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Summary

Asynchronous Transfer Mode (ATM) technology provides superior data trans-
fer capabilities in an environment in which multiple services are provided and
carried by a single network. Fully exploiting this potential is hampered by the
assumption by standards bodies that a single control architecture, which was de-
rived from a mono-service network, will fulfil the needs of all applications in such
a multi-service environment.

While this weakness has been widely recognised, previous efforts to address
it have met with limited success. This can be largely attributed to the fact that
such attempts have often proposed to replace one monolithic system with an-
other. Avoiding this “one-size-fits-all” approach, this dissertation presents an
Open Service Support Architecture (OSSA), in which multiple control architec-
tures can be operational simultaneously in the same physical network. In this
manner different control architectures, which provide diverse functionality and
are designed to different models, can be accommodated.

A key concept of the OSSA is the partitioning of switch resources by a soft-
ware entity called a Divider. The subset of switch resources is called a switchlet,
and the Divider allows each switchlet to be controlled by a separate control archi-
tecture. The Divider polices the invocations of a control architecture to contain
it in its allocated switchlet. Switchlets are combined into virtual networks, and a
software entity called the Network Builder automates this process. The Network
Builder allows virtual networks of arbitrary topology to be dynamically created
and modified, and each virtual network is therefore controlled by a separate in-
stance of a control architecture. The dissertation presents a proof of concept
implementation of the OSSA, and reports on the efficiency of various implemen-
tations of crucial components.

The dynamic creation of virtual networks in the OSSA means that the usage
of resources in an ATM network now needs to be considered on three time scales:
short time scales for cell switching, longer time scales for connection creation,
and even longer time scales for virtual network creation. The use of measurement
based estimates of effective bandwidth to effect resource management at the two
longer time scales of interest is investigated and the results presented.

Finally, the flexibility offered by the OSSA enables the use of service specific

control architectures (SSCAs). An SSCA is a control architecture which utilises

service specific knowledge in its manipulation of network resources, thereby pro-
viding a more efficient service than would be possible with a general purpose
control architecture. The design and implementation of an SSCA for continuous
media conferencing is presented.
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Chapter 1

Introduction

This dissertation presents the design and implementation of an Open Service
Support Architecture (OSSA) for Asynchronous Transfer Mode (ATM) networks.
The architecture deals with the out-of-band control of ATM networks, and aims to
provide an open environment which imposes few restrictions on the introduction
of new services. Indeed, the OSSA provides a framework in which user manip-
ulation of network resources can be accommodated along with the conventional
services provided by network operators.

Providing multiple services in the same physical network has long been the
interest of the networking research community. Such a multi-service network
1s expected to offer multiple data transfer capabilities which provide different
Quality of Service (QoS) guarantees to services and users. It is widely accepted
that the data transfer capabilities of ATM currently afford the best solution to
this problem.

Supplying QoS guaranteed data transfer, however, is only part of the solution
to the problem of building a multi-service network. This dissertation deals with
the remaining problem, namely the required control framework in which these
services can be created and deployed with ease, thereby making ATM truly multi-
service.

ATM technology provides a fairly clean separation between the control and
data transfer functionalities of the network®. Control and data transfer functions

1This division is not complete because in-band control functions are used in the data, path,
for example to regulate cell loss priority. In the rest of this dissertation, unless specifically
indicated otherwise, control will be taken to refer to out-of-band control.

1




are respectively called the control plane and user plane in ATM terminology.
While significant work and innovation went into realising and improving the user
plane of ATM, the same is unfortunately not true for the control plane. By
and large the existing control plane solutions very much resemble those of earlier
mono-service networks. This is true despite the fact that ATM is used in a variety
of communications environments, each of which has different requirements in
terms of the management or control of communication.

The intrinsic separation of control and data transfer has guided the solution
to the ATM control problem addressed in this dissertation. In particular the
separation of control and data transfer has been taken to its logical conclusion:
The user plane of ATM is considered to provide an efficient data transfer capa-
bility or framework, to which any control architecture can be applied. The term
control architecture is used to refer to the out-of-band control and management
mechanisms and services operational in a network or virtual network (or part
thereof)2. In this manner different control architectures can be applied to the
same type of (switching) hardware depending on the environment in which the
equipment is used.

As a logical extension of the above, it may be useful (and in some cases es-
sential) to be able to have more than one control architecture simultaneously
operational in the same physical network. A primary motivating factor in this
case is the existence of different control architectures which provide different func-
tionality. The obvious way to achieve this is to divide the resources responsible
for data transfer in the network, so that different control architectures are effec-
tively multiplexed on the same hardware. In keeping with a design philosophy
that has been applied to protocol stacks [McAuley90], and operating systems
[Leslie96] with good effect, this multiplexing is performed at the lowest possible |
level. Multiplexing at such a low level means that very few assumptions are made
about the control architectures operational in.an ATM network, or the services
that they can provide.

2The difference between management and control is not always clear. For the purposes of
this dissertation, management wili be considered those functions concerned with the general
well-being of the network, while control will be those functions which try to do something useful
with the network.



1.1 Motivation

ATM was adopted by the International Telecommunications Union (ITU) as the
bearer service for B-ISDN [Handel]. ATM’s attractive capabilities led to its use
in environments other than public networks and in particular an industrial group
called the ATM Forum has taken the lead in producing various ATM related
specifications. A great deal of effort within the ATM Forum and other standardi-
sation bodies goes into modifying and extending existing standards and protocols
for use with ATM. Many of the standards extended in this way were developed for
early single service voice and data networks. This approach of extending existing
standards is understandable in terms of the need to support existing services and
more importantly, to expedite the introdiiction of ATM. It is questionable how-
ever, whether protocols and standards, or indeed the whole paradigm, developed
to a completely different set of requirements, can be made to fit current and
future needs in an acceptable way.

In particular, in the current paradigm the network is viewed by the user as
a monolithic entity, or black box. The user is provided with a user-network
interface (UNI), through which all services are to be requested by means of a
signalling protocol [ATM Forum93]. This suggests that provision must be made
within this one interface (and signalling protocol) for all services provided by
the network. As a consequence the UNI needs to be modified each time a new
service is introduced. Implementing all this functionality in a single protocol
also results in complex software which is difficult to maintain and verify. Service
requests signalled across the UNI are relayed within the network by a network-
network interface (NNI) signalling protocol [ATM Forum96]. The NNI signalling
protocol can then invoke the requested service within the network by appropriate
manipulation of network control interfaces.

The two most important problems with the above model are the tight inte-
gration of network services with the signalling primitives across the .UNI, and
the completely closed nature of the network control interfaces allowing only one
monolithic control architecture to be operational in the network. This model
therefore does not cater for:

o the flexible introduction of new services,

e the existence of more than one service provider using the same infrastruc-
ture,




e the existence of third party services within the network,

e the use of third party software within the network.

These problems have been widely recognised and several proposals to ad-
dress them have been proposed over an extended period [Minzer91, Bubenik91,
Miller92, Olsen92, Doeringer93, Lazar95, Bale95, Cidon95, Iwata95, Crosby95a,

- Veeraraghavan95, Davie96, Hjalmtysson97, Newman97b]. There are a number of
key observations one can make from these approaches:

e All agreed on the use of ATM as the data transfer mechanism.
e All were met with limited acceptance by the networking community.

e Almost all used different networking models as their starting point, and
provided different functionality to their users.

The first observation confirms the earlier claim about the general acceptance
of ATM’s superior data transfer capability. Probably the most important rea-
son for the lack of acceptance of these approaches was that almost all proposals
involved completely replacing the existing control architecture with a new one.
This naturally leads to resistance to the new approach. More importantly, the
third observation leads to a questioning of current wisdom which assumes that
there is one control architecture which will satisfy the needs of all users and all
applications. It is the thesis of this dissertation that this “one size fits all” ap-
proach is fatally flawed, and that, far from promoting the acceptance of ATM, it
impedes the use of ATM to the extent that ATM, despite its superior character-
istics, might lose out against competing technologies.

The main aim then of the Open Service Support Architecture (OSSA) pre-
sented here is to create an environment in which the inadequacies of the legacy
ATM control approach can be addressed, while at the same time not preventing
the use of conventional or indeed any other solutions. Furthermore, the OSSA
should be able to simultaneously accommodate these different control architec-
tures and the services built around them in the same physical network. While
the OSSA successfully addresses these primary concerns, the openness of the
architecture also leads to a new way of thinking about networks and the way
they are operated. These features will make an OSSA a crucial part of modern
multi-service networks.



1.2 Contribution

The first prerequisite for the OSSA is an open, generic, low level, switch control
interface. Such an interface is not functionally different from the way switches are
controlled anyway, except for the fact that in this case the control interface is well
defined and public. Different control architectures can therefore be implemented
to utilise the control interface, which in turn means that third party software
can be used within switches and the network. In an attempt to make the control
interface generic, some abstraction of the underlying hardware will inevitably be
necessary. However, this abstraction should be made at the lowest possible level
so as to allow maximum flexibility to different control architectures.

The above approach was followed in 3éﬁning the Ariel switch control interface
introduced in this dissertation3. Rather than specifying the exact implementation
of a switch control interface, Ariel attempts to define the functionality which
should be provided by such an interface.

An open control interface is also fundamental to IP switching [Newman97b]
for which the General Switch Management Protocol (GSMP) was de-
fined [Newman96a]. The GSMP protocol is unfortunately not very general and
will be an awkward match for any control architecture that uses the QoS guar-
antees of ATM. Early work by the Comet group at Columbia University also
defined a switch control interface [Lazar95]. However-this interface was defined
at such a high level of abstraction that it would not have been useful to other
control architectures. More recently a low level control interface along the lines
of Ariel also appears to form part of the Xbind approach [Lazar96b].

While addressing many of the legacy problems listed in Section 1.1, an open
switch control interface on its own still suffers from the “one-size-fits-all” problem.
This implies that the inherent multi-service nature of ATM can not be fully
realised, because only a single control architecture can be operatiofial at any
moment in time. '

This problem is addressed in the OSSA by a mechanism which partitions
switch resources into subsets which can be operated on by different control archi-
tectures. A subset of switch resources is called a switchlet, and the partitioning
is performed by an entity called a Divider. The Divider is a thin layer of software
which communicates with the switch via the Ariel control interface on the physi-

3Credit is due to Sean Rooney of the Computer Lab for suggesting Shakespeare’s The Tem-
pest as the basis of our name space.




cal switch. The Divider exports a switchlet Ariel control interface for each of the
partitions it creates. Multiple control architecture instances each control their
subset of resources (i.e. their switchlet) by means of this exported switchlet Ariel
interface. This means that several control architectures can be simultaneously
operational on one Divider (and physical switch), in much the same way that
many processes run concurrently in a multitasking operating system. The parti-
tioning of the switch is not static and switchlets can be dynamically created and
modified. However, at any moment a control architecture knows what resources
are allocated to its switchlet.

The switchlet Ariel interfaces provide the exact same functionality as the Ariel
interface on the physical switch. A control architecture is therefore oblivious to
the fact that it is now limited to a subset of switch resources. Since the Divider
entity maintains the original one-to-one relationship with the Ariel interface on
the physical switch, the switch is also unaware that several control architectures
are now operational on it.

Since different control architectures, potentially from different vendors, can
not be expected to cooperate, the Divider is required to perform a certain amount,
of policing over the usage of resources, and the invocations made by different
control architectures, i.e. policing the control plane. The switchlet concept relies
on existing in-band policing mechanisms to protect switchlets in the data path
or user plane.

The switchlet approach is radically different from other “open” control archi-
tectures such as Xbind [Lazar96a] and Hollowman [Rooney97a] where an effort is
made to allow openness within a specific control architecture, so that, for exam-
ple, different routing algorithms can be used. In the switchlet approach, because
the multiplexing is done at a very low level, different control architectures can
be operational within the same physical network. This is crucial in being able to
cater for both existing and new solutions.

Switchlets combine, according to the topology of the physical network, into
virtual networks. Another component of the OSSA is an eﬁtity called the Network
Builder which has the task of coordinating the creation of switchlets and the
resulting virtual networks. The Network Builder starts up the correct control
architecture in a newly created virtual network, and performs garbage collection
when virtual networks are liberated. The control architecture operational in a
virtual network therefore determines the type of the virtual network. It also
ensures an appropriate overlap of resources so that, for example, the virtual



connection (VC) address space of two connected switchlet ports overlaps.

Since switchlets can be created dynamically, this means that virtual networks
can likewise be created dynamically. Within the constraints of the physical net-
work the OSSA therefore allows:

e networks of arbitrary topology to be created,
e the running of arbitrary control architectures within virtual networks,

e the movement of resources between virtual networks.

The OSSA virtual networking environment is vastly more flexible than virtual
path (VP) based virtual networks, which is the way virtual networks are currently
created in ATM networks. VP based virtual networks are normally used to
simplify switching and connection acceptance control (CAC), or to aggregate
traffic of different types in separate virtual networks [Friesen96]. In [Chan96],
VP based networks were extended by means of a concept called virtual path
groups. Bandwidth can be moved between a number of VPs which are grouped

together as a single entity. These approaches could be enhanced by the existence
of an OSSA.

An obvious application of the OSSA is a managed intranet service. In such
an environment, multiple virtual networks of the same type, e.g. IP switching
[Newman97b], could be provided to customers, and all traffic for a particular
customer will be limited to its virtual network*. Of course, the virtual networks
need not be limited to be of the same type, and indeed different types of virtual
networks could be provided to the same customer.

A slightly less obvious application of the OSSA is in change management.
Say, for example, a new version of a control architecture needs to be introduced
into a network. Currently this would require loading new software onto switches,
restarting the switches and hoping for the best. In an OSSA environment, a new
virtual network can simply be created, on a subset of the physical network if
need be, and the new control architecture introduced in it. Once the new control
architecture has been sufficiently tested, the resources of that virtual network can
be increased and the virtual network with the old version released.

4In the case of IP switching, different controllers can be used for each virtual network, so
that the processing resources will also be partitioned (albeit hard partitioned in this case).
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The OSSA environment also allows the deployment of Service Specific Con-
trol Architectures (SSCAs). An SSCA is a control architecture that provides very
specific functionality tailored to the needs of a specific service. This is in di-
rect contrast to a general purpose control architecture such as the ATM Forum’s
UNI/PNNI control architecture [ATM Forum94b, ATM Forum96|, which, by its
very nature, tries to provide the functionality of all current and future services.
An SSCA can exploit service specific knowledge to provide a more effective and ef-
ficient service. In addition, because it is service specific, an SSCA can potentially
be much simpler than a general purpose control architecture. The crucial point
is that the OSSA allows the use of such SSCAs together with general purpose
control architectures, therefore exploiting the benefits of both.

One example of an SSCA is group communication in a video conferencing
environment. The audio and especially the video streams produced in a mesh
connected multi-party conference quickly deplete network bandwidth when the
conference grows to even moderate size. At the same time it is well known that in
an orderly conference a limited number of speakers is active at any time. Similarly
the number of video streams could easily be limited to, say, feeds from the current
and previous speakers and the conference chair.

This service specific knowledge can be exploited by an SSCA in the following
manner. Novel connection structures can be created in the network with the em-
phasis on group communication and the sharing of network resources. Thereafter

“the conference floor control function can directly manipulate and incrementally

change these connections, or parts thereof, as dictated by speaker movement. For
example, the bulk of a multicast tree can stay intact, while video from the cur-
rent speaker can be grafted in by a simple localised modification. Incrementally
changing existing connections in this manner is not possible using a standard gen-
eral purpose control architecture, where the only alternative would be to recreate
a multicast tree from the new speaker®. The long time involved with such a
connection setup would make it unusable in all but the smallest conferences.

The combination of an OSSA and SSCAs affords the possibility for vendors
of ATM endpoint equipment to provide a complete and integrated solution to
customers. For example, vendors of video conferencing equipment can bundle
an integrated SSCA with their equipment which would not be dependent on the
functionality provided by a standard general purpose control architecture.

>Current control architectures [ATM Forum94b] allow branches to be added to a multicast
tree, but do not allow the root of the tree to change. ‘
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Finally, the OSSA holds the promise of global provisioning for public op-
erators. Rather than being limited to the services that the local operator can
provide, an operator doing business in a foreign country, can lease an “empty”
virtual network on which it can provide its own control architecture. In this
manner an operator would be able to provide the exact same service in all places
that it operates, regardless of whether it owns the equipment or not®. Indeed, in
such an environment it is possible for an operator to exist without owning any of
its own equipment.

1.3 Outline

et

The organisation of the remainder of this dissertation is as follows.

Chapter 2 briefly considers some essential background material and describes
the experimental environment in which implementation work was carried out.
Major research projects currently undertaken in the Computer Laboratory are
described in a research context section.

The OSSA is introduced in Chapter 3. The Ariel switch control interface is
described, and it is shown how this is generalised to facilitate the switchlet con-
cept. The Network Builder and the virtual network services are then described.
Some consideration is given to the practicalities of bootstrapping the OSSA, as
well as the security aspects involved.

