
Video-Augmented
Environments

A dissertation submitted for the degree of
Doctor of Philosophy

James Quentin Stafford-Fraser

Gonville & Caius College
University of Cambridge

February 1996



ii

To my parents, who taught me to explore,
and to my wonderful wife Rose,
who encouraged & supported me while I did so.



iii

Preface

Except where otherwise stated, this dissertation is
the result of my own work and is not the outcome of
work done in collaboration.

This dissertation is not substantially the same as any
that I have submitted for a degree or diploma or
other qualification at any other University.

No part of this dissertation has already been or is
concurrently being submitted for any such degree,
diploma or other qualification.

This dissertation is copyright

© 1996 by J.Q.Stafford-Fraser



iv

Abstract

In the future, the computer will be thought of more as an assistant than
as a tool, and users will increasingly expect machines to make
decisions on their behalf.  As with a human assistant, a machine’s
ability to make informed choices will often depend on the extent of its
knowledge of activities in the world around it. Equipping personal
computers with a large number of sensors for monitoring their
environment is, however, expensive and inconvenient, and a preferable
solution would involve a small number of input devices with a broad
scope of application.  Video cameras are ideally suited to many real-
world monitoring applications for this reason. In addition, recent
reductions in the manufacturing costs of simple cameras will soon
make their widespread deployment in the home and office
economically viable. The use of video as an input device also allows
the creation of new types of user-interface, more suitable in some
circumstances than those afforded by the conventional keyboard and
mouse.

This thesis examines some examples of these ‘Video-Augmented
Environments’ and related work, and then describes two applications
in detail.  The first, a ‘software cameraman’, uses the analysis of one
video stream to control the display of another.  The second,
‘BrightBoard’, allows a user to control a computer by making marks
on a conventional whiteboard, thus ‘augmenting’ the board with many
of the facilities common to electronic documents, including the ability
to fax, save, print and email the image of the board.  The techniques
which were found to be useful in the construction of these applications
are common to many systems which monitor real-world video, and so
they were combined in a toolkit called ‘Vicar’. This provides an
architecture for ‘video plumbing’, which allows standard video-
processing components to be connected together under the control of a
scripting language.  It is a single application which can be
programmed to create a variety of simple Video-Augmented
Environments, such as those described above, without the need for any
recompilation, and so should simplify the construction of such
applications in the future. Finally, opportunities for further exploration
on this theme are discussed.



v

Acknowledgements

I am very grateful to Rank Xerox Research Centre
(EuroPARC) for their support of this work, both in terms of
finance and encouragement. Particular thanks go to Mik
Lamming, Pierre Wellner (now at AT&T) and Mike Molloy
for their enthusiasm, inspiration and patience, and to
Michael Taylor for helpful & challenging discussions and
for proof-reading.

Peter Robinson deserves a great deal of thanks; he provided
the right amounts of assistance and advice at exactly the
right times – I could not have wished for a better supervisor.
I would like to thank the University of Cambridge Computer
Laboratory, in particular the members of the Rainbow
graphics group,  Gonville & Caius College, and the many
colleagues and friends too numerous to be mentioned
individually, who have contributed ideas, time, assistance or
just caffeine.  I am grateful to you all.

The names of all products referred to in this thesis are acknowledged as

the trademarks of their respective owners.



vi

Table of Contents

Video-Augmented Environments 1
Introduction 1
Achieving Augmented Environments 3
Terminology 4
Thesis Organisation and Scope of Research 5

Example VAEs and related work 7
Introduction 7
BrightBoard I 7
In/Out Board 11
The Virtual Window system 11
Hand tracking and gesture recognition 12
DigitalDesk 13
The ALIVE system 13
Software Cameraman & BrightBoard 14

VAE techniques 15
Introduction 15
Subsampling 15
Motion Detection & Background Separation 16
Thresholding 23
Resolution Enhancement and Greyscale Thresholding 25

The Software Cameraman 30
Introduction - The motive 30
Doing it with software 31
What constitutes interest? 32
Selecting the area 32
Selecting the eyepiece view 32
Aesthetic Aspects of Camera Control 33
Future Possibilities 35

BrightBoard 36
Introduction – The whiteboard as  a user interface 36
A Video-Augmented Drawing Surface 37
BrightBoard In Use 39
How does BrightBoard work? 41
Triggering 41
Preprocessing 42
Feature detection 42
Analysing 49
Executing 50
Evaluation 51
Future possibilities 52

Vicar: A VAE construction kit 54
Introduction 54
Vicar 55
Scripting 55



Table of Contents vii

The Architecture 57
Flow Control 58
Frame transport in Vicar 59
The sequence of source-sink interactions 60
Vicar in use: The Software Cameraman and other examples 64
In/Out Board monitor 66
A User Interface for Vicar 67
Future Possibilities 68
Related Work 71

Conclusions and Future Possibilities 73
Future Possibilities 73
Summary & Conclusion 77

The BrightBoard Program Suite 79

The features used for BrightBoard’s symbol
recogniser 81

The TCL source code  for a simplified automatic
cameraman 83

References 85



1

Chapter One

Video-Augmented
Environments

Video cameras can now be produced, with controlling
circuitry, on a single chip.  Digital output reduces the need for
expensive frame-capture cards, and it is reasonable to assume
that simple cameras, being devoid of moving parts, will soon
be a cheaper accessory for personal computers than
keyboards, microphones, and mice.  The possibilities for
video-conferencing and other human-human interactions are
obvious, but how might the ready availability of video sources
enrich the way we interact with the machines themselves?

Introduction

In the office environment the computer has traditionally been thought
of as a tool, in the same way that a typewriter or Rolodex is a tool.  It
is an item employed by a person to accomplish a particular task.  It is a
very flexible tool, and can fulfil the roles of typewriter, Rolodex and
calculator simultaneously, but the activity is generally initiated by a
‘user’, a term  which succinctly describes the relationship.

We might hope that the computer of the future would be more like an
assistant than like a typewriter, that it would perform mundane tasks
on your behalf when it sees they are necessary rather than always
operating more directly under your control. Most computers spend the
vast majority of their time idly waiting for humans, when they could
be seeking out new business opportunities, trawling the world’s
libraries for information relevant to a particular research project, or
simply answering the phone and throwing away junk mail. It is this
vision which has fuelled the recent research into autonomous agent-
based software.

The extent to which users will be happy for a computer to make
decisions on their behalf will depend on their confidence that it will
make the right decisions.  The more a secretary knows about your way
of life, your preferred modes of work, how cluttered your desk is and
when you are in a meeting, the more useful he or she can be to you.



Video-Augmented Environments

Chapter One 2

The same applies to a machine, but the average personal computer has
no knowledge of the world outside its box and has to be spoon-fed
with information through its limited range of input devices.

One approach to providing richer human-
computer interaction is that of Virtual
Reality (VR). Users of VR don head-
mounted displays, earphones, gloves and
microphones so that as many senses as
possible can be used to draw them into an
artificial, computer-generated world. Large

amounts of money and effort are expended to create systems with
higher resolution, better frame-rates, and tactile feedback so that this
artificial world can resemble the real one as closely as possible.  While
VR certainly has valuable applications in specialist areas, the users
still have to live, work, eat and sleep in the real world, and it could be
argued that our lives will be richer if we can take the opposite
approach: if we can make the computer an integral part of our world
rather than making ourselves a part of the computer’s.  Our world,
after all, has infinite resolution, completely smooth motion and better
tactile feedback than any artificial glove is able to give.

This is the philosophy behind Computer-Augmented Environments;
the desire to bring the computer ‘out of its box’ and give it more
awareness of the world around, so that it augments and enhances daily
life rather than attempting to replace it. Can we, for example, enable
the computer to understand what we do in our offices rather than
putting an impoverished ‘office metaphor’ on the machine’s screen?
Can we centre computational power around everyday objects with
which users are so familiar that they don’t think of them as a human-
computer interface?  During work on the DigitalDesk [56], for
example, (see Chapter Two), we experimented with ways of enabling
the computer to recognise an ordinary pencil eraser, and using that as
the means of deleting parts of an electronic image which was projected
onto the desk.  The motivation was simple: people already know how
to use erasers, and will continue to use them for hand-drawn pictures.
By augmenting the eraser’s capabilities we simply expand its scope of
use.  We neither detract from its abilities to erase pencil, nor require
the user to learn a new tool.

It would be naïve to pretend that the wide range of tasks we
accomplish with our current user interfaces could all be performed
equally well by similarly ‘projecting’ them into our physical world.
Nonetheless, by building on the established abilities and expectations
of the user we can gain in several ways:

We can shorten the learning process. A user of the DigitalDesk
might only need to be told, “You can use the eraser on projected
drawings too”; a considerably shorter tuition than that required for the
‘delete’ process in many conventional software drawing packages.

We can make user-interfaces more ‘physical’.  Our bodies are
designed to move in and interact with the physical world.  When we
limit their activity to sitting in a single chair, staring at a screen and



Video-Augmented Environments

Chapter One 3

moving a mouse, they tend to react with aching backs, tired eyes and
Repetitive Strain Injuries.  To provide some variety for our bodies, we
deliberately choose to perform tasks in the physical world which could
have been performed on screen.  We print even short documents
before reading them, we carry software around the office on floppy
disks rather than distributing it on the network, and we look up and
dial telephone numbers ourselves when the computer could do it more
efficiently.  There is something very satisfying about crumpling a
sheet of paper and hurling it into the waste-paper basket which has no
equivalent in the world of email.  A user’s emotions can only be
expressed by hitting the ‘Delete’ key a bit harder.

We can save the user from unnecessary duplication of tasks in the
electronic and physical worlds. At Rank Xerox EuroPARC (where
much of this work has been conducted) a convention has arisen that an
open office door indicates the occupant’s willingness to be disturbed,
and a closed one should be seen as a deterrent.  Whether consciously
or otherwise, people will indicate intermediate levels of accessibility
in the same way, for example by pushing the door almost completely,
but not fully, closed.  Experiments have been conducted [23] where
machines, as well as colleagues, can take hints from such cues as
these.  The telephone bell is silenced after the first ring, for example, if
the computer believes that a meeting is taking place.  Incoming video
calls can be rejected if the user is on the telephone. Assistance of this
kind saves the user from tedious tasks, and is a step towards the
concept of the computer as a ‘secretary’.

Achieving Augmented Environments

There is an inherent difficulty in the goals of these Computer-
Augmented Environments (CAEs).  For computers to gain much
understanding of the world around, they must be equipped with
sensors to monitor it.  These may be directly connected to the
computer, or they may relay information to it via a communication
medium such as radio or infra-red.  The more sensors a computer has,
the more complete will be the picture it can create of its surroundings
and the activities of its users.  However, the more sensors we embed in
the environment, with their associated cables, batteries and power
supplies, the more investment is needed to bring about our goal and
the more intrusive the technology becomes, so frustrating the aim of
an ‘invisible’ or ‘transparent’ user interface.

The solution is to give the computer a small number of senses which
have a broad scope of application and which operate remotely, i.e.
without direct contact with the objects being sensed. The obvious
candidate senses are vision and hearing, through the use of video
cameras and microphones. Similarly, if the computer is to
communicate with humans, then the analogous output systems are
audio feedback and perhaps some projection facilities. Not only do
cameras and microphones have a broad range of application, they can
often be applied to more than one task at the same time.  A single
camera might monitor a whole room, and detect when the room is



Video-Augmented Environments

Chapter One 4

occupied, when a meeting is in progress, and when an overhead
projector is being used, as well as recording the meeting. Out of office
hours it could also function as a security camera.

This thesis explores the use of video in the creation of Computer-
Augmented Environments.  Until recently the deployment of such
systems in the average workplace would be limited by the cost both of
cameras and of the computing power required to process video signals.
However, manufacturing developments are making video cameras an
economically viable alternative to more conventional sensors, and the
typical office workstation is now capable of the simple image
processing required for many of these ‘Video-Augmented
Environments’.

