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Biometric Decision Landscapes

John Daugman University of Cambridge The Computer Laboratory1

Abstract

This report investigates the “decision landscapes” that characterize several forms of biometric
decision making. The issues discussed include: (i) Estimating the degrees-of-freedom associated
with different biometrics, as a way of measuring the randomness and complexity (and therefore
the uniqueness) of their templates. (ii) The consequences of combining more than one biometric
test to arrive at a decision. (iii) The requirements for performing identification by large-scale
exhaustive database search, as opposed to mere verification by comparison against a single
template. (iv) Scenarios for Biometric Key Cryptography (the use of biometrics for encryption
of messages). These issues are considered here in abstract form, but where appropriate, the
particular example of iris recognition is used as an illustration. A unifying theme of all four
sets of issues is the role of combinatorial complexity, and its measurement, in determining the
potential decisiveness of biometric decision making.

Keywords – Statistical decision theory, pattern recognition, biometric identification, combinatorial
complexity, iris recognition, Biometric Key Cryptography.

1 Yes/No Decisions

Biometric identification fits squarely in the classical framework of statistical decision theory. This
formalism emerged from work on statistical hypothesis testing1 in the 1920s - 1930s and on radar
signal detection analysis2 in World War II, and its key elements are briefly summarized here in
Figures 1 and 2. For decision problems in which prior probabilities are not known, error costs are
not fixed, but posterior distributions are known, the formalism of Neyman and Pearson1 provides
not only a mechanism for making decisions, but also for assigning confidence levels to such decisions
and for measuring the overall “decidability” of the task.

Yes/No pattern recognition decisions have four possible outcomes: either a given pattern is,
or is not, in fact the target; and in either case, the decision made by the recognition algorithm
may be either the correct or the incorrect one. In a biometric decision context the four possible
outcomes are normally called False Accept (FA), Correct Accept (CA), False Reject (FR), and
Correct Reject (CR). Obviously the first and third outcomes are errors (called Type I and Type
II respectively), whilst the second and fourth outcomes are the ones sought. By manipulating the
decision criteria, the relative probabilities of these four outcomes can be adjusted in a way that
reflects their associated costs and benefits. These may be very different in different applications.
In a customer context the cost of a FR error may exceed the cost of a FA error, whereas just the
opposite may be true in a military context.

It is important to note immediately the uselessness of either error rate statistic alone in char-
acterizing performance. Any arbitrary system can achieve a FA rate of 0 (just by rejecting all
candidates). Similarly it can achieve a FR rate of 0 (just by accepting all candidates). The notion
of “decision landscape” is intended to portray the degree to which any improvement in one error
rate must be paid for by a worsening in the other. This concept facilitates the definition of metrics
quantifying the intrinsic decidability of a recognition problem, and this can be useful for comparing
different biometric approaches and understanding their potential.

1Cambridge CB2 3QG, England. tel +44 1223 334501 fax +44 1223 334679 john.daugman@CL.cam.ac.uk
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Figure 1: Decision landscape: general formalism for biometric decision making.

Figure 1 illustrates the idea of the decision landscape. The two distributions represent the two
states of the world, which are imperfectly separated. The abscissa is any metric of similarity or
dissimilarity; in this case it happens to be Hamming Distance, which is the fraction of bits that
differ between two binary strings. A decision about whether they are instances of the same pattern
(albeit somewhat corrupted), or completely different patterns, is made by imposing some decision
criterion for similarity as indicated by the dotted line. Similarity up to some Hamming Distance
(0.4 in this case) is deemed sufficient for regarding the patterns as the same, but beyond that point,
the patterns are declared to be different.

The likelihoods that these are correct decisions, or not, correspond to the four stippled areas
that lie under the two probability distributions on either side of the decision criterion. It is clear
that moving the decision criterion to the right or left (becoming more liberal or more conservative)
will change the relative likelihoods of the four outcomes. It is also clear that the “decidabiity” of a
Yes/No decision problem is determined by how much overlap there is between the two distributions.
The problem becomes more decidable if their means are further apart, or if their variances are
smaller. One measure of decidability, although not the only possible one, is d′ (d-prime), defined
as follows if the means of the two distributions are µ1 and µ2 and their two standard deviations
are σ1 and σ2:

d′ =
|µ1 − µ2|√
1
2(σ

2
1 + σ2

2)
(1)

(Note that d′ has the units of Z-score: distances are marked off in units of a conjoint standard
deviation.) A shortcoming of the d′ statistic is that it ignores moments higher than second-order,
and it becomes less informative if distributions depart significantly from modal form. Nevertheless,
it can be a useful gauge for assessing different decision landscapes. It has the virtue of quantifying,
in a single number, the intrinsic decidability of a decision task in a way that is independent of the
chosen decision criterion. It assesses the degree of inevitable trade-off between the two error rates.
Because it measures the separation between the two distributions defining the decision landscape,
the higher it is, the better. In the schematic of Figure 1, d′ = 2.