Chapter 4 presents a Divider implementation as well as several implementa-
tions of the Ariel switch control interface. These are compared and the results
presented. The chapter ends with a description of the Network Builder imple-
mentation.

Various aspects of bandwidth management are considered in Chapter 5. The
need for bandwidth management at both the virtual connection and the virtual
network levels is explained. The chapter presents an implementation of band-
width management in the OSSA based on measured effective bandwidth.

Chapter 6 explains the need for service specific control architectures, and
considers a number of environments which could benefit from it. The design
and implementation of a video conferencing SSCA which utilises the OSSA is
described.

This example is due to interaction with members of staff at Telia Research, Sweden.
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Related work is considered in Chapter 7 and compared to the work presented
in this dissertation. The dissertation ends with a conclusion and direction for
future work.

10



Chapter 2

Background

This chapter provides essential background information to the development of
the OSSA concept. Section 2.1 starts with an overview of Asynchronous Transfer
Mode (ATM), and introduces relevant terminology and concepts used by this
technology. Since a Distributed Processing Environment (DPE) is used in some
of the work presented here, the section then presents a similar overview of DPE
terminology and technology. The section ends with a definition of the term
“services” in the context of an OSSA. Section 2.2 describes the experimental
environment in which implementation work was undertaken. Research projects
in the Computer Laboratory which are related to the OSSA are discussed in
Section 2.3.

2.1 General Background

2.1.1 Asynchronous Transfer Mode

Asynchronous Transfer Mode (ATM) (or Asynchronous Time Division Multiplex-
ing as it was originally called [Fraser93]), is a compromise technology which aims
to combine the capabilities of packet switching and synchronous Time Division
Multiplexing. ATM can simultaneously support voice, video and data communi-
cation over a variety of transmission speeds. ATM traffic is carried in fixed size
packets called cells. The size of an ATM cell has been standardised by the ITU
as 53 bytes, of which 5 bytes form the cell header and the remainder constitute
the payload.
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ATM provides a data transfer capability whereby cells are transported through
a network by means of a virtual connection (VC) which is implemented by main-
taining state in switching elements along the way. In particular, an ATM cell
is switched from an input port to one or more output ports within a network
element (or switch) based on the value of a small identifier which forms part of
each cell header. This identifier has local significance only, and is replaced (fully
or in part) when the cell passes through a switch. The identifier is made up of
two parts, namely a virtual path identifier (VPI) and a virtual channel identifier
(VCI). The concatenation of VPI and/or VCI pairs used on consecutive links
effectively forms the VC, and such a VC has to be set up, i.e. state in switching
elements has to be established, before data transmission can commence. Switch-
ing of cells at network nodes can be based on the VPI value only, on the VCI value
only or on both VPI and VCI values. If switching is done based only on the VPI
value of the header, the resulting VC is a virtual path connection (VPC) and the
VCI values of cells are carried through without modification. Concatenated VCI
values in a VC constitute a virtual channel connection (VCC). A VPC therefore
transparently carries a number of VCCs.

It is possible to dedicate a proportion of the switch resources to a specific
connection. These resources include buffer space and link bandwidth, and can
be used by the switch to provide a certain quality of service (QoS) to the cells
transmitted across the VC. Connections in an ATM network can either be created
semi-permanently or on-demand. These are respectively called permanent virtual
connections (PVCs) and switched virtual connections (SVCs). The process of
dynamically setting up the VPI/VCI tables and associating resources with a
VC is normally called signalling, or out-of-band control, and networks that have
separate connection establishment and data transfer phases are called connection
oriented. Signalling is considered “out-of-band” because control messages are
sent on a VC separate from data connections. An important function of out-of-
band control is to determine whether a newly offered connection can be accepted
+ without violating the QoS guarantees of existing connections. This process is
called connection acceptance control or connection admission control (CAC).
In order to be able to make QoS guarantees to several connections, the switch
has to ensure that a particular connection does not use more resources than were

allocated to it. This process is normally called policing or usage parameter control
(UPC).

‘The fixed size of ATM cells significantly simplifies the implementation of

1Also sometimes called call admission control.
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switch hardware. However, the 48 byte payload offered by ATM cells is not
a natural fit for any of the traffic that ATM was designed to transport (i.e. voice,
video and data)?. At the entry point to the network this requires the breaking up
of offered data into 48 byte units. Similarly, on arrival at the final destination the
payloads of the ATM cells need to be converted again to the “natural” format of
the data. These processes are called segmentation and reassembly respectively.
The natural format of offered data cannot normally be segmented directly into
ATM cells and an ATM adaptation layer (AAL) is required in endpoints above
the basic data transfer service of ATM. Based on different traffic classes several
AAL types have been defined. Of these AAL5 is predominantly used to transport
computer (and other) data. AAL5 encapsulates variable length packets in a data
unit which can be segmented into ATM cells®.

Conventional out-of-band control in ATM, as defined by the ATM Forum,
is divided into User-Network-Interface (UNI) signalling, and Network-Network-
Interface (NNI) signalling. By convention, the signalling protocol uses a prede-
fined VC and consists of a large number of well defined messages. Signalling
across the UNI allows the network to assign a unique network address to an
endpoint, and allows the endpoint to request creation of connections of various
types and with different QoS guarantees [ATM Forum94b]. Software signalling
entities on both sides of the UNI maintain state during the signalling process to
allow, amongst other things, recovery from failure. NNI signalling takes place
in a similar manner and has additional functionality to exchange and maintain
routing information [ATM Forum96].

The data transfer capabilities of ATM have been standardised by the ATM
Forum in the form of the five service categories [Sathaye95]. It is assumed that the
characteristics of sources can be captured by a set of traffic parameters. Traffic
parameters include the Peak Cell Rate (PCR), Sustainable Cell Rate (SCR),
Maximum Burst Size (MBS) and Minimum Cell Rate (MCR) of the traffic source.
The traffic parameters are then used to negotiate, by means of signalling, a traffic
contract with the network. The network on its part is expected to provide certain
Quality of Service (QoS) guarantees to connections which comply with-their traffic
contract. QoS guarantees include the Cell Delay Variation (CDV), the maximum

2The 48 byte payload was chosen as a compromise between 32 and 64 bytes. FEuro-
pean delegates at the ITU favoured a 32 byte payload, while the US and Japan wanted 64
bytes [de Prycker91].

8AAL3/4 was originally proposed as the means to transport data of this type. Although
some implementations still exist, AAL3/4 has largely been superseded by the more efficient
AALS.
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and mean Cell Transfer Delay (CTD), and the Cell Loss Ratio (CLR) experienced
by connections. The five service categories are:

e Constant Bit Rate (CBR): CBR services are intended for applications which

" require tight constraints on the delay and delay variation experienced by

cells travelling through the network. A fixed amount of bandwidth is ex-
pected to be consistently available to such connections.

e Real-Time Variable Bit Rate (rt-VBR): rt-VBR is meant to provide a con-
strained delay and delay variation service to bursty sources, or sources which
transmit at variable rates.

e Non-Real-Time Variable Bit Rate (nrt-VBR): nrt-VBR provides a service
for bursty applications which only expect a bound on the mean CTD.

e Unspecified Bit Rate (UBR): UBR provides transfer services for applica-
tions which require no tight delay requirements, and which can be bursty.
No per-connection bandwidth reservation or CLR guarantees are provided
for UBR connections.

e Available Bit Rate (ABR): ABR service attempts to provide a fair share of
available bandwidth to connections. The network provides a source with
feedback about the current bandwidth available to that source, and the
source is expected to adjust its transmission rate accordingly. The stan-
dardised feedback mechanism for ABR services is rate based. Special Re-
source Management (RM) cells are sent to a connection source to regulate
its current rate of transmission.

The contribution of the Computer Laboratory to the area of ATM includes
early fixed size cell networks including the Cambridge Ring [Hopper78], the Cam-
bridge Fast Ring [Hopper88] and the Cambridge Backbone Network [Greaves90],
and point-to-point switches in the Cambridge Fast Packet Switch [Newman89]
and Fairisle [Leslie91]. An ATM based Multi Service Network architecture was
presented in [McAuley90], and [Crosby95a] was the first to make use of distributed
processing methodologies in the ATM control plane, as well as doing extensive
traffic analyses on real ATM data. It was also at the Computer Laboratory that
the data transfer capabilities of ATM were first used to replace a workstation bus
in the Desk Area Network [Hayter93].
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2.1.2 Distributed Processing Environments

Early Distributed Processing Environments (DPEs) include the Cambridge Dis-
tributed Computing System [Needham82|, which later matured into the ANSA
architecture [Herbert94a]. More recently the advent of object-oriented technol-
ogy progressed these approaches into systems like the Common Object Request
Broker Architecture (CORBA) [Vinoski97]. This development, and especially the
CORBA architecture is considered below.

The Cambridge Distributed Computing System system provided shared access
to devices such as printers and fileservers. The environment also included a set
of computers called the processor bank. A user could request access to one of
these machines when the task at hand was too demanding for his or her personal
machine. If an appropriate machine from the processor bank was free, it would
be allocated for the requesting user’s exclusive use.

The ANSA architecture* [Herbert94a] and its ANSAware implementations
[APM92] can probably claim significant influence on the shape of modern DPEs.
ANSA is an architecture which enables telecommunications services and com-
puter applications to work together despite diversity of programming languages,
operating systems, computer hardware, networks and communications protocols.
The ANSA architecture specifies the following [Herbert94al:

e A set of components, which form the building blocks and tools of the ar-
chitecture.

e A set of rules, which constrain how such components can be combined in
implementations.

e A set of recipes for how to combine components into subsystems with certain
properties. '

LR

o A set of guidelines to help designers make the right design decisions.

Using this architecture, i.e. the components, rules, recipes and guidelines,
improves and eases portability and interoperability between applications despite
the differences between systems. Indeed, probably the most important aim of

4Originally ANSA was an acronym for Advanced Networked Systems Architecture, but more

recently the word appears to have taken on a meaning of its own, normally in the context of a
DPE.
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a DPE is to hide this heterogeneity which is prevalent in modern network and
computer systems [Vinoski97]. This is achieved by raising the level of abstraction.
While increased abstraction leads to a simplified system, it invariably leads to a
loss of fine-grained control.

The CORBA architecture [OMG95b] from the Object Management Group
(OMG) appears to be the most promising DPE at the time of writing®. CORBA,

in fact, is only the communications part of a more encompassing architecture
called the Object Management Architecture (OMA) [OMG97].

Fundamental to the OMA 1is the notion of an object, which is “an encapsu-
lated entity with distinct immutable identity whose services can be accessed only
through well-defined interfaces” [Vinoski97]. These interfaces are used by clients
to request objects to perform services on their behalf. Interfaces are defined in
a neutral Interface Definition Language (IDL), which, in the case of CORBA, is
similar to C++-. '

The exact location and implementation of an object is hidden from the re-
questing client, and communication between client and object is handled by an
Object Request Broker (ORB). (An ORB is an implementation of the Common
Object Request Broker Architecture.) When an object is created, an object refer-
ence is also created. This object reference refers only to the newly created object,.
and is used by a client to request services from a specific object. A client obtains
the object reference of a specific service by first using the services of a well known
object such as a Naming or Trading service (see below).

To facilitate interworking between ORBs from different vendors, the OMG
has defined a General Inter-ORB Protocol (GIOP). GIOP specifies the message
formats for interaction over any connection-oriented protocol. The Internet Inter-
ORB Protocol (IIOP) is a specialisation of GIOP for use over TCP/IP (Trans-
mission Control Protocol/Internet Protocol) networks. Because of the ubiqui-
tous nature of the TCP/IP protocol suite, support for IIOP is mandatory for a
CORBA 2.0 ORB [OMG95b]. While IIOP is an inter-ORB protocol, many ORB
. implementations also use it internally as an intra-ORB protocol.

In addition to CORBA the OMA defines:

e Object Services, which are domain-independent services used by many ap-
plications. Examples include:

5Because they combine object oriented design and programming with distributed systems,
modern DPEs are often grouped under the name Distributed Object Computing (DOC).
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— A Naming Service, which allows clients to find objects based on the
name of the object.

— A Trading Service, which allows clients to find objects based on the
services they provide, and the properties of those services.

e Common Facilities, which are also services used by many applications, but
aimed at end-user applications. An example would be database facilities.

e Domain Interfaces, which are services oriented to specific application do-
mains such as telecommunications, manufacturing and finance.

o Application Interfaces, which are interfaces developed for a specific appli-
cation. As such these interfaces are-not standardised.

[Herbert94a] observes that many software systems are inherently distributed
regardless of whether they are designed or managed as such. This obviously holds
true for the management and control of networks including ATM networks. In
confirmation of this observation, a large body of work which utilises the services of
a DPE to manage and control networks has recently appeared [Nilson95, Lazar95,
Bosco96, Rooney97a, Davison97]. Indeed some of the work presented in this
dissertation benefited from the services of a DPE. An overview of the referenced
DPE based control and management work is postponed until the related work
discussion in Chapter 7.

2.1.3 A Definition of Communication Services

In the introduction, and indeed in the literature in general, the term “service”
is often used in an ambiguous manner. Since services are a focal point of the
OSSA, this section aims to clarify the meaning of the word within the context of
this dissertation.

The ITU defines two basic services, namely bearer services and tele-services
[ITU-T93a]: Bearer services provide a low level information transfer capability
between network access points. Tele-services use one or more bearer services to
provide the “full capacity for communication”. Telephony is an example of a
tele-service which can use a variety of bearer services.

Broadband services are similarly divided into broadband interactive and
broadband distribution services, and these may be offered as either bearer services
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or tele-services depending on their function [ITU-T93b]. The ITU classification
is made from the point of view of the network, and not from the point of view of
the user.

In the Telecommunications Information Networking Architecture (TINA) a
service is (informally) defined as [Minetti96]: “ ... a meaningful set of capabilities
provided by an existing or intended network to all who utilise it, like customers,
end users, network providers and service providers. Each one sees a different
perspective of the service”. This definition has the advantage over the ITU’s
definition of a service, in that it recognises the existence of different perspectives
on the same service.

The OSSA is more narrowly concerned with services involved with ATM net-
works. Furthermore, the OSSA enables an environment in which the conventional
clear separation between providers and users of services will no longer hold. As
such, the OSSA definition of services is closer to that of the ITU: The OSSA is
mainly concerned with network services which are in turn divided into transport,
inherent and derived services. These can be informally described as follows:

e Network transport services: these include QoS guaranteed and multicast
transport services. (Indeed the “service” in QoS is understood to refer to
transport services.)

e Network inherent services: these include the signalling, management, rout-
ing and naming services.

e Network derived services: these include video conferencing, file transfer and
video broadcasting services, and are based upon the services provided by
the transport and inherent services®.

Based on the above breakdown of services, an Open Service Support Archi-
tecture can be defined as an environment in which any of these services could be
easily provided, modified or replaced, by any authorised network user. At the
same time, such actions should not adversely affect other users of the network.

5In the private network environment, derived services might simply be applications. Indeed,
the distinction between services and applications is'not always clear. For the purposes of this
dissertation a service will be considered the set of “generic” mechanisms provided, while an
application is something that is used by a user. Thus video conferencing services will include
things like group and membership control and synchronisation, while a tele-teaching application
uses these services in a structured way.
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Dynamically changing network transport services, or the transport capabili-
ties of nodes, will undoubtedly be very attractive for owners of network equip-
ment. For example a new buffering and scheduling mechanism can be instantiated
in a switch without the switch being removed from the physical network’.

However, changing the transport services of a network element will clearly
have an influence on all users of that element, and these services can therefore
not be opened up in the same way as inherent and derived services. As such
this dissertation will be largely concerned with inherent and derived services. As
indicated in Chapter 1, these services are collectively called a control architecture.
Whilst in the first instance this would appear to be applicable only to inherent
services, it will be shown in Chapter 6 that within the context of the OSSA,
derived services (or parts thereof) are also considered to be part of a control
architecture.

2.2 Research: Environment

The ATM environment at the Computer Laboratory consists of a Digital Gi-
gaSwitch, a number of Fore Systems switches, a number of ATML Virata switches
and several locally developed Fairisle switches [Leslie91]. These switches intercon-
nect an assortment of ATM capable workstations, a router and other ATM end
devices such as ATM video adapters (the Fore Systems AVA-200). In addition,
these switches provide connectivity to several other ATM networks/subnetworks
including the SuperJanet ATM network and a European Public Network Opera-
tor (PNO) ATM trial.

With the exception of the Fairisle switches, this ATM environment forms part
of the Computer Laboratory’s service network. Despite this fact, it was decided
to use the three Fore Systems switches (one ASX-100 and two ASX-200s) for
experimentation mainly for the following reasons:

e The majority of ATM end devices in the Computer Laboratory are con-
nected to the Fore Systems switches, which allowed for a useful experimen-
tal environment.

"Proposals have been made to perform on-the-fly modification of the data handling in net-
works that do not provide any QoS guarantees. Some of these proposals will be considered in
Chapter 7.
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e Low level programming information for the Fore Systems ASX-100 switch
is publicly available.

e Fore Systems switches are commonly used by groups doing ATM research,
which means that it will be easier to make the work presented here available
to a wider audience.