Terminology

It is worth taking a moment to clarify some of the terminology used in
this area. The phrases ubiquitous computing and augmented reality
have been used to describe approaches similar to the computer
augmented environments discussed here, but with minor differences.

Ubiquitous Computing

Mark Weiser used the phrase ‘Ubiquitous Computing’ or ‘Ubicomp’
to denote his vision of a world where computers of various sizes are
liberally scattered around the home and workplace. You jot down
ideas on them as you would on a notebook, you sketch diagrams on
them as you would on a whiteboard, and you wear them as you would
wear a watch.  These computers can talk to each other and to the
stereo, the fax machine, the air-conditioning.  Their ubiquity means
that we think no more of them than we do of a stapler or a post-it note,
and the communication abilities mean that we can take a computer to
the task instead of having to bring the work to the computer [52].

While this model certainly depicts a closer integration of the real and
electronic worlds, it relies on the assumption that the artefacts around
us will increasingly be equipped with some computational power.
This is certainly reasonable with respect to telephones and washing
machines, but it may be some time before coffee cups, magazines and
waste-paper baskets are equipped with batteries and infra-red
communication links.  The Ubicomp philosophy is not incompatible
with VAEs, but the focus of VAEs is to add computational power to
the devices we already use, rather than to create and exploit new
varieties of computer.

Augmented Reality

The name ‘Augmented Reality’ has been used for systems which make
use of see-through displays, especially head-mounted systems, to
‘project’ extra information onto the user’s view of the world. Feiner et
al, for example, used a head-mounted ‘Private Eye’ display to overlay
on the user’s view of a laser printer the information required to service



Video-Augmented Environments

Chapter One 5

it [12].  The name emphasises the contrast with ‘Virtual Reality’, and
could sensibly be applied to a wider field, but has become so closely
associated with this particular method of interaction that it was
thought best to avoid it in the present work.

Computer Augmented Environments

‘Computer Augmented Environments’ was the phrase chosen by the
editors of the July 1993 Communications of the ACM as a generic
heading under which to group the above and similar projects which
“are united in a common philosophy: the primacy of the physical
world and the construction of appropriate tools that enhance our daily
activities” [55].  The present work deals with the subset of such tools
which use video to monitor the physical world, and so the name Video
Augmented Environments (VAEs) was chosen.

Thesis Organisation and Scope of Research

Organisation

The following chapter will describe some example Video-Augmented
Environments and provide an overview of some related work.  In
Chapter Three there is a discussion of some of the problems
commonly faced by VAEs and techniques for tackling them.  Chapter
Four describes a software-based ‘automatic cameraman’ which uses
activity in one video stream to control the processing of another.
Some of the lessons learned in the creation of the cameraman were
important in the creation of BrightBoard, a system which uses video to
augment the facilities of an ordinary whiteboard. BrightBoard is the
focus of the thesis and is described in Chapter Five. We discovered
that the construction of many such VAEs consisted chiefly in the
plugging together of standard image-processing units, so in Chapter
Six we discuss VICAR, an architecture for ‘video plumbing’ which
allows simple VAEs to be created under the control of a scripting
language.  Finally, Chapter Seven draws some conclusions and
describes possibilities for future developments.

Scope

The research described concentrates on practical applications of video
to real-world problems using readily available hardware.  In doing so it
touches on a wide variety of topics within and on the borders of
Computer Science, including image processing, pattern recognition
and OCR, logic programming, human-computer interaction and
document image understanding. A conscious decision was made at an
early stage to explore a wide space of applications and not to be
sidetracked into the minutiae, fascinating though many of these are.
To evaluate some of these applications on today’s standard hardware,
speed considerations have been paramount. Often a sophisticated
algorithm has been rejected because a simpler one has been found to
suffice, or because the performance requirements of interactive



Video-Augmented Environments

Chapter One 6

applications have forced us to sacrifice the elegant in favour of the
practical.

Goals

In short, this work aims:

• To explain why video is important and useful as a generic input
device.

• To examine some examples of Video-Augmented Environments
and note techniques which were found to be useful in their
construction.

• Using these findings, to create a toolkit to simplify the building of
similar applications in the future.



7

Chapter Two

Example VAEs and
related work

Introduction

In this chapter we discuss some examples of recent research which
illustrate the application of relatively simple image processing to real-
world video.

BrightBoard I

BrightBoard explores the use of a whiteboard as a computer interface.
Chapter 4 will describe the motivation for such a system and the final
implementation, but here we will introduce the concepts by describing
an early prototype, BrightBoard I.

Background

BrightBoard  I had its origins in a simple whiteboard-recording
program.  A camera was suspended from the ceiling or mounted on a
high bookshelf to give it a clear view of the whiteboard.  The program
would save an image of the board whenever it detected a ‘significant
change’ (a concept not precisely defined at that stage).  The current
view was displayed on the screen, and a scrollbar allowed a user to
scan earlier images and so to review recent activity on the board,
recover previously erased information, and so forth.

Experimenting with the system, users would frequently request extra
features such as the ability to print images, email them, or pass them to
another program for processing.  Rather than expanding the system
into a single monolithic application, the decision was made to simplify
it into a whiteboard-based ‘control panel’ which could be extended
through the use of shell scripts and external programs, and which
would chiefly be operated from the board itself.  The program was
rewritten from scratch and named BrightBoard.



Example VAEs and related work

Chapter Two 8

BrightBoard I - The user’s view

The user, on starting the program, is presented with a thresholded
image of the board which is updated every few seconds.  He uses the
mouse to select an area of the image which will be a ‘sensitive zone’,
typically corresponding to a checkbox or other region marked on the
board.  Commands can then be specified which will be executed when
changes occur within the zone  (Figure 1 to Figure 3) The system
detects when the zone becomes significantly darker (corresponding to
a mark being made on the board) or lighter (when a mark is erased).

Figure 1. The user is presented with an image of the board

Figure 2.  The user selects a sensitive zone and is prompted
 for information about it



Example VAEs and related work

Chapter Two 9

Each may trigger a separate action, so checking a box might switch on
the video recorder at the start of a meeting, and erasing the mark
would stop the tape during confidential discussions or at the meeting’s
end.  The action can consist of any Unix shell command, and the user
may request that all or part of the image be passed to the command via
a temporary file.

Some sample commands

A simple whiteboard recorder might be created by selecting the whole
area of the board as a sensitive zone, and specifying the command for
both `lighter' and `darker' as:

cp %s ~/board/

(The %s will be replaced automatically by the name of a temporary
file containing the image). A more sophisticated version could be in a
script called BBSave, triggered by a `Save' zone:

#! /bin/sh
echo STAMP=‘date +%y%m%d%H%M%S‘
cp $1 ~/board/$STAMP
cat saved.au >/dev/audio

This saves the image using a filename derived from the current date
and time, then uses audio (recorded speech) to announce that it has
done so. The command executed by BrightBoard would then be:

BBSave %s

A `Print' button might be implemented as:

pgmtops %s | lpr

These ‘Save’ and ‘Print’ examples would generally act on the whole
of the drawing area. In contrast, the following 'message zone' example

Figure 3. The user enters details of commands to be executed



Example VAEs and related work

Chapter Two 10

uses just the area within the zone. A larger area is selected as the
sensitive zone, and anything written there pops up on a secretary’s
screen, using the image-viewing command ‘xv’:

xv -display barbara:0 %s

BrightBoard I’s zone configuration data can be saved to disk and
restored at a later date.  The format of the file is such that it can easily
be edited or generated by users or by other software; perhaps by a
program which automatically detected the checkboxes.

Discussion

The biggest challenge for BrightBoard I was distinguishing a mark
made on the board from the hand or head of a user.  It used a very
crude algorithm which detected the persistence of any change: if the
zone becomes darker and remains so for several seconds then it is
probably not a writing hand or the head of a passer-by.  This is
obviously not foolproof, and is achieved at the expense of response
time; nonetheless, it made for quite a usable prototype with a ceiling-
mounted camera which rarely suffered from obstructions in its view.
We will examine a more sophisticated ‘person detector’ in Chapter 5.

The system also relied on the fact that the sensitive zones were in a
fixed place in the camera’s image.  Should the camera, board or
checkboxes be moved, the system had to be reconfigured.

Despite these limitations, a surprising amount can be done with a
system which simply counts the number of changed pixels, and
BrightBoard I was used for other prototype systems such as the In/Out
board described below.



Example VAEs and related work

Chapter Two 11

In/Out Board

At EuroPARC, there is a board in the entrance lobby on which
members of the lab place magnetic markers indicating whether they
are in, out, or away on vacation.  It is a very natural interface with
which users feel comfortable and it requires almost no effort as one
passes by on the way in and out of the building.  People probably
would not voluntarily use a system which involved a screen and
keyboard, so this is a prime example of the advantages of
‘augmenting’ an existing physical user interface.

Instrumenting this system could be very useful - when somebody
arrives the computer could notify others who were waiting for them, or
switch on their office lights and computer screens.  Writing a video-
based system to do this is a simple process – BrightBoard I has been
used to demonstrate the idea, with no changes to the software being
required.  In this example system, users were sent email each day
detailing their arrival and departure times and the number of hours
worked.  Adding computational features to such a mechanical, tactile
system any other way, perhaps by replacing the magnetic markers with
push-switches, would be considerably more complex and costly.

The Virtual Window system

A simple video-analysis system has been used by Gaver et al to
enhance the capabilities of a video-conferencing link [16].

A user’s head movements in a local office are monitored by a cheap
dedicated camera and control the movement of the video-conferencing
camera in a remote office.  The metaphor used is that of a window
onto the remote office, where by moving his head to the right, for
example, a user can see ‘around the corner’ to the left.



Example VAEs and related work

Chapter Two 12

This provides a greater effective field of view and resolution, some
semblance of 3-D, and allows for smoother interaction between users.
The authors describe a simple example:

“…it is common to hold something up to show a remote colleague,
only to misjudge and hold it partially off-camera.  Correcting the
error usually requires explicit negotiation (“a little to the left…no, my
left!”).  The Virtual Window system allows the remote viewer to
compensate for his or her partner’s mistake simply by moving,
without requiring any explicit discussion about the mechanics of the
situation.”

Chapters 3 & 4 will discuss in more depth the topic of tracking human
movement.

Hand tracking and gesture recognition

A variety of systems can be controlled efficiently by monitoring the
position and gestures of a user’s hands.  The Charade system, for
example, used hand gestures to navigate through a hypertext system on
a projected display [2]. Such systems have traditionally required the
user to wear special gloves and position-sensing devices, but Jakub
Segen of AT&T Bell Labs describes a system using video alone which
allows, for example, the user to control a mouse-style pointer on the
screen, or to ‘fly’ through a Virtual Reality-like environment, using
hand movements and gestures watched by a camera [45].

Local User Moves
to right

Normal Video

Virtual Window system



Example VAEs and related work

Chapter Two 13

DigitalDesk

A major goal of the project was the blurring of the boundary between
paper and electronic documents.  A number of prototype applications
have been built which allow, for example:

• copying and pasting of images and text from paper documents into
electronic ones (the ‘PaperPaint’ application)

• mathematical operations on numeric data contained in paper
documents (‘DigitalDesk Calculator’)

• language translation: pointing at words in a French document will
cause an English translation to be projected alongside (‘Marcel’).

The DigitalDesk is one of the most fully developed examples of
Augmented Reality, and the reader is referred to the References for a
more detailed description.

The ALIVE system

ALIVE [34,35] stands for
Artificial Life Interactive Video
Environment and is the name of
a system, created at the MIT
Media Lab, which develops
some of the ideas behind Myron
Krueger’s VideoPlace [29].  A
camera is fixed to the top of a
large projection screen, and
monitors a 16ft x 16ft area in

which a user is free to move about.  The image of the user is separated
from the background and incorporated in another scene (typically a
view of a room) which is then projected onto the screen in front of the

 Figure 4. The DigitalDesk

The DigitalDesk [53,56] is a
normal desk on which users can lay
out their papers and leave their
coffee cups, but it also has some
characteristics of a workstation.
Mounted above the desk are one or
more cameras and a projector,
which enable a computer to read
paper documents placed on the
desk, to monitor a user’s activity
there, and to project images, docu-
ments and annotations down onto
the desk. One of the interesting
problems tackled by the Digital-
Desk is that of calibrating the mul-
tiple input and output devices so
that a mapping may be made be-
tween their individual coordinate
systems.



