Technical Report R

Number 473

Computer Laboratory

Computer algebra
and theorem proving

Clemens Ballarin

October 1999

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1999 Clemens Ballarin

This technical report is based on a dissertation submitted
by the author for the degree of Doctor of Philosophy to the
University of Cambridge, Darwin College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-473

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-473

Abstract

Is the use of computer algebra technology beneficial for mechanised reason-
ing in and about mathematical domains? Usually it is assumed that it is.
Many works in this area, however, either have little reasoning content, or
use symbolic computation only to simplify expressions. In work that has
achieved more, the used methods do not scale up. They trust the computer
algebra system either too much or too little.

Computer algebra systems are not as rigorous as many provers. They
are not logically sound reasoning systems, but collections of algorithms. We
classify soundness problems that occur in computer algebra systems. While
many algorithms and their implementations are perfectly trustworthy, the
semantics of symbols is often unclear and leads to errors. On the other
hand, more robust approaches to interface external reasoners to provers are
not always practical because the mathematical depth of proofs algorithms
in computer algebra are based on can be enormous.

Our own approach takes both trustworthiness of the overall system and
efficiency into account. It relies on using only reliable parts of a computer
algebra system, which can be achieved by choosing a suitable library, and
deriving specifications for these algorithms from their literature.

We design and implement an interface between the prover Isabelle and
the computer algebra library Sumit and use it to prove non-trivial theorems
from coding theory. This is based on the mechanisation of the algebraic
theories of rings and polynomials. Coding theory is an area where proofs
do have a substantial amount of computational content. Also, it is realistic
to assume that the verification of an encoding or decoding device could be
undertaken in, and indeed, be simplified by, such a system.

The reason why semantics of symbols is often unclear in current com-
puter algebra systems is not mathematical difficulty, but the design of those
systems. For Gaussian elimination we show how the soundness problem
can be fixed by a small extension, and without losing efficiency. This is a
prerequisite for the efficient use of the algorithm in a prover.

Preface

This technical report is intended to make my Ph.D. dissertation more eas-
ily accessible. The dissertation was submitted in June and the wiva voce
examination took place in September 1999. This revision includes some
improvements that were suggested by my examiners.

My mechanisation of the theory of rings and polynomials may be useful
to those who work on the mechanisation of mathematics from this area. It
will become publicly available as part of the distribution of the theorem
prover Isabelle. Please refer to the prover’s home pages:

http://www.cl.cam.ac.uk/Research/HVG /Isabelle/
http:/ /www4.informatik.tu-muenchen.de/"isabelle/

An “electronic version” of this document can be obtained from my home
page:

http://iaks-www.ira.uka.de/iaks-calmet/ballarin/

Cambridge, October 1999

Copyright (© 1999 by Clemens Ballarin. All rights reserved.

Acknowledgements

I would like to thank my supervisor Larry Paulson for steering me safely
through the “adventure” Ph.D. Larry had always time to answer my ques-
tions, motivated me when I thought things were getting too difficult and
had the right dose of criticism when I considered things simpler than they
actually were. I was impressed by his efficiency, and I admire his ability to
focus on that what is important.

Good research can only be done in a stimulating environment. The
Computer Laboratory, despite its somewhat shabby buildings and furni-
ture, proved to be an excellent place to be. I remember many interesting
discussions over tea and would like to thank everyone in the Computer Lab-
oratory — and beyond — who helped me with this project. I must not
forget Jacques Calmet whose ceaseless efforts to set up international links
within the scientific community were also to my benefit. I do not think I
would have done my Ph.D. at such an excellent place otherwise.

The Studienstiftung des deutschen Volkes and the Cambridge European
Trust have provided funding for my research. The Computer Laboratory,
the Universitdt des Saarlandes and Darwin College helped with travel costs.

Last, but by no means least, I would like to thank my parents for their
support. That I was living so far away has not always been easy for them.

Contents

List of Figures
List of Tables

1 Introduction

1.1 Symbolic Computation
1.2 Computer Algebra
1.3 Theorem Proving
1.4 Computational Strength of Provers
1.5 Suitable Domains of Application
151 Amalysis........
152 Algebra
1.5.3 Generating Function Techniques
154 Coding Theory
1.6 Outline of the Dissertation.
Making the Integration Trustworthy
2.1 Soundness in Computer Algebra
2.1.1 Misleadingly Uniform Interface
2.1.2 The Specialisation Problem
2.1.3 Algorithms that are ad hoc
2.2 Trust and Certificates

2.2.1 Proof Reconstruction.
2.2.2 Meta Theoretical Extension of the Prover
2.2.3 Trust the External Reasoner

2.3 Review of Earlier Work
2.3.1 Anmalytica
2.3.2 Interface between Isabelle and Maple

2.3.3 Bridge between HOL and Maple

11

15

17

19
19
21
24
25
26
26
27
27
28
28

12

CONTENTS

2.3.4 Sapper. v e e e e e e e 42

2.4 Outline ofa New Approach 43
Design of the Interface 47
3.1 OpenMath. 47
3.2 Isabelle’s Theories 50
3.3 Architecture. o e e 50
3.3.1 Serversand Services 51
3.3.2 Theorem Templates 53
3.3.3 Translation of Objects 54

3.4 Relation to Other Work 58
3.4.1 Open Mechanised Reasoning Systems 58
34.2 Prosper Plug-ins 59
Formalising Ring Theory 61
4.1 The Ring Hierarchy e e e e e e 61
411 Rings i i e e 62
412 Integral Domains 62
4.1.3 PFactorial Domains 62
414 Fields i e 64

42 Polynomialso oo o 64
421 Degree. o i i i i e e 66
4.2.2 Evaluation Homomorphism and Universal Property. . 67
4.2.3 Polynomials and the Ring Hierarchy 67

4.3 Notes on the Mechanisation in Isabelle/HOL 68
4.3.1 The Ring Hierarchy 69
43.2 Polynomials L. 73
433 TheDegreeFunction. 74
4.3.4 Evaluation Homomorphism 74

44 Related Work 75
4.4.1 The Algebraic Hierarchy in Axiom 75
4.4.2 Other Mechanisations of Polynomial Algebra 76
Proofs in Coding Theory 77
5.1 Coding Theory ¢ v v v v vt v i it e e i o u L
5.1.1 Hamming Codes 78
512 BCH Codes v i, 79

5.2 Formalising Coding Theory 80
5.2.1 The Hamming Code Proofs 80

52.2 TheBCH Code Proofs 81

CONTENTS

5.3 Review of the Development
5.3.1 Factorisation
5.3.2 Gaussian Elimination . . .

5.3.3 Feasibility of Proof Reconstruction R
5.3.4 Automating the Use of Computer Algebra in Proofs .

5.3.5 Implementation Effort . . .

6 Semantics of Symbols

6.1 Symbolic Gaussian Elimination . .

6.2 A Formal View of the Specialisation Problem
6.2.1 FractionFields
6.2.2 Evaluation of Ratiorial Functions

6.3 The Gaussian Algorithm
6.3.1 Gaussian Elimination in General
6.3.2 Fraction Free Gaussian Elimination

6.4 Lifting the Algorithm to the Parametric Case

6.5 Practical Implications

6.6 A Theorem Template for the Correct Result

6.7 Summary

7 Conclusion

7.1 The Risk of Unsoundness

7.2 Issues of Interactive Proof Development
7.3 Achievements for Computer Algebra

A Mechanisation of Algebra

A.1 Polynomials Form a Ring

A.2 TUniversal Property of Polynomials

Bibliography

91

13

83
84
85
86
88
89

91
92
93
93
94
94
96
97
99
100
100

103
103
105
106

107

107-

109

113

List of Figures

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5

Solving the equation (22—_112 =0in Axiom. 33
The OpenMath architecture 48
Layer structure of the interface 51
Signature of the interface 52

Implementation of the build-function for polynomials in Fa[X]. 57

Declaration of the theory Ring in Isabelle (Part 1) 70
Declaration of the theory Ring in Isabelle (Part 2) 71
Declaration of the theory Field in Isabelle 72
Ring hierarchy before (a) and after instantiation (b) 72

Ground complete rewrite system for the ac-theory of addition 72

15

List of Tables

3.1

5.1
5.2
5.3
5.4

Specification of the evaluator for expressions in Fp[X]. 55

Correspondence of types between Isabelle and Sumit 84

Size of the development (code sizes in 1000 bytes) 89

Size of proof scripts L L. 90

Execution time of proof scripts (in seconds) 90
17

Chapter 1

Introduction

The thesis of this work is that computer algebra can increase the reasoning
power of theorem provers and verification systems. The enhanced system
can be both trustworthy and efficient.

Both computer algebra and theorem-proving are forms of symbolic com-
putation, and both have to do with mechanising mathematics on a computer.
This is probably as close as the similarities get: both fields have different
— almost disjoint — research- and user-communities. Before attempting a
marriage between systems from both domains, it seems necessary to have a
close look at how the fields evolved, the kinds of problems they try to solve,
and the methods used.

1.1 Symbolic Computation

In the mid-fifties, scientists in artificial intelligence introduced a new view
of computation: they saw computers as machines that manipulated sym-
bols. Before that (see Newell, 1983), computers were seen as machines that
manipulated numbers. Of course, everything could be encoded in numbers,
and similarly, everything including numbers could be encoded in symbols.
Before the mid-fifties, programs were classified as numerical versus non-
numerical. The latter included all the things that processed data-types
other than numbers — expressions, images, text and so forth. Symbolic
manipulation presented a radical new view in computer science at a time
when computers were seen as number manipulators.

Symbolic mathematical computation is concerned with the efficient ma-
nipulation of algebraic expressions. In the sixties, the focus of this disci-
pline lay on symbolic integration (Moses, 1971). This was a stimulating

19

20 CHAPTER 1. INTRODUCTION

problem also to artificial intelligence, because it was well-defined, and a
human computer obtained heuristic solutions by means of a good deal of
resources and intelligence. And only humans could compute integrals to
non-trivial problems at that time. Further to that, celestial mechanics and
high-energy particle physics posed computational problems that became too
large to be solved by humans. So, symbolic integration was a challenge to
problem-solving software of that time. But symbolic integration also trig-
gered mathematical research, which led to Risch’s decision procedure for
integration (Risch, 1969). Within a decade, the view on symbolic integra-
tion had changed, and also the field of symbolic mathematical computation:
computer algebra had become a discipline of its own, pursuing mathematical
research with the aim of obtaining efficient algorithms to solve mathemat-
ical problems. Calmet and Campbell (1997) identify Risch’s result as the
moment when computer algebra abandoned problem-solving and became
algorithmic.

Automatic theorem-proving took centre stage in artificial intelligence af-
ter the invention of the resolution principle by Robinson (1965). In the first,
euphoric period it seemed that theorem-proving engines would sit at the
heart of any general artificial intelligence system (Newell, 1983). Theorem-
proving was applied to a range of tasks — for example, robot-planning. As a
consequence of this success, theorem-proving got established as a fundamen-
tal category of activity distinct from other kinds of problem-solving. But
only a few years later, the approach came up against its limitations. Provers
were unable to handle any but trivial tasks. Getting to real mathematics
— seen always as a major necessary hurdle — seemed as far away as ever.
Theorem provers were organised as large homogeneous databases containing
propositions. An inference engine would deduce new true statements from
this and add them to the database. The inference engine treated expressions
in its large, declarative database without regard for their semantics. Also
it was not clear how provers could be given information about how to solve
problems.

Automatic theorem provers are still organised in the same way today.
Combinatorial explosion remains a hard problem. In the mid-seventies,
theorem-proving shrank to a trickle (Newell, 1983) and planning languages
emerged as a result of a shift to procedural encoding of knowledge. The
Planner formalism (Hewitt, 1971) is an example. It has been applied in a
robot to formulate and execute plans of action and for finding high-level
descriptions of visual scenes. Recently, some progress has been made in
the use of heuristics to reduce search spaces and McCune (1997) solved the
Robbins conjecture. This is quite remarkable because the conjecture was an

1.2. COMPUTER ALGEBRA 21

open problem for decades. McCune’s attack on the Robbins problem took
five CPU-weeks, the successful search eight days!

Another approach to computerised theorem-proving came from proof
checkers. In the seventies de Bruijn’s pioneering Automath system achieved
remarkable success in the translation and validation of a standard mathe-
matical text (see Nederpelt et al., 1994). Proof checkers are merely pro-
viding the means of manipulating logical formulae and representing proofs.
The proof is supplied by the human and checked only for its validity. Proof
checkers therefore do not belong to the realm of artificial intelligence. In Au-
tomath, and also Stanford LCF,! a proof consisted of a sequence of steps,
indexed by numbers, each following from previous steps by inference. In Ed-
inburgh LCF (Gordon et al., 1979), instead of indexing proofs by numbers,
theorems were computed values and basic inference rules were procedures in
the underlying programming language. The idea of representing inference
rules as procedures was not new. Planner did that also. However, the idea
to provide a programming language for the user of the proof checker was
new. Inference rules now could be combined to new and more complicated
ones, and arbitrary proof strategies could be implemented (Milner, 1985),
turning the proof checker into a prover. The LCF system had been devel-
oped to reason about program semantics, and today LCF-style provers are
successfully applied to verify both hardware and software.

1.2 Computer Algebra

Computer algebra systems have evolved into large collections of algebraic
algorithms. . Today, a typical computer algebra system consists of a small
kernel that implements efficient arithmetic, together with a purpose-built
imperative programming language, in which most of the system’s library
— its collection of algebraic algorithms — is written. The user interacts
with the computer algebra system through a command-response-loop, as in
any other interactive programming environment, and can call routines from
the library to perform computations. The user can also implement new
algorithms in the system’s language and thus add to the library.

Computer algebra systems provide algorithms for numerous domains.
Most prominent, of course, are symbolic differentiation and integration. Al-
though Risch’s method is a solution to the problem of indefinite integration,
the problem of symbolic definite integration remains unsolved. Packages

1 A proof checker for the Logic of Computable Functions, a logic due to Scott. Scott’s
paper (Scott, 1993) was first written in 1969 but for a long time only circulated privately.

22 CHAPTER 1. INTRODUCTION

for linear algebra provide means for matrix manipulation, various variants
of the Gaussian algorithm, and can compute the Jordan normal form of a
matrix, to give only a few examples. Buchberger’s algorithm dominates the
domain of polynomial equation systems. Computer algebra systems also
provide functionality for geometry, statistics, combinatorics, number theory
and many more domains. Some specialised computer algebra systems are
particularly strong at group theory.

Most research in computer algebra today is concerned with the devel-
opment and refinement of algorithms. A particular focus is currently on
the symbolic solution of differential equations. This kind of research is con-
structive, applied mathematics. In spirit, it follows the example set by the
success of Risch’s algorithm.

A phenomenon which has to be taken into account while designing and
implementing such algorithms, and which seems to be unique to computer
algebra, is that the size of expressions can swell quite dramatically during
a computation, even if the result is comparatively small. This intermediate
ezpression swell happens, because computations are exact and no rounding
occurs. An example, which is probably familiar to the reader, is solving a
system of linear equations, where, after the first few transformations, the
fractions that are introduced become bigger and bigger, and most time is
spent on computing common denominators.

In the case of fractions of integers, it is usually of advantage to can-
cel fractions immediately, leading to a canonical representation. In other
domains, canonical representations may not be efficient: obtaining a ratio-
nal denominator for expressions over simple radicals leads to a canonical
representation, if the radicals are independent. But

1
V2B VE+AT
L (22v3vBVT — 34v2VEVT — 50V2VAVT + 1357

215
+ 62v/2v/3v5 — 133v/5 — 145v/3 + 185v/2),

which is an exponential growth in size (Davenport et al., 1993). For more
general domains the problem of data-representation remains unsolved, and
often an efficient representation does not depend only on the domain but
also on the problem and the used algorithm.

How much mathematical domain structure should be made explicit is
seen as an important design question by Davenport (1990). Early systems
just provided a small and fixed number of domains. The drive to model

1.2. COMPUTER ALGEBRA 23

structure in a more abstract way arose from users’ and implementors’ needs:
modular arithmetic, for example, is needed in factorisation algorithms. So
it is already available somewhere in the system, and it could as well be
made explicit for use in other parts of the library and by the user. It then
seems only a small step to providing generic implementations for routines
that are shared by several domains. This has been done with some success
in the Axiom system (Jenks and Sutor, 1992), using a tailor-made, object-
oriented type system. The generality available in this system is enormous,
and, because of the large number of domains, Axiom is more difficult to
use than other computer algebra systems. Also, generality easily gets into
conflict with the need for having different representations of the same data
in different applications.

The desire for speed in this discipline is so strong that discussions of
storage management and garbage collection can be found on conferences on
computer algebra (Davenport, 1990; Norman and Fitch, 1996).

Another issue at the system level, which receives a good deal of atten-
tion at present, is interfacing with other systems. Until a few years ago,
this meant the generation of Fortran code, because high-quality numerical
libraries are written in Fortran, and if large formulae obtained using a com-
puter algebra system need to be evaluated that is how it should be done.
Although the generation of Fortran code is still important, interfacing tech-
nology has moved on. For example, the MathLink interface (Wolfram, 1996,
Section 2.12) is an application programming interface for Mathematica. It
permits use of external programs from within Mathematica — for example,
visualisation tools — and also calling Mathematica from other applications
— such as spreadsheets.

Kajler (1993) proposes an “integrated scientific software environment”,
which includes computer algebra systems, numerical libraries, graphical
plotting engines and scientific text processing tools. Such an environment
should ease interactions and exchanges between the different tools. It could
also integrate different computer algebra systems and allow the user to recon-
figure the system while it is running, if that is more efficient for a particular
step in the computation. .

This is not yet generally possible because existing interfaces of computer
algebra systems are not compatible and neither are the data-formats they
use. But standards for the exchange of mathematical data are emerging:
MathML (Ion et al., 1998) will provide a standard for the rendering of
mathematical formulae on the World-Wide Web and could also be useful as
a standard for scientific text processing. The OpenMath project (Dalmas
et al., 1997) goes beyond that and aims at providing a standard for the

24 CHAPTER 1. INTRODUCTION

exchange of objects between mathematical computation programs.

1.3 Theorem Proving

One of the motives in artificial intelligence for the development of theorem
provers has always been the dream to automate the activity of mathemati-
cians: the discovery and understanding of mathematical structure. This is
still mainly a dream, with probably the only exception being the solution of
the Robbins problem (McCune, 1997). This proof, found by a computer, is
readable by a human. ’

Theorem provers are usually based on a logic, like first-order logic,
higher-order logic or a version of set theory, which provides a framework
for the formalisation of (parts of) mathematics. Depending on the logic and
the application, a prover may implement a single procedure, whose search
behaviour can be controlled by the user by setting certain parameters. Otter
(McCune, 1994) is an example for such a prover for first-order logic, based
on the resolution principle. Provers that support more expressive logics
tend to provide a framework in which the required proof procedures can be
implemented, though not necessarily by the user, because general decision
procedures do not exist. The LCF-style provers HOL (Gordon and Melham,
1993) and Isabelle (Paulson, 1994) are examples of such frameworks that can
be extended safely by the user.

While formalisation is probably not the right way to go to discover new
theorems, it improves the rigour of the mathematical foundations, and at
least some mathematicians seem to consider that a useful activity. In the
meantime, the Mizar project (Rudnicki, 1992) has accumulated a vast library
of machine-checked, formalised mathematics (Association of Mizar Users,
1989), and has shown that this is feasible. Proofs in the Mizar system are
driven by proof scripts that are supplied by the user and that are inspired by
a natural (i.e., human-readable) style of proof. The prover tries to expand
proof-steps in the script to steps that are primitive in the logic. When that
fails, the proof script has to be refined manually.

The areas where automatic theorem-proving really has been a success are
where proofs are tedious, full of details that get easily confused by humans,
but structurally homogeneous. Proofs in hardware and software verification
are of this kind. Of course, here proofs are not found fully automatically
either. Interactive proof development systems are used that are guided by
the user and find routine parts of proofs automatically. They also rigorously
check all the steps — manual and machine-generated ones — of a proof.

1.4. COMPUTATIONAL STRENGTH OF PROVERS 25

1.4 Computational Strength of Provers

Such proof assistants have been successfully applied to verify design, for
example a network switching device (Curzon, 1994), and security proper-
ties of the Internet-protocol TLS (Paulson, 1997a), neither of which was
designed with formal verification in mind. The verification of programs is
much harder. It has been found that their verification is more feasible if
software and correctness-proof are developed together. Verification can also
be used to check whether the specification of software is consistent. Research
in this area aims at integrating theorem-proving with the software design
process in order to make the use of formal methods feasible.

Using a variant of the prover HOL, Harrison (1997) has demonstrated
that it is possible to formally verify numeric algorithms for transcenden-
tal functions. The algorithm that was verified computes an approximation
for the exponential function, which is suitable for single-precision binary
floating-point arithmetic, and the main difficulty was to show that the ap-
proximation is sufficiently close to the actual function. The proof requires
many computations with arbitrary-precision integers, which are done within
the logical formalism of the prover. This is indeed very expensive. In his
report, Harrison remarks that the time for building the prover and then
running all the proofs was twelve hours. When the integer arithmetic of
the underlying programming environment was used (and trusted), this time
shrank to two hours. This enormous difference is not surprising, because the
representation of numbers is very inefficient: about 100 bits are used to store
one bit, and more significantly, computations are permanently accompanied
by correctness proofs.

Another example, which highlights the current limitations of provers has
been suggested by Harrison. The equation

(@1® + 22? + 23° + 24%) - (11° + 12° + ys” + wa?)
:(131'y1—$2'y2—$3'y3—$4'?14)2
+(:B1-y2+z2-y1+w3-y4—x4-y3)2
+(21-y3 — T2 - Ya + T3 - Y1 + T4 - Y2)*
+(T1-ya+ T2 Y3 — T3 - yo + T4 - Y1)*

appears in the proof of the theorem that every natural number can be rep-
resented as the sum of the squares of four prime numbers. Isabelle takes 130
seconds to check this equation, whereas the computer algebra system Maple

achieves the same in 50 milliseconds. Both times were taken on the same

machine. Again, the difference is not surprising. Associative-commutative

26 CHAPTER 1. INTRODUCTION

rewriting on the expanded products does basically bubble-sort with respect
to the term order, while Maple obviously uses a more sophisticated algo-
rithm. On the other hand, Isabelle’s simplifier is much more flexible and
can be configured easily to different equational theories.

The facility to compute with numbers and symbolic expressions in a
prover seems quite attractive when reasoning in algebraic domains. And
these domains are likely to be needed in future verification work. Harrison’s
case study about the exponential function points in that direction, and in
fact he uses a computer algebra system to guide proof search already. But
there is more to computer algebra than computing sums and products: algo-
rithms that solve equation systems, compute factorisations or do symbolic
integration over various domains are a main contribution of computer al-
gebra and required a lot of research. When adding computer algebra to a
prover, one would like to have all those as well.

In principle, it is of course possible to implement algebraic algorithms
directly in a prover, so that it operates directly on the prover’s logical cal-
culus. Regardless whether this would be efficient or not, it is not desirable
to do so, because many of the algorithms in computer algebra are very so-
phisticated and require a lot of expertise to obtain an efficient and correct
implementation.)

1.5 Suitable Domains of Application

The next question to ask is whether there are suitable domains of applica-
tion, where such an integration could be useful. It is usually assumed that
there are plenty of them, but it has not been easy to identify domains where
proofs have large computational content, and where the mechanisation of the
domain specific knowledge is in reach of provers. “Within reach of provers”
means, of course, that the mechanisation can be achieved within a Ph.D.
project, because the utility of the integration should be shown convincingly
with a case study.