In some of the work a distributed processing environment was used. An
early implementation of the Distributed Interactive Multimedia Architecture
(DIMMA) [Li95] was used for this. DIMMA is a framework ORB, which provides
a common base for the construction of domain specific ORBs.

The following sections consider the Fore Switches, the workstations, the Fore
AVAs and DIMMA in more detail.

2.2.1 Fore Systems ASX-100 Switch

The ASX-100 is an output buffered local area ATM switch which provides
2.5 Gbps aggregate bandwidth, and can support up to 16 ports with a variety of
physical interfaces [Biagioni93]. The switch fabric consists of a time multiplexed
bus which interconnects four network modules. Depending on the link speed each
network module can have between one and four ports.

The bus-based switch fabric means that multicast can be supported very
efficiently. However, because VPI/VCI translation is done before the cell enters
the switch fabric, all output branches of a multicast connection must have the
same header (i.e. the same VPI/VCI value)®.

The switch can support two priorities of output buffers, however this facil-
ity was not used in this work, and cells were simply stored in first-in-first-out
(FIFO) fashion in one output buffer. The ASX-100 can perform both VP and
VC switching. In order to facilitate the latter, two sets of translation tables (for
VPI and VCI translation respectively) are used. The VPI of the incoming cell
is used as offset into the VPI table which means that the VPI table should have
enough entries for all possible VPI values. A limited range of VClIs is supported,
which limits the required size of the VCI table.

8This restriction has been remedied in later models of Fore Systems switches.
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The ASX-100 contains a RISC-based control processor running the UNIX
operating system. The control processor has an interface to the VPI/VCI trans-
lation tables to effect the creation of connections through the switch. In addition,
a special control port on the switch fabric allows the control processor to send and
receive cells. With appropriate software running on the control processor, this
means that the control processor can be considered an ATM capable workstation
on the ATM network. The throughput to the control processor is limited however,
because no hardware support (e.g. cyclic redundancy check (CRC) calculation)

is provided for the transmission of AAL5 frames. Some hardware support for
AAL3/4 is provided.

Programming details of the interface between the control processor and the
translation tables are available in the pubhc domain through the VINCE source
code [VINCE]. This, together with the fact that the control processor runs a
standard operating system, allowed a considerable amount of experimentation to
be performed on the ASX-100.

2.2.2 ATM Capable Workstations

Several workstations with ATM adapters were connected to the ATM network
described above. A subset of these provided access to a native ATM stack and
were therefore used in experimentation. This subset of workstations included
HP 700 series, and Sun Ultra workstations, all of which were equipped with Fore
Systems 200 series ATM adapters [FORE94].

The 200 series ATM adapter has an Intel 80960CA (“i960”) processor onboard
in addition to hardware CRC support for AAL3/4 and AAL5. The adapter is
capable of performing DMA (direct memory access) transfers between the host
memory and the adapter, and provides a packet interface to the host. Segmen-
tation of a packet provided by the host is performed on the adapter while the
packet is being transfered by DMA from host memory to the adapter. Similarly,
reassembly of incoming cells is done by the adapter in buffers on the host system.
The host is only interrupted when a complete packet has arrived.

Software on the host system provides a complete set of ATM data transfer
facilities. These include an IP-over-ATM implementation as well as a native ATM
stack. The latter provides an application programmer’s interface (API) which
allows sending and receiving user data using either AAL3/4 or AAL5. Signalling
for the native ATM stack is provided by means of a proprietary signalling protocol
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called SPANS [FORE95b], as well as an implementation of the ATM Forum’s UNI
signalling specification [ATM Forum93, ATM Forum94a).

Of greater interest for the work presented here, however, is the fact that the
native ATM API can also be used without having to use SPANS/UNI signalling.
The ATM protocol stack could therefore be used together with the various control
entities described in this dissertation.

2.2.3 ATM Video Adapter

The ATM Video Adapter (AVA) started life as a node on the desk area network
[Pratt94, Barham95], and has since been commercialized by Fore Systems. The
AVA-200, as it is now called, captures and digitises real-time audio and video,
and segments these into ATM cells which can be sent across an ATM network.
The AVA-200 has three video and three audio inputs and at any time data from
one of each can be captured for transmission across the network.

The AVA-200 is not capable of signalling; instead, proxy signalling is per-
formed on its behalf by a manager process running on a host connected to the
same ATM network. A PVC between the manager host and the AVA-200 allows
the manager to send proprietary control messages to the AVA-200. A micro-
controller on the AVA-200 receives and processes these messages, and performs
appropriate control functions on the video and audio coder hardware.

The video capture hardware on the AVA-200 can produce digitised video
in a variety of formats including 8-bit monochrome, 16- and 24-bit colour and
JPEG compressed®. Frame rates are fully configurable from zero to thirty frames
per second. Similarly the HiFi audio codec (coder-decoder) on the AVA-200 can
support a variety of encodings including 8-bit Pulse Code Modulation (PCM) in
both mono and stereo, and mono and stereo 16-bit PCM encoding. Sampling
rates are configurable from telephony quality (8 KHz) up to Compact Disc (CD)
(44.1 KHz) and Digital Audio Tape (DAT) (48 KHz) quality.

2.24 DIMMA

The Distributed Interactive Multimedia Architecture (DIMMA) is a distributed
processing framework which facilitates service management, service binding and

SJPEG is a still image compression standard from the Joint Photographic Experts Group.
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service QoS management [Li95]. In recognition of the diverse requirements of ap-
plications using ORB technology, the approach taken in the DIMMA project was
to structure an ORB as a modular set of components that plug into a minimal
ORB framework or microORB. Rather than trying to strip down a monolithic
ORB for a specific application or market, a “custom” ORB can therefore be as-
sembled from standard replaceable components. Standard ORB interfaces such
as CORBA [OMG95b] and TINA [Kelly95] are catered for in the DIMMA frame-
work by means of “personality modules” on the DIMMA nucleus.

The DIMMA framework aims to provide generic abstractions for:

e communications policies and protocols,

threading,

buffer management and

e event processing.

In addition implementations of the architecture can provide abstractions for
streams [Otway95b] and explicit binding [Otway95a).

The DIMMA implementation used for experimental work allowed several pro-
tocol stacks to be operational simultaneously. In addition to the CORBA IIOP
protocol, the implementation provided an experimental ANSA remote procedure
call (ARPC) implementation. The ARPC protocol can utilise both User Data-
gram Protocol (UDP) and Transmission Control Protocol (TCP) as the under-
lying protocol.

Despite deploying a CORBA “personality”, the terminology used within
DIMMA is still “generic DPE” rather than CORBA specific. For example server
and interface reference, are used in favour of the more correct object ‘and object
reference respectively. To avoid confusion this DIMMA terminology will be used
in the rest of this dissertation.

2.3 Research Context

The research presented in this dissertation was conducted within the Systems
Research Group (SRG) at the Computer Laboratory. Three research projects
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undertaken within the SRG are briefly considered in this section. These projects
either influenced, or were influenced by, the work presented here.

2.3.1 Pegasus

. Pegasus, as is its successor Pegasus II, is a multi-party project tasked with: “Op-
erating system support for distributed interactive multimedia” [Peg97]. Work
conducted at the Computer Laboratory is centred around the development of the
Nemesis operating system [Leslie96].

The Nemesis operating system is an entirely new operating system which aims
to provide QoS guarantees to applications in the same way that ATM networks
can provide QoS guarantees to connections. Nemesis is a single-address-space op-
erating system and runs on several platforms including Intel, Alpha and Stron-
gARM. Nemesis has an extremely small kernel and performs many traditional
operating system functions in user domains outside the kernel.

Providing QoS guarantees to applications effectively means that an applica-
tion receives a subset of the workstation’s physical resources, and can use these
as it sees fit. It will be shown in Chapter 3 how this is analogous to the switchlet
concept in the OSSA.

Other aspects of the Nemesis operating system will be considered in the re-
lated work chapter, Chapter 7.

2.3.2 Measure

The Measure project examines the application of the technique of online mea-
surement to the problem of resource management in networks and operating
systems [Mea97].

Other approaches to resource management often assume that the behaviour
of users is known, or can be modelled. These approaches are flawed because of
the poor understanding of, and the rapidly changing nature of applications, espe-
cially in a multi-service environment. The use of online measurement techniques
promises to simplify resource management while at the same time making the
process more accurate. The “Measure-approach” is based on Large Deviations
Theory.
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In Chapter 5 online measurement techniques, based on the work done in the
Measure project, are used to perform bandwidth management in the OSSA. The
online measure approach is explained in' more detail in that chapter.

2.3.3 DCAN

DCAN is an acronym for Devolved Control of ATM Networks, and the project has
as its aim the design and implementation of a scalable control and management
system for ATM networks [DCA97]. As indicated earlier, such a system is called
a control architecture within the context of the OSSA. Indeed the original DCAN
proposal [Herbert94b] served as motivation for the need for an OSSA, because
this was yet another control architecture for ATM networks.

From its inception the DCAN approach was concerned with the use of a
DPE to built the envisaged control architecture. As such the original emphasis
of the project was on the requirements of a DPE that could be used in this
environment. Some exploratory work was done involving an implementation of
ANSAware [APM92] over the Nemesis operating system.

Another explicit aim of the DCAN project was the control of simple net-
worked devices, such as the AVA video adapter described in Section 2.2, as well
as more sophisticated devices such as workstations. This meant that the control
architecture would be scalable in terms of both resource requirements and the
size of the network involved.

Insofar as the work presented in this dissertation is related to the DCAN
project, this research has benefited from it in the form of access to equipment
and other resources. Similarly the DCAN project has benefited from the work
presented here, and that to be presented in [Rooney97c|, inasmuch as its current
direction has been largely dictated by these approaches.

2.4 Summary

In this chapter background information essential to the OSSA was introduced.
This provides the necessary platform for the remainder of the dissertation in
which the OSSA and its uses are explored.
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Chapter 3

An Open Service Support

Architecture

3.1 Introduction

ATM is one of the networking technologies which promise the realisation of a
truly multi-service networking environment. The likelihood of ATM achieving
this goal is critically dependent on its ability to:

e Provide data transfer capabilities consistent with the expectations of a wide
range of applications and services.

e Provide the necessary control framework in which these services can be
created and deployed with ease.

There is wide acceptance of the superior data transfer capability of ATM,
however, the inadequacy of existing ATM control and management strate-
gies [ATM Forum93, ATM Forum96] to meet the demands of, for example,
multimedia applications, has been widely acknowledged. Several alternatives
have been proposed over an extended period of time [Minzer91, Bubenik91,
Miller92, Olsen92, Doeringer93, Lazar95, Bale95, Cidon95, Iwata95, Crosby95a,
Veeraraghavan95, Davie96, Veeraraghavan97, Hjalmtysson97, Newman97b]*. As

Indeed such concerns recently led to the establishment of OPENSIG as a forum to “Explore
issues in network programmability and next generation open signalling technology”.
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explained in Chapter 1, the mechanisms that constitute a particular control and
management approach are collectively called a control architecture?.

Despite their obvious advantages, the uptake by standards bodies of ideas from
these new control architectures has been slow, or nonexistent. One of the main
reasons for this situation is that a new control architecture is normally proposed
as a replacement of an existing one. Naturally, this leads to a reluctance to move
to the new untested control architecture, even if the existing one is known to be
less than ideal.

Some new control architectures are simply extensions of the “conventional”
ATM out-of-band control as presented in Section 2.1.1. For example [Cidon95]
propose modifications to the standard Private Network-Network Interface (PNNI)
specification [ATM Forum96], mainly involved with improving the efficiency of
connection setup. Similarly in [Iwata95], ATM signalling and addressing is
extended to avoid the router bottleneck in the classic IP-over-ATM approach
[Laubach94].

More radical are approaches in which only the data transfer capability of
“standard” ATM is used, and a completely different control architecture is em-
ployed in the network. One example in this category is IP switching in which
a normal ATM switch is effectively used as the “optimised forwarding engine”
in an IP router [Newman97b]. IP packets are either routed normally through a
software router, or forwarded directly through the ATM switch. The decision of
whether to route or to switch is taken by the control architecture and is based
on traffic patterns and the installed policy in the device [Newman96b)].

These different approaches seriously question the basic assumption that there
is a single control architecture that will provide for the needs of all applications
and services. Furthermore, since different control architectures are built on dif-
ferent ‘models and provide different functionality, it is reasonable to expect to
be able have the functionality of more than one control architecture in the same
physical network.

The Open Service Support Architecture (OSSA) presented in this chapter
addresses this expectation by providing an environment in which several control
architectures can coexist on the same ATM switch and network.

2For example, a UNI/NNI signalling implementation is (an example of) a control architec-
ture, as is the IP switching architecture from Ipsilon [Ipsilon96].
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An essential requirement for the OSSA is an open switch control interface.
This is the interface used by a control architecture to manipulate the switch
hardware in order to perform its control and management functions. An example
of an operation performed through this interface is the manipulation of bits in a
forwarding table in order to set up a forwarding path through the switch. The
proliferation of control architectures means that a definite requirement for this
interface is that it be open, so that-different control architectures can be developed
to make use of it.

The OSSA approach to open switch control is presented in Section 3.2 and
involves a simple low level interface which can be used by any control architecture
to exercise control of the physical switch. A switch exporting this low level inter-
face still has the limitation that only one control architecture can be operational
at any particular moment in time. ‘

Section 3.3 addresses this problem, and the key requirement of the OSSA,
by showing how a subset of the ATM switch resources can be presented to a
particular control architecture as a switchlet. The term switchlet is used in favour
of, say, “virtual” sWitch, to emphasise the fact that real resources are allocated
to the switchlet. A switchlet presents the same open switch control interface to
its control architecture, which means that the latter is oblivious of the fact that
it is not in control of the whole physical switch. The partitioning of a switch
into switchlets means that several control architectures can be simultaneously
and seamlessly operational on the same physical switch.

Switchlets can be combined into virtual ATM networks, each of which can
potentially use a different control architecture. In this way, the switchlet con-
cept allows several control architectures to operate in the same physical network.
These virtual networks can have any arbitrary topology within the constraints of
the topology of the physical network.

In the first instance, the action of creating switchlets and combining them
into virtual networks may be performed by human operators. The process can,
however, be automated so that virtual networks can be dynamically created. The
OSSA components involved with this process are considered in Section 3.4. The
control architecture instantiated on the newly created virtual network can be one
of a predefined set of well-known control architectures. Alternatively, an “empty”
virtual network can be created in which the control architecture is provided by
the “user”, or the entity that requested the creation of the virtual network. In
the latter case the mechanisms implementing the control architecture should be
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provided by the entity requesting network creation.

The elements of the OSSA mentioned above, and discussed in detail in the
remainder of this chapter, therefore facilitate an environment in which “any user”

can construct a network and effectively become a “network service provider”
[van der Merwe95].

3.2 OSSA Approach to Open Switch Control

Figure 3.1 illustrates the control of an ATM switch by software forming part of a
particular control architecture, through an Ariel open switch control interface. In
the OSSA approach switch control is opened up by providing a simple, generic,
low level switch control interface on the switch. Switch control software running
on a general purpose computing environment invokes operations on the Ariel
interface in order to control and manage the switch.

The switch control software and the Ariel interface have a client-server rela-
tionship. The relationship is highly asymmetric because the server is always very
simple and lightweight, whereas the client (the switch control software or control
architecture) is potentially very complex. For this reason, the control software is
assumed to run in a general purpose environment, while the Ariel server is simple
enough that it can be implemented on very simple switches. The relationship is
also one-to-one or one-to-many, but not many-to-one: A single switch controller
can communicate with one or more Ariel interfaces, but an Ariel interface can only
have a single control entity associated with it. Note that whether the control pro-
cessor is part of the switch, or physically removed from the switch is not really
important and can be considered an implementation choice. What is important,
however, is that some form of open control interface is exported by the switch.

The switch control software is responsible for performing all the functions re-
quired by a specific control architecture, such as setting up virtual channel iden-
tifier/virtual path identifier (VCI/VPI) mappings, admission control, resource
allocation, routing etc. A control architecture is not limited to the implementa-
tion of a single signalling protocol. For example, an implementation capable of
both UNI 3.0 [ATM Forum93], and SPANS [FORE95b] signalling could still be
a single control architecture.

Even though communication between the control software and the Ariel in-
terface is based on client-server principles, this does not require the facilities of
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a general purpose distributed processing environment (DPE). Rather, communi-
cation between the control client and Ariel server is implementation specific, for
example based on message passing on a default VCI/VPI pair. The Ariel inter-
face specifies the functionality required by an open switch control interface, and
Aimplement'ations based on different mechanisms can be carried out. Chapter 4
presents several Ariel implementations.

Control Processor

Switch Controller
Type A
(client)

— — VPI/VCI to controller

SRS D T I I A — Controller invocation
L1 |
1
A
Ir 1l
Iy

Open Switch
— Control Interface
(server)

switch

Figure 3.1: Switch control through the Ariel interface

3.2.1 The Ariel Control Interface

Ariel aims to provide an open, generic switch control interface: In particular the
Ariel interface should be useful even if detailed knowledge of the switch being
controlled via the interface is not available. Ariel should provide sensible control
of all switches, even switches of unknown type.