Example VAEs and related work

Chapter Two 14

user.  Also included in the image are computer-generated animated
creatures which move around the image under the control of
autonomous agents.  Their activity is affected by their interactions
with one another and by the movement and gestures of the user.  The
result is a ‘magic mirror’ in which the user sees himself in a virtual
world where he can, for example, bend down to pet an artificial
hamster which then obligingly rolls over onto its back to be tickled.
Other creatures can be sent away by pointing to the far side of the
room, where they sulk until the user moves back towards them again.

This system is great fun to use,
but the technology required to
make it work, in terms of both
hardware and software, is sub-
stantial and rather specialised,
and as such it is really beyond
the scope of applications con-
sidered here.  In addition, it is
not so much a ‘Video Aug-
mented Environment’ as an
example of ‘Environment-Augmented Video’!  However,  ALIVE is of
particular interest here because of the richness of interaction afforded
by the use of a single video camera as an input device, and because it
involves several simple techniques which can be useful in other
systems.  These include the following:

• The user’s position in the 3D space is known, despite only having a
single video source.  The camera looks down on the user at an
angle, and because the system knows the relative positions of
camera and floor, and the fact that the user’s feet must be on the
floor, it can deduce the users proximity simply by finding the
lowest point in the outline of the user.  This greatly increases the
realism, because the user’s image then occludes, or is occluded by,
parts of the virtual world depending on his/her position.

• Simple gestures are detected by tracing the user’s outline in low
resolution and finding the points of maximum convex curvature,
which typically correspond to hands, head and feet.

• Because the agents are modelled as animals, users are much more
tolerant when they fail to understand or act on a command
immediately – a common problem in VAEs!

Software Cameraman & BrightBoard

In Chapters 4 & 5 we will discuss in more detail two further VAE
examples, but first let us examine some techniques which are useful
when constructing such tools.



15

Chapter Three

VAE techniques

Introduction

For most applications video has a very low signal-to-noise ratio when
compared to other sensors; that is, the information in which we are
interested forms only a small part of the information captured by the
camera. The task of the application is often to reduce several
megabytes per second of video data to a simple analysis like “there
is/isn’t a person in the room”. In this chapter we discuss a few
problems which are common to VAEs, and suggest some techniques
for dealing with them.  The issues are particularly relevant to
BrightBoard, but they all have a much wider potential scope of
application.

Subsampling

The first ‘technique’ is so simple that it scarcely deserves the name,
but it is sufficiently important to be worth mentioning first.  Real-
world video images contain a substantial amount of data, and if they
are to be examined in any but the simplest of ways, a reduction in the
resolution of the image often allows the single largest speed gain.
Stephen Smith [48] points out that a second of digital video typically
contains more information than the complete works of Shakespeare.

An application will often have no need of a high-resolution image at
all. In other cases, certain parts of the analysis can profitably be done
at low resolution.  Later chapters will describe how BrightBoard, for
example, uses a 40x30 image to detect whether users are obstructing
the view of the whiteboard before capturing a 740x570 image for
detailed analysis.  The number of pixels to be analysed in the ‘idle’
monitoring state is reduced from 420,000 to 1200, allowing a great
improvement in response time, and/or a reduction in workstation load.



VAE techniques

Chapter Three 16

Motion Detection & Background Separation

VAE applications, in general, are interested in movement and change
within a video image.  Sometimes we wish to analyse the movement
itself, as in the software cameraman described later, sometimes we just
wish to know that movement has occurred because it is a trigger for
something else, and sometimes we wish to avoid situations where
change is occurring e.g. if we wish to capture whiteboard images
without any humans in the way.

Often it is human movement which is of interest – people in an office,
hands on a keyboard, crowds on a station platform – but other things
we might wish to monitor include pages emerging from a printer,
documents moving on a desktop, or cars entering and leaving a
parking lot. The common factor in all these situations is that
movement occurs against a relatively stable background.  ‘Background
separation’ techniques aim to detect components of the image which
are not part of a stable ‘background’ and so may be of interest.

Movement, colour and intensity

The majority of visual occurrences which attract our attention are due
to changes in luminance; variations in the brightness of particular
areas of the visual field [18]. These may be:

• direct changes in intensity due to a light source variation, for
example from a flashing warning light, or the flickering of a flame.

• intensity changes caused by movement.

The algorithms described here assume that the images captured are
greyscale and not colour.  The human visual system is more sensitive
to changes of intensity than to changes of colour and the movement of
objects is seen primarily by the difference in intensity between them
and their background, rather than by chromatic variations [33,36,37].
In addition, monochrome cameras currently offer better image clarity
for a given price than their colour counterparts, and so are perhaps
more likely to be used in VAEs.  We will therefore concentrate on
monochrome, but it is worth noting that much important colour-based
work has also been done. Ueda et al, for example, have impressive
demonstrations of video segmentation based on chromatic analysis of
real-world video [51].

Not all motion can be detected by changes in intensity.  Horn &
Schunck [25] point out that a rotating sphere with no surface markings
causes no temporal changes in image intensity, despite the presence of
real-world motion.  Related to this is the ‘aperture effect’: if an
unmarked object is viewed through a smaller aperture (e.g. a pencil
seen close-up but through a key-hole) then only the component of
motion perpendicular to an edge can be detected.  Such situations
rarely occur in the real-world applications considered here, however,
and it should be noted that the human visual system could not detect
motion under such conditions either.



VAE techniques

Chapter Three 17

Differencing

The simplest way to detect movement is to compare each captured
video frame with its predecessor.  At each pixel position, the
magnitude of the change in pixel values is calculated, and any
movement will generally cause significant values to be recorded. See
Figure 7 (C). There will always be minor pixel differences between
two live images even when the scenes appear identical to the naked
eye.  These are the result of such things as:

• small variations in daylight illumination

• the slight flicker of electric lighting

• vibration induced e.g. by the fans of nearby equipment

• the electronic limitations of the camera and frame grabber

• electrical noise induced in the video circuitry.

Many of the above can be eliminated by ignoring changes below a
certain threshold, and unconnected single pixel changes.

Differencing is simple, fast, and often supported in hardware.  The
chief limitations are as follows:

• If the frame rate is high relative to the speed of any movement,
there may be insufficient change between frames to allow much
analysis.

• If the frame rate is low, then the position of fast-moving objects
will be sufficiently altered between frames for differences to occur
in two distinct areas: where the original location has reverted to the
background, and where the background has been obscured by the
object’s new position.  This is illustrated in Figure 5. There is no
easy way to distinguish between the two areas, and this is a
problem if we wish to detect the position of the moving object.

It would be useful, therefore, to have some idea of what constitutes the
background, so that we can detect changes relative to that, instead of
merely detecting changes.



VAE techniques

Chapter Three 18

Initial frame capture

Some applications form a concept of the ‘background’ by requiring the
equivalent of a ‘white balance’ setting – when the system is started, a
frame is captured which is taken to be the ‘background’ and later
frames are compared with it.  Providing a clear view for the camera
can be difficult: the author once used an office-monitoring system
which required the user to crawl under the desk before clicking the
mouse button so as not to appear in the image!  Nonetheless, this is a
reasonable approach for systems which are only expected to run for a
short period of time.  Longer-running applications have to cope with
the fact that the ‘stable background’ is not in fact stable.

Suppose we are monitoring activity in an office:

After a while somebody enters through the open door, moving it
slightly in the process.  She sits down at the desk, moves a coffee cup
to read some papers underneath, then stands up and leaves, taking the
documents, switching off the desk light, and leaving the office chair
in a slightly different position.  A patch of sunlight moves slowly
across the floor...

Many changes have occurred since the capture of the initial frame, but
we do not wish to continue registering them indefinitely.  We are
monitoring activity, and as the office is now empty, activity has
ceased. The program’s concept of the background must therefore be
allowed to change slowly over time.

Figure 5. Inter-frame differencing. The frames in the second row show the
differences between those above them in the first row.



VAE techniques

Chapter Three 19

Running Video Averages

One way to construct an evolving ‘background’ frame is to use the
average pixel values of the N preceding images.  Any slow change that
occurs in the background of the image, such as variations in the
lighting of a room due to the sun’s movement, will gradually be
incorporated into this average frame. Fast movements will still be
visible when comparing it to a newly-captured image.  A piece of
furniture which is only moved occasionally, for example, will be
detected when moved, but will rapidly fade into the background
thereafter.

Unfortunately, to average the N preceding frames necessitates keeping
the last N frames in memory, which may not be practical for large
values of N. We therefore use an approximation to a true average
which only requires the current frame and an ‘average’ frame to be
stored. When a new frame arrives, each pixel of the ‘average’ frame is
recalculated as:

1 1

N
newvalue

N

N
oldvalue( ) ( )+

−

If the pixels do not, in general, change very fast, this is a good
approximation. The most recent value still forms the same fraction of
the result as it would in a true average, but the relative weight of past
pixels decreases exponentially over time, rather than remaining
constant until discarded. We call this system a Running Video Average
(RVA) of length N.

For performance reasons, we use integer arithmetic and make N a
power of 2, which enables us to use bit-shifting instead of
multiplication & division. The formula for the new value of a
background pixel then becomes:

(newvalue + (oldvalue << x) - oldvalue) >> x

where 2x = N.



VAE techniques

Chapter Three 20

Choosing the length of the RVA allows us to select the type of
movement which interests us. The longer the RVA used, the more
slowly changes to the scene are incorporated into it. (Figure 6).

RVAs have been found to be a useful method of detecting motion.
Some experimentation is needed in any new application to choose
appropriate RVA lengths for the motion to be analysed and the frame
rate likely to be achieved.  It can be advantageous to maintain several
RVAs of different lengths, so that detection of movement can be
followed by further analysis.  A room-monitoring system might detect
motion near a desk and report, in effect:  “There is something here
which is not part of the stable background (long RVA) but there has
been a lot of activity in this area recently (which appears in a short
RVA).”

Masked Running Video Averages

As a final development of this theme, we consider the problem of
periodic noise in particular areas of a video image.  This is caused by
the movement or changing intensity of items which we wish, never the
less, to consider part of the background.  In a home or office
environment, examples include:

• flickering monitors and TV screens

• fluorescent lights

• rotating fans

• window blinds swaying in a breeze

A. The Current Frame B. An RVA of length 4 C. An RVA of length 256

Figure 6: Sample ’Running Video Averages’.

The user arrives in the room, sits down, and starts typing. These frames were grabbed simultaneously. Note
that the user’s hands and head are blurred in image B, but most of the body is crisp.  The movement of the
right hand, in particular, from keyboard to mouse can be seen. Subtracting image B from image A would
highlight the quickly-moving areas. Image C is a general background view of the room, and subtracting
image C from either of the other images would reveal anything that had moved within the last few minutes.
A very faint outline of the user can be seen in image C. The longer he stays there, the more he will be
considered part of the background.



VAE techniques

Chapter Three 21

• reflections of any of the above

To reduce the effect of such items, we can employ a modified
combination of the Initial Frame Capture and Running Video Average
methods described above.

At startup, we capture a number of ‘background’ frames at
approximately the rate we expect to capture them during the
application.  From these we calculate the mean and standard deviation
of the values at each pixel position.  The mean values are used to
initialise the RVA frame.  The standard deviations are combined with
a global threshold value to give a threshold which is specific to that
pixel position.  We call this resulting image the ‘mask frame’ because
it can be used to ‘mask out’ areas where varying pixel values are
expected as part of the background. In capturing the background
frames, it is advisable to introduce a random variation in the inter-
frame delays, to reduce the likelihood of statistical anomalies caused
by any periodicity of changes in the view.

