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Automatic Summarising of English Texts
J. L. Tait

The thesis describes a computer program called Scrabble which can
summarise short English texts. It uses large bodies of predictions
about the likely contents of texts about particular topics to identify
the commonplace material in an input text. Pre-specified summary
templates, each associated with a different topic, are used to condense
the commonplace material in the input. Filled-in summary templates
are then used to form a framework into which unexpected material in
the input may be fitted, allowing unexpected material to appear in
output summary texts in an essentially unreduced form. The system’s
summaries are in English.

The program is based on technology not dissimilar to a script
applier. However, Scrabble represents a significant advance over
previous script-based summarising systems. It is much less likely to
produce misleading summaries of an input text than some previous
systems, and can operate with less information about the subject
domain of the input than others.

These improvements are achieved by the use of three main novel
ideas. First, the system incorporates a new method for identifying the
topic or topics of an input text. Second, it allows a section of text to
have more than one topic at a time, or at least a composite topic
which may best be dealt with by the computer program simultaneously
applying to the text predictions associated with more than one simple
topic. Third, Scrabble incorporates new mechanisms for the
incorporation of unexpected material in the input into its output
summary texts. The incorporation of such material in the output
summary is motivated by the view that it is precisely unexpected
material which is likely to form the most salient matter in the input
text.

The performance of the system is illustrated by means of a number
of example input texts and their corresponding Scrabble summaries.
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1. Introduction

This thesis describes a computer program called Scrabble which can
summarise short English texts. The program represents an exploration
of new techniques for the automatic extraction of summaries from
input textual material. The technique combines relatively shallow (and
therefore computationally inexpensive) inferential analysis of an input
text with sophisticated mechanisms for the construction of a summary
text from the products of this shallow inferential analysis.

Scrabble uses large bodies of predictions about the likely contents
of texts about particular topics to identify the commonplace material
in an input text. Pre-specified summary templates, each associated
with a different topic, are used to condense the commonplace material
in the input. Filled in summary templates are then used to form a
framework into which unexpected material in the input may be fitted,
allowing this material to appear in output summary texts in an
essentially unreduced form. The system's summaries are in English.

The program is based on three main novel ideas. First it
incorporates a new method for identifying the topic or topics of an
input text. Second it embodies the notion of a section of text having
more than one topic at a time, or at least a composite topic which
may best be dealt with by the computer program simultaneously
applying to the text predictions associated with more than one simple
topic. Third, Scrabble incorporates new mechanisms for the
incorporation of unexpected material in the input into its output
summary texts. The incorporation of such material in the output
summary is motivated by the view that it is precisely the unexpected
material in the input which is likely to form the most salient matter
in an input text.

I think it is generally accepted that it would be desirable if there
were computer prdgrams which understood natural language. The
specific motivation for the Scrabble project was the hope of
overcoming the problems posed by the extreme expense of general
purpose inference mechanisms like that proposed by [Cater81]. However,
in the course of the project the focus has moved from such wide
issues to a more specific technical reappraisal of some of the
techniques which have been proposed for tightly controlled, specialised
inference mechanisms. The production of summaries was chosen as a
task domain for the project because the construction of a summary is
widely considered to require some understanding of the summarised
material, and because it would provide a good test of some particular
properties of tightly controlled specialised inference mechanisms.

Before beginning the more technical matter of the thesis, two
remarks about the limitations and aims of this work must be made.



First, although the system deals only with English, I believe
Scrabble could operate with any language as its input and output, not
necessarily the same for each. Most of the program manipulates an
interlingual representation of natural language, and in fact an early
version of the program generated Japanese, though this is no longer
possible for low-level technical reasons. Thus the program might, at a
certain level, be regarded as a prototype for a machine translation
system.

Secondly, this work addresses some aspects of computer processing
of natural language. 1 make no claim that anything in this work is
relevant to understanding human use of natural language. Scrabble is
intended to produce summaries which are reasonably similar to those
which a human being might produce for the same initial text. It is
only these summaries which are intended to serve as a basis for
comparison with human linguistic behaviour, and not the processes by
which they are derived. Moreover, any discussion of other computer
systems is couched in the same terms: 1 will compare only with human
beings the computer systems actual or potential outputs when
presented with particular natural language inputs.

The name Scrabble is based on the ordinary English verb "to
scrabble”, that is to move quickly and erratically looking for
something: in the computer programs case the topic or topics of
incoming text. The name is not an acronym, nor has it anything to do
with the word game.

1.1 The Organisation of the Scrabble system

The production of a summary by Scrabble involves the use of five
different programs. Three of these programs form the Scrabble core:
the sterectype management module; the sterectype application module;
and the summariser. The other two programs are the AD-HAC semantic
parser and the AD-HAC generator. They are the work of Cater (see
[Cater82]), and form subsidiary parts of the Scrabble system. The core
Scrabble programs do not manipulate English text sentences as such,
but operate on deep meaning representations (in fact CD-structures,
described in detail by Cater). The AD-HAC semantic parser is used to
convert input English sentences into CD-representations for analysis by
the Scrabble core. The AD-HAC generator is used to produce the
output summary text from CD-representations formed by the Scrabble
summariser.

Stereotypes are bundles of predictions about the likely contents of
input texts. Each bundle is associated with a particular topic and each
is associated with a summary template defining how to summarise an
entirely commonplace text about that topic. Stereotypes are thus the
central apparatus for summarising.



The five component programs forming the Scrabble system fit
together as follows.

Scrabble

e
t———-)-—L__j -
summar i ser
stereotype |

application

stereotyp
managemen

AD-HAC ED-HBC
semantic , nglish
parser generator
Text Text

When processing a text, control passes between the programs as
follows. For every input sentence the AD-HAC semantic parser is invoked
. It hands a representation of the meaning of the input sentence to
the stereotype application module, and a set of clues about possible
topics of the text are handed to the stereotype management module.
The application module informs the management module of the success
or otherwise of each existing stereotype in predicting the input
material. The management module may decide that an existing
stereotype may not, in fact, be appropriate for the input text, or that
it was relevant but is no longer so, or that the topic of the text has
changed, so some new stereotype should be instantiated. At the end of
input text analysis, a representation of the entire text is passed from
the stereotype management and application modules to the
summariser. The summariser constructs a summary representation from
the summary templates of stereotypes that predicted the contents of
parts of the text together with any unexpected material in the input.
This summary representation is passed to the AD-HAC English
generator and turned into an English text.

The text representation, which forms the input to the summariser
has three parts. First is the state of any stereotype instances which
the manager decided were related to the topics of the input text.
These states represent the way in which the text satisfied the
system’s various predictions about its contents. Second are the CD-
representations of the parts of the text which were not expected by
the system. Third is a model of the way in which the elements of the
first two parts of the text representation were interrelated in the
input text.

The system is written entirely in Cambridge LISP.




1.2 A Sample Scrabble Run

This section presents the output from a typical Scrabble run, in
order to give a flavour of the capabilities of the system.

The program output is presented in a form which will be used in
various places later in the thesis. Lines output by the program are
indented at the right and left hand sides and printed in a different
font (A Different Font "). Lines running the full width of the page, in
the same font as the main text, are explanatory comments.

In the output square brackets ("L " and "1 ") mark where the AD-
HAC semantic parser was operating. Usually they enclose various forms
of debugging output, but these have been removed to improve clarity.
The remainder of the output is as it was produced during the Scrabble
run. Hopefully the output will be self explanatory: but whether it is or
not, all the processing necessary to produce the summary will be
described in great detail in the rest of this thesis.

Times to this point total 0.108

seconds + 1.241 seconds
Run of AD-HAC with Scrabble version 15.14 in 850K at
12.15 on 1 OCT 82
{3
Entering Scrabble for sentence :

(MARY AND JOHN WENT TO THE Z00)
Spent 163 ms in Scrabble
Cl
Entering Scrabble for sentence :

(THEY FED THE MONKEYS SOME PEANUTS)
Spent 50 ms in Scrabble
L3
Entering Scrabble for sentence :

(AFTER THEY SAW THE ZEBRA , THEY WENT TO A RESTAURANT)
Spent 888 ms in Scrabble
(09
Entering Scrabble for sentence :

(JOHN TOLD THE WAITER THAT HE WANTED A STEARK)
Spent 47 ms in Scrabble
]
Entering Scrabble for sentence :

(BECAUSE THEY DIDN'T HAVE MONEY THE WAITER WAS ANGRY)
Spent 33 ms in Scrabble
L3
Entering Scrabble for sentence : (THEY RAN AWAY)
Spent 37 ms in Scrabble
English summary is:

JOHN AND MARY WENT TO A Z00.

THEY WENT TO A RESTAURANT BUT A WAITER WAS FURIOUS
BECRUSE THEY DIDN'T HAVE SOME MONEY.
END OF LISP RUN AFTER 6.96+6.42 SECS - 94.8% STORE USED



1.3 Plan of the Rest of the Thesis

The structure of the rest of the thesis is as follows: Briefly,
Chapters 2 and 3 describe the background to Scrabble, in terms of
tasks within natural language processing, previous attempts to build
similar systems, and the overall design of the Scrabble system,
Chapters 4, 5 and 6 describe in detail the three main subprograms
which form the Scrabble program, and Chapter 7 presents conclusions.

More specifically, Chapter 2 discusses the role of inference in
natural language processing, and reviews various previous attempts to
build inference systems for ratural language processing. In particular,
Chapter 2 contains detailed critiques of work based on scripts and to
a lesser extent, frames.

Chapter 3 is an overview of the Scrabble system. It discusses the
solutions embodied in Scrabble to various shortcomings of previous
systems, describes why summarising was chosen as a test bed for more
general ideas about inference, and why the AD-HAC semantic parser
and English generator were chosen for the Scrabble system, and gives
a more detailed overview of the structure of the Scrabble program.

Chapter 4 describes the mechanism by which stereotypes are
managed. It includes descriptions of how stereotype are suggested as
being appropriate for the text, of how they are identified as actually
being appropriate, and of how the model of the input text which is
handed to the summariser is constructed.

Chapter 5 describes the mechanism by which the stereotype's
predictions are compared with the input text and the results of the
comparison are recorded.

Chapter 6 describes the process by which summaries are formed.

Chapter 7 contains some conclusions, focussing on comparisons
between Scrabble and other inference systems and problems with the
current Scrabble system which must be dealt with before it can form
the basis of a practically useful natural language processing system.

Chapters 4, 5 and 6 all contain detailed examples of the
summarising process, whilst Chapter 5 contains an annotated example
stereotype. More examples of the summaries produced by Scrabble may
be found in Appendix A. Appendix B contains an additional example
stereotype prototype.







2 The Background to Scrabble

Inference, in the context of this work, is taken as the process by
which a listener or reader draws out those parts of the meaning of a
piece of natural language which are not manifest in the text itself.
This chapter discusses why any task to which a natural language
processing system is likely to be applied will require the system to
exhibit some inferential abilities. An idealised model of a natural
language is then described which is intended to illustrate the
boundaries between those parts of the system which provide its
infcrential abilities and those which provide its linguistic abilities, as
these terms are used in this thesis. Next, various proposals for the
implementation of computer systems possessing these capabilities are
discussed. Finally some proposals for the construction of natural
language processing systems capable of summarising their input are
discussed.

The discussion of meaning presented here is intended only to form
a minimal framework within which the Scrabble program may be
discussed. Nothing in this chapter is intended to constitute a genuine
theory of meaning for natural language in general.

2.1 The Necessity for Inference in Natural Language Processing

In this section 1 want to emphasize how all pervading is the need for
inferential abilities in a system which is to perform tasks which
demonstrate even quite trivial understanding of natural language.

I assume the manifest meanings of a piece of text are those parts
of the meaning which are available without recourse to inference.
Conversely 1 will call those parts of the meaning which are only made
available through inference inferred meenings.

I also assume that the meanings of each word in the text are
accessible by reference to some kind of dictionary containing
information similar to that found in a conventional English dictionary.
In particular, 1 assume that words will be associated with a number of
different senses, and that each word-sense will have associated with it
a description of its meaning containing enough information to allow
the use of different senses of the same word to be distinguished given
sufficient context. However, at this stage I will make no assumptions
about how the meanings of the words are represented in the dictionary.

1 further assume that some sort of grammar of the language is
available, and also a set of (semantic) rules determining how different
senses of the words are likely to combine. Additionally, I assume that
no part of the manifest meaning of a sentence comes from its context.
ilence the manifest meaning of a sentence is that derivable from the



dictionary, grammar and word sense selection rules. The derivation of
the inferred meaning requires additional sources of information.

A system which could only obtain the manifest meaning of a piece
of text would be incapable of performing even quite simple tasks.
Consider the sentence':

(1) I would like spaghetti with meat sauce and wine.

This sentence has two possible structures which must be distinguished
for it to be properly understood. They are:

and
/ \
Structure A with wine
/ \
spaghetti meat-sauce

with
/ \
Structurc B spaghetti and
/ \
mecat-sauce wine

Structure A corresponds to a glass of wine accompanying a plate of
spaghetti and meat sauce, whilst Structure B corresponds to a plate of
spaghetti covered with wine and meat sauce. I think most people would
expect the meal corresponding to Structure A if they said sentence (1)
to a waiter. But note that the information necessary to select the
appropriate sentence meaning is unlikely to be part of the manifest
meaning as manifest meaning was defined earlier. In particular
consider the rather similar sentence:

(2) I would like pork with mushrooms and cider.

where the (or at least my) preferred meaning is the one corresponding
to Structure B above, although this is perhaps a weaker preference
than that in the case of seritence (1).

Of course, one might reply that the disambiguated meaning could
be made manifest, in my sense, by including in the dictionary entries
for pork and spaghetti information about ingredients they are likely to
be combined with in cooking, but I think this would be a rather
extended notion of a dictionary.

Since, then, the most appropriate meanings for sentences (1) and
(2) cannot be selected by the use of a dictionary, a grammar, and
sense selection rules, the most likely sentence meanings cannot be
selected on the basis of manifest meaning alone. What is required is
the application of fragments of an amorphous body of information (in
this case about eating habits and cooking) in a step by step manner
until a most likely sentence meaning is discovered. I think such
processing is only reasonably described as inference.



There are a variety of devices in natural language which directly
signal that the text has meaning beyond that which is manifest.
Amongst them are the use of pronouns and other anaphoric devices,
such as some uses of definite noun phrases and the need to use
textual context to select a unique meaning for a sentence. I will call
such devices problem signals. ‘

The meaning of a piece of text containing a pronoun can only be
fully divined if the intended referent of the pronoun can be found. For
example:

(3) They threw them peanuts.

is clearly somewhat lacking, semantically, because one cannot tell who
cither occurrence of "they” refers to. But if it is used in context:

(4) John and Mary went to the zoo. They saw some monkeys.
They threw them peanuts.

one gets a more complete picture, in which John and Mary throw some
monkeys some peanuts. This is not part of the manifest meaning of
the text and the association of "John and Mary” with the "they” of the
second sentence is a task probably requiring inference.

The selection of a unique meaning for a sentence by means of the

use of context is illustrated by the pairs®:

(5) John goes to the zoo often. He is very fond of one
particular seal.

(6) The royal proclamation was finally complete. The king sent
for his seal.

In both cases, if the second sentence is taken in isolation, there is no
means of determining the intended sense of the word "seal”. However,
when they are taken in the context pro(rided by the other sentence, in
each only one sense seems appropriate. For example (8) the preferred
sense is that of an animal; for example (6) some sort of marking or
stamping instrument.

My final example is of a rather different character. In each of the
above cases the presence of some problem which I have claimed
requires some form of inference for its resolution has been signalled
by some property of the text itself. In each of the above examples
part of the manifest meaning of the text fragment is that its meaning
is incomplete; pronouns signal that their referents should be
determined; elliptical sentences are often syntactically incomplete, or
failing that they have transparent semantic omissions; the occurrence
of polysemous words indicates that one of their senses must be
selected. Of course, if a natural language processing system ignored
the problem signal in either case it would not be obvious that the
referent of a pronoun had not been identified, or that a particular



sense of a polysemous word had not been selected, until the system
was subjected to some test of its comprehension of the input. The
following example is best illustrated by considering the response to a
simple test of comprehension.

Consider the paragrapha:

(7) John went to the restaurant and ordered. The waitress
brought him a hamburger and he ate quickly. He tipped the
waitress and left.

Now consider the following four questions:

(8) What did John order?
(9) Who served John the hamburger?
(10) What did John eat?

(11) Did John leave the restaurant?

1 do not think it is difficult to answer that John ordered a hamburger,
John ate the hamburger, and John left the restaurant. None of this is
manifest from the text; it can only be deduced by combining the
manifcst meaning of the text with information about the normal
course of events in a restaurant. Again to be able to pass this trivial
comprehension test the language user must be capable of applying
inferential powers.

The reader might have noted that the examples of anaphora and
the disambiguation of polysemous words involve the use of information
from a sentence in the text, but not the one in which what might be
called the problem signal occurs. This transmission of information
across scntential boundaries is not an essential feature of these
phenomena, but is, nevertheless, a rather thorny problem. It is, to
some cxtent, a property of my definition of what is manifest about the
meaning of a piece of text. Consider:

(12) John and Mary went to the zoo. They saw an elephant.

If one removes from my definition of manifest meaning the
assumption that one considers the whole sentence in isolation several
problems emerge. The computer system of [Wilks75b] would probably
be able to determine the referent of 'they” by using the information
from the dictionary entry for '"they” that it seeks a plural referent,
and the only available plural object is "John and Mary”. To do so it
would only use what I have called word sense combination rules. But,
for example, another computer system, that of [Cater82] would not
deduce the referent at the stage where only the lexicon, the grammar
and the the word sense combination rules (as they are represented in
his system) are active. The system of [Wilks75b] does not recognise

3This example is also taken from [Lehnert79].
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sentential boundaries as important (at least in comparison to clause
boundaries) and it is from here that the difference springs. However
the system of [Wilks75a] uses rules rules called Common Sense
Inference Rules which one would undoubtedly class as inference rules,
and 1 believe this would indicate that Wilks would broadly accept my
conception of manifest meaning, but that he might argue about the
size of text fragment one should consider to be the unit of manifest
meaning. 1 think it is safe to assume that there exist examples which
illustrate the same points whether one considers the largest unit of
text which has manifest meaning to be the clause, paragraph or even
a multi-paragraph unit.

1 hope this section has sufficiently emphasized that there are a
number of commonly occurring phenomena of natural language which
can only be dealt with satisfactorily if the language user has
inferential abilities. That is, to handle them one does not only need to
know the manifest meanings of the sentences but also their inferred
meanings. | do not pretend that this is a complete survey; it is merely
an attempt to show that some such phenomena exist, and list a few of
the more commonly occurring ones.

The next section describes a model of a computer system which
reflects the divisions have been made between manifest meaning and
inferred meaning in this section.

2.2 An Idealised Model of a Natural Language Processing System

This section presents a simple but convenient model for the
structure of a computer system which reflects the distinction 1 made
in the previous section between manifest and inferred meaning.

The model is divided into three parts, a semantic parser, a
generator and an inferencer®. For the moment I will ignore any
objections to this model, and any alternative models, whatever their
merits. Diagrammatically the three components are connected as
follows:

semantic semantic inferencer semantic generator
parser rep rep
Text Text

4This is now the standard word in the literature, repulsive
though some may find it.
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The semantic parser maps the sentences of an incoming text into
some form of semantic representation language. There are several
assumptions 1 make about the semantic representations produced by
the semantic parser. First, I assume distinct structures in the
scmantic representation language are produced for each meaning of an
input sentence. (This, of course, also implies that some strong
assumptions about the nature of meanings of sentences must be made)

Secondly, 1 assume the structures produced ‘to represent different
sentences with the same underlying meaning are identical. Thirdly, 1
assume the semantic representation language is well defined and
suitable for manipulation by computer.

| assume the semantic parser employs a dictionary, a grammar and
a set of word sense selection rules to produce these semantic
representations. Hence the representational structures it provides will
characterize the set of manifest meanings a sentence has. In particular,
note that I assume that the semantic representations output by the
parser will reflect any problem signals, in the sense of section 2.1,
which occurred in an input sentence. The parser has too little
information to resolve the problems they indicate.

The generator takes semantic representations, similar to those
produced by the semantic parser, as input, and converts them into
natural language. 1 assume that its operation is essentially the inverse
of that of the semantic parser.

When the system is reading a piece of text the inferencer will take
the representation produced by the parser and attempt to clarify it,
for example selecting among possible readings identified by the parser
and filling in elliptical and anaphoric references. In general, to do this
it would require a combination of abilities to keep track of textual
context, to manipulate general knowledge about how the world works,
and to perform various kinds of inference. I also assume the role of
the inferencer is to perform such other manipulation as Is necessary .
to allow the system to respond appropriately to an incoming text. The
appropraieness of the response would probably be determined by the
success of the system at performing some given task. Such a task
might be the production of other linguistic outputs, for example,
answering questions about the original text, or translating it into
another language, or actions, like moving toy blocks around a table (as
was simulated by the program of [Winograd72]).

Before turning to some previous attempts to build or design
computer programs with the abilities of such an inferencer, [ will
introduce two terms describing the distinction between the semantic
parser and generator on the one hand and the inferencer on the
other. 1 think it is clear that the dictionaries, grammars and sense
combination rules, which determine whether a sentence is likely to be
meaningful (given it is not placed in some bizarre context) are sources
of information about language. Whilst one might argue that since the
inferencer is an integral part of language processing the information it

11



uses is also information about language, it is more difficult to make
this case for, say, the information required to answer questions (8)-(11)
about text (7) in section 2.1. Thus a useful, but crude, working
distinction may drawn between linguistic knowledge which is the sort
of information manipulated by the parser and generator, and world
knowledge, which is the sort of information manipulated by inferencer.

2.3 Two Styles of Inference

One useful way to classify programs to do the job of the inferencer
in the above model is to categorise them as ezplanatory or predictive
in nature.

] classify as explanatory any inferencer whose fundamental mode of
operation is to take a new input semantic representation and attempt
to integrate it with what has gone before in the text. That is, it
_essentially provides an explanation of how an input sentence relates to
previous parts of the text.

I classify as predictive any inferencer whose fundamental mode of
operation is to take the text so far and analyse it to produce
expectations about the subsequent inputs. That is, from one part of
the text it attempts to predict the content of the rest.

In practice, predictive inferencers have generally used large units
of information about specific text topics to set up their predictions,
and explanation-based inferencers have exploited information about
more general situations, organising the information into smaller units.
But, of course, one can imagine the construction of a predictive
inference system based on small information units, and conversely an
explanatory inference system based on large information units.

Examples of inference programs which are fundamentally explanatory
are [Rieger75] and [Cater81]. Programs which are fundamentally
predictive include [Cullingford78] and [Dedong79]. A system which falls
into both classes is that of [Wilensky78)]. since, whilst the program
attempts to find explanations for new input, the way earlier inputs have
been explained can significantly affect the way later inputs are
processed, thus introducing an element of prediction. This is also true
of the unimplemented system of [Charniak72].

In general explanatory inference programs seem to offer greater
potential coverage whilst predictive inference programs offer at least
the hope of greater efficiency. Explanatory programs are unlikely to be
thrown by an unexpected turn in the text, since they tend to have
available, at worst, knowledge which is always true, and this may be
used to provide some sort of explanation for practically any input. On
the other hand in order to achieve this explanatory programs must of
necessity work very hard to explain the perfectly ordinary.
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Predictive inference systems offer out the hope that perfectly
ordinary material may be processed very rapidly: recognising that
some utterance belongs to the set of utterances that are usual in a
given context is probably more computationally efficient than trying to
explain why they are usual. ' )

It seems likely that future very powerful inference systems for
natural language processing will combine both predictive and
explanatory inference. Clearly, systems which combine both forms of
inference system cannot be built until the technology necessary for
the construction of both explanatory and predictive inference systems
is available. The necessary technology is either simply unavailable or is,
as yet, too new to have undergone a thorough explorations of its
strengths and limitations. Much of the remainder of this thesis
constitutes an attempt to examine and improve the technology for the
construction of predictive inference systems. This concentration on
predictive inference is done only in the interests of setting reasonable
boundaries to the current project. It does not imply any fundamental
commitment to one form of inference system rather than the other.

2.4 Scripts and Frames

This section briefly summarises two more or less contemporaneous
papers. One, [Minsky74], concentrates on the proposal that information
manipulated by inference systems should be organised into large units,
around particular topics in the case of text. The other, [Schank75],
primarily proposes techniques for the use of expectation in inference,
but at the same time suggests the use of large, topic-specific,
knowledge structures. The predictive inference systems which will be
discussed in subsequent parts of this chapter are all, to one extent or
another, descendants of these two papers.

The essence of Minsky's idea is contained in the very first
paragraph of the paper:

"It seems to me that the ingredients of most theories both in
Artificial Intelligence and Psychology have been on the whole too
minute, local and unstructured to account either practically or
phenomenologically -- for the effectiveness of common-sense
thought. The ’'chunks’ of reasoning, language memory and
perception ought to be larger and more structured; their factual
and procedural contents must be more intimately connected in
order to explain the apparent power and speed of mental
activities.” (page 1)

He then goes on to propose a class of structures for representing
stereotyped situations called which he calls frames. Frames are
networks of nodes and relations the highest level of which are things
which are always true about the situation, the lowest level being slots
which are filled by the details of a particular instance of the situation.
He envisages much of the power of the theory as coming from the
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inclusion of expectations and presumptions within each frame. He also
proposes that the frames should be linked by an information retricval
network which is responsible for proposing new frames when an
existing one appears inappropriate, and that slots should be filled by a
matching process controlled by constraints from within the frame.

However; it should be emphasized that much of [Minsky74] is vague
and open to many different interpretations.

Schank and Abelson in [Schank75] propose the use for computer
natural language understanding of scripts representing such things as
the normal course of events when eating a meal in restaurant, or
when travelling by subway or by bus. Schank and Abelson justify the
use of such large complexes of information by considering the
exploration of the expectations set up by reading a sentence. The paper
then says:

“For our purposes a script is a predetermined, stereotyped,
sequence of actions that define a well-known situation. A script
is in effect a very boring little story.”

Elsewhere, in [Schank78], a retrospective and rather different
justification of the script approach is given. It begins with a discussion
of the proposal of causal chains as a mechanism for linking together
the propositions in a multi-sentence text. Causal chains are a
combination of original propositions (that is those which have been
derived directly from the input text) and inferred propositions linked
by bonds describing their relationship in terms of:

a) one proposition being the reason for another;

b) one being the result of another;

c) one enabling another to take place;

d) a proposition stimulating another which is an idea.

Schank notes that not all texts can be linked together in this way
and suggests that the addition of scripts, seen as "pre-packaged
sequences of causal chains” (page 28), is the answer. His view is that
scripts are appealed to by the author in situations in which he can
assume that the reader has invoked via a script a pre-packaged causal
chain which is accessible merely by allusion.

Neither Schank and Abelson nor Minsky are very specific about the
information which should be contained in a script or frame. However
in [Charniak75b] there is a fairly detailed, if informal example of what
Charniak calls a supermarket frame. It should be noted that this is
precisely the kind of structure called a script in the terminology of
[Schank75].
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Goal: SHOPPER owns PURCHASE-ITEMS
SHOPPER decide if to use basket,
If So Set Up *cart-carry Fi
SHOPPER obtain BASKET *cart-carry
SHOPPER obtain PURCHASE-ITEMS
| Method-suggested
\-> Do for all ITEM in PURCHASE-ITEMS
SHOPPER choose
ITEM in PURCHASE-ITEMS - COLLECTED
SHOPPER at ITEM
Side-condition COLLECTED at ITEM also
| Method-suggested
\-> *cart-carry (SHOPPER,
BASKET,
COLLECTED,
ITEM)
SHOPPER hold ITEM
ITEM in BASKET *cart-carry
COLLECTED := COLLECT + ITEM
End
SHOPPER at CHECK-OUT-COUNTER
SHOPPER pay for PURCHASE-ITEMS
SHOPPER leave SUPERMARKET

Charniak’'s supermarket frame

The items all in upper-case, like 'SHOPPER' are frame wvariables,
the items in all lower case, like 'at’ are constants which in an actual
implementation would be expressed in some suitable semantic
rcpresentation language. Those items with initial capitals, like ‘Do’
indicate the flow of activity through the frame. 'Cart-carry’ is a sub-
frame, as indicated by the *, which describes the normal process of
picking up goods in a supermarket in the approved manner. The frame
variables are assumed to have associated with them descriptions of the
appropriate kinds of entities which could fill them (SHOPPERS are
adult humans, PURCHASE-ITEMS are things one might buy at a
supermarket, and so on). Note also that the order of the statements
in the frame indicates the temporal order in which they must occur.

If one ignores its lack of detail, this is a reasonable general
description of what usually goes on in shopping in a supermarket, and
is precisely the kind of information frames were designed to represent.

As indicated by this example there is a great deal of confusion in
the literature about the use of the words "script” and “frame”. In
general those who have followed Minsky most closely have used the
word "frame” to subsume ‘script” (see, for example, [Bobrow77a] and
[Bobrow77b]). Schank and his colleagues have never used the word
“frame' to refer to any of their information structures, and have
generally only used the word "script” to refer to pre-packaged
descriptions of stereotypical sequences of actions and states, although
some of the so-called sketchy scripts described in ([Delong79] are
perhaps better described as pre-packaged prototypical text
representations. In the remainder of this chapter I will use the names
used by the authors of the documents under discussion at any



particular point. The reader should note that this means the
terminology will reflect the general inconsistency in the use of the
word "script” and "frame’ in the field.

In the latter part of the thesis I will, however, confine the use of
the word "script” to action oriented stereotyped descriptions, and the
word frame to representations of more static situations.

2.5 Some Early Attempts to Implement Script- and Frame-based Systems

Before the detailed discussion of some of the projects which
influenced Scrabble, 1 want to draw out some distinctions between
different views of the ideas in [Minsky74] and [Schank?75] as reflected
by subsequent work.

There are two primary lines which have been followed from these
two sources. The first 1 will call structured retrieval networks, the
second 1 will call predictive processors. By structured retrieval
networks I mean those systems which emphasize the use of frames to
organise atomic facts into clumps about single topics in order to ease
the problems of retrieving the facts relevant to a given stereotypical
situation. By predictive processors | mean those systems which
emphasize the use of frame-like representations to set up expectations
about what will occur after some given event has occurred. At least
until 1979, within the natural language processing community
predictive processing was associated exclusively with Schank and his
collaborators, whilst structured retrieval networks were associated with
[Fahlman79] in particular, although many whose main precursors were
the workers on semantic networks such as [Quillian68], for example
[Hendrix79], were undoubtedly influenced by the views expressed in
[Minsky74], if only indirectly. -

As was pointed out in section 2.3, the focus of this thesis is on the
technology for predictive systems. Although structured retrieval
networks come from the same stable, as it were, they are not
predictive inference systems in any sense. They have been included
here only for the sake of completeness when discussing frame and
script based computer systems, and there will be no significant further
discussion of them.

However, predictive processing systems require sophisticated means
of retrieving suitable predictions given the context, and the natural
organisation for the predictions is to clump predictions about the
same topic together for retrieval purposes. Thus predictive processing
systems require subsystems with similar properties to the structured
information retrieval network systems.
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In the discussion below 1 will concentrate on three major attempts
to exploit frame/script technology. The first two, [Cullingford?&] and
[DeJong79] are are discussed in detail because they are the largest
scale predictive processing systems constructed to date. The third
attempt, [Charniak79], although not unambiguosly a predictive
processing system is discussed in detail because it has had one or two
significant influences on the Scrabble project.