Ariel consists of the following interfaces?:

3 As shown here, Ariel is really made up of a set of several interfaces. Most of the time this
set of interfaces will simply be called the Ariel control interface, as if it were a singular entity.
At other times, each member of the set will be considered separately. A different font is used
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e Configuration - The Configuration interface is primarily used to find
out what the configuration of a switch is. It contains methods which allow
the controller to obtain the capabilities of the switch in a per port list.
The capabilities include the VPI and VCI ranges and the ATM Forum
service categories supported. The switch vendor name and type can also
be obtained, which allow the control architecture to perform switch specific
optimisations. '

e Port - A Port interface is provided for each port on the switch and deals
with a port as a complete entity. For example, methods are provided which
allow the controller to take a port out of service, or to put it in loopback
mode.

e Context - The Context interface bundles QoS abstractions into a single
interface. QoS aware connections are set up through Ariel by first creating
a context, and then associating that context with a VPI/VCI mapping
during the actual connection setup. Alternatively, a connection which does
not require QoS guarantees, or simply wants a best effort guarantee, need
not use the Context interface at all. This approach also means that all QoS
issues are taken out of the Connections interface, which can be kept very
simple.

Dealing with QoS issues in a generic fashion at a low level is very difficult,
and may not be possible. The reason for this is that the QoS capabilities of
a switch are determined by the buffer allocation and cell scheduling policies
employed. These, in turn, are what differentiate one switch from another.
It is therefore unlikely that all switch vendors would be willing to make such
details about their switches available to be included in an open interface,
such as Ariel.

One way of avoiding this problem is to hide the switch queueing and schedul-
ing policies behind a generic interface. The ATM service categories pre-
sented in Section 2.1.1 provide the means for such an abstraction. This
approach is reasonable because it can be expected that switch manufactur-
ers will build switches with queueing and scheduling mechanisms which will
support a subset of these services. The Ariel Context interface follows this
approach®.

for the names of the set of interfaces to highlight this difference.

“The ATM Forum service categories are naturally very ATM centric. It is believed that
it will be possible to map simpler service categories, such as those proposed by the Internet
community [Braden94], onto the ATM Forum categories. Within the Internet community
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The ATM Forum service categories are parametrised by (in total) four QoS
parameters and six traffic parameters, a subset of which must be specified
for each service category. The Context interface provides methods which
use these parameters to reserve and release resources on the switch at both
VP and VC level. A method also provides a list of all the currently specified
contexts on the switch.

e Connections - The Connections interface is responsible for basic VP1/VCI
mapping, and deals with QoS issues through a context index obtained (by
the controller) through the Context interface. Methods are provided to
create and delete connections at VP and VC level, as well as to obtain lists
of all current connections.

e Statistics - The Statistics interface allows the controller to obtain
switch statistics and accounting information. This includes per port, per
VP and per VC statistics about the number of received, transmitted,
dropped and erroneous cells.

e Alarms - The Alarms interface allows the controller to be informed when
certain events take place on the switch. For example the controller might
be informed about port state changes such as loss of carrier, a port being
removed or added etc.

Separating connection setup into two interfaces, for VP/VC and QoS setup re-
spectively, was also used in [Crosby95a] for control of the Fairisle switch [Leslie91].
More recently a similar separation was proposed in the UNITE signalling archi-
tecture [Hjalmtysson97]. In UNITE the motivation for separation is to expedite
the processing required for best effort connection setup, which does not require
any QoS guarantees. The same motivation led to the separation of functionality
in the Ariel interface.

Anqther reason for separating the Connections and Context interfaces comes
from the realization that the Context interface provides a way to “allocate re-

‘sources” on the switch, whereas the Connections interface provides a way to

“use the resources”, and that the two need not be tightly coupled. For example,
a control architecture can allocate a certain amount of resources on the switch
by means of the Context interface, and then “over commit” these resources by

some work has been done in this regard, although it assumes a conventional standard ATM
environment [Garret97].
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allowing more connections to be created than the resources would suggest, be-
cause it has some additional knowledge about the behaviour of the connections in
question®. An example would be a video conference session, where the dynamics
of human interaction allow some resources to be shared. This example is explored
in detail in Chapter 6.

Hiding the switch details behind the Context QoS abstraction obviously leads
to a loss of information. However, enough information is still available to perform
functions such as connection acceptance control (CAC) outside the switch in the
external controller.

CAC deals with the question of whether a new incoming connection request
can be accepted, i.e. if its QoS requifeménts can be met, without adversely af-
fecting the QoS guarantees of existing connections. This means that the CAC
functions should know:

e What physical resources are available on the switch.

e What proportion of those resources is used by the current connections. (Or
conversely how much of the resources is still available.)

e How much resource the new connection will require.

In order to perform CAC outside the switch, a resource mapping function that
is used by the switch to map QoS and traffic parameters to switch resources is
required, as well as knowledge about the resources available on the switch. Such
a resource mapping function constitutes significantly less sensitive information
than the mechanisms used to implement it. It can therefore be expected that
switch manufacturers will be more willing to provide such information.

- One generic resource mapping function is effective bandwidth [Hui88, Kelly96],
a concept which aims to provide a measure of the resource usage of different
sources with differing traffic characteristics and QoS requirements. Effective
bandwidth expresses the bandwidth requirements of a traffic stream which lie
somewhere between its peak and average rates. In its original form, effective
bandwidth CAC relied on the declared traffic descriptors of connections, and on
models of the behaviour of different types of sources when multiplexed together.
Recent evidence [Crosby95b] suggests that effective bandwidth requirements can

5Most current commercial ATM switches will not allow the separation between the allocation
and usage of resources, or at least not to this extent.
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be more accurately estimated using online measurements, and the measurement
approach has the additional advantage that it is not dependent on predetermined
traffic types.

Because of its inherent abstraction of switch resources, the effective bandwidth
approach is particularly attractive for an open control interface such as Ariel.
Furthermore, there seems to be growing interest in the use of measurement based,
rather than model based techniques for CAC [Lewis97, Grossglauser97b]. For
these reasons, the resource management problem is revisited in Chapter 5, in
which measurement based effective bandwidth estimation is applied to bandwidth
management within the OSSA.

3.3 Switchlets

The approach described in Section 3.2 enables a switch to be controlled in an open
fashion and allows different control architectures to be designed to utilise the Ariel
interface. This brings much more openness and flexibility than is currently the
case on ATM switches, but it still means that at any given time, a single control
architecture is operational on a switch and within a network.

Control Processor

v Invocation on switch
== [nvocation on switchlet

~eete [vocation on Management
interface

Ariel Open Switch Control
Interface

Figure 3.2: Creating switchlets
Figure 3.2 shows how the Ariel interface on a physical switch can be used
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by a Switch Divider Controller to create several switchlets®. The Switch
Divider Controller is called Prospero. Prospero allocates a subset of the physical
switch resources to a switchlet, and makes this available to the switch control
software through yet another Ariel interface. Switchlet resources include a subset
of the switch ports, VPI/VCI space, bandwidth and buffer space. More than
one switchlet can have the same switch port, but all switchlets need not have
the same set of ports. Switch control software, of a particular type, will control
the switchlet by invocations on the switchlet Ariel interface, in exactly the same
way as it would control a physical switch with just a single Ariel interface. As
an example, Figure 3.2 shows three possible control architectures, namely the
Hollowman experimental control architecture [Rooney97a], and the IP Switching
[Ipsilon96] and ATM Forum’s PNNI [ATM, Forum96] control architectures. These
control architectures are discussed in detail in Chapter 7. Figure 3.2 also shows
that partitioning of the switch into switchlets is controlled through a separate
Management interface on the Divider Controller which is described later.

Switchlets can be combined to form virtual networks of a certain type, where
the type of a virtual network is defined by the operational control architecture
on that particular set of switchlets. This is depicted in Figure 3.3, which shows
a network of five physical switches, on which three virtual networks of different
types are deployed.

The switch is completely oblivious to the fact that several control architectures
are operational on it, and the one-to-one relationship with the Ariel server on
the switch is maintained by a single Divider Controller. Prospero provides Ariel
interfaces to the switchlet controllers. Except for the fact that fewer resources
are available to it, a switchlet controller is therefore also unaware of the presence
of the Divider Controller. The Switch Divider Controller polices invocations
on the switchlet Ariel interfaces to ensure that switchlet controllers do not utilise
resources not allocated to them, or in any other way interfere with the functioning
of other switchlets’. '

A patent application has been filed to protect the technique of partitioning a switch into
switchlets [van der Merwe96).

"The Switch Divider Controller is analogous to the small kernel in the Nemesis operating
system [Leslie96], which is responsible (amongst other things) for allocating system resources
to scheduling domains, and for policing the actual usage of allocated resources. Indeed the
switchlet concept has some similarities with the Nemesis operating system in that real resources
are made available to an “application”, the control architecture in the network environment,
which is then allowed to use these resources according to some internal policy. This similarity
is explored further in Chapter 7, where the Nemesis operating system is discussed.
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Figure 3.3: Virtual ATM networks with different control architectures

3.3.1 The Prospero Switch Divider Controller

The partitioning of switches into switchlets requires the specification of a switchlet
in terms of a subset of the physical resources available on the switch. Resources
on a switch that need to be considered include:

1. ports

2. VPI/VCI space

3. bandwidth

4. buffer space

The first two items above constitute the connection resources of a switch and
can be partitioned at various levels of granularity namely the:

e port level - whereby certain ports within a switch are allocated to a switch-
let,
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e VP level - whereby certain VPI ranges on certain ports are allocated to a
switchlet, and

e VC level - whereby certain VCI ranges on certain VPIs on certain ports are
allocated to a switchlet.

Partitioning at the VC level, being the most general of the three possibilities
and therefore the least restricting, is the approach which has been adopted for
the Prospero Switch Divider Controller®.

Items 3 and 4 in the list of switch resources, together with the switch queue-
ing and scheduling policies, may be collectively viewed as the switching capacity
of the switch. As explained in Section'('é'fll, the approach taken with the Ariel
interface is to hide QoS details behind the five standardised ATM service cate-
gories. The same approach is followed in specifying switchlets: a certain portion
of the resources for a particular service category will be marked as “belonging”
to a certain switchlet. The control architecture operating on the switchlet can
then employ the same resource mapping function mentioned in Section 3.2.1 on
its subset of resources to perform admission control and allocation for its connec-
tions. It will be shown in Chapter 5 that the use of effective bandwidth to get a
handle on the capacity of a switch is particularly attractive in the switchlet envi-
ronment. This stems from the inherent additive property of effective bandwidth,
which means that the effective bandwidth for both switchlets and the switch as
a whole can be calculated.

A switchlet specification can therefore consist of the number of ports required, -
and then for each port the following information:

e the range of VPIs required,
e the range of VCIs per VPI required,
e the service categories required, and

e the capacity required per service category.

8When partitioning is done at the VC level, the switch will have to perform per-VC in band
policing to protect switchlets from misbehaving users. If a switch is not capable of per-VC
protection in the data path, partitioning will have to be done at the VP level. As explained in
Chapter 5, dividing at the VP level, although less general, has the advantage that the policing
of CAC decisions by Prospero is simplified.
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The Prospero Divider Controller has to know the amount of resources on the
physical switch, or be capable of finding out, and must only allow switchlets
to be created when there is sufficient capacity to do so. Allocating resources
to a switchlet does not involve any invocations (or allocations) on the physical
switch. Rather, Prospero notes the allocation in its internal representation of the
switch capacity, and uses that to police future invocations on a switchlet Ariel
interface®. As indicated in Figure 3.2, partitioning takes place through a separate
Management interface on the Prospero Divider Controller.

Once connections have been established in a switchlet (and switch), Prospero
has to rely on in-band policing mechanisms in the physical switch to ensure that
connections from one switchlet do not adversely affect those of other switchlets.
These policing mechanisms exist in current ATM switches in the form of usage
parameter control, and therefore require no additional functionality on the part
of the switch.

The Management interface on the Divider Controller can only be accessed by
the switch “owner”, and is not available to the different control architectures op-
erating on the switch. The Management interface allows the dynamic partitioning
of resources into switchlets, and the associated creation of switchlet Ariel inter-
faces. Similarly, switchlets, and switchlet resources, can be released through this
interface. The Management interface also provides methods by which resources,
e.g. bandwidth, allocated to one switchlet can be “moved” to a different switchlet.
The details of the Management interface will be presented in Chapters 4 and 5,
where different aspects of the Prospero implementation are presented.

The Prospero Divider Controller associated with each physical switch forms
the first building block of the OSSA environment. In the first instance, the Man-
agement interface on Prospero can be used by a human operator to create switch-
lets on a permanent or semi-permanent basis. For each switchlet thus created,
the operator can then start up the appropriate control architecture software. The
operator will have to ensure that switchlets that are considered part of the same
virtual network have the “correct” switchlet resources. For example, to ensure
connectivity between two switchlets, the outgoing VCI space of a switchlet has
to overlap the incoming VCI space of an adjacent switchlet in the same virtual
network.

A possible exception might benefit the partitioning of ABR resources on the switch: The
default fairness criteria used by the switch to assign unused bandwidth [Sathaye95], might be
modified to take switchlets into account. This will enable fairness to be achieved within a
particular switchlet rather that across all switchlets. Further work is needed in this regard.
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Although it is feasible, the operator-based approach will undoubtedly be cum-
bersome and error prone. Of greater interest is the dynamic or on-demand cre-
ation of virtual networks by other software systems. Such a Virtual Network Ser-
vice binds the stand-alone Divider Controller entities into an integrated OSSA
and is considered in the following section.

3.4 Virtual Network Service

The switchlet concept presented in the previous section is a key component of the
OSSA. Sets of switchlets can be combined to form virtual networks. The topolo-
gies of such virtual networks are naturaff? limited to the topology of the physical
network, or a subset thereof. The control architectures for these different virtual
networks could be instantiations of the same control architecture; alternatively a
different control architecture could be operational in each virtual network.

This section extends the OSSA still further describing the components of
an on-demand virtual network service in which switchlets are dynamically cre-
ated and merged into virtual networks. A communication mechanism between
the OSSA components is required, and by the very nature of the OSSA, such
communication is distributed. It therefore makes sense to implement this func-
tionality in the OSSA by means of a Distributed Processing Environment (DPE).
In addition to a standardised communication facility, a DPE provides certain ser-
vices, some of which can be usefully employed by the OSSA. One such service,
mentioned in Section 2.1.2, is a trading function. If OSSA components, such as
the Prospero Divider, are encapsulated as DPE services, then the OSSA becomes
an environment in which network components and indeed (virtual) networks be-
come DPE services which can be offered, traded and manipulated like any other
DPE service. This concept, and the creation of virtual networks in this manner
is considered in Section 3.4.1'°.

Remote access to the Prospero Management interface is required for both types
of virtual network creation: slow time scale operations performed by a network
operator, and fast time scale operations performed dynamically by software on

10A% first glance, discussing the implementation of the OSSA by means of a DPE in what is
considered an aerchitectural chapter might seem contradictory or restrictive. However, far from
being restrictive this provides the vocabulary and assumed functionality so that discussion can
focus on the problem at hand. Furthermore, it should be clear that any other implementation
can be engineered, admittedly with greater effort, if the use of a DPE is undesirable.
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an on-demand basis. Remote access implies the existence of some form of net-
working facility. Within the OSSA, this requirement is catered for by means of
a bootstrap virtual network, which employs a bootstrap control architecture. The
bootstrap virtual network enables communication at startup time, and provides
other facilities during the operation of the system. One such facility could be the
DPE used for dynamic virtual network creation, and this arrangement is assumed
in the following discussion. Section 3.4.2 considers the bootstrap virtual network
in more detail.

The use of a DPE (in the bootstrap virtual network) does not mean that
all control architectures have to be implemented by means of a DPE, or even
be aware of the existence of a DPE. Indeed, a major strength of the approach
presented here is that a conventional control architecture (e.g. an ATM Forum
UNI/NNI compliant control architecture), can be instantiated in, and confined to
its own virtual network. On the other hand, new control architectures are being
developed that can make use of the DPE facilities or can even be implemented
in a DPE environment [Lazar95, Rooney97a, van der Merwe97a]. In such cases
a DPE will be required, and can be provided by means of the bootstrap virtual
network. The combination of bootstrap virtual network and DPE might also lead
to some simplifications in a control architecture. For example, a particular control
architecture might not implement its own bootstrapping procedures, but instead
rely on the bootstrap virtual network to provide such services. The VideoMan
control architecture presented in Chapter 6 implements a very simple addressing
and routing scheme for the video endpoints that it manipulates, but relies entirely
on the bootstrap virtual network and DPE to facilitate communication between
its components.

An open architecture such as the one presented in this chapter not only creates
new opportunities to exploit in a multi-service network, but is also vulnerable to

new forms of abuse. Section 3.4.3 considers some of the security issues involved
with an OSSA. '

3.4.1 Creating a Virtual Network

This section describes the system services required for the on-demand creation of
virtual networks. Figure 3.4 shows the interaction between the services that are
involved in this process.