The value of the ‘mask’ for pixel (x,y) is

m T sxy xy= + α

where T is a global threshold, α a calibration constant, and sxy the
standard deviation of pixel values at (x,y).

Within the application, when a captured frame is compared to the
RVA frame, a significant change is only deemed to have occurred at
any pixel if the magnitude of the change is greater than mxy at that
pixel position.  This system, which we call ‘Masked Running Video
Average’, or MRVA, has proved useful in both the Software
Cameraman (described in Chapter 4) and in the triggering module of
BrightBoard (Chapter 5).  Sample output can be seen in Figure 7.

The more sophisticated a model we try to build of the background, the
more we discover circumstances which defeat it.  The ‘mask’ in our
MRVA, for example, is unchanging.  It embodies the variations in the
background which were occurring during the capture of the initial
images, but if somebody turns on a monitor or a ceiling fan thereafter,
then new patterns of change will be seen for which the system has not
been prepared.  In this case the MRVA performs no better (and no
worse) than the RVA.  Of course, if somebody demolishes the
building, the system will not be prepared for that either; at some point
we must decide on a degree of permanence which makes the concept
of a ‘background’ meaningful.

It could be argued that the mask should also evolve over time, by
basing it on a running average of difference frames, for example.  A
decision then has to be taken about the length of that average in
addition to the length of the background RVA.  For our tests in an
office environment, which seldom ran for more than a couple of days,
the evolving mask has not been necessary, but it might be more so in a
permanently-installed and longer-running system, or in other
application areas.



VAE techniques

Chapter Three 22

Further thoughts

The biggest assumption we have made here is that the camera is
stationary.  These techniques will be of little use in situations where
the background or the lighting is constantly changing.  Techniques
based on ‘optical flow’ can be used to analyse motion in a broader
range of situations, including those where several moving objects are
observed by a moving camera, but despite many developments since
Horn and Schunck’s original work [25], optical flow algorithms tend
to be iterative processes operating on a large number of pixels and
therefore computationally very expensive.  They are also rather
sensitive to noise, particularly in the case of highly textured surfaces.

A. This is the background scene... B. ...and we are interested in movements of the user.

C. Simple differencing between A and B will show
the flicker of the screen as well as the

 arrival of the user.

D. Using a MRVA, the screen flicker is almost
completely removed, while the user

remains visible.

Figure 7: Masked Running Video Average



VAE techniques

Chapter Three 23

This can lead to unexpected results at the pixel level, making the
higher-level analysis of motion in the image more difficult.

More sophisticated motion-tracking techniques are also available in
situations where a mathematical model of the object being tracked can
be created.  Gee & Cipolla [17], for example, describe a noise-tolerant
human face tracker which projects the current expected positions of
facial features back onto the image and uses these as a starting point
for feature detection.

Readers are referred to the extensive literature in the robotics and
computer vision community for details of further movement-analysis
algorithms.  The focus of this research is on simple VAEs which could
be constructed quickly and deployed in a typical workplace using the
hardware likely to be available there.  More expensive algorithms and
those targetted at narrower problem areas are therefore beyond the
scope of this thesis.

Thresholding

Thresholding is a common problem for VAEs.  Several recent video-
related projects at EuroPARC have concentrated on the processing of
images of documents.  The DigitalDesk [55], DigitalDrawingBoard [6]
and BrightBoard (Chapter 5) captured them from a desk, a drawing
board, and a whiteboard respectively.

Most documents consist chiefly of black (or dark) text on a white (or
light) background, and there are many occasions when we wish to
restore the captured greyscale image to this state, perhaps because:

• we wish to store the image more compactly.

• we wish to incorporate the captured image in an electronic
document, and so wish the black and white levels to match.

• we wish to pass the image to an OCR engine or some other process
which requires a clear distinction between text and background.

Document images captured from real-world camera sources typically
have large variations in lighting levels across the image and between
images captured at different times.  The human visual system
compensates very effectively for spatial and temporal variations, but a
computer needs to be told how to do so.  In whiteboard images
captured for BrightBoard, for example, it is not unusual to find that the
‘black’ pixels in one part of the image are lighter than the ‘white’
pixels in another part. We often need to threshold images just to
standardise them across time and space.

There are many ways of performing thresholding and any textbook on
image processing will have a section on the subject. The problem can
be briefly summarised as follows, and for a more detailed discussion
the reader is referred to Wellner’s well-illustrated description of the
problems encountered in thresholding images for the DigitalDesk [56].

Under ideal lighting conditions, the ‘white’ and ‘black’ pixels in the
image would each cover a limited range of values and would appear as



VAE techniques

Chapter Three 24

two clear peaks in the image’s histogram.  In practice, the wide range
of values for each of the two types, and the small number of black
pixels relative to white, mean that the black peak is lost in the noise of
the white.  There are many sophisticated thresholding methods
available to tackle these problems. For example, we can attempt to
solve the former by examining only points near the black/white
boundaries, thus giving a better balance of black and white pixels
(Gonzales & Woods [19]), and the latter by dividing the board into
tiles, finding local thresholds suitable for the centre of each tile, and
then extrapolating from these centres to find suitable threshold values
for intervening points (Castleman [8]).  Another option is to model the
background lighting level by trying to fit a polynomial B-spline
surface to the lighter pixel values, a method suggested (though not
described in detail) by Ballard & Brown [1].

Unfortunately, these methods are rather too slow for an interactive
system on our hardware, so we use an adaptive thresholding algorithm
developed by Wellner for the DigitalDesk [54].  This involves
scanning the rows of pixels one at a time, alternating the direction of
travel, and maintaining a running average of the pixel values.  Any
pixel significantly darker than the running average at that point is
treated as black, while the others are taken to be white.  To incorporate
some vertical stability, the threshold actually used at each position in a
row is the mean of the running average calculated there and the
running average used at that position in the previous row.

Many questions may be
asked about the theoretical
basis of this algorithm.
How is the running average
initialised?  Why this
arbitrary difference between
horizontal and vertical,
when lighting variations
honour no such distinction?
In the final analysis, of
course, there is no
universally appropriate
thresholding algorithm,
because there is not always
an unambiguous ‘ideal’

result. How should we deal, for example, with text printed over a
watermark background? (Figure 8) How can one analyse the
background lighting on a page which consists chiefly of colour
photographs, or which is subject to sharply-defined shadows?  There
has to be some selection based on the task in hand, and the conditions
likely to be experienced. Wellner’s simple algorithm works
remarkably well in cases where the image is known to have small
areas of dark on a light background, such as we find in the typical
printed page and on a whiteboard, and it only involves a single
examination of each pixel.  It is this algorithm which has been used for
BrightBoard.

Figure 8: A watermark background poses an interesting thresholding problem



VAE techniques

Chapter Three 25

Resolution Enhancement and
Greyscale Thresholding

A disadvantage of thresholding a greyscale (typically 8-bit) image to
produce a single-bit-deep bitmap is that much potentially useful
information is discarded.  The antialiasing effect of the grey levels
gives the image a higher apparent resolution than it actually has, and
thresholding reveals the true limitations by making diagonal lines
‘jaggy’.  The image can be improved by enhancing the resolution
artificially using the information contained in the grey levels.  A
simple way to achieve this is through linear interpolation as shown in
Figure 9. New pixels are generated between the original ones by
averaging the grey levels of the nearest originals, to create an image
with twice the resolution in each axis.

The thresholding process will then produce a higher resolution result.
This may not, in truth, be closer to the original document at which the
camera was pointing, but given the nature and source of the images it
is likely to be so, and almost always produces a better looking result.
The thresholding and any further processing will, of course, take
longer, having four times as many pixels to analyse.  A sample output
of this algorithm is shown in Figure 10.

uts

q+r+t+u
4

p+q+s+t
4

t+u
2

s+t
2

r+u
2

q+t
2

p+s
2

original pixels generated pixels

q+r
2

p+q
2

rqp

Figure 9. New pixels are generated between the original ones by averaging
the grey levels of the nearest originals



VAE techniques

Chapter Three 26

An alternative approach, if the aim is to incorporate the image in an
electronic document which has a white background, is to keep the
greyscale information but normalise the background to white.  If, at
each pixel position, we can form an idea of the grey level representing
white, we can adjust the pixel by the difference between this value and
true white.  This ‘white-level balancing’ gives a greyscale image,
maintains the antialiasing, but also allows a white background.  An
additional bonus is that some representation of grey levels other than
black and white is preserved, so we can tell when parts of the image
have been drawn in a different colour.  To estimate the white value at
any pixel we can use the methods outlined for thresholding in the
previous section: local histogram analysis, edge analysis, modelling of
the lighting levels, or a simple running-average.  The problem is more
difficult than thresholding, because we wish to ascertain the actual
value of ‘white’ where we previously just needed a threshold
somewhere between ‘white’ and ‘black’.  However, we also have an
additional constraint: nothing can be lighter than the white
background.  Whenever we find a pixel which is lighter than our

Original image
(shown double size)

Original image after simple thresholding
(shown double size)

Resolution-doubled image Resolution-doubled image after simple
thresholding

Figure 10. The resolution-doubling algorithm - sample results



VAE techniques

Chapter Three 27

current estimation of the background we know that the background
value must be wrong and should be lightened.

One approach is simply to reset the background value to this new,
lighter pixel value.  However, it was found that images captured from
the whiteboard contained a certain amount of electrical ‘ringing’ at
sharp black/white transitions. The following graph shows the values of
pixels in a horizontal line taken from Figure 12A, through the words
“All the world’s”.

The gradual lightening of the background is obvious, and the deep
valleys correspond to the black strokes of the writing. On either side of
these valleys are small peaks which are electrical, not image, artefacts.
They can be seen in Figure 12 (A) as a ‘silver lining’ around the
characters. Using the peak values to set the white value would cause
the true white to appear too dark.

We reduce this effect by adjusting the white value in the direction of
lighter pixels, but not by the whole amount of the difference. Short-
lived peaks are thus damped out to some degree.

0

20

40

60

80

100

120

140

160

180

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

51
4

54
1

56
8

59
5

62
2

64
9

Figure 11. Pixel values against x-coordinates for a horizontal line taken from Figure 12A



VAE techniques

Chapter Three 28

On this basis, then, we can propose the following ‘running average’
algorithm which is a modified version of Wellner’s thresholding
method:

for each row of the image:

traverse left to right or right to left (alternately)
and for each pixel:

/* Adjust the evolving background */
background = (background * (N-1) + pixel) / N

/* If the current pixel is lighter than the background, then
 move faster towards it  (M is smaller than N)   */
if pixel > background:

background = (background * (M-1)+ pixel) / M

/* Adjust pixel value so that the current idea of the background,
  or anything lighter than it,  would be white */
newpixel = int(pixel + (maxval-background))
if newpixel > maxval:

newpixel = maxval

set pixel value to newpixel

The values N & M can be adjusted depending on the situation, but
values of N=80 and M=2 seem to work well for a variety of images.
The bit-shifting optimisations described in the thresholding section
can also be applied if M and N are powers of 2. For an 8-bit
whiteboard image the number of grey levels remaining after this
process is typically only 16 or so, and the output will generally be
normalised (contrast-stretched) to produce a useful result.

An alternative but much more expensive approach is to use a median
filter on the image to produce a background which can then be
subtracted from the original. Sample output for both methods is shown
in Figure 12.

The next two chapters describe in more detail applications which make
use of these techniques.