Let us name the two distributions PIm(x) and PAu(x), denoting respectively the probability
densities of any measured dissimilarity x (such as a Hamming Distance) arising from two different
biometric sources (“Impostor”), or from the same source (“Authentic”). Then the probabilities of
each of the four possible decision outcomes FA, CR, CA, and FR are equal to the areas under these
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two probability distributions on either side of the chosen decision criterion C:

P (FA) =
∫ C

0
PIm(x)dx (2)

P (CR) =
∫ 1

C
PIm(x)dx (3)

P (CA) =
∫ C

0
PAu(x)dx (4)

P (FR) =
∫ 1

C
PAu(x)dx (5)

It is clear that these four probabilities separate into two pairs that must sum to unity, and two
pairs that are governed by inequalities:

P (CA) + P (FR) = 1 (6)

P (FA) + P (CR) = 1 (7)

P (CA) > P (FA) (8)

P (CR) > P (FR) (9)
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Figure 2: The Neyman-Pearson (ROC) decision strategy curve.

Manipulation of the decision criterion C in the integrals (2) - (5) in order to implement different
decision strategies appropriate for the costs of either type of error in a given application, is illus-
trated schematically in Figure 2. Such a decision strategy diagram, sometimes called a Receiver
Operating Characteristic or Neyman-Pearson curve, plots P (CA) from (4) against P (FA) from (2)
as a locus of points. Each point on such a curve represents a different decision strategy as specified
by a different choice for the operating criterion C, as was indicated schematically in Figure 1.

Inequality (8) states that the Neyman-Pearson strategy curve shown in Figure 2 will always lie
above the diagonal line. Clearly, strategies that are excessively liberal or conservative correspond
to sliding along the curve towards either of its extremes. Irrespective of where the decision criterion
is placed along this continuum (hence how liberal or conservative one wishes to be in a particular
application), the overall power of a pattern recognition method may be gauged by how bowed the
ROC curve is. The length of the short line segment in Figure 2 is monotonically related to the
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quantity d′ defined in (1). Ideally one would like a biometric that generates a decision landscape
whose ROC curve is extremely bowed, reaching as far as possible into the upper left corner of
Figure 2, since reaching that limit corresponds to achieving a Correct Accept rate of 100% whilst
keeping the False Accept rate at 0%.

The decision landscape concept that has been illustrated in Figures 1 and 2 and quantified by
equations (1) - (9) can be applied to any biometric, regardless of its chosen template or its measure of
similarity. Such dual histogram plots should always be provided for a biometric, together with some
measure of “separability” or “decidability” such as d′ in order to describe the decision landscape
more fully than merely citing a FA and FR rate, either of which can always be brought to 0. It is
unfortunate that such fuller portrayals of a biometric’s decision landscape are rarely provided.

2 Decisions from Combined Biometrics

In this section we investigate the consequences of combining two or more biometric tests into an
enhanced test. There is a common and intuitive assumption that the combination of different tests
must improve performance, because “surely more information is better than less information.” On
the other hand, a different intuition suggests that if a strong test is combined with a weaker test,
the resulting decision landscape is in a sense averaged, and the combined performance will lie some-
where between that of the two tests conducted individually (and hence will be degraded from the
performance that would be obtained by relying solely on the stronger test).

There is truth in both intuitions. The key to the apparent paradox is that when two tests are
combined, one of the resulting new error rates (FA or FR depending on the combination rule used)
becomes better than that of the stronger of the two tests, while the other error rate becomes worse
even than that of the weaker of the tests. If the two biometric tests differ significantly in their
power, and each operates at its own cross-over point where P (FA) = P (FR), then combining
them actually results in significantly worse performance than relying solely on the one, stronger,
biometric.