1.5.1 Analysis

When browsing through the proofs in a textbook in mathematical analysis
(Apostol, 1974), one mainly finds two kinds of calculations: extensive esti-
mations, for which only a few algorithms in computer algebra systems are
implemented, and simple transformations. Typical examples of transforma-
tions are § 4+ § = € in the proof of the convergence of Cauchy sequences in
Euclidean spaces, and z-y—a-b=(z—a) - (y—b)+a-(y—b)+b:(z—a)

1.5. SUITABLE DOMAINS OF APPLICATION 27

is used in the proof that the limit of a product is equal to the product of
the limits. But these kind of calculations can be dealt with easily by rewrit-
ing. The textbook does not contain proofs whose mechanisation would be
substantially simplified by the use of computer algebra.

1.5.2 Algebra

Analysing the structure of finite groups involves factorisation of the group
order and application of Sylow’s theorems (Jacobson, 1985), i.e. some com-
putation paired with reasoning. But for small groups there exist tables of
their structure and those tables are also incorporated as databases into com-
puter algebra systems that support group theory, like Magma (Butler and
Cannon, 1989).

The study of groups of larger order, where the use of a computer algebra
becomes more interesting, is a topic representation theory (Jacobson, 1989).
Here the structure of a group is described in terms of characters, which are
morphisms between groups, usually between the group being studied and
the multiplicative group of the complex numbers. Studying the structure
of a group involves solving equation systems which are obtained by certain
relations. Character theory might well be an interesting domain of appli-
cation, but it requires a highly advanced knowledge of algebra and proofs
seem quite involved, so that it is not suitable for a case study.

1.5.3 Generating Function Techniques

Generating functions are used for the manipulation of formal power series.
Depending on the series, the generating function can be a polynomial, or
it may only be known that it lies in some space of continuous functions.
According to the properties of the function, certain transformations can
be applied. Manipulation of generating functions thus involves both sym-
bolic computation — say, integration or differentiation of the function —
and reasoning, in order to show that premises for the applications of those
operations hold.

Generating-function techniques are applied in the analysis of the com-
plexity of algorithms (Purdom and Brown, 1985; Hofri, 1995). The appli-
cation domain utilises quite deep knowledge from algebra, complex analysis
and combinatorics. Therefore only a very small part of this could be for-
malised within a Ph.D. project. There is a package for generating functions
available for Maple (Salvy and Zimmermann, 1994).

28 CHAPTER 1. INTRODUCTION

1.5.4 Coding Theory

This discipline studies the transmission of information over noisy commu-
nication channels. Coding theory seeks to design codes that allow for high
information rates and the correction of errors introduced in the channel. At
the same time, fast encoding and decoding algorithms are required to permit
high transmission speeds (Hoffman et al., 1991). '

A class of codes for which encoding and decoding can be easily imple-
mented in hardware, and high bandwidths can therefore be achieved, is that
of algebraic codes. The existence of such codes is related to the existence of
generator polynomials. A generator polynomial basically determines a code.
Such polynomials usually do not have a common shape, but algorithms are
needed and have been designed to compute them, for example Berlekamp’s
algorithm (Geddes et al., 1992, Chapter 8) for polynomial factorisation.
Therefore, this theory has substantial computational content.

1.6 Outline of the Dissertation

We want to show that computer algebra can increase the reasoning power
of theorem provers and verification systems, while the enhanced system can
be both trustworthy and efficient. We demonstrate this by extending a
theorem prover and use it to prove non-trivial theorems from coding theory.
Coding theory is an area where proofs do have a substantial amount of
computational content. Also, it is realistic to assume that the verification
of an encoding or decoding device could be undertaken in, and indeed, be
simplified by, such a system.

As prover we choose the system Isabelle (Paulson, 1994). It has been
used in verification, and it is also suitable for the formalisation of math-
ematics, as it occurs in our domain of application. Also, it is the system
which has been designed by my supervisor, and therefore knowledge about
its internals is easily accessible.

In theorem-proving, and for an application in verification in particular,
it is important that the overall system is trustworthy. Computer algebra
systems are not as rigorous as many provers. Therefore, in Chapter 2, we
classify soundness problems that occur in computer algebra systems. While
many algorithms and their implementations are perfectly trustworthy, it
turns out that the semantics of symbols is unclear and leads to errors. This
mainly affects the simplification of expressions. Possible ways of extend-
ing a prover by an external reasoner are examined, in our case a computer
algebra component. These ways to extend the prover differ in the extent

1.6. OUTLINE OF THE DISSERTATION 29

to which errors of the external component jeopardise the integrity of the
overall system. We discuss their suitability for coupling a computer algebra
component to a prover and review earlier experiments in this field in the
light of our results on both the soundness of computer algebra and the suit--
ability of their approach to coupling. Finally, in Chapter 2, we outline our
own approach, which takes both trustworthiness of the overall system and
efficiency into account. It relies on using only reliable parts of a computer
algebra system, which can be achieved by choosing a suitable library, and
deriving specifications for these algorithms from their literature.

Many issues of interfacing systems, like the cooperation of concurrent
processes or data-exchange formats, have already been addressed by research
in computer algebra. In Chapter 3 we review this and find that the logical
issues of an integration are neglected. Even work taking semantics into
account is not rigorous enough. No formal specifications for these interfaces
can be given. We design an interface to the computer algebra library Sumit
(Bronstein, 1996), and describe its implementation using Isabelle’s oracle
mechanism, an interface that allows adding external reasoners to Isabelle.
The interface does not import all of Sumit’s algorithms to Isabelle at once.
Rather, if more mathematics is formalised in Isabelle, specifications for more
algorithms that are suitable can be added. It is important to note that
algorithms cannot be specified unless the necessary mathematics has been
formalised.

The necessity to formalise mathematics leads naturally to the next step
in our project. Our domain of application, algebraic coding theory, is based
on the theory of rings and polynomials. A mechanisation of the algebraic
hierarchy of rings, and of polynomials had to be provided. This is presented
in Chapter 4. Chapter 5 then shows that our approach is feasible. After
introducing the necessary background of coding theory and its formalisation
in Isabelle, we present two proofs of the existence of certain codes, and
how they are formalised in our extension of Isabelle. The proofs depend on
contributions of computer algebra, and we show that the theorems imported
from Sumit could not have been verified easily in the prover alone.

In Chapter 6 we return to one of the systematic soundness problems
in computer algebra, the semantics of symbols. This can only be captured
correctly by realising that a symbol in an expression can represent, among
others, either a variable (which is a logical entity), or an indeterminate
(which is an algebraic entity). Mostly for the sake of efficiency, this difference
is ignored in computer algebra. For the sake of soundness this cannot be
done in a prover, and for the example of the Gaussian algorithm, applied
over symbolic expressions, we suggest modifications that allow its sound use

30 CHAPTER 1. INTRODUCTION

in a prover, and that are also useful to users of computer algebra systems.
Finally, in Chapter 7, we summarise our contributions.

Chapter 2

Making the Integration
Trustworthy

Automatic theorem provers are used in verification to assist humans to prove
theorems. It is not the case that these theorems could not be proved by
humans because of their mathematical depth. In fact, theorems that are too
deep to prove by humans hardly stand a chance to be proved automatically.
Rather, the theorems that occur in verification are large, typically with
long lists of side-conditions, and the advantage of mechanised proof is that
the book-keeping is done automatically. Correctness of the prover is highly
important. If the prover was not correct, false statements could be proved,
and in many cases this would not be noticed, simply because of their size.

One the other hand, provers like any other software are likely to contain
some errors. Even if errors affect the correctness, the use of a prover can
still be beneficial in verification. With the current state of the art in formal
methods it is not feasible to verify software completely, but only to obtain
proofs for some properties of a design. This means that errors in other
aspects of the design will not be found.

Current computer algebra systems are not entirely correct. This is not
surprising, because they are software products. Some of their errors have
systematic reasons, though, as we shall see in the next section. The aim of
this work is to enhance provers by computer algebra to make them more
useful in verification. Because correctness is an important issue, the sound-
ness problems of computer algebra systems need to be addressed, and a
suitable way of interfacing needs to be found to ensure that the overall sys-
tem remains trustworthy. On the other hand, this approach must not be
too prohibitive, or the extension will not be useful.

31

32 CHAPTER 2. MAKING THE INTEGRATION TRUSTWORTHY

As they are crucial for the design of the interface, errors in computer
algebra systems are examined in this chapter. They are classified in three
categories. After a review of approaches to extending provers in general and
of earlier attempts to integrating provers with computer algebra systems, a
new approach is described, which is based on the classification of soundness
problems.

2.1 Soundness in Computer Algebra

Computer algebra systems have been designed as tools that perform com-
plicated algebraic computations efficiently. Their soundness or, as some
authors might prefer to say, unsoundness has become a focus. Stoutemyer
(1991) presents a systematic discussion of examples of such errors. They are
classified according to mathematical properties. This is helpful, but what is
needed for the present work is an analysis of the underlying design problems
which lead to these errors. Harrison (1996) and Homann (1997) present more
examples of errors, which they found made it difficult to integrate provers
and computer algebra systems. A number of errors in symbolic integration
are reported by Adams et al. (1999).

2.1.1 Misleadingly Uniform Interface

Computer algebra systems present collections of algorithms through a uni-
form user interface. This gives the impression that objects have some sort
of global semantics throughout the system. This is, however, not the case.

For a simple example note that many computer algebra systems do not
distinguish between natural numbers and integers. From a computational
point of view it is reasonable to use the same representation or data-type.
Storing a natural number as an integer only requires an additional sign bit,
but providing a separate type for the naturals would require to provide a
set of operations on that type as well. In contrast to that, in a reasoner
the difference is significant: integers form a ring and the induction principle
is the fundamental property of natural numbers, but there is no induction
principle for integers and the natural numbers do not form a ring. So,
for example, both coefficient and exponent of the monomial aX™ can be
represented by integers in the computer algebra system, whereas in the
prover, a should be represented by an integer and n by a natural number.

Another instance of this problem occurs with the solve-command. On a

2.1. SOUNDNESS IN COMPUTER ALGEBRA 33

number of computer algebra systems, including Maple and Axiom,

solfre (M =0, m)

2 —1

yields z = 1. But this is not a solution to the equation, because for z = 1 the
denominator vanishes. If the computation is split in two steps, in Axiom,
the type system gives a hint on the reason. See Figure 2.1.

frame0 (1) ->a := (x-1)"2/(x"2-1)
x -1

Type: Fraction Polynomial Integer
frame0 (2) ->solve(a = 0, x)
(2 [x= 1]
Type: List Equation Fraction Polynomial Integer

Figure 2.1: Solving the equation %{_1—)12 =0 in Axiom.

The fraction is treated as a fraction of polynomials and automatically
cancelled. This is a valid operation on polynomials, because here z is an in-
determinate, not a variable, and in particular z — 1 # 0. The solve-function,
despite using the same type, treats z as a variable. This incompatibility
leads to the wrong answer. In Maple, which does not usually automatically
simplify expressions, the solve-function even forces the cancellation!

In this case, the computer algebra system returns the wrong result, be-
cause the two operations cancel and solve assume different semantics for
the same object. Combining them in this way is not sound. Not even
Axiom’s type system prevents the problem. That the semantics of sym-
bols is unclear in most computer algebra systems has been pointed out by
Stoutemyer (1991). A more precise analysis of the problem is presented in
Chapter 6 towards the end of this thesis.

In general, computer algebra systems present a misleadingly uniform in-
terface to collections of algorithms. An object that is used with a particular
meaning in one algorithm may be used with a different meaning in another
algorithm. Particularly problematic are symbols, which are used as formal
indeterminates in polynomials and as variables in expressions. Interfacing
to a computer algebra system through its user interface is therefore prob-
lematic.

34 CHAPTER 2. MAKING THE INTEGRATION TRUSTWORTHY

2.1.2 The Specialisation Problem

Computer algebra systems have only limited capabilities for handling side
conditions or case-splits. An example where this causes problems is the

integral [z" dz (Homann, 1997). Computer algebra systems return gt

Substituting n = —1 yields an undefined term, while the solution ofn j;Ille
integral becomes In z. Computing the rank of a matrix with symbolic entries
poses a similar problem, because the rank may depend on variable entries
in the matrix.

This class of problems is known as specialisation problem: evaluation and
substitution do not commute. It also occurs in fractions and exponentiation,
again discussed by Stoutemyer (1991): 2 is often evaluated to 1, whereas
evaluating % gives an error message. Similarly, 20 is simplified to 1, 0% to
0 and simplifying 0° again raises an error. The problem is well known, but
hardly ever referred to in the literature, see (Corless and Jeffrey, 1997). The
problem with the solve-function, discussed in the previous section, can also
be seen as an instance of the specialisation problem: the system pretends to
compute with polynomials because it does not handle side-conditions.

In the design of current computer algebra systems the problem is mainly
ignored: these systems have only limited mechanisms to attach information
to symbols. In the integration example above, information whether n =
—1 or not could be used by the integration procedure to make the correct
choice. Alternatively, the procedure could flag a side-condition n # —1
when returning the result fl"_:ll . Mechanisms that handle such assumptions
are provided by most multi-purpose computer algebra systems, but are only
used by a limited number of algorithms, because they have not been part of
the initial design of those systems (Fateman, 1998).! Furthermore it is not
always possible to decide for a given expression whether it is, say, zero.

The computer algebra system Macsyma is better at handling degenerate
cases. During a computation, if for example a cancellation is to be per-
formed, the system queries the user if a symbolic expression is zero or not.
But if the symbol in question has been generated by the system, the user
would not know how to answer that question. Also, computer algebra sys-
tems are designed to manipulate large formulae, and a user would probably,
rather unnerved, abort a computation after the tenth query. Macsyma is
one of the first large computer algebra systems, and it seems that querying
the user has been abandoned in the design of later systems.

n particular, these mechanisms are not used to prevent the kind of simplifications
described by Stoutemyer. They have been introduced to fix some, but not all problems of
definite integration.

2.1. SOUNDNESS IN COMPUTER ALGEBRA 35

2.1.3 Algorithms that are ad hoc

Many of the algorithms that are implemented in computer algebra systems
rest on mathematical theory and proofs for their correctness have been
published. Examples for these are factorisation algorithms for polynomi-
als (Geddes et al., 1992, Chapter 8), Gaussian elimination (Bareiss, 1968,
for example), and Risch’s method for indefinite integration (Risch, 1969).

The design of other algorithms is less rigorous. Symbolic computation
over the complex numbers, for example, is intricate. Solving even an equa-
tion as simple as y = z¥ for w turns out to be difficult over the domain of
complex numbers, and Fateman (1996b) devotes three pages to a systematic
solution. The reason is that the exponential function is only bijective on an
extension of the complex plane: Riemann surfaces. A treatment within the
complex numbers requires case splits or recording suitable assumptions. As
we have seen in the previous paragraph, current computer algebra systems
have only limited capabilities for this. A discussion of possible extensions to
computer algebra systems to deal with computation over complex numbers
in a satisfactory way can be found in Corless and Jeffrey (1996). The cor-
rectness of simplification algorithms in current computer algebra systems is
generally doubtful if they operate over these domains.

There is another problem with simplification algorithms. Computer al-
gebra systems usually accept undefined or user-defined symbols, but do not
treat them in a well-defined manner. Undefined symbols are often regarded
as indeterminates of polynomials. In many cases it does not matter if, in
spite of this, the symbol has some algebraic relation. In some cases it does:
this is another instance of the specialisation problem. In a computer al-
gebra system, a symbol can be defined by the user, either by supplying a
function definition, if the symbol represents a function, or by asserting a set
of rules. The available mechanisms vary among computer algebra systems.
These rules or functions modify the simplification process for expressions.
The actual effect depends not only on the simplification strategy, but also
on definitions of other symbols that may be present. These mechanisms are
ad hoc and likely to introduce unsoundness.

Definite integration — computing the area under a curve defined by a
function — is another example. Given a function f, this area is usually
obtained by computing the anti-derivative F' and then evaluating [: f=
Fb — Fa. This is based on the fundamental theorem of integral calculus
and, depending on the definition of integral used, f must be “well behaved”.
It may, for example, not contain singularities. Computer algebra systems
currently ignore this problem. Even worse, Risch’s algorithm computes the

36 CHAPTER 2. MAKING THE INTEGRATION TRUSTWORTHY

anti-derivative in terms of differential algebra, and the integral therefore
may contain additional discontinuities. See Davenport (1998). Research to
improve algorithms for definite integration with the aid of theorem provers
is underway. For first, promising results see Adams et al. (1999).

We call algorithms like Gaussian elimination or Risch’s method for in-
definite integration, which are based on mathematical theory, sound. Other
algorithms we call ad hoc. Many ad hoc algorithms are unsound, because
their designers did not go into the trouble of resolving issues that might be
resolved by side-conditions. Calmet and Campbell (1997, Section 2) give a
historic perspective on the distinction of sound and ad hoc algorithms. It
is, of course, not straightforward to judge whether the algorithms used in
a given implementation are sound or ad hoc. Depending on the quality of
documentation it might be necessary to inspect the code and compare it to
the literature.

All three kinds of problems — “uniform interface”, the limited capabil-
ities for handling side-conditions and case-splits, and ad hoc algorithms —
make it difficult to use a computer algebra system as a sound, or trustwor-
thy, black-box reasoning component. This is only possible, if at all, after
analysing its true semantics carefully.

2.2 Trust and Certificates

Insufficient reasoning capabilities and unclear semantics make a bad basis for
a trustworthy reasoning component. Therefore it has been suggested not to
trust computer algebra systems, but to verify their results. In general, there
are a number of approaches to integrating external reasoners, and they offer
different degrees of rigour. They are reviewed in this section. Some of them
have already been applied to integrating computer algebra into provers.

2.2.1 Proof Reconstruction

The most rigorous way to maintain soundness with the integration of an
external tool is not to trust it at all, but to reconstruct a proof of its result
in the logical calculus of the prover. This approach has been particularly
popular with LCF-style provers, which encapsulate the correctness-critical
core part of the prover in an abstract data-type. Here proof procedures can
be programmed as tactics to operate directly on the prover’s calculus. This
approach was designed to make the prover programmable and sound at the
same time (Milner, 1985).

2.2. TRUST AND CERTIFICATES 37

Proof reconstruction is not necessarily inefficient. It is certainly faster to
search for a proof with an external tool using specialised data-structures than
performing it in the prover’s calculus. For some mathematical properties
certificates exist. A certificate provides information that makes it easy to
check that an object has the property. Hence it is a trustworthy guarantee.
For example, Pratt (1975) has shown that such certificates exist for prime
numbers. A different issue is whether such certificates can be computed
efficiently. In the context of proof reconstruction it is more practical to
record the essential information that is required to reconstruct the proof
without search. We call this a trace. The structure of the trace depends on
the problem, as we will see later.

There is an analogy between finding a proof and checking it, and non-
deterministic and deterministic programs (see Harrison, 1996, Chapter 6.2).
For example, if a problem is of time-complexity NP a solution can be checked
in P, if the non-deterministic choices made by the algorithm that solves the
problem in NP are known. These can be determined by deterministic search
in exponential time. The collection of choice-points are the trace, which is
of polynomial size.

In practice, proof reconstruction has been successful as an approach,
where the search space for proofs is large. For example, Paulson (1998)
describes a tableau prover that outperforms Isabelle’s older tactics, which
do search in Isabelle’s calculus. An observation by Bundy et al. (1991)
that reconstructing a proof in the Oyster-Clam system is much slower than
finding it, seems to be due to inefficiencies in Oyster or its logic.

Proof reconstruction does not offer gains where the proof is costly and
does not contain search at all. This is the case, for example, for arithmetic.
In the verification of a numerical algorithm for the exponential function by
Harrison (1997, Section 9) 83% of the proof time were computations with
natural numbers, which were done in the prover’s calculus.

2.2.2 Meta Theoretical Extension of the Prover

The correctness of the prover can also be maintained over extensions by the
user, by demanding that a procedure needs to be formally verified before
it is accepted as a new proof procedure. A “logical prototype” of such a
system has been described by Davis and Schwartz (1979). Following this
idea Boyer and Moore (1981) extended their prover by a procedure that
cancels summands in equations. It improved the power and performance of
the prover.

In practice the external procedures will be implemented in some pro-

38 CHAPTER 2. MAKING THE INTEGRATION TRUSTWORTHY

gramming language, and the formal verification will be carried out with
respect to its semantics. If one insists on being completely formal, this
leads to another complication: a formalisation of the semantics of the pro-
gramming language is required. If the semantics is known the most feasible
approach to proving the procedure correct is probably to show that it is
equivalent to a procedure encoded using only primitive rules of the prover
(Slind, 1993).

How feasible is this for computer algebra? The verification of algorithms
in computer algebra seems particularly difficult. The formalised correctness
proof for Buchberger’s algorithm by Théry (1998) requires 4700 lines of
definitions and proof scripts. This does not include the development of the
required mathematical domains, like polynomials etc. The verified version
of the algorithm is simple by comparison with practical implementations of
Buchberger’s algorithm and other algorithms from computer algebra.

In general, the effort of verifying an algorithm does not only depend on
the size of its pseudo code. More important is the difficulty of the math-
ematical argument for the correctness of the algorithm. For this reason it
seems that algorithms in computer algebra are much harder to verify than
algorithms in other software systems. In the case of the verification of Buch-
berger’s algorithms the proof of termination needed a variant of Dixon’s
lemma.

A rather extreme example for a such difficulty is the exploitation of Feit
and Thompson’s theorem in the computer algebra system GAP (Schonert,
1997). This theorem states that any finite group of odd order is solvable.
It is used in GAP as a quick test for solvability of groups before more
elaborate methods are applied. The code for this test occupies two lines of
code; the informal, published proof for this theorem (Feit and Thompson,
1963) is more than 250 pages long, fills an entire issue of the Pacific Journal
of Mathematics and itself depends on earlier, complicated group-theoretic
results. Subsequent work may have shortened the proof by 50 pages or so,
but a substantially shorter proof is not known.?

With current technology it is not feasible to verify a large collection of
algebraic algorithms. As the power of provers advances this may become
feasible in future. Extracting the implementation of an algorithm from its
correctness proof is an attractive way to ensure its correctness. This was
done by Théry for Buchberger’s algorithm. No information on the perfor-
mance of the code is given, but Théry (1998) suggests that their memory
efficiency is bad. This poses a particular problem in computer algebra, be-

2Thanks to Steve Linton for providing this information.

2.3. REVIEW OF EARLIER WORK 39

cause of the phenomenon of intermediate expression swell. Eventually, more
and more mathematics will be formalised and more algebraic algorithms will
be in the scope of formal verification. Large databases of formalised math-
ematics like the Mizar Mathematical Library (Association of Mizar Users,
1989), developed with the Mizar system (Rudnicki, 1992) will be important
here. But the example of Feit and Thompson’s theorem shows that for some
of the algorithms we might have to wait for a very long time till they get
verified.

2.2.3 Trust the External Reasoner

The third approach to interfacing the external reasoner is based on trusting
it. Its results are translated into theorems in the prover’s calculus. These
theorems are specifications for particular runs of the external reasoner. It is
reasonable to trust the external reasoner if it is reliable, because this is the
most efficient way of using its result. One has to be aware, though, that the
translation from the reasoner’s to the prover’s language needs to be done
carefully as well, because that may introduce errors, too.