VAE techniques

Chapter Three 29

A.  Original image

B.  Differencing from a background created with a median filter of radius 16.

C.  Using the ‘running average’ algorithm described.

Figure 12. Grey level 'thresholding'



30

Chapter Four

The Software
Cameraman

Introduction - The motive

It has been the tradition at EuroPARC to videotape the weekly
lunchtime seminars.  These are generally informal talks given by
visitors to the lab, who use a variety of visual aids to illustrate their
points: videos, miscellaneous gadgets, whiteboards, overhead
projectors and computer displays.  The camera used for recording the
meetings stands on a tripod at the back of the room; it often has no
human operator, and so covers a wide field of view to ensure that all
of the action is captured. There are more reasons for this than simply
the lack of volunteer camera operators. We have found that speakers
who are happy to talk to a roomful of people containing an
inconspicuous camera are less comfortable when their every move is
being tracked by a human cameraman. An unfortunate consequence is
that the important detail is often lost; the writing on the whiteboard,
the demonstration video, the expression on the speaker’s face cannot
be seen clearly on the final recording.  Even overhead projector slides
are often unreadable.  This is chiefly due to the limits of the
resolution, but the diversity of light levels also plays a part.  If the
camera is zoomed in on the OHP screen or a computer monitor then
the automatic iris compensates for the brightness of the image, but
when viewing the whole scene the OHP screen is generally a blaze of
white while the speaker is lost in the shadows.

Imagine a camera under the control of a computer, which would try to
decide which parts of the image were likely to be of interest, and
would direct the camera towards them by means of a motorised
pan/tilt/zoom unit.  In this chapter we describe a prototype software-
only system, which could never be as good as a human operator, but
which can produce a more useful video record than a stationary
camera alone.



The Software Cameraman

Chapter Four 31

Doing it with software

The software cameraman was developed as a model with which to
explore the concepts.  Rather than having actual mechanical control of
a camera, the system selects the interesting part of an incoming video
image and scales it to a fixed size.  This gives the ‘eyepiece’ view of
an imaginary camera which is remarkably convincing, and which
allows different algorithms to be tested without the potential problems
of experimental hardware.  (See Figure 13)

This system of expanding & shrinking a section of the image does, of
course, suffer from loss of resolution when the camera is ‘zoomed in’,
but there are many occasions when this is not a problem or when low
resolution is enforced for other reasons.  Commercially available video
systems such as QuickTime have tended to use small video frames
(typically 160x120 pixels) to increase the frame rate available from
given hardware and reduce storage requirements.  Consider the
production of a QuickTime movie.  A cheap frame grabber might have
a resolution of 640 x 480 pixels, so the creation of suitable images
entails discarding 93.75% of the available pixels.  This prototype
system could be used to produce a movie of a meeting, automatically
selecting the areas to discard.  We simply set the eyepiece size to
160x120, and the program finds the most interesting parts of the
meeting to occupy those few valuable pixels which remain.

An alternative application might be the Virtual Window system [16]
described in Chapter 2.  Gaver et al used a similar but rather simpler
algorithm which analysed a user’s head movement in a local office and
used it to control a camera in a remote office which was providing the
source for a video-conferencing link.

The program chooses the interesting part of the
incoming video image, selects a surrounding 4x3 view...

...and scales it to fill the eyepiece

Figure 13: The Software Cameraman



The Software Cameraman

Chapter Four 32

What constitutes interest?

In most situations we are interested in the humans visible in an image
and these are almost always moving, whether consciously or not.  The
cameraman program, then, deems those areas to be the interesting ones
where movement is occurring or has occurred in the recent past.

The Masked Running Video Average, as described in the last chapter,
was developed originally for this application, and allows us to
distinguish human or similar movement from periodic noise occurring
in the background. We use a low-resolution (60x40) MRVA to analyse
the movement in the camera’s image.

Selecting the area

Given a new ‘difference’ image created from the MRVA, how do we
decide which area to view?

First we find the rectangular ‘interest area’ which encloses the
difference points having greater than a specified ‘squelch’ value, i.e.
the area in which significant changes are occurring. Then, provided
more than a certain number of these points have been detected, we
adjust the current viewing area based on this new interest area.  The
eyepiece has a 4x3 aspect ratio, so the object is to come up with a
four-by-three rectangle which includes the interest area, but the way in
which we do this affects how smooth the ‘camera movement’ will be,
and how comfortable the resulting output is to watch.

Selecting the eyepiece view

At present the cameraman can operate in any of 4 ‘intelligence’
modes, each of which has a different method of choosing the viewing
area:

• Naïve - The viewing area is the smallest 4x3 rectangle within the
overall frame which encloses the area of interest.

• Slow - Each corner of the viewing area moves one quarter of the
way from its previous position to the new position that would be
calculated by the ‘Naïve’ mode.  This acts as a damper on sudden
movements and false triggers.

• Heavy - This is more closely modelled on a real camera.  The
viewing area has a mass, and is acted on by a force which
accelerates it towards its new position.  There is a damping factor
which decelerates it.

• Algorithmic - This is based on the slow mode, but movement of the
viewing area is constrained by certain rules which attempt to
impose some order and reduce the possibility of sea-sickness
amongst viewers.

While intuition suggests that the ‘Heavy’ mode should be the right
way to do it, because we are used to seeing the output from real
cameras with real mass, there are several parameters which must be



The Software Cameraman

Chapter Four 33

tweaked and several problems to be solved, including overshoot (when
the camera builds up too much momentum) and sluggishness (when
the camera does not accelerate fast enough to keep up with the target).
In trials, the view was sometimes observed to follow a subject around
the image without ever quite catching it.  In practice, the ‘algorithmic’
mode was found to produce the best results of the methods mentioned
above.  It currently uses the rules outlined in Figure 14.

Aesthetic Aspects of Camera Control

A professional camera operator uses many rules of thumb which we
would like to emulate in software.  Unfortunately, these often depend
on fore-knowledge of the subject’s movements.  For example, a close-
up of a person’s head, unless they are facing the camera, should
include extra space (known as ‘nose room’) in the direction in which
they are looking.  Similarly, a cameraman tracking a walking person
will generally put two-thirds of the image in front of the subject (‘lead
room’) and one third behind.  The audience is not interested in where
the subject has come from, as much as where he or she is going.  It is
attention to details like these which makes films comfortable to watch
[57]. For a good introduction to such rules, see Zettl [59].  The

size ratio?

where is action? does new position
overlap old?

does new position
overlap old?

is sr > 4.0?

no movement pan cut pan and/or zoom

small (0.5 < sr < 1.4)
no need to zoom -

may need to pan or cut

large (sr < 0.5 or sr >1.4)
zoom or cut

All within horizontal
central 3/4 of current

image

yes
no

no yes

yes

no

Producing a new view from the current one and a ‘dumb’ 4x3 rectangle

Figure 14: The rules for the ’smart’ mode of the software cameraman.  sr stands for size ratio, and is the

ratio of the square of the diagonal of the new naive 4x3 frame to that of the current viewing frame.  These
rules are designed to reduce the amount of zooming , vertical panning, and unnecessary movement.



The Software Cameraman

Chapter Four 34

problem for an automatic system is that it has no knowledge, when it
sees a movement from left to right across the image, whether the
person is about to stop and turn around, or whether they will continue
walking.  The human cameraman knows because everything is
carefully scripted in advance.  There is very little truly live,
spontaneous television these days, and in those few situations where
the camera operator does not know the future, he or she has a range of
human skills which allow at least an inspired guess.  If a cricket
captain asks a question of his team and looks expectantly at one of
them, the cameraman can predict that this player will probably speak
next.  This the computer cannot do.  Nevertheless, the simple rules
described in Figure 14 are only a first attempt, and there is much scope
for improvement.  As an example, the practice of ‘setting the scene’
before zooming in on any particular area and before major cuts, might
be incorporated without too much trouble.  Ideally, the rules would be
expressed in an embedded scripting language, which would allow the
system to be reconfigured easily, and possibly dynamically.

The ALIVE system [34,35] described in Chapter 2 looks for the points
of maximum convex curvature in the outline of a human; such points
are likely to be the head, hands and feet.  This knowledge could also
be incorporated in framing rules.

Baumberg and Hogg [3] describe an analysis of the outlines of
pedestrians extracted automatically from real image data.  The
direction of motion of a pedestrian is calculated off-line and associated
with a B-spline representation of their particular outline visible at that
time.  The set of prototypes thus constructed can be used to estimate
the direction of movement of a person from their outline.  In many
situations this information will be more easily available by other
means, particularly if motion has been used to separate the subject
from the background in the first place.  But in certain applications, for
example with low-frame-rate security cameras, such data may be very
valuable.  In the case of the software cameraman, the outline of the
subject might allow us to predict their likely future movements and so
make more intelligent framing decisions.

Intelligent Studio and SmartCams

Pinhanez and Bobick [42] describe a more recent system than that
outlined here.  The aim is to build intelligent robotic cameras
(SmartCams) which respond to verbal commands from a TV director
such as “close up of actor 1” or “follow the hands”.  They too simulate
the system by selecting an area of a larger image, and detect movement
by image subtraction.  However, their system requires a script
describing the actions to occur and a set of 3D models which represent
the positions of the actors and other items during the programme.  The
script is used to select the appropriate 3D model, which is then
matched with the video input to give the system an idea of which part
of the image contains the hands, etc.  Thus, it can make more informed
decisions, but requires significant initial human intervention.



The Software Cameraman

Chapter Four 35

Future Possibilities

• Very high-resolution cameras are starting to appear on the market
as single chip devices.  This means that a system like this which
selects a section of the total image will still be able to output
images of reasonable quality.  A security camera monitoring a bank
vault, for example, could be fitted with a very wide angle lens.  The
system could track any movement within the vault, and display
close-ups on the security guard’s screen which were still of TV
quality.

• Human beings, of course, have other senses than just vision, and it
might be interesting to equip an automatic cameraman with extra
senses too: a sound-source location system, for example, or
pressure pads on the floor.

• There is no need to limit the system to one video input.  An
interesting project would be the construction of a complete
software film crew which monitors several video sources, and
chooses which to display. Samaria et al describe a system which
monitors multiple video sources and displays each at a size
dependent on the amount of movement occurring in the image [44].

• Most of the camera work we see in the cinema or on television has
been heavily edited.  For this experiment we were interested in
doing things in real time, but it would be interesting to see what
results could be obtained by processing a video recording of a
meeting after the event - a software editor instead of, or to
complement, the automatic cameraman.

In Chapter 6, we describe a prototype toolkit for the construction of
VAEs, and we will return to the automatic cameraman as an example
application of this toolkit. The lessons learned from the automatic
cameraman about detection of motion in noisy images were also
important when it came to detecting motion in BrightBoard, to which
we turn next.



36

Chapter Five

BrightBoard

Introduction – The whiteboard as
a user interface

From prehistoric cave paintings to modern graffiti, mankind has
conveyed information by writing on walls.  They provide a working
surface at a convenient angle for humans to use, with space for
expansive self-expression, and they form a natural focus for a
presentation or group discussion.  The blackboard, the more recent
whiteboard, and to some degree the overhead projector, are an
extension of this basic theme, with the added facility of being able to
erase easily any information which is no longer needed.  Whiteboards
have become very popular tools in environments ranging from the
kindergarten to the company boardroom.

BrightBoard aims to capitalise on this natural means of expression by
making use of the whiteboard as a user interface.  It is not the first
system to explore the whiteboard’s potential. Projects such as Tivoli
[41] have created note-taking, shared drawing and even remote
conferencing systems based on the emulation of a whiteboard using a
computer and a large display.  There have also been many variations
on the whiteboard theme.  VideoWhiteboard [50] used a translucent
drawing screen on which the silhouette of the other party could be
seen.  Clearboard [28] was a similar system which used the metaphor
of a glass whiteboard where the parties in a two-way video conference
were on opposite sides of the glass, allowing both face-to-face



BrightBoard

Chapter Five 37

discussion and shared use of a drawing space.  Typically, these
systems use a large-screen display with electronic pens whose position
in the plane of the screen can be sensed and which may have pressure-
sensitive tips to control the flow of ‘ink’, giving a more realistic feel to
the whiteboard metaphor.  The Xerox Liveboard [10] is an example of
a complete, self-contained, commercially available unit built on this
basis; it has a workstation, Tivoli software, display and pens in one
ready-to-install package.  The software allows several users
(potentially at different locations) to draw on a shared multi-page
whiteboard. Each page may be larger than the screen area, and can be
scrolled in any direction.  The software is controlled by a combination
of gestures, buttons and pop-up menus.  A more recent commercial
offering is SoftBoard.  This is a special whiteboard which uses pens
and erasers similar to conventional ones but for the fact that they have
reflective sleeves allowing their position to be detected by an infra-red
laser scanning device fitted to the board.  The movements of the pens
and erasers are relayed by the board to a computer, which can then
construct an electronic version of the image on the board.