Notation: Two hypothetical independent biometric tests will be considered, named 1 and 2.
For example, 1 might be voice-based verification, and 2 might be fingerprint verification. Each
biometric test is characterized by its own pair of error rates at a given operating point, denoted as
the error probabilities P1(FA), P1(FR), P2(FA), and P2(FR):

P1(FA) = probability of a False Accept using Biometric 1 alone.

P1(FR) = probability of a False Reject using Biometric 1 alone.

P2(FA) = probability of a False Accept using Biometric 2 alone.

P2(FR) = probability of a False Reject using Biometric 2 alone.

There are two possible ways to combine the outcomes of the two biometric tests when forming
the conjoint (“enhanced”) decision: the Subject may be required to pass both of the biometric
tests, or he may be accepted if he can pass at least one of the two tests. These two cases define the
disjunctive and conjunctive rules:

Rule A: Disjunction (“OR” Rule) – Accept if either test 1 or test 2 is passed.

Rule B: Conjunction (“AND” Rule) – Accept only if both tests 1 and 2 are passed.

We can now calculate False Accept and False Reject error rates of the combined biometric, both
for disjunctive (Rule A) and conjunctive (Rule B) combinations of the two tests. These new error
probabilities will be denoted: PA(FA), PA(FR), PB(FA), and PB(FR).
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Rule A: Disjunction – Accept if either test 1 or test 2 is passed.

If Rule A (the “OR” Rule) is used to combine the two tests 1 and 2, a False Reject can only
occur if both tests 1 and 2 produce a False Reject. Thus the combined probability of a False
Reject, PA(FR), is the product of its two probabilities for the individual tests:

PA(FR) = P1(FR)P2(FR) (10)

(clearly a lower probability than for either test alone). But the probability of a False Accept when
using this Rule, which can be expressed as the complement of the probability that neither test 1
nor 2 produces a False Accept, is higher than it was for either test alone:

PA(FA) = 1− [1− P1(FA)] [1− P2(FA)] (11)
= P1(FA) + P2(FA)− P1(FA)P2(FA) (12)

Rule B: Conjunction – Accept only if both tests 1 and 2 are passed.

If Rule B (the “AND” Rule) is used to combine the two tests 1 and 2, a False Accept can only
occur if both tests 1 and 2 produce a False Accept. Thus the combined probability of a False
Accept, PB(FA), is the product of its two probabilities for the individual tests:

PB(FA) = P1(FA)P2(FA) (13)

(clearly a lower probability than for either test alone). But the probability of a False Reject when
using this Rule, which can be expressed as the complement of the probability that neither test 1
nor 2 produces a False Reject, is higher than it was for either test alone:

PB(FR) = 1− [1− P1(FR)] [1− P2(FR)] (14)
= P1(FR) + P2(FR)− P1(FR)P2(FR) (15)

Example: Combination of two hypothetical biometric tests, one stronger than the other.

Suppose weaker Biometric 1 operates with both of its error rates equal to 1 in 100, and sup-
pose stronger Biometric 2 operates with both of its error rates equal to 1 in 1,000. Thus if 100,000
verification tests are conducted with impostors and another 100,000 verification tests are conducted
with authentics, Biometric 1 alone should make a total of 2,000 errors, whereas Biometric 2 alone
should make a total of only 200 errors. But what happens if the two biometrics are combined to
make an “enhanced” test?

If the “OR” Rule were followed in this same batch of tests, the combined biometric should make
1,099 False Accepts and 1 False Reject, for a total of 1,100 errors. If instead the “AND” Rule is
followed, the combined biometric should make 1,099 False Rejects and 1 False Accept, thus again
producing a total of 1,100 errors. Either method of combining the two biometric tests produces 5.5
times more errors than if the stronger of the two tests had been used alone.

Conclusion: A strong biometric is better used alone than in combination with a weaker one...
when both are operating at their cross-over points. To reap any benefit from the combination,
equations (10) - (15) show that the operating point of the weaker biometric must be shifted to
satisfy the following criteria: If the “OR” Rule is to be used, the False Accept rate of the weaker
test must be made smaller than twice the cross-over error rate of the stronger test. If the “AND”
Rule is to be used, the False Reject rate of the weaker test must be made smaller than twice the
cross-over error rate of the stronger test.