If there are doubts about the trustworthiness of the external reasoner,
theorems that depend on external results can be marked, so that the results,
say of a verification, can be used with the appropriate care. A simple way of
achieving this in the prover HOL was suggested by Gordon (see Harrison and
Théry, 1994), namely to define a logical constant Maple that is equivalent to
false. A statement imported from the computer algebra system Maple would
produce a theorem under the assumption Maple — for instance, Maple -
A = B. This ensures that the consistency of HOL is not corrupted: one
can prove anything from falsity. Further, any theorem that is derived from
this theorem inherits the assumption Maple. Theorems that depend on
the external reasoner can thus be recognised from ones that do not. More
sophisticated means for achieving this are available in provers today. Tags
are used in HOL to annotate theorems (Slind, 1998) and Isabelle can store
dependencies between theorems in derivations (Paulson, 1997b).

2.3 Review of Earlier Work

A number of experiments to integrate provers and computer algebra have
been undertaken by various groups within the last few years. The following
sections present an analysis of their suitability based on the soundness of
computer algebra systems and the available approaches to integrate them.

40 CHAPTER 2. MAKING THE INTEGRATION TRUSTWORTHY

2.3.1 Analytica

Analytica (Clarke and Zhao, 1993, 1994) is an experimental automatic the-
orem prover. It is written in Mathematica and can therefore directly access
the latter’s simplification capabilities for symbolic expressions. It is able to
prove a large class of theorems in analysis. The most outstanding one is
probably the proof about Weierstraf}’s function

f(z) = Zb" -cos(a” - - z).
n=0

The function is defined and continuous if a is an odd integer and 0 < b < 1.
When a -b > 1+ 3 7/2 its derivative does not exist for any value of z.
Analytica is able to prove both properties with little human intervention.

The authors of Analytica are aware that “perhaps, the most serious prob-
lem in building a theorem prover like Analytica is the soundness of the un-
derlying symbolic computation system” (Clarke and Zhao, 1993). Despite of
Mathematica’s abilities to deal with side-conditions, the specialisation prob-
lem occurs also in this system. The authors of Analytica suggest to “develop
the theorem prover and the symbolic computation system together so that
each simplification step can be rigorously justified.” It would be an enor-
mous task to do so. For smaller domains it can be practical: Beeson (1995)
wrote a special symbolic computation package for his education software
Mathpert, to ensure its smooth integration with the reasoner. Mathpert is
a calculus-trainer that permits students only to do sound steps when solving
a problem. This is ensured by the reasoner of the system. Implementing
a computer algebra package from scratch would not only be an enormous
effort, it would also mean to discard a lot of good implementations of sound
algorithms. Neither would the problem of ad hoc algorithms be solved.

What Analytica lacks is a formal description of what its mathemati-
cal entities mean. Analytica takes over the semantics implicitly given by
Mathematica, and it is questionable, as pointed out by Farmer et al. (1993,
Section 6) whether formal semantics underlies the algorithms of Mathema-
tica. Strictly speaking, Analytica does not produce a proof, but a proof plan.
It is the hope of the designers of Analytica that this plan can be expanded
to a formal proof, but the attempt to do so is not made.

2.3.2 Interface between Isabelle and Maple

In this experiment (Ballarin, 1994; Ballarin et al., 1995) Maple is made
accessible from within Isabelle. The results of the computer algebra system

2.3. REVIEW OF EARLIER WORK 41

are trusted if certain preconditions can be proved. The translation of terms
between the two systems is done utilising Isabelle’s powerful mechanisms for
parsing and pretty-printing.

The external system is closely integrated into Isabelle’s simplifier, the
prover’s rewrite engine. Which terms are passed to Maple is controlled by
evaluation rules. These are of the form

PA..ANP, = t=t.

During rewriting, if ¢ matches with the current redex, and Py,... P, can be
proved, the term ¢ is evaluated by Maple obtaining #'. The redex is replaced
by ¢’ and rewriting proceeds. The mechanism for checking preconditions is
able to catch divisions by zero and the like in expressions, but is not powerful
enough to handle more complicated situations, where the preconditions are
generated during the computation, for example the divisions that occur in
the Gaussian algorithm.

The integration of the computer algebra system into the rewriter is con-
venient if expressions containing algebraic formulae need to be simplified. In
other circumstances too many manual instantiations were necessary to guide
a proof (Ballarin, 1994, Section 6.3), and the use of the computer algebra
system from within Isabelle seems too restrictive.

A further criticism of this work is that access to Maple is through its
user interface and evaluation rules control which functionality of Maple is
visible from the prover. This is not flexible enough: in order to avoid ad hoc
algorithms in Maple, many sound algorithms cannot be used. The problem
that the semantics of expressions may differ from algorithm to algorithm is
not addressed, either.

2.3.3 Bridge between HOL and Maple

The design of this link by Harrison and Théry (1994) was triggered by
the need to deal with real numbers in formal verification of hardware and
software. It attempts to take advantage of some of Maple’s algorithms within
the HOL system. It is a typical example of proof reconstruction: the result
returned by the computer algebra system is not trusted but used to construct
a calculus-level proof in HOL with appropriate tactics.

Unfortunately, Maple does usually neither provide certificates nor traces
for its results, and so the authors hope that the result of the computation
does contain enough information that can serve as a certificate. Harrison
(1996, Section 6.4.1) gives a number of examples where this is the case — for
example, the extended Euclidean algorithm does not only return a greatest

42 CHAPTER 2. MAKING THE INTEGRATION TRUSTWORTHY

common divisor d of two elements a and b of a Euclidean ring, it also returns
factors s and ¢ such that

sa+t-b=d <= dis ged of a and b.

Hence s and ¢ make it possible to prove that d is a greatest common divisor
of a and b without reiterating the computation.

Harrison’s major example is the integration of expressions involving
products of sines and cosines. As integration is the inverse to differenti-
ation, and differentiation is straightforward to implement, it is hoped that
this is another instance where “checking is easier than finding”. But not so.
The procedure that Harrison implements is as follows. For a given term,
the integral is computed by Maple, and this integral is then differentiated
within HOL. If the latter and the original term are equal, then surely the
integral is correct, and using the (formally proved) Fundamental theorem of
integral calculus a formal proof for the integral is obtained. Unfortunately
there is a snag: Davenport et al. (1993, Section 5.1.1) point out that the
real problem in differentiation is the simplification of the result, and indeed
it turns out to be difficult to decide whether the derivative and the original
term represent the same function. Because the computer algebra system is
not trusted, this has to be decided in HOL and is rather inefficient. For the
examples given in (Harrison, 1996, Section 6.4.3) deciding the equality takes
10 to 36 times longer than computing the derivative.

Harrison and Théry’s interface treats the computer algebra system as a
black box. In order to obtain soundness, Maple is not trusted. Utilising
this link, some integrals could be proved formally in HOL that would have
been harder to prove otherwise. As a general approach to interfacing com-
puter algebra to a prover, it is limited, because many algorithms that are at
the core of computer algebra need to be re-implemented in the prover, like
computing normal forms in the case of integration, or tests of irreducibility.

2.3.4 Sapper

A different variant of the proof-reconstruction paradigm was suggested by
Kerber et al. (1996). Here the context is the proof planning system Omega
(Benzmiiller et al., 1997). This is based on a theorem prover, called the
verifier, that is controlled by proof plans. These plans are generated by
external, automated provers upon invocation by the user. The proofs found
by these provers are translated into proof plans, which then can be expanded
to calculus-level proofs by the verifier. These can then be checked by a
proof-checker. A number of external provers are linked to Omega, and these

2.4. OUTLINE OF A NEW APPROACH 43

provers, which all have different strengths, are based on different logics.
Therefore the verifier’s task to check all derived statements with respect to
the target logic is important for the integrity of the whole system.

In order to obtain a system which is also computationally strong, Kerber
et al. (1996) propose to add a computer algebra system as one of the external
reasoners. In order to generate a proof plan, which is able to guide the
verifier through a proof that justifies a computation, they propose to add
a “verbose mode” to the computer algebra system, which emits a trace of
the computation. They demonstrate this on a small, experimental computer
algebra system and show how a plan for the verification of the addition of
two polynomials can be generated. -,

The trace generated by the “verbose mode” replaces a certificate for the
calculation. Good certificates for algorithms in computer algebra are often
not known, and generating a trace of the computation is attractive because it
seems to provide a uniform way of obtaining a certificate. In many instances
these traces will not be efficient. Even worse, for a long computation it might
not even be possible to store the trace. Grobner bases are used, for example,
to decide the membership-problem of polynomial ideals. Grébner bases for
ideals, which are given by a set of generating polynomials, are computed
with Buchberger’s algorithm. This can take tremendously long and may
consume a huge amount of storage space.? A lot of effort was and is spent
to make its implementations efficient and usable in practice. A trace is likely
to be very long and repeating the proof in the calculus of the prover is not
attractive.

Reconstructing a proof for the addition of polynomials is not an impres-
sive achievement towards the sound integration of provers and computer al-
gebra. Computer algebra systems perform this kind of operations efficiently,
and there are certainly no doubts about the correctness of polynomial addi-
tion. Although computer algebra systems are not seen as black boxes by this
approach, soundness problems are not seriously addressed. Emitting traces
may ensure soundness, but verifying sound computations does not lead to
an efficient system. -

2.4 Outline of a New Approach

The aim of this work is to add computer algebra to a prover and so increase
its strength in mathematical domains. This should not only result in more

3If d is a bound on the degree of the generating polynomials the computation of the
d
Grdbner basis can involve polynomials of degrees proportional to 22° (Cox et al., 1992).

44 CHAPTER 2. MAKING THE INTEGRATION TRUSTWORTHY

efficient computation inside a prover but also exploit algorithms whose de-
velopment required research in the computer algebra community. What we
have seen in this chapter is that this can only be reasonably achieved if
existing implementations of computer algebra systems are used and, more
importantly, trusted. Reconstructing proofs for computations in a prover’s
calculus is slow, and formally verifying algorithms of computer algebra is
only gradually becoming feasible. ‘

Because computer algebra systems are collections of algorithms that
share data-structures but may use them with different meanings, transla-
tions into the calculus of a prover cannot be done uniformly, but different
translations may be required for different algorithms. Therefore, in par-
ticular interfacing to the user interface of a computer algebra system is
problematic. Most computer algebra systems have a built-in programming
environment through which library and data-structures can be accessed di-
rectly.

Although computer algebra systems are not as sound as one might wish,
many of them are trustworthy in parts. If it is possible to restrict the prover’s
access to only the sound parts it will not become unreliable. Unfortunately,
it is hard to tell sound algorithms from ad hoc ones in large computer algebra
systems. Code for simplification, which is often ad hoc, is usually spread all
over the system. A perfectly sound algorithm may call library-routines that
are ad hoc and therefore not be usable. Some more recent computer algebra
systems use object-oriented type systems to structure their mathematical
domains. Axiom (Jenks and Sutor, 1992) is the most prominent one of those.
The advantage of these type systems is that all code for simplification in one
domain is located in the module of that domain. Sound implementations
are easier to identify, and, because the type system requires more discipline
from the programmer, more likely to be found.

For the experimental purposes of this work, the library need not cover
the latest developments in computer algebra, but the most important basic
algorithms will be sufficient. These algorithms are implemented in any of
the algebraic libraries. The library Sumit (Bronstein, 1996) is written in
the same, statically-typed language Aldor (Watt et al., 1994a,b) as Axiom
and does not contain ad hoc code. All its modules are based on published
algorithms and pointers to the literature are available.

Sumit is written in an object-oriented language, but this does not mean
that only such libraries were trustworthy. Many specialised computer alge-
bra libraries can be expected to be sound, because they deal with a smaller
number of domains and they have been written by experts in the field.
In fact, Sumit is such a specialised library — for the solution of differential

24. OUTLINE OF A NEW APPROACH 45

equations. We will, however, only make use of the “algebraic infrastructure”
of this library — up to solving linear equation systems and factorisation.

Side-conditions that apply to the correct use of algorithms need to be
documented carefully in specifications. For sound algorithms they can be
obtained from the literature. The book-keeping of those conditions is best
done in the prover.

The conclusion of this chapter is that interfacing computer algebra to
provers in a pragmatic way is possible. At the same time, the prover can
be maintained trustworthy. The requirements to achieve this have been
outlined in this section, and the design of an interface based on these re-
quirements follows in the next chapter. It has to be kept in mind, though,
that the interface that will be designed is only a framework and does not
guarantee soundness itself. Choosing sound algorithms and providing ap-
propriate translations and correct specifications for them is important to
maintain soundness.

46 CHAPTER 2. MAKING THE INTEGRATION TRUSTWORTHY

Chapter 3

Design of the Interface

The previous chapter presented a new, pragmatic approach to linking a com-
puter algebra library to provers. In order to demonstrate that this approach
is more feasible, and indeed more powerful, than not to trust the computer
algebra component, an interface to the prover Isabelle is implemented. The
design of this interface is described in the present chapter.

In the computer algebra community, there is interest to link computer
algebra systems to each other and also to graphical and numerical systems,
and scientific word processors. Experience from that research is valuable
for interfacing to provers as well, but, because of limited rigour, only to a
limited extent.

3.1 OpenMath

The main purpose of the interface is to translate mathematical objects be-
tween the representation used by the prover and the one of the computer al-
gebra library. This is similar to the objective of the OpenMath project (Dal-
mas et al., 1997), which since 1993 has worked towards interfacing different
computer algebra systems with each other by providing a system indepen-
dent representation for mathematical objects and appropriate translations
to the systems’ specific representations.

The OpenMath project has an interesting feature: it provides specifica-
tions for the mathematical objects, though only informal ones. Figure 3.1
shows that OpenMath distinguishes three layers of data-representation. The
first is the private representation of a given program. The second is the repre-
sentation as an OpenMath-object. The third layer provides encodings for the
transport of data. On the second layer, expressions are represented as trees.

47

48 CHAPTER 3. DESIGN OF THE INTERFACE

This layer and the third one are system-independent. The hierarchy of layers
reflects how OpenMath is normally integrated into an application. Content
dictionaries provide specifications for OpenMath-objects. Following these
specifications, phrase books for particular computer algebra systems can be
developed. Phrase books are essentially functions that translate between
system-specific data and OpenMath-objects. They are implemented in the
programming language of the corresponding computer algebra system and
need to be coded manually (Huuskonen, 1997). For the third layer formats
based on SGML and binaries are supported (Abbott, 1996). These for-
mats are anticipated to support various sub-formats, for example encodings
for floating-point numbers of different precision. OpenMath can negotiate
suitable encodings between two applications and provides for encoding and
decoding of OpenMath-objects.

Program A Program B
A-Specific B-Specific
Representation Representation
Application) \
Specific Phrase Book A Phrase Book B
Provide;d—t:y ________ v___---———__—____________" __________
OpenMath OpenMath- OpenMath-
Object Object
Y ¥
OpenMath OpenMath
Encoding Encoding
Y 4
SGML or _ .| SGML or
Binary Transmission Binary

Figure 3.1: The OpenMath architecture

According to Dalmas et al. (1997, Section 2.4) OpenMath does not pro-
vide ezact specifications. They write that “it would be beside the point to
exactly specify the behaviour of any OpenMath [sic].” This was because
“even when dealing with programs that compute, exact specifications could
be impractical or too constraining for a given system to become OpenMath

3.1. OPENMATH 49

compliant.” In fact, specifications of the semantics of objects only have the
status of comments! For example, the contents dictionary Basic (Gonnet
et al., 1998), which defines objects that should be supported by all Open-
Math compliant software, contains various references to mathematical liter-
ature, but no formal specifications other than type-profiles for operations.
Also, the definitions of some transcendental functions are given in terms of
limits, which is a notion that is generally understood, but it has not been
introduced as an OpenMath-object at that stage.

This level of precision meets the standard of most computer algebra
systems, seems appropriate for the purposes of OpenMath and is sufficient
in order to move expressions from one system to another. This is a helpful
service if the user is aware that systems may treat expressions differently.
However, in order to reason mechanically, formal specifications are required.

It is not clear what Dalmas et al. (1997) mean by “exact specifications”.
As an example, take an algorithm that solves a linear equation system. Sev-
eral strategies may be used in its implementation. They lead to differing
sets of vectors that, of course, all span the same solution space. A specifi-
cation for the algorithm should say that the returned vectors are solutions
to the equation system, or it could be more specific and say that they in-
deed span the space of solutions. Both specifications are exact and can be
formalised. The specification could be much stricter and attempt to fully
determine the answer of the computation. For a linear equation system, a
specification could rule out all but one of the possible bases that span the
solution space. This amounts to require that the algorithm uses one of sev-
eral possible strategies. In most cases, it would not be reasonable to be so
specific. A user of OpenMath will probably want to use the equation solver
of a different computer algebra system because it uses a different strategy,
and hence the solution could be of a form more appropriate for the particular
application. In this sense, formal specifications need not be exact.

However, because computer algebra systems have systematic soundness
problems, one wonders whether OpenMath does not attempt to be exact in
order not to get in conflict with the unsoundness of the computer algebra sys-
tem. If that is the case, there is not much point in providing an OpenMath
interface to a theorem prover. Various OpenMath-compliant computer alge-
bra systems could be plugged into that interface, if they become available,
but formal specifications, because they need to take their specific errors into
account, would still differ.

OpenMath contains a number of interesting ideas, which we borrow. Be-
cause of the lack of rigour the interface to Isabelle is not based on OpenMath
directly.

50 CHAPTER 3. DESIGN OF THE INTERFACE

3.2 Isabelle’s Theories

In the prover Isabelle, theories organise the hierarchical structure of a math-
ematical development. They contain declarations of constants and axioms
of a mathematical development or logic. Typically, a user starts from one
of the predefined theories that implement object logics — for example, ZF
for set theory and HOL for higher-order logic — and extends them by new
declarations and axioms. In a large development, the user will create a hi-
erarchy of theories by extending and merging them. Theorems, which are
derived from the axioms, are also associated to theories.

Signatures can be seen as substructures of theories. They contain all
declarations that are associated to Isabelle’s term-language, which is a typed
version of the A-calculus, namely constants, concrete syntax and also type
information.

Theories may contain oracles. These allow Isabelle to take advantage
of external reasoners. Invoked as an oracle, an external reasoner can create
arbitrary Isabelle theorems. This provides a controlled way of bypassing
the abstract data-type for theorems. Isabelle documents that the theorem
has been generated by an external reasoner and records the oracle that was
used. It is intended that these theorems do not change the logic of the
theory, but are derivable from the axioms given in that theory or in its
ancestors. Isabelle expects the external reasoner as an ML function taking
two arguments: a signature and a description of the problem to be solved.
The signature contains definitions and type information of A-terms that may
be passed to the oracle. The oracle may raise an exception to indicate that
it cannot solve the specified problem.

3.3 Architecture

One of the design rationales was to have as much common design of the
interface on the prover’s and the computer algebra system’s side as possible.
Like in OpenMath this should at least be the case for encoding and trans-
mission, and three layers are distinguished: from top to bottom a semantic
layer, a syntactic layer and a transmission layer. Like in OpenMath, on the
semantic layer objects are in the application’s specific representation, on
the syntactic layer a system-independent representation is used and on the
transmission layer, a transport-encoding, which is also system-independent.

On the syntactic layer we use the simply typed A-calculus. This is suit-
able because higher-order operations like integration can be represented in

3.3. ARCHITECTURE 51

a natural way. The representation is also used for theorems, which are re-
turned from the computer algebra component to the prover. On the trans-
mission layer a straightforward translation of A-terms into text-strings is
used.

Isabelle Sumit Server
Sumit
A-Term Representation
A A
Interpretation of A-Terms Build- and
in Theory Context Eval-Functions
Y Y
Raw A-Term Raw A-Term
A A
Printing Printing
and Parsing and Parsing
y A
String P .| String
Representation | Tyansmission | Representation

Figure 3.2: Layer structure of the interface

3.3.1 Servers and Services

The purpose of the interface is to provide algebraic algorithms as external
reasoners to the prover, and to communicate the results in a form accessible
to the prover. We call this presentation of an algorithm a service. Several
services that share resources, usually the same library, are grouped to a
server. The server also provides the necessary communication-infrastructure
and translates to and from the library’s representation of objects. Results of
computations are packaged into theorems using theorem templates. Theorem
templates provide specifications for the computations. They are explained
in Section 3.3.2.

Every service is associated to a theory of the mathematical development
in Isabelle. Specifications are interpreted with respect to the definitions and
axioms of that theory. Isabelle’s oracle mechanism is used in a different way
than anticipated by its designer. One oracle-function is provided for the
whole interface. The name of the theory associated to a service is stored

52 CHAPTER 3. DESIGN OF THE INTERFACE

in the corresponding server and can be queried. The signature of that the-
ory, together with the specification, is supplied to the oracle-function. This
function turns the specification into a theorem.

The implementation of the interface provides the necessary functionality
to create child processes for server, to connect to and disconnect from them,
and to make the necessary requests to services. The interface is provided as
a set of ML-functions. Their signature is shown in Figure 3.3. It follows a
description of these functions.

read_server_list : string -> string list
list_available_servers : unit -> string list
list_connected_servers : unit -> string list

connect_server : string -> string list
disconnect_server : string -> unit

list_services : string -> string list

which_theory : string -> string -> string
term_service : string -> string -> term list -> term
thm_service : string -> string -> term list -> thm

exception SERVER of {server: string, msg: string}
exception SERVICE of {server: string, service: string,
msg: string}

Figure 3.3: Signature of the interface

read_server_list filename. Names of available servers are kept in a file.
This function retrieves them from the file filename, together with the
commands to launch the servers. It returns the list of the server-names.

list_available_servers () and list_connected_servers () return the
respective lists of servers.

connect_server server starts a process for the server with name server and
obtains its list of available services, which it returns. An error occurs
if the process could not be started for whatever reason and exception
SERVER is raised.

disconnect_server server sends a terminate signal to the server and closes
the connection. Again, exception SERVER may be raised.

3.3. ARCHITECTURE 53

list_services server returns a list of names of the services that are avail-
able with server, provided this server is connected. Otherwise, an
empty list is returned.

which_theory server service returns the name of the theory associated to
service of server. Results of service have to be interpreted in this
theory. The theory name is obtained from the corresponding server.

term_service server service [ti,...,t,| invokes the given service on server.
The terms ti,... ,t, are passed to the service as arguments. The re-
sult is returned as a term [Pi;... ;P,] = C representing a meta-
theorem. Its type is prop. The server may report an error, for example
if the arguments do not type-check, are of the wrong type or are not
understood by the service, or if the computation aborts with an error.
In this case the exception SERVICE is raised passing on an error mes-
sage from the service. Errors in the communication again raise the
exception SERVER.

thm_service server service [t1,... ,t,] calls term service to carry out the
requested computation. Its result must be a A-term of type prop.
The function also obtains the associated theory of the service with
which theory. It then uses Isabelle’s oracle mechanism to generate a
theorem. This is returned.

SERVER {server: server, msg: message} is generally raised if errors in
the communication with the server occur.

SERVICE {server: server, service: service, msg: message} is raised if
the server reports an error while executing a service.

3.3.2 Theorem Templates

What is an appropriate class of theorems to specify results of computa-
tions? Most of the computations by computer algebra systems have the
form of simplifications. A term ¢ is reduced to an in some sense equivalent
term ¢'. Taking possible side-conditions into account, a suitable class of the-
orems could be conditional rewrites. But determining the side-conditions
before the computation, as suggested by Ballarin et al. (1995), is not suffi-
cient. They might arise in the process of the computation, for instance in
the Gaussian algorithm, where the choice of pivots depends on all the previ-
ous computation steps. Therefore, the divisions, which are critical, can only
be determined after the computation. Other results may not be naturally

54 CHAPTER 3. DESIGN OF THE INTERFACE

presentable as rewrites — for example the factorisation of a polynomial into
its irreducible factors using a predicate like Factorisationp(zi, ... ,z,]. This
not because the system would become logically more expressive, but because
structurally simpler theorems are usually easier to use in automated theo-
rem proving. Therefore, it is advisable to allow the generation of arbitrary
theorems.