Such systems, while useful, have their failings.  Their price is typically
quoted in thousands, if not tens of thousands of dollars, they are often
delivered by a forklift truck, and are generally installed in board-rooms
whose primary users have neither the time nor the inclination to
master the software.  They also fail to achieve the ease of use of a
conventional whiteboard, even for those experienced with them. To
quote one user, “The computer never quite gets out of the way”.

Examples of whiteboard use observed by the author, which tend not to
translate well into the electronic domain, include the following:

• A ‘y’ was written on the board, but looked rather like a ‘g’.  The
writer used a finger to erase part of the letter before continuing; a
process which barely interrupted the flow of the writing.

• During the design of a user interface, screen components such as
buttons and scrollbars were drawn on Post-It notes or on pieces of
paper affixed to the board with magnets.  They could then be
added, removed or repositioned easily within the sketches on the
board.

• The whiteboard eraser had been temporarily mislaid, and a paper
towel was used instead.

A computer-based “whiteboard metaphor” always breaks down
somewhere because the computer’s view of the board differs from the
user’s.

A Video-Augmented Drawing Surface

The whiteboard, then, seems to be a good place to test some of the
theories behind Video-Augmented Environments which were
expounded in Chapter 1.  By using video, the activity on a real
whiteboard can be monitored and actions can be taken based on the
activities seen.  This can be viewed either as a novel user interface for



BrightBoard

Chapter Five 38

a computer, or as an interesting set of extensions to a whiteboard,
depending on one’s point of view.  Either way, the system offers some
advantages over the alternatives mentioned in the previous section, as
this solution is:

Familiar

An ordinary whiteboard is used.  Many alternatives use special
boards or computer screens and electronic pens.  These do not
‘feel’ quite the same as the simple ‘board and marker pen’
combination with which users are familiar.  The marks produced
by a standard whiteboard pen, for example, can be adjusted to
quite a large degree by changing the pressure applied, and the
angle at which the pen is held. This is seldom mirrored in the
electronic world.

Non-intrusive

The video camera operates at a distance.  It does not restrict the
user’s freedom of movement or interfere with his focus of
attention, which can be a problem with systems dependent on
physically-connected pens or Datagloves, as is the case with the
Charade system [2] mentioned in Chapter 2.

Ignorable

The whole system can be disregarded by someone who just
wishes to use a standard whiteboard without any advanced
facilities.



BrightBoard

Chapter Five 39

BrightBoard In Use

BrightBoard is a whiteboard.  Anybody who can use an ordinary
whiteboard can use it.  In addition, it provides some of the
functionality of electronic documents – the images on the board can be
saved, faxed, printed and emailed simply by walking up to the board
and making appropriate marks (See some examples in Figure 15).

A ‘Print’
command

Selecting an area of the board A ‘Fax to Peter’
command

Figure 15.  Some sample BrightBoard commands



BrightBoard

Chapter Five 40

BrightBoard can also operate as a more general input device for any
computer-controlled system.  An example of its use might be as
follows:

Eric is leading a meeting in a room equipped with a BrightBoard
camera.  He arrives early to discover that the room is a little chilly, so
he writes the temperature he requires on the whiteboard, , and
the air-conditioning reacts appropriately.  When the participants
arrive, he makes a mark on the board to start the video-recording of
the meeting, , and then uses the board as normal.  During the
meeting the participants request a copy of a diagram on the board, so
Eric marks that area of the board and prints off six copies. . As
the meeting draws to a close, Eric scribbles a quick note requesting
coffee for six, marks out the area as before, and mails it to his
secretary.  Finally, he switches off the video-recorder and the air-
conditioning by erasing his original marks.

All this control has been achieved without Eric leaving the focal point
of the meeting – the whiteboard – and without direct interaction with
any machines or controls.

Many aspects of the system’s operation can be easily reconfigured,
including:

• the marks that BrightBoard will recognise, by capturing and
labelling samples. (“This mark is an ‘S’.”).

• the relationships between different marks required to constitute a
command. (“A save command is an ‘S’ inside a box.”).

• the action to be taken when a particular command is specified.
(“When you see a save command, execute this shell script.”)

Corner marks can be used to delimit an area of the board, and
commands can then be made to act only on this area.  Inexperienced
users may find it useful to have a summary of the available commands
posted beside the whiteboard.

BrightBoard uses a video camera pointed at a standard whiteboard,
thus eliminating the need for expensive installations and electronic
pens.  It uses audio or other feedback, and so has no need of a large
display.  The program, once configured, puts minimal load on the
workstation, and requires no manual intervention.  The computer can
therefore be shut away in a cupboard, or put in a separate room –
particularly useful for meeting rooms where the hum of fans and the
flicker of screens can be a distraction.



BrightBoard

Chapter Five 41

How does BrightBoard work?

BrightBoard consists of several programs (See Appendix A), but the
main one has a structure common to many VAE applications.  It
centres around a loop containing the following steps:

Triggering

Preprocessing

Feature detection

Analysis

Execution

In the case of BrightBoard, these steps incorporate the following:

1. Triggering
Wait until a suitable image can be captured, and then do so.

2. Preprocessing of the image.
The images captured from the camera are greyscale, and these need
to be thresholded to distinguish the text and drawings on the board
from the board itself.

3. Feature Detection (Segmentation & Recognition)
Find the marks on the board & attempt to recognise them.

4. Analysis
Examine the features found, looking for particular situations.  For
BrightBoard this means detection of the combination of symbols
required to constitute a command.

5. Execution of some action(s) based on the situations found.

In practice, these stages may not be strictly sequential.  The triggering
might be accomplished by dedicated hardware inside the camera, for
example.  In BrightBoard the execution of external commands is done
as a separate background process.

We shall look at each of these stages in turn.

Triggering

There are two considerations we wish to address in this first section:

• Whiteboards suffer badly from obstruction – the interesting things
are almost invariably happening when somebody is obscuring the
camera’s view.

• One of the aims of BrightBoard is that it should be practical to have
it running all the time.  To start it up whenever a user wished to
write on the board would largely defeat the object of the exercise,
but, on the other hand, it would not be acceptable for an
infrequently used facility to consume too many resources on the
user’s workstation. However, we can take advantage of the fact that



BrightBoard

Chapter Five 42

marks do not appear on the board of their own accord, but require
humans to put them there.

Both problems can be solved by the use of a ‘triggering’ module,
which can detect when people are in the image and wait until they
have moved out of the way.  BrightBoard normally operates in a semi-
dormant ‘standby’ mode.  When the system is first started, a number
of ‘background’ frames are captured and used to initialise an MRVA
as described in Chapter 3. Every half-second or so, the triggering
module captures a low-resolution image and examines a 40x30 grid of
pixels, comparing each with the MRVA.  It calculates the percentage P
of these pixels which have changed by more than a certain threshold.
This puts very little load on a typical workstation.

The triggering module can operate in two modes:

• In the first it waits for movement, indicated by the percentage P
being greater than a given threshold.  If movement is seen it allows
BrightBoard to carry on, otherwise it goes back to sleep for another
half-second before trying again.

• In the second mode it waits for stability, where P is less than a
(different) threshold.  This second state does the reverse – it sleeps
while pixels are changing, and only returns when things have
stabilised.

By concatenating these triggers, we wait first for movement and then
for stability.  We say, in effect: “Ignore an unchanging whiteboard.
Wait until you see movement in front of it, and when this movement
has finished, then proceed with your analysis”.  A full-resolution
image can then be captured, to be used in the following stages.

Preprocessing

If we are to analyse the writing on the board, we must now distinguish
it from the background of the board itself.  Various thresholding
methods have been discussed in Chapter 3. As this is an interactive
system and response time is important we use Wellner’s adaptive
thresholding algorithm developed for the DigitalDesk [54].  The
lighting variations on a whiteboard are often even larger than those
experienced on the DigitalDesk, where the working surface is
illuminated from above by a projector, so a shorter running average
was used to cope with higher frequency variations.

Feature detection

There are two distinct operations here; first we find the marks on the
image of the board, then we attempt to recognise them.

Finding

Each significant black ‘blob’ (essentially a connected component) in
the thresholded image is found and analysed by the following process:



BrightBoard

Chapter Five 43

We are not interested in blobs consisting of only a few pixels.  With
the camera zoom setting chosen to include a reasonable area of a
whiteboard, the symbols we wish to recognise will generally contain
between a hundred and a thousand pixels.  We need not, therefore,
examine every pixel in the image, but can examine every third or
fourth pixel in each direction with fair confidence that we will still
strike any areas of interest.  This has the added benefit of ‘missing’
much of the noise in the image which appears as blobs of one or two
pixels.

Once a black pixel is found, a flood-fill algorithm is used to find all
the black pixels which are 4-connected to that one.  As the fill
proceeds, statistics about the pixels in the blob are gathered which will
be used later in the recognition process; for example, the bounding box
of the blob, the distribution of the pixels in each axis, the number of
pixels which have white above them and the number with white to the
right of them.  For the sake of speed, an upper limit on the number of
pixels is specified to the filling routine.  Beyond this limit the blob is
unlikely to be anything we wish to recognise, so the flood fill
continues, marking the pixels as ‘seen’, but the statistics are no longer
gathered.  When the fill completes, if the number of pixels is less than
this upper limit but more than a specified lower limit, the blob’s
statistics are added to a list of items for further analysis.

Recognising

The task of recognising the marks on the board is essentially the
problem of handwriting recognition.  This is a large and active
research field, and for a good overview the reader is referred to
A.W.Senior [46].  The problem area can be subdivided into on-line
and off-line systems.  The former covers those systems which receive
their data from some kind of digitising device attached to the
computer, and for which the recognition task is simplified by the
availability of temporal information.  Often it is only the ordering of
the strokes which is considered, but some systems use the actual
timings, perhaps to create a mathematical model of the handwriting.
For example, Eden [9], and later Hollerbach [24], modelled

Figure 16: A sample image captured... Figure 17: ...and processed by BrightBoard



BrightBoard

Chapter Five 44

handwriting as the result of coupled horizontal and vertical
oscillations superimposed on a constant rightward velocity.  Timing is
also helpful in applications such as signature verification.

Off-line systems such as BrightBoard, in contrast, tackle the more
difficult problem of deciphering handwriting that has already been
written down and for which no timing information is available.  Suen,
Berthod and Mori [49] divide isolated-character recognition
techniques into 3 groups:

• Those based on global features (Templates, Fourier transforms,
etc.)

• Those based on geometrical or topological features

• Those based on point distributions (zoning, moments, crossings &
distances, characteristic loci)

For BrightBoard we use a recogniser based chiefly on very simple
measurements of point distributions, which has the advantage that no
further processing of the image is necessary.  Many things could be
done by analysing the topology of each blob, for example, and
representing its skeleton or boundary as a Chain Code [13, 14] before
further analysis, but this would involve a significant amount of pixel
processing which we have so far managed to avoid. After the
thresholding, the majority of white pixels have been ignored and each
black one will have been examined maybe twice or three times
depending on the flood-fill algorithm.  Yet, for the limited range of
symbols we wish to recognise, the statistics gathered are sufficient. (In
addition, other kinds of analysis can cause problems with the low-
resolution and potentially noisy images used by BrightBoard.)