The Divider Server encapsulates the Prospero Switch Divider Controller
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presented in Section 3.3. The Divider Server informs a Trader service about its
existence as well as its switch capacity. (Interaction (1) in the Figure.) ‘As ex-
plained in Section 2.1.2, trading is the standard way of matching service providers
and consumers in a DPE [APM93]. The Divider Server exports Management in-
terfaces which allow the creation and destruction of switchlets. When a switchlet
is created, the Divider Server exports an Ariel switch control interface.

In order to create a virtual network, a Network Builder service is provided
with the “specification” of the desired network. The network is specified in terms
that hitherto could only be contemplated during the network design phase, and
could only with great difficulty be changed after network equipment had been

control architecture)
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Figure 3.4: Dynamic virtual network services
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Or it could be as simple as a request to create “A cheap network between A
and B”.

The network specification could be the output of another service, or be pro-
vided by a human being.

With reference to Figure 3.4 the creation of a virtual network can be sum-
marised with the following steps:

1. At startup the Divider Server registers with the Trader its configuration
and capacity. This process is repeated whenever any of these capabilities
change.

2. The Network Builder, on receipt of a virtual network specification, consults
the Trader to obtain interface references to all Divider Servers which satisfy
the criteria of the request.

3. The Network Builder invokes appropriate methods on the Divider Server(s)
to create the switchlets and resulting virtual network.

These interactions are described in more detail in the remainder of this section.

The Network Builder has knowledge about existing virtual networks, and co-
ordinates the creation of virtual networks so that, for example, the address space
allocated to two adjacent switchlets in the same virtual network overlaps. When
requested to create a virtual network, the Network Builder contacts the Trader
and asks for all switches with the required capabilities and capacity according
to the supplied network specification. The result of the query, invocation (2) in
Figure 3.4, is a list of interface references to Divider Servers matching the criteria.

Using the supplied network specification together with topology information
obtained from some topology service (which is not discussed in detail here) the
Network Builder determines which switches should form part of the virtual net-
work. The Network Builder then invokes the required operations on appropriate
Divider Servers to create the switchlets, invocation(s) (3) in Figure 3.4.

Two possibilities exist in terms of the type of the control architecture which
will be instantiated on a newly created virtual network:

e A predefined control architecture from a well known set can be started up
when the virtual network is created. An example would be the creation of an
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Figure 3.5: Creating a virtual network of predefined type

ATM Forum UNI/NNI compliant virtual network. In DPE terminology this
would be called a traded typed virtual network. In this case the appropriate
software entities will be started up by the Network Builder as soon as the
virtual network has been created. Figure 3.5 depicts this process.

e Alternatively, is is possible to create a virtual network without a control
architecture. In this case the control architecture is supplied or “filled
in” by the entity that requested its creation. This would be called an
anytype virtual network in DPE terms. In this case the Network Builder
will not start up the control architecture, but rather will return an interface
reference for each switchlet to the entity that requested creation of the
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Figure 3.6: Creating an anytype virtual network

virtual network. This entity may itself be the control architecture which will
exert control on the newly created virtual network. This is the case depicted
in Figure 3.6. Since interaction with the switchlet interface involves the
services of the DPE, these control architectures will normally be required
to be DPE aware.

In this manner, control architectures of arbitrary functionality can be de-
ployed in the network. One type of control architecture which only makes
sense in an OSSA environment is a service specific control architecture. A
service specific control architecture exploits application knowledge to pro-
vide a more efficient service. A service specific control architecture in the
OSSA will typically be activated, together with a virtual network, only
for the time during which the service is required. Service specific control
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architectures are considered in detail in Chapter 6.

Once a virtual network has been created using one of the methods described
above, it performs its own initialisation, bootstrapping and finally commences
normal operation. All its data transfer operations are confined to its “own”
switchlets and virtual network. Note that in the case of a conventional control
architecture, with its own bootstrap procedure, the operations of the control
architecture can be truly confined to its virtual network. This would normally
be the case for a traded typed virtual network. The situation is different for
a traded anytype virtual network, where the control architecture uses facilities

‘provided by the bootstrap virtual network, or relies on the DPE in the bootstrap

virtual network for its communication.*This is an important issue in terms of
the resources, both network and processing, which have to be allocated to the
bootstrap virtual network.

Following the creation of a switchlet, the Divider Server must update the
available capacity advertised in its Trader entry, or possibly remove its entry
altogether if it has insufficient capacity to permit creation of a new switchlet.

When the time period for which a virtual network has been in operation
reaches the allocated or requested time negotiated with the Network Builder at
creation time, its resources are released. This requires each switchlet’s resources
to be released and the Divider Server can then update its Trader entry. Alter-
natively, if an undefined time period is required, the control architecture will be
responsible for periodic “keep alive” requests to the Network Builder to keep the
virtual network intact.

As mentioned above, the Network Builder keeps track of all current virtual
networks in the system. The Network Builder is also the only entity which is
allowed to create and destroy switchlets. It does so by means of appropriate
invocations on the Divider Server. This allows the Network Builder to perform
garbage collection on virtual networks for which the control architecture malfunc-
tions. Because users are allowed to supply their own control architectures, this
is an important function which ensures the integrity of the network as a whole.

In the above discussion, the question of how potential users of the new virtual
network get to know about its existence has not been considered. It is assumed
that a virtual network is created in response to a request by potential users, or
that potential users will be able to obtain this information through some external
mechanism.
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The following section explores the role of the bootstrap virtual network in
more detail.

3.4.2 The Bootstrap Virtual Network

The interaction between OSSA components, as described in the previous section,
requires some communication infrastructure. The easiest way to solve this need is
by designating a default switchlet in each physical switch to be part of a Bootstrap
Virtual Network. This bootstrap virtual network implements a Bootstrap Control
Architecture, the combination of which provides the platform for the required
communication infrastructure, which can in turn be catered for through a DPE
or by some other means.

Note that the bootstrapping problem is present in all ATM (and other) net-
works, and is not unique to the environment described in this dissertation. By
means of the bootstrap virtual network, the bootstrapping facility has, however,
been generalised into something that can provide more sophisticated services.
For example, in addition to providing a means of managing virtual networks, the
bootstrap virtual network provides a set of generic network services which can be
used by any control architecture which has no compelling reason to implement
its own. For example, a topology discovery service is provided which can be used
by control architectures which do not implement their own topology discovery
mechanisms.

Because of the way in which network control is opened up by the OSSA
environment, the network can potentially be subjected to new forms of abuse and
intrusion. Specifically, because of the dependence of other control architectures
on the bootstrap virtual network and control architecture, and because it provides
the basis for the management of virtual networks, the bootstrap virtual network
has to provide a number of security functions to ensure the integrity of virtual
networks. Security in the bootstrap network will in fact be indirectly relied upon
by any security mechanisms provided in any other virtual network or control
architecture. Some of the security issues involved with the OSSA are considered
in the next section. 4

In addition, the bootstrap virtual network and control architecture has to
be “switchlet aware”, in that it must start up using a default switchlet while
at the same time allowing switchlet allocation for other virtual networks to be
performed. Although it is possible to design and build a special control archi-
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tecture to fulfill these requirements, a more general purpose control architecture
will suffice. Indeed, in the proof of concept implementation presented in Chap-
ter 4, an existing IP-over-ATM network was used as bootstrap virtual network.
This arrangement was not architecturally clean, because the IP network was not
“switchlet aware”, and consequently required the pre-allocation of resources in
physical switches. On the other hand, the use of a ubiquitous protocol such as
IP in the bootstrap virtual network has proved very useful. However, because
of its reliance on the very heavyweight ATM Forum control architectures, the
Internet Engineering Task Force (IETF) IP-over-ATM mechanism [Laubach94]
is not considered an appropriate solution. As far as security is concerned, an
IP-based bootstrap virtual network has the useful side effect that securing the
bootstrap network is equivalent to securing IP. This problem is receiving consid-
erable attention in the IP community!!.”

For these reasons, the use of IP switching [Ipsilon96] as the control architecture
in the bootstrap virtual network is an attractive alternative. In the IP switching
approach, no conventional ATM control mechanisms are used. Instead, the data
transfer capabilities of ATM in combination with IP and a very simple hop-by-
hop control protocol are used to realize an IP network. IP switching is discussed
in more detail in Chapter 7.

3.4.3 OSSA Security Issues

A significant part of this dissertation motivates the need and usefulness of an open
environment like the OSSA. While there appear to be compelling reasons to have
such an open architecture, the openness inevitably leads to new possibilities of
abuse. A thorough analysis of the security implications of the OSSA is beyond the
scope of the dissertation, but this section briefly considers some security issues.

Possible security violations in the OSSA include the following scenarios:

e Resources allocated to one switchlet might accidentally be made available
to another control architecture through a different switchlet.

e A control architecture in possession of a valid switchlet might make invo-
cations on its switchlet that adversely effect other switchlets and control
architectures.

11f the security provided by IP is not adequate, a more secure bootstrap control architecture
can be used.
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A denial-of-service attack might be launched against the Network Builder
or against a Divider Server.

e A malicious “control architecture” might gain access to the control interface
of another control architecture and disrupt connections on that- switchlet,
or establish connections unknown to the legitimate control architecture.

e An attacker might gain access to the Network Builder service and cause the
release of all resources thereby destroying all virtual networks.

e An impostor might request the creation of a virtual network on behalf of
someone else.

e A control architecture can accidentally or intentionally niodify parameters
such that a different virtual network is destroyed.

The first two items on the list would be the result of a defective Divider Server
implementation and, although extremely important, are not really security is-
sues. The Divider Server has responsibility to ensure that no control architecture
makes invocations that might influence resources other than those allocated to
its switchlets. '

A denial-of-service attack against a Divider Server might take the form of a
malicious control architecture trying to swamp its Ariel interface with requests,
thereby preventing other control architectures from making timely invocations.
Such an attack can be mitigated if processing resources are also partitioned, for
example by using the Nemesis operating system [Leslie96] (see Section 7.5). Other
types of denial-of-service attacks might be more difficult to deal with, but these
are found in most networking systems and are not specific to the OSSA.

All the other listed violations could be catered for by providing appropriate
authentication, data integrity and access control mechanisms. Much of this func-
tionality will be provided by a CORBA compliant DPE which implements the
CORBA security specification [OMG95a].

In the OSSA, any user can create a virtual network and in so doing enter the
role of network provider or service provider. Role based access control [Hayton96]
would therefore be the appropriate form of access control to use in an OSSA. Role
based access control allows a formal mechanism for defining the roles entities are
allowed to play in a system as well as the interaction between roles. For example,
the requirements for entering a role can be specified, as well as how entities are
elected to roles and how such election can later be revoked.
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Another security issue is that of securing communication between the Divider
and the physical switch. The security requirements of this communication will
very much depend on the exact implementation of switch and Divider combi-
nation, as well as the intended use thereof. For example, securing a number of
fairly dumb switches with a single control platform which form part of a residen-
tial ATM network is very different from (physically) securing a large switch in a
national backbone network.

The security aspects of the OSSA will not be considered in any more detail
in this dissertation.

3.5 Summary

In this chapter the existence of several approaches to control in ATM networks
has been identified. It was observed that these approaches come from different
starting points and provide different functionality, and that the notion of a single
unifying control architecture probably does not exist. This led to the require-
ment for an environment that will allow any subset of existing and new control
architectures to be operational on the same switch and network.

Such an environment was proposed in the form of an Open Service Support
Architecture. A basic building block of the OSSA is the concept of an ATM
switchlet. Switchlets provide a mechanism whereby a subset of the resources on
a physical ATM switch is presented to a control architecture to manipulate as
it sees fit. A switchlet exports to the control architecture an Ariel open switch
control interface. The Prospero Switch Divider Controller controls the switch
by means of an Ariel interface on the physical switch, and polices invocations
made by the different control architectures simultaneously operational through
the switchlet interfaces.

Since the partitioning of switch resources is done at a very low level, very
few restrictions are imposed on control architectures implemented in the switch-
let environment. This allows both conventional control architectures based on
message passing protocols, as well as control architectures implemented using
DPE methodologies, to be accommodated. As a consequence of this flexibility,
it was shown how the switchlet concept can be used to introduce new control
architectures into an existing network in a flexible and non-disruptive manner.

The switchlet concept can be used to create virtual ATM networks of arbitrary
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topology on-demand. Each virtual network can be controlled by an arbitrary con-
trol architecture which allows a network operator to provide a virtual network
service. This means that virtual networks become a service which can be offered
and traded like any other service in a DPE environment. The control archi-
tecture instantiated in these virtual networks can be known a priori or can be
supplied by the entity requesting network creation. This allows users to supply
and manipulate their own control architectures for a virtual network.
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Chapter 4

An Implementation of the OSSA

The feasibility of the approach presented in this thesis is critically dependent on
the ability to implement the OSSA on real ATM switches and in a real ATM
network. For this reason a proof of concept implementation was undertaken in
the experimental environment described in Chapter 2. The implementation is
presented in this chapter in two main parts: the first focusing on the Prospero
Switch Divider Controller and associated Ariel Open Switch Control interface,
and the second on the implementation of the Virtual Network Service.

4.1 Switch Divider Controller

The Prospero Switch Divider Controller divides the resources on an ATM switch
into multiple switchlets, each of which encapsulates a subset of the physical switch
resources. A switchlet is then presented to a control entity by means of an Ariel
Open Switch Control Interface; the control architecture can control the switchlet
in any way it sees fit. Prospero polices invocations made by the different control
entities, and passes only compliant requests on to the physical switch!. This
arrangement is again depicted in Figure 4.1. (Figure 4.1 is a modified version of
Figure 3.2, and shows some of the implementation details.)

!A compliant request is one which will only affect resources allocated to the switchlet in
question.
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Figure 4.1: Prospero and Ariel implementation
4.1.1 Experimental Environment and Implementation

A subset of the experimental environment described in Chapter 2 was used for
this implementation. In particular, the experimental environment consisted of a
Fore Systems ASX-100 switch, and several HP-700 series workstations equipped
with Fore Systems HPA-200 ATM adapters. As indicated in Section 2.2, the
ASX-100 was used because of the availability of low level control information for
the switch fabric, which enabled the implementation of several servers on the
switch. The Sparc-2 control processor on the ASX-100 also provides a “general
purpose” platform complete with a native ATM stack and IP-over-ATM facilities.
These capabilities were fully exploited in some of the implementations. The
DIMMA environment described in Section 2.2 was the DPE used in some of the
implementations. In all such cases the ARPC over UDP protocol stack was used.

Figure 4.1 depicts Prospero with identical control interfaces for the switchlet
control interface and the physical switch control interface. While the function-
ality provided by both Ariel interfaces will be the same, the technology used to
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implement them might be different?. For this reason a distinction will be made in
the rest of this chapter between the switch Ariel interface, which connects Pros-
pero to the physical switch, and the switchlet Ariel interface, which is presented
by a switchlet to its control architecture. This distinction is also indicated in
Figure 4.1.

Figure 4.1 also shows the Management interface used by the Network Builder
to create switchlets and switchlet Ariel interfaces. This interface and the Virtual
Network Service implementation are considered in detail in Section 4.2.

The core of the Prospero implementation maintains an internal view of the
switch and switchlet resources, and uses a single abstract internal interface to
the physical switch. This abstract interface can be mapped onto different switch
Ariel interface implementations, any one of which can be operational at any time.
This means that Prospero can communicate with the switch by means of the
Ariel interface that the switch is capable of supporting. Having the switch dictate
which Ariel implementation to use means that Prospero can control switches of
different scale and complexity.

Similarly, on the switchlet side of Prospero, different implementations of the
switchlet Ariel interface exist, and can be mapped onto the internal switchlet
implementation. Several of the switchlet Ariel interfaces, of different implemen-
tations, can be operational at the same time. This means that Prospero can
instantiate a switchlet Ariel implementation to match the requirements or capa-
bilities of a particular control architecture.

In the current implemertation, the types and number of switchlet interfaces,
as well as the required switch implementation to use, are specified from the
command line when the Divider Server is instantiated. Unless stated otherwise,
all implementations are in C++. In the implementation presented here, the only
resources that are divided and policed by Prospero are ports and VPI/VCI space.
Each switchlet invocation is checked to make sure that the specified port and
VPI/VCI (if relevant) referenced in the request belongs to the switchlet, i.e. that
the request is compliant. In Chapter 5, an extension of this implementation is
presented which also polices bandwidth usage.

A subset of the Configuration and Connections interface methods described
in Section 3.2.1 was implemented. In particular all implementations presented

2Note again that Ariel specifies the required functionality, rather than a protocol or imple-
mentation.
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below support the following functions:

e getPortInfoList - Provides a list of the switch/switchlet capabilities in a
per port list. Information included in the reply is the VPI and VCI ranges
available.

e getCurrentVciList - A list of all the current VCIs on a switch, or within a
switchlet’s allocated address space, is provided by this method.

e createVci - Allows a VCI to be created in the switchlet and physical switch.

e deleteVci - Allows the liberation of a previously created VCI.