Arguments and results of a computation, which have been translated to
A-terms, are put together, and a A-term representing a theorem is obtained.
Where appropriate, side-conditions arising from the computation are also
regarded as results. This composition is done using a theorem template: at
this experimental stage, simply a piece of code. The generated theorem is an
instance of the algorithm’s formal specification. If a computation fails, for
instance because a division by zero occurs, or the computation runs out of
resources, the generation of a theorem is refused and an exception is raised.
A computation could run out of resources because of intermediate expression
swell.

The theorem template for a service that computes the normal form of
an expression is simple. If the service reduces a to b the theorem template
creates the rewrite rule (a = b) = True. Examples of non-trivial theorem
templates are given in Sections 5.3 and 6.6.

3.3.3 Translation of Objects

The relation between types, or more generally speaking representations, in
the two systems is involved. For example, Sumit uses the type Integer to
represent both natural numbers and integers. These have to be distinguished
in Isabelle, because they obey different laws of reasoning. Conversely, poly-
nomials in Isabelle are translated to sparse univariate polynomials in Sumit,
if a factorisation is to be computed. In order to solve the equation system
given by comparing coefficients, the polynomials need to be coerced to vec-
tors of appropriate size.! This means that the relation between the types
does not even form a mapping.

This problem is resolved letting translations depend not only on the
types, but also on the algorithm they interface to. An algorithm together
with its translation functions and its theorem template is a service. Note
that this also avoids the type reconstruction problem one would have when

1Representation changes are common in computer algebra. One could try and perform
all of them in the reasoning system. But this would not be very efficient, and given the
state of art in mechanised reasoning, formalising as few algebraic domains as possible is
desirable.

3.3. ARCHITECTURE 55
Isabelle Sumit
Type Constant Type Operation
nat 0 Int ' 0
nat = nat Suc Int -> Int An.n + 1
nat = nat = nat +, " Int -> Int -> Int +, %, 7
- Amn.if m >= n then m - n else 0
bool True, False | Bool true, false
nat Plus Int 0
nat = bool = nat Int -> Bool -> Int
BCons Azb.2 * z + if b then 1 else O
bool 0,1 F2 0,1
bool = bool - F2 -> F2 -
bool = bool = bool +,- F2 -> F2 -> F2 +, *
bool = nat = bool B F2 -> Int -> F2 -
bool up 0,1 Up F2 0,1
bool up = bool up - Up F2 —> Up F2 -
bool up = bool up = bool up +,-,rem Up F2 -> Up F2 -> Up F2 +, %, rem
nat = bool up monom Int -> Up F2 ‘An.monom "~ n
bool = bool up const F2 -> Up F2 coerce
bool = bool up = bool up B F2 -> Up F2 -> Up F2 *
nat = bool up = bool Int -> Up F2 -> F2
coeff An p.coefficient (p, n)
bool up = nat Up F2 -> Int
deg Ap. (n := degree p;
if n < O then O else p)

Table 3.1: Specification of the evaluator for expressions in Fa[X].

interfacing to an untyped computer algebra system. Functions that con-
vert from the server’s representation to A-terms are called build-functions,
and functions that evaluate A-terms into the server’s representation, eval-
functions.

Evaluation of Isabelle’s A-terms into Sumit objects can be done uni-
formly, using an evaluator. So far, A-abstractions have not been needed,
and thus the implementation does not handle this case. Abstractions will
occur, for example, in the context of an integration operator. Then a choice
of evaluation strategy will have to be made. Call-by-value seems appropri-
ate, because the purpose of the evaluation is to translate the whole given
term into a Sumit object. The implemented interface passes all information
on to the computer algebra system. If 8-reductions are desired, they can be
done in the prover easily.

56 CHAPTER 3. DESIGN OF THE INTERFACE

Aldor is a staticly typed language: all type information needs to be
known at compile-time, though parametric polymorphism is possible through
dependent types. For the evaluator this means that an evaluation function
for every type needs to be provided. This is done by instantiating the eval-
uator, which is a polymorphic function. Table 3.1 shows evaluation func-
tions for which types are needed to evaluate expressions in Fo[X], together
with the constants and their corresponding functions in Sumit. In Isabelle,
the type bool is used also for the domain Fs; up is the type constructor
for univariate polynomials. Sumit types are abbreviated: F2 stands for
SmallPrimeField 2 and Up for SparseUnivariatePolynomial. Integer is
abbreviated to Int and Boolean to Bool. The constants Plus and BCons
encode a binary representation for numbers in Isabelle. These are essentially
stored as lists of bits, where Plus represents zero and BCons appends a least
significant bit to the list of bits. Bits are represented as Boolean values.
The other constants are described in Chapter 4, where the formalisation of
algebra in Isabelle is discussed. In the table A-notation is used to abbreviate
function definitions in Aldor.

In the current implementation of the evaluator, more needs to be speci-
fied. If a value of some type 7 can be obtained by application of a function
of type o = 7 to a value of type o in the evaluator for type 7 we must also
specify which evaluation functions have to be used for the function and for
its argument. In this example, 18 such pairs of types can occur and need to
be specified. Also evaluation functions for three more types, which do not
have any constants associated with them, are required. We have omitted
this information from Table 3.1. In future, these specifications should be
generated automatically by a suitable tool. Among evaluation functions for
the other types, we obtain EvalUpF2 for Fa[X].

The inverse operation, translating results back into Isabelle’s format,
cannot be done uniformly. Sumit operations to traverse its data-structures
need to be used to build appropriate A-terms. Polynomials over Fa, for in-
stance, are translated into sums of monomials. A suitable iterator, provided
by Sumit, is used in the function BuildUpF2 to iterate over the monomi-
als of a polynomial. It only returns monomials with nonzero coefficients,
which ensures that the term that is returned to Isabelle is also sparse. The
zero-polynomial is, of course, mapped to 0.

Figure 3.4 shows the implementation of the function BuildUpF2. Code
for BuildNat, the build-function for N, has been omitted. The function
BuildMonom builds a monomial aX™. Over F3 X™ is the only nonzero mono-
mial. It is translated to the term monomn. As the representation of the
polynomial is sparse the case a # 1 cannot occur, provided the implementa-

3.3. ARCHITECTURE 57

macro F2 == SmallPrimeField 2;
BuildNat(n: Integer): IsabelleTerm == { ... };

BuildMonom(. a: F2, n: Integer): IsabelleTerm ==
ifa=1
then Appl(Const("monom", ’nat -> bool up’, BuildNat(n)))
else error "BuildUpF2: Illegal coefficient."

};

BuildUpF2(p: SparseUnivariatePolynomial F2)
: IsabelleTerm ==

Rec(a: F2, n: Integer,
gen: Generator Cross(F2, Integer)): IsabelleTerm ==

if empty? gen

then BuildMonom(a, n) -- create one (the last) monomial
else { -- create sum of monomial and

(a2, n2) := value gen; -- remaining polynomial

step! gen;

App1(

Appl(Const("op +", ’bool up -> bool up -> bool up’),
BuildMonom(a, n)),
Rec(a2, n2, gen))
}
};

gen := generator p;
step! gen;
if empty? gen
then Const("<0>", ’bool up’) -- create zero polynomial
else { -- create monomials
(a, n) := value gen;
step! gen;
Rec(a, n, gen)
}
L

Figure 3.4: Implementation of the build-function for polynomials in Fy[X].

58 CHAPTER 3. DESIGN OF THE INTERFACE

tion of the library is correct. The function BuildUpF2 obtains the iterator
gen for the polynomial p, with operations step! and empty?. The data-
type of A-terms is IsabelleTerm. The constructor Const creates a constant,
and Appl is function application. Expressions that construct types for these
A-terms are abbreviated in single quotes, in order to improve the readability
of the code.

3.4 Relation to Other Work

The main interest of this work is to demonstrate that algorithms from com-
puter algebra can improve theorem provers. For this an experimental proto-
type is designed. Other issues, which are not being investigated, include the
cooperation of concurrent processes (Dalmas and Gaétano, 1996), abstract-
ing from the transport medium (Gray et al., 1996) and designing application
programming interfaces (API) for services.

Only a stateless server is considered. A state could save the repeated
translation and transmission of objects and could make the interface more
efficient.

3.4.1 Open Mechanised Reasoning Systems

The analysis of the design of theorem provers has led to frameworks that
identify components of provers and describe them formally. In their paper
“Reasoning Theories” Giunchiglia et al. (1996) identify a reasoning theory
component, a control component and an interaction component as the three
key building blocks for a theorem prover. The reasoning theory compo-
nent implements calculus and inference rules of the logic or formal system.
The control part consists of a set of inference strategies. The interface im-
plements the capability of interacting, usually with the human user. The
authors call this framework Open Mechanised Reasoning Systems (OMRS).

In an LCF-style prover these components are clearly separated. The
kernel implementing the abstract data-type for theorems is, in the view of
OMRS, the reasoning theory, and tactics provide the control. The interface
is provided by the programming language ML and its environment, or a
graphical user interface on top of that. As far as the extensibility of the
prover is concerned, this is a framework of enormous flexibility. The OMRS
framework has been extended by Homann (1997) by computational services.
It is not the purpose of the present dissertation to describe the presented
interface formally. One observation is worth pointing out, though: a service
corresponds to an elementary computational theory according to Homann

3.4. RELATION TO OTHER WORK 59

(1997). Heuristic control that might be present in a computer algebra sys-
tem, and may make it unsound, is avoided by using a library, and control
may be implemented in Isabelle’s tactic language.

3.4.2 Prosper Plug-ins

The Prosper project, a collaboration of European universities and partners
from industry, develops an extensible, open proof-tool architecture for “in-
corporating formal verification into industrial CAD/CASE tool flows and
design methodologies”. A plug-in interface (Norrish, 1999) allows to add
plug-ins to the core proof engine, which is a variant of the prover HOL
(Gordon and Melham, 1993). These plug-ins are anticipated to be external
reasoners. Prosper’s and our interface are similar. Servers correspond to
plug-ins in Prosper and services to commands. Both interfaces only allow
one-directional flow of control information from the prover to the external
reasoner. The Prosper interface was developed after the design of our in-
terface was complete and is more mature: plug-ins can be run on remote
machines, a time-out feature exists and arbitrary data can be moved over
the interface, while our interface only supports strings and A-terms.

60

CHAPTER 3. DESIGN OF THE INTERFACE

Chapter 4
Formalising Ring Théory

It is necessary to formalise algebra, so that results of computations can
be specified. It is necessary to mechanise this knowledge, and, obviously,
sufficiently much mathematics from the problem domain, to solve problems
from this domain. On the other hand, it is not necessary to formalise theory,
on which the informal correctness-proofs of algorithms that are used for
computations depend. This is an advantage, because the mechanisation of
mathematics is mainly manual and laborious.

Ring and field theory is the classical domain of computer algebra systems,
although there are also a number of computer algebra systems that specialise
in group theory. This chapter presents the relevant parts of classical algebra
to the extent of detail that is required in the mechanisation of the proofs.
Proofs are more detailed than in algebra textbooks. They are given to
illustrate the difficulty of their mechanisation. The longer ones can be found
in Appendix A. Then, the formalisation in Isabelle is discussed.

In this and the following chapter, following a convention in the HOL-
community, juxtaposition is used for function application. Multiplication is
denoted by “-”. Function application binds tighter then any other operation
and is left-associative.

4.1 The Ring Hierarchy

Historically, classical algebra evolved over concrete domains like the integers,
rational polynomials etc. At the beginning of this century, as the variety of
domains mathematicians were interested in became more and more diverse,
the investigated structures became abstract: they were defined by a set of
axioms, not through a concrete construction. For an application in a theo-

61

62 CHAPTER 4. FORMALISING RING THEORY

rem prover this abstraction is useful, because it allows one to derive results
for abstract structures only once, and then instantiate them for particular
domains. '

It follows now the presentation the algebraic hierarchy of rings, which de--
scribes the classical domains of computation of computer algebra. It follows
mainly Jacobson (1985, Chapter 2).

4.1.1 Rings
By ring we mean commutative ring with one. The definition is as follows.

Definition 1 (Ring) A ring is a structure consisting of a nonempty set R,
operations +,-: Rx R — R and — : R =+ R, and two distinguished elements
0,1 € R such that

(a+b)+c=a+(b+c) (Al (a-b)-c=a-(b-c) (M1)
0O+a=a (A2) l-a=a (M2)
(—a)+a=0 (A3) (a+b)-c=a-c+b-c (D)
a+b=b+a (A4) a-b=b-a (C)

hold for all a,b,c € R.

A number of elementary properties of rings are consequences of the fact
that a ring is an abelian group relative to addition (axioms Al to A4) and
a monoid relative to multiplication (axioms M1 and M2).

For alla holds 0-a=(0+0)-a=0-a+0-a. By adding —0-a on both
sides, one obtains 0-a = 0. Similarly 0 = 0-b = (a+(—a)) b =a-b+(—a)-b,
which shows that (—a) b= —a-b.

4.1.2 Integral Domains

Various types of rings are obtained by imposing special conditions on the
multiplicative monoid.

Definition 2 (Integral domain) A ring is an integral domain, or do-
main for short, if 1 # 0 and it does not contain any zero divisors other than
zero: formally, a - b implies a =0 or b= 0.

4.1.3 Factorial Domains

Many rings have an interesting structure of divisibility. The following defi-
nitions apply for any ring.

4.1. THE RING HIERARCHY 63

An element a is said to divide b, if there is an element d such that a-d = b.
One writes a | b. Two elements are associated, a ~ b, if both a | b and b | a.
An element that divides 1 is called a unit. Associated elements differ by a
unit factor only.

An element is called #rreducible if it is nonzero, not a unit and all its
proper factors are units:

irrede = a#0Aa{1A(Vd.d|a—d|1Va]|d)

An element is called prime if it is nonzero, not a unit and, whenever it
divides a product, it already divides one of the factors. This is, formally,

primep = p#O0Ap{1A(Vab.pla-b—p|laVp|b).

Let a # 0 be an element of a domain with factorisation @ = p; -p2 - - - ps,
where the p; are irreducible. This is an essentially unique factorisation if
for any other factorisation a = p} - p} - - - p}, p} irreducible, one has t = s and
Pl ~ p; for a suitable permutation i — i’ of the set {1,2,... ,s}.

Definition 3 (Factorial domain) An integral domain D is called facto-
rial if every non-unit element of its monoid D* of nonzero elements has an
essentially unique factorisation into irreducible factors.

This is equivalent to D* satisfying both the following conditions (see Jacob-
son, 1985, Theorem 2.21):

Divisor chain condition. If aj,as,... is a sequence of elements of D* such
that a;11 | a; then there exists a natural number n such that a, ~ an,
for all m > n.

Primeness condition. Every irreducible element of D* is prime.

For the purpose of the case study in Chapter 5, only the primeness
condition is required, and therefore the divisor chain condition is omitted
from the formalisation of factorial domains.

For computations in factorial domains it is of advantage to work with
canonical elements. An adequate choice for a canonical representative of
a class of associated elements needs to be made. A factorisation of z into
irreducible canonical factors is unique up to the order of factors, but their
product may differ from z by a unit factor. The definition of the predicate

Factorisationz F u = (z =foldr - Fu) A (Va € F.irreda) Au |1 (4.1)

64 CHAPTER 4. FORMALISING RING THEORY

accommodates this. F is the list of irreducible factors and u is a unit element.
The list operator foldr combines all the elements of a list, here by means of
the multiplication operation “-”. The product of the elements of F and of u
is z. A consequence of unique factorisation is that for irreducible a,b and ¢

alb-c = a~bVa~ec.

This is immediate from the primeness condition. Lifting this result to lists
of factors, by induction, yields

irred ¢ A Factorisationz FuAc|z = 3d.c~dAd € F. (4.2)

4.1.4 Fields

Definition 4 (Field) A ring is called o field if 1 # 0 and all nonzero
elements have an inverse.

Because fields do not contain irreducible elements, the factorisation of field
elements is trivial, and therefore unique. Hence fields are factorial domains.

4.2 Polynomials

For a given ring R, polynomials are an abstraction of functions from N — R
that map all but a finite number of natural numbers to zero. Appropriate
definitions of addition and multiplication make this structure a ring and an
R-algebra. The necessary definitions follow:

Definition 5 (R-module) Let R be a ring with operations +gr, —R, r,0r
and 1g and M an abelian group with operations +pr, —nr and Opr. M is an
R-module if there is scalar multiplication ; : R x M — M and the following
azioms '

(a+rb);p=az;p+mb;p (a-rb);p=na;(b;p)
a;(p+mq) =a;p+mazq Ii;p=p

hold for a,b € R and p,q € M.
Definition 6 (R-algebra) If the module M is itself a ring and
(azp) mg=azp-mq)

holds for a € R and p,q € M then M is called an R-algebra.

4.2. POLYNOMIALS 65

Definition 7 (Univariate polynomials) Let R be a ring. The set
RX|={f: N> R|In.Vi>n.fi=0}

is the set of univariate polynomials of R. For f e N— R ann € N is called
e bound if Vi > n. fi=0. For p € R[X], pi is the i-th coefficient of p.

One writes p; for the ith coefficient, or coefficient of degree i, of the poly-
nomial p. The set of polynomials, together with appropriate definitions of
operations, forms a ring.

Theorem 8 The univariate polynomials R[X] over a ring R, together with
the operations

P+q=(npp+qn)

n
P-q=(nr Y prgni)
k=0
—p=(nr— —p,)
0=(n—0)
1=(nw+ ifn=0 then 1 else 0)

form a ring.

It needs to be shown that the operations are closed over R[X] and that the
ring axioms hold. For the proof, see Appendix A.1.

Theorem 9 The ring of polynomials R[X| with scalar multiplication

a;p=(nra-py)
s an R-algebra.
Proof. Again, closedness of the operations needs to be shown: a;p is a
polynomial if p is one. Indeed, any bound of p is also a bound of a;p. Also,
the module-axioms follow directly from facts about the coefficient domain.

The algebra-axiom is slightly more difficult. Comparing coefficients reduces
the problem to

n n
d(a-p)-gni=a- (Zpi : q'n—i) ,
=0 =0

which holds because of associativity and distributivity in R. O

66 CHAPTER 4. FORMALISING RING THEORY

With the definition of X = (n — if n = 1 then 1 else 0) the usual repre-
sentation of polynomials is obtained. In the sequel, ag;1+a1; X +a2; X2+
...+ a, ; X" is usually abbreviated to ap + a1 X + a2 X% +... +a,X". The
constant X is called the indeterminate of the polynomial ring. Note that X
is not an argument to the construction of R[X]. It is merely a convenient
notation.

4.2.1 Degree

The degree of a polynomial p, denoted by deg p, is the highest exponent with
nonzero coefficient. The degree of the zero polynomial is often defined to be
—00, appealing to rules in NU {—o0} like —0c0 +n = —0c0 or —co < n. The
conventions deg0 = —1 and deg0 = 0 can also be found. For the purpose
of the formalisation that is discussed here deg(0 = 0.is adopted, because in
a formalisation it is easier to handle a few special cases directly, rather than
hiding them in a new domain: the cases will have to be considered when
reasoning about the degree anyway.

Definition 10 (Degree) The degree of a polynomial p € R[X], degp, is
the least exponent such that all coefficients of higher degree are zero.

The usual properties of the degree hold, hence it is equivalent to the common
definition. It is clear that

deg(p + q) < max(degp)(degq).

For the product p - ¢, degp + degq is a bound, as we have already seen in
the proof that multiplication is closed for polynomials. Thus

deg(p - ¢) < degp + deggq. (4.3)

Equality holds in (4.3) if R is an integral domain, and p, ¢ # 0, consequently

p#O0ANqg#0 = deg(p- q) = degp + degg. (4.4)
Then the coefficient of degree degp + degg=:k of p-q is
degp

k
;Pz‘ G-i = ;Pi Gh-i = Pasgp ddega

and nonzero because both pgegp and gqegq are nonzero. Equality (a) holds,
because p; = 0 for 7 > degp, and (b) holds, because for i < degp the
inequality k£ — ¢ > degq holds, and so gx—; = 0.

4.2. POLYNOMIALS 67

For scalar multiplication, deg(a ; p) < degp, because all coefficients that
are zero in p are also zero in a;p. Over an integral domain, for a # 0, the
equality deg(a;p) = degp holds. Degrees for the constants 0, 1 and X are
deg0 =degl =0 and deg X = 1.

4.2.2 Evaluation Homomorphism and Universal Property

Definition 11 (Ring homomorphism) Let R and S be rings. A map
f: R— S that preserves addition and multiplication, f(a+grb) = fa+gs fb,
fla-rb) = fa-s fb, and maps one to one, flgp = lg, is a ring homomor-
phism.

It follows that a ring homomorphism also preserves the other ring operations
and, in particular, fOr = Og.

The embedding const : { f : g‘zﬂ] } is a ring homomorphism. The equal-

ity (consta) - p = a;p holds. Polynomials have the following fundamental
property:

Theorem 12 (Universal property) Let R and S be rings. Then for ev-
ery pair (¢,a), where ¢ : R — S is a ring homomorphism and a € S, there
exists a unique homomorphism @ such that the following diagram commutes:

const

R —— R[X]

¢l l@
Si—d> S

In order to prove the existence one defines

' degp
d:p— Y ¢pi-a (4.5)
i=0

for given a and ¢. For the proof that this is a ring homomorphism and that
it is unique, see Appendix A.2.

The mapping ® is called evaluation homomorphism. It describes the
evaluation of a polynomial when substituting a for its indeterminate.

4.2.3 Polynomials and the Ring Hierarchy

Not only does the polynomial-construction carry the ring structure of the
coeflicient domain over to the domain of polynomials, other properties are
preserved as well. In terms of the ring hierarchy the following holds.

68 CHAPTER 4. FORMALISING RING THEORY

Theorem 13 (Polynomials and ring hierarchy) The polynomials over
a ring form a ring, and the polynomials over an integral domain form an
integral domain.

Proof. The first part of the statement is Theorem 8. To show the second
property, let p and ¢ be polynomials with p- g = 0. Assume both p # 0
and ¢ # 0. By (4.4) degp + degq = deg(p - q) = deg0 = 0 and therefore
degp =0 and degg = 0. As p-g =0, also pp - go = 0. The coefficient ring
is an integral domain. So either py or go must be zero and, because both
p and q are of degree zero, also either p or ¢. This is a contradiction and
hence the polynomials form a domain.

4.3 Notes on the Mechanisation in Isabelle/HOL

Isabelle (Paulson, 1994) is a logical framework. It provides a meta-logic in
which application specific object-logics can be mechanised. The meta-logic
is based on the intutionistic fragment of simply typed A-calculus. Like in
Gordon’s system HOL (Gordon and Melham, 1993) the type system is ex-
tended to a first-order language, providing type variables. This type system
does not have subtyping. Isabelle also provides type classes that allow order-
sorted polymorphism. Type-checking for this type system is decidable and
therefore done automatically in Isabelle.