From the statistics we can calculate a feature vector - a set of real
numbers representing various characteristics of the blob, which can be
thought of as coordinates positioning the blob in an n-dimensional
space.  At the time of writing, 12 dimensions are in use, and the values
calculated are chosen to be reasonably independent of the scale of the
blob or the thickness of the pen used.  For example, one value is the
ratio of the number of black pixels with white above them to the
number of black pixels with white to the right of them.  This gives a
rough measure of the ratio of horizontal to vertical lines in the symbol,
without involving any stroke analysis.  Another set of characteristics
are based on moments about the centroid of the blob.  Moments have
been found to be very useful in this type of pattern recognition (see,
for example, Cash & Hatamian’s selection of moments for OCR [7]),
and a hardware implementation is possible allowing substantial speed
improvements [21].  Hu [26] developed a set of seven moments which
were unchanged by scale, translation and rotation.  BrightBoard,
however, only uses simple ‘moments of inertia’ about horizontal and
vertical lines through the centroid of a blob, because these can be
calculated without a further pass over the image. For the full list of
statistics gathered and features used in the vector, see Appendix B.

The recognition is done by comparing the feature vector of each blob
found to those of prototype copies of the symbols we wish to match.



BrightBoard

Chapter Five 45

These are all calculated off-line in advance from a ‘training set’ of
board images where the symbols have been labelled by hand.  A
special ‘training set creation’ program (tscreate) exists to simplify
this process.  The user starts the program, writes the sample symbols
on the board, and then presses the ‘Return’ key.  The system captures
the image, displays it on the screen, and then highlights each blob in
turn, prompting the user to enter a name, or to ignore the blob.  The
images are then stored along with the labelling information.

Given the feature vector of a candidate blob to be recognised, and a set
of labelled prototype vectors, we then have to make a classification.
The simplest recogniser might just find the closest prototype in the n-
dimensional space to the candidate blob, and identify the blob as being
of the same type.  This has several limitations:

• The scales of the dimensions are not in any way related, and a
distance of 0.1 in one dimension may be far more significant than a
distance of 1.0 in another.  We therefore use the Mahalanobis
distance [20] instead of the Euclidean distance, which simply
means that each dimension is scaled by dividing it by the standard
deviation of the values found in this dimension amongst the
prototypes.

• The second limitation is the absence of a rejection condition.  This
simple recogniser assumes that all blobs can be recognised, which
is most unlikely.  Using the Mahalanobis distance, however, it
makes more sense to reject blobs which are more than a certain
distance from even the closest prototype.  If this distance is more
than n D , where n is the number of dimensions, it means that the
candidate blob is on average more than D standard deviations from
the prototype in each dimension.  By adjusting the value of D the
selectiveness of our recogniser can be controlled.

• The third is that, in many of the dimensions, the groups formed by
different symbols may overlap to a considerable degree.  The
capital letters B and R, for example, are similar in many ways, and
it is quite possible that the statistics calculated for a candidate R
may place it closest to a prototype B (see Figure 18).  To help avoid
this, we use a k-nearest-neighbours algorithm which states that X
can be classified as being a symbol Y if at least a certain number of
its k nearest prototypes are symbol Y.  For BrightBoard, we
classify X as being an R if at least 3 of its 5 nearest neighbours are
Rs.  The cost of finding the k nearest neighbours is approximately
proportional to the number of prototypes examined, if k is small.
For a fuller discussion of nearest-neighbour classifications, see
Nadler & Smith [38].



BrightBoard

Chapter Five 46

• Lastly, the values used for some dimensions are less reliable than
others at distinguishing between symbols.  We therefore have a set
of dimension weightings which are adjusted by hand on a trial and
error basis.  All distances in a given dimension are multiplied by
the appropriate weighting before being used.  A number of
methods for selecting weights automatically are described in [7].

Several methods are available which could be used to improve the
partitioning of the n-space. The Karhunen-Loève (or ‘Hotelling’)
transform, for example, can be used to choose alternative axes which
highlight the distribution of the prototypes.

Simard et al describe an alternative distance metric which is invariant
to small transformations of the input image [47]. When a blob is
transformed (eg. rotated) by a transformation that depends on one
parameter (eg. the angle of rotation), the set of output blobs forms a
one-dimensional curve in the feature-vector space. Under n possible
such transformations, a manifold of up to n dimensions is formed.  The
minimum distance between the manifolds for two input blobs is
invariant under transformations of the inputs and so provides a more
robust metric. A planar tangent to the manifolds is used to
approximate this metric efficiently.

Such techniques could offer substantial improvements for systems
needing to recognise a larger input alphabet, but they have not been
found necessary for this version of BrightBoard, which uses an
alphabet of just 17 symbols.

Figure 18. If circles are B prototypes, and squares are R
prototypes, how should we classify X?



BrightBoard

Chapter Five 47

Neural Alternatives

A great deal of work has been done, since Suen et al’s survey of
recognition techniques mentioned earlier, on neural-network based
methods. This recognition phase is an obvious candidate for such
solutions, and these have been investigated using a simple 3-layer
back-propagation network, which takes the feature vectors as inputs
(Figure 19).   The use of a neural net could mean improved reliability
and constant recognition time, at the expense of less predictability and
more time-consuming analysis of the training set.

The symbols currently recognised by BrightBoard

Symbol Name Symbol Name

b bl
(bottom left

corner)

f br
(bottom right

corner)

p s0

s s1

checkbox s2

v s3

r s4

tl
(top left
corner)

s5

tr
(top right
corner)



BrightBoard

Chapter Five 48

However, the ‘neural’ version
of BrightBoard has never
worked quite as well as the
standard version.  At present
the training data consists of
about 20 copies of each of the
17 symbols we recognise, and
this is really far too small for
neural net training.  To
combat this we are
experimenting with the use of
‘fake’ training data, created
by applying to the true data
the sort of variations that
might be found in normal
handwriting: small amounts
of shear and rotation, and

variations in scale and aspect ratio.  This is less time-consuming than
the capture of new training data, and experiments show an
improvement in both neural- and non-neural-based recognition rates,
but the non-neural version is still more reliable.  Another disadvantage
of the neural version is apparent when adding an extra symbol to the
recognised alphabet.  With standard BrightBoard, this just involves
capturing and labelling some sample images, and then calculating the
feature vector for these new prototypes. For the neural version, the
system must, in addition, add an extra perceptron to the output layer,
and then retrain the net. Hertz et al in their introduction to neural
networks quote John Denker: ‘Neural networks are the second best
way to do almost anything’! [22]

Other possible improvements to the recogniser

The features used were selected somewhat arbitrarily, and more and
better ones could certainly be added. As more characteristics are
examined, however, it can be harder for the system to determine which
are the important ones. This is sometimes known as the ‘ugly
duckling’ effect, the idea being that it is easier to tell a duckling from a
cygnet if you look at a small number of relevant differences than if
your examination includes the many similarities!

Instead of using the positions of all the prototypes, each symbol could
be thought of as having a ‘cloud’ of prototypes.  If the centre of the
cloud and some measure of its extent in each dimension are stored, any
candidate symbol can be analysed by examining the degree to which it
is engulfed by each of these clouds. There should be big speed gains
here, but this system does depend on the clouds being basically
spheroidal.

The limitations of a very crude recogniser can be overcome to a
substantial degree by the choice of command patterns.  In practice we
find that the current recogniser is capable of distinguishing well
between the symbols in its known alphabet – we measured recognition

Feature vector values

symbol nsymbol 1

etc

Figure 19: The net used for the neural
version of BrightBoard



BrightBoard

Chapter Five 49

rates in the region of 93-95% – but it has a tendency to be over-
generous, and recognise as valid symbols some things which are not.
The chances of these ‘false’ symbols occurring in such relationships as
to constitute a valid command are, however, very small. Their
incidence can be reduced by adjusting the selectivity of the recogniser
as described earlier, at the expense of a slightly reduced recognition
rate.

Analysing

We now have a system which waits for an opportune moment,
captures an image of the board, and finds and recognises the symbols
in the image.  The next problem is how to describe the commands we
wish to have executed in terms of these symbols.  We do not wish to
hard-code such descriptions into the program, so we need a grammar
with which to specify the combination of symbols which constitute,
say, a ‘print’ command.

Fortunately, there are languages available which specialise in the
description and analysis of relationships: those designed for Logic
Programming, of which Prolog is the most common.  If the
information from the recogniser is passed to a Prolog engine as a set of
facts, we can then write Prolog rules to analyse the contents of the
board.  For each blob found, BrightBoard assigns a unique number x
and adds to a Prolog database an assertion of the form:

bounds( itemx, w, e, n, s )

which specifies that blob x has a bounding box delimited by the north-
west corner (w, n) and the south-east corner (e , s).  Simple rules can
then be written to determine, for example, whether blob A is inside
blob B, or to the right of it, or of a similar size, from these entries.  In
addition, if the blob has been recognised, a second assertion will be
made, of the form:

issym( itemx, y )

which indicates that item x has been recognised as being symbol y.  A
‘Print’ command might then be defined as follows:

doprint :-
issym(X, p),
issym(Y, checkbox),
inside(X, Y),
/+ (inside(Z, Y), Z \= X)

This can be roughly translated as “there is a print command if we can
find blobs X and Y such that X is a ‘P’ and Y is a ‘checkbox’ and X is
inside Y, and nothing else is inside Y 1”.

Both current and previous states can be passed to Prolog, so that the
rules can also specify that printing should only occur if either X or Y

                                                     
1 The final part is more accurately transcribed as: ‘The goal “Z is inside Y and Z is not
equal to X” cannot be satisfied’



BrightBoard

Chapter Five 50

or both were not present in the previous analysis.  This prevents a
command from being accidentally repeated.

On a SPARCstation 2, BrightBoard took 4.3 seconds to capture,
threshold, analyse and recognise the ‘Fax to Bob’ command in the 740
x 570 image shown in Figure 16, from the time at which movement
was no longer detected.  There is much room for optimisation; speed
was not a primary issue during BrightBoard’s initial development.
Two additional factors contrive to slow down the process:

• the ‘Pixmap’ type which is part of the standard Modula-3
distribution and which is used throughout BrightBoard is optimised
for compact storage rather than speedy pixel access.  It is
implemented as an object, and, while elegant, the overhead of
method calls and bounds checking contrive to slow down pixel
access by a factor of approximately four when compared to a C
integer array of the same size.

• the VideoPix frame grabber is slow, and can also take a significant
amount of time to copy a full-resolution frame from its own
memory to the host’s main memory.

An approximate breakdown of the time taken by the major
components is as follows:

Seconds Activity

0.6 Grab image and copy into Modula-3
structure

0.8 Adaptive thresholding of image

1.2 Find & recognise blobs

0.5 Make Prolog assertions

0.9 Evaluate Prolog rules

The remaining time is taken by such activities as updating the display
and trimming off the black edges left on the image by the VideoPix.

Executing

The final stage is to take action based on the analysis.  A ‘command
file’ relates Prolog predicates such as ‘doprint’ to UNIX commands
that will actually do the printing.  Each line in this file has the form:

<predicate> <filetype> <command>

where <predicate> is, for example, ‘doprint’, <command> is any valid
UNIX shell command, and <filetype> is either ‘none’ or the name of
an image format2.  If it is not ‘none’ then a temporary file of the
specified format is created and its filename can be passed to the UNIX

                                                     
2 The formats ‘pgm’ (portable greymap) and ‘pbm’ (portable bitmap) are currently
supported.



BrightBoard

Chapter Five 51

command by using ‘%s’ in the command file.  A print command might
be:

doprint   pgm    pgmtops %s | lpr

though more complicated actions would generally be implemented by
a specially written script or another program.  The commands
currently employed also provide audio feedback to the user through
the use of pre-recorded or synthesised speech.  The user is informed
not only when a print command has been seen, but also when the
printing has been completed.

One predicate is given special treatment in the current version of
BrightBoard.  It is named ‘inc_area’ and checks for the presence of
symbols which mark the bounds of the area to be included in the
image file.  This allows small areas of the board to be printed, saved,
sent as messages etc.

Evaluation

Until now, all use of BrightBoard has been by the author and three
colleagues. This has included a substantial number of demonstrations,
but under fairly controlled lab conditions. The system has almost
reached the stage where user testing is possible in a real office
environment, and this is the obvious next step in its development.