These methods provide a client with the means to find out what the capabil-
ities and characteristics of the switch are, and then to perform basic connection
creation and deletion functions. More functionality than this was not- required
for the evaluation presented here. '

Two switchlet Ariel implementations were developed. The first provides a DPE
type Ariel interface, while the second would enable an IP switching controller to
control a switchlet: ‘

e Dariel: This is a DIMMA based implementation of the Ariel interface. It
provides the methods listed above to enable switch control, and relies on
the DPE for message passing facilities.

e GSMP: This is a server side implementation of the General Switch Man-
agement Protocol from Ipsilon [Newman96a]. GSMP is a message passing

protocol with well-defined message formats which operates over AAL5 with
LLC/SNAP encapsulation3.

To facilitate comparison between different implementation mechanisms, sev-
eral switch Ariel implementations were made. One of these implementations,
based on the Simple Network Management Protocol (SNMP), is able to utilise
the SNMP service which many ATM switches provide. All the Fore Systems
~ switches available in the experimental environment could be controlled by means
of this implementation.

3Since only a subset of the Ariel interfaces and methods were implemented for this compari-
son, the standard GSMP interface provided adequate functionality. In general however, GSMP
has to be extended to overcome its very basic QoS capabilities.
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The other switch Ariel implementations all required an Ariel service to be run
on the switch, and were therefore limited to the Fore Systems ASX-100 switch.
In all these cases, running the server on the switch did not require disabling
the existing signalling capabilities on the switch (i.e. SPANS and UNI). This was
effected by allocating a block of permanent virtual circuits (PVCs) as placeholders
on the switch, to prevent them being used by SPANS/UNI, and then having the
Ariel server “clean up” this space in the hardware VPI and VCI tables on the
switch. Because of the way in which VPI/VCI space is allocated on the switch,
this is a completely safe (if not architecturally clean) way of allowing several
control/signalling entities to be operational simultaneously.

The following switch Ariel implementations were developed:

e SNMP: This implementation uses an SNMP client in Prospero to commu-

~ nicate with an SNMP daemon running on the switch to perform control
operations. This approach has the advantage that no special server needs
to be run on the switch. Even switches that do not provide any form of open
control interface can be integrated into the OSSA environment in this way.
Since SNMP was designed to operate on management rather than control
time scales, however, there is a heavy performance penalty to be paid for
this ease of integration. Because of this, the performance of the SNMP
implementation is not really of interest. The implementation was simply
built around a Scotty? SNMP agent. This implementation will therefore
not be considered in the comparison and discussion below.

e Light: This is a locally designed message passing protocol similar in nature
and functionality to GSMP. (The Light implementation was developed in
the C language.) A client, which is part of Prospero, exchanges messages
with an extremely simple server on the switch over a native ATM stack.
AAL3/4 or AALS can be used for these exchanges, and since the ASX-100
provides hardware support for AAL3/4, this was used in the evaluation.
This implementation can use a PVC on a well known VPI/VCI pair, but
since SPANS signalling capability was available in the bootstrap virtual
network, this was used to establish the ATM connection between the Ariel
client and server.

e GSMP: This implementation consists of a GSMP client in Prospero and
a GSMP server on the switch. Communication is via a PVC using a na-

4Scotty is a Tcl/TK implementation with amongst other things, extensions for SNMP
[Schoenwaelder].
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tive ATM stack and AAL5 in compliance with the GSMP specification
[Newman96a).

e Dariel: In this case, a DIMMA Ariel server was implemented on the switch,
with a DIMMA Ariel client as part of Prospero. Since the DIMMA imple-
mentation had no ATM capable protocol stack at the time, the IP-over-
ATM capability of the switch control processor was exploited for these
experiments.

e Prospero: Recognising that the control processor on the target Fore ASX-
100 switch is essentially a “general purpose” workstation, an implementa-
tion of Prospero was made on the switch. This implementation allows a
comparison of the cost of control on the switch with that of moving con-
trol out of the switch. Again, communication is by means of IP-over-ATM,
this time between a Prospero server on the switch and an Ariel client on a,
workstation.

Figure 4.2 shows the position of these different implementations within Pros-
pero.

Note that with the set of switch and switchlet Ariel interfaces provided, it is
possible to stack more than one Prospero implementation on top of another. For
example, a Prospero server can run on the switch with a Prospero workstation
implementation, using its Dariel switch control interface to communicate with
the switchlet Ariel interface exported from the switch. This means that switchlet
resources can in turn be partitioned by another Prospero Divider Server.

The switchlet Ariel servers and the switch Ariel clients, are integrated with the
core Prospero mechanisms into a single executable. Standalone versions of all the
clients were also implemented for the evaluation reported in the next section.

4.1.2 Evaluation and Results

The efficiency with which control architectures can perform functions such as
setting up and tearing down connections is crucial to the success of ATM. This is
equally true when these control architectures are simultaneously operating in an
OSSA environment. The efficiency of control architectures in the OSSA directly
depends on the efficiency of the Ariel open switch control interface, and especially
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implementations (Dariel/GSMP)

Four different switch Ariel implementations
(SNMP/Light/GSMP/Dariel)
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Figure 4.2: Different Ariel and Prospero implementations: (I) Divider Server on
external processor, (II) Divider Server on onboard processor

on the additional cost that control operations have to incur by passing through
the Prospero Switch Divider Controller.

This section addresses these issues, by evaluating the various Ariel and Pros-
pero implementations. The tests presented below were performed on a lightly
loaded network and workstations.
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4.1.2.1 Efficiency of Ariel
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Figure 4.3: Setup to evaluate Ariel implementations

A simple test was performed to evaluate the cost of opening up switch control
by means of the Ariel switch control interface. The efficiency of the different Ariel
implementations described in the previous section was compared with performing
similar operations directly on the switch. In all cases the relevant server was
running on the ASX-100 switch, while the stand alone version of the client was
running on an HP 9000/725 50 workstation running HPUX version A.09.05, which
was diréctly connected to the switch. This setup is depicted in Figure 4.3.

The test involved the client requesting the switch configuration from the
server, followed by 1000 timed invocations. Each timed invocation involved cre-
ating and deleting a VC®. Requests from the client side were issued from within a
tight loop, with no delay between requests. Since all servers on the switch shared
the same library interfacing with the low level switch hardware®, this test was
essentially an evaluation of the efficiency of the communication channel used, as
well as the efficiency of different server implementations.

The time it takes a process on the switch to perform the create/delete invo-
cation pair represents a lower bound on the expected invocation times. In this

5Both “create” and “delete” were performed as an invocation pair, as that meant that the
same VCI value could be used for the complete test run. In this manner the limited VCI space
available did not hamper the test.
_ ®The code for this library was derived from the ASX-100 driver in the public domain Vendor
Independent Network Control Entity (VINCE) version 1.1 [VINCE]. The library provides the
means for a process running on the ASX-100 to map the switch fabric control interface into
memory, and to then perform various control functions on the switch fabric.

o8



Operation Time (ms)
Local Setup/Teardown 0.14
Two Null RPCs 7.6

Table 4.1: Local operation and Null RPC: Average time for 1000 operations

case, the invocation amounts to little more than a number of local function calls.
The average time (over 1000 invocations) to perform the create/delete invoca-
tion pair for such a process was measured as 0.14 ms. The time taken for a null
RPC between the workstation and the switch was measured to be 3.8 ms. These
times are shown in Table 4.1 and the average invocation times for connection
setup/teardown by means of the variou§“Ariel implementations are presented in
Table 4.2. Note that the time for two null RPCs is given to allow easier compar-
ison with the two invocations on the Ariel interface.

Ariel Setup/Teardown pair | Time (ms)
Light 45
GSMP’ 8.9
Dariel 8.1
Onboard Prospero 8.3

Table 4.2: Ariel evaluation: Average time for 1000 operations

There is c‘learly a significant performance penalty to be paid for opening up
switch control, and for performing control from an external workstation. Invoking
control operations from an external workstation is between 30 and 60 times slower
than the time required to do the same operations directly on the switch.

The significant difference between the Light and GSMP implementations is
somewhat surprising since both are essentially message passing implementations.
This difference is mainly due to the fact that the Light implementation uses
AAL3/4, for which the switch has hardware support, whereas GSMP uses AAL5
which is implemented in software on the switch. As a test, the GSMP protocol
was run over AAL3/4 which improved the average time for an invocation pair to
6.8 ms. The fact that the GSMP implementation is slightly more complicated

"GSMP specifies an adjacency protocol which detects when either the client or the server is
restarted. This process involves the period exchange of messages, and the adjacency protocol
was therefore disabled for the duration of the timed invocations.
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due to the more robust GSMP specification, could account for the remaining |
discrepancy.

The average time for the two DIMMA implementations (Dariel and Prospero)
is almost identical, which indicates that the policing mechanisms employed by
the Prospero Divider impose a negligible overhead. Given the trivial nature of
this policing in the implementation presented here, this is to be expected.

Comparing the Light implementation with the two DIMMA implementations,
there is clearly a price to be paid for the ease of use of a general purpose DPE.
The DIMMA implementations are nearly twice as expensive as the Light imple-
mentation.

Clearly, the major contribution to the cost of setting up and tearing down
a connection is the communication cost. Twice the cost of a null RPC is only
slightly less than the cost of a DIMMA invocation pair. Communication is there-
fore the part that needs to be optimised if a more efficient implementation is
required. At the same time, the setting up and tearing down operations that
were performed are the simplest that can be imagined in an ATM environment.
If more complex control functions such as routing and CAC are to be performed,
then the advantage of an external processor, which might be significantly more
powerful than the onboard processor, might cancel the communication overhead.

4.1.2.2 The Cost of Using Prospero

The cost of using Prospero to partition a switch, and to police the usage of the
resulting switchlets, is crucial to the feasibility of the OSSA approach. A number
of tests were therefore performed to evaluate the cost of having Prospero in the
control path. As before, the average time for 1000 VC create and delete pairs was
measured. The different test setups are depicted in Figure 4.4 and are described
below:

e In the first test, Prospero was run on the physical switch, with a Dariel
client on an HP 9000/725 50 workstation directly connected to the switch,
as shown in Figure 4.4 (I). (The result of this test was also presented in the
previous section but is repeated here for clarity.) The average time for an

| invocation pair was 8.3 ms.

e Prospero was then run on the workstation with a Light Ariel server running
on the switch, and the Dariel client running on the same workstation as
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Figure 4.4: Different configurations to evaluate Prospero

Prospero. This is depicted in Figure 4.4 (IT), and the average time for an
invocation pair was 10.4 ms. The time for a same machine null RPC on
this workstation was measured to be 2.4 ms®.

e Third, the above test was repeated, but this time the Dariel client was run
on a different HP workstation (an HP 9000/725 100) connected to the same
switch, Figure 4.4 (III). (Note that the figure shows the logical connectiv-
ity between OSSA components, and the not the physical connectivity of
the workstations to the switch.) The time for a null RPC on this faster
workstation was measured as 1.2 ms. The time for a null RPC between the
machine running the Dariel client, and the machine running Prospero was
measured to be 2.3 ms. The average time for the create/delete invocation
pair was 10.1 ms.

e Finally, the above test was repeated but with Prospero presenting a GSMP
Ariel interface, and running a GSMP client on the second workstation. The
average time for an invocation pair was 7.7 ms.

The results described above are also presented in short form in Tables 4.3
and 4.4.

8Note that DIMMA does not provide for same machine optimisation, e.g. shared memory,
so invocations between the Dariel client and Prospero, were processed by the kernel IP protocol
engine.
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Null RPC Time (ms)
Same machine (Dariel client workstation) 1.2
Same machine (Prospero workstation) 2.4
Inter machine 2.3

Table 4.3: Prospero evaluation: Average time for 1000 null RPCs

Configuration Time (ms)
Prospero on switch 8.3
Prospero and Dariel client on same workstation 10.4
Prospero and Dariel client on different workstations 10.1
Prospero and GSMP client on different workstations 7.7

Table 4.4: Prospero evaluation: Average time for 1000 operations

Again it is clear that the major cost in performing these invocations lies in
the communication overhead. For example, for the third test, the measured
time of 10.1 ms can almost be accounted for by adding up the cost for a Light
invocation pair and two (null) RPC calls. The time for a Light invocation pair,
according to Table 4.2, is 4.5 ms. Add to this the time for two null RPC calls
between the two workstations from Table 4.3 (2 x 2.3 ms = 4.6 ms) to give a
total of 9.1 ms.

Running both Prospero and the Dariel client on the same machine is slightly
slower than the test with the Dariel client on a separate machine. This can be
attributed to the fact that an inter machine null RPC is slightly faster than a
null RPC on the machine which ran both processes.

Interestingly, the average time for the GSMP client operating through Pros-
pero is actually less than the average time for the case where the GSMP client
communicated directly with a GSMP server on the switch. (Compare Tables 4.2
and 4.4.) This can be directly attributed to the hardware support for AAL5
processing on the workstation, in contrast to the switch where AAL5 processing
was done in software.

The results also seem to indicate that a general purpose RPC mechanism,
such as that provided by DIMMA, is too heavyweight for the relatively siinple
interaction between an Ariel client and server. It should be noted, however, that
the null RPC times for DIMMA presented above are not necessarily the best
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that can be achieyed with a CORBA implementation. For example, performance
figures for omniORB [ORL97] report sub-millisecond null RPC times on a variety
of platforms. '

4.1.3 Conclusion

The results presented above were obtained from a number of implementations
none of which was optimised to any great extent. Although optimisation would
clearly be possible, the results appear to be in the same range as those reported
elsewhere. For example in [Veeraraghavan95] a figure of between 4 and 10 ms is
assumed a reasonable time to perform an operation roughly equivalent to those
described above®. The results also corﬂpare favourably with figures quoted in
[Shumate94] for a GSMP implementation to control an AN/2 switch, where a fig-
ure of 14 ms for the GSMP equivalent message for creating a VC is given. Finally,
the best results for a GSMP invocation through Prospero are about three times
slower than results published by the inventors of GSMP (without the Divider
overhead) [Newman97b]. While this indicates significant room for improvement,
the performance seems reasonable for a proof of concept implementation with
limited AALS hardware support.

The results presented in this section seem quite promising and indicate that:

e Moving control out of the switch is not prohibitively expensive in terms of
performance.

e The advantage of using a general purpose DPE to provide the control com-
munications infrastructure might outweigh its cost when compared to mes-
sage passing techniques. This will, however, depend on the availability of
more efficient implementations.

e The low overhead incurred by having Prospero in the control path to the
switch means that the approach presented in this dissertation is a practical
way to accommodate several control architectures on the same switch.

e The presented approach is very flexible in that Prospero can either be im-
plemented external to the switch, or on the onboard control processor.
This means the approach is inherently scalable because both simple cheap

9The quoted figure is for “Broadband Channel Control”, which performs connection accep-
tance control, the reservation of switch resources and the setting up of VCI/VPI entries.
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switches and sophisticated expensive switches can be integrated into the
OSSA. The performance/cost tradeoff, i.e. simple switches with slower ex-
ternal Prospero versus more expensive switches with an onboard imple-
mentation, can therefore be exploited according to the needs of a particular
environment.

The implementations presented in this section show that the switchlet ap-
proach to open network control is feasible. The next section completes the pic-
ture by presenting an implementation of all the OSSA components in a Virtual
Network Service implementation.

4.2 Virtual Network Service

As indicated in Section 3.4, switches are nodes within networks, and the division
of switch resources into switchlets enables the creation of virtual networks. Each
virtual network implements a different instance of a control architecture. If the
creation of switchlets and virtual networks is automated, virtual networks can be
created dynamically. This section describes an implementation of such a dynamic
networking environment.

Section 3.4.2 mentioned that the use of IP in the bootstrap virtual network has
some attractive properties, such as the availability of existing IP based services.
One of the services that the bootstrap virtual network can supply is that of
a DPE. Such a DPE (in the form of DIMMA) is used in the implementation
presented below. The use of a DPE is not a requirement, and a solution based
on well-defined messages and message passing can be engineered easily enough
(although undoubtedly with significantly more effort).

The Ariel and Prospero implementations presented in the previous section
made use of a single Fore ASX-100 switch. For the Dynamic Virtual Network
implementation, the set of experimental switches was extended to include two
Fore ASX-200 switches. SPANS and UNI Signalling available on the Fore Sys-
tems Switches were used as the bootstrap control architecture, with an IP-over-
ATM implementation providing the communications requirements of DIMMA.
The VPI/VCI space available to this bootstrap control architecture was limited,
with the remainder of the VPI/VCI spéce being made available to a Prospero
Divider Controller implementation using the previously mentioned placeholder
PVCs. This arrangement is illustrated in Figure 4.5. The SNMP Ariel implemen-
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tation was used to communicate with the switches because it allowed all three
Fore Systems switches to be controlled. In this case, control was exercised by
means of SNMP, and the PVC placeholders were used as follows: On creating a
new VC, appropriate in and out VCI placeholders were removed before the new
VC was created. The reverse sequence of operations was performed when such a
VC was later removed. This meant that within the VCI space set aside for Pros-
pero, valid PVCs were in place almost continuously. This, in turn, prevented the
control architectures resident on the switch from using VClIs in this range.