Before turning to these projects two noticeable absentees should be
mentioned. They are the GUS and KRL-O projects ([Bobrow77a]} and
[Bobrow77b]) carried out at XEROX PARC and the PAL project of
[Sidner79]. Both GUS and PAL are systems which carry out a dialogue
with a human user, and this is one of the reasons for their rather
scant treatment. It is often rather difficult to relate resuits from
systems which can interject their own responses into the stream of
incoming natural language to the needs of text processing systems
which cannot indulge in such interaction. Secondly, both KRL-0 and
the FRL system which underlies PAL are primarily information retrieval
systems and thus are difficult to compare to Scrabble. The most
relevant work done with the KRL-0 system was the construction of a
model of SAM, and so does not call for independent discussion here.

2.6 SAM - Cullingford

Probably the first attempt to build a script- or frame-based natural
language understanding system was the SAM system ([Cullingford78],
[Schank75¢], [Schank77]). It was a script-based system, and was built
around the notion of prediction. The complete SAM system was the
product of one the most ambitious natural language processing
projects undertaken to date. The complete system was capable of
reading English texts and summarising them, paraphrasing them,
answering questions about them or translating them into a variety of
other languages. Of course, it could not do any of these tasks
" perfectly by any means, and the texts it could handle were short and
concerned a limited range of topics. :

It ran as a six module system, the modules being:

1) an English to Conceptual Dependency parser called ELI (based
on [Riesbeck75]),

2) the PP-MEMORY, which is probably best described as an
inference system specialising in the analysis of nominals,

3) SAM itself, the script application program,
4) a question answering system, QUALM [Lehnert78],

5) a summarising and paraphrase system, and
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6) a generation system capable of producing output in various
different natural languages.

A distinctive feature of SAM is that the various modules all
intercommunicate using a semantic primitive-based representation
scheme called Conceptual Dependency ([Schank75b]. Very briefly,
Conceptual Dependency is a semantic primitive based representation
system which combines the use of a small number of primitives,
» primarily oriented towards the representation of the meanings of verbs
and adjectives, with a structuring scheme organised around a small set
of case labels.

In outline, when processing a text control passes between SAM's
six modules as follows. First, an input sentence is mapped into its
Conceptual Dependency representation by ELI. Next, the Conceptual
Dependency structure produced by ELI is processed by the PP-memory,
which does some simple reference identification for anaphora markers
in the Conceptual Dependency structure, and also assigns. unique
tokens for any nominal representations in the structure.

Next control passes to SAM proper, the script applier. The script
applier is itself a very complicated program. Crudely, the script applier
attempts to match the expanded Conceptual Dependency structure
output by the PP-memory against the Conceptual Dependency
structures it expects. These expected structures fall into two
catcgories. First are those which indicate that the input sentence may
require a new script for its analysis. Second are those which represent
expected continuations of an input text which has already been partly
analysed by some specific script. If the input Conceptual Dependency
structure falls into the first category a new script will be loaded,
setting up new expectations in the second category. Whichever
category the input structure falls into, the precise way the input
material matches the loaded script’s expectations will be recorded.

Once the matching process has been completed, control is passed
back to ELI, and the process is repeated for the next sentence in the
input.

When the whole text is read the story representation is passed
over for processing by the other the question answering system or the
summarising and paraphrasing system, which use the generation
system to produce their results in any one of a number of different
languages. The story representation is formed by the records of the
way the input material as a whole matched the expectations of the
scripts used to analyse it.

The focus of this section is process by which the text is analysed,
so no detailed discussion of the modules which operate on the story
representation will be presented here. The summarising system will be
briefly discussed in section 2.10. )
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One of the problems of describing the SAM system is that the
authors are attempting to make some fairly strong psychological
claims whilst not presenting evidence for their claims by experiment in
the usual manner for psychology. Rather, they make a variety of
intuitive appeals on the basis of the workings of their programs. This
position tends to make accounts of the programs rather confusing,
especially if one is attempting to examine the programs as programs
and not as psychological models.

The discussion presented here focuses on the SAM program itself:
there will be little mention of the other modules which support the
script application mechanism in the complete SAM system.

SAM has a number of problem features which would present
serious difficulties if any attempt were made to extend SAM: there are
six problems features considered here, as follows:

1) the use of so-called causal chains,

2) the distinction between different sorts of variable items in
scripts,

3) the possible interrelations between scripts,
4) the mechanism used to activate scripts,
5) the use of non-script-based inference, and

6) the representation of nominal-type objects used in the system.

Causal Chains ,

Causal chains link the various expectations of a script. It is not
clear how they increase the efficiency of the system, or extend the
possible range of language bchaviour the system can handle. For
example, to analyse the physical movement of an object in terms of
small movements and the locations of the object between them, as
seems to be demanded by the causal chain mechanism, leads, so far as
I can see, most naturally to an infinite regress, and at the same time
does not give any better expectations about the utterances which are
likely to occur in a text for which a given script is appropriate. I do
not consider:

(13) We went from Liverpool Street to Kings Cross by tube.
First we were at Moorgate, then we were at the Barbican,
then we were at Farringdon.

to be the most obvious adult description of a trip by underground.
Indeed, if the script applier were merely to absorb the second
sentence as an expected utterance about a tube trip I think it would
be likely to be in error. It seems to me that the system should make
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some sort of attempt to analyse this sentence in terms of why the
author would write it, and to classify it as an expected utterance
about a tube trip seems likely to obscure this view. Note that at the
same time the events it describes are perfectly ordinary things to
occur on the London underground journey from Liverpool Street to
Kings Cross: it’s just strange to talk about them, at least if the author
is an experienced traveller. Of course, if the author was a child
describing his or her first ride on the underground, such a text might
be considered quite ordinary. However, the system should establish
that the author is such a child before processing the text as an
ordinary one about an underground journey. Equally I do not wish to
imply that the text is in any sense illegitimate: it merely fails to follow
the stereotype for such a text, even though the journey described
does follow the stereotype for such journeys.

Variable Items in Scripts

Another problem feature of SAM is the separation of script
variables and settings. Settings are the physical locations in which
what might be called parts of the action take place. Since some of the
example script variables include, for instance, in the subway® script,
such diverse things as the patron, a train and a strap, 1 cannot see
the advantage to be gained by placing, for example, the inside of a
subway.gar in a completely different class of objects (physical settings)
associated with subways.

Interrelations between Scripts

Expectations in SAM are hierarchically organised. At the top-level
there are situations associated with each knowledge domain with which
SAM deals. Situations are, in effect, very high level scripts. They are
divided into segments and each segment has a number of scripts
which can fill it. For example, the situation $TRIP®, organises all the
reasons SAM knows for going somewhere, and all the ways of getting
there and back. The hierarchy formed looks like this:

$TRIP situation
$GOTRIP 8GOALTRIP S$RETURNTRIP segments
8BUS SRESTAURANT 8BUS scripts
8TRAIN $MUSEUM STRAIN
$DRIVE $SUPERMARKET  $DRIVE
$SUBWAY $SUBWAY

5In the American sense.

8The objects prefixed by "8’ are the names of scripts and
script-like objects.
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Additionally, scripts are divided into scenes, which are elements of
the action which occur in a particular place, and fracks, which are
variants on the same scriptal theme. For example, "self service” and
“table service” are two of the tracks in the restaurant script. It seems
to me that there are no practical functional distinctions between the
various levels of this hierarchy, except perhaps in determining whether
a script or an ordinary Conceptual Dependency structure can fulfil a
particular expectation.

This hierarchy effectively defines the possible interrelations
between scripts: scripts may only be related to one another by going
up the hierarchy of scripts and then down again. Since the hierarchy
becomes more general the further up one goes, it is impossible to
make the detailed expectations of one script interact with and support
the detailed expectations of another. In particular, the possibility of
two low-level detailed scripts being simultaneously active and used to
analyse the same piece of text is not considered. This makes it
impossible to analyse text like:

(14) John and Mary went to the zoo. After they had seen the
monkeys they felt hungry, so they went to the restaurant.
They could see the lions and tigers from their table.

correctly, that is without recognising "They could see the lions and
tigers from their table” as being unexpected. It can only be expected
if the zoo and restaurant scripts are allowed to interact directly,
which Cullingford's scheme does not allow for.

Script Activation

A further problem feature of SAM is the technique used to
activate scripts to see whether they apply to a particular text
segment. It appears from [Cullingford78] that the essential mode of
script activation is as follows: each script’ has a set of patterns,
called headers, which describe the Conceptual Dependency
representations of the utterances one might expect to begin a text
segment for which the script is appropriate; all scripts (and therefore,
I infer, all script headers) are arranged in a particular order, with the
most widely applicable (that is to say, situations) first. When a
Conceptual Dependency structure enters the system it is matched
against cach header in turn. If a match is found the full set of
expectations associated with the script is added to the list of script
header patterns, as are those associated with scripts higher in the
hierarchy. The list is then ordered so that the expectations associated
with a script one or more of whose headers have been matched are
searched before any script at the same level of the hierarchy, but

’In the rest of this section the word "script” should be taken
as subsuming script, situation or situation segment.
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after any further up the hierarchy.

There is a very serious problem with this algorithm. Consider an
utterance whose Conceptual Dependency structure neither matches the
expectations of any active script, nor the headers of any other. Before
it is determined that this structure is unexpected, in the sense that
the SAM system has no means of dealing with it, all the expectations
of the currently active scripts, and more to the point, all the headers
of allthe scripts in the system must be examined. Quite a simple script,
for subway journeys, has four headers, so one is talking in terms of
examining at least four times as many patterns as the system possesses
scripts to determine that the system cannot deal with an utterance.
The problem is further exacerbated by the use of various inference
rules (described in more detail later) to expand the range of
Conceptual Dependency structures a given pattern may match. Such a
heavy burden, when attempting to deal with an utterance with which
the script system is in principle unable to deal considerably lessens
the apparent advantages of using scripts in language analysis.

Non-script-based Inference

The SAM system also has a set of processes which attempt to
recognise input Conceptual Dependency structures which, whilst they
do not correspond exactly to a pattern the system was expecting, are
nevertheless functionally equivalent to some pattern the script is
expecting. There are nine classes of inference rule discussed by
Cullingford. They include Immediate-Result Inferences, which, for
example, allow a pattern which expects a description of an object
being physically moved from point A to point B to match an utterance
which states that the object is at point B. Another example is
Transitivity of Proximity which allows a pattern expecting A to be near
B to match a statement that B is near A®

There are two shortcomings in the Cullingford's discussion. First,
whilst it is mentioned that these processes are intimately associated
with patterns, no discussion is made of whenthese inference rules are
applied. There are at least two possible places the rules may be
applied. The first is immediately a pattern is tried but fails, the

8The rules are rather more complicated than | have indicated.
I do not want to imply that the rules are completely naive.

®Cullingford mentions this list without actually describing how
it is managed in any detail. [DeJong79], in his discussion of SAM,
describes a search list, which seems to correspond to the high-
priority search list of Cullingford, and describes briefly how script
headers are added to it, on the basis of predictions from active
scripts and the mention of what might be called suggestive objects
in the text. An example of the latter would be that mention of an
ambulance would cause the addition of the hospital script. The
source of this information is not clear.
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second is at the end of the high-priority search list® . A third
possibility is at the end of all the patterns, but as | mentioned earlier,
there are likely to be a large number of script headers available in
any practical system, thus making this approach unattractive. However,
the process of extended matching is likely to further aggravate the
system's problems with dealing with an utterance which can neither
act as a header for one of the systems scripts nor does it match the
expectations of the currently active scripts.

This difficulty with inferencing might be bypassed if the
"discrimination net which decides which inferences, if any, should be
made'™® could very rapidly determine whether a match could be
synthesised. However, it seems rather unlikely (to say the least) that
there exists an algorithm to do this which is faster than applying
rules and testing for a match directly.

Cullingford acknowledges that there are many texts which SAM
could not analyse even in principle. The point here is: what is
appropriate behaviour if the system is presented with such a text, as
will inevitably happen if SAM were used practically. It seems clear that,
whatever else it should do, it should not use large amounts of
computational resources on efforts to apply scripts to a text when
such efforts are bound to end in failure.

The Representation of Nominal Concepts

My final point concerns the representation of nominals used in
the SAM system. Consider the example of what is referred to as the
PP" class PERSON on page 165 of [Cullingford78]:

1[Cullingford78], page 120.

Upicture Producer: the Conceptual Dependency name for
nominal-type concepts.
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PERSON:

PERSNAME personal name

SURNAME family name

AGE age

RESIDENCE the place where this person lives

GENDER sex

TITLE a title such as "Mr.” or "Premier”

OCCUPATION a long term occupation such as
"medical doctor”

EMPLOYER the organisation the person works

for

FUNCTION a short-term function such as driver

POLITY a political unit the person serves
in an official capacity

FAMILY a pointer to the persons family
group

HUSBAND/WIFE/SON etc.
a pointer to another person related
to this one

It seems to me that, for example, a political unit a person serves
in an official capacity is an unlikely candidate for a general purpose
representation of facts about people. However, it does seem a perfectly
reasonable thing to include in a role filler specification of a script
about official visits. 1 see this representation of nominal concepts as a
mistaken attempt to remove overmuch of the analysis of nominals into
the non-scriptal part of the system.

Summary

To summarise, there are a number of serious problems with SAM.
Amongst the most serious are the lack of a tolerably expensive script
activation algorithm; restrictions on the ways scripts may interact
which cause unnecessary difficulties when processing certain texts; and
the use and control of non-scriptal inference.

2.7 FRUMP - Dedong

The FRUMP system of [Delong79] is rather different from the
other systems described in this chapter. It has a parser as an integral
part of the script application and inference mechanism so it does not
fall into the three box model of section 2.2. Its other distinctive
property is that it does not attempt to analyse the whole of the text
presented to it, it only skims (to use Delong's word) its input.

In outline the operation of FRUMP is as follows. The system
begins by scanning the input story left-to-right for a so-called
structure building word, typically the main verb of the first sentence.
The structure associated with the word, which will be a skeletal
Conceptual Dependency structure, is processed using a data-structure
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called a Sketch Script Initiator Discrimination Tree. This structure
contains predictions about the possible form of the input and
depending on the match between the words of the input and these
predictions one of the systems Sketch Scripts will be selected, provided,
of course, the system has a Sketchy Script which is appropriate for
the analysis of the text. Once such a Sketchy Script has been
activated it is used to provide predictions of the form of the
remainder of the text. The predictions are compared with the input
text by the Substantiator, a combined parser and general inference
mechanism, which uses crude heuristics to try to find input material
"which satisfies the Sketchy Scripts predictions. The system simply
skips over parts of the text which do not satisfy its predictions.
Although the system is crude in many ways, and often misanalyses
input texts (for example, by using inappropriate Sketchy Scripts to
analyse them), FRUMP analysed many more different texts than any
previous natural language understanding system, and operated with
great computational efficiency.

1 want to concentrate on FRUMP as a script applier so I will not
dwell on it as a parser. However, it would be quite impossible to pass
over this aspect of the system because it undoubtedly profoundly
influenced the design of the system as a whole. DeJong emphasises the
advantages of his system in terms of robustness, that is, its ability to
understand, or at least deal with, texts for which it has inadequate
vocabulary, or which are ill-formed in some way. It is not clear to me
that a system organised around the three box model of section
2.2would do a great deal worse than FRUMP provided that it had a well
developed vocabulary and it had some means of error recovery’?. A
stronger argument for this architecture, which DeJong points out, is
that the inferencer's!® understanding of context and the expectations
and preferences associated with it can be used at the lowest level of
language processing, for example to prefer particular word senses
during text analysis. Though the communication of such information
between the parser and inferencer is acknowledged to be important,
no system prior to FRUMP had possessed a natural means of passing it
over. Thus the SAM system of [Cullingford78] and [Schank75c] actually
modified the semantic parsers initial dictionary entries, whilst
processing the text, in order to express preferences based on high-
level pragmatic information.

The main issues FRUMP deals with as a script applier are: script
selection, the role of inference when attempting to satisfy predictions,
and what I will call the problem of hallucinated matches. They will be
discussed in this order.

2In any case [Granger7?] has given some indications of how this
might be done for missing vocabulary in such a system.

BIn the context of FRUMP, the PREDICTOR.
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Script_Selection

DeJong describes three different script activation techniques
which are used in FRUMP. The first of these is Explicit Reference
Activation, which appeérs to correspond to activation on the mention
of a relevant key word in the text. Unfortunately there is no clear,
technical, example of this form of activation, and it is not obvious how
it differs from Event Induced Activation, to which 1 will come in a
moment. The second is Implicit Reference Activation, in which the
activation of one script is caused by the activation of another. For
example, mention of a major earthquake causes the activation of a
script to deal with text about corresponding relief operctions. Finally
there is Event Induced Activation.

To describe this last form of activation it is necessary to spend a
few moments reviewing in more detail how the text analysis in FRUMP
works initially. If there is no current context, which means here that
there are no active scripts, the input text is scanned from left to
right until what is known as a structure dbuilding word is found. A
structure building words appears to be any word which has a word
sense associated with a particular Conceptual Dependency act or state.
The main verb in the sentence is almost always a structure building
word, but many nouns, in particular nouns which describe actions,
such as "earthquake"”, and "riot”, will also have this property. This
structure selection operation appears to me to be the only bottom-up.
operation in the whole system, but DelJong rather hedges this point in
his conclusion.

The skeletal Conceptual Dependency structure associated with the
structure building word is then passed to the so-called Sketchy Script
Initiator Discriminator Tree (SSIDT), whose nodes are tests and whose
leaves are the names of scripts to be activated should all the tests
above them be true. The first set of tests to be applied determine
whether the structure built is a STATE or an EVENT, the next set
determines which Conceptual Dependency primitive the structure
contains, and lower tests examine particular role fillers. If there is
insufficient information available to satisfy a test a prediction that it
is satisfied is made. The SUBSTANTIATOR then attempts to confirm or
deny this hypothesis by using top-down text parsing and inference as
it does for predictions from any source. The tree is traversed on the
basis of the results of the tests, and eventually either the system
comes to a leaf indicating that a particular script should be activated,
or to a point at which it is clear no script can be associated with the
text segment. In the latter case the system resumes scanning the text
from left to right until it finds another structure building word.

There are, however, some technical problems with this approach.
DelJong says that information gained during the process of selection
should be available to the initiated script. Precisely what information
is retained and how it is passed to the process which initiates scripts is
not made entirely clear.
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Consider:

(15) Tokyo was shaken yesterday by an earthquake which
measured 6.3 on the Richter scale.

It appears that to deal with this, FRUMP will select the earthquake
script on the basis of "Tokyo was shaken by an earthquake”. To do so
it must determine that Tokyo is a piece of ground'. This is not
neccssarily a cheap operation as it essentially involves an inferential
process.

Let us assume, for the moment, that in order to save storing
redundant information the dictionary entry for "Tokyo” is only marked
with a feature like CITY. Then, if one wanted to determine whether or
not Tokyo is a piece of ground, inference rules might have to be
applied which could deduce that usually cities are polities, and, in the
absence of information to the contrary, polities are associated with
pieces of ground.

DeJong says that any partial Conceptual Dependency structure
built during the traversal of the SSIDT is retained. But there is
probably no need to retain the fact that Tokyo is a polity if the
carthquake script is activated. Equally if, say, an election script is
activated, there is probably no need to store the fact that Tokyo is a
piece of ground. Thus, it seems, to deal with quite a straightforward
example, DeJong must either carry around information which might not
be needed by the script activated; abandon his principle that
conceptual role fillers should only be examined once; or mark in the
SSIDT nodes which information should be retained if a given script is
activated. None of these seem satisfactory.

It should be pointed out that the Sketchy Script Discriminator
Tree technique is essentially equivalent to the script selection method
of [Cullingford78], but replaces the linear search used there by a fast
parallel search which minimises computation. DelJong acknowledges this.
Though Delong's approach to the selecting scripts on the basis of
incoming text or its representation has a number of drawbacks, it
constitutes an answer to many of my criticisms of [Cullingford78]. In
particular, it has the property that it can rapidly determine that no
script can be initiated from a given structure, if this is the case.

There is another aspect of SSIDT which I want to bring out. I
think it is rather doubtful whether the particular tests around which
they are organised are as useful as they could be. DelJong points out
that they are fundamentally associated with a primitive decomposition
of word meanings. However, he does not discuss the advantages and
disadvantages the particular scheme he uses, namely Conceptual

14See [Dedong79] figure 3.1. Note that the word "earthquake”
will only be seen by the system after it has determined that it is
the ground which is shaking, as it tries to determine whether the
cause is an explosion or an earthquake.
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Dependency. Given that the intention of SSIDTs is to find a script
which is likely to apply to a text segment with the minimum of
computation, it seems rather strange to use as one's highest level
indices the primitives of a representation system primarily fitted to
the discrimination of the meaning of verbs and adjectives; or, at least,
actions and states of nominal concepts. For example, DeJong discusses
in detail the script initiation process for the sentence:

(16) Israel has sent troops into Lebanon.

It seems to me that the word "troops” is a much better place to start
looking for scripts to initiate than "sent”, De Jong's departure point.
Its meanings are much more specific than sent and it has a sense
very closely associated with the script eventually initiated, $FIGHTING.

However given the processing cycle of FRUMP, "sent” has virtues
as a place to start the script initiation process. Its very generality
means that there is almost bound to be some (probably large) set of
predictions which can be made as to the possible surrounding words.
That is to say, it is a good place to start analysing the sentence in
which it occurs. But to say this is to make FRUMP look much more
like many other more conventional semantic parsers which are based,
implicitly or explicitly, on the notion that the verb is central to the
clause. These include [Riesbeck?75], [Wilks75b], [Boguraev79] and
[Cater80].

Taking these two features into account, the script initiation
technique described in [DeJong79] is rather ambivalent between the
demands of accurate script selection with the minimum of computation
on the one hand, and the attempt to process text without a
conventional semantic parser on the other.

Non-scriptal Inference

The role of non-scriptal inference in FRUMP is also problematical.
As in SAM, if a match cannot be made between a script's predictions
and the text, a rule-based inference system may be invoked. In fact in
FRUMP there is no firm distinction between the parsing of the text
and the application of inference rules. Whether an inference rule or a
parsing rule is applied in the attempt to satisfy a prediction is decided
on the basis of the pre-specified cost of the application of the rule
and the certainty of its result, should one be produced. In practice, it
seems, parsing rules are normally applied before inference rules during
the processing of a given text segment.

In FRUMP there are two distinct sorts of inference rule
application process. One is carried out by the Conceptualization
Inferencer, and the other by the Role Inferencer. Unfortunately, the
discussion of the Conceptualization Inferencer in [Dedong79] is too
brief and vague for useful comment. v
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The function of the Role Inferencer is to attempt to satisfy a
prediction that a Conceptual Dependency role is filled with a particular
kind of filler. Although the Role Inferencer has access to many rules,
they are indexed by the conceptual primitives to which they apply (it
appears such information is always available when the Role Inferencer
is called), and the case role which they till. This, claims DeJong, allows
the rapid selection of rules which may be able to satisfy a prediction:
typically these are few in number. Rules have associated with them a
crude means of calculating the cost of their application, and FRUMP
may avoid selecting a particular rule because it is too expensive. This is
, in general, an attractive scheme for organising inference in this
context. It has, however, one serious drawback. If FRUMP is presented
with an unsatisfiable prediction, the cost of recognising it as such is
very high compared with satisfying any satisfiable prediction. In
particular, the total time spent in recognising it as unsatisfiable is not
bounded: every rule, both parsing and inference, which might possibly
satisfy it and which has a cost estimate less than the current maximum
permissible cost will be applied in the attempt to satisfy it. This is a
product of limiting the maximum cost for a given rule. A technique
which limited the maximum total cost spent attempting to infer a
given proposition, like that proposed in [Norman75!. would not have
such a defect. DeJong's argument that such a scheme would make it
difficult to adjust the maximum permissible cost is unconvincing.

Hallucinated Matches

I now want to turn to what I will call the hallucination of
matches. 1 mean by hallucinated matches the misassignment of a text
to a script and the subsequent misanalysis of the text on the basis of
that assignment. The DeJong's examples contain several instances of
FRUMP completely missing the point of a story. He is rather dismissive
about them, pointing out that they are produced because FRUMP
either lacks a script or because its vocabulary lacks a particular word
sense. But both of these possibilities are important. DeJong admits
that not all texts are scripty, even in the news story domain.
Consequently there are bound to be some stories for which the system
does not have an appropriate script. In addition, it is in the nature of
language that it changes constantly, so no natural language system
can have a complete, static lexicon. Now if DelJong did not claim that
FRUMP was a robust system these would be unimportant problems. I
cannot see that a system can be called robust when it produces
complete misanalyses and does so without leaving any indication that
it has had difficulty processing the text. It would probably be better if
the system produced no analysis at all and indicated that it could not
process the text. '

I have called this problem the hallucination of matches because
in effect what FRUMP has done is to see in the incoming text a text
which fits its expectations, regardless of what the input text actually
says.
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This problem arises because FRUMP simply skims over sections of
text which do not match its predictions. It thus effectively fails to
process in any way things which are unusual in the text. The direct
inclusion of material which was not expected by the system would at
least give some indication in the summary that the text had been
misanalysed, but at the price of losing the interlingual representation
of summaries. It would also have the the effect of relegating the
pragmatic prediction-based parsing section of the program from its
central role in the extraction of summaries to the position of merely
identifying the most straightforward parts of the text.

Before leaving FRUMP, one final point needs to be made. Deldong
provides very little discussion of the generation of summaries. The
output of FRUMP is a Conceptual Dependency structure, apparently
generated by a Conceptual Dependency template plus the bindings of
script variables during the analysis. This structure is then handed over
to programs which can, apparently, convert it into any one of a number
of different languages. However there is no discussion of how
summaries are generated when more than one script has been used to
analyse a text!®, or any one of a great many other complex cases
which one can envisage occurring.

2.8 Ms Malaprop - Charniak

The Ms Malaprop program of [Charniak79], [Charniak78a], and
[Charniak77], is not a full-blown natural language processing system. It
takes as its input, and generates as its output, predicate-argument
formal language expressions which Charniak asserts would be fairly
straightforward to extract from and map into natural language. Thus it
could form the central inference box of the three box idealised
natural language processing system described in 2.2. However, it has
been influential in the development of Scrabble in a number of ways,
so some discussion of it is in order.

The system is based on a formal and quite well specified frame
representation scheme. Unfortunately, almost all Charniak's discussion
of it is based an a single example frame describing how to paint some
everyday object, like a wall or a chair. All the example inputs (which
are expressed in English in the papers) take the form of two or three
sentence stories followed by a question and answer. Also there is no
discussion of how one would select an appropriate frame for a text
segment, nor what would happen if a statement in the text could not
be integrated with any frame instance. All of this is quite deliberate

5De Jong does consider texts requiring the use of more than
one Sketchy Script, but only texts requiring the use of Sketchy
Scripts linked by so-called Issue Skeletons are discussed. These
Issue Skeletons are equivalent to single sketchy scripts from the
point of view of summary generation.
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on the part of Charniak, but nevertheless makes it difficult to analyse
Ms Malaprop in terms of its implications for building systems capable
of seriously performing some language processing task.

Even so, there are a number of criticisms which may be
legitimately levelled at this work.

[Charniak78a] dwells on the problem of capturing common-sense
knowledge about painting in his frame representation. It is never made
clear why the frame representation is more useful for this purpose
than another representation scheme. In particular, there is no attempt
to describe why starting with the frame representation gives better
results than starting with the same information expressed in any other
form of representation, for example an unclustered semantic network.

Secondly, it seems to me that Charniak takes for granted what
[Wilks76] calls the Do It Hypothesis, that:

"Computer understanding of language is essentially connected
with our ability to perform certain physical actions: those
discussed by the language. Computers only understand language
about certain activities if they have performed, or are able to
perform, them.”

This hypothesis certainly remains unproven, so it is not at all clear
that the kind of description of painting proposed by [Charniak78a] has
a central place in a natural language understanding system, as
Charniak seems to have believed.

However, disregarding the type of information Charniak chooses
to express in his frame representation, there is one aspect of
Charniak's frame representation which has been very influential on the
design of Scrabble. This is the use of precisely one kind of frame
variable which can have associated with it very complex descriptions of
its required and likely properties: this idea is carried directly over to
Scrabble, since it neatly deals with the problems 1 have associated with
the script independent PP-memory of SAM described in section 2.6.

2.9 Some Conclusions

There seem to be three main conclusions to be drawn from an
examination of previous attempts to build natural language processing
systems whose inference components were based around strong
expectations about the content of text about particular topics.

First, the use of general, non-prediction-based inference in such
systems appears expensive and cumbersome in comparison with its
advantages.

Second, none of the schemes used in previous systems to identify
the topic of the text (and hence its associated expectations) seem

entirely satisfactory.
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Third, there are serious dangers in ignoring parts of the text
during analysis.

2.10 A Review of Summary Preduction

This section is included here because the material it presents
forms part of the background to Scrabble, despite the fact that it
covers somewhat different ground to the rest of the chapter. The
previous sections of the chapter has focused on the inferential
analysis of text. This section concerns one of the uses which may be
made of the products of such inferential analysis: summary production.
Four projects will be considered here. Two are computer systems
whose infcrential analysis processors were described earlier in this
chapter: they are Schank's group’s SAM and DelJong’'s FRUMP. The third
project was described in [Rumelhart75], describes an unimplemented
scheme for story summarisation. The fourth project, described in
[Lehnert81], is oriented towards the construction of a computer system,
although there is, as yet, no detailed published account of the
implementation of Lehnert’s ideas.

The SAM system described in section 2.6 could be run in a
summary generation mode, whilst the FRUMP of 2.7 was exclusively a
summary generation system. Both systems operated as summarisers by
associating a pre-specified outline with each of their script prototypes.
To generate a summary for a particular input text, elements extracted
from the input material whilst it was being read by the system were
inserted into the outline summaries for the scripts used to analyse the
input. The filled-in summary outlines (which were Conceptual
Dependency structures in both cases) were strung together and then
converted back into English, or one of the systems other output
languages. The SAM system also included mechanisms for varying the
length of the summary produced for a given story, by attaching
procedures for specifying the relative interest of various items in the
input story, so that less interesting items could be omitted if a
shorter summary was required. For example, the system had the
information that the number of people killed in a road accident is
more important to include in the summary than the number of people
injured. Thus if SAM was instructed to produce a short summary of a
text about a road accident which included both a figure for the
number of people killed and the number of people injured, in its
summary it would include the number of dead in preference to the
number of injured.

Although the attachment of pre-specified summaries to scripts is
fairly simple-minded technique, the SAM and FRUMP systems showed
that it worked well for quite a wide variety of texts. It forms the main
background to the Scrabble summariser.
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[Rumelhart75] proposes the use of story grammars to analyse
texts to produce summaries. In essence Rumelhart proposes a
sophisticated analysis of the supra-sentential syntactic and semantic
form of an input text. This form of representation of the input
facilitates the extraction of summaries by well-defined rules. In outline
the theory is a good one and is, perhaps, capable of producing very
good summaries indeed. However, serious problems are presented by
the automatic extraction of the necessary analysis of the input text. It
is not clear how to go about by producing a program to perform the
nccessary analysis. Therefore Rumelhart’s proposals will not be
pursued any further in this thesis.

[Lehnert81] proposes a system based on so-called plot units as
the basis of text analysis for summary generation. It is a technique
primarily orientated towards the analysis of text about human
interactions and emotions, and is thus, in a sense, less general than
the techniques used by SAM and FRUMP. However, within its subject
domain the plot unit technique relies on less specific information than
would be used by either SAM or FRUMP. However, it is primarily a
.representation device, rather than a inferential text analysis technique,
and in fact Lehnert proposes the use of a predictive inference system
for the extraction of plot units from input text. Thus in proposing a
representation device which facilitates the production of summaries,
rather than a technique for the extraction of the representation from
an input text, it is somewhat to one side of the main concerns of this
thesis.

