated section for each revision and some control

data to restore the document. Since the introduction of the log-structured file

system, there has been a series of revision management mechanisms such as

SCCS,2 RCS3 and CVS,4 and they can be adopted for use within an implemen-

tation of our publishing policy.

A good example application of an append-only file system is the B-money

system proposed by Wei Dai [37]. It assumes that each user maintains a sep-

arate account of how much money everyone in the system owns, and in or-

der to make a payment, one simply broadcasts a signed message saying ‘I,

Alice, hereby pay the sum of X to Bob’. B-money assumes a synchronous, un-

jammable broadcast channel, but can be implemented in our model by giving

each principal a document to which they append their transactions; in fact,

such a document works like a digital signature device. Secure serialisation of

events is required but can be implemented in the canonical manner by using

the Lamport clock.5

B-money has some interesting properties. For example, if someone computes

the account balances of other parties incorrectly, it is himself that he puts at

risk; he might accept a payment where the payer had insufficient funds, and

then be embarrassed when one of his own payments was rejected by a more

careful principal on the grounds that he in turn could not cover the payment.

This is a surprisingly apt model of a payment system: in the banking world,

2Source Code Control System by Sun Microsystems.
3Resource Control System by Tichy [107].
4Concurrent Version System by Cederqvist et al. [27].
5The Lamport clock [66] is a global ordering mechanism based on the assumption that

the clocks are a collection of clocks synchronised by the rules: (i) two different events at the

same process happen at different times on the process’s clock, (ii) if Alice sends a message to

Bob, then time on Alice’s clock when the message is sent is less than the time on Bob’s clock

when the message is received. This ordering is not applicable for events not causally related

although the clock may give a global ordering.

77

journal files are used to accumulate transactions from cash machines, cheque

sorters, teller stations, etc., and these are applied overnight to the account mas-

ter file in order to update it. The journals fill the same role as the transactions

in B-money, and the overnight run is an optimisation which simplifies pro-

cessing. To the extent that a bank’s functions are mechanical rather than to

do with credit assessment and risk management, it might be replaced by a

B-money system plus a software agent that performs the overnight update.

5.4 Security markup language

There have been trials of markup languages for certain security requirements

such as Wax [13] and the Eternal Resource Locator (ERL) [12]. Wax is a propri-

etary hypertext-based system used for medical information such as treatment

protocols, drug formularies and teaching material. ERL uses embedded hash

values in HTML. It is designed to support reliable electronic distribution of

books on which doctors depend when making diagnostic and treatment deci-

sions.

There is another approach to providing a digital signature-bearing publica-

tion by using SGML, a more versatile but more complicated hypertext markup

language than HTML. In 1998, Kravitz [65] of IBM proposed the Signed Doc-

ument Markup Language (SDML) to achieve non-repudiation of origin and

integrity in the document interchange using public key signature algorithms.

The specification of SDML has been submitted to the World Wide Web Con-

sortium as a W3C note. The details of the above studies will be described in

Section 6.1.

These studies show the usefulness of a security markup language. Since HTML

has been widely used and web publishing has become common, the impor-

tance of markup languages becomes clear. A flexible markup language can

play an important role in supporting various types of documents. For exam-

ple, government documents may have paragraph-wise security labels. That

is, a document is a list of paragraphs with security labels such as unclassified,

classified, secret, and top-secret. To support this, we need a paragraph-wise

78

document management mechanism. In Snook’s DODA [102], she tried to ac-

commodate this by defining a functional object unit which becomes a building

block of a document. Now we have hypertext-enabled markup languages, we

can achieve object-wise security label handling more flexibly and more effi-

ciently. An implementation will be given in Section 6.4.

As a versatile and flexible markup language, XML is notable. The position-

ing of XML between SGML and HTML is well-defined. XML is designed to

be simpler than SGML by removing syntactical ambiguity and complicated

functions, and provides a greater degree of freedom in extension than HTML.

So major software vendors support XML in their latest software releases and

some of them are going to adopt XML as the skeleton of their document pro-

cessing applications.

Thus we will use XML to construct a security markup language to define the

functionality and document handling structure in our implementation of the

policy.

5.5 Repository clustering

There is no system that never stops. If we use a highly redundant system

such as Tandem computers,6 we may experience few system failures, but the

high cost would be a burden for web publishing. However, publishers want to

provide their service 24 hours a day with minimum down time. We consider

how to satisfy an average web publisher’s demands.

In their book about fault tolerance [14, pp. 72–77], Anderson and Lee overview

two core metrics within fault tolerance: Mean Time Between Failure (MTBF)

and Mean Time To Repair (MTTR).

According to these metrics, our aim is to construct a system that provides

longer MTBF and shorter MTTR. We have seen some successful fault toler-

ant features in specific applications such as modular duplication in telephone

6An American computer vendor that provides fault-tolerant systems and is a part of Com-

paq Computer Corporation; Tandem is a trademark of Compaq.

79

switching systems, triple modular redundancy with voting circuits like in Tan-

dem computers, and hot-switchable modules that can be replaced without

shutting the whole system down. Some of these technologies are adopted in

server-range personal computer systems. As a result, the MTBF of ordinary

systems has become longer and such systems are available for web publishing

service providers.

From the investigation in Section 3.3, we realised that wide distribution of pub-

lications helps them last. A group of document repositories can be a solution.

When we distribute data to multiple repositories, recovery procedures should

be considered.

As a simplest way to achieve a wide distribution mechanism with longer MTBF

and shorter MTTR, we may think about full image mirroring as PGP key

servers do. It is easy to configure but expensive. If the synchronisation period

between repositories is short, it may impose a large communication burden;

but the longer the period is, the more failures of recovery we may face. The

whole cluster may fail if the full image contains faults. So the elimination of

faults is not easy.

We want something similar to RAID7 but which implements backup rather

than replication, in a transparent, efficient and scalable way. RAID is not

enough to provide persistence; for example, ‘rm *’ does damage of a kind

that disk mirroring cannot repair. Clustering append-only file repositories can

be a way coping with such errors and with damage caused by malicious soft-

ware.

We propose a mechanism that provides adjustable storage efficiency and re-

covery performance. Suppose we are in a repository R0 and there are n more

repositories in a cluster. First, we choose an integer k � 2 such that we can con-

struct a subcluster of k repositories. Let m be the maximum integer satisfying

k � m � n. We construct l subclusters that each subcluster has k repositories,

where 1 � l � m. Each repository provides dedicated storage partitions for

other repositories in the cluster. Now we describe a distribution and recovery

7Redundant Array of Independent Disks [72]; RAID 5 inspired to this clustering scheme;

see <http://www.raid-advisory.com> .

80

scheme in a subcluster, since we apply the same scheme to all the subclusters.

There is a list of documents published in R0 and we divide the list into seg-

ments fsigi of a fixed size; in the current setting, the size of a segment is 100K

bytes. We need to distribute these document segments to other repositories

for backup and recovery. To assign segments to k repositories in a subcluster,

we take k - 1 segments fsig1�i�k-1 sequentially from the list for each assign-

ment. We then assign �1�i�k-1si to Rk and si to Ri for 1 � i � k - 1. Note that

the symbol � means exclusive OR and the value �1�i�k-1si, which we call

parity, is used for recovery when one of fsig1�i�k-1 is faulty; if more than one

of them are faulty, the parity is of no use and the recovery will be completed

with another subcluster. For next k-1 segments, we assign �1�i�k-1si to Rk-1,fsig1�i�k-2 to Ri, and sk-1 to Rk. Document distribution and storage are car-

ried out in this procedure, repeatedly. We apply this scheme to all subclusters

in the cluster. An example description of the distribution scheme is shown in

Figure 5.1.

Repositories R1 R2 R3 R4
Documents

s1 s2 s3 p1
s4 s5 p2 s6
s7 p3 s8 s9
p4 s10 s11 s12
s13 s14 s15 p5
...

...
...

...

Figure 5.1. An example of the document distribution scheme: this example demonstrates

the way to distribute document segments from R0 to members of the subcluster R1, R2, R3
and R4, where k = 4 and parity pi = �i(k-1)-i+2�j�i(k-1)sj. Parity values are distributed

throughout the subcluster as well as document segments. We keep recovery information, such

as document length and identifiers of subclusters, corresponding segments and their parities.

When a document fails, we can recover it by using its parity and corresponding segments.

If a repository in a subcluster fails, we can recover it with information inside

the subcluster. If we have a failure of more than one repository, we need to

81

recover it by using information stored in another subcluster; in this respect,

the number of subclusters is important.

In the choice of l and k, there is a trade-off between storage efficiency and

recovery performance. If we increase the number s of subclusters, then we can

have more copies of a document distributed, but should use more resources

for redundancy. If we increase the number k of members in a subcluster, we

can save more resources, but should accept a higher failure rate which cannot

be recovered inside the subcluster.

5.6 Summary

In order to build a publishing framework to make web publishing more reli-

able, we defined a publishing policy and described supporting technical primi-

tives including append-only file system, security markup language and repos-

itory clustering. An implementation of this framework will be presented in

Chapter 6.

82

Chapter 6

The Jikzi publishing system

We now describe a prototype implementation, which we call Jikzi,1 after the

first ever book published using a moveable type printing press; this is a Bud-

dhist text printed in Korea in 1377, some 63 years before the Gutenberg Bible.

6.1 Background

There are a couple of relevant works which have been carried out in the last

two years: Wax and ERL. The Wax system [13] was developed to secure the

online publication of medical information such as drug data. The main prob-

lems encountered were the performance penalty imposed by trying to verify

the signature on a whole book when the reader simply wished to consult a sin-

1Jikzi is the name of the oldest publication by using moveable-type printing press ever

found. It has a very long official name ”Baek-Un-Hwa-Sang-Cho-Rok-Bul-Jo-Jik-Zi-Sim-Che-

Yo-Jeol” and simply we call it Jikzi. This is a text on Buddhism and was written by a monk

”Kyoung-Han”, and published in July 1377 by his pupils. The book was printed in Korea and

now there is only one copy remaining. The copy had been stored in a Korean temple until the

early twentieth century, when it was moved to France by a French diplomat. Now the copy

is stored in the Bibliothque Nationale de France (the French National Library) in Paris. From

a historical point of view, this publication is 63 years earlier than the Gutenberg Bible. In an

exhibition room of the British Library at St. Pancras, London, a presentation of Jikzi is found

with the description of the Gutenberg Bible.