We use Isabelle’s object-logic HOL, which implements Church’s theory
of simple types, also known as higher-order logic. This is a typed version
of the A-calculus. Types must be nonempty. The logic has the usual con-
nectives (A,V,—>,...) and quantifiers (V,3). Currying is used for function
application. Equality = on the type bool is used to express if-and-only-if and
equivalence = for definitions. The symbol = expresses entailment in a de-
duction rule. Some definitions require Hilbert’s e-operator: ez.P z denotes
a value for which the predicate P holds, presupposing its existence. The
notation for formulae in the entire document is close to their representation
in Isabelle. The judgement ¢ :: 7 asserts that term ¢ is of type 7; 7 = o
denotes a function type. Usually type information from formulae has been
omitted to improve their legibility.

Type classes control the overloading of constants. A type class is essen-
tially a set of types. The fact that a type 7 is in some class C is expressed by
the judgement 7 :: C. Aziomatic type classes link classes to specifications.
These are given as axioms. They provide a very simple module system that
supports abstract reasoning. It can only deal with theories that have a sin-
gle parameter, so for example with rings but not with vector spaces. Type

4.3. NOTES ON THE MECHANISATION IN ISABELLE/HOL 69

classes and their implementation and use in Isabelle are described by Nip-
kow (1993), Wenzel (1997) and Wenzel (1998). Type classes without axioms
are also called syntactic type classes.

Proof development is interactive in Isabelle. The first step in a proof is
entering a statement that is to be proved — the goal. The goal is stored
in the proof state. Then, proof commands are applied to the goal, creating
new, but hopefully simpler, subgoals. This is done until all subgoals have
been resolved and the statement is proved. Proof commands are called
tactics. They range from the implementation of an inference rule to proof
procedures. Tactics are programs and thus arbitrary proof procedures can
be encoded easily. Among the tactics provided by Isabelle are a rewrite
engine (the simplifier) and a generic tableau prover.

4.3.1 The Ring Hierarchy

Abstract rings are theories that only have one carrier. Therefore axiomatic
type classes are well-suited to formalise the hierarchy of rings. All ring op-
erations are overloaded, by means of the syntactic type class ringS. Rings,
integral domains, factorial domains and fields correspond to the axiomatic
type classes ring, domain, factorial and field. These classes are given by inher-
iting from the appropriate more general structure and specifying additional
axioms.

Figures 4.1 and 4.2 show the theory file for the theory Ring, which
contains the declarations for the various abstract rings in Isabelle. The
theory is derived from the theories Arith and FoldR. It inherits all their
definitions and theorems, including the object-logic HOL.

After the header line of the theory file, sections with declarations follow,
each of them starting with a keyword. After the keyword consts, declara-
tions of constants follow. Each starts with the name of the constant, followed
by its type and an optional annotation for syntax. The type may contain
type variables — for example ’a in ASCII-notation. The defs-section con-
tains constant definitions. These are special axioms, and they are preceded
by names, which are used to refer to definitions in proof scripts. Each section
with keyword axclass contains the declaration of a type class. A class can
be the subclass of other classes. If axioms follow, the class is an axiomatic
type class. The asserted class-hierarchy can be changed with instance-
sections. If the classes are axiomatic, suitable witnesses — that is, theorems
— have to supplied, so that the class-inclusion can be verified by the prover.
The following ASCII-notation is used in formulae. The characters & and |
stand for A and V, ALL and EX are quantifiers, ~ denotes negation and ~=

70 CHAPTER 4. FORMALISING RING THEORY

inequality, and @ is Hilbert’s e-operator.
Ring = Arith + FoldR +

axclass
ringS < plus, times, power

consts
"<o>" i ’ar:xringS ("<o>")
<> :: ’a::ringS ("<1>")
uminus :: ’a::ringS => ’a::ringS ("- _" [66] 65)
dv :: [’a::ringS, ’a] => bool (infixl 60)
assoc :: [’a::ringS, ’a] => bool (infixl 60)
irred :: ’a::ringS => bool
prime :: ’a::ringS => bool
inverse :: ’a::ringS => ’a
defs
dvd_def "a dv b == EX d. a * d = b"
assoc_def "a assoc b==a dvb &b dv a"
irred_def "irred a ==a "= <0> & " a dv <1>
& (ALL d. d dv a -=> d dv <1> | a dv 4)"
prime_def "prime p ==p "=<0> & 7 p dv <1>
& (ALL a b. pdv axb --=> p dva | p dv b)"
inverse_def "inverse a == if a dv <1>

then @x. a*x = <1> else <0O>"

Figure 4.1: Declaration of the theory Ring in Isabelle (Part 1)

The theory Ring declares the syntactic type class ringS. This class in-
herits the overloading of +, - and the exponentiation-operator from the re-
spective classes. Then new, overloaded constants are declared. Definitions
for some of the constants follow. The other constants are axiomatised in
the axiomatic classes that follow. Figure 4.4(a) shows the asserted hierar-
chy of classes. The non-emptiness condition of rings need not be specified
explicitly, because all types in HOL are nonempty. For factorial domains,
only the primeness condition is asserted. After proving that fields are fac-
torial domains and instantiation the hierarchy is as shown in Figure 4.4(b).
The scripts for these proofs are in the file of proof scripts of theory Ring.
Instantiation takes place in the theory Field, see Figure 4.3. The supplied
theorems differ from the axioms of the parent classes only in the sort con-
straint of the type variable, which is a :: domain in the class domain and

4.3. NOTES ON THE MECHANISATION IN ISABELLE/HOL 71

axclass
ring < ringS
a_assoc "@+b)+c=a+(b+c)"
1_zero "<0> + a = a"
1_neg "(-a) + a = <0O>"
a_comm "a+b=D>b+ a"
m_assoc "(a*b) xc=ax* (b*c)"
1_ome "<1> x a = a"
1_distr "(a+b) *xc=a*xc+bx*c"
m_comm "a x b=Db x a"
one_not_zero "<1> "= <QO>"
axclass
domain < ring
integral "a * b=<0>==>a=<0>]| b=<0>"
axclass
factorial < domain
factorial_divisor "True"
factorial_prime "irred a ==> prime a"
axclass
field < ring
field_ax "a "= <0> ==> a dv <1>"
end

Figure 4.2: Declaration of the theory Ring in Isabelle (Part 2)

« :: factorial in the class factorial. The theorems are

field integral (auca:field)-b=0 = a=0Vb=0
field fact_prime irred(a : « :field) = primea

and Truel is the theorem “True”.

The axiom 1 # 0 has been moved to the class ring; this is different from
the presentation of the ring hierarchy in Section 4.1. The exponentiation
operator is defined in the usual manner for exponents over N. In particular
a® = 1 for any a. The inverse is defined not only for fields, but arbitrary
rings. The inverse exists for the unit elements of a ring. If an inverse does
not exist the inverse-function returns zero: all functions in HOL are total.

The setup of Isabelle’s simplifier for rings needed some experimentation.
It turned out to be more practical not to compute normal forms by default.

72 CHAPTER 4. FORMALISING RING THEORY
Field = Ring +

instance -
field < domain (field_integral)

instance
field < factorial (Truel, field fact_prime)

end

Figure 4.3: Declaration of the theory Field in Isabelle

ring ring
domain
domain field
factorial
factorial field
(a) (b)

Figure 4.4: Ring hierarchy before (a) and after instantiation (b)

Ground complete ordered rewrite systems are guaranteed to terminate with
Isabelle’s permutative rewriter. Such systems exist for a number of algebraic
theories (see Martin and Nipkow, 1990). The mechanisation provides such
systems for the associative-commutative theories of the operations + and
-, see Figure 4.5. They can be added if required. It is not advisable to
apply these simplifications by default, firstly because this is not flexible
enough: there are many situations in proofs where such normal forms are not
desirable. Secondly, permutative rewriting with respect to an associative-
commutative theory essentially performs bubble-sort on the term.

a+b=b+a (a+b+c=a+(b+c) a+(b+c)=b+(a+c)

Figure 4.5: Ground complete rewrite system for the ac-theory of addition

4.3. NOTES ON THE MECHANISATION IN ISABELLE/HOL 73

A substantial part of the development of polynomials deals with sum-
mations. A summation operator SUMn f = Y 7, fi is provided, which is
overloaded for rings, like other ring operations. The congruence rule

m=nA(Vi.i<n = fi=gi) = SUMmf=SUMng

permits Isabelle’s simplifier to use the assumption ¢ < n when simplifying
the expression « in SUM n(As. z). This is required in many of the proofs pre-
sented in Section 4.2 and Appendix A. The summation operator is used for
all summations throughout the formal development. Because the standard
notation is more readable, this is used in this presentation.

4.3.2 Polynomials

Polynomials are an abstraction of functions from N — R. We encapsu-
late this in a new type: the type-constructor up, for “univariate polyno-
mial”. Polynomials make use of the overloaded ring-operations: up has
arity (ringS)ringS and is instantiated to (ring)ring and (domain)domain after
these facts have been established formally.

In the formalisation no constant for the indeterminate X is provided
but the function monom : N — R[X]. This function creates monomials —
monomn is X", for example. A polynomial with given coefficients can be
represented in terms of the operations monom,; and +. This representa-
tion is sparse: X190 — 1 can be handled without iterating over 999 zero
coefficients, as would be the case with the standard representation as lists.
Also, this representation is natural and does not need technical overhead
as other formalisations would — for example, using association lists. The
function coeff returns the coefficient of a polynomial. The coefficient p; of
p is coeft i p.

Two representation theorems are provided. Two polynomials are equal
if all the coefficients are equal. This is expressed by the theorem

(Vn. coeffnp =coeffng) = p=gq.

It is not necessary to compare the coefficients for all n € N, but only the
coefficients up to the degree, and therefore

n
degp<n = Zcoeﬂ'ipéXizp (4.6)

=0

holds.

74 CHAPTER 4. FORMALISING RING THEORY

4.3.3 The Degree Function

Finally, reasoning about the degree of a polynomial can be tricky, because
of the definition of the degree function in terms of the e-operator, which is
implicit in the definition as the least exponent, such that all the coefficients
of higher degree are zero. Suitable facts that simplify the reasoning are
derived from the definition. Often, it is necessary to prove degp = n. This
can be split into

degp <mn and degp > n.
Then degp < n holds if all coefficients above n are zero
(Vm.n<m — coefimp=0) = degp<n
and deg p > n holds if the n-th coefficient of p is distinct from zero
coeffnp #0 = n < degp.

Note that both theorems also hold for the zero-polynomial, for which also
deg 0 = 0 by definition. '

The following facts about the coefficients of a polynomial with given
degree hold. Coefficients of degree higher than the degree of the polynomial
are zero

degp<m = coeffmp=0

and the coefficient corresponding to the degree of the polynomials, the lead-
ing coefficient, is nonzero

p# 0 = coeff(degp) p # 0.

Again, the zero polynomial is a special case: coeff m 0 = 0. Obviously, it
is not possible to derive anything for coefficients below the degree of the
polynomial from the degree alone.

4.3.4 Evaluation Homomorphism

Ring homomorphisms are formalised with the predicate homo. A function ¢
of type « :: ringS = 3 :: ring$S is a ring homomorphism if and only if homo ¢.
Given a homomorphism ¢ : R — S, a polynomial p € R[X] and a € S, the
function EVAL is defined by

degp
EVALgap = > ¢pi-a™
=0

4.4. RELATED WORK 75

This function maps ¢ and a to the corresponding evaluation homomorphism.
The following facts express the universal property.

homo ¢ = homo(EVAL ¢ a) (4.7
homo¢p = EVAL¢a(X")=a" (4.8)
EVAL ¢ a (const b) = ¢b (4.9)

4.4 Related Work

The algebraic hierarchy plays a role in the implementation of domains in
computer algebra systems. Also, in this section the present mechanisation
is compared to work by others.

4.4.1 The Algebraic Hierarchy in Axiom

The computer algebra system Axiom (Jenks and Sutor, 1992) was the first
to exhibit abstract domains. Before that, computer algebra systems imple-
mented a fixed number of domains. A user could implement new domains,
but he or she would also need to provide all functionality for them. Despite
a factorisation algorithm, say, had been available in the system already,
and this algorithm might have been applicable to the new domain, the user
would not have been able to use it, because of the limitations of the system.
In Axiom this problem was overcome by using an object-oriented type sys-
tem. Abstract classes, which are called categories, model abstract domains.
Concrete classes provide implementations of domains. They can take other
domains as arguments, and they correspond to type constructors. In Axiom,
they are called functors. A functor may provide a generic implementation
of a factorisation algorithm, and a user-declared domain can take advantage
of the implementation, if it is a member of the right category.

The algebraic hierarchy implemented in Axiom is vast. The system sup-
ports various kinds of factorial domains, provides several implementations
of polynomials and many other constructions. It is based on work by (Dav-
enport and Trager, 1990) and (Davenport et al., 1991).

Axiom is a computational system and does not prove theorems. Cate-
gories are no axiomatisations of abstract domains, but merely provide the
appropriate interfaces. However, specifying axioms in categories is encour-
aged by a special syntax for comments.

76 CHAPTER 4. FORMALISING RING THEORY

4.4.2 Other Mechanisations of Polynomial Algebra

Bailey (1993) has mechanised univariate polynomials in LEGO (Luo and
Pollack, 1992). The LEGO system implements a constructive type theory,
and Bailey’s mechanisation of polynomials is constructive in most parts as
well. One consequence is that a degree function for arbitrary polynomials
cannot be defined: it might not be decidable if elements of the coefficient
domain are zero.

Bailey’s representation of polynomials is dense: they are simply lists
of coefficients. Many proofs about elementary properties, in particular of
polynomial multiplication, are much simpler than for a sparse representa-
tion. Factorial domains are not covered, but Fuclidean domains are. This
is the class of domains over which long division is possible.

Jackson (1995) verifies an implementation of multivariate polynomials,
which is based on association lists, in the prover NuPRL (Constable, 1986),
by proving that the universal property holds. This development is also
constructive and a characterisation of the universal property is used that
does not need a degree function. Much of the work is about properties of
association lists. Factorial domains are also formalised.

Both these works are not only concerned with the mechanisation of poly-
nomials, but also with general frameworks for representing algebra in type
theory.

Chapter 5

Proofs in Coding Theory

This chapter presents a case study that demonstrates the feasibility of our
approach and shows that the use of computer algebra can simplify the mech-
anisation of proofs. At the same time, the integrity of the formal system is
maintained. _

Proofs for the existence of algebraic codes have substantial computa-
tional content. For instance, the existence of Hamming codes is closely
related to the existence of certain irreducible polynomials. Such polyno-
mials can be determined efficiently by factorisation algorithms, which are
implemented in computer algebra systems.

After a brief introduction to the relevant part of coding theory, we
present two existence proofs of certain algebraic codes. These proofs are
mechanised in Isabelle and take advantage of the link with the computer
algebra library Sumit. Core parts of these proofs depend on theorems that
are generated by the computer algebra library.

5.1 Coding Theory

The following presentation of coding theory follows Hoffman et al. (1991).
The codes we are interested in for the purpose of this case study belong to
a class of binary codes with words of fixed length, so called block codes. The
n-error-detecting codes can detect n errors in the transmission of a word;
n-error-correcting codes can even correct n errors. The distance between
two codewords is the number of differing bit-positions between them. The
distance of a code is the minimum distance between any two words of that
code.

The field Fy = {0,1} is fundamental in an algebraic treatment of binary

7

78 CHAPTER 5. PROOFS IN CODING THEORY

codes, which we consider here. Codewords are represented as polynomials
in]Fg [X]

Definition 14 A code is linear if the exclusive or of two codewords is
also a codeword. It is cyclic if for every codeword ag - --a, its cyclic shift
Anag -+ n_1 is also a codeword.

Codes that are linear and cyclic can be studied using algebraic methods.
Linear codes are Fo-vector spaces. A code with 2% codewords has dimension
k, and there is a basis of codewords that span the code. It is convenient to
identify codewords with polynomials in Fa[XT:

ag: - Qp_1 <+ a0+a1X+...+an_1X”_1

The cyclic shift of a codeword a is then (X - a) rem(X™ — 1). Note also that
associated elements are equal in Fy and Fo[X] — that is,a ~b = a =b.

There is a nonzero codeword of least degree in every linear cyclic code.
This is called the generator polynomial. It is unique and its cyclic shifts
form a basis for the code. It is important, because a linear cyclic code is
fully determined by its length and its generator polynomial. The genera-
tor polynomial has the following algebraic characterisation (Hoffman et al.,
1991, Theorem 4.2.17):

Theorem 15 (Generator polynomial) There exists a cyclic linear code
of length n such that the polynomial g is the generator polynomial of that
code if and only if g divides X™ — 1.

5.1.1 Hamming Codes

Hamming codes are linear codes of distance 3 and are 1l-error-correcting.
They are perfect codes: they attain a theoretical bound limiting the number
of codewords of a code of given length and distance. For every r > 2 there
are cyclic Hamming codes of length 27 — 1.

An irreducible polynomial of degree n that does not divide X™ — 1
form € {n+1,...,2" — 2} is called primitive.! This allows us to state
the following structural theorem on cyclic Hamming codes (Hoffman et al.,
1991, Theorem 5.3.2):?

INote that the term primitive polynomial is used with a different meaning in other
areas of algebra.

2There, only the direction from right to left is stated. The other direction is not
difficult. We give a brief sketch of its proof, referring to (Hoffman et al., 1991). Hamming

5.1. CODING THEORY 79

Theorem 16 (Hamming code) There exists a cyclic Hamming code of
length 2" — 1 with generator polynomial g, if and only if g is primitive and
degg=r.

5.1.2 BCH Codes

Bose-Chaudhuri-Hocquengham (BCH) codes can be constructed according
to a required error-correcting capability. We only consider 2-error-correcting
BCH codes. These are of length 2" — 1 for » > 4 and have distance 5.

Let h be an irreducible polynomial of degree n. The residue ring obtained
from F3[X] by “computing modulo h” is a field with 2" elements. Let
F denote this field. The coefficient domain F» can be embedded into F
by mapping elements from F2 to the corresponding constant polynomials
“modulo A”. Hence this quotient construction is called field eztension. Let
a € F. The nonzero polynomial m, € Fy[X] of smallest degree, such that
m, evaluated at a is zero, is unique and called the minimal polynomial of a.
Our definition of the minimal polynomial uses two steps:

minimalgS =g € SAg#0A (Vv € S.v#0 —> degg < degv) (5.1)
min_poly h a = eg. minimal g {p | (EVAL const a p)rem h = 0} (5.2)

The predicate minimal g.S abbreviates that g is a polynomial of minimal de-
gree, but not zero, in the set .S. This cannot be formalised using a function,
because the minimal element need not be unique in general. The function
min_poly returns the minimal polynomial over Fs for an element a of the
extension field F' constructed with » € Fy[X]. Note that the quotient con-
struction of F is not carried out explicitly: elements of F' are represented
by polynomials over Fy. Hence a € F2[X]. The minimal polynomial of a
in the extension constructed with A is then the unique minimal element of
the set of solutions for p of the equation (EVAL const a p)remh = 0. The
embedding const is needed to lift the coefficients of p to F2[X]. The equality
is evaluated modulo A by means of the remainder function rem associated
with polynomial division.

An element a of a field F is primitive if a’ = 1 is equivalent to i = [F|—1
or ¢ = 0. Let G be an extension field of Fy with 2" elements and b € G a

codes of length 2" — 1 have parity-check matrices whose 2" — 1 rows consist of all nonzero
vectors of length 7 (Section 3.3). The rows of the parity-check matrix of a cyclic code of
length n with generator polynomial g of degree r correspond to the polynomials
X'remg (i = 1,...,2" — 1) (remark on page 110). A cyclic Hamming code of length
2" — 1 has dimension 2" — r — 1, hence the degree of its generator polynomial g is r. As
the X*rem g are all distinct, g must be a primitive polynomial (remark on page 124).

80 CHAPTER 5. PROOFS IN CODING THEORY

primitive element. BCH codes are defined by choosing suitable generator
polynomials. The generator polynomial of the BCH code of length 2" —1 is
Mp - M3,

If we describe the field extension in terms of a primitive polynomial h,
then X corresponds to a primitive element. The minimal polynomial of X
is h, because h is irreducible. Therefore we can define BCH codes as follows:

Definition 17 Let h € F3[X] be a primitive polynomial of degree r. The
code of length 2" — 1 generated by h - min_poly h X3 is called a BCH code.

5.2 Formalising Coding Theory

Properties of codes are formalised with the following predicates. Codewords
are polynomials over Fs and codes are sets of them. The statement codenC
means C is a code of length n. The definitions of linear and cyclic are
straightforward while generatorn g C states that g is generator polynomial
of the code C of length n.

coden C = VeeC.degz <n
linear C = VeeCVyeC.z+yeC
cyclicn C = VzeeC. (X -z)rem(X"—-1) e C

generatorn g C coden C A linear C A cyclicn C' A minimalg C

5.2.1 The Hamming Code Proofs

We now describe our first application of the interface between Isabelle and
Sumit. It is used to prove which Hamming codes of a certain length exist.
Restricting the proof to a certain length allows us to make use of compu-
tational results obtained by the computer algebra system. The predicate
Hamming describes which codes are Hamming codes of a certain length.
Theorems 15 and 16 are required and formalised as follows:

0 <n — (3C.generatorngC) =g | X" — 1 (5.3)
(3C. generator(2" — 1) g C AHammingr C) = (deg g = r A primitive g)
(5.4)

These equations are asserted as axioms and are the starting point of the
proof that follows. Note that (5.4) axiomatises the predicate Hamming.
The generators of Hamming codes are the primitive polynomials of degree
2" —1. The primitive polynomials of degree 4 are X4+ X3+1 and X*+X +1.
Thus for codes of length 15 we prove '

(3C. generator 15 g C A Hammingr C) = (g € {X*+ X3 + 1, X* + X +1}).

5.2. FORMALISING CODING THEORY : 81

We now give a sketch of this proof, which is formally carried out in Isa-
belle. The proof idea for the direction from left to right is that we obtain
all irreducible factors of a polynomial by computing its factorisation. The
generator g is irreducible by (5.4) and a divisor of X5 — 1 by (5.3). The
factorisation of X5 — 1 is computed using Berlekamp’s algorithm:

Factorisation(X™® — 1) [X* + X3+ 1, X +1, X2+ X +1,
X4+ X34+ X2+ X +1, X4+ X +1]1

All the irreducible divisors of X — 1 are in this list. This follows from
(4.2). Since associates are equal in F2[X] we have the stronger version

irred ¢ A Factorisationz FuAc|z =>c€ F.

It follows in particular that the generator polynomials are in the list above.
But some polynomials in that list cannot be generators: X+1 and X2+ X +1
do not have degree 4 and X% + X% + X2 + X 41 divides X® — 1 and hence
is not primitive. The only possible generators are thus X4 + X% + 1 and
X'+ X +1. :

It remains to show that these are indeed generator polynomials of Ham-

. ming codes. This is the direction from right to left. According to (5.4)

we need to show that X4 + X3 + 1 and X4+ X + 1 are primitive and
have degree 4. The proof is the same for both polynomials. Let p be one
of these. The irreducibility of p is proved by computing the factorisation,
which is Factorisation p[p] 1, and follows from the definition of Factorisation,
equation (4.1).3

The divisibility condition of primitiveness is shown by verifying p t X™ —
lform=35,...,14. a

5.2.2 The BCH Code Proofs
The predicate BCH is, in line with Definition 17, defined as follows:

BCHr C = (3h.primitiveh Adegh =1 A

5.5
generator(2” — 1) (h - min_poly h X3) O) (5:5)

30ne might argue that using a factorisation algorithm to do a mere irreducibility
test is like cracking a walnut with a sledgehammer. In fact, Berlekamp’s algorithm first
determines the number of irreducible factors and then computes them. So, in case of
an irreducible polynomial, the algorithm stops after determining that there is only one
factor. In the first part of the proof, the use of Berlekamp’s algorithm reduces the number
of possible candidates for generators dramatically. Brute force testing of polynomials of
degree 7 is not feasible: their number increases exponentially with .