The next chapter discusses various of the problems of previous

predictive inference and summary generation systems brought out in
this chapter, and introduces the solutions to them used in Scrabble.
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3. An Overview of Scrabble

Chapter 2 presented a class of problems which must be faced by
any computer system capable of performing any but the shallowest
natural language processing. The class of problems discussed were
those requiring inference. A model structure for a computer system to
tackle these problems was then proposed. This was also used to delimit

the role of inference in the system. Two strategies, prediction and

explanation, were then introduced which could form the basis of a
computer system to tackle the problem of inference in a natural
language processing system. One strategy, prediction, was picked up
for more detailed examination, and several previous attempts to build
or design natural language processing based on predictive inference
were discussed. Three conclusions about the shortcomings of these
previous systems were reached. First, the use made of non-predictive
inference was unsatisfactory. Second, the mechanisms for the
identification of an input text's topic were inadequate. Third,
techniques for dealing. with unexpected material in the input by simply
ignoring it were likely to lead to misanalysis of input texts. The
chapter ended with a consideration of previous attempts to construct
or design summary production systems.

This chapter is an introduction to the more technical parts of the
thesis. Subsequent chapters will describe in detail how various parts of
the Scrabble program work. Essentially this chapter describes why the
program works the way it does.

It begins with a brief description of some technical terms which will
be used and expanded on in the remainder of the thesis. This is
followed by an outline description of the ideas behind Scrabble, as
distilled from the problems of previous systems. The structure of the
complete Scrabble system is then described. The description includes a
brief account of of the two programs which perform the input and
output functions of the system not performed by the Scrabble core
itself. The three programs which form the Scrabble core, the
stereotype manager, the stereotype applier, and the summariser are
also discussed. Finally an annotated example of the Scrabble system in
operation is presented.

3.1 Some Technical Terms

This section introduces some of the technical terms used to refer
to various key concepts in Scrabble. Their interpretation will be
expanded during this chapter. and, in fact, throughout the remainder of
the thesis.

Two sorts of term are introduced here. One sort is oriented
towards the descriptions of texts and their properties. The other sort
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is oriented towards the representation of knowledge about texts.

The first two are text-oriented terms related to the notion of topic,
a term widely used in the linguistic and natural language processing
literature, unfortunately with several different meanings and sets of
implications. Two terms are used in this thesis to refer to aspects of
the notion of topic:

Topic-type. The topic-type of a piece of text is its general subject.
Although a text may have only one topic-type, many have more than
one. Different segments of a text may have different topic-types. They
may either be independent, or form a sub-topic-type in the context of
the topic-type of a longer text segment.

Topic-manifestation. What a particular text segment says about its
topic-type is a topic-manifestation.

Consider, for example, the following text:

(1) John and Mary went to the zoo. They saw the lions and
tigers. They felt hungry so they went to the cafe and had a
hamburger. They could see the zebras and giraffes from
their table. After they had seen the elephant they left. They
went home by train but it took a long time because there
was a signal failure.

The topic-type of "John and Mary went to the zoo. They saw the lions
and tigers.” is a visit to the zoo. That it was John and Mary who
visited the zoo, and that the particular wild animals they saw were
lions and tigers are properties of the topic-manifestation. The text
then moves to a new topic-type, which is a sub-topic-type of the visit
to the zoo. This topic-type is eating at a cafe: it is subordinate to the
visit to the zoo topic-type because one does not normally see zebras
and giraffes from ones table. Again, who went to the cafe and the fact
that they ate hamburgers are properties of the topic-manifestation.
The text then returns to the topic-type of a visit to the zoo. Finally,
an independent topic-type is introduced. "They went home by train but
it took a long time because there was a signal failure” is only very
weakly associated with a visit to a zoo: the topic-type here is a train
journey.

The following terms are used to refer to what might loosely be
called the knowledge structures of the Scrabble system.

Stereotype. A stereotype is an abstract representation of the
expressions which might be expected to occur in texts which possess a
given topic-type. I will refine this notion further below.

Secript. A script is a stereotype whose topic-type is associated with

some event sequence which possesses a strong temporal ordering and
is action oriented.
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Frame. A frame is a stereotype whose topic-type is associated with
a static description of some kind. The expressions are not strongly
temporally related, except, perhaps, they are all expected to be true
more or less simultaneously.

In my terms the so-called supermarket frame of section 2.4 (from
[Charniak76b]) is a script since its expressions occur in some
particular order in time, as is the school-day frame of [Minsky74].
However, the birthday party frame of [Minsky74] is a frame in my
terms, since it is a description of things one might expect to be true
about (American) birthday parties, and gives no information about the
order of events at them. This distinction is, of course, rather crude.
The two terms really define two ends of a spectrum, along which lie
topic-types which might be more or less temporally ordered. However,
the two extremes provide useful reference points for the description of
the behaviour of the Scrabble program when processing certain kinds
of texts.

1 have introduced the word stereotype to cover both the kinds of
representations 1 have called scripts and frames in order to provide a
subsuming term for other writers very varied uses of these terms, and
also to emphasise an important distinction between my uses of the
words script and frame and that of some others. [Schank?75c],
[Cullingford78] and [Charniak79] write of their frames and scripts as
representations of events or objects in the ordinary real world. I make
no such claims. The stereotypes Scrabble uses are intended to be
abstract representations of the likely contents of a piece of text with
a given topic-type. Of course, texts often discuss the real world, and
human readers will often believe themselves to see a relationship
between a text and some occurrence in, or state of, their real world.
They might well exhibit this understanding by some form of language
behaviour.

If Scrabble's stereotypes represent anything in the real world it is
only through their capacity to allow the program to exhibit language
behaviour apparently connected with it. They are at least one step
removed from anything in the real world. They are objects associated
with text processing.

In this sense Scrabble’'s stereotypes are related to story grammars
of, for example, [Rumelhart75]. ‘However, there are a number of
important differences. Firstly, story grammars are usually considered
to be general descriptions of stories, whereas stereotypes are
associated with particular topic-types. Secondly, stereotypes provide a
much more detailed set of norms about their texts (this is, of course,
to some extent associated with their being topic-type-specific). Thirdly,
stereotypes are more descriptions of the normal content for texts,
whereas story grammars are more descriptions of form.
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Finally I want to introduce some more precise terms related to the
concepts of stereotype, script and frame, as they are exploited by the
Scrabble program. The two terms reflect the distinction made between
topic-type and topic-manifestation above, but relate to the knowledge
structures manipulated by Scrabble rather than texts and their
contents.

Ezpectation is my term for the word "prediction” in Chapter 2. It
will be used to describe the predictions about texts’ contents
manipulated by the Scrabble program.

Stereotype-prototype. A stereotype-prototype, in Scrabble, is the
fundamental representation of the expectations associated with a
particular topic-type. A stereotype-prototype does not correspond to
any particular text, and so is fairly abstract. When I introduced the
term topic-type I used the rather vague phrase "general subject” to
describe its intended meaning. Whilst 1 believe this is sufficient to
convey how 1 would wish to distinguish different topic-types, rather
more precision is required to produce stereotype-prototypes. In
particular, one of the requirements implicit in the general strategy
adopted is that the expectations should form a fairly small set. This,
in turn, implies that when a stereotype-prototype for a particular topic-
type is written, firm and inextensive boundaries have to be drawn
around what is to be considered a normal or usual utterance about
that topic-type. Ultimately this has meant that the practical definition
of a topic-type within the Scrabble program is both closely associated
with the expectations generated from a particular stereotype-prototype
and is fairly narrow in scope. I will return to this later.

Stereotype-instance. A stereotype-instance is created when it is
tentatively recognised that the program possesses an appropriate
stereotype-prototype for the text. A stereotype-instance represents the
system’s knowledge of a particular topic-manifestation. Initially a
stereotype-instance consists of just the set of expectations taken from
the stereotype-prototype, but as processing of the text proceeds and
some of the expectations are fulfilled, the remaining expectations will
in general become more specific. This will occur, for example, if two of
the expectations refer to the same object, if one of them is satisfied
by some specifically referring object, like a proper name, the other will
then expect the same name or a compatible object reference.

In story (17) above, the stereotype-prototype for a visit to a zoo
expects, amongst other things, that the same people will arrive at the
200 as look at the animals. Hence, once the sentence "John and Mary
went to the zoo” is input to the system, the newly created stereotype-
instance for this visit to the zoo contains the specific expectation that
"John and Mary" will look at animals, rather than the vague
expectation that some people will look at animals.

The distinction made here between stereotype-prototypes and
stereotype-instances is based on [Charniak75].
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The process of forming a stereotype-instance from a stereotype-
prototype is called sterectype-instantiation.

The system distinguishes two sorts of expectation. The first kind
are variable-expectations. For example, some of the variable-
expectations one would expect to find in stereotype-prototype about
the topic-type of eating at a restaurant, are that the actor of ordering,
eating and so on, will be human, that which is eaten will be food, ete.
Variable-expectations also express the notion that, say, in a restaurant
the people sat at a table usually eat the food, and not, for example,
the person who serves it. In more text oriented terms, variable-
expectations specify a set of co-referring nominals which are expected
to occur in an input text and a set of features the nominals are
expected to be able to possess.

Utterance-ezpectations are what the stereotype-prototype expects
to be written about the variable-expectations. For instance, one
expects to read that food is eaten in a normal text about eating in a
restaurant.

The mechanism by which fulfilled expectations are propagated to
cause other expectations to be made more specific is that when an
input utterance satisfies an utterance-expectations it may also fulfil
some variable-expectations. Other utterance-expectations which depend
on these variable-expectations will then be further specified.

When an expectation of either sort is fulfiled a modified copy of
the semantic representation for the utterance or the relevant
fragment of it is associated with the expectation. A representation of
the topic-manifestation is formed by these data-structures associated
with satisfied predictions.

By analogy the terms script-prototype, script-instance, frame-

prototype and frame-instance are used to describe stereotype-
instances and stereotype-prototypes of the frame- and script-like kind.
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To summarise the main technical terms introduced in this section

are:
Topic-type text-oriented term: the
general topic of an input text
Topic-manifestation text-oriented term: what a
particular text segment says
about its topic-type.
Stereotype-prototype knowledge representation
structure: the systems
expectations about texts of
a particular topic-type.
Stereotype-instance knowledge represenation
structure: a partially
constructed representation
of a particular text -
corresponds to a topic-
manifestation.
Variable-expectation knowledge representation
structure: the characters
and objects expected to
occur in texts of particular
topic-types.
Utterance-expectation knowledge representation
structure: the abstract
representation of the -
individual text segments
expected by a stereotype-

prototype.

3.2 The ldeas behind the Scrabble Program.

Scrabble is based on a number of distinctive ideas which which
were devecloped to overcome some of the disadvantages and
shortcomings of previous prediction-based natural language processing
systems. These ideas fall into two separate classes.

The first class concerns the process of text analysis. That is, the
process by which expectations are selected as being applicable to a
particular text, matches are discovered between portions of the text
and particular expectations, and success and failure of matching is
recorded. Such ideas would be applicable to any expectation-based
natural language processing system, regardless of its task domain.

The second class are specific to summarising, Scrabble's task
domain. The next section describes why summarising was chosen as
the test task domain, so I will not do that here. 1 will, however,
describe the distinctive features of the Scrabble summariser very
briefly here.
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All the ideas presented here as distinctive of Scrabble spring from
one overall view of the strength of predictive or expectation-based
inference and how that strength relates to more general problems of
language analysis. A major problem of inference in natural language
processing is that it is usual for there to be very large numbers of
inferences which could be made from any input natural language
utterance, in fact, more than can be made in the time available to the
system. There is therefore a requirement to select which inferences to
make. What is needed is, essentially, a mechanism for identifying the
most interesting, or salient, inferences and material in the text. It is
suggested here that predictive inference provides a rapid (if sometimes
crude) method of identifying, and performing shallow inference on, the
least salient portions of the text. If a text segment is entirely
predictable from the topic-type of the section of text in which it occurs
it is unlikely to be the crux of the authors message. Therefore it is
unlikely to be useful to apply a more intensive or extensive, and either
way very expensive, inference engine to it. At the same time, the
recognition of topic which can be achieved through the use of
predictive inference is likely to provide a useful context for a more
general form of inference engine to operate in. The essence of this
work is therefore an attempt to construct a predictive inference
system which attempts to maximise the ability of the system to
recognise and process commonplace segments in a text at the
minimum computational cost, but which achieves this goal without
introducing the possibility that elements of the input material will be
ignored by the system: all the input material will remain available for
processing by other parts of the system.

This overall view has four major implications for the text analysis
portion of Scrabble. They are:

1) no inference should be performed when matching
expectations against sentence representations;

2) it is better to invoke expectations which turn out to be
irrelevant than to fail to invoke expectations which are
relevant to the text;

3) the system should not skip over sections of text which
it does not expect: they should be marked and
integrated, in so far as possible, with the expected
material;

4) it is not necessary to associate segments of a text with
a particular topic-type.

Point 1: that no inference should be done when matching
expectations against the text, is adopted as a principle for three
reasons. First, the primary virtue of a predictive inference system is
that commonplace material may be processed with great éomputat.ional
efficiency. The approach adopted here is intended to maximise the
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efficiency of the processing of such material. It has the disadvantage
that the system may fail to recognise a match between input material
and one of its expectations. This problem could be ameliorated by the
introduction of complex inference into the process of matching itself;
but the introduction of such inference would lead to a significant
decrease in the efficiency of the matching process (which is important
because the process of matching expectations to the text is the
central process of predictive inference); and also might lead to the
misclassification of unusual material as commonplace, since the range
of material which may match an expectation will be much increased.

Point 2, that is better to invoke expectation which turn out to be
irrelevant than to fail to invoke expectations which arerelevant to the
input text, is adopted as an attempt to overcome the difficulty of
discovering whether a particular section of text is or is not about a
particular topic-type without invoking the expectations associated with
that topic-type. At a certain level a text section may be a described
as only being an instance of a topic-type ifthe majority of its material
is expected in a text about that topic. From the point of view of
implementing a computer system, it is impractical to compare incoming
text segments with all the predictions the system has in order to
identify the topic-type of the text. Therefore, a computationally
cheaper solution must be found, even at the expense of failing to
recognise the topic-type correctly. Previous systems were designed to
use quite sophisticated techniques to try to obtain very high accuracy
of invocation of expectations with very little information. Because the
matching of expectations and the text in Scrabble is relatively
inexpensive, it is possible to postpone firm identification of the topic-
type and invoke sets of expectations which turn out to be irrelevant.
If all plausible candidates for the topic-type of a text are considered
initially, greater accuracy of the identification of the topic-type may
be achieved subsequently; and this may be done without crippling
computational expense in Scrabble.

Point 3, that the system should not skip over sections of text
which is does not expect: it seems unlikely that any practical
predictive inference system will ever have enough predictions to expect
all the input material with which it might be presented, so a motivated
way of dealing with such unpredicted material is required. The system
of [DelJong79] merely skips unpredicted material: this is clearly
unsatisfactory. What is required is a scheme which exploits the
advantages of predictive inference when processing commonplace
material whilst not obscuring the (at least potential) interest of
unpredicted, and therefore unusual, material. This work assumes that
the text being processed is coherent in some sense, SO that
unpredicted text segments in an input text may be taken to have
something to do with predicted segments which occur before or after
them. This assumption is sufficient to allow a predictive inference
system to do some simple integration of unpredicted and predicted
material from the input text. In general, the representations produced
will allow any subsequent processor to focus on those parts of the
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input material requiring the most expensive processing whilst
minimising the cost of recognising and processing, for example, scene-
setting information. This is likely to be of value whether the
application is, as here, summarising, where all that is required is fairly
shallow processing to construct a reasonably coherent text from the
representations passed forward, or question answering, in which case
the subsequent processing may be very deep inference.

It should be noted that there are important implications for the
architecture of the system if any but the most simple-minded
processing of the unpredicted material is done. To facilitate processing
it seem likely that the unpredicted material will need to be translated
into some form which can be easily manipulated by computer. This, in
turn, implies that the system must be able to construct
representations of parts of the input on the basis syntactic and
semantic information alone: that is without any information from the
predictive inference system. Thus the system requires a decoupled
analysis, or semantic parsing component, unlike DeJong’s system.

Point 4, that it is not necessary to associate segments of texts
with a particular topic-type: previous predictive inference systems have
been based on the assumption that texts, in general, move
progressively from one topic-type to another, dealing with only one at
a time. This may well lead to perfectly ordinary utterances being
classified as unusual because the systems assume, incorrectly, that
their topic-type has been finished with. Scrabble is based on the
observation that a text segment may be associated with more than
one topic-type. For example, if the topic-type of one portion of an
input text is eating in a restaurant, and then the sentence:

(2) Then they went to the cinema.

occurs in the input, the sentence can occur both as the beginning of
a section whose topic-type is going to the cinema, and also as the
(temporal) end of the description of eating in a restaurant. More
complex cases can occur. For example, it is unusual to see wild
animals from the window of a restaurant unless the restaurant is in a
zoo. | feel such a case is more elegantly handled by allowing the
predictions associated with the zoo topic-type and the restaurant topic-
type to be compared with the text simultaneously, rather than, say,
having the system recognise a separate restaurant-in-a-zoo topic-type.
In addition, to construct representations for the purposes of Point 3
above it is more important to recognise whether or not a text segment
is usual than to uniquely assign it to a topic-type.

Leaving the text analysis program, the central idea behind the
Scrabble summariser is that portions of text which were expected may
be summarised in a straightforward, template-driven way, providing a
framework into which unexpected utterances may be fitted.

Now, there is nothing novel about the simple proposal that, if one
front-ends a summariser with a predictive analysis process, reasonably
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good summaries of the commonplace portions of an input text can be
produced by template driven methods. FRUMP and SAM in summary
generation mode operate in precisely this way. In Scrabble the
mapping onto template summaries of the predictable parts of the text
is the main means by which reduction of the volume of the input
material is achieved: what is different is the role of the filled-in
templates in the summary representation produced. In Scrabble, in
contrast to other systems, the unpredicted material is treated as the
most salient part of the input text: it is therefore the most important
material to include in the summary. However, because Scrabble
operates without a non-predictive inference component unpredicted
material may be processed only shallowly by the system. Thus in order
to construct a reasonably coherent summary some processing of the
unpredicted material must be done: in particular the unpredicted
material from the input must be fitted into some kind textual context
in order to be comprehensible. The filled-in summary templates are
scen here as providing both a textual context into which unpredicted
material may be fitted, and more general contextual information which
may be used to process the unpredicted material so that the summary
forms a coherent whole.

There are two important consequences of adopting this design
framework for the summariser. First, it is unlikely that misleading
summaries will be produced. If the text contains large amounts of
unexpected material, or the system cannot recognise its topic-type
(which may occur if the system has not been primed to deal with
texts of that topic-type) the system will produce an unreduced
rendering of the original text rather than a summary as such.
Alternatively, if the unpredicted material in the text violates, in some
way, the assumptions made about the relations between unpredicted
and predicted material in the input text it is likely that the summary
will be obviously ill-formed in some way. If we consider circumstances
in which the original text is unavailable to the reader, for example if
~the summary text were produced in a different language from the
original, 1 believe the production of obviously ill-formed, or, at least,
unreduced, texts is better than the production of apparently good
summaries which misrepresent the original text, as happened at times
with DeJong's FRUMP.

The second consequence of the system design proposed here is
that the summariser cannot manipulate unpredicted input material as
undigested natural language strings. If the summariser was to
manipulate text strings very little integration of unpredicted material
and filled in summary templates could be done. Even a simple form of
integration, like straightforward cross-sentence pronominalisation, is
difficult to achieve when dealing with straightforward text strings. For
example, without having the text strings in some sort of parsed
representation, it is difficult to convert:

(3) John threw fish to the seals. The seals barked joyfully.

into
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(4) John threw fish to the seals. They barked joyfully.

as one would probably wish to, without running the risk of converting:

(5) The king attached his seals to the wildlife preservation
order. The seals barked joyfully.

into

(6) The king attached his seals to the wildlife preservation

order. They barked joyfully.

In order to overcome the problems presented by integration in this
style, it was decided that the summariser should take in unpredicted
material from the input text in some semantic representation which
facilitated manipulations like the identification of semantically
plausible co-referents. In turn the decision to use a semantic
representation language with these properties has implications for the
text analysis portion of the program. In particular the text analysis
portion of the program must be capable of producing reasonably deep
representations of the meaning of unexpected segments of the input
text.

3.3 A Task for a Predictive Language Analyser

The previous section discussed some novel features of the Scrabble
text analysis system, and attempted to suggest why they were
improvements on the approaches adopted in previous predictive
inference systems. It also made some, largely separate, claims about
the novelty and utility of the way in which Scrabble produces
summaries. This section explains why the task of summarising was
chosen as the test bed for the ideas about predictive inference-based
text analysis presented in the last section.

1 will take it as read that any claims about a natural language
processing system should in essence be based on its ability to perform
either some language manipulating task, like summarising, or to
perform some other language stimulated physical task, for example a
robot responding to spoken commands. Other positions are quite
tenable, but a comparison of methodologies at this level is beyond the
scope of this work.

There are three externally visible properties which should be
possessed by a predictive inference system for text analysis constructed
on the basis outlined in section 3.2: it should be capable of identifying
the topic-type or topic-types of a segment of an input text with very
high accuracy; it should produce as its output representations which
demonstrably contain any unexpected material in the input text; and
it should be efficient.

A good summary is accepted as being one which contains the
most salient points in the original text. However, it cannot contain just
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the salient points: they must be placed in a context in which they will
be comprehensible. Furthermore it cannot contain just the original
textual expression of the salient material: it is unlikely that the
summary will form an acceptable natural! language text if it does. (Of
course, it may be that in the summary text the most acceptable way
to express the salient material is in its original form, but other
possibilities must be allowed for.)

It is an assumption of this work that unexpected material for the
topic-type of the section of the input text in which it occurs, is
precisely the material which is most likely to be salient or interesting.
It is proposed that given such an assumption a good summary may be
described as one which contains an indication of the major topic-type
of each piece of the input text together with both an indication of the
specifics of the topic-manifestation and what is unusual about it. In
more implementation oriented terms this would require that there
appeared in the summary an indication of a suitable stereotype-
prototype for the analysis a piece of text, some indication of the
bindings of the variable parts of the corresponding stereotype-instance,
and, suitably integrated, the unpredicted material which occurred in
that section.

So, to furnish the summary generation process with these data-
structures the predictive inference mechanism must be capable both
of identifying the topic-type of a section of text so that it can access
the corresponding stereotype-prototype and of passing over the
unpredicted material in the original text in a form which will allow it
to be integrated into the summary. But, disregarding efficiency for the
moment, these are precisely the properties required to demonstrate
that the predictive inference mechanism has achieved the goals set
out for it. If the summarising system is reasonably efficient as a whole,
clearly the inference mechanism will have to be efficient. Therefore it
should be easy to determine whether the criterion of efficiency has
been satisfied.

Thus it seems that the generation of summaries, as well as any
intrinsic utility it may have, is a good test bed on which to place a
predictive inference system.

Of course, the view of what constitutes a good summary and how
to generate one presented here is too simplistic. In particular the
definition of a good summary adopted here does not include all the
factors which are likely to be taken into account by a human judge of
summary quality, although it probably includes some of the properties
a human produced summary would be expected to have. Some
limitations of the Scrabble approach will be presented at the end of
this thesis
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3.4 An Overview of Scrabble

Chapter 1 introduced the gross structure of Scrabble: this section
expands on the material presented there, particularly in section 1.1.
The reader may find it useful to refer to the diagram in that section.

The Scrabble system essentially works as a five module system,
an English semantic parser, a combined stereotype management module,
a stereotype application module, a text representation summariser and
an English generator. As mentioned earlier, together the stereotype
management module, the stereotype application module and the text
representation summariser form the Scrabbls core itself. I will
sometimes refer collectively to the programs of the Scrabble core as
the Scrabble program. The Scrabble core is the primary concern of
this work: it is entirely my work. The English semantic parser and the
English generator are modified and extended versions of those
described in [Cater82].

The requirement for a separable component capable of producing
some form of easily manipulable representation of unpredicted material
in the input text was described in section 3.2. In order to satisfy this
requirement, Scrabble had to have access to a semantic parser which
operated (at least) on the material which the predictive inference
system did not expect. In fact, in Scrabble, it was decided that if any
form of semantic parser was to be used in the system it should
operate on all incoming text. Severe problems, primarily of control,
would be presented if it were only used on unpredicted material.
Additionally, front-ending the predictive inference system with a
semantic parser greatly simplifies the inference system: the inference
system need take much less account of the vagaries of natural
language than if it has to deal with text directly.

Equally, as consequence of the decision to integrate the different
parts of the summary by manipulating unexpected material in a
semantic representation language, it was necessary to use a generator
to convert the summary material back into English text. Again it was
decided that the summary generation system would be simplified if the
Scrabble text representation summariser dealt only with whatever
representation the generator took as input, and never with English
directly.

Having made the decision to use a semantic parser and a
generator, and consequentially a representation language or languages
to be input and output by the Scrabble program itself, it was of
course necessary to choose a particular semantic parser, generator
and representation language to use. This choice will be discussed in

The terms "semantic parser” and "generator” were introduced
in section 2.2.
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the next section.

Turning to the remaining three highest-level modules of the
Scrabble system, the stereotype management module, the stereotype
application module and the text representation summarising system,
the stereotype management and stereotype application modules are
implemented so that they are a general purpose predictive inference
system, whilst the text representation summarising system is, in the
‘main specific to the task of generating summaries. 1 will henceforth
call the stereotype management module and stereotype application
module the tezt analysis module, and text representation summarising
system the summariser. The section after next contains an outline
description of these two top-level modules of the Scrabble program.
Sclecting the stereotype-prototypes which are appropriate for the
analysis of a particular text is one of the primary functions of the
stereotype management module. [ will, on occasion, use the term
stereotype selection module to refer to what has been called here the
the stereotype management module, particularly when concentrating on
the modules role in selecting stereotypes.

3.5 The Choice of an Analysis and Generation Mechanism

This section gives the reason for the choice of the English front-
and back-ends used by the Scrabble program. The reasons for
adopting the use of a semantic parser as a front-end to the Scrabble
program and a generator as the back-end were given in the earlier part
of this chapter. However, there remained the problem of choosing the
particular semantic parser and generator, and their associated
scmantic representation languages.

It seems clear that the semantic parser and generator should use
the same semantic representation language. If they did not, a
sophisticated program would be required to translate unpredicted
material in the input text between the two representation languages.
The construction of such a program seemed an unnecessary burden,
unlikely to contribute much to the primary goals of the project:
demonstrating the capabilities of the model of predictive inference
embodied in the Scrabble program and its utility in summary
production.

Three possible strategies presented themselves for the provision
of a representation language and a semantic parser and generator for

it.

First, a new representation language might be designed, and a
semantic parser and generator written for it.

Second, an existing representation language might be adopted and
new programs written to translate between it and English.
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Third, an existing representation language, for which a semantic
parser and generator existed, might be taken over.

I was fortunate in having the third strategy open to me: in fact I
had the choice of -two complete representation language, semantic
parser and generator sets available to me, those of [Boguraev79] and
[Cater82]. Clearly, adopting one of these sets would involve less work
than either the first or second strategy, unless there was evidence
that they were very inappropriate for the task in hand. It was hoped
that by avoiding work on the front-end and back-ends of the Scrabble
system a more effective core Scrabble program might be constructed
in the time available. It therefore remained to choose between the
systems of Boguraev and Cater. The primary basis for making the
decision was the suitability of the representation languages for the
purposes of predictive inference and summary generation. As there was
no intention to experiment with, for example, the relation between
inference and the process of semantic parsing itself, all that was
requircd was that the semantic parser and generator chosen should
translate between the semantic representation language and English:
the internal architecture of the system was of no great concern.

Boguraev's system uses a semantic representation scheme based
on that of [Wilks73], [Wilks75b] and [Wilks77]. The problem with the
representation scheme of [Boguraev79] is that, unlike that of Wilk's, it
is intentionally not strongly canonical. 1 mean by strongly canonical
that all classes of utterances deemed to have the same meaning (out
of context) and hence mapped into the same representation are
typically large. The representation used by Boguraev quite closely
reflects the surface text so equivalence classes are small. In particular,
it contains identifiable vestiges of almost all the surface lexical items
in the original text:

“A semantic component is [thus] assembled from its
subcomponents, which obviously implies that the semantic formulas
of the surface words always appear in the [inal represent.at.ion."z

For example,
(7) The man walked to the park.

is represented by:

2[Boguraev79] page 3.44. Note that this does not imply that the
representation scheme of [Boguraev79] is in no respects canonical.
In particular, syntactic variants with little or no associated semantic
variation, for example, the passive and active versions of a sentence,
are represented identically.
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((clause
(type declarative)
(tns past)
(v
(walk1
((*hum subj) ((self obje) (move cause)))
(@@ agent (manl (mal man)))

(e@
destination
(park1l
((({(plant change)
cause)
goal)
(where point)))) ))))
Structure A
whilst
(8) The man went to the park on foot.
is represented by:
({clause
(type declarative)
(tns past)
(v
(gotl

((man subj) ((self obje) ((*pla to) move)))
(@@ agent (man! (mal man)))
(@@
destination
(park1l
((((plant change)
cause)
goal)
(where point))))
(@@ instrument (footl (man part))) ))))

Structure B

The representations produced for the two sentences are quite different,
although the preferred readings for the sentences have the same
import.

This lack of canonicality presents serious problems for a
stereotype-based inference system, and indeed predictive inferences
systems in general. The fundamental process of stereotype application
is the recognition that an utterance in the text satisfies an
expectation of a stereotype-instance, or alternatively, that an
utterance satisfies no such expectations. In other words it is
essentially a pattern matching process. Weak canonicality in the
semantic representation leads to difficulties with this recognition
process. Some of these might be tackled by organising the pattern
matching processes so that they ignored the most. obvious traces of
the surface in the representation, for example word sense names.
However, this cannot provide a complete solution, because, for example,
in examples Structure A and Structure B it is difficult to extract the

49




close relationship between the two sentences. In particular the
extraction of this relationship would require extremely sophisticated
manipulations of the surface orientated case frames which form the
backbone of the representation structures and the semantic formula
of verbs and case frame fillers. Manipulation so sophisticated that it
may well be best classified as inference. Thus it seemed that the
adoption of Boguraev's representation language ran the danger of
opening the trapdoor to unconstrained computation when matching .
expectations against the text, the reason given in section 3.2 for
avoiding the use of rule-based inference when performing this
matching. Thus it seemed Boguraev's system was unsuitable for my
purpose.

It might be objected that these problems with Boguraev's system
are problems of practice, rather than principle, and should therefore
be discounted. For example, within Wilks' system it would be possible
to write formulae for "gol" and “walkl” which facilitated the
recognition of the underlying similarity of the two sentences. However
the work involved with overcoming the problems would have been
significant, considerably lessening the advantages of taking over an
existing system.

The other analyser/generator and representation language system
available to me, the relevant parts of the AD-HAC system of [Cater80]
and [Cater82] used a representation system explicitly designed to be
strongly canonical in the above sense. The representation scheme is a
development of the Conceptual Dependency system of [Schank75b]. I will
refer to Cater’'s system as CD, to distinguish it from the Schank system,
which I will refer to as Conceptual Dependency.