5



3 Identification Decisions

We now compare the requirements of performing a verification (a one-to-one comparison against a
single stored template), versus performing an identification (a one-to-many comparison against all
the enrolled templates in some database containing N impostors). If the presenting template is in
fact one of the enrolled templates in the database, the probability of a False Reject when it comes
up is obviously the same as in the verification trial. But we are interested now in how much more
strenuous the demands against getting a single False Accept need to be, in the case of identification
trials involving N other templates.

Notation: Let P1 = probability of a False Accept in a verification trial. Let PN = probabil-
ity of a False Accept in identification trials after an exhaustive search through a database of N
unrelated templates. We wish to calculate this.

Clearly the probability of not getting a False Accept in any given comparison is (1 − P1). This
must happen N independent times, and so the probability of it not occurring in any of those N
comparisons is (1 − P1)N . Thus the probability of making at least one False Accept among those
N comparisons is one minus that probability. This is an extremely demanding relationship:

PN = 1− (1− P1)N (16)

Example: Consider a biometric verifier that achieves a 99.9% Correct Rejection performance in
one-to-one verification trials. Thus P1 = 0.001, as per equation (7). How will it perform when
searching through a database of unrelated templates?

Using equation (16), we see that for the following sizes of databases with N unrelated templates,
these will be the probabilities PN that this biometric makes at least one False Accept:

Database Size False Accept probability
N = 200 PN = 18%
N = 2,000 PN = 86%
N = 10,000 PN = 99.995%

Once the enrolled database size reaches only about 7,000 persons, this biometric actually becomes
more likely (99.91%) to produce a False Accept in identification trials than it is to produce a Cor-
rect Reject (99.9%) in verification trials.

Conclusion: Identification is vastly more demanding than verification, and even for moderate
database sizes, merely “good” verifiers are of no use as identifiers. Observing the approximation
that PN ≈ NP1 for small P1 << 1

N << 1, when searching a database of size N an identifier needs
to be roughly N times better than a verifier to achieve comparable odds against a False Accept.

It has been suggested that this fundamental problem might be overcome by “binning” or “fil-
tering” the database into smaller subsets, thereby reducing the problematical exponent N in (16).
For example, fingerprints might be pre-classified into three standard types as whorls, loops, or
arches, and then each search could be restricted just to databases of about one-third the full size.
But this strategem creates its own problems:

1. Binning is equivalent to “combining multiple tests,” as analyzed in the previous section. The
additional test here is the classification operation, which itself has its own P (FR), P (FA),
ROC curve, and d′. For a Subject to be correctly identified, he must pass both the biometric
matching test, and any pre-sorting test which classified his prints. Proponents of such com-
bined schemes often ignore the effect on the other error rate when contemplating the benefits
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for just one of the error rates. In this case, the benefit of reducing the FA probability (by
reducing the database search size N) is paid for by an increase in the FR probability, since
any misclassification of a print into the wrong bin must cause a failure to match. It has been
reported3 in tests of four AFIS systems that fingerprint binning classification error rates are
in the range of 1% to 5%. Such large increases in failures to match are unacceptable.

2. Even if there were no binning errors, the argument for its benefits requires that P (FA)
within a given class (e.g. whorl prints) is no higher than across mixed classes. If instead,
as would certainly be the case for matching methods such as optical Moire-pattern analysis,
loop prints were only confused with other loops, and whorls with whorls, then there would
be no performance benefit from binning. The size of each search database would be smaller,
but the probability of false matches within each class would be proportionately higher, since
all of the potential false matching prints remain present in the (now smaller) bin.

3. Even if there were no binning errors, and even if the within-bin false match rate were no
higher than the across-bin rate, the potential benefit of binning is limited by the number of
bins. Their number determines the factor by which the search database size can be reduced.
As the numerical examples illustrate, a reduction factor such as 3 or 10 is utterly insufficient.

The only real key to surviving equation (16) when performing large-scale database searches, in
which perhaps many millions of templates must be compared in seeking to make an identification
while avoiding false matches, is to ensure that P1 is sufficiently small. For a search database size
of N , the single-trial FA probability must be significantly smaller than 1/N . For example, when
being compared against a database of 10 million different templates, an “innocent” Subject can
only feel 99% certain that he won’t be falsely matched with any of them if the single-comparison
false match probability is no greater than P1 = 10−9: 1 in a billion.