82 CHAPTER 5. PROOFS IN CODING THEORY

We prove that X8 + X7+ X%+ X4+ 1 is generator of a BCH code of length
15. This polynomial divides X1° —1 and by Theorem 15 is generates a cyclic
linear code of length 15. In order to show that this code is a BCH code it is
sufficient to show:

generator 15 (X + X" + X% + X* +1) C = BCH4C (5.6)

Here is the outline of the proof: X8 4+ X7 + X® + X% + 1 is the product
of the primitive polynomial X* + X + 1 and the minimal polynomial X 44
X3+ X2+ X + 1. According to the definition (5.5) we need to show that
the former polynomial is primitive. This has been described in the second
part of the Hamming proof. Secondly, we need to show that the latter is a
minimal polynomial:

minpoly(X4 + X + 1) X3 =X*+ X3+ X2+ X +1

In order to prove this statement, we need to show that X*+ X3+ X2+ X +1
is a solution of

(EVAL const X3 p)rem (X*+X +1) =0 (5.7)
of minimal degree, and that it is the only minimal solution.

e Minimal solution: We substitute X*+ X+ X2+ X +1 for p in (5.7).
The embedding const is a homomorphism, and so also EVAL const X 3.
The left argument of the remainder is simplified using the properties
of the evaluation homomorphism (4.7) to (4.9), and the remainder-
operation is then evaluated by Sumit to 0. Hence X*+ X3+ X2+ X +1
is a solution of the equation.

Assuming degp < 3, we get by the representation theorem for poly-
nomials (4.6) that p = pg + p1.X + p2 X2 + p3 X for py,... ,ps € Fa.
We substitute this representation of p in (5.7) and obtain, after sim-
plification,

po+ 1 X3+ po(X2+ X3) + p3(X + X%) =0.

Comparing coefficients leads to a linear equation system, which we can
solve using the Gaussian algorithm. The only solution is pg = --- =
p3 = 0, so p = 0. This does not meet the definition of minimal. Hence
degp > 4 and X* + X%+ X2 + X +1 is a solution of minimal degree.

5.3. REVIEW OF THE DEVELOPMENT 83

e Uniqueness: We need to show that X* + X3 + X2 4+ X + 1 is the only
polynomial of smallest degree satisfying (5.5). We study the solutions
of (5.7) of degree of < 4 by setting p = pg + ... + psX* and obtain
another equation system

po+ P X2+ (X2 + X3 +p3(X + X +ps(1+ X + X2+ X% =0.

The theorem for the solution space of this equation system, again
computed by the Gaussian algorithm, is

(Po+p1 X3 +p2a(X3+ X)) +p3 (X3 4+ X))+ pa(X3+ X2+ X +1) = 0)
=(GFtp=t;(X*+ X3+ X2+ X +1)).

The set of solutions is therefore {0, X% + X3 + X2 + X 4+ 1}. The
definition of minimality excludes p = 0. So there are indeed no other
solutions of minimal degree. O

5.3 Review of the Development

In the development of algebra that was presented in Chapter 4, all facts
have been derived from the definitions. In the development of coding theory,
general facts about Hamming and BCH codes, in particular Theorems 15
and 16, have been asserted as axioms: our interest lies in the proofs that are
discussed in Section 5.2. These proofs have been mechanised. Some facts
that are not proved in the formalisation of algebra have also been asserted
as axioms. These are the properties

c#0 = (a+b)remc=aremc+ bremc
b#0 = (rza)remb=r;(aremb)

of the remainder function rem, and the fact that F2[X] is a factorial domain.

Besides the mechanisation of the proofs, a server was implemented on top
of Sumit that connects to the interface to Isabelle. It provides translation
functions and theorem templates. The correspondence between types in
Isabelle and Sumit is shown in Table 5.1.

Build- and eval-functions are provided to translate between the types,
as described in Section 3.3.3. Note that the type bool is used in the binary
representation of natural numbers. The eval-function that maps objects
from bool to Boolean is only used by the eval-function for natural numbers,
no attempt is made to evaluate arbitrary logical formulae.

84 .CHAPTER 5. PROOFS IN CODING THEORY

Isabelle Sumit

bool Boolean
nat Integer
bool SmallPrimeField 2

bool up SparseUnivariatePolynomial SmallPrimeField 2
Table 5.1: Correspondence of types between Isabelle and Sumit

The server provides services to compute normal forms for expressions
that do not contain variables in the domains N, Fy and Fo[X]. These services
take a term t of the appropriate type as argument and return a theorem of
the form ¢t = ¢/, where ¢ is the normal form of ¢. '

Other services decide equality, inequality and divisibility of these do-
mains. They accept terms of the form a®b, where @ is one of the connectives
=, <, < and |. Either a ® b = True or a ® b = False is returned.

The main contributions of computer algebra to the proofs are factori-
sation and Gaussian elimination. Services and theorem templates for these
are presented in the following sections.

5.3.1 Factorisation

The service F2PolyFact computes factorisations of polynomials in Fa[X].
Sumit’s factorisation algorithms for fields of prime cardinality reside in the
module

PrimeFieldUnivariateFactorizer
F: PrimeFieldCategory,
P: UnivariatePolynomialCategory F)

where the parameter F is an implementation of a field of prime cardinality,*
and P is an implementation of univariate polynomials over that field. The
module provides, amongst other functions,

berlekamp : P -> List P
factor : (P ->List P) -> P -> (F, Product P)

berlekamp p decomposes p into irreducible factors and returns them as
a list. The argument must be a square-free and monic polynomial.

*For reasons of efficiency, Sumit distinguishes implementations where the prime p can
be stored in a machine word, is an arbitrary precision integer and p = 2% 1.

5.3. REVIEW OF THE DEVELOPMENT 85

Monic means that its leading coefficient is one. The decomposition
into square-free factors can be obtained relatively easily, and is a pre-
requisite for most factorisation algorithms. It is implemented in the
function factor. The function berlekamp is Sumit’s implementation
of Berlekamp’s algorithm.

factor algorithm p factors an arbitrary nonzero polynomial p. It decom-
poses p into square-free, monic polynomials and factors them into
irreducible ones, using algorithm.® It returns the leading coefficient of
p and all the irreducible factors. Product P is a type for multi-sets,
but also provides an operation to obtain the product of all the factors
that are in it. Leading coefficiént and the product give the complete
factorisation of p.

The service F2PolyFact takes a single polynomial z, converts it to
Sumit’s representation, factors it using factor with berlekamp as first argu-
ment and obtains a coefficient u and a product of irreducible factors P. The
coefficient is lifted to the corresponding constant polynomial, and this and
the factors in P are converted back to A-terms. These are then assembled
to the theorem

Factorisation z [z1, ... ,zg] u,

where [z1,...,zg] is the list of factors in P. In Fo[X] the polynomial u is,
of course, 1. Also in other fields, nonzero constant polynomials are the units
of the corresponding polynomial domain.

5.3.2 Gaussian Elimination

The service F2Gauss provides an interface to Gaussian elimination. It solves
homogeneous linear equation systems over Fy. The service accepts a list
of polynomials [ag,- - ,a,] over Fo. These polynomials correspond to the
column vectors of the matrix (ag|---|a,). The service determines the size
of the matrix, which is (max} , dega; + 1) x (n+ 1), and translates the list
of polynomials into a matrix. Sumit’s module

LinearAlgebra(
R: IntegralDomain,
M: MatrixCategoryO R,
E: EliminationCategory(R, M))

®Sumit also implements Cantor-Zassenhaus factorisation, which could be used here
instead of Berlekamp’s algorithm.

86 CHAPTER 5. PROOFS IN CODING THEORY

provides operations for matrices. The parameter R is an integral domain, M
an implementation of matrices instantiated by R, and E provides an imple-
mentation of linear elimination. Different variants of Gaussian elimination
can be used depending on whether R is an integral domain, a Euclidean
domain or a field. We use ordinary Gaussian elimination. Sumit provides
its implementation in the module OrdinaryGaussElimination. In order to
solve the equation system A -z = 0, the function

nullspace: M -> List Vector R

from the module LinearAlgebra is used. It returns a base [vi, ... ,vg] of the
solution space of A-z = 0. The vectors v; are converted back to polynomials
and the theorem

n
(E(coeffiw)gai=0> = (Fty---tpz=t1zv1+...+tgzvr) (5.8)
=0 .

or (zn:(coeffiw)s-ai=0> = (z=0), ifk=0.

=0

is generated from the a; and the v; by a theorem template. The %; are
variables in Fy and the coeff iz are fields of the vector &, which is represented
by a polynomial. This example shows also that great flexibility is needed
for theorem templates.

5.3.3 Feasibility of Proof Reconstruction

Mechanising the proofs in a system that integrates the computer algebra
component without trusting it would require the user to prove the theo-
rems generated by the theorem templates formally. This holds in particular
for Harrison (1996, chapter 6) and Kerber et al. (1996), who try to recon-
struct the proofs using the result of the computation and possibly further
information that resembles a trace for the computation.

In the case of Gaussian elimination, checking that a vector is a solution
to the equation system is simpler than computing the solution space. This
is the direction from right to left in (5.8). However, in the proof of the
theorem on BCH codes (5.6), uniqueness and minimality of the polynomial
X%+ X34+ X% 4+ X + 1 depend on knowing the complete solution space.
This is the direction from left to right. The completeness of the solution
space is guaranteed because all transformations of the matrix performed by
Gaussian elimination are equivalence transformations. Gaussian elimination

5.3. REVIEW OF THE DEVELOPMENT 87

reduces the matrix to triangular form in a number of elimination steps.
Reconstructing a proof for the computation essentially means to re-execute
it in the prover’s calculus. Only code for the selection of the pivots could
be omitted if they were recorded in a suitable trace. Note that the template
(5.8) is not the full specification of Gaussian elimination: the information
that the v; are linearly independent has been omitted.

The main property of Berlekamp’s algorithm is not that it returns fac-
tors, but that these factors are irreducible. We have exploited this in the
proof about Hamming codes. Berlekamp’s algorithm is based on a proof that
these factors are indeed irreducible (see Geddes et al., 1992, Section 8.4).
Let a € Fy[X] be a square-free polynomial, where ¢ = p”, p prime. The
algorithm first computes the number of factors and then determines them.
The algorithm constructs a subspace W of the residue ring F,[X]/(a), which
is a vector space. The dimension of W is the number of irreducible factors
of a. It is obtained by computing a basis for W. Again, the proof, which is
constructed by Berlekamp’s algorithm, cannot be reconstructed in a simpler
manner easily.

These arguments support the claim that proof reconstruction would es-
sentially require recalculating the results in the prover. This would also have
required the formalisation of a substantial part of linear algebra and ideal
theory. The arguments are, of course, intuitive and not rigorous in a proof-
theoretic sense. The sequence of elimination steps computed by Gaussian
elimination is not necessarily optimal. It is likely that shorter sequences of
elimination steps or ones with smaller intermediate terms exist that lead to
the reconstruction of shorter proofs. But Gaussian elimination is practical.
An algorithm that computes the optimal sequence of elimination steps, and
that could return an optimal certificate for the reconstruction of a proof,
is likely to be much less efficient than Gaussian elimination. Also we do
not claim that efficient certificates for irreducibility do not exist — so far,
work in computer algebra was mostly concerned with finding all the factors
of a given polynomial, and to the knowledge of the author it is not known
whether certificates for irreducibility do exist or not and whether they can
be computed efficiently.5 But this does not make any difference to our ap-
proach to interfacing computer algebra to provers. It is pragmatic and aims
at using algorithms from computer algebra, not designing new ones. Still,
this work might stimulate such design in the computer algebra community.

®Davenport appears to have written a paper on this topic recently, but despite some
effort the author was neither able to obtain a copy nor a draft of it.

88 CHAPTER 5. PROOFS IN CODING THEORY

5.3.4 Automating the Use of Computer Algebra in Proofs

The function thm_service, which provides the link to the computer algebra
library (see Section 3.3.1), can be called directly in proof scripts. This is
only done on rare occasions in proof scripts, once in the Hamming code
proof to obtain the factorisation of X'® — 1, and twice in the proofs about
BCH codes to solve linear equation systems. '

Often it is more convenient to use tactics that extract the argument
for the computation directly from the proof state. Two tactics that prove
irreducibility and primitiveness of polynomials are provided. These tactics
can solve subgoals of the form irredp and primitivep, respectively. The
proof of irreducibility using the factorisation algorithm has been outlined in
Section 5.2.1. The term p is extracted from the proof state. If it is of the
correct type and does not contain variables; it is passed to Sumit and reduced
to normal form p’. This yields the theorem p = p’. Then the factorisation
of p' is computed. If this results in the theorem Factorisationp’ [p'] 1, then
irreducibility follows from the definition of Factorisation (4.1) and is proved.
Otherwise the tactic fails.” Similarly, primitiveness is proved by first showing
that the polynomial is irreducible and then establishing that it does not
divide X™ — 1 for any m € {n+1,...,2" — 2}. This is done by calling the
appropriate service of Sumit for m = n +1,...,2" — 2. Again, the tactic
fails if primitiveness cannot be proved.

Isabelle’s simplifier can be extended by simplification procedures. These
are functions that map terms that match a specified pattern to rewrite rules.
During a rewrite, when the pattern matches the current redex, the procedure
is invoked. If the simplification procedure is successful, it returns a rewrite
rule that is then applied by the simplifier to rewrite the redex. Simplification
procedures have been introduced as conversions by Paulson (1983). They
are useful to automate the invocation of the computer algebra library to
compute normal forms of expressions, although one has to be careful not to
make this inefficient. The simplifier uses a bottom-up strategy to analyse
expressions. When simplifying the expression (X*+ X?)-(X3+X) (€ Z[X])
it is not desirable to first reduce X*+ X2 to X2+ X* and X3+ X to X + X3
and then (X2 4+ X%) - (X + X®) to X3 + 2X5 + X7, because the cost of
communicating with the computer algebra system is significant. Instead,
one would want to pass the whole term to the computer algebra system
only once. It turns out that choosing only functions whose result types are
different from their argument types is a good heuristic. Only expressions

"In F2[X] the element 1 is the only unit. Over other domains a slightly more sophisti-
cated argument is required to prove the irreducibility of 2X — 2, say.

5.3. REVIEW OF THE DEVELOPMENT 89

that match the patterns degp, m = n, m < n, m < n, coeffnp, a = b,
consta, p = q and p | ¢q are simplified by default in our setup of Isabelle’s
simplifier. Here m,n € N, a € F; and p,q € Fo[X]. Other expressions can
be simplified in particular invocations of the simplifier, if required.

The tactics for irreducibility and primitiveness can also be used as simpli-
fication procedures. Because Isabelle’s rewriter is integrated with its clas-
sical reasoner, these procedures can prove the last part of Section 5.2.1,
namely the subgoal '

(3C. generator 15 g C A Hamming4 C) = (degg = 4 A primitiveg) A
ge{X*+ X3+ 1, X+ X +1}
== (3C. generator 15 g C A Hamming4 C)

automatically. Unfortunately, this is not very efficient, because Sumit is
invoked with too many computations that are not used in the final proof.
The computation time is 92 seconds, where 40 seconds are consumed by
Isabelle and 52 seconds by the server Sumit. Therefore, we use a longer
proof script, using 5 steps to prove this particular subgoal. To run the proof
script for the entire Hamming code proof takes only 40 (21+19) seconds.

5.3.5 Implementation Effort

Table 5.2 gives an overview on the implementation effort for the whole
project: implementation of the interface, mechanisation of algebraic back-
ground and the proofs in coding theory. The figures are, however, mislead-
ing in so far that developing proof scripts is much harder than ordinary
programming.

Isabelle Sumit
Interface 23.7 | Interface 43.3
Formalisation of algebra 61.8 | Translation functions and
Coding theory proofs 14.6 theorem templates 204

Table 5.2: Size of the development (code sizes in 1000 bytes)

The interface of Sumit is considerably larger, because the data-type
IsabelleTerm for A-terms and the server functionality are provided as well.
The entry “Coding theory proofs” includes the implementation of the proof
procedures for irreducibility and primitiveness of polynomials. In contrast,
for example, the size of Sumit’s factoriser of polynomials over finite fields,

90 CHAPTER 5. PROOFS IN CODING THEORY

which was used in these proofs, is 38 200 bytes of source code, not including
code for the underlying data-structures.

Proof Scripts Steps Lines of Code

Hamming proofs 1 35 46
BCH proofs 2 59 90

Table 5.3: Size of proof scripts

The sizes of the proof scripts for the proofs described in detail in Sec-
tions 5.2.1 and 5.2.2 are given in Table 5.3. The BCH proof is split in two
parts. “Steps” is the number of manual invocations of tactics.

_ Isabelle Sumit Total
Hamming proofs 21 19 40
BCH proofs 31 21 52

Table 5.4: Execution time of proof scripts (in seconds)

Execution times for the coding theory proofs are shown in Table 5.4.
Times were taken on a SPARCstation-10 with 224 MBytes of main memory.
Communication between Isabelle and Sumit is slow, because A-terms are
converted to strings for data-transport and need to be parsed by the receiver.
No effort has been made to optimise the communication.

Chapter 6

Semantics of Symbols

In Section 2.1 we have presented a classification of soundness-problems in
computer algebra systems. While the coupling of incompatible algorithms
can be seen as a problem of software-engineering, and mathematical research
is necessary to replace ad hoc algorithms by sound ones, the specialisation
problem reveals limitations in the design of computer algebra systems them-
selves: their treatment of symbols is not flexible enough. Not only may this
lead to the misinterpretation of results by a user who is not an expert, it also
imposes restrictions on the integration of algorithms in the system. Another
view of ad hoc algorithms is that they have been designed so that they could
easily be integrated into the restricted framework of a computer algebra, sys-
tem, rather than solving the mathematical problem in a sound way. This
has certainly been the case for simplification algorithms that were erroneous
because they did not distinguish whether the domain of computation were
real or complex numbers (Aslaksen, 1996), and this is also the source of
erroneous algorithms for definite integration (Adams et al., 1999).

6.1 Symbolic Gaussian Elimination

An example of a simple algorithm where the specialisation problem occurs is
Gaussian elimination over equation systems with symbolic coefficients. The
use of the Gaussian algorithm over rational functions, which are fractions
of polynomials, for linear equation systems with symbolic parameters was
proposed by Lipson (1969) and has become standard in computer algebra.
To illustrate the effect of the specialisation problem, consider the following
parametric equation system, which is taken from the textbook on linear

91

92 CHAPTER 6. SEMANTICS OF SYMBOLS

algebra by Noble and Daniel (1988, p. 136). It is given as augmented matriz

1 -2 3 |1
2t 6 |6
-1 3 t-3]|0

where a row represents one equation — for example, z —2-y+3-2 = 1.
The parameter is ¢, but this could be a different symbolic expression, like
sinu. The Gaussian algorithm computes essentially a reduced row echelon
form. Most computer algebra systems return

10 0|8
4
0 1 045
00 1|z
It is immediate that ¢ = —4 is a special case. There is another special

case t = 0, which is not obvious from the result, but can be found when
inspecting the internal workings of the algorithm. For t = 0 and £ = —4 the
reduced row echelon forms are

1 0 33 1 0 —-510
01 0|1 and 01 —410
0 0 00 00 0|1

respectively, and the sets of solutions differ from the general case. This
problem is well-known: the exercise in the textbook was designed to point it
out to students. Of course, the Gaussian algorithm is correct. The difficulty
arises because most computer algebra systems do not report for which special
cases the solution is not valid.

6.2 A Formal View of the Specialisation Problem

The specialisation problem is known in the computer algebra community,
but rarely receives attention in publications, possibly because there is no
mathematical difficulty to it. Nevertheless, the problem needs to be ad-
dressed. Parameters in general are variables and as such logical entities.
An appropriate view of symbolic Gaussian elimination, which follows the
suggestion of Lipson (1969), is to regard the parameters as indeterminates.
Thus the algorithm operates over a polynomial extension R[X] of the prob-
lem domain R. The Gaussian algorithm is known to be correct over this
extension.

6.2. A FORMAL VIEW OF THE SPECIALISATION PROBLEM 93

6.2.1 Fraction Fields

The evaluation homomorphism describes the relation between polynomials
and variables formally. Divisions occur in the Gaussian algorithm, and there-
fore, evaluation needs to be lifted over fractions of polynomials. These are
often called rational functions. This is misleading. Formally, the function

g:z— %{jllﬁ is not a rational function. Rational functions are obtained
by constructing the fraction field of a ring of polynomials. A fraction field
FF(R) can be constructed over any integral domain R.

The relation ~ defined by (a,b) ~ (¢,d) <= a-d = b-c is an equivalence
relation over R x (R \ {0}). The induced equivalence classes are called
fractions. One writes §, where (a, b) is a representative of the class. Addition
and multiplication are defined in the usual way:

c a-d+b-c a c a-c

d- " b-d and 77 = 375

o

Note that these definitions are independent of the chosen representatives.
The set of equivalence classes is the fraction field FF(R). It is indeed a field,
because any element § with a # 0 has the inverse g. The domain of rational
functions FF(R[X]) is usually abbreviated to R(X).

6.2.2 Evaluation of Rational Functions

How are g : = +— wz 1)1 and LrL € R(X) related? The evaluation
homomorphism for polynomlals can be hfted to rational functions. Let
®, = EVAL ¢ a where ¢ is the identity function on R, a € R and EVAL as
defined in Section 4.3.4. The function @, is the homomorphism evaluating

a polynomial at a. For p,q € R[X| one would like to define & (e) = aq—g,

but this depends upon the representative for the fra,ctlon I @a() #0

then 22(2) i5 defined. Although (p,q) and (p- (X —a),q- (X a)) are in the

®a(9)
same equivalence class, %ﬂ%ﬁg is not defined. The following definition

avoids this problem.

Definition 18 For a € R the evaluation homomorphism for rational func-
tions is

®4(p)
@4(q)

where f € R(X). If polynomials p and q do not exist then ®,(f) is undefined.

@a(f) =

,for p,q € R[X] such that f = g and ®,(q) # 0,

94 CHAPTER 6. SEMANTICS OF SYMBOLS

This definition is independent of the chosen polynomials p and ¢. The usual
notation for ®,(f) is f(a) for both polynomials and rational functions.

Let f = ()Jg;—_lf The objects f(a) = ®,(f) and g(a) are different because
for a = 1 the evaluation of the rational function f(a) is 0, while g(a) is not

defined.

6.3 The Gaussian Algorithm

Solutions obtained by the Gaussian algorithm are not necessarily valid for
arbitrary substitutions of parameters. As the exceptional cases are not al-
ways visible from the solution of the system, the internal workings of the
algorithm need to be examined. The following is an exposition of the algo-
rithm and its correctness proof. We will focus on a variant of the Gaussian
algorithm, but first introduce the general scheme.

6.3.1 Gaussian Elimination in General

All variants of the algorithm solve a linear equation system A -z = b, where
A is an m X n-matrix over R and b a vector. R must be an integral domain.
The solution of the homogeneous system A -z = 0 is a d-dimensional vector
space Shom = {(v1,... ,vq) over FF(R). For d = 0 the space of solutions is
{0}. If the inhomogeneous system A -z = b is solvable, only one particular
solution v, needs to be obtained in addition to the homogeneous solution.
The solution space is Spart = vp + (v1,... ,vg).