83

gle section and the difficulty of securing long-lived data such as books using

relatively short-lived objects such as public keys. Wax solved these problems

by associating each publisher with a tree of hashes: the leaves were hashes

of the individual sections, and the nodes progressed up through chapters and

books until the root, which protects a publisher’s whole catalogue, is authenti-

cated by other means, typically a one-time signature. Thus when a user opens

a book at the entry corresponding to a particular drug, the entry can be veri-

fied quickly without having to check a signature on the entire book. The lesson

learned from Wax was that it is a sound design principle in publishing to use

hash trees and to minimise the use of signatures — preferably to a single sig-

nature on each new version of a publisher’s catalogue.

The Wax design has had some success in the UK medical informatics field,

but it uses a proprietary hypertext format, so the next step was to generalise it

to work with HTML. The result was the ERL, or eternal resource locator [12],

which can be thought of as a URL plus a hash of what you expect to find there.

The author of a web page or other document can authenticate any digital object

by including its ERL, and this enables the construction of webs of trust of the

kind familiar from PGP but applying quite generally to objects rather than just

to the names of principals. Many of the problems associated with public key

infrastructures disappear; one ends up managing a few root keys and doing a

lot of version control.

As discussed about security markup languages in Section 5.4, it has now be-

come clear that the adoption of XML will make our work easier and this is

the emerging framework for commercial markup languages [23]. One of the

goals of the Jikzi project is thus to develop a general XML-based mechanism

for embedding security properties into hypertext documents.

This brings us to other work within the same field. We mention two particular

projects: Kravitz’s Signed Document Markup Language [65] which defines

the tags necessary to implement electronic cheques and the World Wide Web

Consortium’s DSig project [31] to implement digital signature technology in

content marking and rating schemes. While both of these projects are useful

and instructive, we need something more general; we want to deal not just

with cheques but with all other kinds of bills of exchange such as bills of lading

84

and we want to be able to deal with their inheritance properties, for example,

a bank cheque is a kind of cheque, and a cheque is a kind of bill of exchange.

Governments are likely to remain wedded to the idea of having paragraph-

level security labels, i.e., a document is a mixture of paragraphs at different

levels such as unclassified and secret, and XML appears to be an efficient way

in which the relevant document management routines can be implemented

without rewriting a huge amount of software.

We also ought to be able to deal with publishing in the most general sense,

which means dealing with issues of replication, persistence and control. Pre-

vious work in this area includes Snook’s DODA which is aimed at computer

supported cooperative work, such as software development. DODA is some-

what like a secure revision control system in which ‘folios’ of documents are

bundled together and managed by hash and signature mechanisms according

to a policy such as ‘a software upgrade can only be issued when both a testing

manager and a customer manager sign it’; such policies can be enforced using

mechanisms such as threshold signature.

The Jikzi system was introduced as a framework for web publishing in the

Security Protocols Workshop in 1999 [10] and an extension of the paper will

appear in [11]. In the following sections, the details of the system will be de-

scribed and some implementation issues will be discussed.

6.2 Goal of the system

The goal of the Jikzi publishing system is implementing the reliable publishing

framework presented in Chapter 5, i.e., the Jikzi system is designed to obtain

more reliable web publishing by supporting our publishing policy defined in

Section 5.1 and implementing conceptual mechanisms presented in Chapter 5.

It implements not only the fundamental requirements of our policy but also

some useful applications to show the flexibility of the system and to extend its

functionality.

In the following system description, we present the system architecture and

85

the Jikzi markup language for secure markup. As application-level services

of the system, we present some service descriptions, including a publishing

service implementing our policy, a web publishing witness service, a secure

access to timestamping services, an event ordering service and a global key

service.

All information in the Jikzi system is basically stored and distributed in the

form of documents. A document is an atomic unit of publication; it may con-

tain metadata such as control scripts for handling or only raw data such as

texts or images. A user is a person or a process accessing published docu-

ments in the system. As we defined in our policy, the Jikzi system has two

types of document domains: one for controlled documents and the other for

uncontrolled documents.

For controlled documents, we adopt the append-only file system described

in Section 5.3. As a result, all controlled documents published in the sys-

tem are basically protected from any deletion and replacement; the integrity of

documents is a basic requirement. Since the underlying document storage is

append-only, all the traces of writing action remain within the storage. The re-

vision control mechanism helps maintain the history of publications and saves

the storage usage. Authenticity of documents is another requirement; the au-

thor of a document is authenticated by a challenge-response procedure and its

verifiable hash value is published.

On the top of the append-only file system, we build a set of security markup

definitions that provides means of authentication, integrity validation, encryp-

tion and decryption for document publishing and browsing. Depending on

applications, we can apply corresponding security markup. For example, elec-

tronic cheques do not need confidentiality, but double spending or duplicated

use is a problem. Secret electronic mails in a firm need confidentiality. Whether

the document is encrypted or not, the underlying system stores it under the

publishing policy. Although confidentiality protection is not a concern in the

publishing framework, users can use the security markup to support labelling,

encryption or mail filtering if they do wish. Users of the system can choose ap-

propriate markup, or build one which fits for their purpose by using primitive

document type definitions. The addition of user-defined markup can be easily

86

done and this makes the system more versatile.

In order to satisfy various demands on publishing and maintaining docu-

ments, we define various document types and primitives to be used in the type

definition as well as primitive document types. Each document or service then

refers to these type definitions. The set of type definitions includes primitive

cryptographic means which can be used in applications that need authenticity,

integrity or confidentiality. The primitive document types include actions for

authentication, integrity validation, hashing, encryption and decryption.

6.3 Architecture

In the Jikzi system, there are two types of document domains as defined in

our publishing policy: append-only and replaceable. The append-only docu-

ment domain forces users not to delete or replace published documents and

it is used for controlled documents. The replaceable document domain is an

ordinary file system and users can store, delete and modify their documents

in this domain; this is a domain for uncontrolled documents. In both domains,

authentication procedures are mandatory; if we want to change or revise a

document, we have to be authenticated.

We describe the architecture for the append-only document domain because

the replaceable document domain is no different from a normal UNIX file sys-

tem. The Jikzi system for controlled documents consists of three layers: the

fundamental layer, application layer and interface layer. The system architec-

ture is figured in Figure 6.1.

The fundamental layer provides basic features required by the publishing pol-

icy and it includes the following function blocks: Jikzi preprocessor, version

manager, storage manager and storage.

The Jikzi preprocessor consists of three parts: type checker, Jikzi parser, and

primitive function block. The input to the Jikzi preprocessor is written in the

Jikzi markup language and standard XML, it is tested, manipulated, and then

stored in an internal format called XML Primitive Format (XPF) which is an

87

Server User Interface

Jikzi PreProcessor

Version Manager

Storage Manager

Witness
Service

Publishing
Service

Directory
Service

Search
Engine

Time
Server

Storage

Figure 6.1. The architecture for controlled documents in the Jikzi system: the system con-

sists of three layers: fundamental, application and interface layers. The fundamental layer in-

cludes the Jikzi preprocessor, version manager, storage manager and storage; the application

layer includes system services such as the publishing service, witness service, directory ser-

vice and search engine; the interface layer consists of the server user interface block. All user

enquiries and responses to them are processed through the server user interface and trans-

ferred to services such as publishing, directory, witness services and search engine. One can

use the Jikzi preprocessor to check the well-formedness of documents, or access the version

manager directly. All enquiries are then controlled by the version manager and storage man-

ager. The time server provides a consistent time; it can be either implemented in the system

or an independent entity outside of the system.

extension of XML. The Jikzi system-specific actions are written in XPF. The

type checker verifies whether submitted documents are well-formed. The Jikzi

parser catches Jikzi specific tags and embeds the required primitive functions

specified into documents. The primitive function block is a library of func-

tions used in the system that includes algorithm for hash, digital signature,

encryption and decryption. The structure of the Jikzi preprocessor is shown in

Figure 6.2.

The version manager acts similarly to a revision control systems such as CVS [27]

88

JPP - Jikzi PreProcessor

Type
Checker

Jikzi Parser

Primitive
Function
Block

.xpf

.xml

Figure 6.2. The Jikzi preprocessor: it processes documents written by users into well-formed

documents in XML. It interacts with applications and the version manager, and consists of

three subblocks: type checker, Jikzi parser and primitive function block.

and RCS [107]; it controls the version of all controlled documents and keeps

traces of their update history. Documents are stored in a log-structured man-

ner for efficiency and each revision is browsable through the server user inter-

face.

The storage manager is the front-end to the storage and controls physical ac-

cess to the storage. To implement an append-only storage, one way is to adopt

writable CD-ROMs, so-called CD-Recordable, as the storage’s physical media.

We can write data on a writable CD-ROM only once and it lasts; cumulative

writing is also possible on it. The writable CD-ROM is regarded as a usual

disk partition by the operating system. The storage manager reads and writes

documents on the media, and tests the integrity of the media.

The application layer provides additional services on the top of the fundamen-

tal layer. Current services include a publishing service, witness service, direc-

tory service and search engine. The publishing service allows users to publish

their documents on the system. The witness service provides a signed archive

of documents or web pages that have appeared on the specified web sites,

and the archive can be used as an evidence for the fact that such documents

were published. The directory service provides directory access to published

documents for users to browse, download and verify; for example, signature

verification of published documents or the result of witness can be done in

89

this service. The search engine provides a means of searching and indexing

requested publications in the system. The details of the publishing service and

witness service will be given in Section 6.5

The interface layer provides an interface between users and the system ser-

vices; it consists of the server user interface block. The server user interface

is of web interface format so that users can access the system using their web

browsers, and it provides user interfaces for the services in the application

layer. Screenshots of the server user interface appear in Appendix C.