As an example, consider again examples (7) and (8). They are
represented identically by:

((EVENT (ACTOR MAN1)
(ACT PTRANS)
(OBJECT MAN1)
(FROM DUMMY-PLACEZ)
(TO PARK1)
(INST (EVENT (ACTOR MAN1)
(ACT MOVE)
(OBJECT (FOCUS (STATE THING))
(STATE (STATENAME PART)
(THING LEGS1)
(VAL MAN1)))
(TIME (NAMED TIMEPOINT1)
(COMPARISON
(BEFORE *NOW*)))))
(TIME (NAMED TIMEPOINT1)
(COMPARISON
(BEFORE *NOW*)))))

Structure C
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In general Cater's system produces the same structure for those
sentences, deemed synonymous, which differ either in the verbs and
adjectives used or their syntactic form. It is thus highly canonical in
this direction.

However, it is only very weakly canonical in the representation of
nominals. Consider, for example, the token PARK1 in the above
structure. Although there is an orthogonal data structure describing
the features of parks, and containing links to individual nominals
derived from the word "park” (like PARK1), there is no mechanism for
linking "park” with its synonyms and near synonyms. The existence of
the latter mechanism would provide an effective substitute for
genuinely canonical structures to represent nominals.

In principle the CD primitives and their arrangements in the case
labelled structures appeared very well adapted to pattern matching
between structures derived from the input text and the kind of
expectations likely to be derived from stereotype-instances. Certainly it
appeared there would be fewer problems with Cater's representation
language than with Boguraev's from this point of view. Thus Cater's
system scemed adequately well adapted to the task of forming a front-
end to a predictive inference system. It was therefore chosen to form
the front- and back-ends for Scrabble.

The form of Cater's representation language and the programs
which translate between it and English is not crucially important to
any of the arguments and techniques of this thesis. Therefore no
detailed exposition of Cater’s system will be presented here. Lengthy
descriptions of all parts of his system used in the Scrabble project
may be found in [Cater82].

3.8 The Scrabble Program

This section gives a brief introduction to the two remaining
modules of the Scrabble system: the two which form the Scrabble
program itself. They are the text analysis module and the summariser.

The text analysis module, which builds the internal representation
of the text, in turn consists of two major sub-modules, the stereotype
management module and the stereotype application module. Both work
from representations of the input text provided by the AD-HAC
analyser. They each are activated at the end of every sentence in the
text and may be handed, in addition to CD-structures derived from the
input text, information from either of the other two sub-modules of
the text analysis module.

The stereotype suggestion module processes information
associated with nominal tokens in the CD-structure to find stereotype-
instances which maybe appropriate to the current sentence. Its
primary goal is to implement the principle of section 3.2that it is
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better to invoke expectations that are irrelevant to the text than to
fail to invoke expectations which are irrelevant. In practice this
principle requires that a stereotype-prototype should be instantiated if
there is the faintest hint in the text that it may be useful in the
analysis of the text. It is then left to the management module to
reject suggestion which are clearly irrelevant.

At the same time, the management module monitors the set of
active instances to determine if it appears that any of them has either
been spuriously activated, in the sense that it has turned out to be
unable to predict the contents of the text, or is no longer relevant to
the text. These two modules will be described together in Chapter 4.

The stereotype application module takes the predictions of the
currently active instances and matches them against the incoming CD-
structures. It is responsible for removing predictions which have been
satisfied from the set of predictions which will be matched against the
next text segment, and for identifying the propositions in the text
which were not predicted. It also continuously makes the predictions
of a given stereotype-instance more specific, by passing on information
about the way in which previous predictions were satisfied. This usually
has the effect of constraining the utterances another prediction can
match. For example, if a human being® is predicted in the text, if it is,
say matched against a male, a subsequent attempt to match it against
"she" will fail, whereas "he" will succeed. Alternatively, if it has never
been matched both will succeed. The stereotype application module is
described in Chapter 5.

The summary generation component, which takes as input the
text representation produced by the analysis phase and produces as
output CD-structures suitable for conversion into English by the AD-
HAC generator, consists of three main components. The first takes
canned CD-structures*, associated with stereotype-prototypes, and the
particulars of instances of those prototypes which were used in the
analysis of the text in order to produce what I will call single
stereotype summaries. These canned CD-structures have associated
with them an indication of what are likely to be the most significant
variable bindings in an instance of their prototype. If these variables
are not tightly bound, for example to a particular proper name, the
second section of the summariser programm makes some strong
assumptions about the coherence of the text to produce more specific
referents than could be generated in the single stereotype summary.
Finally, a third process organises the set of single stereotype
summaries into a reasonable narrative order. The CD-structures
produced by this are then passed over to the AD-HAC English
generator in turn. The summariser is described in Chapter 6.

3] mean, of course, a text segment which could be interpreted
as referring to a human being.

*Actually CD-like structures containing stereotype variables.
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The next section consists of an annotated example Scrabble run
which it is hoped will clarify the points made in this chapter.

3.7 An Example Scrabble Run

For the sake of brevity, this section contains a fairly simple
example of the kind of text which Scrabble can summarise. However it
illustrates in outline the processing done to produce the summary. The
example text concerns buying a present. 1t is:

(9) Mary wanted to give Susan a present. She thought Susan
would like to have a computer so she went to the shop
which sold them. The computers looked exciting. Mary
walked over to one and tried it by writing a little program.
She enjoyed it and decided it would be a good present for
Susan. She paid for it and took it away with her.

Selecting and buying presents is a single topic-type, and so the text is
analysed using just one stereotype. The form in which stereotype-
prototypes are stored for use by Scrabble is quite complicated, so
rather than attempt to introduce it here, an informal description of the
information contained in the prototype will be substituted. Examples of
the representation of stereotype-prototypes used by the program will
be presented in Chapter 5. When studying the illustration stereotype-
prototype it should be remembered that because a canonical semantic
representation language is used when linking utterance-expectations to
propositions in the input text, any paraphrase of the expected
utterance will be acceptable. Informally, the expectations contained in
the stereotype-prototype which are used in the analysis of the input
text are as follows.

Present buying concerns two people or sets of people, a ‘giver’ and
a 'receiver’, something which is bought, the 'present’, and a place, the
'‘purchase-place’. Before anything else happens the ‘'giver’ decides that
he or she wants give a present to the 'receiver’. Then the 'giver’ goes
to a ’'purchase-place’ which sells things the ‘'giver’ thinks will be
appropriate as a 'present’. Then the 'giver’ looks for things which the
'receiver’ likes and which he or she thinks the 'receiver’ will also like.
The 'giver’ may do things to determine the quality or suitability of the
potential 'present’. The looking and trying may be repeated. A 'present’
may eventually e paid for and perhaps taken away.

The other information contained in the stereotype-prototype for
present giving concerns the generation of summaries. Here it is that
texts whose material follows the above form should be summarised by
sentences of the form '’giver’ bought 'present’ for 'receiver’.

In what follows blocks of text indented at the right and left hand

sides and printed in this font are the output from the computer
program; annotations for the output are unindented.
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. Run of AD-HAC with Scrabble version 15.13
in 950K at 12.53 on 23 SEP 82
£l
Square brackets mark the beginning and end of the processing of the
AD-HAC semantic parser: usually they will enclose messages about the
performance of the system, but all such messages were switched off

for this run.

Entering Scrabble for sentence :

(MARY WANTED TO GIVE SL=AN A PRESENT)
Although the program prints out a copy of the text of sentence, the
Scrabble program does not have access to the text as such. It can
only access the CD-representation of the input. The text of the
sentence is printed solely as a debugging aid.

The word "present” in the input suggests that the present buying
stereotype the system possesses which looks as if it may be useful
here. Of course in a completely realistic system many other
stereotypes might be suggested, and certainly others would be during
the processing of the text. Buying presents is the only stereotype
suggested at any time during the processing of this simple story.
Because wanting to give presents is a predictable beginning to a text
for which the stereotype is suitable, a new instance of the buying
presents prototype is formed.

Stereotypes suggested:

((PRESENT»

The following Stereotype Instances have been activated
(PRESENT2)

Spent 575 ms in Scrabble

£l

Entering Scrabble for sentence :
(SHE THOUGHT SUSAN WOULD LIKE TO HAVE A COMPUTER SO
SHE WENT TO THE SHOP WHICH SOLD THEM)

Neither "shop” nor "computer” suggest any new stereotypes in the
current system, so no new instances are activated. The absence of any
printed messages from PRESENT2, the only active stereotype-instance,
indicates that it expected an input sentence like the one which
arrived. PRESENT2 provisionally narrows its expectations about the
‘present’ to it being a computer.

No new stereotuype instances were activated
Spent 140 ms in Scrabble

(]

Entering Scrabble for sentence :

(THE COMPUTERS LOOKED EXCITING)

A predictable thing to say about a potential present.

No new sterecotype instances were activated

Spent 63 ms in Scrabble

3

Entering Scrabble for sentence :

(MARY WALKED OVER TO ONE AND TRIED IT BY WRITING A
LITTLE PROGRAM)

This sentence presents a number of difficulties for the program. First
it contains two pronouns "one” and "it": they are presented to
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Scrabble as distinctive markers with few specific features associated
with them. Scrabble assumes, in general, that pronouns correspond to
its variable-expectations. Two of the systems utterance-expectations
are that the 'giver’ may move close to a potential 'present’, and may
try it. In this case Scrabble is already expecting that the present will
be a computer: both “one” and "it" can refer to a (specific) computer,
so the system creates a new variable-expectation that a single specific
computer is the 'present’.

The second difficulty is presented by this input sentence is that
"writing a little program” is not something Scrabble expects as such: it
knows nothing about computers and how they are tried. This is dealt
with by causing the program to accept any instrument for "try': not a
complete solution, but one which produces acceptable results for most
in'put texts.

No new stereoctype instances uwere activated

Spent 113 ms in Scrabble

£l

Entering Scrabble for sentence :

(SHE ENJOYED IT AND DECIDED IT WOULD BE A GOOD PRESENT

FOR SUSAN)

Again a predictable input sentence if the potential 'present’ has been
identified. The first "it” is not identified with the computer which is
expected to be the ‘present’. The AD-HAC analyser marks it as
referring to some action through expectation associated with "enjoy”.
It may therefore be distinguished from an "it" which should be

associated with a concrete object.

Stereotypes susgested:

CPRESENT

No new stereotype instances were activated

Spent 83 ms in Scrabble

(5]

Entering Scrabble for sentence :

(SHE PAID FOR IT AND TOOK IT AWAY WITH HER)
The final sentence in the text is again quite predictable. Again the two
occurences of the word "it” have their referents resolved on the basis

of the systems prior expectations.

No new sterectype instances were activated

Spent 46 ms in Scrabble
At the end of processing the text the system has the following three
pieces of information to fit into the summary. First the ‘giver’' is Mary;
second the 'receiver’ is Susan; third the present is one specific
computer, which has not been identified by name. Therefore the
output of the system is:

English summary is:
MARY BOUGHT A COMPUTER FOR SUSAN.

The next three chapters describe in detail the processing
illustrated by this example.
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4. Topic-type Identification
and
Stereotype Management

This chapter describes the means by which Scrabble identifies the
topic-type of a section of the original text and controls the more
detail analysis of input material. In the Scrabble program topic-type
identification involves the selection of those of the system'’s stereotype-
prototypes which can be used to analyse some part of the input text
and the assignment of the input text segments (or at least most of
them) to particular instances of those stereotype-prototypes. '

The use of the phrase text segment here deserves some further
explanation. Typically within Scrabble the utterance-expectations of a
stereotype-instance will correspond to a clause in the input. However
it must be remembered that the input material is presented to the
Scrabble program as CD-structures: thus features of the original text
like clause boundaries cannot be discovered by the Scrabble program.
In practice, an utterance-expectation may be for as simple a CD-
structure as a single STATE construct or it may be arbitrarily
complicated. Therefore a text segment, within the Scrabble program,
may range from part of a noun phrase, containing a single adjective
and a noun, to a complete sentence.

Of the principles described as being fundamental to Scrabble in
section 3.2 there are two of relevance here.

First, that it is better to invoke expectations which turn out to be
irrelevant to the text than to fail to invoke expectations which are
relevant.

Second, that it is not necessary to associate segments of a text
with a particular topic-type.

In practice, in order to be certain that expectations which are
relevant to the text are always invoked it is necessary to instantiate a
stereotype-prototype on the faintest suggestion that it will be relevant
to the input text. For example, the occurrence of a word in the text
which in some rarely occurring contexts is connected with the topic-
type for the stereotype-prototype must provoke the formation of a
corresponding stereotype-instance, unless there is strong evidence that
it will be inappropriate. The process detecting these hints in the input
text is called stereotype suggestion.

Distinguished from this process of stereotype suggestion is the
elimination of suggested candidate stereotype-instances which are not,
in fact, appropriate for the analysis of the input text, and the
subsequent identification of the topic-types of various parts of the
input on the basis of the stereotype-instances which are not
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eliminated. This elimination and identification is part of sterectype
management.

The other part of stereotype management concerns the delimitation
of the parts of the input text which are associated with a particular
topic-manifestation. In other words, identifying those text segments
which should be associated with a given stereotype-instances. Of course,
this association is intimately connected with the topic-type
identification process. In particular only those stereotype-instances
which succeed in predicting significant parts of the text will not be
eliminated, and, in the end, text segments should only be assigned to
stereotype-instances whose corresponding topic-types have  been
identified as being the topic-type of part of the input text.

The primary responsibility for the association of text segments with
stereotype-instances falls to the stereotype application module, which
is described in the next chapter. However it is a stereotype
management responsibility to decide when a stereotype-instance which
has been identified as being appropriate for some part of the input
text is no longer appropriate. This occurs when, for instance, the topic-
type of the text changes. It is necessary to suspend stereotype-
instances in this way in order to minimise the computational cost of
comparing predictions with incoming material in CD form.

In accordance with section 3.2 the delimitation of the parts of the
text which are associated with a particular stereotype-instance does not
require that a particular text segment should be uniquely assigned to
a stereotype-instance. Nor, in fact, is there any requirement that the
areas of the original text which are associated with a particular
stereotype-instances should be contiguous.

The remainder of this chapter is organised as follows. It begins with
a detailed description of the stereotype suggestion mechanism. A
detailed overview of the Scrabble stereotype manager follows. This, in
turn, is followed by sections which describe in some detail the
implementation of the mechanisms used to provide topic-type
identification, and to suspend stereotype-instances which have been
useful in the analysis of the text, but are no longer useful. Next there
is a description of some of the ancillary information collected by the
manager whilst the input text is processed: this information is used by
the summariser. Finally a detailed example is presented.

4.1 The Stereotype Suggestion Mechanism

As has been pointed out in Chapter 3 and in the introductory part
of this chapter, there are a number of properties one would like
programs which implement the topic-type identification sections of a
stereotype-based inference system to possess. They include precision,
by which I mean that the system should never associate a text
segment with topic-types whose stereotypes cannot be appropriate for
that text segment; comprehensiveness, by which I mean that the
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system should always recognise that a text segment is associated with
a topic-type for which the system has stereotype-prototypes’; and
economy, by which 1 mean that the computational costs of associating
stereotype-prototypes with text segments, and of recognising that the
topic-type of a piece of text is not one for which the system possesses
stereotype-prototypes, should be low. I believe the Scrabble system is
strong on comprehensiveness and precision simultaneously, but could
be improved as regards computational cost, although it is not
disastrously expensive at present.

The Scrabble system achieves both high precision and
comprehensiveness at the same time by exploiting the separation of
the stereotype suggestion mechanism from the general management
mechanism. The requirements for the suggestion mechanism are much
weaker than the requirements for the identification mechanism as a
whole. In particular, the suggestion mechanism does not need to be
precise: provided it is comprehensive, the general management system
can (or at least should) obtain high precision by examining the
suggested stereotype-prototypes together with the current context, as
represented by the set of currently active stereotype-instances and
their success at predicting the. contents of the text entering the system
_ Tt is, however, all the more important that it is computationally cheap,
because it provides only a limited part of the stereotype identification
mechanism, much of the work being pushed onto the stereotype
management process proper. :

There are four specific properties of the current Scrabble stereotype
suggestion mechanism which are intended to overcome problems of
previous systems. First, semantically rich or suggestive words (or their
residual representations) giving good clues to stereotype-prototypes
which might be appropriate for the analysis of a text segment are
processed early in the suggestion procedure. Secondly, no processing
effort is expended on information which gives little clue as to the .
topic-type of the current text segment: for example processing of CD
EVENT and STATE primitives is avoided. Thirdly, there is no complex
exploration of the CD structure representing the text segment when
attempting to find the representations of suggestive words. Fourthly,
the system is capable of finding and applying a suitable stereotype for
a text segment (if it has any) even if that text segment is not
connected to any previous text segment in a predictable way. Fifthly,
the suggestion mechanism should be capable of dealing with the
problem which 1 will call low precision suggestion, as follows.

T ddadindiediadi i

I'The interested reader might like to compare my terms
precision and comprehensiveness with the terms precision and
recall used in the literature of Reference, alias Document, Retrieval
Systems.
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Consider the following text fragments, which are adapted from
[Charniak78b]:

(1) Jack picked a can of tuna off the shelf. He switched on
the light.

and

(2) Jack picked a can of tuna off the shelf. He put it in his
basket.

In a system which has stereotypes for preparing meals in the kitchen
at home and for shopping at the supermarket, it is clear that the first
sentence in examples (1) and (2) could be associated with either: but,
given the context supplied by the first sentence, in example (1) the
second sentence can only be associated with the kitchen and in
example (2) the second sentence can only be associated with the
supermarket. The crucial point about the first sentence in both
fragments is not that it can be associated with either the supermarket
or the kitchen, but that it can not be associated with, say, stereotypes
for warfare or railway journeys. I have christened this phenomenon low-
precision-suggestion because the first sentence does contain enough
information to do some selection amongst the systems stereotypes, but
not enough to select precisely one. The examples of [DelJong79] do not
contain a text in which this occurs, and it is not clear how he would
handle it. He might argue that it does not occur in real texts and
whilst this might be true for short news stories, it seems to me that
such gradual narrowing of possible topic-type is quite a common device,
especially in fiction. If the reader is doubtful I suggest that the first
few paragraphs of the story "Reflections of a Kept Ape” in {McEwan79]
are examined.

What is required to deal with examples (1)and (2) is a general
mecchanism capable of recognising that the first sentence in each case
has something to do with food. Then those stereotypes whose topic-
types are most closely associated with food may be activated, and
further processing done to see whether they are, in fact, appropriate
for this text, and, crucially, to ascertain that those stereotype whose
topic-types have no connection with food need not be so processed. Of
course, this is very tentative: John might have been picking up a can to
use as a weapon, but the most one can hope for from stereotypes is
the rapid analysis of the usual, and it seems safe to interpret the usual
meaning of the sentence as having something to do with food, provided
other mechanisms allow for later correction. This can be described as
drawing a very low precision conclusion, but, again, the requirements on
the suggestion mechanism are such that it should err on the side of
imprecision in order to achieve greater comprehensiveness. This
argument leads to the outline of a scheme as follows: the stereotypes
for say, eating in a restaurant, shopping at the supermarket, and
preparing a meal in the kitchen are all activated when a word?® which

20r, more particularly, a word sense.
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can be associated with the concept of food is mentioned. Restaurant
eating can be immediately eliminated because the restaurant
stereotype will not predict the picking of anything off shelves, never
mind tins. Both the kitchen and supermarket stereotypes will have
predicted the first sentence of (1) and (2), and so will be allowed to
continue. Only the kitchen stereotype will predict the second sentence
of (1), and so the supermarket stereotype will be eliminated, and vice
versa for text fragment (2).

The essential requirement for the stereotype suggestion mechanism
is, then, that it should provide an efficient and comprehensive means
of connecting together the lexicon entries for word senses with
concepts associated with stereotype-prototypes.

In principle the links between word-senses and the corresponding
stereotype-prototypes could be made automatically. If the system had
access to a lexicon containing, for each word sense, semantic
information expressed in, say, the semantic primitive language of
[Wilks77], the links could be constructed as follows. Each stereotype-
prototype would have associated with it a set of patterns of primitives
describing (probably quite crudely) its topic-type. The stereotype
manager would simply be informed when a word-sense whose semantic
entry contained a pattern which was associated with a stereotype-
prototype was used in an input sentence.

The current Scrabble system uses a crude approximation to this
scheme, largely because Cater’'s representation language was not at all
well adapted to this scheme. In particular the AD-HAC analyser employs
very simple lexicon entries for nouns. Very commonly, it was found, it
is nouns which are the words whose lexicon entries would, ideally,
contain the kind of primitive patterns which would trigger the
suggestion of stereotype-prototypes. Large scale modification of the
parser could not be undertaken in the time available, so it was
impossible to test automated pre-processing of the lexicon to identify
what might be called suggestive primitive patterns. So the simpler
course of manually extending the lexicon to include a new set of
primitives for use by the stereotype suggestion process. The current
(pitifully small) set of such primitives is:

Primitive Example words

*-PRESENT-* present

*-TRAVEL-* car,train

*-FOOD-* tuna,supermarket,restaurant
*.WILD-ANIMALS-* lion,monkey,zoo

1 will call these objects suggestive primilives. Of course a serious
system would require many, many more such patterns.

On the other hand, the structure of the AD-HAC analyser was well
adapted for the construction of a reasonably efficient implementation
of the idealised scheme. In particular it facilitated the process of
separating from the primary semantic representation of an input
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sentence, the word-senses whose semantic entries contained suggestive
primitives. In many other parsing frameworks it would be difficult to
devise a computationally inexpensive scheme which both avoided taking
the primary sentential semantic representation to pieces to discover
from which word senses it had been constructed, whilst ensuring the
stereotype manager was informed only of the senses of words which
actually occurred in the input.

The two devices in the AD-HAC analyser which were used for this
purpose were requests and registers. It is not appropriate to provide a
dectailed description of either device here: the interested reader should
see [Cater82] for such a description. Briefly the most relevant aspects
of the devices are as follows.

The request device is fundamental to the operation of Cater’s
parser. Its relevant property here is that it provides (amongst many
other things) a means by which arbitrary actions may be performed
when an attempt is made to use a given sense of a word in the input
stream in the construction of a semantic representation of a complete
input sentence.

The register mechanism provides a means by which arbitrary
information may be associated with, and carried along by, particular
partial parses, so that the information may be discarded if the parse
does not pan out in some way. Again the register mechanism can be
used in many other ways.

The implementation of the mechanism by which the stereotype
suggestion mechanism is informed when use is made of a word sense
associated with a suggestive primitive is as follows. To each such word
sense is attached a request which has just one action: to add the
relevant primitive to a register used for accumulating suggestive
primitives during the construction of a reading of part of a sentence.
Then, if this partial parse forms part of a complete parse of the input
sentence, the contents of the register are passed to the stereotype
suggestion mechanism. That is, the stereotype suggestion mechanism is
informed whenever a suggestive primitive is associated with a word
sense which was used to form the semantic representation of an input
sentence is being passed to the Scrabble program.

The stereotype suggestion mechanism looks up all the suggestive
primitives passed to it in its map from suggestive primitives to
stereotype-prototype names, and passes on the names it obtains to the
stereotype management process. If more than one stereotype-prototype
is associated with a one of the suggestive primitives the data
structure will group the stereotype-prototypes together. The groupings
are known as stereotype suggestion packets. They are used by the
stereotype manager, as will be described in section 4.3.

The stereotype suggestion process is applied to all incoming text,
and not just, say, when the system finds that it has no active
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stereotype-instance capable of predicting the contents of the current
text segment. It is this feature of implementation which allows the
system to recognise, and deal with, unexpected changes of topic-type
of the text. Such changes of topic-type will, of course, require the
suggestion and possible instantiation of new stereotype-prototypes.

To summarise, [ will return to the four principles underlying the
Scrabble stereotype suggestion mechanism mentioned earlier in this
chapter. The implementation both processes suggestive word senses
early and avoids the need for sophisticated manipulation of CD EVENT
and STATE primitives or other properties of complete sentence
representations, because it has no need to examine the
representations of complete sentences: rather it gets the information
necessary for the suggestion process in a separate data structure.
Because it attempts to suggest stereotypes for every new sentence
entering the system, it deals with the problem of unexpected changes
of topic-type. Furthermore, since it deals with small but fairly loose
conceptual patterns, rather than either specific words or larger,
specific, propositions, it deals with the problem of low precision
- suggestion. ’

4.2 Stereotype Management

The stereotype management module has two primary roles. Firstly it
filters and monitors the stereotype-prototypes thrown up by the
suggestion mechanism, discarding those which are unlikely to be useful
in the analysis of the text and forming instances of the rest. Secondly
it attempts to determine when a stereotype-instance, hitherto
appropriate to the text, ceases to be relevant to it, and hence should
be suspended. The manager also has a number of subsidiary roles, the
most important of which is to record the textual order in which
stereotype activation, suspension and unpredicted utterances occur.

The filtering of suggested stereotype-prototypes primarily relies on
the context provided by the success or failure of existing instances at
predicting the parts of the text prior to the current sentence. The
process of filtering out suggested prototypes will be described in more
detail in the next section.

In the implementation, monitoring instances of suggested prototypes,
once such instances are formed, is closely intertwined with the process
of deciding whether or not to suspend an instance. To suspend an
instance is to retain its variable bindings and the contents of those
parts of the text which it has successfully predicted, so that it may be
incorporated in the representation of the whole text. Clearly only
instances which have been identified as being appropriate to at least
some parts of the text will be suspended.
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If an instance is identified as being inappropriate for the current
text segment it is rejected, and most records of it having been active
are destroyed, leaving notes of when it was formed and of the other
instances which were formed on the basis of the same suggestion. This
process is called killing. It is the selection of stereotype-instances to
kill which  constitutes the high precision part of stereotype
identification. '

The monitoring is described in section 4.4.

Before beginning a detailed description of stereotype management a
brief overview of the orderin which the activities of the manager are
performed is necessary. When control enters the Scrabble program
after the AD-HAC analyser has processed a sentence, the first thing
that happens is that all existing, active stereotype-instances are
applied to the new CD representation. (The process of stersotype
applicationis described in the next chapter). This will yield (of concern
to the manager) a set of messages describing the degree of success or
failure of each instance at predicting the contents of the new CD
represcntation. The manager then examines these messages to
determine if any of the active instances should be killed or suspended.
Then any suggestions thrown up by the stereotype suggestion
mechanism are examined, filtered as necessary, and instances formed
of any prototypes which are not filtered out. Next, these new
stereotype-instances (if any have been formed) are applied to the CD
representation of the current sentence. Their success or failure is
monitored, and they may be added to the list of (genuinely) active
stereotype-instances if this seems appropriate.

4.3 The Activation of Stereotype-Instances

The central part of the activation of stereotype-instances is
selecting out from the suggested stereotype-prototypes those which
should have new instances formed. The suggested stereotype-
prototypes are all processed in the same way: in particular prototypes
which already have instances which have been used to analyse some
preceding part of the text are not processed in a fundamentally
different way from those which have never had an instance activated.
The selection is done by weeding out those of the suggested stereotype-
prototypes for which there already exists an active instances which is
successfully predicting the input material, or which have had instances
killed in circumstances which suggest that a new instance will not be
able to predict the text's contents.

The former case is quite straightforward: if a new sentcnce of a
text continues to have the same topic-type as the preceding section it
is quite likely that the new section will use word senses suggestive of
that, existing, topic-type. In the absence of contrary information it
seemns safe to assume that the new sentence concerns a continuation
of the same manifestation of the suggested topic-type. Hence, there is
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no need to form a new instance of the stereotype-prototype appropriate
for that topic-type. An example of contrary information in this case
would be the failure of an instance to predict the contents of the
current sentence. (Remember that the predictions of existing active
instances are compared with the representation of the text before the
weeding process is initiated.)

The latter case is more complicated. In the current implementation
the interpretation of stereotype-prototypes "which have had instances
killed in circumstances which suggest that a new instance will not be
able to predict the text’s contents” is quite narrow. Let us restrict our
attention to one of the stereotype-prototypes suggested for the
current sentence. If, whilst processing some preceding sentence, this
prototype was suggested, and an instance was formed but subsequently
killed, an examination is made of any instances previously also formed
on the basis of that suggestion packet. If any of those instances is
still active, it is assumed that these are more .appropriate for the
analysis of the current text segment than the stereotype-prototype
under consideration. Hence it is not worth forming a new instance.

For example, consider the following (rather artificial) text fragment:

(3) Jack picked a can of tuna off the shelf. He switched on
the light. He opened the can. He got some lettuce from the
fridge.

Suppose, for the moment, that the only word in the first sentence
whose semantic entry contains a suggestive primitive is "tuna”. Further
suppose that the primitive pattern represents “food” and is associated
with two stereotype-prototypes, sh’opping-at.—t.he-supermarket and
making-a-meal-in-the-kitchen. If instances of both are formed when the
first sentence is read, they will both successfully predict this first
sentence®. However, when both the second and third sentences are
read the kitchen instance will predict them, but the supermarket
instance will not. Such failure to match will, presumably, lead to the
supermarket - instance being killed. When the fourth sentence is read,
mettuce” will again cause the suggestion of the making-a-meal-in-the-
kitchen and the shopping-at-the-supermarket prototypes. The kitchen
prototype will not be instantiated afresh because there is an active
instance which has matched all the preceding text. The supermarket
prototype will not be instantiated because there was an instance of it
which was activated with the successful kitchen instance, but has

3t may seem odd to use the word "predict” here, but the
point is that although the Scrabble system has already read and
to some extent processed the sentence, this is the first time any
attempt is made to determine whether the input sentence is an
utterance either stereotype-instance predicts could occur in a text
about its topic-type.

4Note that for the sake of simplicity this description has
ignored all suggestions made from words in the input other than
"tuna” and "lettuce”.
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since been killed*.

The process of instantiation is a relatively expensive operation in
terms of computation, but not so expensive that inappropriate
instantiation seriously degrades the performance of the system. It
consists of loading a prototype into main storage if it is not already
present there, and then operating on it to convert what might be
called its rather declarative form of expression into a pattern
matching program and a framework to hold the results of the
matching. This process is described fully in the next chapter.

One of the problems with the scheme used is the amount of
copying required. Although this is a major expense in the current
system, an organisation using something akin to the virtual copy
mechanism of [Fahlman79] would considerably reduce the expense and
could be implemented without much difficulty.

Once the new instances are formed they are handed over to the
stereotype application module, so that their predictions about the
contents of the text may be compared with the complete
representation of the current sentence. They are then handed over to
the main stereotype management module for processing in the normal
way. This main stereotype management module is described in the next
section.

4.4 Managing Active Stereotype-Instances

There are two distinct but related roles taken on by the portion of
the program concerned with managing active stereotype-instances. The
first is the refinement of the topic-type identification done by the
processes described in section 4.3. The second is the deactivation of
stereotype-instances which no longer appear to be relevant to the text.

The heart of the program is the examination of the results of the
application of both the active and newly activated stereotype-instances
to the representation of the current sentence. This application process
is described in Chapter 5. Almost as central is the comparison of these
_results with those of the stereotype suggestion process described in
the last section.