In the first step, the Gaussian algorithm transforms the augmented ma-
trix (A]b) by applying a sequence of row transformations. Each row trans-
formation is one of the following:

e Exchanging two equations,

e Multiplying an equation with ¢ # 0 and

e Adding a multiple of an equation to another equation.
Row operations do not change the set of solutions of the equation system
and are thus equivalence transformations. Note that this requires that the

computation be carried out in an integral domain. Row transformations are
applied until a matrix in row echelon form is obtained. The row echelon

6.3. THE GAUSSIAN ALGORITHM 95

form of the augmented matrix is (A’|d’) and has the following shape:

{ 0 ... 0 a’ljl al, | b \
0 e 0 a’zj2 abh, | b
0 0 ay ... am| b
) 0 |4
A0 e o |)

The a;;, are nonzero and are called the stairs. If all the entries in the columns
above the stairs are zeros and the stairs themselves are ones, the matrix is
in reduced row echelon form.

In order to arrive at a row echelon form, row transformations have to be
applied in a suitable manner. There are several possibilities to guarantee
termination of this process. They are applied in different variants of the
Gaussian algorithm.

In the homogeneous case, the equation system represented by the row
echelon form can be solved sequentially for decreasing row index, starting
with row r.

e Variables z; that do not correspond to stairs (that is, I # j; for i =
1,...,7) can be chosen arbitrarily. Let

z =7 (6.1)
for parameters 7, € FF(R).
e For [=r,...,1 the linear equation
ay;, - T, + a’;,.’iH-l “Tjp1+ ...+ Ay Tp =0 (6.2)
is equivalent to

1
Tj = —a,— . (a;,j,_l_l *Tj4+1+ ...+ afn . .’Dn). (63)
L
The zj,41,... ,Zn are already known at this stage. Hence equation
(6.3) gives the solution for ;.

By rearranging equations (6.1) and (6.3) one obtains the solution as a linear
combination of vectors, which are denoted by v;, with factors 7. Renum-
bering the indices from 1 to d = n — r, one obtains A’ - z = 0, if and only if

96 CHAPTER 6. SEMANTICS OF SYMBOLS

z € (v1,...,v4). The process of sequentially solving the equation system is
known as back-substitution.

Solutions to the inhomogeneous system exist if and only if b, |; = ... =
b, = 0. A particular solution z;, is obtained by a similar back-substitution
process:

e The z; that do not correspond to stairs can be chosen arbitrarily. As
only one solution is required, let z; = 0.

e Forl=r,...,1 set
R 1 bl 1 . 3)
Tj = = (b — Opg4+1 " T4+l — - A, * Tn)-
W5
Then vp = (21,... ,2,) is a particular solution.

6.3.2 Fraction Free Gaussian Elimination

This variant of Gaussian elimination has been described by Bareiss (1968),
see also Geddes et al. (1992). Its advantage is that no fractions are intro-
duced during row transformations and back-substitution (with exception of
the particular solution), while, at the same time, the entries of the matrix are
kept small and so the problem of intermediate expression swell is reduced.
This algorithm is important in computer algebra, because for equation sys-
tems over polynomial domains, gcd-computations for the cancellation of
fractions can be avoided. The entries of the matrix must be from an inte-
gral domain R. While the computed vectors that span the solution space of
the homogeneous system are over R, the particular solution and the solution
space are, of course, still over FF(R).

The row transformations of fraction-free Gaussian elimination are usu-
ally described by the following update-formula:

Géj = (a;cjk 'a;j - a;s;j ’ a;jk)/a’;ﬁ:—l,jk_l (6.4)

For increasing k the update is performed for ¢ = k+1,...,m and introduces
zeros in column j; below the pivot a}cjk. At the beginning, one sets a;; = aj;.
Note that entries of the row echelon form that are computed by (6.4) are
not changed in the sequel. Row exchanges may be necessary to select a
nonzero pivot. The algorithm terminates when no more nonzero pivots are
available: the remaining rows contain only zeros. One sets a{)jo =1, no
division is performed in the first iteration. Bareiss (1968) shows that the

6.4. LIFTING THE ALGORITHM TO THE PARAMETRIC CASE 97

division never produces fractions. Therefore, row transformations can be
carried out over R and the row echelon form is a matrix over R.

Vectors spanning the solution space of the homogeneous system, and
that are over R, are obtained by modifying back-substitution. Equation
(6.1) is replaced by

l
z; = Haéji - 7. (6.5)
=1

Back-substitution for the particular solution remains unchanged. This solu-
tion is a vector over FF(R) in general.

6.4 Lifting the Algorithm to the Parametric Case

In the following, let Mg (m,n) denote the set of m X n-matrices with entries
from R and R" the set of row and column vectors of length n with entries
from R. For matrices and vectors over polynomials and polynomial functions
we write A(t),b(t) etc. for the element-wise application of the evaluation
homomorphism ®;.

We now analyse for which substitutions of the indeterminate the solution
of an equation system solved over R(X) and obtained by fraction-free Gaus-
sian elimination is also valid over FF(R). More precisely, let A -z = b be
an equation system where A € Mpg(xj(m,n) and b € R[X]™. The algorithm
returns vy,... ,vg € R[X]" and v, € R(X)" such that

VieR(X)"A-z=b < zE€vp+ (v1,...,74)-

For which ¢ € FF(R) do these vectors span the solution space of the corre-
sponding system over FF(R)? Formally

Vz € FF(R)". A(t) -z = b(t) < = € vp(t) + (v1(t),--. ,va(t))

In the first phase, the algorithm computes a row echelon form that rep-
resents an equivalent equation system. Row transformations correspond to
left-multiplying the augmented matrix with certain transformation matrices.
Let F' be the product of all these transformation matrices. The equation
system corresponding to the row echelon form is F'- A-z = F'-b and is equiv-
alent to the original system if and only if det F' # 0. The restrictions on row
transformations given in Section 6.3.1 ensure this. Similarly, A(t) - z = b(¢)
is equivalent to F'(t) - A(t) -z = F(t) - b(t) if det F(¢) # 0.

98 CHAPTER 6. SEMANTICS OF SYMBOLS

For fraction-free Gaussian elimination, the update-formula (6.4) corre-
sponds to the transformation matrix

!
(ak_]-:jk-—l
1
Foo_ L U1,y
LY, —al .. a. ’
k_lyjk—l k+17.7k k]k
! 1
\ ~jy Ny

where a{)jo = 1. Row exchanges correspond to permutation matrices. These
matrices commute with other matrices, and their determinants are one.
Therefore, F = F, - ...- F; - P, where P is the product of the permuta-
tion matrices. The F}, are lower-triangular matrices and

’ m—k
Ckji
det Fy = | —2— .
ak_l;jk—l

;! m-—-r
TIr

It follows that
detF = alljl Tt a{,._l’jr_l *a

The equation system represented by the row echelon form is equivalent to the
original system for substitutions ¢ of the indeterminate with det F'(t) # 0.
Note that a;; € R[X], because they are entries in the row echelon form.
For the analysis of back-substitution, consider first a single equation
a-z=>bforabe R(X). Ifa# 0 then z = % is the only solution. The

corresponding system over FF(R) is a(t) - z = b(¢).
e Ifa(t) #0 then z = % is equivalent and %((% is the only solution.

e Otherwise the solution space depends on b(t). If b(t) = 0 the solution
space is FF(R), otherwise it is empty.

If ap;, (t) # 0 for all k the matrix A'(t) is in row echelon form. Then
back-substitution can be lifted to the parametric case. The variables z; that
do not correspond to stairs have the same indices as in the polynomial case.
They can be chosen arbitrarily. By choosing z; =]_[2:1 a;j, (t)-m for parame-
ters 7; € FF(R) the whole solution space is covered because Hé:l agji (t) # 0.

For ay; (t) #0 (I =1,...,r) the equation

a,éjl (t) * Tjy + a;,jl‘*‘l(t) * Tjp4+1 + ...+ a;n(t) cTp — 0

6.5. PRACTICAL IMPLICATIONS 99

is equivalent to

1

N
LN

(a1 g1 () - Tjpg1 + .+ @ (2) -)
and so

Alt)-z2=0 < z € (v(t),...,v4(t)).

Assume now that A'(t) is in row echelon form. A particular solution ex-
ists if b, ; (t) = ... = b}, (¢) = 0. Analogous to the homogeneous case, lifting
back-substitution poses no further problems. Variables not corresponding to
stairs can be chosen arbitrarily, and the solution of the polynomial case can
be lifted to the parametric case. That is, vp(t) is a solution of A'(t)-z = b/(t).

We have proved

Theorem 19 Let A € Mpx)(m,n) and b € R[X]|™. Let (A'|b)) be the row
echelon form obtained by fraction free Gaussian elimination. Let agji denote
the stairs of A' (1 =1,...7) and b} denote the entries of b. Let vy,... ,vq be
vectors obtained by this aljorithm for the homogeneous solution and v, the
particular solution.

Let p=1Ii_ a};, and ¢ =[[iZ, 1 b;. If p(t) # 0 then (vi(t),...va(t)) is
the solution space of the homogeneous equation system A(t) -z = 0.

In this case, the solution space of the inhomogeneous system A(t) -z =
b(t) is as follows. If g(t) = 0 then the solution space is

vp(t) + (v1(t), ... ,va(?)),
otherwise, the solution space is empty.

Note that vp can be computed even if no particular solution exists. The
theorem only covers equation systems with one parameter. Lifting it to
several parameters is straightforward.

6.5 Practical Implications

Theorem 19 imposes a condition on the parameters for which the results of
the Gaussian algorithm can be used safely. The condition can be obtained
by a minor extension of the algorithm: some intermediate results need to
be returned.

Returning a condition for the correctness of the solution is more prac-
tical than interactively querying the user (see Section 2.1.2). An algorithm

100 CHAPTER 6. SEMANTICS OF SYMBOLS

using the Gaussian algorithm can be designed to analyse the condition in an
appropriate way if knowledge about the parameters is available. Otherwise
suitable conditions should be passed on.

Solutions for parameters ¢ with p(t) = 0 can be obtained by solving A(t)-
x = b(t). A sequence of calls to Gaussian elimination over different domains
may be necessary to resolve various special cases, or if the equation system
has several parameters. A complete analysis of the parameter space leads
to a system of solutions that can be represented as a tree with conditions
on the parameter space as nodes and solutions as leaves.

6.6 A Theorem Template for the Correct Result

For an integration of parametric Gaussian elimination with a prover, it does
not seem sensible to solve the equation system for all special cases automat-
ically. This might be expensive to do and furthermore not even necessary, if
some cases are not relevant for the application. Instead we only report the

precondition. This leads to the theorem template
2

Vt.p(t) # 0 =
(q(t) = 0= (Vz. A(t) - z = b(t) <=
z € vp(t) + (vi(t), ... ,va(t))))A
(q(t) # 0 = ~(3z. A(t) - = = b(¢)))-

for the result of the computation. Note that A and b are arguments of
the computation and p, g, vp, d and the v; are its results. The analysis of
the conditions p(t) # 0 and ¢(t) = 0 depends on the context. Provers are
generally better at handling such knowledge than computer algebra systems.
Therefore it is reasonable to decide these conditions in the prover, with
possible aid of the computer algebra system — for example, to evaluate the
polynomials p and g for given values of ¢.

6.7 Summary

Our approach to ensure a sound integration of the computer algebra compo-
nent relies on precise semantics of the algorithms. This prohibits the blind
use of Gaussian elimination over polynomial domains for parametric equa-
tion systems and avoids mistakes like the one shown in the introduction to
this chapter. Surprisingly, such an analysis of Gaussian elimination seems
never to have been published, despite Lipson’s original suggestion dates 30

6.7. SUMMARY 101

years back. The only publication we are aware of is by Corless and Jeffrey
(1997), who essentially show that the row echelon form is continuous for
p(t) # 0. This analytical treatment is not appropriate for finite domains,
for example. Our analysis is algebraic. It is based on the evaluation ho-
momorphism, which links polynomials and parameters, and hence is more
general.

An important design decision is not to compute a system of solutions
that covers the entire parameter space at once. Parameters can represent
arbitrary expressions and their analysis may require additional knowledge.

An algorithm that performs a analysis over the complete parameter space
directly has been presented by Sit (1992). It determines semi-algebraic sets
that cover the parameter space. On these sets solutions are uniform. Our
naive analysis based on the stairs of the row echelon form may lead to solu-
tion systems where paths can be empty because they contain contradicting
conditions or case-splits that do not lead to special solutions, but only a
different sequence of row transformations is required. Sit’s algorithm does
not have this disadvantage. On the other hand, Sit’s algorithm is complex
and it is likely that it is of advantage only for very large equation systems.

The more general case of parametric polynomial equations has already
been solved in principle, too. Comprehensive Grobner bases (Becker and
Weispfenning, 1993) are systems of Grébner bases that cover the parameter
space. Comprehensive Grobner bases may contain paths with contradicting
conditions, like our naive analysis.

Finally, for an approach to integrating theorem proving and computer

algebra without trust, our analysis shows where proof reconstruction would
fail.

102 CHAPTER 6. SEMANTICS OF SYMBOLS

Chapter 7

Conclusion

Our work shows that the use of computer algebra within a prover is beneficial
to reasoning in classical algebra. Most beneficial is the use of algorithms
to solve specific problems like factoring a polynomial or solving a linear
equation system.

Simplifiers as implemented in computer algebra systems can be used only
to a limited extent. Computation of normal forms is sound in some domains.
In other domains the implemented algorithms are ad hoc or affected by the
specialisation problem. On top of that, these simplifiers are not flexible. It
is hardly possible to influence their behaviour. The latter is often required
in proof and simplifiers in provers like Isabelle can easily be configured for
the domain in question by supplying rewrite-rules. Often the simplifier is
invoked several times with different settings in a single proof. The price for
this flexibility is that simplifiers in provers are rather. inefficient compared
to computer algebra systems.

7.1 The Risk of Unsoundness

The design of our interface between the prover Isabelle and the computer al-
gebra library Sumit is motivated by the pragmatics of interactive proof. The
interface relies on trusting the library, because mathematical algorithms are
generally hard to verify formally. It is necessary to formalise the correctness-
proof and also the underlying theory. The example of Feit and Thompson’s
theorem, where the correctness of two lines of code depends on 250 pages
of informal proof, shows that the structural complexity of an algorithm can
be completely unrelated to the size of the proof. Also, the verification of
every single result obtained by executing an implementation can be as hard

103

104 CHAPTER 7. CONCLUSION

as verifying the algorithm itself.

Two measures minimise the risk that unsoundness is introduced to the
prover by relying on potentially unsound implementations of computer alge-
bra systems. The first measure is an analysis of computer algebra systems.
These are powerful computational tools but not logically sound reasoning
systems. Reasons for unsoundness fall into three categories.

e Computer algebra systems present a misleadingly uniform interface to
collections of algorithms. It is the user’s responsibility to ensure that
the semantics of objects are compatible when they are combined.

e The specialisation problem arises, because symbols do not represent
logical variables, and mechanisms to handle side-conditions and case-
splits are insufficient, if available at all.

e Many algorithms are ad hoc: they are not correct, either because cor-
rect algorithms are not known, or because the framework of computer
algebra systems it too limited to implement them in a clean way.

The second measure is to make the interface modular. Only individual
algorithms are made available to the prover, together with formal specifica-
tions. Modularity enforces the provision of formal specifications for every
single algorithm. These have to be designed carefully. Often it will be nec-
essary to consult their correctness proofs in the literature. The reuse of
implementations is essential. Re-implementing is error-prone in itself and
laborious too. We use the library Sumit instead of a monolithic computer
algebra system. In ordinary computer algebra systems the code for sim-
plification is spread all over the system. This is not the case for modern,
typed libraries of computer algebra, like Sumit. Here, algorithms are imple-
mented in modules with well-defined interfaces. Simplification is limited to
the computation of normal forms in data-types. Modularity is enforced by
the use of a library. Its use prevents to import a large number of algorithms
at once, based on a vague notion of the system returning something equal to
the argument in some sense, as could be anticipated by the user interfaces
of computer algebra systems.

Of course, the degree of rigour that can be achieved when trusting an
implementation is limited. This is not acceptable if the prover is used to
generate calculus-level proofs of theorems, say, in order to investigate foun-
dational issues. But the use of computer algebra is probably irrelevant in
such applications anyway. On the other hand, for example in a verification
application, our approach presents a way of importing knowledge from a

7.2. ISSUES OF INTERACTIVE PROOF DEVELOPMENT 105

trusted external source. It is more reliable than to do this manually, one is
forced to think about the specifications of every single algorithm, and the
dependencies on the external source are recorded in the theorems that are
proved. Certainly any computer algebra system contains implementation
errors, but bugs of that kind should not be more frequent than in other
software, including provers.

7.2 Issues of Interactive Proof Development

A reason for the success of LCF-style theorem provers is their flexibility.
Difficult steps in a proof can be guided manually by the user, while routine
tasks can be automated. This is done either by supplying specialised tactics
or, less powerful but more convenient, by configuring tactics that provide
proof-tools. Our interface supports this flexibility. Arguments to computa-
tions are expected in Isabelle’s term language. Terms extracted from the
proof-state can be given directly to the interface. Results of computations
are available as theorems and can be used in any way the logical inference
mechanisms of the prover permits. In particular, they can be used to im-
plement tactics and simplification procedures. This was useful in the case
study about coding theory. Many reductions to normal forms of polynomials
were performed automatically by simplification procedures that invoked the
computer algebra system.

The main effort in the case study was to mechanise the mathematical
background. This was necessary in order to reason about coding theory in
a prover. Even for areas of mathematics that are well-established mechani-
sation is not straightforward. Choosing the right primitives that are suit-
able for the automation of proofs usually requires some experimentation. A
good strategy is to make them as simple as possible. Our set of constructors
for sparse univariate polynomials (namely, monom, ; and +) is simple and
turned out to be a good choice. This was not obvious from the beginning:
association lists are used in computer algebra systems. Similarly, the set of
lemmas suitable as primitive derived rules for the degree-function is impor-
tant. In informal mathematics such lemmas are never given explicitly, but
are considered immediate or “obvious” from the definition. The definition
of the degree function uses Hilbert’s e-operator and is hard to reason about
directly.

106 CHAPTER 7. CONCLUSION

7.3 Achievements for Computer Algebra

A critical analysis of computer algebra systems from the perspective of an
application in theorem proving can be beneficial for the design of future com-
puter algebra systems. Our classification of soundness-problems may help
to provide more flexible frameworks for these systems, where the soundness-
problems can be avoided.

The use of theorem proving technology and also of methods from arti-
ficial intelligence has been suggested by Calmet and Campbell (1997) and
Martin (1999). Modern computer algebra systems are used in a variety of
applications. Each of them has its specific needs. Fateman (1996a) notes
that one of the problems of computer algebra systems may be that they try
to cater for too many applications at the same time. The use of theorem
proving techniques will lead to an increased use of heuristics in computer
algebra. In educational applications some logical underpinning could be
helpful to guide users to use correct algorithms and heuristics to help find
solutions. Beeson (1995) has domonstrated this for simplification. On the
other hand, in computationally intensive applications, heuristics will be less
welcome, because of the search involved. An expert user might not like
heuristics if they make the system’s behaviour hard to predict.

Computer algebra systems do not provide decision procedures — for
example, for inequalities over linear arithmetic. A decision procedure would
have been helpful in this work to reason about indices of coeflicients in
the mechanisation of polynomials, but unfortunately was not available in
Isabelle. While other provers implement such procedures, they could be
useful in computer algebra systems, too.

Our main suggestion for improvement of computer algebra systems is
much more humble. The analysis of the Gaussian algorithm in Chapter 6
demonstrates that algorithms become more usable if side-conditions that
are created during a computation are recorded and reported as a part of the
result.

Appendix A

Mechanisation of Algebra:
Detailed Proofs

A.1 Polynomials Form a Ring

Theorem 8 The univariate polynomials R[X] over a ring R, together with
the operations

p+q=(npy+qn)

n
Pa=(n> pr-gni)
k=0
—p=(nw— —pp)
0=(n—0)
l=(Mm—ifn=0 then 1 else 0)

form a ring.

Proof. It needs to be shown that the operations are closed over R[X]
and that the ring axioms hold. Closedness is shown by giving appropri-
ate bounds. As p and ¢ are polynomials, they have bounds. The maximum
of these bounds is a bound for the sum p + g. The sum s of these bounds is
a bound for the product p- g: for every v > s, in each summand either p; or
gv—i is zero, and so the entire sum. A bound for p is also a bound for —p,
zero is a bound for the functions 0 and 1.

The ring axioms Al to A4 are lifted from the coefficient domain. For

107

108 APPENDIX A. MECHANISATION OF ALGEBRA

example, for associativity Al

p+q=(n—pptan) = gn+pn) =q+0p.

Polynomials are shown to be equal by showing that the corresponding co-
efficients are the same. For associativity M1, for the coefficient of degree

n .
n j n n—j

(- q,-.-i) S S (z -
i=0 \i=0 =0 i=0

j i=

needs to be shown. This follows for £k = n from the lemma

k J k. k—j
k<n = 3} (Zm : qj—i) T =) P (Z g- rn_j_,-) » (AL)
j= i=0 J=0 i=0

which is proved by induction over k. The condition £k < n guarantees
that differences like n — j are well-behaved. It is hard to reason about
the difference-operator “—” over N formally, because it is only linear if the
first argument is greater than or equal to the second one. The base case
of the induction is (po - o) - 7n = Po * (o - 7). For the induction step k is
substituted by k + 1 in (A.1). The summations are unfolded and

ko[: k
> (Z pi ‘Ij—i) “Tn—j+ (Z i Qk+1——i) T (k+1) + (Pk+1°90) " Tn—(k+1)

3=0 \i=0 =0
k k—j k
= Epj : (qi ""n—j—'i) + ij : (Qk+1—j "rn—j—(k+1—j))
j=0 i=0 §=0

+ Prt1 - (90 * Tn—(k+1))

is obtained. The second and third terms on both sides are equal, because of
distributivity. The first terms are also equal, by induction hypothesis.

Axiom M2, 1-p = p, holds, because the coefficients of degree n on both
sides are equal:

n 1]

> (if i = 0 then 1 else 0) - pp—i = » Pn—i = Pn

Distributivity D is also straightforward. For coeflicient of degree n

n

n n
Z(Pi +) Thi = Zpi “Tn—it Z G " Tn—i
=0 =0

=0

A.2. UNIVERSAL PROPERTY OF POLYNOMIALS 109

needs to be shown. This follows from distributivity and commutativity of
the coefficient domain.