The time server enables users to affix timestamps to publications. The sys-

tem can use either an external time service like the Network Time Protocol

server [75] or an internal system clock. At present, we use the latter.

6.4 The Jikzi markup language

The Jikzi system uses its own markup language JML, or Jikzi Markup Lan-

guage, an extension of XML. As we discussed in Section 5.4, XML provides

flexible extensibility and is recognised by major browsers. We regard JML as

a cumulative markup library; users can add their markups and share them on

the server. To show how it works and to provide basic security primitives, we

define some basic markups in terms of document type definitions (DTDs).

Document type definitions and application-specific document types mentioned

here appear in Appendixes; document type definitions are attached in Ap-

pendix A and their examples appear in Appendix B. In order to support secu-

rity capabilities, we define primitive document types: hashList.dtd , sign-

List.dtd and cryptList.dtd . These document type definitions are for

document hashing, signing, and encryption, respectively; and they will be

used in application-specific DTDs mentioned below.

For a clean and simple description, we define a set of entities which will be

frequently used in other DTDs in stdDef.dtd ; it contains fundamental dec-

larations and macro entities which can be included in other DTDs. All DTDs

used in a document should be declared inside the document. Since we can

90

have multiple versions of a DTD under the same name, we must specify which

version of the DTD is used; otherwise, there is a possibility of an attack such

as rollback of a revision of a DTD.

Using the primitive document type definitions mentioned above, we can gen-

erate DTDs for sophisticated composite documents including ERL-type doc-

uments, paragraph-wise manageable documents, electronic cheques, digital

certificates and encrypted documents.

For instance, erlDoc.dtd supports the hash of document content and its

chaining, and an example examResult.xml appears in Appendix B as well

as other examples. A type definition govDoc.dtd supports paragraph-wise

manageable documents usually used for tight security controls used in mili-

tary applications, and basic information for official documents is defined in the

DTD such as authors’ names, document number, affiliation of authors, clas-

sification code for the document and paragraphs, creation date, expiry date

and timestamp. An example for it is draft.xml . An electronic cheque is

supported by eCheque.dtd , and the definition includes information about

cheque number, account number, payee, payer(s), payment amount, currency,

issue date and timestamp. Its example is corpCheque.xml . An X.509-type

digital certificate is supported by certificate.dtd , and the definition in-

cludes information about certificate type, version, serial number, issuer, user,

valid date and the user’s key. Its example is x509Cert.xml . Document en-

cryption is supported by encDoc.dtd and an example for it is encMemo.xml .

6.5 Application-level services

We will present a series of applications that can make effective use of the Jikzi

system. These applications appear just below the server user interface in Fig-

ure 6.1. They include a publishing service, witness service, secure access to

timestamping services, Lamport event ordering service and global key service.

91

6.5.1 Publishing service

The publishing service is the most fundamental service of the Jikzi publish-

ing system that satisfies our publishing policy. It processes users’ publication

requests by interaction with the Jikzi preprocessor and the version manager.

When incorporating a document to published, the service challenges the publi-

cation enquirer along with the authentication procedure. The enquirer chooses

the domain to which the document will be belong, either controlled or uncon-

trolled. If the document is controlled, its well-formedness is verified when

necessary and eventually, it is stored in the append-only file storage. If it is

uncontrolled, it is just stored in replaceable file storage. Browsing the pub-

lished documents can be done with the user interface of the directory service

or the version manager.

This service is designed to satisfy the requirements of publishing presented in

Section 3.6. Integrity of content is guaranteed for controlled documents by the

append-only file system of the Jikzi system. Once a document is published as

a controlled document, it lasts in the system.

Persistent reference is achieved combining the repository clustering mecha-

nism, the append-only file system and the Jikzi markup language. The first

two mechanisms help implement long-lasting publishing and the Jikzi markup

language provides a system-independent browsing environment. Since we

are publishing on the web, the conventional definition of URI can provide a

unique reference identifier. Since the Jikzi system is open for the public to

publish their documents, it is available publicly by its nature. The clustering

mechanism makes it more available. Wide distribution of publications is given

by the benefit of using the Internet and the distribution in the clustering struc-

ture helps propagation of publications.

Revision history of controlled documents is maintained by the version man-

ager in the system. A browsing facility for the revision history is also provided.

Evidence of authorship is verified when a controlled document is submitted to

the system by the authentication verification procedure defined in the system.

Any user can invoke an authenticity verification procedure in the directory

service.

92

Although copyright protection is an important issue so that we take it into

account as a requirement of publishing, this issue has been intensively studied

and is far from our major concern. We do not provide related features in the

system.

6.5.2 Witness service

As discussed in Section 4.1, we have many Internet frauds where items bought

are never delivered or are not the same as advertised. If we have a frozen

copy of the merchant’s offer and the ordered item’s specification, it may help

us prove that we made a transaction and the transaction failed. To obtain

such evidence, we need a mechanism to freeze the current state of the web

publication. The witness service we present here is an answer to the problem.

If we use clustered repositories that provide the witness service, we can get

multiple witnesses for a web publication on the Internet; we expect that it

could have a similar effect to having multiple human witnesses in real life

from the legal effect viewpoint. If we assume that there are several clusters of

witness servers operated by different service providers, users can choose any

of them as they wish. It is also similar to the choice of a solicitor on the high

street.

When one has witnesses from different service providers, it could be strong

evidence of what one had seen. If the publication is modified later without

notice, one can show the previous state of the publication with confidence. The

witness in this context is not an authorised server licensed by some authority

like the government, but it may be enough for many purposes.

There are two types of witness services: active and passive. The active ser-

vice is for CGI2-like program-driven procedures and the passive one for usual

static HTML pages. Usually payment transactions or shopping procedures are

performed using a CGI form and such procedures can be caught up by the ac-

tive witness service. All other publishing written in HTML or XML containing

2Common Gateway Interface, a way of building an interface between the web page and an

application running on the server.

93

texts and multimedia elements can be witnessed by the passive service.

The scenario for the service is as follows: a user requests the service by submit-

ting the URL of the web page to be witnessed and his electronic mail address

for a reply, then the server fetches the page and its relevant files, builds an

archive for the page, and makes the seal for the archive. The seal contains a

timestamp, the identity of the witness server, information regarding the do-

main name server used, IP address of the target server, the hash3 value for

each file in the archive and some request-specific information including the

electronic mail address of the user and target URL. The signed archive for the

requested web page can be downloaded from the system through the directory

service and is stored in the append-only file storage.

The archived page can be directly displayed by web browsers since the archive

contains files linked to the target URL which are one link deep, such as image

files, icons and sound files. From the transaction log included in the archive,

users can see the information processed by the target web server such as a

language encoding type for each page and errors when extracting.

This is a means to improve the reliability of web publishing. The service can

help reduce fraudulent transactions and offensive challenges by using web

publications.

6.5.3 Distributed trust-type timestamping service

In their early paper about digital timestamping [50], Haber and Stornetta sug-

gest two types of timestamping services. One is to constrain a centralised third

party timestamping service with a hash chain of timestamps and the other is

to distribute the required trust among the users of the service. The former is

implemented and commercially available from Surety.com.4 The timestamp-

ing server signs on the hash given by the request with the time and makes a

hash chain of timestamping requests.

3In the implementation, SHA-1 [80] is used.
4A digital timestamping company founded by the authors of the paper [50]; it provides a

service named Digital Notary; <http://www.surety.com>

94

The latter is not implemented and requires a pool of signers who can be chosen

by a user; the signers in the pool should sign on the requested data with the

time and return it to the user. This scheme also requires a public directory to

verify timestamps by the user or challengers.

We apply this scheme to a cluster of Jikzi systems. The cluster can satisfy both

requirements of the scheme: servers in the cluster can be signers and a public

directory service is already built in. Furthermore, the append-only file system

can make the public directory more reliable.

An implementation of this idea is as follows. Let Y be the received hash value

of a user’s document to be timestamped and g be a pseudorandom genera-

tor. Then J := g(Y) is a string of numbers, where the symbol := denotes an

assignment, and we divide it by k segments such that J = j1j2 . . . jk. Let m

be the number of Jikzi systems fSig1�i�m in the cluster and choose k systems

out of m systems such that Ci := Sjn (mod m). The user sends her request (Y, J)
to chosen fCig1�i�k and she receives in return from each server Ci a signed

message σi := sign(t, Y, J) that includes the time t. Her timestamp consists

of [(Y, J), (σ1, . . . , σk)℄ and is published on a Jikzi system. The k signaturesfσig1�i�k can be easily verified by the user or a would-be challenger.

The success of this scheme depends on the number of systems in a cluster.

When the number is big enough, the collusion of all the involved systems is

practically infeasible. If the number is small, it may be possible for the in-

volved systems to collude to make a fake timestamp.

6.5.4 Lamport event ordering service

Consider a cluster of instances of the Jikzi system. Each system has its own

clock and they can exchange a message in a predefined form. Based on the

Lamport clock described in Section 5.3, we set up a service named ‘Lamport

event ordering service’. The service provides an order for document process-

ing such as document submission, revision and signing. It does not provide

exact global timestamps but the chronological order of events. As in the Lam-

port clock [66], we do not assume the existence of a precise global clock and set

95

up an order based on communication between instances of the Jikzi system.

The fundamental idea of the event ordering service is as follows. Each event

has a timestamp issued by the system where the event occurred; periodically,

each system sends a signed message to all other systems in the cluster. The

periodic message transmission is a way of proving causality between systems.

Consider an event a which occurred in a system A. The system A sent a signed

periodic message to system B after the event a and then an event b occurred

in the system B. We can then agree that the event b occurred after the event a.