The results of the application process are stored in a data-
structure which indicates, for each stereotype-instance, whether it
predicted the whole, part or none of the current sentence. If the
contents of the data-structure indicate that an instance predicted the
whole of the current sentence, the manager takes no particular action.
If the data-structure indicates that there was no part of the sentence
the instance predicted then the action depends on the instance’s
earlier success at predicting the contents of the previous sentence
and whether the prototype of which it is an instance has been
suggested again. lf that prototype has been thrown up by the
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stereotype suggestion mechanism during the processing of the current
sentence it is merely recorded that it has predicted no part of the
current sentence. If it predicted no part of the previous sentence, it is
considered a candidate for killingor suspension. It it did have some
success at predicting the contents of the previous sentence, then
again it is merely recorded that it could predict no part of the
current sentence. Of course, the use of this preset number (two) of
sentences for inspection is not entirely satisfactory: I will return to
this point at the end of the thesis. In addition, if an instance failed to
predict part of the current sentence a count of the number of
proposit.ions‘5 it has failed to predict is incremented.

If an instance becomes a candidate for killing or suspension, then
it is examined to determine if it appears that it was activated
inappropriately, or was appropriately activated but the text has shifted
its topic-type so that the instance is no longer relevant. This is done
by comparing the number of the instance's predictions which have
been satisfied with the number of propositions which occurred in the
text which it failed to predict. If it has predicted less than it failed to
predict then it is killed and all trace of it having been activated is
removed from the system with the exception of the information used
by the stereotype activation mechanism, as described in section 4.3.
However even if it has predicted more of the input text than it has
failed to predict, it may still be killed. This will happen if there is
another active and rmore effective stereotype-instance which was
activated on the basis of the same suggestive primitive which caused
the activation of the instance under consideration. However the
instance under consideration will not be killed if the other instance
has failed to predict something in the input text which was predicted
by the current instance. In other words, an instance is killed even if it
has been moderately successful at predicting the contents of the
current text section if there is an instance associated with a similar
topic-type which has been more successful at predicting the contents
of this text section.

For example, consider the following text:

(4) John picked a can of tuna off the shelf. He put it in his
basket. He got some tomatoes and some lettuce. He found
the rice and picked up a bag. He went to the checkout and
paid. He went home.

Let us assume that the first sentence causes the activation of
instances of the making-a-meal-in-the-kitchen and the shopping-at-the-
supermarket stereotype-prototypes (and no others). Suppose they both
predict the first sentence, but the instance of the kitchen prototype

5] mean by proposition here a representation which contains
exactly one EVENT, STATE, or CAUSE. Such propositions may
correspond to a single sentence: but all but the simplest sentences
will be represented by CD-structures containing several such
propositions.
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fails to predict the second sentence. The kitchen instance will not be
considered for killing or suspension yet because it succeeded in
predicting the previous sentence. Presumeably both stereotypes will
predict both the third and fourth sentences. However, the fourth, and
then the fifth, sentence describes things one would expect to happen
when shopping at the supermarket, but not when making a meal in a
kitchen. Since the kitchen stereotype has failed to predict two
successive sentences it is considered a candidate for Kkilling or
suspension. Because the supermarket instance was ‘activated by the
same suggestive primitive (*-FOOD-* from "tuna’) as the kitchen
instance, and it has predicted all the items the kitchen instances
successfully predicted (and more), the kitchen instance is killed.

If an instance survives these tests to see whether it should be
killed it is suspended; that is, its state is preserved, including such
information as how its utterance- and variable-predictions were satisfied
, but its predictions will not be matched against any further text
presented to the system. The preserved states of stereotype-instances
are the prime part of the text representation which is passed to the
summariser. But this preservation of stereotype-instance states could,
in principle allow fuspended instances to be reactivated. It would
possibly extend the range of texts with which the system could deal if
such suspended instance could be reactivated, but this is not done in
the present system.

The killing of instances is the final process by which the precision
of stereotype identification is improved by the stereotype manager.
Equally, the suspension of an instance is, in effect, definite
confirmation that the stereotype-prototype from which the instance
was formcd was appropriate for the topic-type of the text section
which the instance was used to process.

4.5 Other Information Recorded by the Manager

Although the text representation constructed by Scrabble has
nothing to do stereotype management, since stereotype management is
concerncd with the control of the process of text analysis rather than
its output, a brief mention of the text representation is appropriate
here because some important elements of it are constructed by the
stereotype management program whilst it is performing its primary
task of controlling text analysis.

Although the most important part of the text representation used
by Scrabble is derived from the suspended states of stereotype-
instances, there are two data-structures which are constructed by the
manager itself which also form parts of the text representation. They
are a record of all the items in the input text which some instance
has failed to predict, and a related record of the textual order of
activation and suspension (if applicable) of all instances which have

67




not been killed.

The former data-structure is extended each time an active instance
fails to predict some item in the text. In it the stereotype manager
records the name of the instance, the CD-structure it failed to match,
and any instances which succeeded in predicting the CD-structure. This
is done whilst the manager is determining whether an instance is a
candidate for killing or suspension.

" The latter data-structure is extended at two different times. First,
whenever the processes described in 4.3result in a new stereotype
being activated, a note to this effect is added to the data-structure by
the manager. Second, whenever an instance is suspended a note is
added recording this event. The data-structure is always maintained so
that these notes occur in the textually order of the items which
triggered their being added.

These two data-structures are not examined by the manager,
except when housekeeping after an instance has been killed. However
they are central to the summariser’'s processing, so further discussion
of them will be left until chapter 8.

4.6 A Detailed Example of Suggestion and Management

To illustrate the stereotype suggestion and management process in
Scrabble the following story will be considered:

(5) JACK PICKED A CAN OF TUNA OFF THE SHELF. HE PUT IT IN
HIS BASKET. HE PAID FOR IT AND WENT HOME.

In the remainder of this section, once again computer output
generated whilst processing the input text is indicated by right and
left indentation, and by this font. During this run more detailed
debugging output was produced than during the run shown in section
3.7. As an aid to clarity some of the less relevant material has been
removed.

We begin as Scrabble is entered for the first sentence:

Entering Scrabble for sentence :
(JACK PICKED A CAN OF TUNA OFF THE SHELF)

The first thing that happens is that the suggestion mechanism is
handed a list of the primitives associated with stereotype-prototypes.
In this case there is just one:

_ Primitives suggested: (%-FO0D-%>
The associated stereotype-prototypes are looked up and suggested:

Stereotypes suggestec:

(RESTAURANT KITCHEN SUPERMARKET)

In this case the three prototypes are for eating in a restaurant,
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making a meal in the kitchen and shopping at the supermarket.
Because there are no active instances of the suggested prototypes,
instances of each of them are formed. They are applied to the text by
mechanisms described in the next chapter. The results of the
comparison of their expectations and the input material are passed
back to the manager. In this case the instance of the restaurant
prototype does not expect the sentence; but the instances of the
cooking in the kitchen and shopping in the supermarket prototypes do.
For successful matches the messages include the CD-structure which
matched the stereotype's expectation, the CD-path by which it was
extracted from the original structure, and the name of the stereotype
slot it fitted.

(Message RESTAURANT1 NO-MATCH NIL)

(Message
KITCHENL
MATCHED
((Match-message
(CEVENT
(ARCTOR JACK)
(ACT PTRANS)
(FROM SHELF 1>
(INST
(EVENT
(ACTOR JARCK)
(ACT GRASP)
(OBJECT
(FOCUS (STATE THING))
(STATE
(STATENAME QUANTITY)
(THING TUNA3)
(VAL #CANFUL%1)
(TIME
(NAMED TIMEPOINT1)
(COMPARISON (BEFORE XNOW¥)))) )
(TIME
(NAMED TIMEPOINTL)
(COMPARISON (BEFORE ¥NOW¥)))) )
(OBJECT
(FOCUS (STATE THING)
(STATE
(STATENAME QUANTITY)
(THING TUNA3
(VAL #MCANFUL*1)
(TIME
(NAMED TIMEPOINTL1)
(COMPARISON (BEFORE #NOW%>>) )
(TIME
(NRMED TIMEPOINTL1)
(COMPARISON (BEFORE ¥NOW¥))) )
NIL .
. get-foodl)
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(Message
SUPERMARKET1
MATCHED
((Match-message
(EVENT
(ACTOR JACK)
(ACT PTRANS)
(FROM SHELF L)
(INST
(EVENT
(RCTOR JACKD
(ACT GRASP)
(OBJECT
(FOCUS (STATE THING»
(STATE
(STATENAME QUANTITY)
(THING TUNA3
(VAL MCANFUL*L1)
(TIME
(NAMED TIMEPOINT1)
(COMPRARISON (BEFORE ENOW)) D
(TIME
(NAMED TIMEPOINTL)
(COMPARISON (BEFORE HNOW#)))) O
(OBJECT
(FOCUS (STATE THING»
(STATE
(STATENAME QUANTITYD
(THING TUNA3)
(VAL ®CANFUL%1)
(TIME
(NAMED TIMEPOINTL)
(COMPARISON (BEFORE #NOW#)))) >
(TIME
(NAMED TIMEPOINTL)
(COMPARISON (BEFORE ANOWKI) )
NIL
. getitemslid»

On the basis of these messages the manager decides that the eating in
a restaurant stereotype-instance is not appropriate for the analysis of
the input text, and so it should be killed, rather than added to the
list of properly active instances. On the other hand, both the instances
of the supermarket and kitchen stereotypes successfully predicted the
material of the first sentence: therefore they are properly activated.
The manager outputs some mesSages to confirm that this has
happened.

No match by stereotype : RESTAURANTL

The following stereotype Instances have been activated"
(KITCHEN1 SUPERMARKET1)

Spent 862 ms in Scrabble

Processing of the next sentence begins.

Entering Scrabble for sentence !
(HE PUT IT IN HIS BASKET)

No new stereotypes are suggested by this sentence. From the active
stereotype-instances, KITCHEN1 and SUPERMARKET!, the manager gets
back messages indicating that the KITCHEN1 does not expect .things to
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be put inbaskets but SUPERMARKET1 does. Because KITCHEN1 expected
the previous sentence it is not considered for Kkilling or suspension: it
remains active in the hope that later in the text the manager will be
in a better position to judge whether it is relevant to the topic-type of
the text or not. The message from SUPERMARKET1 contains the
complete CD-representation of the input sentence, indicating that it
expccted all of it. ‘

(Message KITCHENL NO-MATCH NIL)
(Mcssage
SUPERMARKET1
MATCHED
((Match-message
CEVENT
(ACTOR DUMMY-MALEL)
(ACT PTRANS)
(OBJECT DUMMY-THING=2)
(TO
(FOCUS (STATE THING»
(STATE
(STATENAME POSS)
(THING BASKET2)
(VAL DUMMY-MALE2)
(TIME
(NAMED TIMEPOINT2)
(COMPARISON (BEFORE ®NOW#¥>>)) )
(TIME
(COMPARISON (AFTER TIMEPOINT1)»
(NAMED TIMEPOINTZ2)
(COMPARISON (BEFORE %NOW¥>)) )
NIL
. basketitemsl1)»

Once again, beforc beginning processing of the next sentence, the
manager prints some confirmatory messages.

No match by stereotype : KITCHEN1
No neuw stereotype instances were activated

Spent 116 ms in Scrabble

Entering Scrabble for sentence :

(HE PARID FOR IT AND WENT HCOME)
Once again KITCHEN1 does not expect the input material, but
SUPERMARKET1 does. KITCHEN! has now failed to recognise anything
for two successive sentences, and hence becomes a candidate for
killing or suspension. Because it has failed to predict more of the
input than it has predicted it is killed, leaving SUPERMARKET1 as the
sole rernaining stereotype-instance. Note that the current sentence
matches two of the expectations of the supermarket stereotype in
different ways. The first is that the shopper will pay for some goods,
and the second is that he or she will leave the supermarket. This is
reflected in the messages passed back to the manager. The message
indicating that the input sentence matches one of the instance’s
expectations contains the two CD-structures, corresponding to the two
clauses of the sentence, separated.
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(Message KITCHEN1 NO-MATCH NIL)D
(Message
SUPERMARKET1
MATCHED
((Match—message
((CAUSE
(ANTECEDENT
(EVENT
(ACTOR DUMMY —HUMAN4)
(ACT DO
(TIME
(NAMED TIMEPOINT4
(COMPARISON
(BEFORE
(NAMED TIMEPOINT
(COMPARISON
(BEFORE ¥NOW#Y) )
(RESULT
(EVENT
(ACTOR DUMMY-MALED
(ACT ATRANS)
(OBJECT DUMMY - THING3
(FROM DUMMY-MALE3)
(TO DUMMY-HUMAN4)
(TIME
(NAMED TIMEPOINT3)
(COMPARISON (BEFORE ENOWHX)I) I
(CONJUNCT FIRSTD
. payd)
(Match—-message
(CEVENT
(ACTOR DUMMY-MALE3
(ACT PTRANS)
(OBJECT DUMMY-MALED
(FROM DUMMY-PLACED)
(TO
(FOCUS (STATE THING
(STATE
(STATENAME OWND
(THING HOMEL)
(VAL DUMMY-MALE3D
(TIME
(NRMED_TIMEPOINTS)
(COMPARISON (BEFORE ENOW¥D)
(COMPARISON (RFTER TIMEPOINT3N» )
(TIME
(COMPARISON (AFTER TIMEPOINT2»)
(NAMED TIMEPOINTBE)
(COMPARISON (BEFORE XNOW*3)
(COMPARISON (AFTER TIMEPOINT3MD® )
(CONJUNCT SECONDD
. getitems2))

No match by stereotype : KITCHEN1

No new sterectype instances were activated

Killing stereotype instance KITCHEN1
Since SUPERMARKET! is the only remaining stereotype-instance, the
topic-type of the text has now been firmly identified as shopping at
the supermarket. If the summariser was entered at this point, as it
would be during a full Scrabble run, it would be passed as data the
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summary template and variable bindings of SUPERMARKET1, which
expected all the input. The summary would be constructed from this

data.

The next chapter describes the process by which CD-structures
extracted from the input text are matched against the expectations of
each stereotype. It contains a detailed discussion of the representation
of the stereotype-prototype for shopping at the supermarket, which
was used when processing this example.
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5. Stereotype Application

Stereotype application is the process by which the set of
expectations associated with each currently active stereotype-instance
are compared with incoming CD-structures representing sentences of
the input text. The results of the comparison may be that the
stereotype-instance expected the contents of the sentence; that it
expected part, but not all, of the sentence's contents; or that it
expected none of the contents of the sentence. These results are
passed back to the stereotype manager, as described in chapter 4.

The main issues to be considered here are: how is it recognised
that a particular CD-structure matches an expectation; how are such
successful matches recorded and what effects do they have on the
system; what happens when there is no match between an incoming
text segment and any of the system'’s expectations; what happens when
an incoming CD-structure only partially - matches the systems
expectations? The way these questions are answered determines the
operational basis of the whole text understanding process.

The strategy adopted for the recognition of expected material
necessarily follows from the representation of Scrabble's stereotype-
prototypes and stereotype-instances. The chapter therefore begins with
a description of the representation of stereotype-prototypes. The
description is based on a detailed example. This is followed by a
description of the representation of stereotype-instances used within
Scrabble, motivated by a preliminary discussion of the use made of the
representations when examining incoming CD-structures. The chapter
then moves to a detailed discussion of the mechanism by which
individual utterance-expectations are compared with CD-structures
extracted form input text sentences: this is followed by a description
of "the preprocessing which occurs when an utterance-expectation of
the system is satisfied by part of the input text. Next there is a
detailed description of the way the results of stereotype application
are communicated to the stereotype manager. Finally a detailed
example is presented.

Much of the material in this chapter is extremely detailed. It is
hoped that the detailed material will provide some insight into the
internal working of the program.

5.1 An Annotated Example of Stereotype-Prototype.

This section introduces the representation for stereotype-prototypes
used in Scrabble. It is illustrated by a discussion of Scrabble’s
shopping-at-the-supermarket stereotype. This is, in essence, Scrabble's
encoding of the Supermarket frame of [Charniak76b] described in
section 2.4.
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Another example stereotype-prototype, for texts about visits to zoos,
may be found in Appendix B.

A stereotype-prototype is divided into three main sections. The first
introduces the set of variable-expectations; the second describes is the
set of utterance-expectations; finally there is some information
connected with the generation of summaries.

The terms variable-expectation and utterance-expectation were
introduced in section 3.1. Variable-expectations describe co-referring
nominals which are expected to occur in an input text which shares
the prototype's topic-type and the nominals expected properties.
Utterance-expectations describe text segments which are expected to
occur in an input text with the prototype’'s topic-type. The scope of
the individual text segments expected by a Scrabble stereotype may be
anything between a single noun adjective pair and a complete complex
sentence.

Illustrative material from the program is indented at the right and
left hand sides of the page, and is printed in this font. All the
illustrative material has been taken from the data-structure used by
the program. However, for the sake of brevity, the list of utterance-
cxpectations has been slightly shortened, and some variables have
been omitted.

Prototype name

The first (minor) section of a stereotype-prototype is its name.
(SUPERMARKET

This short name has no great importance: it is merely a convenient
handle to use when manipulating the prototype.

Variables-expectations

The word VARIABLES indicates that what follows is a description of
the variable-expectations which occur in the stereotype prototype’s
utterance-expectations.

(VARIABLES

By convention the first set of variable-expectation declarations are
those describing the CD-nominals which are expected to occur in (the
CD-structures constructed to represent sentences of) texts about the
prototype’s topic-type. They are followed by declarations which, in
essence, describe the expected temporal interrelationships of the
events described by the prototypes utterance-expectations.
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Variable ecti CD-nominal

Variables describing CD-nominals which are expected to occur in
the representations of texts about the stereotype-prototypes topic-type
have four parts. :

The first is a name, which again is merely a handle facilitating easy
reference to the variable elsewhere.

The second is the sorting' predicate of the variable. The predicate
will determine whether a CD-nominal in a representation extracted
from an input text sentence may be bound to this variable. The
precise sense in which "bound” is being used here will be detailed
later in this chapter. The predicate consists of two parts: a function
and a value. The value typically belongs to the set of nominal
rfeatures’ used in Cater’s representation language (see section 2.3.6
[Cater82]). although some belong to the set of so-called "functions” in
Cater's system. Cater’s "features” are a set of about 25 classificatory
primitives. They include such things as MALE CONCRETE and BEAST. The
»functions” (which are not described in any detail in [CaterB2]) are
not hierarchically organised, and cover such things as FOOD and
STORE. Scrabble’s predicate’s (mat.hemat.ical) function is expected to
be a two-place predicate which can test a CD-nominal to determine
whether it possess the specified quality.

Third there is a variable type. This specifies the circumstances in
which a new instance of a variable may be created. A variable may
expect only one object of the type to which it refers to occur in a
particular text section, or it may expect a group of connected objects,
or several unconnected objects. Examples of each kind will be given
below.

Fourth there is a default. The default specifies a CD-nominal which
should be used when generating a summary CD-structure for a text
whose topic-type has been identified, in this case as shopping-at-the-
supermarket, but which does not contain a specific mention of any
object expected by the variable.

The first variable in the SUPERMARKET stereotype is called
'shopper’. It expects a CD-nominal with the feature HUMAN. (The name
SCRIPT-FEATURE for nominal feature testing functions is a historic
hangover.) As its type is CAN-BE-GROUP, it can be bound to groups or
to more than one different person. Its default is DUMMY-HUMAN, which
might appear in an English summary as "“some peopie”.

4o sort” is used here in the sense of to place according to
kind, rather than to put in, for example, numerical order.
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FE

(shopper

(SCRIPT-FEATURE HUMAN)

CAN-BE-GROUP

DUMMY -HUMAND
The next variable is 'purchase-item’ which expects any CONCRETE
object. Within the semantic feature markers used there is no means of
identifying those objects which can be bought at a supermarket, as
opposed to other kinds of concrete objects, say rocks, since this is an
essentially pragmatic distinction. The variable is marked as
REPEATABLE so there may be as many 'purchase-items’ as are needed
to match the story. Like DUMMY-HUMAN in shopper, DUMMY-THINGS
indicates what the default CD-nominal is for purchase-items.

(purchase~item

(SCRIPT-FEATURE CONCRETED

REPEATABLE

DUMMY - THINGS)
The variable 'basket’ has the typing predicate (MUST-BE-A BASKET).
This indicates that any object bound to this variable must be an
instance of the CD generic token? BASKET, or something which could
refer to a basket. Of course this is not an entirely accurate way of
representing the actual constraints in a real supermarket, for example
it would be better if the constraint also allowed trolleys but disallowed
shopper-owned baskets. This is not possible with the present system.
Equally the current Scrabble representation language is not
sufficiently expressive to represent the idea that whilst two or even
three baskets is a reasonable number to expect the shopper to use, a
hundred is not a number of baskets which should be classified as usual.

(basket
(MUST-BE~-A BASKET)
REPEARTABLE
BASKET)

For ‘'fridge-shelf’ the typing predicate is (SCRIPT-FUNC-OF STORE).
SCRIPT-FUNC-OF tests to see whether a CD-nominal is marked as
having the specified function. For example, the CD-nominals derived
from the words "banana’, "biscuit” and "tuna” have the function FOOD.

The words “shelf”, “fridge” and so on produce tokens marked with the
function STORE.

(fridge-shelf
(SCRIPT-FUNC-OF STORE)
REPEATABLE
SHELF>

2] mean by "“CD generic token” the CD nominal token which
underlies all instances of particular CD token. For example, when
the AD-HAC analyser reads the word “BASKET' in the input text it
will create a unique token, say BASKET27, to represent this
occurrence of the word "BASKET'. This token, BASKET27, is linked
to another internal token with, by convention, the same name as
the input word, in this case BASKET. This last token, BASKET, which
I call a CD generic token, represents the meaning of “BASKET", in
the sense that it is linked to all the information the system
possesses about baskets. See [Cater82] Chapter 2 for more details.
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The variable 'market’ which describes the place where the shopping
takes place has the type code UNIQUE which indicates that there can
be only one such place in a text segment analysed by a single
instance of this prototype.
. (market .

(MUST-BE-A SUPERMARKET)

UNIQUE

SUPERMARKET?
The remaining variables in the shopping-at.-the-supermarket. stereotype-
prototype use similar sorting predicates and types to those introduced
already. The defaults should be self explanatory.

(cashier
(SCRIPT-FEATURE HUMAND
UNIQUE
CASHIERY

(checkout
(MUST-BE-AR CHECK-OUT>
UNIQUE
CHECK-0UT)

Variab expecti ime toke

Variables which expect CD time tokens specify variable-expectations
about the temporal interrelationships between utterances, as expressed
in input texts by the tenses and aspects of various clauses, and by
explicit conjunctions of time, like "before” after” and "until”. The
expected interrelations are specified using Cater's primitives BEFORE,
AFTER, and DURING, described in section 2.3.5 of [Cater82], which
should be referred to for a description of the time representation
scheme which underlies Scrabble. Although Cater’s scheme is quite
elaborate it has many holes and cannot be regarded as a real solution
to the many difficult problems of time representation.

Variables which expect CD time tokens have three parts.

As for variables which expect CD-nominals, the first element in the
variable characterisation is a name.

The second element specifies the relationship between time tokens
which may be bound to this variable and those which may be bound to
other variables within this stereotype. It consists of a list of pairs of
Cater's CD time relation primitives (BEFORE, AFTER, DURING) and the
name of another time variable. It should be pointed out that these
expected relations between time variables also serve as defaults for
the time interrelations of the utterance-expectations in the stereotype,
since they form a basic expected temporal framework for events
described by the stereotype.

The third element is a ‘type code, which is always TIME, allowing

this class of variables to be distinguished from those which expect CD-
nominals. this is necessary because of the different meanings and
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forms of the two sorts of variables.

The set for "SUPERMARKET" is:

(gotime
((BEFORE getbaskettime)
TIME>
(getbaskettime
((BEFORE getitemtime))
TIME
(getitemtime
((BEFORE paytime)
(AFTER getbaskettime)
TIMED
(basketitemtime R
((BEFORE paytime)
(AFTER getbaskettime))
TIMED
(checkouttime
((BEFORE
leavetime)
(AFTER gotime)
(AFTER getbaskettime)
(AFTER getitemtime)
(AFTER basketitemtime))
TIMES
(paytime
((BEFORE leavetime)
(AFTER checkouttime)
TIME)
(leavetime
((AFTER gotime)
(AFTER getbaskettime)
(AFTER getitemtime)
(RFTER paytime))
TIMEY

Utterance-expectations

The utterance-expectations of a stereotype-prototype are
introduced by WITH-SLOTS. WITH-SLOTS refers to the locations in which
input material which satisfies the expectations will be put.

(WITH-SLOTS

Each utterance-expectation consists of three parts. The first is again a
name. The second is a pattern, which essentially specifies those
utterances which satisfy the expectation. The third are demons,
actions which should be performed if the expectation is satisfied by
part of the input. Demons are not necessarily included in the
specification of utterance-expectations.

Patterns are introduced by the word PATTERN. They are followed by
either a single CD-derived structure, or a set of such structures
introduced by the keyword ALTERNATE-PATTERNS. Each CD-derived
structure consists of a legitimate CD-structure with some of its case
slot fillers replaced by variables declared in the previous section.
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Demons are introduced by the word DEMONS. The most common
demon causes a new instance of the current slot and its pattern to be
formed.

The first slot in the SUPERMARKET stereotype-prototype is named
'gotomarket’. It expects that the input text may contain a reference to
the person doing the shopping going to the supermarket. In CD all
verbs of motion cause the production of representations using the
primitive PTRANS. This pattern expects (through the TIME variable
'gotime’) that such a movement to the supermarket will occur before
any of the other actions expected by the prototype.

(gotomarket
(PATTERN
(CEVENT
(ACT PTRANS)
(OBJECT shopper)
(TO market)
(TIME gotime) PN

Next the 'shopper’ is expected to pick up a 'basket’.

(getbasket
(PATTERN
(CEVENT

(ACT PTRANS)

(ACTOR shopper)

(OBJECT

(GROUP
(1 shopper)
(2 basket))

(TIME getbaskettime) )
Next is the slot 'getitems’. The expectation associated with 'getitems’ is
that the input text will contain utterances describing the shopper
moving things ('purchase-items') from places where they are stored in
the supermarket (variable 'fridge-shelf’) to a basket (variable 'basket’).
The demon REPEAT is attached to ‘getitems’. REPEAT allows a
stereotype-prototype to have an expectation that an input text may
contain arbitrarily many utterances following the same prototypical
pattern. In this case the stereotype will accept as usual as rmany
occurences of the 'shopper’ moving goods from shelves and fridges to .
the 'basket’ as appear in the input text. REPEAT operates by creating
a new CD-derived and associated slot when the most recently created
version of the utterance-expectation is satisfied. In general new
instances of all the variables in the pattern will be created, but the
creation of such new variables may be inhibited by giving arguments
to REPEAT specifying the variables which should be the same as in the
original. Thus, in detail, this utterance-expectation might be read as:
the same shopper may be expected to repeatedly move new concrete
items from new storage places into the same one basket.
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(getitems
(PATTERN
EVENT
(ACT PTRANS)
(ACTOR shopper)
(OBJECT purchase-item)
(FROM fridge~-sheif)
(TO basket)
(TIME getitemtime)))
(DEMONS
(REPEAT shopper basket)»

The slot ‘checkout’ uses the ALTERNATE-PATTERNS device to specify
the different ways that the expectation that the shopper will go to the
check-out with the purchase items may be satisfied. The two
expressions correspond to “John took his purchases to the checkout”
and “John went to the checkout”. Perhaps the necessity of expressing
both possibilities is a weakness in the system. It is a consequence of
the system not using a non-stereotype-based inferencer.

(checkout
(PATTERN
(ALTERNATE-PATTERNS
CEVENT
(ACT PTRANS)
(ACTOR shopper)
(OBJECT
(GROUP
1 shopper)
@ itemd
(TO checkoutd
(TIME checkouttime)))
C(EVENT
(ACT PTRANS)
(ACTOR shopper?
(OBJECT shopper)
(TO checkout)
(TIME checko:.i Lime)d)N))

Finally there are expectations that the shopper will pay and leave.

(pay
(PATTERN
«(CAUSE
(ANTECEDENT
(EVENT

(ACTOR cashier)
(RCT DO

(RESULT

(EVENT
(ACTOR shopper)
(ACT ATRANS)
(OBJECT *MONEY %)
(TO0 cashier)
(TIME paytime)’)»
(leave
(PATTERN
CEVENT

(ACT PTRANS)

(RCTOR shopper)

(FROM market)

(TIME leavetime)) )
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Information for use when generating summaries

The final element of a stereotype-prototype in Scrabble is the
template summary representation for texts about the prototype’s topic-
type. It is introduced by the word SUMMARY. The summary template
has only been included here for the sake of completeness: its contents
and their use will be discussed in Chapter 6.

(SUMMARY
(TIME-DURATION gotime leavetime)
(MAINCHARS shopper)
EVENT
(ACTOR shopper)
(RCT PTRANS)
(OBJECT shopper)
(TG market)
(TIME . gotime)))

This section has described how stereotype-prototypes used by the
Scrabble system are represented. The representation used is primarily
intended to facilitate the construction of stereotype-instances. This
construction is discussed in the next section.

5.2 The Internal Representation of Expectations

This section describes the process by which stereotype-instances
are formed from stereotype-prototypes. It focuses on the form of the
representation of stereotype-instances, since the representation
determines, to a large extent, the shape of the stereotype application
process. In turn the form of representation used is intended to
facilitate the recognition of input CD-representations which satisfy
utterance-expectations of stereotype-instances. This recognition
process will be described in the next section.

In essence the formation of a stereotype-instance from a prototype
consists of the construction of an identifiable distinctive copy of
prototype. It is necessary to make the copy identifiable and distinctive
so that it can be distinguished from other instances, and in particular
different instances of the same prototype. In addition, the existence of
the REPEATABLE variable-expectation type and the REPEAT demon
necessitate the formation of distinctive identifiable copies of variable-
expectations and utterance-expectations.

The initial formation of a stereotype-instance has four parts.
First there is the construction of a unique name for the instance:

this an entirely straightforward matter, based on the use of a
primitive LISP feature. It will, therefore, not be discussed further.
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Next the variable-expectations specified in the stereotype-prototype
are processed to form a set of uniquely identified variables. Each has
the information in the associated prototype converted into an easily
manipulable form. In addition, each has storage allocated which will be
used to hold information collected whilst processing the input text.

Third, the 'slots’ of the stereotype-prototype are dealt with. They
are given unique names; the unique names of any variables in their
PATTERN or DEMON sections are converted to the unique names
assigned to those variables in the instance being formed; and they are
converted into a form which both provides receptacles in which to
store any input CD-structure satisfying the utterance-expectation they
express, and facilitates the process of recognising such CD-structures.

Finally, the summary template is processed to bind into it the
unique names given to the variables it contains.

The remainder of this section will discuss the processing of variable-
expectations, utterance-expectations and the summary templates,
although little attention will be given to the last of these, as it is a
fairly straightforward process.

Processing variable-expectations

I will deal first with variables expecting CD-nominals.

As was pointed out in the previous section the specification of a
variable expecting a CD-nominal in a stereotype-prototype has four
parts: a name, a sorting predicate, a type and a default.

The first stage of processing a variable which expects a CD-nominal
is to create a unique name for it. A record is kept relating these
unique names to the original names in the stereotype-prototype. This
record is used when processing the utterance-expectations of the
prototype.

Next the sorting predicate is extracted from the prototype. The
first part of the sorting predicate is expected to be a function of two
arguments. A currying technique® is used to produce a single argument
lambda-expression which calls the specified function with, as its first
argument, the argument of the lambda-expression, and as its second
argument the second element in the sorting-predicate specification in
the stereotype-prototype. The lambda-expression is then attached to
the unique name created for the instance of the variable.

Once the sorting-predicate has been processed the type and default
in the variable specification are attached to the unique name.