Control Processor

switch ) [nvocation on switch

Invocation on switchlet

Switchlet Control
Interface

Management Interface

Figure 4.5: Prospero and the Bootstrap Control Architecture
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4.2.1 Implementation

Figure 4.5 shows three switchlet Ariel interfaces as well as the Management in-
terface by which switchlets and control interfaces are created. The Management
interface consist of the following interfaces'®:

e Dynamic: This interface has two methods which allow the dynamic creation
and destruction of switchlets. The current implementation does not allow
the characteristics of a switchlet to be specified; instead a limited number
of “default” switchlets can be created. A side effect of creating a switchlet
is that the VCI space allocated to the switchlet will be “cleaned up”, i.e. all
connections falling in the range allocated to the switchlet are released, so
that the VCI space is presented to the control architecture in a known state.
Clearing the VCI space in this way dominates the time it takes to create
a switchlet in the proof of concept implementation: To create a switchlet
with 7 ports and 1 VPI with 40 VCIs per port takes in the order of 40 ms.

e Configure: Allows a network administrator to find out what the current
configuration of the Divider Server is. For example, a method is provided
to list the number of Dariel and the number of GSMP switchlet interfaces.
In Chapter 5, the implementation of methods that allow bandwidth to be
moved between switchlets (and virtual networks) will be discussed.

The Network Builder implementation is depicted in Figure 4.6. The Network
Builder exports two interfaces, namely Dynamic and Topology. The Dynamic
interface facilitates the manipulation of virtual networks, while the Topology
interface provides topology information to control architectures that do not have
their own topology services. (As indicated in Figure 4.6, these are essentially two
separate functions which could be split into two separate servers.)

A trivial access control mechanism is provided in the current implementation.
A small database is kept of users who are currently allowed to create virtual
networks. This database is updated by the “system administrator”, who also
starts up the Divider Servers and the Network Builder. The database is consulted
by.the Network Builder when a user requests creation of a virtual network!!.

10As is the case for the Ariel interface, the Management interface really consists of a set of -
interfaces.

1This trivial access control mechanism, useful though it is in the current experimental en-
vironment, would be completely inadequate in a commercial implementation. As indicated
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Figure 4.6: Network Builder implementation

The methods provided by the Dynamic and Topology interfaces are as follows:

e Dynamic: This interface allows for the creation and removal of virtual net-
works. In addition it allows the modification of existing (active) virtual
networks:

_— createNamedNetwork: If successful, this method returns a network
reference number to the requester. The network reference number is
unique within a particular Network Builder, and is used as an argu-
ment to subsequent invocations on the Network Builder to identify
the appropriate virtual network. A virtual network created with this
method contains no switchlets, and switchlets have to be added by
appropriate invocations on the methods below.

— getNamedNetwork: A set of switchlets for a predefined virtual network
topology is created, and returned to the caller together with a network
number. This method is for control architectures which cannot make

in Section 3.4.3, role based access control appears to naturally fit the requirements for access
control in this environment.
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use of the facility to add switchlets to their virtual network one at a
time.

— addSwitch: Requests the Network Builder to add a switchlet for a
named switch to a previously created virtual network.

— removeSwitch: Requests the Network Builder to remove a previously
allocated switchlet from a virtual network.

- removeNetwork: Requests the destruction of an entire virtual network.
The Network Builder will remove all switchlets in the virtual network
which have not been removed already.

e Topology - In the current implemenﬁation, topolbgy information is entered

into a topology database which the Network Builder reads at startup time.
(In a real implementation, this static procedure would have to be replaced
with a dynamic topology discovery service.) In the database, switches and
endpoints are identified with a human readable name or string. A switch is
given a system wide unique identifier, while an endpoint is identified within
the network by the switch identifier and switch port to which it is directly
connected. This topological information is made available to control ar-
“chitectures through the methods described below. This information can
be used by control architectures which lack their own topology discovery
services. The implementation of such a control architecture is presented in
Chapter 6. ‘

— getSwitchTopology: Provides complete switch topology information
according to the Network Builder database. A switch topology infor-
mation element consists of a switch identifier, and a list of (remote
switch, local port, remote port).tuples. A sequence of these elements
is returned by the Network Builder.

— getEndpointAddress: Provides a jswitch identifier, port number;, pair,
which together constitute an “endpoint address”.

— getSwitchName: Returns the switch name given a switch identifier.

— getSwitchld: Returns the switch identifier given a switch name.

As indicated in Figure 4.6, the Network Builder maintains an internal
database of the currently active virtual networks. This per virtual network infor-
mation includes the switchlets in each virtual network. This means that a control
architecture can simply invoke the removeNetwork method, upon which the Net-
work Builder will release all resources currently held by the virtual network.
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Chapter 6 will show how this dynamic virtual network environment is used
by a service specific control architecture to create, modify and control a virtual
network based on the requirements of the virtual network users.

4.3 Summary

In this chapter, various implementations of a subset of the Ariel open control in-
terface for both switch and switchlet use were compared with an onboard “closed”
implementation providing the same functionality. As can be expected, control-
ling a switch from an external control processor is significantly slower than the
onboard equivalent. This performance'%énalty is however not prohibitively ex-
pensive, and it is expected that the communications overhead will become less
significant when more complex control functions such as CAC are performed.

The cost of having the Prospero Switch Divider Controller in the control path
was evaluated. In this context, the purpose of Prospero is to police invocations
made by a control architecture on a switchlet Ariel interface. The cost of Prospero
was not significantly more than that of a single switch Ariel interface. Further-
more, depending on the capabilities of the onboard control processor, Prospero
can be implemented either on the switch, or in an external processor.

One of the implemented switchlet Ariel interfaces exports a GSMP interface.
This means that an IP switching controller can be directly integrated into the
OSSA environment. The mechanisms to initiate an IP switching controller, or
indeed any other standard control architecture, have not yet been implemented.

A Virtual Network Service implementation which uses the Prospero and Atriel
building blocks was presented. This completes the set of OSSA components, and
in Chapter 6 it will be shown how a control architecture can make use of this
environment. The control architecture presented in Chapter 6 is OSSA aware
and makes full use of all the OSSA services.

This chapter was the first of two which describes implementation aspects of
the OSSA. Bandwidth management in the OSSA, and an implementation based
on measurement based estimates of effective bandwidth, is described in Chapter 5.
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Chapter 5

Bandwidth Management in the
OSSA

A fundamental goal of the OSSA approach is to provide a subset of switch and
network resources to a control architecture to use as it sees fit. This requires
the existence of effective and efficient resource management mechanisms. One of
the most crucial resources in an ATM network is bandwidth, and this chapter
investigates the use of the effective bandwidth concept as a mechanism to perform
bandwidth management in the OSSA™.

5.1 Introduction

Bandwidth management in the OSSA needs to be considered at different levels of
granularity and on different time scales. Firstly, bandwidth management needs
to be performed at the call or connection level. This process is normally called
connection acceptance control or connection admission control (CAC). CAC deals
with the question of whether, given the current state of the network, a new
connection can be accepted into the network in such a way that its requested QoS
parameters can be satisfied without adversely affecting existing connections?.

1The definition of effective bandwidth presented in Section 5.2 will show that effective band-
width encompass more than just the bandwidth resources of a switch. In particular, the buffer-
ing capabilities of a switch are also taken into account, and effective bandwidth is therefore

_ actually a more general resource management mechanism.

2This definition of CAC is based on a traditional connection oriented ATM environment.
The “CAC” process in IP switching will not quite fit this definition. In IP switching flows are
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Equally important in the OSSA is bandwidth management at the virtual
network level. The first question to be answered in this case is similar to the CAC
problem, namely whether a new virtual network can be created given the current
state of the network, or virtual network acceptance control (VNAC). Bandwidth
allocated to a virtual network can be guaranteed for the duration of its existence
(hard guarantee). Alternatively, a virtual network can be given a statistical or
soft guarantee and ATM’s potential multiplexing gain can be exploited to allow
more virtual networks to be created. This is similar to peak rate allocation versus
effective bandwidth allocation in CAC. A more general concept specific to virtual
networks, is the ability to arbitrarily allocate and reallocate bandwidth resources
in a virtual network environment. Bandwidth management at the virtual network
level normally happens at a slower time scale than that required by CAC.

Bandwidth management is still an active area of research and while several
solutions have been proposed no clear winner has emerged. [Perros96] gives an
overview of recent CAC approaches. Recent developments in an approach based
on estimation of effective bandwidth computed from online measurements have
shown some very promising results [Duffield95, Crosby95b, Lewis97]3. This ap-
proach has the further advantage that it can equally well be applied to both
single connections as well as groups of connections. This feature is particularly
attractive in the OSSA environment where the partitioning of switch resources
into switchlets requires bandwidth management at both the call/connection level
and the virtual network level. Other bandwidth management approaches have
also been extended from connection level CAC [Hyman91], to virtual path and
virtual network levels [Hyman93, Hyman94]. However, these approaches lack the
simplicity and generality offered by the effective bandwidth approach.

A further attractive feature of the measured effective bandwidth approach is
that it enables the network to exploit the multiplexing gain of several multiplexed
data streams. This advantage can be used at all levels of bandwidth management.
For these reasons effective bandwidth estimates based on online measurements
have been investigated for use in the OSSA.

This chapter considers the requirements of bandwidth management in the

switched based on, for example, the duration of the flow or according to some user defined
policy. Simple priority levels are considered sufficient in terms of the quality offered to different
flows.

3Measured effective bandwidth is the subject of a comprehensive research project entitled
“Measure” in which the Computer Laboratory is a partner. This has facilitated access to both
expertise and implementations.
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OSSA environment and describes an implementation based on effective band-
width estimation. Section 5.2 gives a short overview of effective bandwidth es-
timation using online measurements. Section 5.3 considers the requirements of
bandwidth management in the OSSA, and it is shown how effective bandwidth
can be used for this purpose. Section 5.4 presents an implementation of estimat-
ing effective bandwidth in the OSSA environment by using online measurements,
and Section 5.5 shows some results obtained from this implementation. The
chapter ends with a discussion of the results and a summary.

5.2 Effective Bandwidth Estimation Using On-
line Measurements

The concept of effective bandwidth is an attempt to get a handle on the “actual”
or “effective” bandwidth requirements of a connection or a group of connections.
Effective bandwidth is defined informally as the rate at which a buffer should be
emptied in order to keep cell losses due to buffer overflow below a certain bound.
More formally: Given a certain cell arrival process, the effective bandwidth is the
minimum service rate at which a single server queue should be drained to ensure
that the probability of overflow is less than a given level. This section will briefly
present the theory on which this approach is based [Hui88, Kelly96, Lewis96], and
show how effective bandwidth can be estimated based on traffic measurements
[Crosby95b, Crosby96]. It is then shown how this can be used for bandwidth
management within the OSSA.

5.2.1 Theoretical Background

Effective bandwidth is based on Large Deviations Theory, also referred to’as the
theory of rare events. The rare events of interest for effective bandwidth are the
loss of cells due to buffer overflow in an ATM switch. This section presents a
brief derivation of the relevant equations.

Suppose a buffer of size b is emptied at a constant service rate s. (In an
output buffered ATM switch, with a single FIFO buffer, this would correspond
to the buffer size and line rate respectively.) For a given buffer size, a higher
service rate would reduce the cell loss ratio (CLR). Similarly, for a certain service
rate, a bigger buffer size would reduce the CLR. The CLR is thus a function of
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both buffer size and service rate: CLR(b, s). If the arrivals process to the buffer
is approximately stationary and mixing (i.e. has no long range dependence), then
the loss ratio decays exponentially for large buffer sizes [Glynn94]:

o1
lim —log CLR(b, s) ~ —4(s). (6.1)
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Figure 5.1: Empirical loss probability for 18 multiplexed JPEG video sources,
and simple effective bandwidth approximation.

Real switches of course have finite buffer space and real traffic may not satisfy
the stationary and mixing assumptions, but empirical evidence suggest that the
log linear nature of Equation 5.1 holds for practical buffer sizes and real traffic
sources. For example, Figure 5.1 shows the empirical buffer overfiow probability
for 18 multiplexed JPEG video sources. This figure is reproduced from [Lewis97],
and the measurements were taken on a Fairisle switch [Leslie91] by Simon Crosby
of the Computer Laboratory. The figure also shows the simple approximation of
the loss probability by means of a straight line through the origin, according to
Equation 5.1. This approximation can be improved by not having the straight
line bound go through the origin. Indeed such refinements have been proposed
[Crosby96]. The derivation presented here, and the results described in the rest
of the section, use the simple approximation suggested by Equation 5.1.

The decay rate 6 in Equation 5.1 is a function of the service rate s, and
is related to the scaled Cumulant Generating Function (sCGF) of the arrivals
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process [Lewis96]:

8(s) = maz{f : \4(0) < s0}, (5.2)
where A4 is the sCGF of the arrivals process and defined by:
Aa(6) = ILm log E exp(0A,), (5.3)

with A,, the number of cells arriving in an interval of length n.

Equation 5.1 leads to the simple effective bandwidth approximation:

CLR(b,s) = e, _ (5.4)

Reiterating the definition for effective bandwidth using the symbols intro-
duced above, “Given a buffer of size b and an arrivals process A,, what is the
minimum service rate s.sy required to guarantee the probability of overflow is

less that some target cell loss ratio TC LR”, or more formally using Equation 5.4,

8¢7(b, TCLR) = min{s : e *®)* < TCLR}, (5.5)
leading to,
A(6,
5up7 (b TCLR) = 20ers). (5.6)
Ocy s
with 0.5y = —log(TCLR)/b. The function A(f)/6 is known as the effective

bandwidth function.

If the arrivals A,, are weakly dependent, the SCGF can be approximated by
a finite-time cumulant generating function:

A4(6) % X (6) = o log B exp(0Ar), (5.7)

for T sufficiently large. The value of the expectaﬁion can then be estimated by
breaking the arrival data into blocks of length T" and averaging over them, which
gives the following estimation of the sCGF:

Aa(0) = T log% Z exp(6Xy), (5;8)

where X}, are the cell arrivals in the k%" block. The estimated effective bandwidth
is then simply: ‘

N2
307(5, TCLR) = i)—f’;f) (5.9)

Figure 5.2 shows an estimated sCGF which was calculated using Equation 5.8.
The sCGF is for a single “bursty” source of the type used in Section 5.5.3.
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Figure 5.2: Estimated sCGF of a single “bursty” source
5.2.2 Using Measured Effective Bandwidth for CAC

By measuring the aggregate cell arrivals on a switch port and utilising Equa-
tions 5.8 and 5.9, the effective bandwidth required for the multiplex can be esti-
mated. By doing the same for only a subset of the active connections on a switch
port, the effective bandwidth requirement for this subset can be calculated. This
is very attractive for the OSSA because the same technique can be used for both
switchlets and physical switches.

The use of measured effective bandwidth for CAC can be divided into two
parts [Lewis97):
e Predicting the influence of the new connection.

e Estimating the effective bandwidth of the current multiplex (or in the case
of the OSSA a subset of the multiplex).

In the simplest case predicting the influence of the new connection can be
based on its declared peak rate, and estimating the bandwidth of the multiplex
can be based on the effective bandwidth estimate in Equation 5.9. The sum of
the declared peak and the measured effective bandwidth can then be compared
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with the line rate to effect CAC. In the switchlet environment each switchlet port
is allocated a certain percentage of the line rate, and this allocated bandwidth is
then used, together with the measured effective bandwidth, to determine if the
connection can be accepted. V

Intuitively any measurement based approach could lead to problems. For
example, what would happen if a number of sources start transmission at a value
significantly below their peak rates, and only after a while start sending at their
peak rates 7 If connections have been accepted during the initial period, based on
the measured effective bandwidth, the switch port might well be over committed.
The way to address this problem is to balance the empirical measured evidence
with declared traffic parameters. For example, if the declared peak values are
somehow taken into account, so that the CAC process becomes more conservative
as more connections are accepted, this problem can be reduced. Similarly, if in
addition to its peak rate a source declares some other traffic characteristics, these
might be used to make a better prediction of its behaviour. For these reasons
refinements of the basic effective bandwidth approach have been proposed in
[Crosby96, Lewis97]. These enhanced algorithms are not taken into account for
the work described here which is based on the basic theory presented in the
previous section.

Despite these inherent problems with any measurement based approach,
there appears to be consensus that these approaches [Jamin97, Grossglauser97b,
Lewis97], can be more successful than those based on traffic models and prede-
fined traffic types [Hyman91, Gelenbe97]. A detailed comparison with alternative
approaches to bandwidth management is conducted in Chapter 7.