As with the original Lamport clock, this service also inherits the feature that

we cannot say anything about the timing of events which occurred in system

B before receiving the periodic message. The message transmission period is

the resolution of the event ordering service.

An attacker might block or delay the periodic message communication be-

tween systems so that the ordering precision may be degraded. This attack

against the communication is a type of denial of service attack. We assume

that the attacker cannot prevent a significant number of systems from commu-

nicating each other, and we can obtain an acceptable resolution of the ordering.

Since the network is not deterministic and the attacker cannot make a perfect

attack on all systems if the size of the cluster is big enough, the Lamport event

ordering service can be a practical answer to ordering events.

6.5.5 Global key service

As an application of the Jikzi system, we design a key certificate service based

on the concept of the Global Trust Register described in Section 4.8.

We cannot place the entire key certifying process of the Global Trust Register

online since we need a face-to-face contact for A-rated keys under the rating

rule of the register, but the basic PGP key verification process which checks

the ownership of candidate keys can be done online. Even though we publish

only verified keys online, we can set up a more reliable key server than the

96

MIT PGP public key server.5

Through experience gained during the Global Trust Register project, we no-

ticed some security problems in the MIT PGP key server. In fact, there is no

key certifying procedure in the MIT server so that anyone can register a key

which is generated with other’s name. There is no mechanism to verify the

relationship between the key and the identity on the key, a string usually elec-

tronic mail address of the key holder. Another problem is that it is possible

to add signatures to keys in the server without any notice to the key holder.

Unless we have already noticed that it cannot be prohibited in the PGP key

server, it can mislead the trust relationship between the key holder and the

signer.

Since PGP has been one of the most widely used public key infrastructures, it

is sensible to have a PGP public key server with proper certifying procedures.

The Global Trust Register has been built on a tight key-owner relationship

certifying procedure. When the register is implemented in the domain of con-

trolled documents of the Jikzi server, we can guarantee its integrity as well as

authenticity of key holders given by the key certifying rule of the register; it

can be a trustworthy alternative to the MIT server.

6.6 Summary

We built a publishing system named Jikzi that implements the publishing

framework presented in Chapter 5. We reviewed related work and described

the goal of the system. The system architecture and technology such as the the

Jikzi markup language are also described. Finally, we presented application-

level services on the system including the fundamental publishing service, a

witness service, secure access to timestamping services, an event ordering ser-

vice and a global key service.

5<http://pgp.ai.mit.edu> , originally maintained by B. LaMacchia; it contains PGP

public keys submitted through email or web interface without any certifying procedure; peo-

ple can register fake keys with other’s name; the server has multiple redundant copies on

distributed servers around the world and they keep the same image by periodical mirroring.

97

Chapter 7

Conclusions

We present the conclusions of the thesis stated in Chapter 1 and the following

chapters. A brief direction for future work which may follow this research is

suggested.

7.1 A conclusion of the thesis

As stated in Section 1.1, the thesis of this research is that web publishing can

be more reliable when its integrity, authenticity and availability are improved.

A framework that consists of a publishing policy for improving the integrity

and authenticity of web publications, and technical primitives supporting the

policy and the persistent availability of web publications, was developed. An

implementation of our framework was presented.

The motivation and direction of our research appear in Chapter 1, the inves-

tigation that clarifies this thesis appears in Chapter 2, 3 and 4, the proposed

framework that improves integrity, authenticity and availability appears in

Chapter 5, and an implementation of the framework is presented in Chapter 6.

It is evident from an examination of the framework and its implementation

that the thesis has been proven.

In particular, the chapters show the following:

98

� In Chapter 1, we examined the current situation and threats to web pub-

lishing, and briefly surveyed previous work carried out on electronic

publishing to clarify the direction of our research.� In Chapter 2, we reviewed security properties and policies to help us

identify major security properties which affect the reliability of web pub-

lishing.� In Chapter 3, we investigated the nature of publishing in both conven-

tional and electronic media to extract fundamental requirements of web

publishing with the understanding of security properties obtained in

Chapter 2.� In Chapter 4, we dealt with a series of web publishing applications to

help understand practical aspects of web publishing. The applications

were examined by the requirements obtained in Chapter 3.� In Chapter 5, we presented a secure publishing policy based on the inves-

tigation in Chapter 2, 3 and 4. Technical primitives to achieve a working

model implementing the policy were also presented. The policy and the

primitives provided a framework for reliable web publishing.� In Chapter 6, we presented a reliable web publishing system that imple-

mented the framework given in Chapter 5.

7.2 Future work

In this dissertation, we presented a framework to make web publishing more

reliable. We focused on two security properties, integrity, authenticity and

availability, and provided a security policy and technical primitives to im-

prove those properties in web publishing.

We believe that the Internet will develop in a complex way and a security

policy has to be refined by interaction with applications in order to keep it

useful. Applications of our framework to commercial services may help us

refine it.

99

As a means to obtain fundamental integrity, we adopted an append-only file

system. In our implementation, two mechanisms are used: revision control

and CD-WORM media. CD-WORM is enough to construct our prototype but

it has some difficulties in maintenance such as physical handling. Revision

control is a part of the append-only file system, but it does not protect integrity

alone. An interesting question is to establish an append-only file system in a

simpler way without physical media support.

There is another implementation issue. In order to facilitate the Jikzi publish-

ing server installation and to extend its functionality more flexibly, a full XML

and script language-based implementation can be considered. It will also help

us run the system independently of underlying operating systems because we

already have multi-system support environments for XML and some script

languages such as PERL.1

We have a fortunate opportunity to see the paradigm of publishing changing

from conventional to electronic. It is interesting to observe how people build

the reliability of published material in the new publishing paradigm and note

which requirements are still sensible and which are not. We believe that this

observation will give deeper understanding for the future design of reliable

electronic services other than web publishing.

1Practical Extraction and Report Language, a script language portable on several variants

of UNIX, Microsoft Win32 and Apple Macintosh.

100

Bibliography

[1] M. Abadi, T. M. A. Lomas, and R. M. Needham, ‘Strengthening pass-

words’. SRC Technical Note 1997-033, Compaq Systems Research Cen-

ter, Palo Alto, CA, 16 December 1997. (p. 51)

[2] S. G. Akl, ‘Digital signatures with blindfold arbitrators who cannot form

alliances’. In Proceedings of 1983 IEEE Symposium on Security and Privacy,

pp. 129–135, Oakland, CA, April 1983. (p. 27)

[3] E. Amoroso, Fundamentals of Computer Security Technology. Englewood

Cliffs, New Jersey, Prentice-Hall, 1994, ISBN 0-13-305541-8. (p. 19)

[4] R. J. Anderson, B. Crispo, J.-H. Lee, C. Manifavas, V. Matyáš, and F. A. P.

Petitcolas, The Global Trust Register 1998. Cambridge, Northgate Consul-

tants Ltd., February 1998, ISBN 0-9532397-0-5. (pp. 45, 67)

[5] ——, The Global Internet Trust Register 1999. Cambridge, MA, MIT Press,

April 1999, ISBN 0-262-51105-3. (pp. 45, 67)

[6] R. J. Anderson, ‘UEPS – A second generation electronic wallet’. In Pro-

ceedings of European Symposium on Research in Computer Security (ES-

ORICS) ’92, vol. 648 of Lecture Notes in Computer Science, pp. 411–418,

Springer-Verlag, 1992. (p. 54)

[7] ——, ‘The Eternity service’. In Pragocrypt ’96, pp. 242–252, Prague, CTU

Publishing House, 1996. (p. 76)

[8] ——, ‘Security in clinical information systems’. BMA Report, British

Medical Association, January 1996, ISBN 0-7279-1048-5. (pp. 22, 75)

101

[9] R. J. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and

R. M. Needham, ‘A new family of authentication protocols’. Operating

Systems Review, vol. 32, no. 4, pp. 9–20, October 1998. (pp. 29, 45, 64, 67)

[10] R. J. Anderson and J.-H. Lee, ‘Jikzi: A new framework for secure publish-

ing’. In Proceedings of Security Protocols Workshop ’99, Cambridge, April

1999, to appear. (pp. 75, 85)

[11] ——, ‘Jikzi – A new framework for security policy, trusted publishing

and electronic commerce’. Computer Communications, to appear. (p. 85)

[12] R. J. Anderson, V. Matyáš, and F. A. P. Petitcolas, ‘The Eternal Re-

source Locator: An alternative means of establishing trust on the world

wide web’. In 1998 USENIX Electronic Commerce Workshop, pp. 141–153,

Boston, MA, 1998. (pp. 78, 84)

[13] R. J. Anderson, V. Matyáš, F. A. P. Petitcolas, I. E. Buchan, and R. Hanka,

‘Secure books: Protecting the distribution of knowledge’. In Proceedings

of Security Protocols Workshop ’97, pp. 1–12, Paris, April 1997. (pp. 78, 83)

[14] T. Anderson and P. A. Lee, Fault Tolerance, Principles and Practice. London,

Prentice-Hall International, 1981, ISBN 0-13-308254-7. (p. 79)

[15] D. E. Bell and L. J. LaPadula, ‘Secure computer systems: Mathematical

foundations’. Mitre Report ESD-TR-73-278 (Vol. I–III), Mitre Corpora-

tion, Bedford, MA, April 1974. (p. 19)

[16] S. M. Bellovin and M. Merritt, ‘Encrypted key exchange: Password-

based protocols secure against dictionary attacks’. In 1992 IEEE Sympo-

sium on Security and Privacy, pp. 72–84, Oakland, CA, 1992. (p. 51)

[17] ——, ‘Augmented encrypted key exchange: A password-based proto-

col secure against dictionary attacks and password file compromise’. In

Proceedings of the 1st ACM Conference on Computer and Communications Se-

curity, pp. 244–250, Fairfax, VA, Association for Computing Machinery,

November 1993. (p. 51)

102

[18] J. C. Benaloh, Verifiable Secret-Ballot Elections. Ph.D. dissertation, Yale

University, New Haven, CT, 1987, YALEU/DCS/TR-561. (p. 76)