Finally, commutativity C is proved by an induction similar to the one
for associativity. Namely, the lemma

J J
j<n = Zpi ‘On—i = an—i—(n—j) * Git(n—j)
=0 =0

has to be shown. The induction is over j and the induction step is
j

sz‘ “In—i t Pj+1 " Gn—(j+1)
=0

J
= Pn—(n—(j+1)) * Gn—(j+1) T an—(i+1)—(n—(j+1)) Qi1+ (n—(j+1))-
=0

Both single terms are equal. The summation on the right side is equal to

Z£=0 Pn—i—(n—j) " Gi+(n—j) and the equation follows by induction hypothesis.
O

A.2 TUniversal Property of Polynomials

Theorem 12 (Universal property) Let R and S be rings. Then for ev-
ery pair (¢,a), where ¢ : R — S is a ring homomorphism and a € S, there
ezists a unique homomorphism ® such that the following diagram commutes:

const

R —= R[X]
‘| e
S T S

Proof. In order to prove the existence one defines

degp)
D:p> Zd}pi-al ' (A.2)

=0

for given a and ¢. This is a ring homomorphism. For addition

deg(p+4q) _ max(degp)(degq))
dp+q)= Y, ®+qi-d= D>, 2(p+g)i-d,
i=0 i=0

110 APPENDIX A. MECHANISATION OF ALGEBRA

because (p + ¢); = 0 for deg(p + ¢) < i. Here (p + ¢); denotes the ith
coefficient of p+¢. With distributivity and commutativity in R, and because
¢ commutes over addition, one obtains

max(deg p)(deg q) ~ max(degp)(degq) _
2(p+q) = Z ®p;-a’+ - Z ®q; - a’.
=0 =0

The coefficients p; are 0 for ¢ > degp, and likewise for ¢;. The range of
summation is changed again and

degp degq
Blp+q) =Y Ppi-a+ Y Bg-a' =Ip+ g
i=0 =0

Verifying the same property for multiplication is more difficult. First

n+m k n+m j—k
i<n+m = 3> fiogii=>, > fr-gi (A.3)
k=0 =0 k=0 =0

is shown by induction over j, for functions f,g : N - R. For j = 0, both
sides of the equation become fy - gg, thus the equation holds. The induction

step is
J+l k Jj k& J
S firgi=Y_) firgri+ > fiv giivr + fit1- 9o
k=0 i=0 k=0 i=0 i=0
i j-k J
=" fr-gi+ Y figi-it1+ fis1 g0
@ 50 im0 =0
J [i—k
= (Z fe-9i+ fx '9;>k+1) + fi+1- 90
k=0 \i=0
+1j+1—k
=2 2 fio
k=0 i=0

The induction hypothesis is applied at (a). If n is a bound for f and m a
bound for g the following equality for products of sums holds:

k n m .
fi+ gp—i = (Z fi) : (E gi) (A4)
-0 i=0 i=0

'n+m
k=0 ¢

K3

A.2. UNIVERSAL PROPERTY OF POLYNOMIALS 111

The left side of this equation is also known as Cauchy product. To show
that the equation holds first the order of summation is changed, by means
of equation (A.3), where n + m is substituted for 5. Then parts of the
summation, which are zero, are split off:

n+m k n+mn+m—k
Z Zfz Gk—i = Z Z fr-gi
k=0 i=0 k=0 =0
n n+m—k n+m ni+m—k
=Zkagz+Z > fes
k=0 =n+1 =0
n n+m—k
=Z<ka g+ >, frr gz>
k=0 i=m+1

3

S) () (32)

Now ®(p - q) = ®p - Pq can be proved:

deg(p-q) degp+tdegg
Y ®pegi-ai= Y. ®(p-gh-d
=0 (a) =0

degptdegqg i

Bpy, - Bg;_ - aF - a¥F
CRPIEDS
degp degg
(Z op; -a") : (Z @qi-az)
=0 =0

The change of the range of summation at (a) is valid, because deg(p - q) <
degp + degq (4.3), and (p - q); = 0 for m > deg(p - q). Equality (b) follows
from the definition of polynomial multiplication, and (c) is equation (A.4).
The proof of ®1;-a* = 1 is trivial. This completes the proof of the
existence of ®. For uniqueness, observe that an arbitrary ® must map

I

—
O
~

X—a and ¢; X% ge.

Therefore, by homomorphism ®&p = Y 98P ¢p; - ai. So, (A.2) was the only
way to define @ and it is unique. O

112 APPENDIX A. MECHANISATION OF ALGEBRA

Bibliography

Abbott, J. (1996). OpenMath design committee report. Version of 23 De-
cember.

Adams, A. A., Gottliebsen, H., Linton, S. A., and Martin, U. (1999). VS-
DITLU: a verifiable symbolic definite integral table look-up. In CADE-16.
To appear.

Apostol, T. M. (1974). Mathematical Analysis. Addison-Wesley.

Aslaksen, H. (1996). Multiple-valued complex functions & computer algebra.
ACM SIGSAM Bulletin, 30(2), 12-20.

Association of Mizar Users, editor (1989). Journal of Formalized Mathemat-
ics. University of Bialystok. Published on the Internet.
See http://mizar.org.

Bailey, A. (1993). Representing algebra in LEGO. Master’s thesis, University
of Edinburgh, Department of Computer Science.

Ballarin, C. (1994). Algorithmische Schritte in formalen Beweisen —
Entwurf und Implementierung der Anbindung eines Computeralgebrasys-

tems an einen Theorembeweiser. Diplomarbeit, Universitdt Karlsruhe,
Fakultat fiir Informatik.

Ballarin, C., Homann, K., and Calmet, J. (1995). Theorems and algorithms:
An interface between Isabelle and Maple. In A. H. M. Levelt, editor, IS-
SAC ’95: International symposium on symbolic and algebraic computation
— July 1995, Montréal, Canada, pages 150-157. ACM Press.

Bareiss, E. H. (1968). Sylvester’s identity and multistep integer-preserving
Gaussian elimination. Mathematics of Computation, 22, 565-578.

Becker, T. and Weispfenning, V. (1993). Grébner Bases: A Computational
Approach to Commutative Algebra. Springer-Verlag.

113

114 BIBLIOGRAPHY

Beeson, M. (1995). Using nonstandard analysis to ensure the correctness
of symbolic computations. International Journal of Foundations of Com-
puter Science, 6(3), 299-338.

Benzmiiller, C., Cheikhruouhou, L., Fehrer, D., Fiedler, A., Huang, X., Ker-
ber, M., Kohlhase, M., Konrad, K., Meier, A., Melis, E., Schaarschmidt,
W., Siekmann, J., and Sorge, V. (1997). Omega: Towards a mathe-
matical assistant. In W. McCune, editor, Automated deduction, CADE-
14: 14th International Conference on Automated Deduction, Townsville,
North Queensland, Australia, July 18-17, 1997: proceedings, number 1249
in Lecture Notes in Computer Science/Lecture Notes in Artificial Intelli-
gence, pages 252-255. Springer-Verlag.

Boyer, R. S. and Moore, J. S. (1981). Metafunctions: proving them correct
and using them efficiently as new proof procedures. In R. S. Boyer and
J. S. Moore, editors, The correctness problem in computer science, Inter-
national Lecture Series in Computer Science, pages 103-213. Academic
Press.

‘Bronstein, M. (1996). Sumit — a strongly-typed embeddable computer
algebra library. In Calmet and Limongelli (1996), pages 22-33.

Bundy, A., van Harmelen, F., Hesketh, J., and Smaill, A. (1991). Experi-
ments with proof plans for induction. Journal of Automated Reasoning,
7(3), 303-324.

Butler, G. and Cannon, J. (1989). Cayley, version 4: the user language.
In P. Gianni, editor, Symbolic and Algebraic Computation: International
Symposium ISSAC ’88, Rome, Italy, July 4-8, 1988: Proceedings, num-
ber 358 in Lecture Notes in Computer Science, pages 456—466. Springer-
Verlag.

Calmet, J. and Campbell, J. A. (1997). A perspective on symbolic mathe-
matical computing and artificial intelligence. Annals of Mathematics and
Artificial Intelligence, 19(3-4), 261-277.

Calmet, J. and Limongelli, C., editors (1996). Design and Implementation
of Symbolic Computation Systems: International Symposium, DISCO ’96,
Karlsruhe, Germany, September 18—-20, 1996: proceedings, number 1128
in Lecture Notes in Computer Science. Springer-Verlag.

Clarke, E. and Zhao, X. (1993). Analytica: A theorem prover for Mathe-
matica. The Mathematica Journal, 3(1), 56-T1.

BIBLIOGRAPHY 115

Clarke, E. and Zhao, X. (1994). Combining symbolic computation and
theorem proving: some problems of Ramanujan. In A. Bundy, editor,
Automated deduction, CADE-12: 12th International Conference on Au-
tomated Deduction, Nancy, France, June 26-July 1, 1994: proceedings,
number 814 in Lecture Notes in Computer Science/Lecture Notes in Ar-
tificial Intelligence, pages 758-763. Springer-Verlag.

Constable, R. L. (1986). Implementing mathematics with the Nuprl proof
development system. Prentice-Hall.

Corless, R. M. and Jeffrey, D. J. (1996). The unwinding number. ACM
SIGSAM Bulletin, 30(2), 28-35.

Corleés, R. M. and Jeffrey, D. J. (1997). The Turing factorization of a
rectangular matrix. ACM SIGSAM Bulletin, 31(3), 20-28.

Cox, D., Little, J., and O’Shea, D. (1992). Ideals, Varieties, and Algorithms:
An Introduction to Computational Algebraic Geometry and Commutative
Algebra. Springer-Verlag.

Curzon, P. (1994). Experiences formally verifying a network component. In
Proceedings of the 9th Annual IEEE Conference on Computer Assurance,
pages 183-193. IEEE Press.

Dalmas, S. and Gaétano, M. (1996). Making systems communicate and co-
operate: The central control approach. In Calmet and Limongelli (1996),
pages 308-319.

Dalmas, S., Gaétano, M., and Watt, S. (1997). An OpenMath 1.0 imple-
mentation. In W. W. Kiichlin, editor, ISSAC 97: Proceedings of the 1997

International Symposium on Symbolic and Algebraic Computation — July
21-23, 1997, Maui, Hawaii, USA, pages 241-248. ACM Press.

Davenport, J. (1998). Is computer algebra the same as computer mathe-
matics? Talk given at the British Colloquium for Theoretical Computer
Science (BCTCS), St. Andrews, UK.

Davenport, J. H. (1990). Current problems in computer algebra systems
design. In Miola (1990), pages 1-9.

Davenport, J. H. and Trager, B. M. (1990). Scratchpad’s view of algebra I:
Basic commutative algebra. In Miola (1990), pages 40-54.

116 BIBLIOGRAPHY

Davenport, J. H., Gianni, P., and Trager, B. M. (1991). Scratchpad’s view
of algebra II: A categorical view of factorization. In S. M. Watt, editor,
Proceedings of the 1991 International Symposium on Symbolic and Alge-
braic Computation, ISSAC’91, July 15-17, 1991, Bonn, Germany, pages
32-38. ACM Press.

Davenport, J. H., Siret, Y., and Tournier, E. (1993). Computer Algebra:
Systems and algorithms for algebraic computation. Academic Press, sec-
ond edition.

Davis, M. and Schwartz, J. T. (1979). Metamathematical extensibility for
theorem verifiers and proof-checkers. Computers € mathematics with ap-
plications, 5(3), 217-230.

Farmer, W. M., Guttman, J. D., and Thayer, F. J. (1993). IMPS: An
interactive mathematical proof system. Journal of Automated Reasoning,
11(2), 213-248.

Fateman, R. J. (1996a). Symbolic mathematics system evaluators. In Lak-
shman (1996), pages 86-94. Extented abstract, full version available at
http://http.cs.berkeley.edu/ fateman/papers/eval.ps.

Fateman, R. J. (1996b). Why computer algebra systems sometimes can’t
solve simple equations. ACM SIGSAM Bulletin, 30(2), 8-11.

Fateman, R. J. (1998). Re: MMA'’s equivalent of Maple’s assume. Post to
the news group sci.math.symbolic.

Feit, W. and Thompson, J. G. (1963). Solvability of groups of odd order.
Pacific Journal of Mathematics, 13(3), 775-1029.

Geddes, K. O., Czapor, S. R., and Labahan, G. (1992). Algorithms for
Computer Algebra. Kluwer Academic Publishers.

Giunchiglia, F., Pecchiari, P., and Talcott, C. (1996). Reasoning theo-
ries: Towards an architecture for open mechanized reasoning systems.
In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems
— First International Workshop, FroCoS’96, Munich, Germany, March
1996, number 3 in Applied logic series, pages 157-174. Kluwer Academic
Publishers.

Gonnet, G. H., Dalmas, S., Gaétano, M., Watt, S., and Huuskonen,
T. (1998). Basic Content Dictionary. Available on the Internet at
http://www.openmath.org/CDs/Verl.1/Basic.

BIBLIOGRAPHY 117

Gordon, M. J., Milner, R., and Wadsworth, C. P. (1979). Edinburgh LCF.
Number 78 in Lecture Notes in Computer Science. Springer-Verlag.

Gordon, M. J. C. and Melham, T. F., editors (1993). Introduction to HOL: A
theorem proving environment for higher order logic. Cambridge University
Press.

Gray, S., Kajler, N., and Wang, P. S. (1996). Pluggability issues in the Multi
protocol. In Calmet and Limongelli (1996), pages 343-356.

Harrison, J. (1997). Floating point verification in HOL Light: the exponen-
tial function. Technical Report 428, University of Cambridge, Computer
Laboratory.

Harrison, J. and Théry, L. (1994). Extending the HOL theorem prover
with a computer algebra system to reason about the reals. In J. J. Joyce
and C.-J. H. Seger, editors, Higher Order Logic Theorem Proving and Its
Applications: 6th International Workshop, HUG ’93: Vancouver, B.C.,
Canada, August 11-13, 1993: Proceedings, number 780 in Lecture Notes
in Computer Science, pages 174-184. Springer-Verlag.

Harrison, J. R. (1996). Theorem Proving with the Real Numbers. Ph.D. the-
sis, University of Cambridge, Computer Laboratory. Available as Techni-
cal Report 408.

Hewitt, C. (1971). Procedure embedding of knowledge in Planner. In Second
International Joint Conference on Artificial Intelligence : IJCAI-71 : 1-
3 September 1971 : Imperial College, London, pages 167-182. Morgan
Kaufmann for the British Computer Society.

Hoffman, D. G., Leonard, D. A., Lindner, C. C., Phelps, K. T., Rodger,
C. A, and Wall, J. R. (1991). Coding Theory: The Essentials. Num-
ber 150 in Monographs and textbooks in pure and applied mathematics.
Marcel Dekker, Inc., New York.

Hofri, M. (1995). Analysis of Algorithms: Computational Methods € Math-
ematical Tools. Oxford University Press.

Homann, K. (1997). Symbolisches Lisen mathematischer Probleme durch
Kooperation algorithmischer und logischer Systeme. Number 152 in Dis-
sertationen zur Kiinstlichen Intelligenz. infix, St. Augustin.

Huuskonen, T. (1997). Re: Description of OpenMath. Private communica-
tion.

118 BIBLIOGRAPHY

Ion, P., Miner, R., Buswell, S., Devitt, S., Diaz, A., Poppelier, N.,
Smith, B., Soiffer, N., Sutor, R., and Watt, S. (1998). Mathematical
markup language (MathML) 1.0 specification. Technical Report REC-
MathML-19980407, The World Wide Web Consortium. Available at
http://www.w3.org/TR/REC-MathML.

Jackson, P. B. (1995). Enhancing the Nuprl proof development system
and applying it to computational abstract algebra. Technical Report
CORNELLCS//TR95-1509, Cornell University, Department of Computer

Science.
Jacobson, N. (1985). Basic Algebra, volume I. Freeman, 2nd edition.
Jacobson, N. (1989). Basic Algebra, volume II. Freeman, 2nd edition.

Jenks, R. D. and Sutor, R. S. (1992). AXIOM. The scientific computation
system. Numerical Algorithms Group, Ltd. and Springer-Verlag, Oxford
and New York.

Kajler, N. (1993). Building a computer algebra environment by composition
of collaborative tools. In J. Fitch, editor, Design and implementation
of symbolic computation systems: International Symposium, DISCO 92,
Bath, U.K., April 18-15 1992: proceedings, number 721 in Lecture Notes
in Computer Science, pages 85-94. Springer-Verlag.

Kerber, M., Kohlhase, M., and Sorge, V. (1996). Integrating computer
algebra with proof planning. In Calmet and Limongelli (1996), pages
204-215.

Lakshman, Y. N., editor (1996). ISSAC 96: Proceedings of the 1996 In-
ternational Symposium on Symbolic and Algebraic Computation — July
24-26, 1996, Zirich, Switzerland. ACM Press. i

Lipson, J. D. (1969). Symbolic methods for the computer solution of linear
equations with applications to flowgraphs. In R. G. Tobey, editor, Pro-
ceedings of the 1968 Summer Institute on Symbolic Mathematical Com-
putation, pages 233-303, Maryland. IBM Federal Systems Division.

Luo, Z. and Pollack, R. (1992). LEGO proof development system: User’s
manual. Technical Report ECS-LFCS-92-211, University of Edinburgh.

Martin, U. (1999). Computers, reasoning and mathematical practice. In
U. Berger and H. Schwichtenberg, editors, Computational Logic. Springer-

BIBLIOGRAPHY 119

Verlag. To appear. Currently available at http://www-theory.dcs.st-
and.ac.uk/“um/publications/natoasipub.ps.

Martin, U. and Nipkow, T. (1990). Ordered rewriting and confluence. In
M. E. Stickel, editor, 10th International Conference on Automated Deduc-
tion, Kaiserslautern, FRG, July 2{-27, 1990: Proceedings, number 449
in Lecture Notes in Computer Science/Lecture Notes in Artificial Intelli-
gence, pages 366-380. Springer-Verlag.

McCune, W. (1994). Otter 3.0 reference manual and guide. Technical Report
ANL-94/6, Argonne National Laboratory, Argonne, IL, USA.

McCune, W. (1997). Solution of the Robbins problem. Journal of Automated
Reasoning, 19(3), 263-276.

Milner, R. (1985). The use of machines to assist in rigorous proof. In C. A. R.
Hoare and J. C. Shepherdson, editors, Mathematical Logic and Program-
ming Languages, Series in Computer Science, pages 77-88. Prentice Hall
International.

Miola, A., editor (1990). Design and implementation of symbolic computa-
tion systems: International Symposium DISCO ’90, Capri, Italy, April
10-12, 1990: proceedings, number 429 in Lecture Notes in Computer Sci-
ence. Springer-Verlag.

Moses, J. (1971). Symbolic integration: The stormy decade. Communica-
tions of the ACM, 14(8), 548-560.

Nederpelt, R. P., Geuvers, J. H., and de Vrijer, R. C., editors (1994). Selected
Papers on Automath. Number 133 in Studies in Logic. Elsevier.

Newell, A. (1983). Intellectual issues in the history of artificial intelligence.
In F. Machlup and U. Mansfield, editors, The Study of Information —
Interdisciplinary Messages, chapter 3, pages 187-227. John Wiley & Sons.

Nipkow, T. (1993). Order-sorted polymorphism in Isabelle. In G. Huet
and G. Plotkin, editors, Logical environments, pages 164-188. Cambridge
University Press.

Noble, B. and Daniel, J. W. (1988). Applied linear algebra. Prentice-Hall,
3rd edition.

Norman, A. and Fitch, J. (1996). Memory tracing of a,lgebréic calculations.
In Lakshman (1996), pages 113-119.

120 BIBLIOGRAPHY

Norrish, M. (1999). Plug-iﬁ Interface User Documentation: Deliverable
D3.2b.V1-09. PROSPER: ESPRIT LTR Project 26241. Available at
http://www.cl.cam.ac.uk/users/mn200/prosper/.

Paulson, L. (1983). A higher-order implementation of rewriting. Science of
Computer Programming, 3, 119-149.

Paulson, L. C. (1994). Isabelle: a generic theorem prover. Number 828 in
Lecture Notes in Computer Science. Springer-Verlag.

Paulson, L. C. (1997a). Inductive analysis of the Internet protocol TLS.
Technical Report 440, University of Cambridge, Computer Laboratory.

Paulson, L. C. (1997b). The Isabelle reference manual. Technical Report
283, University of Cambridge, Computer Laboratory. 4th edition.

Paulson, L. C. (1998). A generic tableau prover and its integration with
Isabelle. Technical Report 441, University of Cambridge, Computer Lab-
oratory.

Pratt, V. R. (1975). Every prime has a succinct certificate. SIAM Journal
on Computation, 4(3).

Purdom, Jr., P. W. and Brown, C. A. (1985). The Analysis of Algorithms.
CBS Publishing, New York.

Risch, R. H. (1969). The problem of integration in finite terms. Transactions
of the American Mathematical Society, 139, 167-189.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1), 23-41.

Rudnicki, P. (1992). An overview of the MIZAR project. In B. Nordstrém,
K. Petersson, and G. Plotkin, editors, Proceedings of the 1992 workshop
on types for proofs and programs: Bdstad, Sweden, June 1992, pages
311-332.

Salvy, B. and Zimmermann, P. (1994). GFUN: A Maple package for the
manipulation of generating and holoniomic functions in one variable. ACM
Transactions on Mathematical Software, 20(2), 163-177.

Schonert, M. (1997). GAP Manual. Lehrstuhl D fiir Mathematik, RWTH
Aachen, Aachen, Germany. Available on the Internet at http://www-
gap.dcs.st-and.ac.uk/ gap/.

BIBLIOGRAPHY 121

Scott, D. S. (1993). A type-theoretical alternative to ISWIM, CUCH,
OWHY. Theoretical Computer Science, 121(1-2), 411-440.

Sit, W. Y. (1992). An algorithm for solving parametric linear systems.
Journal of Symbolic Computation, 13, 353-394.

Slind, K. (1993). Adding new rules to an LCF-style logic implementation.
In L. J. M. Claesen and M. J. C. Gordon, editors, Higher order logic theo-
rem proving and its applications: proceedings of the IFIP TC10/WG10.2
international workshop on higher order logic theorem proving and its ap-
plications: HOL ’92: Leuven, Belgium, 21-2/ September 1992, number
A-20 in IFIP Transactions, pages 549-559. North-Holland.

Slind, K. (1998). A tagged LCF-style proof architecture. In D. Basin and
L. Vigano, editors, Participants’ proceedings of LD’98: First International
Workshop on Labelled Deduction, Freiburg, Germany. Also available at
http://www.cl.cam.ac.uk/users/kxs/papers/tag.html.

Stoutemyer, D. R. (1991). Crimes and misdemeanors in the computer alge-
bra trade. Notices of the American Mathematical Society, 38(7), 778-785.

Théry, L. (1998). A certified version of Buchberger’s algorithm. In C. Kirch-
ner and H. Kirchner, editors, Automated deduction, CADE-15: 15th In-
ternational Conference on Automated Deduction, Lindau, Germany: pro-
ceedings, number 1421 in Lecture Notes in Computer Science/Lecture
Notes in Artificial Intelligence, pages 349-364. Springer-Verlag.

Watt, S. M., Broadbery, P. A., Dooley, S. S., Iglio; P., Morrison, S. C.,
Steinbach, J. M., and Sutor, R. S. (1994a). AXIOM Library Compiler
User Guide. The Numerical Algorithms Group Limited, Oxford.

Watt, S. M., Broadbery, P. A., Dooley, S. S., Iglio, P., Morrison, S. C.,
Steinbach, J. M., and Sutor, R. S. (1994b). A first report on the A#
compiler. In ISSAC ’94: Proceedings of the 1994 International Sympo-
sium on Symbolic and Algebraic Computation: July 20-22, 1994, Ozford,
England, United Kingdom, pages 25-31. ACM Press.

Wenzel, M. (1997). Type classes and overloading in higher-order logic. In
E. L. Gunter and A. Felty, editors, Theorem proving in higher order log-
ics: 10th International Conference, TPHOLs ’97, Murray Hill, NJ, USA,
August 19-22, 1997: proceedings, number 1275 in Lecture Notes in Com-
puter Science, pages 307-322. Springer-Verlag.

122 BIBLIOGRAPHY

Wenzel, M. (1998). Using Aziomatic Type Classes in Isabelle — a tutorial.
Available with the Isabelle-distribution.
See http://www.cl.cam.ac.uk/Research/HVG /Isabelle/.

Wolfram, S. (1996). The Mathematica book. Wolfram Media and Cambridge
University Press, third edition.