5.3 Resources Management in the OSSA

As mentioned in the introduction, bandwidth management in the OSSA takes
place at different levels of granularity and at different time scales. Section 5.3.1
explains the need for CAC at various places in the OSSA. Section 5.3.2 explains
how measured effective bandwidth can be used for bandwidth management at
the virtual network level.
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5.3.1 Connection Admission Control in the OSSA

In the discussion of the Ariel switch control interface in Section 3.2.1, the require-
ment to perform CAC outside the physical switch was explained: The physical
switch should be kept as simple as possible, and different control architectures
should be able to use different CAC algorithms if they so wish.

In Section 3.3.1 the switch resources to be considered for partitioning were
listed. Because of the desire to impose as few as possible restrictions on con-
trol architectures, the partitioning is done at the lowest possible level. So for
“connections resources” (i.e. ports, VPs, VCs) it is done at the VC-level.

Partitioning at the VC-level is somewhat at odds with the desire to do CAC in
the control architecture. The Divider Controller is responsible for the policing of
all invocations made by different control architectures on switchlet Ariel interfaces.
This includes ensuring that a control architecture is not using more bandwidth
than was allocated to its switchlet, and is therefore effectively a CAC process.

This does not imply, however, that the policing done in the Divider is exactly
the same as the CAC carried out by the control architecture. The control archi-
tecture could for example accept or reject connections based on some additional
information such as the time of day, recent history, or some control architecture
specific policy. The policing done in the Divider is, on the other hand, a simple
connection admittance decision based on resource usage?. '

Except for the obvious duplication of functionality, performing CAC in both
the control architecture and the Divider could cause an additional problem. If
for example, the CAC in the control architecture is more sophisticated than that
in the Divider, the control architecture might accept a connection which is then
subsequently rejected by the Divider. One way to offset this problem is to allow
the Divider to take a more global view, by for example looking at the resource
usage of both the switchlet and the switch as a whole. In this way, if the switch
as a whole is underutilised, but a particular switchlet is close to its allocated
bandwidth, a connection can still be accepted.

Another advantage of having CAC in the Divider is that some control archi-
tectures might not want to perform their own CAC and can then rely on that
provided by the Divider. Alternatively, some control architectures, for exam-
ple IP switching, might create connections without taking into account the QoS

4T am indebted to Sean Rooney of the Computer Laboratory for this line of thinking,.
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guarantees of existing connections. In such cases the Divider Server will be re-
sponsible for doing some form of CAC to protect other switchlets. In the case of
IP switching for example, if such a switchlet is exceeding its bandwidth alloca-
tion, all further connection requests can be rejected until the usage falls below a
certain threshold®.

If partitioning is done at the VP-level the need for doing CAC in the Divider
disappears. In such a scenario a switchlet would consist of a set of switch ports,
and on each port a set of virtual paths. The Divider can then simply rely on the
in band policing of the VP as a single entity to ensure that a control architec-
ture stays within its allocated bounds. If the control architecture accepts more
connections than it should, VP policing will result in cells from offending connec-
tions being dropped, without influencing other switchlets (and virtual networks).
Partitioning at the VP-level is however considered too restrictive in the general
case.

Finally it is possible that some well known control architectures, for example
the predefined or typed control architectures of Section 3.4.1, will be trusted to
do their own CAC. Again this will not be the general case. '

The discussion above holds true regardless of which CAC algorithm or mecha-
nism is used. The implementation described in Section 5.4 makes use of estimates
of effective bandwidth based on online measurements to perform CAC, assumes
that CAC is done within the Divider, and the control architecture used for testing
does no CAC of its own.

5.3.2 Virtual Network Bandwidth Management

In the simplest case the allocation of switchlet (and virtual network) bandwidth
resources can be simply based on some percentage of the line rate. This hard
partitioning of bandwidth would be equivalent to doing CAC simply based on
peak rate allocation. As in the case of peak rate allocation, this would lead to
significant wastage of bandwidth resources®. This wastage will be aggravated in

SThis policing on its own will not provide adequate protection, because any single connection
could potentially consume more than the allocated bandwidth for a switchlet. As explained
in Chapter 3, this problem is avoided by means of in-band policing mechanisms. A first level
of protection for an IP switching control architecture could be to limit the bandwidth of all
created connections to the bandwidth allocation of the switchlet, or a percentage thereof.

®Note that virtual network users might want, or be willing to pay for, such guaranteed
resources. :
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the OSSA, because in general significant percentages of the line rate could be allo-
cated to a switchlet, and would thus be unusable by other control architectures’.
This could lead to two problems:

e Allowing fewer virtual networks to be operational than the physical network
is capable of handling.

e The situation envisaged in the previous section, where a specific switchlet
is running at capacity while the rest of the switch is under utilised.

In exactly the same way that the measured effective bandwidth of the aggre-
gate traffic on a port is used to do CAC; the measured aggregate traffic can be
used to decide whether a new virtual network can be created or not®. Again, as
in the case of effective bandwidth CAC, the danger exists that too many virtual
networks are accepted because of, for example, inaccurate estimates, or unknown
traffic patterns. This problem is of course aggravated by the fact that the band-
width usage of a virtual network will by its very nature vary as connections come
and go.

In the case of VNAC however, feedback to the Divider or control architecture
in the form of the allocated bandwidth for a switchlet limits the problem. For
example, rather than simply using effective bandwidth measurements to do vir-
tual network admission control, such measures can be used to move bandwidth
between virtual networks as needed. Since the bandwidth allocation reduced or
increased in this fashion will be taken into account by the CAC mechanism (ei-
ther in the Divider or the control architecture), the over subscription of resources
can be prevented or at least contained.

The above mechanism logically extends to the concept of guaranteed and opti-
mustic capacity. A virtual network can for example be allocated a certain guaran-
teed bandwidth, and be assured that its bandwidth will never be decreased below
that. In addition a virtual network can be optimistically allocated a percentage of
unallocated bandwidth, and be allowed to exceed its allocated bandwidth up to

"Note that even with hard bandwidth partitions, the OSSA approach still wins in terms of
economies of scale; It is cheaper to build a large switch on which several different network types
can be accommodated and resources moved according to their needs, than to build several
smaller switches for each of the network types.

8Note that the OSSA is flexible enough to simultaneously allow both hard and soft parti-
tioning: Some virtual networks can have a fixed and protected bandwidth allocation, while for
others a statistical guarantee will suffice.
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this value. (A similar approach is proposed in [Floyd95] for the sharing of band-
width in packet based networks. This link—sharing approach will be considered
in detail in Chapter 7.) When bandwidth needs to be allocated as guaranteed
bandwidth to a new virtual network however, the optimistic capacity of an exist-
ing network can be reduced or taken away completely. This will have the effect
that all new connections for the existing virtual network will be rejected until its
effective bandwidth falls below the new sum of guaranteed and optimistic band-
widths. Furthermore, this naturally leads to an environment in which control
architectures can allocate and free bandwidth in much the same way that pro-
cesses allocate and free memory in an operating system®. This concept is called
incremental bandwidth management, indicating the fact that bandwidth can be
allocated and freed as needed.

The concepts of guaranteed and optimistic bandwidth, and incremental band-
width management are worthy of further investigation. Of more immediate in-
terest though for the OSSA, is the ability to move bandwidth between virtual
networks on a slower time scale than connection setup. Such functionality is
crucial in a virtual network environment. The implementation described in Sec-
tion 5.4, therefore concentrates on the mechanisms required to enable a network
manager (or network management software) to perform such operations.

5.4 Implementation
The OSSA implementation presented in Chapter 4 was extended in order to:
e Show that the measured effective bandwidth approach is feasible on a real
ATM switch.
e EBExplore the usefulness of this approach within the OSSA.
Because of the need for low level access to switch internals in order to do
traffic measurements, the implementation was limited to the ASX-100 switch in

the experimental environment. Figure 5.3 depicts the extended Divider Server
implementation and shows the interaction between different components.

9Note that doing the same for connections resources (ports, VPs, VCs) is not quite as simple,
because a certain amount of dependence between adjacent nodes is required to ensure that, for
example, VCI spaces overlap.
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The Measure Server in Figure 5.3 contains the algorithms for estimating effec-
tive bandwidth, and controls a database which contains all traffic measurements
received from the switch. The Measure Server was derived from an early version
of the “Measure Toolkit” implemented by Horst Meyerdierks of the University
of Glasgow, who in turn found inspiration from an implementation by Brian
McGurk of the Dublin Institute of Advanced Studies.

Prospero
y Divider Server

Traffic Measurements

g Invocation on switch

<+—— Invocation on switchlet

—— Interaction between
divider server components

Ariel Open Switch Control
Interface

Switch
Switchlet Ariel

Switch Arjel

< Management Interface

Figure 5.3: Divider Server implementation with measurement based bandwidth
management

The version of the Measure Toolkit used in the OSSA implementation assumed
that the aggregate cell arrivals per port were being used in the estimation process.
This resulted in a number of problems:

e Looking at aggregate arrivals per port means that it is very difficult to
know whether a fall in measured arrivals was caused by a connection leav-
ing, or by a bursty connection in its “off” period. Without such knowledge
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all measured arrival samples have to be taken into account, and the high-
est arrival rate will dominate the exponential sum in Equation 5.8, thus
effectively dominating the bandwidth estimate.

e Looking at aggregate arrivals per port does not allow per switchlet estimates
to be performed.

One way of solving the first problem is to detect “significant” level shifts in
the aggregate arrival rate. By combining this information with the time scales
over which it occurs, it might be possible to determine when connections have
left and thus which measurements can be ignored.

A more precise (if more tedious) way of dealing with this problem is to make
use of the exact connection arrival/departure information and to keep per VCI
measurements. The entity dealing with CAC can be reasonably expected to
know about connection arrivals and departures. By only keeping measurements
for “active” VCIs in the measurement database, the correct data can be used
for the estimation process. Since keeping per VCI measurements also deals with
the problem of doing per switchlet estimates, this approach was followed in the
implementation described here.

Getting per VCI measurements from the physical switch of course results in
significantly more data being exchanged between the physical switch and the
Measure Server than in the case of aggregate measurements. This seems to
favour a Measure Server implementation on the physical switch controller. On
the other hand, the estimation process requires a significant amount of floating
point arithmetic. The ideal implementation would therefore be a tradeoff be-
tween the increased communication involved in getting per VCI measurements
off the switch in an external implementation, versus the processing capabilities
of the onboard switch processor. In the implementation presented here, the Di-
vider Server was run on an external workstation mainly because of the flexible
experimental environment that such an implementation provides. As indicated
in Figure 5.3, the Measure Server was integrated with the Divider Server.

The GSMP version of the Ariel interface was extended to facilitate the transfer
of arrival measurements from the switch to the Divider Server. A message was
added which allows the Divider Server to request the Ariel server on the switch to
send it per VCI statistics at a certain rate (e.g. every 200 ms). The Ariel server
will then continuously send out these statistics until the Divider Server requests

it to stop. Since this departs from the original request-response nature of the
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GSMP protocol [Newman96a], a sequence number was added to the message
sent from the Ariel server to the client in the Divider Server, to enable the latter
to detect lost messages.

To calculate and send per VCI cell arrivals for the 16 port ASX-100 switch
took an average of 64 ms. Traffic measurements were taken for 256 VClIs per port
and only for VPI zero. Of the 64 ms, 20 ms was contributed by the operations
on the switch and the remaining 44 ms was taken up by sending measurements
to the external workstation. The operations on the switch are fairly expensive
because they involve walking through the complete forwarding table to sum per
VCI output port statistics. Even so it is significant that the communication
overhead completely dominates the off-loading of measurements.

The Measure Server exports (internal to the Divider Server) a set of interfaces

through which effective bandwidth estimates of any range of VCIs on any port
can be requested. In the current implementation this facility is used as follows:

e The CAC function in the Divider core, which forms part of the policing
function of the Divider, invokes this interface to obtain the effective band-
width estimate for the subset of switchlet VCIs for that port. The declared
peak rate of the connection to be set up is added to this, and the result
compared to the allocated bandwidth for this switchlet to decide whether
the connection can be accepted or not.

e On a periodic basis the Report Server depicted in Figure 5.3 goes through
the list of switchlets and obtains bandwidth estimates for each switchlet
port. The current effective bandwidth estimate, as well as the maximum
effective bandwidth for that switchlet port is stored with other switchlet
specific information. These values are updated on a frequent basis and
the current effective bandwidth estimate can therefore be used by the CAC
function rather than recalculating it'°. The actual aim of storing the current
and maximum values is to aid the moving of bandwidth between virtual
networks as explained below.

Storing the maximum effective bandwidth together with the current effective
bandwidth is an attempt to keep some history on how the effective bandwidth
changes over time. Only the maximum value is stored within the Report Server

10The maximum frequency at which sensible estimates can be obtained would be the fre-
quency with which measurements are received from the switch.
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to minimise storage requirements. In practice, a network manager would be
interested to see how this maximum value changes over time. Rather than storing
a complete history in the Report Server, the Divider Server Configure interface
was extended with a method which allows the maximum effective bandwidth
value to be obtained. Through this interface, a network manager can obtain |
these maximum values to construct a usage history over time scales that are of
interest to it.

Knowing the resource usage of a virtual network as a function of time, enables
a network manager to move bandwidth between virtual networks. For example,
bandwidth from an under utilised virtual network can be moved to one that is
running close to its allocated capacity. Another example would be the moving of
resources between virtual networks at certain times of day, due to, for example,
contractual obligations.

To enable these functions to be performed, the Divider Server Configure
interface was extended with the following methods:

o getSL_BW: Returns the allocated bandwidth, in addition to the maximum
and current effective bandwidth estimates for the specified switchlet port.

o setSL_BW: Sets the value of the allocated bandwidth for the specified
switchlet and switchlet port.

The first method allows a management entity to obtain the current bandwidth
allocation as well as the maximum and current effective bandwidth estimates. As
explained above, this information, or information obtained over a period of time
through this method, can be used to make decisions about the moving of resources
between virtual networks. The actual movement or reallocation of bandwidth
resources can be achieved by means of the second method. Use of the extended
interface will be demonstrated in the results reported in the next section.

5.5 Results

5.5.1 Computational Efficiency of Algorithm

As indicated in Section 5.2, calculating the effective bandwidth involves a number
of floating point operations. In addition, effective bandwidth calculations depend
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on the number of traffic measurements used in the estimation process. As can
be expected, this results in a linear increase in the time it takes to calculate
effective bandwidth as the number of measurements increases. The time taken to
estimate the aggregate effective bandwidth for a single port, i.e. a single stream
of measurements, increases linearly from 0.47 ms for 128 samples, to 13.7 ms for
4096 samples. These results were obtained on an HP 9000/725 50 workstation
running HPUX version A.09.05.

It is possible to store partial sums of previous estimations if only aggregate
effective bandwidth estimates are of interest. Because of the need to-do per
switchlet estimates, such optimisations were not explored here.

L)

5.5.2 Simple Effective Bandwidth Experiments

The Divider Server implementation was instrumented in order to log the various
results shown in this section. In all experiments, the measured arrival statistics
were received from the physical switch approximately every 200 ms. In the graphs
below these arrivals are indicated as “Cell Arrivals” in cells/s. Most graphs
also contain a plot of the estimated effective bandwidth resulting from these
arrivals. Bandwidth estimates were requested approximately every 800 ms. In
all bandwidth estimates a target CLR of 1072 was assumed, and the Fore ASX-
100 has an output buffer size of 256 cells.

Figure 5.4 shows the arrivals and estimated effective bandwidth for a source
that was peak rate limited to 2 Mbps (or 4717 cells/s). The source in this
case is an ATM connected workstation continuously sending AALS packets. The
Fore Systems ATM adapter does peak rate limiting on the packet stream at
the adapter level resulting in the almost constant bit rate (CBR) arrivals in
Figure 5.4, Within approximately 20 s of the source starting, the effective
bandwidth estimates fall exactly on the near constant cell rate.

Figure 5.5 shows the arrivals and effective bandwidth for a JPEG video source.
The video traffic was produced by an AVA video adapter at five frames per second.
Live video was fed into the AVA from a video camera. Figure 5.5 clearly shows
the bursty nature of the JPEG source. After slight initial variations, the effective
bandwidth estimates stabilise at approximately 95 percent of the maximum cell
arrival rate.

'While fairly constant, the cell rate is somewhat below the theoretical 4717 cells/s. This
appears to be the result of the way in which rate limiting is done on the Fore adapter.
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Figure 5.4: Effective bandwidth estimate of peak limited source
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Figure 5.5: Effective bandwidth estimate of JPEG source

The traces shown in Figures 5.4 and 5.5, actually formed part of a switchlet
experiment in which each of the streams were traversing separate switchlets.
Figure 5.6 shows the two sets of graphs combined in time on a single graph.'
Figure 5.7 shows the aggregate arrivals for the port as a whole, as well as the
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Figure 5.6: Peak limited and JPEG sources in separate switchlets
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Figure 5.7: Aggregate effective bandwidth and sum of switchlet effective band-
widths

effective bandwidth for the aggregate traffic. Figure 5.7 also shows the sum of
the effective bandwidths for the switchlets. The difference between the sum trace
and the aggregate trace shows the multiplexing gain achieved by the multiplexing
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of the two sources. This also means that switchlets which use only the switchlet
effective bandwidth for CAC will be acting conservatively.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>