[19] J. C. Benaloh and D. Tuinstra, ‘Receipt-free secret-ballot elections’. In

Proceedings of the 26th Annual ACM Symposium on Theory of Computing,

pp. 544–553, Montreal, Quebec, Association for Computing Machinery,

May 1994. (p. 58)

[20] T. Berners-Lee, R. Fielding, and L. Masinter, ‘Uniform Resource Identi-

fiers (URI): Generic syntax’. IETF RFC 2396, Internet Engineering Task

Force, August 1998. (p. 40)

[21] K. Biba, ‘Integrity considerations for secure computing systems’. Mitre

Report MTR-3153, Mitre Corporation, Bedford, MA, 1975. (p. 21)

[22] J. Borrell and J. Rifà, ‘An implementable secure voting scheme’. Comput-

ers & Security, vol. 15, no. 4, pp. 327–338, 1996. (p. 58)

[23] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, ‘Extensible Markup

Language (XML)’. W3C Working Draft WD-xml-970807, World

Wide Web Consortium, 7 August 1997, <http://www.w3.org/TR/

WD-xml-lang.html> . (pp. 39, 84)

[24] D. F. C. Brewer and M. J. Nash, ‘The Chinese Wall security policy’. In

1989 IEEE Symposium on Security and Privacy, pp. 206–214, Oakland, CA,

1989. (p. 20)

[25] G. Bruce and R. Dempsey, Security in Distributed Computing. Upper Sad-

dle River, NJ, Prentice Hall PTR, 1997, ISBN 0-13-182908-4. (p. 19)

[26] Canadian System Security Centre, The Canadian Trusted Computer Product

Evaluation Criteria, 1993, Version 3.0e. (p. 17)

[27] P. Cederqvist, Version management with CVS for CVS 1.9. Signum Sup-

port AB, Linkoping, 1993, Web publication, <http://www.gnu.org/

manual/cvs-1.9/> . (pp. 77, 88)

103

[28] D. Chaiken, M. Hayter, J. Kistler, and D. Redell, ‘The virtual book’. Re-

search Report 157, Compaq Systems Research Center, Palo Alto, CA, 11

November 1998. (p. 33)

[29] D. L. Chaum, ‘Untraceable electronic mail, return addresses, and digital

pseudonyms’. Communications of the ACM, vol. 24, no. 2, pp. 84–88, 1981.

(p. 47)

[30] ——, ‘Security without identification: Transaction systems to make Big

Brother obsolete’. Communications of the ACM, vol. 28, no. 10, pp. 1030–

1044, 1985. (p. 58)

[31] Y.-h. Chu, P. DesAutels, B. LaMancchia, and P. Lipp, ‘PICS Signed La-

bels (DSig) 1.0 specification’. W3C Recommendation REC-DSig-label-

19980527, World Wide Web Consortium, 27 May 1998, <http://www.

w3.org/TR/REC-DSig-label> . (p. 84)

[32] D. D. Clark and D. R. Wilson, ‘A comparison of commercial and mili-

tary computer security policies’. In 1987 IEEE Symposium on Security and

Privacy, pp. 184–194, Oakland, CA, 1987. (pp. 10, 21)

[33] R. J. F. Cramer, M. Franklin, B. Schoenmakers, and M. Yung, ‘Multi-

authority secret-ballot elections with linear work’. In Proceedings of Ad-

vances in Cryptology – Eurocrypt ’96, pp. 72–83, Springer-Verlag, 1996.

(p. 58)

[34] R. J. F. Cramer, R. Gennaro, and B. Schoenmakers, ‘A secure and op-

timally efficient multi-authority election scheme’. In Proceedings of Ad-

vances in Cryptology – Eurocrypt ’97, pp. 103–118, Springer-Verlag, 1997.

(p. 58)

[35] L. F. Cranor and R. K. Cytron, ‘Design and implementation of a practical

security-conscious electronic polling system’. Technical Report WUCS-

96-02, Washington University, St. Louis, MO, 23 January 1996. (p. 58)

[36] B. Crispo and T. M. A. Lomas, ‘A certification scheme for electronic com-

merce’. In Proceedings of Security Protocols Workshop ’96, vol. 1189 of Lec-

104

ture Notes in Computer Science, pp. 19–32, Cambridge, Springer-Verlag,

April 1996. (p. 18)

[37] W. Dai, B-Money, 1998, Web publication, <http://www.eskimo.com/

˜weidai/bmoney.txt> . (p. 77)

[38] B. Davenport, A. Newberger, and J. Woodard, ‘Creating a secure dig-

ital voting protocol for campus elections’. Web publication, Prince-

ton University, Princeton, NJ, 1996, <http://www.princeton.edu/

˜usgvote/technical/paper/> . (p. 58)

[39] W. Diffie, ‘The first ten years of public-key cryptography’. Proceedings of

the IEEE, vol. 76, no. 5, pp. 560–577, May 1988. (p. 27)

[40] W. Diffie and M. E. Hellman, ‘New directions in cryptography’. IEEE

Transactions on Information Theory, vol. IT-22, no. 6, pp. 644–654, 1976.

(pp. 27, 67)

[41] M. Dummett, Voting Procedures. Oxford, Clarendon Press, 1984, ISBN 0-

198-76188-0. (p. 59)

[42] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, ‘Hypertext Transfer Protocol – HTTP/1.1’. IETF RFC

2616, Internet Engineering Task Force, June 1999. (p. 2)

[43] A. O. Freier, P. Karlton, and P. C. Kocher, ‘The SSL protocol version 3.0’.

IETF Internet-DRAFT, Internet Engineering Task Force, 18 November

1996, <http://home.netscape.com/eng/ssl3/draft302.txt> .

(p. 13)

[44] A. Fujioka, T. Okamoto, and K. Ohta, ‘Practical secret voting scheme

for large scale elections’. In the Proceedings of Advances in Cryptology –

Auscrypt ’92, pp. 244–251, Springer-Verlag, 1992. (p. 58)

[45] R. Gennaro, Theory and practice of verifiable secret sharing. Ph.D. disser-

tation, Massachusetts Institute of Technology, Cambridge, MA, 1996.

(p. 18)

105

[46] P. Ginsparg, ‘First steps towards electronic research communication’.

Computers in Physics, vol. 8, no. 4, pp. 390–396, January 1994. (pp. 4,

35, 43)

[47] S. Goldwasser, S. Micali, and R. L. Rivest, ‘A digital signature scheme

secure against adaptive chosen message attacks’. SIAM Journal of Com-

puting, vol. 17, no. 2, pp. 281–308, April 1988. (p. 27)

[48] D. Gollman, Computer Security. West Sussex, John Wiley & Sons, 1999,

ISBN 0-471-97844-2. (pp. 11, 12, 14)

[49] L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer, ‘Protect-

ing poorly chosen secrets from guessing attacks’. IEEE Journal on Selected

Areas in Communications, vol. 11, no. 5, pp. 648–656, June 1993. (p. 51)

[50] S. Haber and W. S. Stornetta, ‘How to time-stamp a digital document’.

Journal of Cryptology, vol. 3, no. 2, pp. 99–112, 1991. (p. 94)

[51] N. M. Haller, ‘The S/Key one-time password system’. In ISOC Sympo-

sium on Network and Distributed System Security, pp. 151–157, San Diego,

CA, February 1994, see also IETF RFC 1704, 1760 and 1938. (pp. 28, 51)

[52] M. Herschberg, Secure electronic voting over the World Wide Web. Mas-

ter’s dissertation, Massachusetts Institute of Technology – Laboratory

of Computer Science, Cambridge, MA, May 1997. (p. 58)

[53] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung,

‘Proactive public key and signature systems’. In Proceedings of the 4th

ACM Conference on Computer and Communications Security, pp. 100–110,

Zurich, Association for Computing Machinery, April 1997. (p. 18)

[54] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, ‘Proactive secret

sharing, or: How to cope with perpetual leakage’. In Proceedings of Ad-

vances in Cryptology – CRYPTO ’95, vol. 963 of Lecture Notes in Computer

Science, pp. 339–352, Springer-Verlag, 1995. (p. 18)

[55] International Organisation for Standardisation, ISO 7498-2: Basic Refer-

ence Model for Open Systems Interconnection (OSI) Part 2: Security Architec-

ture. Geneva, 1988. (p. 17)

106

[56] International Telecommunication Union Telecommunication Standard-

ization Sector, Security architecture for Open Systems Interconnection for

CCITT applications, March 1991, ITU-T Recommendation X.800. (pp. 11,

12, 28)

[57] ——, Information technology – Open Document Architecture and interchange

format: Introduction and general principles, March 1993, ITU-T Recommen-

dation T.411. (pp. 11, 12, 14, 28)

[58] ——, Information technology – Open Systems Interconnection - Security

frameworks for open systems: Authentication framework, April 1995, ITU-

T Recommendation X.811, also published as ISO/IEC 10181-2 in 1996.

(p. 12)

[59] ——, Definition of terms relevant to optical fibre submarine cable systems,

April 1997, ITU-T Recommendation G.972. (p. 17)

[60] ——, Information technology – Open Systems Interconnection – The directory:

Authentication framework, August 1997, ITU-T Recommendation X.509.

(pp. 68, 70)

[61] ——, Information technology – Open Systems Interconnection – The directory:

Overview of concepts, models and services, August 1997, ITU-T Recommen-

dation X.500. (p. 67)

[62] W.-S. Juang and C.-L. Lei, ‘A collision-free secret ballot protocol for com-

puterized general election’. Computers & Security, vol. 15, no. 4, pp. 339–

348, 1996. (p. 58)

[63] S. Katzenbeisser and F. A. P. Petitcolas, eds, Information Hiding Techniques

for Steganography and Digital Watermarking. London, Artech House Pub-

lishing, 2000, ISBN 1-58053-035-4. (p. 11)

[64] A. Kawaguchi, S. Nishioka, and H. Motoda, ‘A flash-memory based file

system’. In 1995 USENIX Annual Technical Conference, pp. 16–20, New

Orleans, LA, January 1995. (p. 76)

107

[65] J. Kravitz, ‘SDML – Signed Document Markup Language’. W3C Note

NOTE-SDML-19980619, World Wide Web Consortium, 19 June 1998,

<http://www.w3.org/TR/NOTE-SDML/> . (pp. 78, 84)

[66] L. Lamport, ‘Time, clocks, and the ordering of events in a distributed

system’. Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

(pp. 77, 95)

[67] ——, ‘Constructing digital signatures from one-way function’. Technical

Report SRI-CSL-98, SRI International, Menlo Park, CA, October 1979.