4 The Degrees-of-Freedom in Biometric Feature Sets

Achieving such demanding confidence levels against false matches when attempting identification
decisions against large search databases is only possible if the combinatorics of the biometric are
sufficiently vast. The combinatorial complexity of a biometric test can be gauged by its number of
degrees-of-freedom, which is essentially the number of independent dimensions of variation, or the
number of independent yes/no questions that the biometric decision is based upon. For biometrics
that do not compare lists of distinct features but rather use a simple analogue measure such as
correlation, the number of degrees-of-freedom is the number of independent data that can be
resolved, as limited by (among other things) the imaging quality and the intrinsic auto-correlation
within each pattern. This metric of data size divided by its mean correlation length corresponds to
Hartley’s4 classic definition of the number of degrees-of-freedom in a signal, and to the number of
resolvable cells in the Information Diagram proposed by Gabor5.

Clearly, the larger the number of underlying features that are compared, the less chance that
two unrelated templates might just by chance agree in them all. But it also becomes less likely
that even their source will be able to produce a perfect match to them all. Therefore it is the
combinatorial question of how likely it is that some proportion of the features will be matched by
chance by different people, and some proportion will fail to be matched even by the same person,
that really determines the shape of the decision landscape. The goal of biometric feature encoding
is to maximize the number of degrees-of-freedom that will belong to the “impostors” distribution
in Figure 1, while minimizing the number that will belong to the “authentics” distribution. Thus
for example, in face recognition, one would like to choose feature dimensions that vary the most
among different individuals, but that do not vary when a given individual changes expression, pose
angle, hairstyle, age, etc.

The number of degrees-of-freedom contained in a wide range of biometrics can be estimated by
counting the number of yes/no questions that they ask (e.g. “is this minutia from fingerprint A
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Disagreement Among Unrelated IrisCodes (British Database)

326,028 comparisons of different eyes
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Figure 3: Disagreement among unrelated iris patterns in a British database, providing an estimate
of the number of degrees-of-freedom in IrisCodes.

also in B?”, or, “does the phase of this local patch in iris A agree with the local phase in B?”), and
then measuring the dimension of the subspace of these questions that are independent.

If the thresholds for such yes/no questions can be adjusted so that each has the same probability
p of being true, then the proportion of them that are true when unrelated templates are compared
will be binomially distributed with parameters (p, N), where N is the size of the subset of questions
posed that are independent. (If all the yes/no questions were independent, then N would equal
their number.) The probability that some fraction x = m/N of the N independent questions may
agree in their answers just by chance between unrelated templates will be distributed according to
the density function f(x):

f(x = m/N) =
N !

m!(N − m)!
pm(1− p)(N−m) (17)

The mean of such a distribution is µ = p, and its standard deviation is σ =
√

p(1− p)/N . In
general it is asymmetrical unless it happens that p = 0.5, in which case it resembles a Gaussian
apart from being discrete rather than continuous, and having strictly finite support (the unit
interval for x = m/N in this case.) Although the classic example of a random variable that is
binomially distributed is a series of independent Bernoulli trials (N independent coin-tosses with
fixed probability p), Viveros6 et al. have pointed out that correlated Bernoulli trials are also
distributed as such families of functions but with reduction in N .

An illustration of this principle is seen in Figure 3, which shows the data from 326,028 exhaustive
pairwise comparisons among 808 different iris patterns. Each IrisCode contains 2,048 bits of phase
data, but these are strongly correlated because of iris radial structure. The fraction of disagreeing
bits, or Hamming Distance, between every pair of different IrisCodes is plotted in the histogram,
and the solid curve is equation (17) with parameters p and N = p(1 − p)/σ2 measured from the
mean and standard deviation of the data. The quality of the fit between the data and equation (17)
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is extraordinary. The calculated value of N is 244, based upon the measurement that µ = 0.499
and σ = 0.032, and this tells us that among the 2,048 bits computed in an IrisCode, effectively only
244 of them are independent. Hence the number of degrees-of-freedom in IrisCodes acquired with
this particular camera focus quality and imaging resolution was 244. The solid curve was computed
using Stirling’s formula to calculate the large factorials in equation (17):

N ! ≈ eN ln(N)−N+ 1
2

ln(2πN) (18)

which errs by less than 1% in estimating N ! for N ≥ 9. The presence of large factorials causes the
binomial probability density to attenuate extremely rapidly in its tails, which in turn means that
the cumulative in equation (2) for False Accept probability becomes infinitesimally small when N ,
the number of degrees-of-freedom in the biometric, is sufficiently large.
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Disagreement Among Unrelated IrisCodes (American Database)

482,600 comparisons of different eyes

mean = 0.498,  stnd.dev. = 0.032

Degrees of Freedom:  244

Solid Curve:  Binomial of N=244, p=0.5

f(x=m/N) = p^(m)  q^(N-m)  N! / (m! (N-m)! )

Figure 4: Disagreement among unrelated iris patterns in an American database, providing an
estimate of the number of degrees-of-freedom in IrisCodes.