3See, for example, [Brady77].
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Two further slots are attached to the variables name at this point.
The first will provide a means, when processing the text, of associating
this variable instance with any other instances of the same variable
specification extracted from the prototype. Such instances may be
created for a variable whose type is CAN-BE-GROUP or REPEATABLE
and are called SISTER-VARIABLES. Secondly a slot is created through
which any CD-nominal extracted from the text may be bound to the
variable instance.

Variables of type TIME are processed in a more straightforward
manner. Each is given a unique name, and a record is kept of the
correspondence between the unique name and the original specified in
the stereotype variable. When all the variables have been so named,
the time constraints between variables are processed. Each original
variable name associated with one of the relation primitives (BEFORE,
AFTER, and DURING) is replaced by the corresponding newly created
name. The resulting list of relationships between a given variable and
others in the stereotype is then attached to the unique name. Finally
slots are attached to the variable name giving the type (TIME in this
case), and for a binding.

Two technical points are worth making. First, the variables are
stored as an association list on the LISP property list of their
stereotype-instance. This means that finding a variable involves
searching, but the implementation was chosen because it was
considered that the number of variables associated with given instance
would be small. It is not clear to what extent, if at all, the use of, say,
hash addressing techniques (see, for example, [Bornat79]) would
improve the speed of the system, but it is a matter worthy of
investigation. Second, the various attributes of a given variable, i.e.
whether, and to what, it is set, its type, its sorting predicate or time
constraints and so on, are also stored as association lists. It would be
computationally more efficient, both in time and in space, to store this
information as fixed format records, say of the style proposed by
[Charniak80].

Processing ut.t.eragce-exgecta;iong

The processing done to convert the description of the utterance-
expectations in a stereotype-prototype will be illustrated by means of
an example. 1 will consider just one typical slot of the prototype for
shopping at a supermarket, introduced in section 5.1. The slot is 'get-
items":
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(getitems
(PATTERN
((EVENT
(ACT PTRANS)
(ACTOR shopper)
(OBJECT purchase-item)
(FROM fridge-shelf)
(TO basket)
(TIME getitemtime))))
(DEMONS
(REPEAT shopper basket)))

The first point to be made is that two separate data-structures
represent such a slot in the stereotype-instance. One is a framework
in which an utterance which satisfies the expectations represented by
the slot description will be recorded. I will refer to this data-structure
as the slot instance. When a new stereotype-instance is formed it
contains only the information that it is unset. The other data-
structure is a pattern/action pair which in Scrabble, following the
Schankian tradition, is called a request. A data-structure is also set up
linking slot-instances to the corresponding requests.

The requests are programs which are intended to recognise the CD-
representations of the set of utterances in an incoming text which
satisfy a given expectation of the system, and to act appropriately if
this occurs. Acting appropriately consists of recording the utterance in
the slot instance and recording any relevant information about the
way the utterance satisfied any variable-expectations. Additional
actions which should be performed if an expected structure is
recognised in the text are indicated explicitly in the DEMONS section
of the description of the slot in the prototype. The sorts of thing
these demons do was indicated in the previous section.

The request patterns consist of CD-derived structures with parts
replaced by stereotype variables. Typically these parts are those where
a CD-nominal representation should occur. The patterns are extracted
from the PATTERN section of an utterance-expectation specification by
replacing all variable names in the description in the prototype by the
corresponding unique variable name created when processing the
variable-expectations.

At the same time any variable names associated with demons are
replaced by the unique versions of their name.

To summarise this section on the construction of stereotype-
instances from stereotype-prototypes, from the point of view of the
analysis of incoming text a stereotype-instance is represented by three
data-structures, each linked to a unique name created for the
instance. First there is a set of variables; second there is a set of slot-
instances, initially set to an unset marker; third there is a set of
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requests. This section has concentrated on the way these data-
structures are extracted from a stereotype-instance: the remainder of
this chapter concerns the way the expectations represented by these
data-structures are manipulated whilst processing an input text.

5.3 Marrying up Expectations and the Text

As noted in Chapter 3, one of the essential features of the Scrabbie
system is that it never employs inference rules in the attempt to match
its expectations against the representation of incoming text. This
means that the process of recognising that an utterance is expected is
purely one of pattern matching, unlike, say, [DeJong79] where it is also
a process of selecting rules which will assist or allow recognition.

The pattern matching technique used is rather similar to that of
[Cullingford'?a]. It has two stages, one of which essentially corresponds
to Cullingford’s Backbone match and the other to his Rolemerge stage.
In Scrabble the first stage matches request’'s patterns against
incoming CD-structures without regard for previous context. The
second stage merges the results of the first stage into the stereotype-
instance, disregarding any apparent first stage match which conflict
with any previous context, as represented by the stereotype-instance's
current state. The matching process is repeated for each new sentence
read whilst the stereotype-instance is active.

In the first stage, the system iterates through all the active
stereotype-instances and through each request currently associated
with each of these instances, and records the results of the requests’
patterns attempts to match the representation "of the current
sentence. The form in which these results are recorded will be
described shortly. This process is then repeated for any newly
activated stereotype-instances (see section 4.3) 1 will describe how the
pattern matching process proceeds by consideration of an example.

The example pattern is from an instance of the visiting-a-zoo
stereotype-prototype. It express the expectation that the people who
go to the zoo will look at animals.

((EVENT
(ACT ATTEND)
(ACTOR goerl)
(OBJECT *EYE®)
(TO animall)
(TIME looktime1)))

The objects in lower case in the pattern are variables. They are
instances of the following: ‘

(goer (SCRIPT-FEATURE HUMAN) CAN-BE-GROUP DUMMY-HUMAN)
(animal (SCRIPT-FEATURE BEAST) REPEATABLE ANIMAL)
(looktime ((BEFORE leavetime) (AFTER arrivetime)) TIME)

where ‘leavetime' and ‘arrivetime' are the variables associated with the

86




times at which the 'goer’ arrived at and left the zoo, should these be
identified while processing the input text. The numerical suffixes on
the variables in the pattern are the product of the process by which
variable instances are give unique identifying names during their
construction.

We will consider how this pattern will match the CD-structure:

((EVENT
(ACTOR HUMAN-JOHN)
(ACT ATTEND)
(OBJECT *EYES*)
(TO MONKEYS1)
(TIME
(NAMED TIMEPOINT4)
(COMPARISON
(BEFORE *NOW*)))))

The first step in the pattern matching process is the examination
of the top-level structuring primitives of the pattern and CD-structure
respectively. In this case they match, of course. For EVENTs, STATEs
and CONJUNCTs no further processing is done at this stage, and
matching proceeds on the rest of the structure. For CAUSEs,
ANTECEDENT and RESULT paths are followed, and the process recurses
on the results.

The next step is to iterate through the case-slots of the pattern,
extracting the associated filler from the pattern and the corresponding
one from the CD-structure. If there is no corresponding case slot the
match fails. What happens next depends on the nature of the fillers
extracted both from the pattern and from the CD-structure. In our
example, the first to be extracted will be the primitive ATTEND: since
it is not a variable it must match the corresponding case slot filler in
the CD-structure cxactly, and indeed it does. Next we extract 'goerl’
from the pattern. Since it is a variable, the process of checking it is
more complex. The variable sorting predicate is applied to the CD-
nominal® to determine if it is acceptable. Again in this case it is, since
HUMAN-JOHN possess the feature HUMAN.

Because the CD-nominal, HUMAN-JOHN, is a possible match for the
variable 'goerl’, the name of the nominal and the variable instance are
recorded.

Continuing through the example, *EYE®* is the next case slot filler
in the pattern. Like ATTEND it is not a variable, and hence must
match the corresponding item in the CD-structure exactly. Again there
is a match. Next ‘animall’ is extracted from the pattern, and is

‘In this simple case: if the case slot filler extracted from the
CD-structure was not a simple CD-nominal more complex processing
(which will be described below) would follow.
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processed in the same way as '‘goerl’.

Finally, we come to the TIME case role. Unlike other types of
variable, TIME variables are matched in a way which takes account of
previous _textual context. In particular, the variables’ time constraints
are compared with any bindings of other time variables.

In the example the variable 'looktimel’ must occur AFTER an
instance of 'arrivetime’ and BEFORE an instance of 'leavetime’. The
particular variable instances will have been specified when creating
unique names for variables when first setting up the stereotype-
instance. In order to check the constraints, first the instance 'leavetime
' is looked up. If this is bound it is checked that the specified
relationship holds between the token to which it is bound and the
prospective binding for 'looktimel’. If the specified relationship does
not hold the whole match fails. If the instance of 'leavetime’ is bound
but no relationship can be discovered between it and TIMEPOINT4 (the
prospective binding for 'looktimel’ in the example) it is assumed that
the constraining relationship holds. If the instance of 'leavetime’ is
unbound its time constraints are examined to try to check that
acceptance of TIMEPOINT4. as the binding for "looktimel' will not make
it impossible to subsequently satisfy all the constraints associated with
'leavetimel’. This would occur if some other variable was bound to a
value BEFORE TIMEPOINT4, but was constrained to be AFTER the
'leavetime' instance. The process is then repeated for ‘arrivetime’.

Checks are also made with any variables of type TIME which have
been bound whilst trying to match the current pattern, but in practice
most patterns have only one variable of this type.

There are five features of the pattern matcher which are not
exploited whilst processing this simple example. Two concern the
processing of more complicated CD-structures. Two allow patterns to
be constructed which will match a wider range of CD-structures than
those illustrated so far in this section. The fifth allows the possibility
of successful matches after certain kinds of match failure.

First, if there is another CD-derived structure, which would be
" complete if it occurred alone, embedded in the pattern, the pattern
matcher simply recurses on the embedded lower-level CD-derivative and
filler of the corresponding case-slot in the input CD-structure.

Second, if a CD GROUP occurs anywhere in the CD-structure it is
converted into a composite CD-nominal which indirectly references the
members of the GROUP, before matching begins. If there is an attempt
to match a pattern which contains a GROUP against a composite
nominal token of this kind, every combination of text-derived and
pattern group members is tried. Obviously if there is a GROUP in the
patterri any attempt to match it against anything other than a
composite token or a dummy filler which is compatible with a
composite filler will fail.
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Thirdly, the primitive act DO is. taken to match any primitive act
whether it occurs in the pattern or the incoming CD-structure.

Fourthly, if a request has ALTERNATE-PATTERNS (for example
requests constructed from the ‘checkout’ slot in the example
stereotype-prototype of section 5.1), each pattern is ‘matched against
the current CD-structure until one succeeds or there are none left.

Finally, if there is a failure to match at any point, an attempt is
made to find a CD-structure satisfying the prediction embedded in the
input CD-structure. This is done by iterating through the case slots of
the CD-structure looking for a slot filled by a CD-structure, as opposed
to a single nominal. If such a CD-structure is found, the pattern
matcher is called on it and on the original, failed, pattern.

To conclude this section, the form in which the results of the
pattern matching process are passed back is as follows. If none of the
set of patterns associated with a request matches any part of the
representation of the sentence the result is simply null. However, if
some part of the representation does match one of the patterns, the
result consists of the parts of the representation which matched the
text together with a list which indicates to which objects in the
matched CD-structure variables were bound in order to achieve the
match. This device of only passing back those parts of the
representation which have been matched effectively performs the
function of subproposition analysis.

5.4 The Collation of Satisfied Expectations

If an incoming CD-structure matches the pattern of a request, the
next stage is to integrate the results of the match with the request’s
stereotype-instance, or, perhaps, reject the match if its integration
would cause the stereotype‘instance to .become inconsistent in some
way. The process of integration and checking which achieves this is
called collation.

The process of collation is fundamental to the operation of
Scrabble because it is the primary means by which the referents of
anaphora in the input text are determined by the program.

If an expectation of a stereotype-instance is apparently satisfied
three actions are taken. First, the request representing the satisfied
expectation is removed from the instances’s active request list. Second,
any demons associated with the request are executed. Third, the
results of the match are recorded. This section deals with each of
these actions in order.

The modification of the active request list caused by the
recognition that the current sentence satisfies the expectation
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represented by 2 particular request is quite straightforward. The
relevant request is merely removed from the list of unsatisfied
requests. No attempt is made, for example, to order the requests so
those whose expectations are most likely to be satisfied are examined
first or remove any which correspond to causal or temporal precursors
of the request whose expectations were satisfied. There are two
reasons for this. Firstly, it is quite common for the order of sentences
in a text to be different from the temporal order of the events which
they describe. [Cullingford78], for example, cites newspaper stories as
a type of text where it is rare for the order of the text as 2 whole to
correspond to the temporal order of the events described. In
consequence, any attempt to remove requests may result in a perfectly
ordinary utterance being classified as unusual because the request
which corresponds to its expectation has been removed. Secondly, the
comparison between request patterns and the incoming CD-structure is
organised in such a way that the order of examination of requests has
little effect on processing time.

Immediately after it has been recognised that some part, or all, of
the CD-representation of the current sentence satisfies an expectation
represented by a request, the request is examined to determine if it
has any demons associated with it. If it has, they are evaluated at this
point. Typically they cause a copy of the current slot instance and its
associated request to be created, perhaps causing the generation of
new instances of some of its associated variables. For example,
consider the slot 'getitems’ of section 5.1: |

(getitems
(PATTERN
((EVENT
(ACT PTRANS)
(ACTOR shopper)
(OBJECT purchase-item)
(FROM fridge-shelf)
(TO basket)
~ (TIME getitemtime))))
(DEMONS
(REPEAT shopper basket)))

There are no particular restrictions on the effects of the demons:
they are simply LISP functions. At present REPEAT and ADD-SLOT are
the only demons used by the system. REPEAT causes a new instance of
the current slot and its associated request to be created (A fuller
description of REPEAT was given in section 5.1.) ADD-SLOT causes a
completely new slot to be introduced when the expectation of the
current slot is satisfied.

The final phase of processing satisfied expectations, the recording
of results, is performed after all the requests derived from all the
active and newly-activated stereotype-instances have been compared
with the CD-representations constructed from the text sentences. The
needs of summarising, together with the lack of any subproposition
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analysis, as such, of incoming representations, provide the rationale
for the postponement of result recording until this late stage. A
particular requirement of summarising is that we do not want to
repeat any information: i.e. a good summary is as short as possible®.
When several stereotype-instances have been active during the
processing of a given sentence, if they merely record information as if
no other stereotype-instance were active, there is a danger that
information which is recorded as expected in one instance will be
reported as unexpected by another stereotype-instance. Difficulties
arise when generating a summary from the latter instance, particularly
in the more complex cases where, for example, both instances have
matched part, but not all, of the representation of a particular
sentence. This problem can be circumvented if the results of all the
matches (or failures to match) are collated before any propositions
are recorded in an instance® This part of the collation process
procecds by comparing all satisfied expectations with a copy of the
complete CD-representation of the current sentence. The parts of the
sentence representation which satisfied each expectation are removed
from the copy. When all the satisfied expectations have been processed,
the remaining parts of the CD-structure are marked as not expected
by any instance.

Suppose we are progressing through a text and the only active
stereotype-instance is one of the zoo prototype, and we encounter the
sentence: '

(1) After he saw the lions, he went to a restaurant.

From the point of view of the instance of the zoo stereotype, the
whole of the sentence is expected with the second clause
corresponding to an expectation that the zoo will be left at some point,
it being immaterial for where. However, from the point of view of the
newly activated instance of the restaurant stereotype (whose activation
will be triggered by the word "restaurant” in the sentence) "After he
saw the lions” is unexpected. By postponing collating the successfully
matched expectations until the end of sentence processing it can be
recorded that this proposition was successfully predicted by another
instance. Then, assuming neither of the instances has been killed(see
section 4.4) before summarising has begun, when a summary is
constructed it can easily be determined that the proposition about the
lions should not be included among the unexpected utterances in the
section of text which the restaurant stereotype was used to analyse.

51 do not mean by this that needless repetition would be
acceptable in another domain; rather that when producing
summaries the need to avoid tautologies is felt particularly acutely.

8ln fact only partial failures to match are dealt with by the
collation process. Total failures to predict any part of a sentences
are handled in a rather more straightforward way, as described
below.
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The remainder of the processing done to accomplish the recording
of the results of the matching of the text against the different
instances’ expectations is fairly straightforward, but is crucial because
of the role it plays in determining the referents of anaphoric
expressions. '

The first stage is to update, if necessary, the bindings of any
variable instances which occurred in the patterns of any requests
which correspond to satisfied expectations. Usually such variables will
merely have been bound to an individual CD-nominal during pattern
matching, and in such cases all that needs to be done is to check
that the previous binding of the variable and the nominal could co-
refer. 1f they could, the variable is bound to the most specific of the
two. 1 will describe what happens if they cannot co-refer below. This
selection of the rmost specific CD-nominal is Scrabble’s primary
mechanism for associating anaphoric expressions, in particular
pronouns, in the input text with their referents.

» 1f only those parts of the input text which are recognised as usual
by a particular stereotype-instance are considered, this part of the
collation process in effect produces a representation of the input in
which all pronouns associated with a particular variable-expectation
are replaced by the most specific object associated with that variable-
expectation in the topic-manifestation. For example consider:

(2) John went to the zoo. He saw a lion.

Both ‘'he’ and 'John’ are associated with the same variable-expectation
in the same topic-manifestation (of the visit-to-the-zoo topic-type).
Therefore in the corresponding stereotype-instance the text is
represented as if the anaphoric construct, "he", was replaced by the
more specific proper name “John". That is it is represented as if the
input text was: '

(3) Johri went to the zoo. John saw a lion.

The present mechanism for determining whether two nominals can
co-refer is quite crude however. The mechanism checks to see whether
either CD-token has a semantic features (like MALE, HUMAN,PLURAL etc.)
which could notbe associated with the other. The AD-HAC semantic
feature scheme, whilst sufficiently powerful to allow this mechanism to
operate for most straightforward cases involving pronouns, is not
sufficiently powerful to handle very complex cases involving definite
noun phrases. For example, the present mechanism could not be used
to tie together,say, "Ronald Reagan” and “the President of the United
States on the first of October 1982". Hence Scrabble is incapable of
resolving such complex anaphora.

Slightly more complex processing occurs if a variable instance has
either been previously bound to a CD GROUP or a binding to a group
token has been set up during pattern matching (see section 5.3). In
the latter case, if the variable instance has previously been bound to
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a single nominal, a set of interlinked variable instances is created
referring to both the group token and separately, to each of its
members. However, this will not be done if either the variable instance
is of type UNIQUE or if the previous binding could not be a member,
or the whole, of the same GROUP. Conversely, if the new binding
derived from the text is a single CD-nominal, and the previous binding
was a group, the set of variable instances created to refer the group's
members is scanned, and if necessary and appropriate, extended until
a suitable one to bind to the new CD-nominal is found.

The processing of new and old bindings derived from plural
indefinite anaphors such as the word "they"” proceeds in a rather
similar way. The token representing "they” is treated as a single group
token, and then processed as before. However, the actual token
representing ""they” may not be recorded if its assumed co-referent is
more specific, for example if it is derived from a complete definite
noun phrase, because the information provided by "they” is redundant.

There are some special complexities concerned with the processing
of variables of type TIME. Full CD-propositions may occur embedded in
time tokens, so that during their processing manipulations
corrcsponding to the collation of pattern matches, described above,
must be performed to avoid the misclassification of such embedded
propositions as expected or unexpected. In particular, such a
proposition which was expected should be removed so that only
information which might be useful for the summariser is recorded in
the variable binding. Ideally this information would be confined to that
needed to determine the tense and aspect of summary sentences, and
the temporal interrelatedness of different instances, in so far as this
is relevant to the construction of the summary; it should not
determine the temporal relationships between individual propositions in
the text, where they have been linked by conjunctions of time and so
on. This compression is to a large measure achieved in a fairly natural
way by the use of the collation mechanism. However some redundant
information often remains after collation because of the difficulty of
calculating exactly which information will be necessary to compute a
tense and aspect for the summary.

At the same time, the time constraints between the various time
variables of the stereotype-instance are checked.

Checks, like those on time constraints and on the compatibility of
new and old variable bindings may, of course, cause an utterance
which appeared to satisfy an expectation if only local constraints are
taken into account to fail because it does not satisfy more global
constraints. Such failure may occur if, for example, the old and new
bindings are both derived from definite noun phrases which cannot co-
refer, but which share the features tested by the typing predicate of
the variable (see section 5.1). The effect of such a failure is to cause
the abandonment of the whole of the attempt to record the successful
matches, followed by the recommencement of the collation process
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with the offending match removed. This rather heavy-handed approach
is necessary because of the difficulty of designing a mechanism which
will unwrap the effects of processing such mismatches without
excessive cost in the cases where no such unwrapping is necessary. In
fact in the present implementation difficulties may still arise with the
reinstatement of previous variable bindings, but this is largely a
problem with the lowest level of the implementation, and could be
cured by a fairly straightforward redesign.

The result of integrating successful matches into the variable
bindings of the active stereotype-instances is a data structure which
pairs, for each match, the nominals and time tokens which occurred in
the CD-structure with the variables to which they are bound’. This
structure is used to generate the final record of the satisfaction of
utterance-expectations. It consists of the structure with all the bound
objects replaced by the variable instances to which they are bound.
This latter structure is not, in fact, used in the present project other
than as a debugging aid, but in an implementation which included a
non-stereotype-based inferencer it would provide the best means of
indicating, for example, how the stereotype-based system had referred
anaphoric expressions in the original text.

5.5 Communication with the Stereotype Manager

This section describes how the results of the processes treated in
sections 5.3 and 5.4 are communicated to the stereotype management
process discussed in Chapter 4. The stereotype manager, from this
point of view, requires the information to perform two primary tasks.
The first is to remove from further consideration any instances whose
expectations no longer appear to fit the text. The second is the
recording for subsequent processing by the summariser of utterances
which were not expected by any instance.

The communication is achieved by what might be called a '‘'message
passing’ system.

Messages may be dispatched at two different times. Firstly, at the
end of the examination of the requests associated with a stereotype-
instance, if no request has been found which predicts any part of the
current sentence a message is dispatched which indicates this. If there
is a match, even if it is partial, no messages are dispatched until right
at the end of the application process. Message passing must be done
right at the end of the processing cycle for a sentence because the
nature of the messages to be sent can be affected by failures which

....................

7This binding can, of course, be indirect: if the nominal in the
CD-structure is anaphoric in nature the variable may be bound to
some more specific CD-nominal with which it is thought to co-refer.
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occur when a match is being integrated into an instance during the
collation process. Whether such a- failure has occurred cannot be
determined until this stage.

When the collation process has finished, messages are dispatched to
the manager which indicate, for each instance which registered a
partial or complete match at the end of the first phase of pattern
matching, the parts of the sentence's CD-structure which were
genuinely expected. For partial matches, that is those cases where,
after complete integration, it has been determined that an instance
had successfully predicted some parts, but not all, of the current
sentence, an indication is passed over of how the part which was
predicted may be extracted from the complete representation of the
current scntence. Also at this stage, the manager is informed if, as a
result of the collation process, any instance has joined the class of
those which predicted no part of the current sentence. Finally, if some
parts of the CD-structure were not matched by any instance, the
manager is sent a message for each instance which did predict some
part of the structure, informing it of this totally unpredicted part.

It may seem more natural to inform the manager of those parts of
the CD-structure which eachinstance failed to predict, and indeed this
is probably the best information to communicate to a non-stereotype-
bascd infcrence system. However, within the context of summarising, if
this were done there would be problems, similar to those described in
section 5.4, with ensuring that the summariser does not repeat itself.
The manager essentially takes messages which indicate that a text
segment was unexpected and records them and their textual relation
to other, expected, parts of the text. Recording parts of the text
which were predicted by one instance but not by another along with
those which were r»t predicted by any instance only complicates the
task of the summariser. This is because any utterance which has been
recognised as expected by any instance which is active or suspended
at summarising time need to be considered as unexpected material
which merits incorporation into the summary produced. The separat.lon
of utterances expected by some, but not all, of the active stereotype-
instances from utterances which were not expected by any instances is
not totally trivial, because of modifications which may be be made to
the original structures during the collation process. Additionally, such
messages about partial match failure are of little use to the
management process because the criteria for the killing or suspension
of instances are based on complete failures to predict the content of
sentences.

The disadvantage of the scheme adopted here is the additional
complexity of killing instances it entails. Suppose some instance is
killed at a particular point in the processing of a text. Suppose
further that it was the only instance, among several active ones, to
have matched part of a previous sentence. The CD-structure
representing the part of the sentence this instances predicted must be
re-classified as not having been predicted by any instance. The present
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implementation is incapable of this.

5.6 Concluding Remarks

In essence the process of stereotype application is a fairly simple
operation. It is primarily a process of pattern matching. The
elaboration of the process in Scrabble arise form two sources. First
the need to consider matches between anaphoric expressions in the .
input text and variables in stereotype-instances already bound to
specific nominals. Second, the need to allow for partial matches
between the expectations of an instance and the input material, and
the communication of the results of such partial matches to the
stereotype manager.
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6. The Construction of Summaries

This chapter describes how Scrabble converts the set of active and
suspended stereotype-instances and the other data structures formed
by the stereotype management process into a summary representation
and how this representation is passed over to the AD-HAC generator
for conversion into the output summary text.

The summary generation program differs crucially from any of the
programs of the analysis phase, perhaps reflecting a general difference
betwecen the processes of language analysis and generation. During the
analysis phase all decisions are, or at least would ideally be, tentative.
That is, at any point the decision to assign a particular utterance to
the set of usual ones about a given topic-type, or to activate a
particular stereotype-instance, and so on, may be undone when the
context has been extended by subsequent utterances. This is rather
similar to the intra-sentential processing of the AD-HAC analyser, which,
in turn is derived from the Preference Semantics approach of [Wilks73].
[Wilks75a], [Wilks75b] etc. In contrast, when the summariser is called,
no further information will become available, and the emphasis is
thrown onto making definite decisions with the highest probability of
being correct given the information available. Because the summariser
is always called after the whole of a text has been analysed, there is
no point in keeping options open in the hope of having better
information later. This is also reflected, to some extent, in the
structure of the AD-HAC generator.

6.1 Task and Structure of the Summariser

The Scrabble summariser takes as input three data-structures. The
first is a list of active and suspended stereotype-instances. The second
is a list of CD-structures derived from the input text which were not
expected by an active instance when they entered the Scrabble
analysis system. The third is a data-structure which represents the
textual interrelationships of the propositions in the input text which
gave rise to the elements of the other two data-structures. The task
of the summariser is to construct a ordered linear sequence of CD-
structures (the summary representation) which can be converted into
an English text.

The summarising program consists of four main parts.

The first essentially extends part of the work of the stereotype
management process. It attempts to chose between related instances
used to analyse the same text segment by extending the techniques
which are used by the manager to decide whether to suspend or kill
stereotype-instances during the analysis phase. In particular it
attempts to reduce the number of instances in the set to be considered
to one from each suggestion packet, if this has not already been done.
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It differs from the equivalent process in the stereotype manager in
that it operates by making stronger assumptions so the number of
instances to be examined during summary representation construction
is minimised. Much of the processing of the manager follows the
general strategy of postponing firm decisions as long as is practicable
in the hope that more reliable decisions may be made when more
information is available. Once summarising has commenced no further
information will become available from the input text. Hence the
summarising process cannot postpone a decision about which
stereotype-instances to use in the summary. Rather it must attempt to
select the a best set of instances given the information available at
the end of the text analysis process.

Once this weeding of instances has been done, the elements which
will form the summary representation can be identified, even though
their exact content has not been computed. The summary
representation will consist of a CD-structure derived from each of the
remaining stereotype-instances plus any input CD-structure which was
not expected by any of the stereotype-instances used in the formnation
of the summary representation. The next task undertaken by the
summariser is the construction of the ordering of the elements which
will be used in the summary representation. The order is computed
using both any temporal information which may be derived from the
original text and the data-structure representing the textual order of
the input material.

Thirdly, each stereot.ype-instancé' is processed to produce a CD-
structure summarising that part of the input which it expected, and
these CD-structures are linked with the ones derived from the
unexpected parts of the text to produce CD-structures which will form
sentences in the output summary text.

The final part of the summariser employs some strong assumptions
about the coherence of the input text to do additional resolution of
anaphoric references in the input. The additional anaphora resolution
extends the summary representation so that it contains sufficient
information to allow a coherent output summary text to be produced.

The product of the processing is an ordered set of CD-structures,
each of which corresponds to what will become a sentence in the final
natural language summary. )

Each of the four parts of the summariser will be dealt with in turn
in the first part of this chapter. This description will be followed by
some fairly brief notes on the use made of Cater’s generator (see
[Cater82]) to convert the summary representation into English. The
chapter ends with a detailed example run of the summariser.
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6.2 Stereotype Selection

One of the problems with the management techniques described in
chapter 4 is that the selection between different stereotype-instances
activated by the same suggestion packet will not take place until at
least two sentences have been read following the sentence in which
the word which triggered the suggestion occurred. For once a
stereotype has been activated, only when it has failed to predict
anything for two successive sontences is any processing done to
determine whether the topic-type of a text section is, in fact, the
‘topic-type of this particular stereotype-instance. The details of this
mechanism were given in section 4.4.

This scheme works for the middle of a text but from the point of
view of summarising, problems are presented in that if the discussion
of a topic in the text lasts less than three sentences, and there is no
subsequent text, no topic-type selection will have taken place, and all
the instances which were activated by the first of the sentences will
remain on the list of active instances. Furthermore, if an instance has
failed to predict some utterances, but has never been applied to two
successive sentences which either it failed to predict or which did not
re-suggest it, it will not have undergone scrutiny for topic-type
sclection. Admittedly this will only occur at the end of the text, but it
is none the less serious for that.

The technique used to force topic-type selection in these limit
cases extends the method used by the stereotype manager to
determine, when considering whether to kill or suspend an instance,
whether there was any instance activated by the same suggestion
packet which has had more success at predicting the contents of the
text than the instance under consideration. Thus if there are two
stercotype-instances A and B, whose activation was triggered by the
same suggestion packet!, this processing will remove A from the list of
active instances to be used to summarise the text if:

1) there is some utterance in the text which B predicted
but A did not;

and:

2) there is no utterance in the text which A predicted but
B did not.

Once this weceding process has been completed the set of
stereotype-instances which will be used in the construction of the
summary representation is complete. The next three sections describe
how the summary representation is constructed from the remaining
stereotype-instances, the representations of unexpected utterances in
the text, and the representation of the overall structure of the input
text.

lsee section 4.1.
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6.3 Producing an Order for the Elements of the Summary

Once the processing of section 6.2 has been completed, all the
elements which are to be used to make up the summary are known.
They are the remaining set of active and suspended filled-in stereotype-
instances, the CD-representations of the utterances which various
instances failed to predict, and the textual and temporal relations
between all of these. The next two tasks of the summary construction
program are 1o form from this information the CD-structures whose
content will eventually be expressed in the English of the summary,
and the computation of the order in which the natural language
sentences will be output.

The two tasks can essentially proceed independently, that is on a
sequential machine, either task can be performed first. The work of
‘ordering can proceed independently from the construction of the CD-
structures because each of the elements which will form the summary
representation has been identified and named, in the sense that each
has a unique identifying property. Either they will be generated from a
particular filled-in stereotype-instance and its associated data-
structures, or they will consist of the substantially unmodified
representation of some segment of the original text. The latter case
corresponds to an unpredicted text segment and will have a unique
name generated for it. Stereotype-instances also have a unique name
assigned to them when they are first constructed (see section 5.2),
and as the ordering process works on names, rather than on the CD-
structures themselves, the two tasks can be pursued independently.

The term summary elament will be used to refer to the objects
ordered during this process; that is the named stereotype-instances
and unexpected utterance representations.