(p. 27)

[68] L. Lamport, R. Shostak, and M. Pease, ‘The Byzantine generals problem’.

ACM Transactions on Programming Languages and Systems, vol. 4, no. 3,

pp. 382–401, 1982. (p. 30)

[69] J.-H. Lee, ‘A resilient access control scheme for secure electronic transac-

tions’. In 1998 USENIX Electronic Commerce Workshop, pp. 75–82, Boston,

MA, 1998. (pp. 45, 50)

[70] ——, ‘The Big Brother ballot’. Operating Systems Review, vol. 33, no. 3,

pp. 19–25, August 1999. (pp. 45, 57)

[71] ——, ‘Fingerprinting’. In S. Katzenbeisser and F. A. P. Petitcolas, eds,

Information Hiding Techniques for Steganography and Digital Watermarking,

Chapter 8, London, Artech House Publishing, 2000, ISBN 1-58053-035-4.

(p. 11)

[72] P. Massiglia, ed., The RAIDbook: A Handbook of Storage System Technology.

RAID Advisory Board, Peer to Peer Communications, 6th edition, 1997,

ISBN 1-57398-028-5. (p. 80)

[73] T. Mayfield, J. E. Roskos, S. R. Welke, and J. M. Boone, ‘Integrity in

automated information systems’. National Computer Security Center C

Technical Report 79-91, Institute for Defense Analyses, September 1991,

also known as IDA Paper P-2316. (p. 10)

108

[74] J. McLean, ‘The specification and modeling of computer security’. IEEE

Computer, vol. 23, no. 1, pp. 9–16, 1990. (p. 20)

[75] D. L. Mills, ‘Internet time synchronization: the Network Time Proto-

col’. IEEE Transactions on Communications, vol. COM-39, no. 10, pp. 1482–

1493, 1991. (p. 90)

[76] R. Molva, G. Tsudik, E. van Herreweghen, and S. Zatti, ‘KryptoKnight

authentication and key distribution system’. In Proceedings of European

Symposium on Research in Computer Security (ESORICS) ’92, vol. 648 of

Lecture Notes in Computer Science, pp. 155–174, Springer-Verlag, 1992.

(p. 28)

[77] M. Naor, ‘Bit commitment using pseudo-randomness’. In Proceedings of

Advances in Cryptology – CRYPTO ’89, vol. 435 of Lecture Notes in Com-

puter Science, pp. 128–136, Springer-Verlag, 1990. (p. 58)

[78] M. Naor and M. Yung, ‘Universal one-way hash functions and their

cryptographic application’. In Proceedings of the 21th Annual ACM Sym-

posium on Theory of Computing, pp. 33–43, Seattle, WA, Association for

Computing Machinery, May 1989. (p. 27)

[79] National Institute of Standard and Technology, Data Encryption Standard

(DES), 30 December 1993, Federal Information Processing Standards

Publication FIPS PUB 46-2, reaffirmed until 1998. (pp. 13, 28)

[80] ——, Secure Hash Standard (SHS), 17 April 1995, Federal Information Pro-

cessing Standards Publication FIPS PUB 180-1. (p. 94)

[81] R. M. Needham, ‘The changing environment for security protocols’.

IEEE Network, pp. 12–15, May/June 1997. (pp. 28, 51)

[82] A. M. Odlyzko, ‘The slow evolution of electronic publishing’. In A. J.

Meadows and F. Rowland, eds, Electronic Publishing ’97: New Models and

Opportunities, pp. 4–18, ICCC Press, 1997. (p. 43)

[83] ——, ‘Competition and cooperation: Libraries and publishers in the

transition to electronic scholarly journals’. Journal of Scholarly Publishing,

vol. 30, no. 4, pp. 163–185, July 1999. (p. 36)

109

[84] ——, ‘The evolution of electronic scholarly communication’. In C. J.

Manson, ed., Science Editing and Information Management, pp. 3–

4, January 1999, <http://www.research.att.com/˜amo/doc/

evolution.communications.txt> . (p. 35)

[85] T. Okamoto, ‘Receipt-free electronic voting schemes for large scale elec-

tions’. In Proceedings of Security Protocols Workshop ’97, pp. 25–35, Paris,

1997. (p. 58)

[86] G. Orwell, Nineteen Eighty-Four. London, England, Penguin Books, 1989,

First published by Martin Secker & Warburg Ltd. in 1949, ISBN 0-14-

027877-X. (pp. 24, 57)

[87] B. Pfitzmann, Digital signature schemes – General framework and fail-stop

signatures, vol. 1100 of Lecture Notes in Computer Science. Springer-Verlag,

1996. (p. 27)

[88] C. P. Pfleeger, Security in Computing. Upper Saddle River, NJ, Prentice

Hall PTR, 2nd edition, 1997, ISBN 0-13-185794-0. (pp. 14, 19)

[89] D. Ragget, A. Le Hors, and I. Jacobs, ‘HyperText Markup Language

(HTML)’. W3C Recommendation REC-html40, World Wide Web Con-

sortium, 24 April 1998, <http://www.w3.org/TR/REC-html40> .

(p. 2)

[90] M. K. Reiter, ‘Secure agreement protocols: Reliable and atomic group

multicast in Rampart’. In Proceedings of the 2nd ACM Conference on Com-

puter and Communications Security, pp. 68–80, Fairfax, VA, Association

for Computing Machinery, November 1994. (p. 18)

[91] ——, ‘The Rampart toolkit for building high-integrity services’. In The-

ory and Practice in Distributed Systems, vol. 938 of Lecture Notes in Com-

puter Science, pp. 99–110, Springer-Verlag, 1995. (p. 18)

[92] ——, ‘Distributing trust with the Rampart toolkit’. Communications of the

ACM, vol. 39, no. 4, pp. 71–74, 1996. (p. 18)

110

[93] M. K. Reiter, M. K. Franklin, J. B. Lacy, and R. N. Wright, ‘The Ω key

management service’. Journal of Computer Security, vol. 4, no. 4, pp. 267–

287, 1996. (p. 31)

[94] R. L. Rivest, ‘The MD5 message digest algorithm’. IETF RFC 1321, Inter-

net Engineering Task Force, April 1992. (p. 28)

[95] J. Rompel, ‘One-way functions are necessary and sufficient for digital

signatures’. In Proceedings of the 22th Annual ACM Symposium on Theory

of Computing, pp. 387–394, Baltimore, MD, Association for Computing

Machinery, May 1990. (p. 27)

[96] M. Rosenblum and J. K. Ousterhout, ‘The design and implementation of

a log-structured file system’. In Proceedings of the 13th ACM Symposium on

Operating Systems Principles, pp. 1–15, Pacific Grove, CA, October 1991.

(p. 76)

[97] ——, ‘The design and implementation of a log-structured file system’.

ACM Computing Surveys, vol. 10, no. 1, pp. 26–52, 1992. (p. 76)

[98] F. Rowland, C. McKnight, J. Meadows, and P. Such, ‘ELVYN: The de-

livery of an electronic version of a journal from the publisher to li-

braries’. Journal of the American Society for Information Science, vol. 47,

no. 9, pp. 690–700, September 1996. (p. 4)

[99] A. D. Rubin, ‘Independent one-time passwords’. USENIX Computing

Systems, vol. 9, no. 1, pp. 15–27, 1996. (p. 51)

[100] K. Sako and J. Killian, ‘Secure voting using partially compatible homo-

morphism’. In Proceedings of Advances in Cryptology – CRYPTO ’94, pp.

411–424, Springer-Verlag, 1994. (p. 58)

[101] B. Schneier, Applied Cryptography. New York, John Wiley & Sons, 2nd

edition, 1996, ISBN 0-471-12845-7. (pp. 10, 12, 27)

[102] J. F. Snook, Towards secure, optimistic, distributed open systems. Ph.D. dis-

sertation, University of Hertfordshire, Hatfield, September 1992, Techni-

cal Report No. 151. (pp. 4, 79)

111

[103] G. Taubes, ‘Publication by electronic mail takes physics by storm’. Sci-

ence, vol. 259, no. 5099, pp. 1246–1248, 26 February 1993. (p. 35)

[104] ——, ‘Electronic preprints point the way to author empowerment’. Sci-

ence, vol. 271, no. 5249, pp. 767–768, 9 February 1996. (p. 5)

[105] The Philological Society of London, ed., The Oxford English dictionary.

Oxford, Clarendon Press, 1961. (pp. 10, 11, 13, 14, 15, 17, 26)

[106] L. C. Thurow, Creating Wealth – The New Rules for Individuals, Com-

panies, and Countries in a Knowledge-based Economy. London, Nicholas

Brealey Publishing, 1999, ISBN 1-85788-242-3, also published as ‘Build-

ing Wealth’. (p. 34)

[107] W. F. Tichy, ‘Design, implementation, and evaluation of a revision con-

trol system’. In the 6th International Conference on Software Engineering, pp.