Whereas Figure 3 presented data from 326,028 comparisons among iris patterns acquired in
Britain, Figure 4 presents 482,600 such comparisons among an entirely different gallery of iris
images acquired on a different optical platform in America. It is once again perfectly described by
a binomial, as the solid curve illustrates. But because the optical systems used were quite different,
it is only coincidental that the measured number of degrees-of-freedom is again 244, exactly the
same as for the data in Figure 3. The actual number can be lower or higher than this (as many
as 266 have been reported in one study7 using the author’s algorithms8), because variations in
imaging focus and resolution affect the auto-correlation within each image.

It would be possible to estimate and compare the number of degrees-of-freedom for different
biometrics, using this mapping of biometric feature set comparisons into an equivalent number of
Bernoulli trials as described above. Moreover, through this expression of the decision processes as
an ensemble of elementary yes/no questions, the different biometrics would all acquire the benefits
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Phase-Quadrant Iris Demodulation Code
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Figure 5: Iris encoding by phase demodulation with complex-valued 2D Gabor wavelets.

of having factorial (binomial-class) tails, i.e. rapidly attenuating densities, instead of exponential
or flatter ones. This in turn would facilitate the execution of decision making by a simple test of
statistical independence8: a Subject becomes highly likely to pass a test of statistical independence
when compared with any other person’s biometric template, but to fail this same test of statistical
independence against his own.

5 Decision Landscape for Iris Recognition

Iris patterns are encoded into “IrisCodes” by a process of phase demodulation8 employing a two-
dimensional generalization9 of complex Gabor wavelets. These can represent10 a textured pattern
by an ensemble of phasors in the complex plane. In an IrisCode, each phasor angle (Figure 5) is
quantized into just the complex quadrant in which it lies for each local patch (r0, θ0) of the iris, and
this operation is repeated all across the iris, at many different scales (α, β, ω) of analysis. Such local
phase quantization is performed by evaluating the real and the imaginary parts of the following
integral expression:

∫
ρ

∫
φ

e−iω(θ0−φ)e−(r0−ρ)2/α2
e−(θ0−φ)2/β2

I(ρ, φ)ρdρdφ (19)

where the raw image data is given in a pseudo-polar coordinate system I(ρ, φ) following spatial
localization of an iris using methods described in earlier papers8. Bits in an IrisCode are set on
the basis of whether the real and imaginary parts of (19) are positive or negative. These form
the elementary “yes/no questions” that underlie decision making with iris patterns. All currently
available systems for iris recognition are based upon the author’s algorithms as described here, in
licensed executable code.

The ability of phase demodulation to extract enough degrees-of-freedom from iris patterns to
permit their reliable recognition is summarized in Figure 6. This is based upon the same set of
482,600 iris comparisons as shown in Figure 4 but after rotations to each of 7 angles (to correct for
head tilt and for imaging through a pan/tilt mirror), keeping only the best value. This selection
of the lowest Hamming Distance among 7 rotated comparisons skews the impostors distribution to
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6,300 same-eye comparisons

d’ = 14.10

solid curve = equation (20)

(min = 0.345)

(max = 0.313)

Figure 6: Decision landscape for iris recognition using the same (American) gallery as used in
Figure 4, but allowing several image rotations to find each closest fit. The histograms show 482,600
different-eye comparisons, and 6,300 same-eye comparisons. The solid curve is equation (20).

the left, but its functional form remains perfectly described by the appropriate density expression
(plotted as the solid curve) which is

fn(x) = nf(x) [1− F (x)]n−1 (20)

where f(x) is the simple binomial density function given in equation (17), F (x) is its cumulative
from 0 to x, and n = 7 rotations. The overal decidability for iris recognition in this decision
landscape is measured at d′ = 14.1 as defined by equation (1).