In general the summariser attempts to produce its summary in
narrative order. That is, it tries to construct a textual order for the
output which follows the -temporal ordering of events described in the
text. Of course this cannot always be achieved, either because the text
has no natural temporal order, for example a description of a static
scene, or because the text describes events which happen in parallel. I
will describe these more complicated cases later, but 1 will begin with
a description of how the system deals with an input which is in simple
narrative order. '

The simplest case for the ordering process occurs when all the
utterances in the input text have been associated with a stereotype-
instance and text segments which the various instances were used to
analyse overlap in such a way that there are explicit indications of
their temporal relationships. For example, consider:

(1) John and Mary went to the zoo. They saw the elephant and
John fed the monkeys peanuts. After they saw the lions
they went to a restaurant and ate some hamburgers.

The conjunction “after” in the third sentence allows the two sections
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of text, one of which will have been analysed using an instance of the
zoo stereotype and the other using an instance of the restaurant
stereotype-prototype, to be placed in a definite temporal order: 'Z00’
followed by 'RESTAURANT'. Hence the ordering produced will be the
summary of the section of the text dealing with the visit to the zoo,
followed by the summary of the restaurant text section.

Of course this strategy will only generate an order for summary
elements where there is explicit temporal information in the text. 1f
there is insufficient temporal information in the input text to order all
the summary elements an order is chosen which reflects the order in
which the material was presented in the original text. In essence this
is done by merging together explicit temporal information in the input
text and information about the textual order of input material collected
by the stereotype manager during the analysis process.

The manager keeps track of the textual order in which stereotype-
instances are activated and suspended, and also where unmatched
propositions occur within the framework set up by this. If no instances
or propositions have been placed in order using temporal information,
the summary elements are produced in the order in which their
precursor utterances occurred in the input text. This might happen,
for cxample, in a description of a static scene. More typically, in the
corpus of texts considered by this project, some but not all of the
summary elements will have been placed in some order by the first
phase of the ordering process. This entails more complex processing to
integrate the two information sources. For example, let us assume that
there are three summary elements, two of which have been ordered
using temporal information. The processes of the second phase will
then place the remaining summary element before, after or between
the others if this will cause all three to be in the order of their
antecedents in the original text. Of course, this cannot be done if the
temporal order of the first two elements is different from their textual
ordering. In this case the third element will be placed immediately
before the element which was its precursor in the textual order.

At the end of this process, then, the order in which the various
clements which will form the summary representation has been decided.

6.4 Generating Summaries from Stereotype-Instances

At this stage of processing the partially constructed summary
representation consists of an ordered list of named summary elements.
One class of summary element, corresponding to the CD-
representations of unexpected utterances in the input text, is in a form
which may be converted more or less directly into English by a
generatcr (see section 2.2). The other class, corresponding to the
remaining stereotype-instances, requires more complex processing
before it can be transformed into CD-structures and thence into
English text. This processing, to accomplish the transformation from
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stereotype-instances to CD-structures in the summary representation,
is absolutely crucial to Scrabble’s summarising process since it is the
sole means by which the input text is compressed during a Scrabble
run. It is achieved by extracting from the stereotype-instance the
information most likely to provide a brief indication of the material in
the input text which was expected by the instance. Thus Scrabble’s
fundamental text compression mechanism is the filling out of a pre-
specified outline summary representation for each topic-type the
system has recognised in the input text.

The transformation is achieved by associating with each prototype
and hence with its instances a summary template. A summary
template looks very much like the patterns which represent the
expectations of sections 5.1 and 5.2. It consists of CD-derived
structures containing the unique names of stereotype variable
instances. The construction of the summary CD-structure then simply
consists of the replacement of the stereotype-instance variables by the
values of their bindings, or failing, that the defaults specified in the
description of the variables in the stereotype-prototype (as described
in section 5.2). In the case of variables of type TIME defaults are
implicitly created by using the time constraints of the variable.

A detailed description of the way templates are manipulated will be
postponed until the example at the end of this chapter.

It must be acknowledged that this template-driven technique, in
effect providing standard summaries for text about a given topic, is
very simple minded; and it might be thought odd that such a central
part of a summarising system, that is the component which actual
condenses the input material, relies on such a straightforward method.
However, previous summarising systems, like SAM [Schank75c] and
FRUMP ([DelJong79] have shown its wusefulness for condensing
predictable parts of a text.

6.5 Expanding Summary Elements

Once filled-in summafy templates have been extracted from the
stereotype-instances, the partially constructed summary representation
consists of an ordered list of CD-structures. These CD-structures could
be converted into a series of sentences by application of an English
generator to each in turn, but the resultant summary of the input
would be unlikely to form an acceptable English text. There are two
reasons why the list of CD-structures may not form a good English text.

First, the CD-structures correspond to unnaturally short
sentences: for example filled-in summary templates from different
stereotype-instances will not be linked by conjunction markers, even
where this would produce superior English. The techniques used to
deal with this problem will be described in the next section.
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Secondly, the CD-representations of portions of the text which
were not expected by a stereotype-instance occur at suitable places in
the partially-built summary representation, but in their original form.
Thus, for example, they may contain residual anaphoric tokens
corresponding exactly to, say, pronouns in the input text. Without
additional processing these tokens will cause the production of exactly
the same pronouns in the output summary text as occurred in the
input text. This may well be inappropriate if the pronoun refers to
some object which was mentioned earlier in the input text, but the
prospective order of presentation of the summary text is such that
the referent is first mentioned after the use of the pronoun.

Similar problems with the inappropriate use of anaphoric
references may also occur in connection with the filled-in summary
templates produced from stereotype-instances. It may well not have
been possible, whilst processing the input text, to bind anything but
residual CD anaphora markers to a stereotype variable which was
subsequently used when filling in the summary template. This can lead
to the production of pronouns or other anaphoric expressions in which
do not, in fact, refer to any definite nominal which occurs in the
output summary text. '

The technique used in Scrabble to overcome the problems
presented by residual anaphora markers in the summary
representation is as follows. Its goal is to eliminate all anaphora
markers from the summary representation. Thus, if the summary
representation can be expressed better in English if anaphoric devices
are used in the output summary text, any conversion from specific
nominals to corresponding anaphoric expressions is done only whilst
generating English from the summary representation.

The tcchnique used to identify the referents of residual anaphora
markers rclies purely on knowledge of the structure of texts: it does
not require any deep understanding of unexpected portions of text. It
is based on a particular assumption about the coherenceof the input
text.

It should be pointed out that the word "coherence” is being used
here in a different sense from the usual use of the word by the text
grammarians, for example [vanDijk77]. Van Dijk would use “coherent”
to refer only to propositions which concern a single topic-
manifestation (see section 3.1). Hence Van Dijk would use the word
"coherence” to refer to the relationships between parts of the input
text predicted by a single stereotype-instance. Coherence is defined
here for a multi-topic (multi-stereotype) text as that which links the
different topics together so that they from a complete whole. The fact
that a text does not usually contain sets of characters which do not
interact with each other is a manifestation of coherence.

The specific way in which Scrabble’'s assumption about coherence
of the input text is implemented is as follows. If an object in a
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segment of the input text is referred to loosely, for example by means
of a pronoun, then, if there is a closely preceding text segment with
an identified topic, the object will co-refer with the central object of
that topic, unless, of course, there is contrary information.

To facilitate exploitation of this rule, each summary template has
one or more of its variables marked as being cantral. In other words
it is expected that any nominals bound to those variables will occur
elsewhere in the input text. When the summary template is filled-in
the CD-nominals which were bound to the central variables are marked
as central.

For the anaphora resolution, all the summary elements are
scanned in an order which reflects the order of the input text. If the
first element is a filled-in summary template it is examined to find the
CD-nominals which are marked as central. If it corresponds to an
unexpected utterance in the input text it is left as it is. Next the
second summary element (in the order of the input text) is picked up.
If this second element contains any residual CD anaphora markers
their semantic features are compared with the CD-nominals marked as
central in the first summary element, and any anaphora markers
which match the CD-nominals are replaced by the specific CD-nominals.
Obviously, if either the CD-nominals do not match the semantic
features (like MALE, PLURAL, ANIMATE, and so on), or are less specific,
the replacement is not done. Equally, if there is more than one way
the central CD-nominals of the first element could match the anaphora
markers of the second element the replacement is not done. The latter
constraint is applied in order to minimise the possibility of generating
a summary which misrepresents the input text. As was noted in
Chapter 3, it is probably better to risk producing a semantically
disconnected summary text than to produce one which misrepresents
the input material.

If the second summary element is a filled-in summary template the
process is repeated with the second and third elements. If it is not
the same initial, marked, central CD-nominals are carried forward for
processing on the third summary element. The procedure is applied to
each summary element in turn.

Once this process has been completed all that remains to form the
summary representation is to block the summary elements up into
units which will form sentences in the output text, and to convert the
representation into English. These two tasks will be discussed in the
next two sections.
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6.6 Constructing Sentential CD-structures

Once the anaphora resolution of the last section has been
completed, the partially constructed summary representation contains
the complete CD-structures from which the English text of the
summary will be produced. One further algorithm is, however, applied
to it to improve its readability.

The CD-structures which compose the summary representation at
this point correspond, in general, to single clause sentences. A text
could be constructed directly from this partial summary representation,
but its appearance would usually be improved if its parts were linked
by conjunctions at suitable points. Scrabble therefore applies some
simple techniques, in a final pass over the summary representation, so
that the English generator can produce output with better flow.

Two simple rules are used to link summary elements produced
from unexpected CD-structures in the input to summary elements
produced from stereotype-instances. The first is that if an unexpected
utterance occurs between two utterances predicted by the same
stereotype-instance, the corresponding summary elements should be
linked by the representation for a contrastive conjunction (for
example "but”). The second is that if the input text contains two
consecutive unexpected sentences, and neither of their representations
contains a conjunction, they may be linked be a non-contrastive
conjunction (for example "and”). Both rules contain checks to ensure
that they do not produce CD-structures which correspond to sentences
containing unacceptable combinations of conjunctions, for example
"and"” linking three successive clauses.

Once these conjunction representations have been inserted in the
input the summary representation is complete. All that remains is to
hand it over to the English generator for conversion into English text.

6.7 Generating English from the Summary Representation

In the final stage of a Scrabble run the summary representation
is converted by the AD-HAC generator into English text. A technical
description of the AD-HAC generator is inappropriate here: from the
point of view of this thesis the generator is a black box whose internal
working are of little or no interest. A full technical description of the
generator is given in [Cater82}.

However, the generator used by Scrabble is slightly different from
Cater's original, and a few words on the different properties of the
version used by Scrabble (rather than details of their implementation)
seems appropriate here.

Cater's generator was designed to produce single sentences in
isolation, rather than running text. The major modification made to
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the program for use by Scrabble was to carry over information about
noun phrases output during the generation of a sentence from one
sentence to the next in order to (facilitate cross-sentence
pronominalisation. The algorithm used by the Scrabble version of the
generator is to use a pronoun for the second and subsequent times a
nominal token appears in the summary representation, _provided there
is no possibility of ambiguity. Although this algorithm is extremely
crude it represents a significant improvement over Cater’s original
when generating running text.

There are a number of other minor differences. They essentially
provide mechanisms through which the generator can communicate
with the summarising system. The most significant of they will be
pointed out in the example of the next section.

6.8 An Example of Summary Generation

The example text of this section is rather more complex than
those considered elsewhere in this thesis. It is intended to illustrate a
number of the more powerful features of the Scrabble system. From
the point of view of the summariser, the synthesis of the output
summary text requires the full power of the algorithms which resolve
the referents of anaphoric tokens left after the text analysis process
and the full power of the algorithms which are used to block up
summary material into sentences. From the point of view of the text
analysis process, it illustrates the systems ability to deal with two
distinct topic-types which are related in the text in a way which is
quite unexpected, so far as Scrabble is concerned, and the system's
ability to deal with entirely unexpected textual material. The input
text is:

(2) MIKE AND MARY WENT TO THE Z00. THEY SAW THE
ELEPHANTS AND FED THE MONKEYS PEANUTS. AFTER THEY
HAD LOOKED AT THE LIONS, THEY WENT TO THE ZO0O'S
RESTAURANT. THEY COULD SEE THE ZEBRAS AND GIRAFFES
FROM THEIR TABLE. AFTER THEY HAD EATEN THEIR MEAL
THEY REALISED THEY DIDN'T HAVE ANY MONEY. THEY HAD
TO WASH DISHES BEFORE THEY COULD LEAVE.

The discussion of the construction of the summary will be prefaced by
some brief notes on the way the story was analysed. Much of the
processing follows a similar course to previous examples, but notes will
be added to the computer output to explain some of the distinctive
processing required to deal with this story. Once again, program
output is indented at the left and right hand sides and is marked with
vertical bars ("]") at the right hand side of the page.
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Run of AD-HAC with Scrabble versicn 15.14
in 850K at 14.24 on 24 SEP 82

€3

Entering Scrabble for sentence @

(MIKE AND MARY WENT TO THE Z00)
Stereotypes suggested:

«Zoo»

The following Sterectype Instances have been activated
(Z002>

Spent 150 ms in Scrabble

L3

Entering Scrabble for sentence :

(THEY SAW THE ELEPHANTS AND FED THE MONKEYS PEANUTS)

No ncw stereotype instances were activated

Spent 57 ms in Scrabble

[l
The "they” in the previous sentence is identified with "Mike and Mary”
because the zoo stereotype contains the prediction that the same
people who went to the zoo will look at and feed animals. The first
"they" in the next sentence is similarly resolved. However, the second
clause is not expected by the zoo stereotype, except that it has the
information that going to places belonging to, or in, the zoo, do not
involve leaving the zoo. Scrabble may mis-interpret the sentence
because it has, at this point, an expectation that the zoo’s visitors will
eventually leave the zoo and by default it assumes that all places
which are not obviously in the zoo are outside it. (The summary of a
broadly similar text to the one considered here in which leaving the
zoo is the correct interpretation is contained in Appendix A). At the
same time, the word '"restaurant” triggers the activation of instances
of all Scrabble's stereotypes associated with food. A more sophisticated
semantics would, of course, immediately recognise that certainly the
supermarket stereotype, and possibly the kitchen stereotype, are
inappropriate here, but the present system cannot do this. Therefore,
at the end of processing the sentence Scrabble has four active
stereotype-instances, 2002, RESTAURANTZ, KITCHEN1, and
SUPERMARKET1.

Entering Scrabble for sentence :
(AFTER THEY HAD LOOKED AT THE LIONS , THEY WENT
TO THE 200’S RESTAURANT)
Stereotypes suggested:
CRESTAURANT KITCHEN SUPERMARKET))
The following Stereotype Instances have been activated
(RESTAURANTZ2 KITCHEN1 SUPERMARKET1)
Spent 788 ms in Scrabble
L3
Entering Scrabble for sentence :
(THEY COULD SEE THE ZEBRAS AND GIRAFFES FROM THEIR TABLE)

Between them Z002 and RESTAURANT2 expect the whole of this
sentence: Z002 expects people to able to see animals, and
RESTAURANTZ for them to be at a table of their own. Note, however,
whilst on one hand “they” is assumed to refer to "Mike and Mary” by
7002, RESTAURANTZ is only able to infer that the people at the table
are the same as the people who went to the restaurant. No attempt is
made at this stage to collate the pronoun resolution done by different
instances.
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No match by sterectupe : KITCHENL

Noe match by stereotype : SUPERMARKET1

No new stereotype instances uere activated

Spent 158 ms in Scrabble

£3

Entering Scrabble for sentence :

(AFTER THEY HAD EATEN THEIR MEAL THEY REALISED THEY

DIDN'T HAVE ANY MONEY)>

The restaurant stereotype expects that people will eat their meal. It
does not expect the second clause, but this failure is not commented

on by the manager.

No match by sterectupe : Zooz2

No match by stereotype : KITCHENL

No match by stereotype @ SUPERMARKET1

No rew stereotype instances uere activated

Killing stereotype instance SUPERMARKET1

Killing stereotype instance KITCHEN1

Spent 76 ms in Scrabbie

€3

Entering Scrabble for sentence :

(THEY HAD TO WASH DISHES BEFORE THEY COULD LEAVED

No new sterectype instances uere activated

Spent S0 ms in Scrabble
The first clause of the final sentence is not expected by either of the
active instances. However, the second clause “they could leave” is
expected by both 7002 and RESTAURANTZ2. They both expect that one
can leave at any time, which in many ways is inappropriate here, but
its inclusion amongst the expected material for both the topic-types of

the text does not cause the production of a misleading summary.
The Scrabble summariser is now invoked.

The summariser is entered with six elements from which the
summary material will be formed. Four are the associated with the
remaining active stereotype-instances, RESTAURANT2 and Z002. They
are the instance’'s summary templates and variable bindings. The
remaining two are the CD-representations of the two unexpected
propositions in the input text, "they realised they didn't have any
money” and “they had to wash dishes".

In addition the summariser takes as data the records of
activation and suspension ‘of the instances which will be used when
forming the summary, and the records of the textual positions of the
unpredicted material in the input text.

For the example text there is no need to reduce the number of
stereotype-instances at the beginning of summarising. In Scrabble's
terms the two active instances concern disjunct topic-types, so both
should be included in the summary.

The construction of an order for the summary is a fairly
straightforward matter for this example: the summariser cannot
produce a particular linear order for any of the elements which will
form the summary. It therefore presents them in the order of
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activation of the stereotype instances, and then follows with the two
unpredicted propositions, again in their textual order. Informally, then
the summary will be ordered: summary for Z002, summary for
RESTAURANT2, ""they realised they didn't have any money”, and finally
"they had to wash dishes".

The first substantial piece of processing undertaken by the
program concerns the extraction and the filling in of the summary
templates for Z002 and RESTAURANTZ.

The summary template for Z002 is:

((MARINCHAR goerl)
((EVENT (ACTOR goerl) (ACT PTRANS) (OBJECT goerl)
(TO zool)
(TIME . gotozootimel)))
The CD-nominal token which replaces the MAINCHAR variable in the
summary template will by marked so that it can used in subsequent

processing.

The variable bindings to be substituted into the summary
template are:

(goerl
(SET . GROUP#1)»
(zool
(SET . 2001»
(gotozootimel
(SET (NAMED TIMEPOINTL)
(COMPARISON (BEFORE ¥NOW¥))))

GROUP#1 is marked as being best expressed in English as "MARY AND
MIKE”. The summarising structure® for Z0O2 is then:
((EVENT (ACTOR GROUP#1) (RCT PTRANS) (OBJECT GROUP#1)
(TO Z001>
(TIME
(NAMED TIMEPOINT1)
(COMPARISON (BEFORE #NOW%))))
In English this CD-structure could be expressed as "Mike and Mary
went to a zoo".

Next the summariser constructs the summary CD-structure for
the input text material predicted by RESTAURANTZ2. The summary
template and associated variable bindings for RESTAURANTZ2 are:

2Note that the time token is much abbreviated here: the ones
actually produced by the program contain all the temporal
information which may be inferred from all the time variables of
the stereotype-instance.

109




(MAINCHARS customerl)
WEVENT (ACTOR customerl) (ACT PTRANS)

(OBJECT customerl)
(TO restaurantl)
(TIME . gotimel))

(customerl
(SET . DUMMY-UNKNONNSJ..‘L))

(restaurantl
(SET . RESTAURANTL b))

(gotimel -
(SET (COMPARISON (AFTER TIMEPOINTSE?

(NAMED TIMEPOINT14
(COMPARISON (BEFORE ENOWH)H))
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This produces the following CD-structure:

(CEVENT

(ACTOR DUMMY-HUMANS)

(ACT PTRANS)

(OBJECT DUMMY-HUMANS)

(TO RESTAURANT1)

(TIME
(COMPARRISON (AFTER TIMEPOINTBE))
(NAMED TIMEPOINT14)
(COMPARISON (BEFORE *NOW#))))

Note the token DUMMY-HUMANS ("some people”) in the above
structure. The variable 'customerl’ which appeared in the ACTOR and
OBJECT roles of the summary template was bound to DUMMY-
UNKNOWNS11. DUMMY-UNKNOWNS11 was, in turn, derived from the word
“they” in the input text. "They” does not, in general, refer to human
beings: however the restaurant stereotype has the information that
customers in restaurants are usually human. When constructing the
summary, the system selects the default for the variable if the default
is more specific than the actual binding of the variable extracted from
the input text, as is the case here.

These two filled in CD-structures form part of the input to the
next stage of processing, that described in section 6.5. The object of
this processing, it will be remembered, is to eliminate, where possible,
anaphoric tokens (like DUMMY-UNKNOWNS) from the summary
reprecsentation. The other two CD-structures which are handed over to
that process correspond to the two unexpected propositions in the
input text. They are:

W(STATE
(STRTENAME MLOC)
(MOBJECT
(STATE
(STATENAME POSS)
(THING MONEY1)
(VAL DUMMY-UNKNOWNSS)
(TIME
(NRMED TIMEPOINT®)
(COMPARISON (BEFORE ¥NOW*)))
(TRUTH FALSE»
(CERTAINTY B.1E-1)
(INCP DUMMY -UNKNOWNSS)
(TIME
(NAMED TIMESPANL) )
(COMPARISON (BEFORE *NOW¥))
(TS
(COMPARISON (AFTER TIMEPOINT3)»
(NRMED TIMEPOINTS)
(COMPARISON (BEFCRE ¥*NOW¥3)) )

In English "somethings started to know that some other things
possessed no money”. Note the tokens DUMMY-UNKNOWNS9 and DUMMY-
UNKNOWNSS8: they indicate that at this stage the system does not
identify the people who do not have any money with the people who
are doing the thinking.
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((CARUSE
(ANTECEDENT
(EVENT
(ACTOR DUMMY-HUMANGS)
(ARCT DO»
(TIME
(NAMED TIMEPOINT13
(COMPARISON (BEFORE ENOWHI) D
(RESULT
(CAUSE
(ANTECEDENT
(EVENT
(ACTOR DUMMY =UNKNOWNS10>
(ACT PTRANS)
(OBJECT *WATER®)
(FROM DUMMY-PLACE4
(TO DISHESL)
(TIME
(COMPARISON (AFTER TIMEPOINTS»
(NAMED TIMEPOINT13)
(COMPARISON (BEFORE ENOWEIS D
(RESULT
(STATE
(STATENAME CLEANNESS)
(THING DISHESL)
(VAL (HIGHERBY 3»
(TIME -
(NAMED TIMEPOINT1S)
(COMPARISON
(AFTER
(NAMED TIMEPOINTL3
(COMPARISON
(BEFORE %NOWX)) ) ) )

This structure is derived from "They had to wash dishes".

The system picks up the main character in the first summary
element, that is GROUP#1 (representing "Mike and Mary") in Z0OZ2 and
percolates it forward through the other summary elements. In this
example it replaces all instances of DUMMY-HUMANS and DUMMY-
UNKNOWNS with GROUP#1, since they all may co-refer with the specific
token GROUP#1.

The final process is to block the summary representation into
sentences. Following the rules of section 6.6, the two unexpected
propositions in the input text are conjoined, and then conjoined to the
filled-in summary template for RESTAURANTZ by a conjuncﬁion marked
as contrastive. The contrastive conjunction "but” is always used to
conjoin sections of the summary derived from expected material in the
input to sections derived from unexpected material, whilst “and” is
used to conjoin both paired sections of unexpected material (as here)
and paired sections of unexpected material. Although this algorithm is
extremely simple-minded, it appears to work quite well in practice.

The use of a contrastive conjunction, rather than the non-
contrastive “"and", is achieved by opening an extra channel of
communication between the generator and the summariser. This is an
extension to Cater’s system. ‘
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The final summary representation consists, then, of the original
filled-in summary template for Z0O02; the complex CD-structure, below,
which represents the filled-in template for RESTAURANTZ and also the

unexpected propositions in the input.

(CCONJUNCT
(FIRST
(EVENT (RCTOR GROUP#1)> (ACT PTRANS)

(OBJECT GROUP#1)>

(TO RESTAURANT3)

(TIME
(COMPARISON (AFTER TIMEPOINTE))
(NAMED TIMEPOINT14)
(COMPARISON (BEFORE ¥NOW¥)))))

(SECOND
(CONJUNCT
(FIRST
(STATE
(STATENAME MLOC)
(MOBJECT
(STATE
(STATENAME POSS)
(THING MONEY1)
(VAL GROUP#1)
(TIME (NAMED TIMEPOINTS)
(COMPARISON (BEFORE ¥NOW¥)))
(TRUTH FALSEY»
(CERTARINTY B.E-L
(INCP GROUP#1)
(TIME
(NAMED TIMESPANL)
(COMPARISON (BEFORE ¥NOW¥))
(TS
(COMPARISON (AFTER TIMEPOINT3)
(NAMED TIMEPOINT®)
(COMPARRISON (BEFORE #NOW¥)))) »
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(SECOND
(CAUSE
(ANTECEDENT
(EVENT
(ACTOR DUMMY-HUMANE)
(ACT DO
(TIME
(NAMED TIMEPOINT13
(COMPARISON (BEFORE XKNOW#O) )
(RESULT
(CAUSE
(ANTECEDENT
(EVENT
(RCTOR GROUP#1)
(ACT PTRANS)
(OBJECT *WATER¥)
(FROM DUMMY-PLACE4)
(TO DISHESL)
(TIME
(COMPARISON
(AFTER TIMEPOINTS»
(NAMED TIMEPOINT13)
(COMPARISON
(BEFORE %NOW®») )
(RESULT
(STATE
(STATENAME CLEANNESS)
(THING DISHESL)
(VAL (HIGHERBY 3»
(TIME
(NRMED TIMEPOINT1S)
(COMPARRISON
(AFTER
(NAMED TIMEPOINT13
(COMPARISON
(BEFORE ¥NOW%))))
M) M M ON

Note the occurences of GROUP#1 (the token which represents "Mike and
Mary”) in this structure. GROUP#1 has been inserted in the structure
as a replacement for a variety of anaphoric tokens, as was noted
above.

Finally, the summary representation is converted back into
English. In this example all the occurences of "they” in the input text
occur as "they” in the output summary text. However this only
happens because given Scrabble predictions about the text, and its
assumption about the coherence of the input they are all recognised
as co-referring with "Mike and Mary"”. If they were not recognised as
co-referring with this definite reference the English generator would be
at pains to ensure the output text reflected the fact that the nominal
tokens did not co-refer with "Mike and Mary"”.

The final output is therefore:
English summary is:
MARY AND MIKE WENT 7O A Z00. THEY WENT TO A RESTARURANT

BUT THEY REALISED THAT THEY DIDN'T HAVE ANY MONEY
AND TFHEY HAD TO WASH SOME DISHES.
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6.9 Concluding remarks

The example summary produced in the previous section is, of
course, far from perfect. It is typical of the output from Scrabble:
some summaries the system has produced are better, some worse.

The main problem with it is a certain lack of continuity. The
program has only the crudest model of what constitutes a well-formed
text, and such a model is probably necessary for the generation of
really good running text. The construction of such a model is well
beyond the scope of the present project.

On the other hand, the processing necessary to generate this
summary text illustrates that it is possible to integrate unexpected
material from an input text with summary material condensed from
the input text by expectation-driven analysis and template-driven
generation. The output summary text has all the salient points of the
input text, even though not all the input textual material was
expected by Scrabble.

More example summaries and the texts from which they were
extracted are presented in Appendix A.
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7. Conclusions

The conclusions to this thesis can be divided into four main areas.
First are conclusions about predictive inference in general as a
mechanism for use in natural language understanding systems, and in
particular summarising systems. Second are conclusions about the
approach adopted when building the Scrabble program as opposed to
the approaches adopted for other predictive inference systems. Third
are some relatively low level remarks about how the Scrabble program
could be improved whilst sticking to the current outline design. Fourth
is a discussion of the problems with the current front and back ends
to Scrabble, the AD-HAC analyser and generator. The remainder of this
chapter presents these four groups of conclusions in this order. The
chapter closes with a summary of the results of this work.

All the conclusions drawn here must be regarded as tentative.
Scrabble has only processed about twenty texts from half a dozen
different subject domains, and this does not constitute a real test of
many of the ideas presented in the thesis.

There are three main reasons Scrabble has been tested with such a
small sample of texts. First, it has proved to be difficult to extend the
vocabulary of the AD-HAC semantic parser. Second, design problems
with the Scrabble system, the most important of which will be
described in section 7.3, have led to software maintenance problems
when adding new subject domains to the system. Third, severe
practical problems have been presented Dby the difficulty of
maintaining a large suite of LISP programs in the Cambridge
environment, in particular without the aid of interactive debugging
facilities. The first two major problem areas will be discussed in more
detail later in this chapter, but the third area, the difficulties
_ presented by the limitations of the local computing environment in
which Scrabble was developed, will not be discussed further.

It should, however, be pointed out that whilst the testing of
Scrabble must be regarded as an inadequate basis for any firm
conclusions, it is no less adequate than the published testing of other,
strictly comparable systems. Although the SAM system ([Cullingford78])
appears to have been tested on upwards of a dozen different stories,
and Cullingford claims that it has used eighteen different scripts at
one time or another, it is not at all clear that any version of the
system had all the scripts available when processing a particular story.
The systems of [DeJong79] and [LebowitzBO] have processed much larger
numbers of texts (about 300 in the case of Lebowitz) but are not
comparable with Scrabble in that they do not process the whole of an
input text: whilst this allows the system to handle comparatively large
numbers of texts, as was pointed out in Chapter 2, this skimming
approach carries with it the danger of seriously mis-analysing input
material in some circumstances. Mellish (private communication) has
commented that the natural language front-end to the Edinburgh
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MECHO project (see [Byrd80] and [Mellish80]) only succeeded in
processing about 15 texts completely. Most other natural language
processing systems which do deep inferential analysis of their input
have either becn restricted to some very limited domain of discourse,
restricting the scope of any tests performed on them, or have little or
no published indication of the scale of any tests performed on them,
or bothl.

7.1 Predictive Inference and Summarising

Experience with Scrabble has pointed out a number of serious
problems with current predictive inference systems for use by
summarisers.

The first is inextsibability. It is difficult to see how to extend the
kind of technology used by Scrabble to the summarising of longer
texts. Like its precursors FRUMP ([Delong79]) and SAM ([Cullingford78]),
Scrabble's summaries always have some mention of each of the topics
of the input text. They lack any mechanism for selecting amongst the
topics covered by the input text on the basis of their salience. This
makes the mechanism inapplicable to any but the shortest input texts.
If a current predictive inference system were applied to even a text of
half a dozen pages, like a short story, it could not select what one
might call the crucial twist: it would, in all probability, merely
condense the supporting matter. Furthermore, it seems unlikely that
this problem can be overcome by giving the system more complex and
higher level predictions of the present type.

The way forward for summarising, it seems to me, lies more with
mechanisms which embody an understanding of the likely structure of
texts, rather than the likely content, which is the focus of current

predictive inference systems. [LehnertB1] describes a system which
moves some way in the structure oriented direction, although there are,
as yet, no published results for the effectiveness of her technique
when used by a computer system.

However, structure oriented systems will undoubtedly require
knowledge about, for example, the normal occurences on a visit to a
zoo, if they are to deal with the domain of zoo visits. Therefore
structure oriented techniques are to be regarded as an necessary
extention to predictive inference systems, rather than a replacement
for them. Second, again considering longer input texts, the use of the
techniques used in Scrabble will cause all unexpected material in the

'A few days before this thesis was completed I received a copy
of [Dyer82]. An initial examination of this document indicates that
the system it describes has been tested on just three texts in two
knowledge domains. (However, it must be admitted that the length
of the texts and the depth of the systems understanding of them is
extremely impressive.)




input, no matter how trivial, to appear in the output summary text.
Overcoming this problem probably requires the introduction of general
purpose inference mechanisms capable of deeper understanding of
unexpected material.