58–67, ACM/IEEE, September 1982. (pp. 77, 89)

[108] M. V. Wilkes, Time-sharing computer systems, vol. 5 of Computer Mono-

graphs. London, Macdonald/American Elsevier, 2nd edition, 1972, 1st

edition was published in 1968, ISBN 0-356-03985-4. (pp. 28, 51)

[109] R. Yahalom, ‘Optimistic trust with realistic eNvestigators’. In Proceedings

of Security Protocols Workshop ’98, vol. 1550 of Lecture Notes in Computer

Science, pp. 193–202, Cambridge, Springer-Verlag, April 1998. (p. 58)

[110] T. Ylönen, ‘SSH – Secure login connection over the Internet’. In the 6th

USENIX Security Symposium, pp. 37–42, San Jose, CA, June 1996. (p. 13)

[111] P. R. Zimmermann, The Official PGP User’s Guide. Cambridge, MA, MIT

Press, 1995, ISBN 0-262-74017-6. (p. 13)

112

Appendixes

Appendix A: Document Type Definitions

stdDef.dtd

<!-- stdDef.dtd: DTD for entities -->

<!ENTITY % nameList
"foreName CDATA #REQUIRED

surName CDATA #REQUIRED
initial CDATA #IMPLIED">

<!ENTITY % dateList

"year CDATA #REQUIRED
month CDATA #REQUIRED

day CDATA #REQUIRED
hour CDATA #IMPLIED

minute CDATA #IMPLIED

second CDATA #IMPLIED">
<!ENTITY % algoList

"algoName CDATA #REQUIRED
version CDATA #IMPLIED">

<!ENTITY % orgList
"orgName CDATA #REQUIRED

dept CDATA #IMPLIED

subsection* CDATA #IMPLIED">

<!ELEMENT dtd (dtdInfo)+>
<!ELEMENT dtdInfo EMPTY>

<!ATTLIST dtdInfo

name CDATA #REQUIRED

113

version CDATA #REQUIRED

URL CDATA #IMPLIED
author CDATA #IMPLIED>

<!-- end of stdDef.dtd -->

hashList.dtd

<!-- hashList.dtd: DTD for hash lists -->

<!ENTITY % stdDef SYSTEM "stdDef.dtd">

%stdDef;

<!ELEMENT hashList (hash)+>

<!ELEMENT hash (hashInfo, hashValue)>
<!ELEMENT hashInfo (hashAlgo, url?, parent?)>

<!ELEMENT hashAlgo EMPTY>
<!ATTLIST hashAlgo %algoList;>

<!ELEMENT url (#PCDATA)>

<!ELEMENT parent (#PCDATA)>
<!ELEMENT hashValue (#PCDATA)>

<!-- end of hashList.dtd -->

signList.dtd

<!-- signList.dtd: DTD for signing docs -->

<!ENTITY % stdDef SYSTEM "stdDef.dtd">

%stdDef;

<!ELEMENT signList (sign)+>

<!ELEMENT sign (signInfo, pKeyInfo, signature)>

<!ELEMENT signInfo (signer, signAlgo, url?, parent?)>
<!ELEMENT signer EMPTY>

114

<!ATTLIST signer %nameList;

orgName CDATA #IMPLIED
signerId CDATA #IMPLIED>

<!ELEMENT signAlgo EMPTY>
<!ATTLIST signAlgo %algoList;>

<!ELEMENT url (#PCDATA)>
<!ELEMENT parent (#PCDATA)>

<!ELEMENT pKeyInfo (#PCDATA)>

<!ELEMENT signature (#PCDATA)>

<!-- end of signList.dtd -->

cryptList.dtd

<!-- cryptList.dtd: DTD for encrypting docs -->
<!ENTITY % stdDef SYSTEM "stdDef.dtd">

%stdDef;

<!ELEMENT cryptList (cryptInfo)+>

<!ELEMENT cryptInfo (encrypter, cryptAlgo, acl)>
<!ELEMENT encrypter EMPTY>

<!ATTLIST encrypter %nameList;>
<!ELEMENT cryptAlgo EMPTY>

<!ATTLIST cryptAlgo %algoList;>

<!ELEMENT acl (authEntry+)>
<!ELEMENT authEntry (authName, pKeyInfo)>

<!ELEMENT authName (#PCDATA)>
<!ATTLIST authName %nameList;>

<!ELEMENT pKeyInfo (#PCDATA)>

<!-- end of cryptList.dtd -->

erlDoc.dtd

<!-- erlDoc.dtd: DTD for ERL-type docs -->

115

<!ENTITY % hashList SYSTEM "hashList.dtd">

%hashList;

<!ELEMENT erlDoc (dtd, docBody, hashList)>

<!ELEMENT docBody (p+, hashInfo+)>
<!ELEMENT p (#PCDATA)>

govDoc.dtd

<!-- govDoc.dtd: DTD for government docs -->

<!ENTITY % signList SYSTEM "signList.dtd">

%signList;

<!ELEMENT govDoc (dtd, docBody, signList)>

<!ELEMENT docBody (author+, docId, classification,
creationDate, expiryDate?, timestamp, signInfo+, paragr aph+)>

<!ELEMENT author EMPTY>
<!ATTLIST author %nameList;

authorId CDATA #IMPLIED
%orgList;>

<!ELEMENT docId (#PCDATA)>
<!ELEMENT classification EMPTY>

<!ATTLIST classification classCode

(topsecret | secret | classified | unclassified) "classifi ed" >
<!ELEMENT creationDate EMPTY>

<!ATTLIST creationDate %dateList;>
<!ELEMENT expiryDate EMPTY>

<!ATTLIST expiryDate %dateList;>

<!ELEMENT timestamp (#PCDATA)>
<!ELEMENT paragraph (textBody, classification)>

<!ELEMENT textBody (#PCDATA)>
<!-- end of govDoc.dtd -->

116

eCheque.dtd

<!-- eCheque.dtd: DTD for electronic cheques -->
<!ENTITY % signList SYSTEM "signList.dtd">

%signList;

<!ELEMENT eCheque (dtd, chequeBody, signList)>
<!ELEMENT chequeBody (chequeId, account, payee, payment,

issueDate, notLater?, timestamp, signInfo+)>

<!ELEMENT chequeId (#PCDATA)>

<!ELEMENT account (#PCDATA)>
<!ELEMENT payee EMPTY>

<!ATTLIST payee %nameList;
payeeId CDATA #IMPLIED>

<!ELEMENT payment EMPTY>

<!ATTLIST payment
amount CDATA #REQUIRED

currency CDATA #IMPLIED>
<!ELEMENT issueDate EMPTY>

<!ATTLIST issueDate %dateList;>

<!ELEMENT notLater EMPTY>
<!ATTLIST notLater %dateList;>

<!ELEMENT timestamp (#PCDATA)>

<!-- end of eCheque.dtd -->

certificate.dtd

<!-- certificate.dtd: DTD for certificates -->

<!ENTITY % signList SYSTEM "signList.dtd">

%signList;

<!ELEMENT certificate (dtd, certBody, signList)>

<!ELEMENT certBody (certType, serialNo, issuer, user,
validity, signInfo, uKeyInfo, extension?)>

117

<!ELEMENT certType (#PCDATA)>

<!ATTLIST certType version CDATA #REQUIRED>
<!ELEMENT serialNo (#PCDATA)>

<!ELEMENT issuer EMPTY>
<!ATTLIST issuer

issuerId CDATA #REQUIRED
country CDATA #REQUIRED

organization CDATA #REQUIRED

caName CDATA #REQUIRED>
<!ELEMENT user EMPTY>

<!ATTLIST user %nameList;
userId CDATA #IMPLIED

country CDATA #REQUIRED

organization CDATA #REQUIRED
dept CDATA #IMPLIED>

<!ELEMENT validity (startDate, expiryDate)>
<!ELEMENT startDate EMPTY>

<!ATTLIST startDate %dateList;>

<!ELEMENT expiryDate EMPTY>
<!ATTLIST expiryDate %dateList;>

<!ELEMENT uKeyInfo (#PCDATA)>
<!ELEMENT extension (#PCDATA)>

<!-- end of certificate.dtd -->

encDoc.dtd

<!-- encDoc.dtd: DTD for encrypted docs -->
<!ENTITY % cryptList SYSTEM "cryptList.dtd">

%cryptList;

<!ELEMENT encDoc (dtd, encBody, cryptList)>
<!ELEMENT encBody (#PCDATA)>

<!-- end of encDoc.dtd -->

118

Appendix B: XML samples for DTDs

examResult.xml

<?xml version="1.0"?>

<!DOCTYPE erlDoc SYSTEM "erlDoc.dtd">

<erlDoc>

<dtd>

<dtdInfo name="stdDef.dtd" version="1.0"/>
<dtdInfo name="hashList.dtd" version="1.0"/>

<dtdInfo name="erlDoc.dtd" version="1.0"/>
</dtd>

<docBody>
<p>

...
The examination results for the second MB degree

examination are as follows:

...
</p>

<hashInfo><hashAlgo algoName="SHA-1"/>

<url>http://www.med.abc.ac.uk/results</url>

<parent>http://www.cert.bma.org.uk</parent>
</hashInfo>

<hashInfo><hashAlgo algoName="TIGER"/>
<url>http://www.med.abc.ac.uk/results</url>

<parent>http://www.cert.med.ac.uk</parent>
</hashInfo>

</docBody>

<hashList>

<hash>
<hashInfo>

<hashAlgo algoName="SHA-1"/>

<url>http://www.med.abc.ac.uk/results</url>
<parent>http://www.cert.bma.org.uk</parent>

</hashInfo>

119

<hashValue>M/67+HL...02LyhP3lfGnTf</hashValue>

</hash>

<hash>
<hashInfo>

<hashAlgo algoName="TIGER"/>
<url>http://www.med.abc.ac.uk/results</url>

<parent>http://www.cert.med.ac.uk</parent>

</hashInfo>
<hashValue>zSEMzoA...EAMDEbYugP/+5</hashValue>

</hash>
</hashList>

</erlDoc>

draft.xml

<?xml version=’1.0’?>

<!DOCTYPE govDoc SYSTEM "govDoc.dtd">

<govDoc>

<dtd>

<dtdInfo name="stdDef.dtd" version="1.0"/>
<dtdInfo name="signList.dtd" version="1.0"/>

<dtdInfo name="govDoc.dtd" version="1.0"/>

</dtd>

<docBody>
<author foreName="John" surName="Smith" initial="M"

authorId="95M1295" orgName="DTI" dept="telecom"/>

<docId>DTI-TEL-9901-0123</docId>
<classification classCode="secret"/>

<creationDate year="1999" month="01" day="23"/>
<expiryDate year="1999" month="12" day="31"/>

<timestamp>182390214292</timestamp>

<signInfo>
<signer foreName="John" surName="Smith" initial="M"

signerId="95M1295"/>

120

<signAlgo algoName="PGP-RSA" version="5.5"/>

<url>http://www.dti.gov/draft</url>
</signInfo>

<paragraph>
<textBody>

...
This is a draft for the regulation for

...