We can now compute P (FA), the probability of False Accept in single comparisons, using the
impostors distribution on the right side of Figure 6 as PIm(x) in equation (2). The lowest Hamming
Distance actually observed in this empirical series of 482,600 comparisons after 7 rotations each
was 0.345. But because of the principled reasons making f(x) in Figure 4 a binomial (17), we may
just integrate the expression in (20) for fn(x) (plotted as the solid curve in Figure 6) from x = 0
up to various possible decision criteria C as per (2) in order to calculate the theoretical P (FA) for
still lower decision criteria. Such cumulatives are presented in the following table:

HD Decision Criterion C False Accept probability
0.35 1 in 105,000
0.333 1 in 1.7 million
0.30 1 in 985 million
0.25 1 in 1014

We see now that the extremely rapid attenuation of the cumulatives in (2) when there are enough
degrees-of-freedom (244 in the case of this data set) allows huge confidence against False Matches,
while at the same time tolerating a 25% to 30% disagreement within acceptable biometric matches.
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In short, this table shows how biometric identification decisions can survive equation (16). The
essence of biometric decision making is combinatorics, and the fundamental strength of a biometric
is its combinatorial complexity.

6 Biometric Key Cryptography

We turn finally to a novel potential application of these principles, which is the use of biometrics
as encryption keys. We coin the name “Biometric Key Cryptography,” or BKC, for this subject.
Its purpose is to encrypt data so that only the possessor of (say the encrypting IrisCode) can
decrypt it again and thereby “see” it; and also to find means for sending biometrically-secured
communications over non-secure channels. Security has many goals besides user authentication,
including: integrity certification (non-corruption of data or a message); non-repudiation (e.g. of an
e-commerce transaction11); and encryption that does not rely on secret keys (which can be stolen,
broken, or lost). Cryptography and security are very mature subjects, with elaborate protocols
already in place that are deeply understood with formal models. However, these protocols have
not yet seriously incorporated biometric keys.

A biometric signature could play a role in the key-generation process, or even serve as the en-
cryption key itself, with the advantage that the user doesn’t have to remember it but can always
produce it. Let us consider the following trivial example, in which Alice wishes to send Bob a secret
message M over a non-secure two-way channel. The operator

⊗
signifies bitwise Exclusive-OR,

and A is Alice’s IrisCode while B is Bob’s:

message from Alice to Bob message from Bob to Alice
A

⊗
M

B
⊗

[A
⊗

M]
A

⊗
(B

⊗
[A

⊗
M]) = B

⊗
M

In a final step, Bob now is able to decode Alice’s message M by yet once again Exclusive-OR’ing
her transmission to him with his own IrisCode B, since [B

⊗
(B

⊗
M)] = M.

As presented above, this protocol is fatally flawed if no hashes are used because an attacker who
eavesdrops on all three communications can extract A, B, and M, simply by Exclusive-OR’ing the
messages from Alice to Bob, with that from Bob to Alice. But if the probabilistic character of bio-
metric signatures (the fact that each bit has some error probability associated with it) is exploited,
together with the selection of random subsets of A and B for the

⊗
operations, it is possible to

contemplate schemes which cloak these communications yet allow decryption and error-correction
by the recipient.

Classically, with few exceptions12 cryptographic security protocols require that every single bit
of a cipher key be correct, or else the ciphertext remains completely unintelligible. But the indi-
vidual bits in biometric templates are notoriously unreliable; we saw in Figure 6 that up to 30%
of the bits might be wrong in an authentic template, due to factors such as sensor noise, physio-
logical variability, or poor imaging focus. Yet as we also saw earlier (Figure 6 and its associated
FA Table), the combinatorics of IrisCodes have the consequence that there is a “ball” in 2,048-
dimensional Boolean space, whose radius is 0.30, centered on any given IrisCode, within which
the probability of an intrusion by any other IrisCode is about 10−9. This extreme sparsity in the
populating of IrisCode space invites efficient vector-quantization that would both probabilistically
ensure key uniqueness (no two different IrisCodes can occupy the same ball with p > 10−9), yet at
the same time allow the unreliability of the individual IrisCode bits to be exploited positively. The
synthesis of existing encryption protocols with these probabilistic properties of biometric templates
and their associated decision landscapes, opens new avenues for research.
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