Of course computer systems capable of processing a story of half a
dozen pages are still science fiction, so perhaps criticism of predictive
inference on these grounds is premature. '

The final problem, however, is very much a gap in the capabilities
of current predictive understanding systems. Consider, for example,
the text: '

(1) John is really crazy. Yesterday, he walked into a restaurant,
ordered a meal, then got up and walked out.

It is difficult to see how Scrabble can be prevented from producing as
a summary for this text:

(2) John is really crazy. Yesterday he went to a restaurant.?

From within the current Scrabble model one possible approach to this
problem text is to demand that some key expectation of the eating-in-
a-restauarant stereotype is satisfied before it is confirmed as being
relevant to the incoming text. Here, for example, the construction of a
misleading summary might be prevented by insisting that the
restaurant summary's appropriateness is only confirmed when there
has been some mention of a meal being eaten. However, the use of
such key predictions would inevitably complicate Scrabble’'s stereotype-
prototypes, which would also complicate the processes of stereotype
management and stereotype application. In all probability such
additional complexity would slow the analysis of text sections
containing only commonplace material. This, in addition, would run
contrary to primary argument for using predictive inference in a
system like Scrabble: that is the argument that the necessary speed of
processing of common place material in an input text can be achieved
only be the use of a predictive inference system.

Problem texts like example (1) might be better dealt with by a
system which uses both stereotype-based, predictive, inference, and
more general, non-predictive inference mechanisms. In outline, 1
imagine by default such a system would process incoming texts by
using techniques similar to those adopted in building Scrabble. Ii,
however, some item in an input text did not correspond to the
systems expectations, a non-predictive inference system would be
invoked. The non-predictive inference system, amongst other things,
would have the capacity to suspend the normal processing of the
predictive inference system. Implicitly predictive inference systems
assume predictions about the contents of an input text are assumed
to be true about the world the input text describes unless they are
explicitly contradicted. In other words, such systems do not really

2] am indebted to Arthur Cater for pointing out this problem.
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distinguish between what they expect to read and what they actually
recad. To deal with examples like (1), my hypothetical integrated
inference system might suspend this assumption about the text whilst
using predictions, in this case about restaurants, to process the input
and to perform tasks like pronoun resolution. Then the summariser
would at least have the opportunity to examine the text
representation to determine which parts were constructed directly
from the text, and which parts could only be constructed by implication
, and hence are suspect in this case.

On the other hand, it is not at all clear how to construct such an
integrated inference system, and the computational cost of using such
an integrated system might well be prohibitive. The construction of
such a system remains a problem for future research.

7.2 Scrabblc Compared with other Predictive Inference Systems

This section compares Scrabble with its two primary precursors,
FRUMP ([DeJong79]) and SAM ([Schank75c], [Cullingford78)).

There are three main differences between Scrabble and FRUMP or
SAM of concern here.

First, the mechanisms for the identification of stereotypes which
are suitable for the processing of a particular text, as described in
Chapter 4, are quite different from the mechanisms used by Delong or
Cullingford. As well as texts containing the sort of direct clues to their
topic-type, which Deldong and Cullingford could handle, Scrabble can
handlec texts with only very indirect indication of their topic-type (see
for example section 4.6). Cullingford and DelJong cannot handle such
texts. It could be argued that the computational expense entailed by
Scrabble's mechanisms, in particular the frequency with which
inappropriate stereotype instances are activated, outweighs the
advantages of the Scrabble scheme for dealing with this problem. To
be fair, FRUMP has been shown to be capable of operating with many
more sketchy scripts than Scrabble has stereotypes. However until
Scrabble has been tested with large numbers of stereotypes this
remains a matter of argument. A direct comparison of Scrabble and
FRUMP in this area must wait until some of the more serious problems
with semantic parsing have been overcome.

Second Scrabble presents a solution the problems presented by
texts whose topic-type is one for which the system is prepared, but
which contain unexpected text segments. FRUMP dealt with such texts
by completely ignoring the unexpected material; SAM could not really
deal with such material at all. The technique used in Scrabble of
integrating unexpected input material with condensed versions of the
predictable part of the input represents a significant advance. Of
course, the present Scrabble summarising system is naive in many
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respects. The summaries it produces could be improved by, for example,
a model of what constitutes a complete text, and the provision of
facilities for improving the continuity of the generated text. However,
compared with FRUMP, the techniques used in Scrabble very
considerably reduce the possibility of producing an output summary
text which misrepresents the input.

Third, Scrabble’s ability to apply predictions from two different
stereotypes to the same piece of text, as illustrated by the example of
section 6.8, provides a considerable increase in power over DelJong and
Cullingford’s approach at no significant increase in computational cost.
Scrabble also operates without the introduction of additional
mechanisms, like Delong's Issue Skeletons, to handle multiple topic-
type stories.

Together these three properties of Scrabble considerably enhance
the power of a predictive inference mechanism.

7.3 The Scrabble Program

There are three main problem areas within the current
implementation of the Scrabble inferential analysis and summarising
programs. They are, first, ad hoc [features of the stereotype
management process; second, limitations of the stereotype application
process; and third, some extreme inefficiencies in the summarising
program.

The current stereotype manager relies on a count of sentences to
determine when a stereotype instance becomes a candidate for killing
or suspension. The examples in this thesis were run with this count
set to two, so that an instance is killed or suspended if it fails to
predict anything for two sentences, and neither of the sentences
suggest the instances stereotype again. This is an entirely ad hac
solution to a serious problem for text analysis systems based on a
notion of topic: what constitutes a change of topic, and how is it
signalled in the text? Both FRUMP and SAM had a very limited ability
to detect changes of topic, essentially by using predictions that the
close of one script would be followed by some other specific event. For
example, FRUMP possesses a prediction that the end of an earthquake
will be followed by the beginning of a rescue operation. However, the
use of specific predictions about how scripts are likely to fit together
does not seem sufficiently powerful to deal with a wide range of real
texts. It is not at all easy to see how to deal with the problem of
topic changes, but it clearly presents an interesting subject for future
research. .

The pattern matching system used by the stereotype application
module leaves much to be desired. Scrabble spends much of its time in
this module, so its performance crucially effects the performance of
the system is a whole. The present two pass approach in which
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patterns are compared one at a time against the CD-structures
extracted from the input text is by no means as efficient as it might
be. For example it is almost certainly less efficient than a single pass
approach, in which the information about variable bindings in
stereotype instances, representing the context set up by preceding
lext segments is used at the earliest phase of matching a CD-
structure. Fast parallel techniques in which all patterns for all active
stcreotypes are compared with input CD-structures at the same time,
might also provide significant improvements in performance.

Finally, the techniques used by the summariser to determine the
tense and aspect of a summary are extremely unwieldy, and greatly
slow down the summary generation process. Essentially the summariser
produces all the inferences it can about time relationships between
elements in the story and between events the systems assumes
occurred in the world of story but were not mentioned, so that it can
ensure the English generator has enough information to choose a
suitable tense and aspect for its output. The number of such
inferences may be very large, especially because stereotypes often
have a great deal of information about likely temporal. interrelations
between events only implicit in a particular input text. An algorithm
which only did enough to, say, ensure that the whole output summary
could be produced in the simple past tense, would greatly improve the
efficiency of summary generation. However the construction of an
algorithm which did this but would still produce correct output for
more complex cases is extremely difficult.

7.4 Semantic Parsing and Language Generation

Although there are many ways in which the Scrabble program. that
is the Scrabble predictive inferential analysis mechanism and summary
representation construction system could be improved, the most obvious
limitations of the Scrabble system as a whole come from the
limitations of the AD-HAC semantic parser and generator. Many of
these limitations moreover stem from quite fundamental difficulties
and present, to my mind, some of most pressing problems for future
research in natural language processing.

The AD-HAC semantic parser has three main drawbacks for
Scrabble's purposes. They are: the difficulty of extending the parser’s
vocabulary; the parser's handling of genuine ambiguity in the input;
and the systems robustness, in the sense of its ability to handle ill-
formed inputs, missing vocabulary and the like.

Many dictionary entries used by the AD-HAC parser are quite simple,
for example many nouns’ dictionary definitions are a single line of
text. However some dictionary entries, notably for polysemous verbs and
conjunctions, are upwards of a hundred or even two hundred lines
long. This extreme complexity arises because in Cater's system the
dictionary entries for some classes of words contain not only a
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description of the word’'s syntactic categories and meanings but also a
description of how to parse text segments in which the word occurs.
This, in turn, often leads to clashes between old words and new when
extending the dictionary. Such clashes have presented significant
problems when attempting to test Scrabble in domains other than
those of Cater's original AD-HAC program.

At the same time, widening the vocabulary has, in general,
increased the number of possible readings of an input sentence to be
considered by the AD-HAC semantic parser. The parser always parses
sentences as if they are out of context. The performance of the
system could, I believe, often be improved by making Scrabble’s
expectations about the input accessible to the AD-HAC parser, although
the implementation of such a scheme would require significant changes
to both.

The final point concerning the AD-HAC semantic parser here
concerns its lack of robustness, that is its inability to parse texts for
which it has not been prepared. In particular, problems are caused by
the requirement that all words in all input ' sentences must be
represented in the systems dictionary, and the requirement that the
input text must consist of well-formed sentences. Together these two
requirements mean that the Scrabble system cannot operate on much
real text. To analyse almost any text a certain amount of preparatory
work must be done, putting proper names in the dictionary, ensuring
the input matches the AD-HAC parser’s idea of correct sentences, and
so on. A practical natural language system would need to run without
such hand preparation.

Of these three problem areas for semantic parsing, the latter two,
robustness and the integration of parsing and inference (of whatever
style) are beyond the scope of any current natural language
processing system which attempts to analyse all its input. The first,
the complexity of dictionary entries, is a problem for all parsers which
have followed the approach of [Riesbeck75]. They present, 1 believe,
the most important problems for future researchers in natural
language processing. Without solutions to them, systems like Scrabble
are difficult to evaluate, because of the inevitable restrictions on the
form of their input material.

There are two serious shortcomings of the AD-HAC generator when
it is used to produce running texts, like summaries.

First, the generator lacks any model of what constitutes a coherent
text, and is incapable of producing significantly different expressions
of sentences when they are embedded in text and when they stand
alone, as say, one sentence answers to questions. To some extent this
problem is a product of the interface to the generator: it takes a single
CD-structure and produces a single sentence from it. [Cater82]

122




suggests that better English would be produced if the generator was
capable of taking large CD-structures and producing many sentences
from them. 1 concur with this view, but the construction of such a
generator remains an open research problem.

Second, the lack of any significant communication between the
generator and the summarising system, combined with the limitations
of the CD representation language, prevents the system ever producing
English which adequately conveys linguistic devices like focus. However
the construction of a generator with this property also remains an
open rescarch problem.

Whilst discussing difficulties encountered when using the AD-HAC
semantic parser and English generator, it is appropriate to make a few
remarks about Cater's CD representation language. CD, of course,
provides the interface between both the semantic parser and Scrabble
and between Scrabble and the language generator.

The main virtues of CD, from the point of view of the text analysis
subprograms in Scrabble, stem from its properties as a so-called
semantic primitive-based language. In particular, the property of
semantic primitive-based languages that many different natural
language strings which are deemed synonymous are represented by
identical data structures. This greatly eases the task of matching
expectations against incoming text.

However, the use made of semantic primitives in Cater’'s system is
extremely limited. There is no serious attempt to use a primitive
system to represent nominal concepts, and the treatment of CD
STATEs (the representations of state verbs and adjectives) is messy,
employing an open ended set of primitives with ill-defined boundaries
between them.

Furthermore, where the set of semantic primitives is well-defined
and limited, that is the representation of action-oriented verbs, other
problems present themselves. In particular, the notion of synonymy
embodied in two different word forms being translated into the same
primitive is utterly fixed and cannot be affected by any wider context.
Although this problem has not affected the current Scrabble system
future difficulties can be forseen. For example, consider the problems
which might be presented to Scrabble by:

(3) John went from the restaurant to his car.
in contrast to the rather strange:
(4) John travelled from the restaurant to his car.

The two sentences are identically represented in Cater’s CD, but I
suspect the second sentence is not really best analysed as a normal
exit from eating a meal at a restaurant.
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The difficulty of overcoming this problem are perhaps best
illustrated by considering the pair:

(5) John went to the Himalayas from Heathrow.

(6) John travelled to the Himalayas from Heathrow.

These two sentences are probably strictly synonymous.

It is difficult to envisage a scheme which overcomes this problem
whilst retaining the advantages of semantic primitives when examnining
representations of input text for specific patterns.

1 believe that at present the most fruitful approach to overcoming
the problems of CD as a representation language is to consider
abandoning the semantic primitive notion. A possible successor is a
case-labelled dependency structure differing from CD in that it would
contain explicit markers representing the senses of words used in the
input. Such word sense markers would replace all STATE and ACT
primitives in Cater's current scheme whilst providing a Dbetter
motivated mechanism for the inclusion of markers closely associated
with specific words in the representations produced for input
sentences. To facilitate matching between expectations and parts of
the input text this representation scheme would need to be backed up
by some kind of thesaurus relating different word senses to, for
example, their possible synonyms and antonyms. The work of
[Fahlman79] and [Alshawi82] amongst others, holds out hope that a
sophisticated flexible multi-dimensional thesaurus of the kind required
here can be manipulated with acceptable computational efficiency.

Once again, however, the construction of a representation scheme
like this, or for that matter any serious replacement for CD for the
Scrabble system is a matter for future research.

7.5 Closing Remarks

Scrabble represents, [ believe, a significant advance over previous
attempts to build summarising systems based on the principles of
predictive inference. New techniques in a number of different areas
have been tested, and many of them appear to offer important
improvements over techniques employed in previous systems. In
particular, new techniques have been developed for the identification
of the topic or topics of an input text; for the incorporation of
unexpected material in an input text into the system’s summaries; and
for the exploitation of interactions between expectations associated
with different stereotypes. Together these advances have brought the
goal of a practical natural language summarising system based on the
principles of predictive inference much closer.

However, like much work in natural language processing, this work
has thrown up more problems than it has found solutions. In particular,

it has brought into focus the need for better semantic parsers and
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language generators before work on inference can properly be
evaluated.

Having said that, it is my hope that Scrabble represents some small

steps along the road towards computer systems which genuinely and
demonstrably understand natural language.
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Appendix A

This appendix contains a large number of additional summaries
produced by Scrabble, together with the corresponding input texts.
The set presented here constitutes the majority of texts processed by
Scrabble. The only texts which Scrabble has processed which are not
included are even more straightforward than the simplest ones
presented here. The omitted texts were, in general, constructed as test
for specific features of the system, or to allow the debugging of new
stereotype-prototypes.

The first two texts concern uneventful visits to the zoo. In both
cases the only complexity is that the visitors do not do everything
together. They both illustrate the English generator’s penchant for
translating definite articles into indefinite articles.

1. Input text:

MARY AND JOHN WENT TO THE 200. THEY SAW THE ZEBRA AND FED THE MONKEYS
PEANUTS. JOHN SAW THE ELEPHANT. THEY WENT HOME.

Engiish summary is:
JOHN AND MARY WENT TO A ZOO.
2. Input text:

MARY AND JOHN WENT TO THE 200. THEY SAW THE MONKEYS AND JOHN FED THE
ELEPHANT A BANANA. THEY WENT HOME. ‘

English summary is:
JOHN AND MARY WENT TO A ZOO.

The next text also has a visit to the zoo as its central topic. However
there is an irrelevant (and therefore unexpected) sentence in the
middle of the input text. This text was the first one in which Scrabble
identified an unexpected part of the input and successfully
incorporated it into a summary.

3. Input text:

JOHN WENT TO THE Z00. HE SAW THE MONKEYS AND FED THE ELEPHANT. DALE
LOOKED AT SOME CARS. JOHN WENT HOME.

English summary is:
JOHN WENT TO A 200 BUT DALE LOOKED AT SOME CARS.

The text number 4 is about eating a meal in a restaurant (the real
home ground of predictive inference). It is similar to part of a story
which Cullingford’'s SAM could process, but is noteworthy because it
illustrates similar resuits being obtained by different techniques. In
order to process texts like this SAM needed to have the information
that one may run out of money in a restaurant and that one may be
required to wash dishes if one does. Scrabble uses only information
about the normal course of events in a restaurant. Scrabble’ summary
is, however, imperfect because the system never realises that the two
mentions of 'the waiter” refer to the same person. Therefore the
second occurrence of “waiter” is not pronominalised in the output
summary. Note also the slightly eccentric translation of "furious” into
"ivid”. This is caused by a clash between the dialects of CD used by
the semantic parser and by the generator. ‘
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4. Input text:

MIKE AND MARY WENT TO A RESTAURANT. THEY ASKED FOR STERKS. AFTER THEY
HAD EATEN THEM , THEY TOLD THE WAITER THAT THEY HAD NO MONEY. THE
WAITER WAS FURIOUS. THEY RAN AKWAY.

English summary is:

MARY AND MIKE WENT TO A RESTAURANT BUT THEY TOLD A WARITER THAT THEY
DIDN'T HAVE ANY MONEY AND A WAITER WAS LIVID.

The next set of stories illustrates the two stereotypes used so far
interacting in different ways to analyse each text.

All illustrate two different aspects of the Scrabble's processing.
First they all require the introduction of a new stereotype for eating a
meal in a restaurant part way through the input text. In fact, the
introduction of the restaurant stereotype requires the elimination of
some irrelevant stereotypes: the system does not have access to the
relation between the word 'restaurant”, which indicates the change of
topic in each case, and the restaurant stereotype. It uses the
information that ‘“restaurant” is associated with food, and it must,
therefore, examine the possibility that other stereotypes associated
with food (in practice for shopping at a supermarket and making a
meal in the kitchen) are not appropriate for the analysis of the given
input text. For these particular texts the other food stereotypes can
be climinated immediately, because the individual stereotypes have
access to particular CD-nominals derived form the input, and hence
the word “restaurant”, which is inappropriate for them.

The first text is quite straightforward, the only complexity being
presented by the necessity to carry forward the main characters from
the visit to the zoo to allow determination of the referent of the word
"they” in the latter part of the text. It is a separate matter that,
after resolution, all the resolved anaphoric expressions for this text
are converted back into "they” for a smooth output summary text.

The system assumes that "Mike and Mary" left the zoo to go to the
restaurant, but it has no means of expressing this in the summary.

S. Input text:

MIKE AND MARY WENT TO THE 200. THEY SAW THE ZEBRAS AND MIKE FED THE
ELEPHANT. AFTER THEY HAD SEEN THE MONKEYS , THEY WENT TO A
RESTAURANT. THEY ASKED FOR STEAKS. AFTER THEY HAD EATEN THEM , THEY
TOLD THE WAITER THAT THEY HAD NO MONEY. THE WAITER WAS FURIOUS. THEY
RAN AKAY.

English summary is:

MARY AND MIKE WENT TO A Z00. THEY WENT TO A RESTAURANT BUT THEY TOLD
A WAITER THAT THEY DIDN'T HAVE ANY MONEY AND A WAITER WAS LIVID.

Example 6 differs from example 5 only slightly:
6. Input text:

MARY AND JOHN WENT TO THE Z00. THEY FED THE MONKEYS SOME PEARNUTS.
AFTER THEY SAW THE ZEBRA , THEY WENT TO A RESTAURANT. JOHN TOLD THE
WAITER THAT HE WANTED A STEAK. BECAUSE THEY DIDN'T HAVE MONEY THE
WAITER WAS ANGRY. THEY RAN AWAY.

English summary is:

JOHN AND MARY WENT TO A 200. THEY WENT TO A RESTAURANT BUT A WAITER
WAS FURIOUS BECRUSE THEY DIDN'T HAVE SOME MONEY.
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Now a further variation. This time the restaurant is in the zoo, and
the system succeeds in recognising that all the action takes place
within the zoo, although this does not affect the summary produced,
because the the summariser has no means of using this part of the
text representation.

7. Input text:

MIKE AND MARY WENT TO THE Z200. THEY SAW THE ELEPHANTS AND FED THE
MONKEYS PEANUTS. AFTER THEY HAD LOOKED AT THE LIONS , THEY WENT TO
THE Z00'S RESTAURANT. THEY CcoULD SEE THE ZEBRAS AND GIRAFFES FROM
THEIR TABLE. AFTER THEY HAD EATEN THEIR MEAL THEY REALISED THEY
DIDN'T HAVE ANY MONEY. THEY HAD TO WASH DISHES BEFORE THEY COULD LEAVE.

English summary is:

MARY AND MIKE WENT TO A ZOO. THEY WENT TO A RESTAURANT BUT THEY
REALISED THAT THEY DIDN'T HAVE ANY MONEY AND THEY HAD TO WASH SOME
DISHES.

Example 8 is a more complex story in which there is only an
indirect indication that the zoo was not left when the restaurant was
entered. _

8. Input text:

MIKE AND MARY WENT TO THE Z00. THEY SAW THE ELEPHANTS AND FED THE
MONKEYS PEANUTS. AFTER THEY HAD LOOKED AT THE LIONS , THEY WENT TO
THE RESTAURANT. THEY COULD SEE THE ZEBRAS AND GIRAFFES FROM THEIR
TABLE. AFTER THEY HAD EATEN THEIR MEAL THEY REALISED THEY DIDN'T HAVE
ANY MONEY . THEY HAD TO WASH DISHES BEFORE THEY COULD LEAVE.

English summary is:

MARY AND MIKE WENT TO A Z00. THEY WENT TO A RESTAURANT BUT THEY
REALISED THAT THEY DIDN'T HAVE ANY MONEY AND THEY HAD TO WASH SOME

DISHES.

The next text requires the use of a different stereotype, that for
train journeys. In fact almost none of the text is predictable, or rather,
the basic stereotype for train journeys covers very little of the story.
The summary, although quite reasonable in content, is rather
longwinded. This longwindedness comes from two interacting sources.
First, the AD-HAC generator selects a rather uneconomic way to
express the material. Second, because the generator uses more clauses
than is strictly necessary, the summariser's mechanisms for controlling
the length of sentences produced fails, because they are based on
crude heuristics intended to identify which CD-structures the
generator will convert into complete clauses.

9. Input text:

MIKE AND LESLEY WENT FROM CAMBRIDGE TO LONDON BY TRAIN. ON THE WAY TO
LONDON THE TRAIN STOPPED AND THE GUARD SAID THE SIGNALS HAD FAILED.
THE FAMILY HAD BOOKS WHICH THEY READ UNTIL THE TRAIN STARTED.

Engli'sh summary is:

A TRAIN CONVEYED LESLEY AND MIKE FROM CAMBRIDGE TO LONDON BUT A
GUARD STATED THAT SOME SIGNALS BECAME BROKEN AND A FAMILY HAD THE
BOOKS,WHICH THEY WERE READING.

The next four stories are concerned either with shopping at the
supermarket or with making a meal at home, two new stereotypes.

The processing of all these stories primarily illustrates the power of
Scrabble’s stereotype identification algorithms when operating with
little information, rather than Scrabble’s power as a sumrmariser.
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10. Input text:
JACK PICKED A CAN OF TUNA OFF THE SHELF. HE PAID FOR IT AND WENT HOME.

English summary is:
JACK WENT TO A SUPERMARKET.

The summaries produced for stories about making meals are
extremely longwinded because the English generator lacks the
appropriate sense of “to make” and is, therefore, reduced to producing
a literal, step by step, translation of the summary CD structure into
English. A more comprehensive generator is, of course, desirable, but
noted in the body of the thesis, improving the AD-HAC generator was
not deemed an essential part of the research reported here. Example
11 text also illustrates another problem with the current summariser.
For a single topic story the summariser essentially introduces the
topic first and only then produces unexpected material. In this case
following the original textual order more closely would give better
results. In addition, the crudity of the algorithm for selecting a
conjunction to join the genuinely reduced material to the unexpected
material is exposed here.

11. Input text:

JOHN WAS HUNGRY SO HE SENT MARY TO THE KITCHEN. SHE GOT SOME STERK
FROM THE FRIDGE AND MADE A PIE. JOHN LOVED IT.

English summary is:

MARY,WHO WAS DOING SOMETHING CAUSING A PIE TO EXIST,WAS IN A KITCHEN
BUT JOHN WAS HUNGRY AND HE LIKED IT.

The next two texts and summaries are taken from [Charniak78b],
where they are used as examples of texts representing extremes of
difficulty in identifying the appropriate frame (to use Charniak's word),
or at least, to distinguish which text is associated with supermarket
shopping and which is associated with making a meal in the kitchen.

The summaries, therefore, should therefore be taken as evidence
that Scrabble has succeeded, in spite of the extremely limited
information available, in identifying the most probable of its
stereotypes for the text rather than as illustrating Scrabble's powers
as a summariser.

12. Input text:
JACK PICKED A CAN OF TUNA OFF THE SHELF. HE SWITCHED ON THE LIGHT.
English summary is:

JACK,WHO WAS DOING SOMETHING CAUSING SOME MEAL TO EXIST,WAS IN A
KITCHEN.

13. Input text:

JACK PICKED A CAN OF TUNA OFF THE SHELF. HE PUT IT IN HIS BASKET.
English summary is:

JACK WENT TO A SUPERMARKET.

The final four stories in this appendix use a sixth stereotype-
prototype, for buying presents.

The first present buying text is entirely straightforward.
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14. Input text:

MARY WANTED TO GIVE SUSAN A PRESENT. SHE THOUGHT SUSAN WOULD LIKE TO
HAVE A COMPUTER SO SHE WENT TO THE SHOP WHICH SOLD THEM. THE
COMPUTERS LOCKED EXCITING. MARY WALKED OVER TO ONE AND TRIED IT BY
WRITING A LITTLE PROGRAM. SHE ENJOYED IT AND DECIDED IT WOULD BE A
GOOD PRESENT FOR SUSAN. SHE PAID FOR IT AND TOOK IT AWAY WITH HER.

English summary is:
MARY BOUGHT A COMPUTER FOR SUSAN.

The next two stories require the use of different stereotypes at
different times during story processing. They both contain a word,
"monkey’” in one case and '“tiger” in the other which causes the
suggestion of the zoo stereotype at an irrelevant place, while the
text's topic-type s present-buying. In both cases, therefore, the
system must explicitly recognise that the zoo stereotype is irrelevant.

Note in both cases the possible implication in the summary that
the animal was bought from the zoo. This false implication can be only
be identified by deep inference on the summary representation. In
particular, this problem can only be dealt with if the system possesses
some means of recognising, and dealing with, actual or potential
ambiguity in it summary. Thus this summary illustrates a limitation of
the techniques used in Scrabble.

1S. Input text:
JOHN WENT TO THE ZOO. HE FED THE MONKEYS PEANUTS. HE WANTED TO GIVE

MARIEL A PRESENT AND HE THOUGHT SHE WOULD LIKE A MONKEY. HE WENT TO A
SHOP WHICH SOLD THEM AND GOT ONE. SHE HATED IT.

English summary is: _
JOHN WENT TO A Z00. HE BOUGHT A MONKEY FOR MARIEL BUT SHE HATED: IT.

The present-buying stereotype does not have any predictions about
the actual reactions of the recipients of presents, although it does
expect that the person buying the present will buy a present they
think the recipient will like. #“She loved it” in the next story is thus
not expected and so is included in the summary. This slight
misclassification (of “she loved it as unexpected) is probably more the
source of the slightly unnatural summary text, rather than the
inappropriate use of "but” responsible for inadequacies in other
summaries.

16. Input text:

JOHN WENT TO THE Z00. HE SAW THE LIONS AND TIGERS. HE WANTED TO GIVE
MARIEL A PRESENT AND HE THOUGHT SHE WOULD LIKE A TIGER. HE WENT TO R
SHOP WHICH SouLD THEM AND GOT ONE. SHE LOVED IT UNTIL IT ATE HER.
English summary is:

JOHN WENT TO A Z00. HE BOUGHT A TIGER FOR MARIEL BUT SHE LIKED IT
UNTIL IT ATE HER.

Finally a story similar to the previous two, this time illustrating a
rather naive paraphrase of "he gave her his present’.

17. Input text:

SPUD WENT TO A SHOP. HE DECIDED A ZEBRA WOULD BE A GOOD PRESENT FOR
MURIEL. HE BOUGHT ONE. SHE LOVED HIM AFTER HE GAVE HER HIS PRESENT.

English summary is:

SPUD BOUGHT A ZEBRA FOR MURIEL BUT SHE LIKED HIM AFTER HE GRVE HIS
OWN PRESENT TO HER.
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Appendix B

This appendix contains the stereotype-prototype which encodes the
systems knowledge of visits to zoos. It is included here as supporting
material for section 5.1. In particular, it is included so the reader can
see the information in a stereotype-prototype in a rather more concise
form than the presentation of section 5.1, which of neccessity included
substantial annotations in addition to the material from the stereotype-
prototype.

(200
(VARIABLES
(goer (SCRIPT-FEATURE HUMAN) CAN-BE-GROUP DUMMY ~HUMAN)
(zoa (MUST-BE-A ZOO> UNIQUE ZOO)
(anirmalsfood (SCRIPT-FUNC-OF FOOD REPEATABLE FOOD)
¢animal (SCRIPT-FEATURE ANIMAL) REPEATABLE ANIMAL)
(gotozootime
((BEFORE looktime)
(BEFORE feedtime)
(BEFORE leavezootime))
TIMED
(ooktime ((AFTER gotozootime)) TIME)
(feedtime ((AFTER gotozcotime)) TIMED
(cavezootime
(«AFTER locktime)
(RFTER feedtime)
(AFTER gotozootime))
TIMED
(WITH-SLOTS
{gotozoo
(PATTERN
((EVENT
(ACT PTRANS)
(OBJECT goer)
(TO zoo)
(TIME gotozootime)))}
{lookatanimals
(PATTERN
(ALTERNATE-PATTERNS
((EVENT
(ACTOR goer)
(ACT MTRANS)
(TOCP goer)
(FROM XEYE¥*)
(INST
(EVENT
(ACTOR goer
(ACT ATTEND)
(OBJECT *EYE¥)
(TO animal
(TIME looktimed)
(TIME looktimed)))
EVENT
(ACTOR goer)
(ACT ATTEND)
(TO animal)
(ORJECT %*EYE¥)
(TIME looktime)’))
(DEMONS
(REPEAT goer»}
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¢ feedanimals
(PATTERN
((CAUSE
(ANTECEDENT
{EVENT
(ACTOR goer)
(ARCT DO»
(TIME feedtime)))
(RESULT
CEVENT
(ARCTOR animab)
(ACT INGEST)
(OBJECT animalsfood)
(TIME feedtime)} )
(TIME feedtime))))
(leavezoo
(PATTERN
(ALTERNATE-PATTERNS
(EXCEPT
EVENT
(ACT PTRANS)
(OBJECT goer)
(TO
(FOCUS (STATE THING»
(STATE
(STATENAME POSS)
(VAL zoo) 1N
(EXCEPT
EVENT
(ACT PTRANS)
(OBJECT goer)
(TO
(FOCUS (STATE THING»
(STATE
(STATENAME
(STATE LOC)
(SPATEL *INSIDEX)
(VAL zood NP
(KEVENT
(ACT PTRANS)
(OBJECT goer)
(FROM zoo)
(TIME leavezootime)))) )
(SUMMARY :
(TIME-DURATION
gotozootime
leavezootime)
(MAINCHAR goer)
((EVENT
(ACTOR goer
(ACT PTRANS)
(OBJECT goer)
(TO zoo)
(TIME . gotozootimed))
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