</textBody>
<classification classCode="classified"/>

</paragraph>
<paragraph>

<textBody>

...
Products including cryptographic means

...
</textBody>

<classification classCode="secret"/>

</paragraph>

</docBody>

<signList>

<sign>
<signInfo>

<signer foreName="John" surName="Smith" initial="M"
signerId="95M1295"/>

<signAlgo algoName="PGP-RSA" version="5.5"/>
<url>http://www.dti.gov/draft</url>

</signInfo>

<pKeyInfo>
lQMFEDWhboWuyrPDhRvRXQEBkp4D/ivwpsci5MJQXUA

bcPOUQquOgzMpp7W5KXP1Cit9EyqaPtet+1nkaoRXYv
FQIB/eBjkcvNaA02w/mvHQRQYiAzz6kdPSn/rt9THkX

LAOsOekv

=1zy8
</pKeyInfo>

<signature>
CZ/SDEjG6wt7V3uXWbZGV0pVg5LJg8j7bONjtdDuAHy

IyeYFI87qHE=

=OTeM

121

</signature>

</sign>
</signList>

</govDoc>

<!-- end of draft.xml -->

corpCheque.xml

<?xml version="1.0"?>
<!DOCTYPE eCheque SYSTEM "eCheque.dtd">

<eCheque>

<dtd>
<dtdInfo name="stdDef.dtd" version="1.0" />

<dtdInfo name="signList.dtd" version="1.0" />
<dtdInfo name="eCheque.dtd" version="1.0" />

</dtd>

<chequeBody>

<chequeId>00883627</chequeId>
<account>12-34-56 1234567</account>

<payee foreName="William" surName="Hopkinson" initial= "F"/>
<payment amount="19.95" currency="GBP" />

<issueDate year="1999" month="01" day="15" />

<notLater year="1999" month="06" day="30" />
<timestamp>872043082393</timestamp>

<signInfo>
<signer foreName="John" surName="Smith" initial="M" />

<signAlgo algoName="PGP-RSA" version="5.5" />

</signInfo>
<signInfo>

<signer foreName="Edward" surName="Thompson" initial=" J" />
<signAlgo algoName="PGP-DSS" version="5.5" />

</signInfo>

</chequeBody>

<signList>

122

<sign>

<signInfo>
<signer foreName="John" surName="Smith" initial="M" />

<signAlgo algoName="PGP-RSA" version="5.5" />
</signInfo>

<pKeyInfo>
lQMFEDWhboWuyrPDhRvRXQEBkp4D/ivwpsci5MJQXUA

bcPOUQquOgzMpp7W5KXP1Cit9EyqaPtet+1nkaoRXYv

FQIB/eBjkcvNaA02w/mvHQRQYiAzz6kdPSn/rt9THkX
LAOsOekv

=1zy8
</pKeyInfo>

<signature>

CZ/SDEjG6wt7V3uXWbZGV0pVg5LJg8j7bONjtdDuAHy
IyeYFI87qHE=

=OTeM
</signature>

</sign>

<sign>
<signInfo>

<signer foreName="Edward" surName="Thompson" initial=" J" />
<signAlgo algoName="PGP-DSS" version="5.5" />

</signInfo>

<pKeyInfo>
SHllb24gTGVlICgxMDI0KSA8Sm9uZy1IeWVvbi5MZWV

bcPOUQquOgzMpp7W5KXP1Cit9EyqaPtet+1nkaoRXYv
FQIB/eBjkcvNaA02w/mvHQRQYiAzz6kdPSn/rt9THkX

L12s7ejk
IEz1y

</pKeyInfo>

<signature>
E0a57bT2+xWWds0Jh3wpIqV25B6+ExJA6xnAB3Az5hd

xAEALBQYiHd
n/rt9

</signature>

</sign>
</signList>

</eCheque>

<!-- end of corpCheque.xml -->

123

x509Cert.xml

<?xml version="1.0"?>
<!DOCTYPE certificate SYSTEM "certificate.dtd">

<certificate>

<dtd>
<dtdInfo name="stdDef.dtd" version="1.0"/>

<dtdInfo name="signList.dtd" version="1.0"/>
<dtdInfo name="certificate.dtd" version="1.0"/>

</dtd>

<certBody>

<certType version="3.0">x509v3</certType>
<serialNo>1</serialNo>

<issuer issuerId="1000345" country="UK"

organization="UCAM" caName="CamCA"/>
<user foreName="William" surName="Hopkinson" initial=" F"

userId="20023813" country="UK" organization="UCAM"
dept="Computer Laboratory"/>

<validity>

<startDate year="1999" month="01" day="01" hour="00"
minute="00" second="00"/>

<expiryDate year="1999" month="12" day="31" hour="23"
minute="59" second="59"/>

</validity>
<signInfo>

<signer foreName="$$NA" surName="$$NA" orgName="CamCA"

signerId="1000345"/>
<signAlgo algoName="PGP-RSA" version="5.5"/>

</signInfo>
<uKeyInfo>

djTHQquOgMp7W5KXPshYtwIs1Cit9EqaPt+1nkaoYv

RhsB/eBjk/dsjYTskcvNaA02w/mHQYz6kdPSn/tHkX
FI87qHE=

dkQ0s
</uKeyInfo>

<extension>NONE</extension>

</certBody>

124

<signList>

<sign>
<signInfo>

<signer foreName="$$NA" surName="$$NA" orgName="CamCA"
signerId="1000345"/>

<signAlgo algoName="PGP-RSA" version="5.5"/>
</signInfo>

<pKeyInfo>

sLrTlQMFEDWhboWuyrPDhRvRXQEBkp4D/ivwpsci5MJQXUA
QyTdbcPOUQquOgzMpp7W5KXP1Cit9EyqaPtet+1nkaoRXYv

GhsAFQIB/eBjkcvNaA02w/mvHQRQYiAzz6kdPSn/rt9THkX
FI87qHE=

dkQ0s

</pKeyInfo>
<signature>

E0a57bT2+xWWds0Jh3wpIqV25B6+ExJA6xnAB3Az5hdkQ0s
Tb0a2IdqBxN=

=IyeY

</signature>
</sign>

</signList>

</certificate>

<!-- end of x509Cert.xml -->

encMemo.xml

<?xml version="1.0"?>

<!DOCTYPE encDoc SYSTEM "encDoc.dtd">

<encDoc>

<dtd>

<dtdInfo name="stdDef.dtd" version="1.0"/>
<dtdInfo name="signList.dtd" version="1.0"/>

<dtdInfo name="encDoc.dtd" version="1.0"/>

</dtd>

<encBody>

125

bcPOUQquOgzMpp7W5KXP1Cit9EyqaPtet+1nkaoRXYv

FQIB/eBjkcvNaA02w/mvHQRQYiAzz6kdPSn/rt9THkX
...

lQMFEDWhboWuyrPDhRvRXQEBkp4D/ivwpsci5MJQXUA

</encBody>

<cryptList>

<cryptInfo>
<encrypter foreName="William" surName="Hopkinson"/>

<cryptAlgo algoName="PGP-RSA" version="5.5"/>
<acl>

<authEntry>

<authName foreName="William" surName="Hopkinson"/>
<pKeyInfo>DhRvrRXE/TBkp4D/ivwpsci5MJ

sjeUdcPOUQqugzp5X1it9EqPe+1naR
WeRtS/eBjkcvNa0wmHQQiz6dn/rt9T5

sYUi+=FI87qH

E=dkQ0s
</pKeyInfo>

</authEntry>
<authEntry>

<authName foreName="John" surName="Smith"/>

<pKeyInfo>
dTrYFDWbWyPhvRQBpD/vw+pc5JuQXUA

K/+ePUqOgMp7WKX1i9EqPt+nkaoRXYv
Ed/aQBejkva0wmvQQiAz6kPSn/tTukX

dMusKFIH
RsIYk

</pKeyInfo>

</authEntry>
</acl>

</cryptInfo>
</cryptList>

</encDoc>

<!-- end of encMemo.xml -->

126

Appendix C: The user interface

This chapter includes screen shots for Jikzi publishing server which show the

user interface of the system.

Figure C.1. The entrance screen for the Jikzi service: the screen has a menu bar in the left-

hand side with six menu buttons including Publish, Directory, Search, Revision, Information

and Notary. The service interface for each menu is shown in the following pages.

127

Figure C.2. Publish menu: the screen

shows the document submission form

with user options to publish documents

in the server.

Figure C.3. Directory menu: the screen

shows a list of stored files in the server

repository; the screen shown above dis-

plays a list of files generated by the wit-

ness service.

Figure C.4. Search menu: the screen

shows the form used to search for pub-

lished documents. Documents can be

sought by name or keyword; an ad-

vanced search facility is also provided.

Figure C.5. Revision menu: the screen

shows the revision history of a file, and

users can see the differences between

two versions.

128

Figure C.6. Information pages: the

screen shows an information list about

the Jikzi server; it includes background

information, architecture and detailed

mechanisms.

Figure C.7. Notary menu: the screen

shows the user interface for the witness

service; there are fields for the target

URL and the user’s email address for a

reply.

Figure C.8. Witness service result:

the screen displays a result of the pas-

sive witness service for a requested web

page.

129