BrightBoard has been installed in a common room at EuroPARC, and
one of the discoveries made at this stage was that audio feedback alone
is insufficient, at least for this prototype system.  When the user writes
a command on the board and then stands aside, there is a delay before
the system responds. If this delay seems unusually long, the user has
no way of knowing whether the system is just being slow, has crashed,
has failed to recognise the command, or has accidentally been
disconnected from the camera.  When the computer screen was present
in the same room during the development process, the image could be
seen and the workstation would beep when the user moved away from
the board.  Such beeping would be too intrusive in a room where real
meetings were taking place, so we have replaced the beep with a small
LED indicator, controlled by the handshaking lines of a serial port,
which flashes when it detects movement in front of the board.  This
provides the user of the board with sufficient indication of the
system’s correct operation without being intrusive.  The audio
feedback is only used when a command is recognised.

In the three weeks since the system has been installed, there has been
one instance of a false positive recognition.  An overhead projector
screen is sometimes used in front of the whiteboard, and as it is
slightly closer to the camera, the image on the screen is out of focus.
One speaker used a slide which included two words in a small
typeface, one above the other, contained in a box.  These words, when
blurred, had a shape similar to a ‘P’ and were interpreted as such by
BrightBoard, causing it to print a copy of the slide and to announce
that it had done so, to the speaker’s great surprise.



BrightBoard

Chapter Five 52

Future possibilities

The next version of BrightBoard (currently under development) uses
an extended protocol for the interaction between Prolog and the UNIX
commands.  The arity of the predicate may be specified in the
command file, and, if greater than zero, the values of the variables
returned by the evaluation are passed to the UNIX command as
environment variables.  The UNIX command is executed once for
each match found in a given image, with a special variable set on the
last match.  This allows the function of ‘inc_area’ and similar
predicates to be implemented by external programs, giving rise to
much greater flexibility. As an example, a print command can consist
of a P followed by a digit, where the digit represents the number of
copies to be printed.  The doprint predicate can then have a
parameter in which it returns the digit found, and this information is
passed to the executed command.  An alternative and more flexible
approach would be to embed a scripting language such as Python or
TCL into BrightBoard, which would have a more intimate interface to
the system’s inner workings, but which would require users to be
familiar with another language.

There are a few other aspects of BrightBoard which are worth
highlighting, especially in the context of possible future developments.

The first is that there is minimal configuration required to set it up.
All that is needed is a camera with a fairly unobstructed and ‘straight-
on’ view of the board, zoomed to a reasonable scale.  It would be
straightforward, therefore, to make a portable version of BrightBoard.
A briefcase containing a laptop computer and a camera with a small
tripod could be carried into any meeting room, the camera pointed at a
board and the program started, and the whiteboard in the meeting
room is immediately endowed with faxing, printing, and recording
capabilities.

Secondly, the system is not limited to whiteboards – any white surface
will suffice.  Thus noticeboards, refrigerator doors, flipcharts,
notebooks and papers on a desk can all be used as a simple user
interface.  The current version of BrightBoard has been switched from
monitoring a whiteboard to providing a ‘desktop photocopying’ device
without even stopping and restarting the program.  A camera clipped
to a bookshelf above the desk and plugged into a PC (which will often
be on the desk anyway) enables any document on the desk to be
copied, saved, faxed without the user moving from the desk or
touching a machine.  If the user does not wish to write on the
documents themselves, then Post-it notes or cardboard cut-outs with
the appropriate symbols drawn on them can be used.  Parts of the
paper documents can be selected using the area delimiting symbols,
and pasted into electronic documents.  Resolution is a slight problem
here, as a typical frame-grabber capturing half a page will only provide
about 100 dots-per-inch; the same resolution as a poor-quality fax.  It
does, however, capture a grey-scale image, and the anti-aliasing effects
make the resolution appear much higher than would be the case with a



BrightBoard

Chapter Five 53

purely black & white image.  The resolution-enhancement techniques
of Chapter 2 can be used to improve the appearance of the final image.

An interesting challenge would be the creation of a friendlier user
interface to the Prolog rules.  One of the aims of BrightBoard is that it
should be accepted in a normal office environment, but the inhabitants
of such an environment will not generally be Prolog programmers.  A
programming language allows us great flexibility, however, which can
be difficult to duplicate in other ways.  Consider the following
specification:

 ‘A P in a box, possibly followed by another symbol representing a
digit which is also inside the box, constitutes a print command, where
the number of copies is given by the digit, or is one if no digit exists.
There must be no other symbol inside the box.’

It is difficult to imagine an easy way of representing this graphically.
Indeed, even the concept implied by the words ‘followed by’ must be
explicitly defined.  A textual front-end to the Prolog could possibly be
created which would more closely resemble natural language, or a
programming language with which users were more likely to be
familiar.

The whiteboard itself has always been an input-only device.
Projection systems capable of providing direct visual feedback on the
board tend to be noisy, bulky and expensive, and have therefore been
avoided as being contrary to the spirit of BrightBoard.  Developments
are bound to make this less of an issue in future.  The camera might be
attached to a small, directable laser, which would highlight recognised
symbols on the board, display the outline of the camera’s viewing
area, and prompt the user for confirmation of particular commands.
Even a low-power laser would be disconcerting, however, if shining
into a user’s eyes.  It might be possible to detect the position of the
user sufficiently accurately that the laser could be made to avoid the
head area.



54

Chapter Six

Vicar: A VAE
construction kit

Introduction

The development of the VAEs described in earlier chapters has shown
that while the applications may be very different, the component parts
of VAEs are often the same and can be reused in many situations if
appropriately packaged.

The use of Modula-3 [39] in the creation of our systems has facilitated
this – it gives the designer a great deal of control over the amount of
information revealed about a given entity, whether that entity be an
object, a module, or a package (a collection of modules).  This allows
for flexibility in packaging which would not be possible in, say, C++.
In addition, Modula-3 does not suffer from the speed penalties of some
of the purer object-oriented languages such as Smalltalk, which means
that much of the image processing could be done in Modula-3 itself
with only small quantities of C linked in where speed was vital.
Finally, the substantial standard libraries provided with the Modula-3
distribution greatly simplified code development, and the strong typing
and garbage collection system made for more reliable code.

However, given that much VAE construction consists of the ‘plugging
together’ of standard modules, it would be convenient if this could be
accomplished without the need for any compilation.  Our focus has
been on the deployment of video in the office or home environment,
where such things as a Modula-3 compiler are unlikely to be available.
Ideally, we would like to distribute a single application which would
enable a user with a PC and a camera to build, or at least prototype,
simple video-monitoring systems.  A model might be the very
successful HyperCard system from Apple [27] which allows the quick
construction of graphical applications.  The software techniques
required for responding to mouse movements and key presses are well
understood, and schoolchildren can easily create systems making use
of them.  It would be good if a video-based application to “detect
movement in the corner of the room” were as easy to create as a
conventional one to “detect mouse clicks in the corner of the screen”.



Vicar: A VAE construction kit

Chapter Six 55

The ‘Vicar’ system described in this chapter shows one way in which
such a tool might be created. While far from being a finished product,
it does allow us to examine some of the issues.

Vicar

The name Vicar stands for ‘Video Input Control Architecture’. It is a
toolkit for simplifying the creation of systems which use video as an
input device.  This distinguishes it from systems such as Apple’s
QuickTime [43] which is primarily concerned with video as an output
device, i.e. with the storage and manipulation of video for the purposes
of its final presentation to a user.  Vicar’s emphasis is on monitoring
the real world, and on similar applications where the ultimate
consumer is the program itself. As such it is less concerned with such
things as audio track synchronisation, but more concerned with
latency, because actions may need to be taken promptly on the basis of
the incoming video.

In addition, Vicar concentrates on the manipulation of video in
software on a single, general-purpose workstation, unlike such systems
as Olivetti Research Lab’s ‘Medusa’ [58] which provides similar
facilities for the control of video circuits, but where the underlying
architecture consists chiefly of specialised components distributed
around an ATM network.

Vicar’s approach can be described as ‘video plumbing’. The basic
objects are sources and sinks, and video frames flow from the former
to the latter.  A framegrabber is a subtype of a source, and a window
on the display is a subtype of a sink.  At a slightly higher level, the
system provides:

• filters, which consist essentially of a sink and a source back to
back with some processing in the middle, e.g. a thresholder.

• multifilters, which are filters with several sinks connected to a
source allowing more than one input. A ‘differencer’ is an
example.

• sensors, which are sinks that trigger callbacks on certain events. A
frame counter is probably the simplest example.

Other combinations are also possible.

Scripting

These components are created and connected together under the
control of a scripting language.  Versions of Vicar have been built
based on the languages TCL [40] and Obliq [5].  Other obvious
candidates are Python, Java, or Visual Basic.  The current version uses
TCL, despite its major limitations as a language, because of the ease



Vicar: A VAE construction kit

Chapter Six 56

with which it can be grafted onto other software. TCL interfaces to a
wide range of other packages are already in existence, allowing video-
based applications great scope for interaction with other software.

Vicar-based applications can also be written in Modula-3 if required:

Operating System (Unix/NT/Win95...)

TCL apps

VicarTCL

Vicar

Modula-3 runtime

Obliq apps

VicarObliq M3 apps

To give a feel for Vicar’s use, here is a simple TCL script to display
the images from a framegrabber in a window on the screen (our
equivalent of a ‘Hello World’ program!):

grabber g1 Create a framegrabber object, and name it g1
g1 size half Tell it to produce half-size frames
viewer v1 g1 Create a viewer named v1, whose source is g1

Scripts can be taken from a file, or typed at the Vicar prompt.  After
the final command above is processed, a window appears on the
screen containing live video from the grabber.

The component-creating commands, such as grabber, perform two
functions.  They create the object, name it, and connect it to the
circuit, and they also create a new TCL command with the same name
which can respond to configuration commands for the new object, as
shown in the second line above.

The circuit can be altered ‘on the fly’.  For example, if we now type
the command:

viewer v2 g1

a second window appears showing the same view.  This circuit can be
represented as follows:

Grabber g1

Viewer v2Viewer v1



Vicar: A VAE construction kit

Chapter Six 57

We will use a similar representation for more complicated circuits
later. The components can also be dynamically reconfigured. For
example, we can type

g1 size quarter

to tell the frame grabber to capture quarter-size frames, and the two
viewer windows will resize appropriately when the smaller frames
reach them.

We shall return to the scripting later, but first we examine the
architecture which makes it possible.

The Architecture

The component parts of Vicar are Modula-3 objects.  The main object
types are highlighted in italic below.

Frames

A Frame object carries a payload of data.  It incorporates a time-
stamp, representing the time of creation of the data, a unique ID, and a
reference count to aid in garbage collection.  It also incorporates a
Sync object which is ‘triggered’ to indicate that the data is now valid
and the frame is ready to be used.  Syncs will be described in more
detail later.  Frames are requested and allocated from FramePools, and
returned to them when their reference count reaches zero.  To this end
they also include a ‘recycle’ method – a procedure allocated to them
by the creating pool, which is called when they need to be returned to
it. The frames currently used in Vicar are all VideoFrames – the
subtype that carries a Pixmap payload, though other types of data
could be carried.

Components

Frames are passed between Components, of which the two main
subtypes are Sources and Sinks.  A Source can be connected to many
Sinks and provide the same frames to all of them.  Each Sink,
however, can have only one Source, which is specified when it is
created (but may be changed later).  The connection is the
responsibility of the Sink.  A Source has, in fact, no direct knowledge
of the Sinks connected to it.  Filters, (such as a thresholder), contain a
Sink, but are subtypes of Source and can thus be connected to by other
sinks.  This would be a good opportunity for multiple inheritance in a
language which provides it (unlike Modula-3).



Vicar: A VAE construction kit

Chapter Six 58

Again, in Vicar the objects are of type VideoSource and VideoSink,
being the subtypes of Source and Sink which exchange VideoFrames.
(See Figure 20). In fact, in Modula-3 it turns out to be simpler to make
them instantiations of generic Source and Sink templates rather than
true subtypes, but the effect is much the same.

Each component has a ‘factory’ procedure which runs as a separate
Modula-3 thread, and which is responsible for creating, consuming, or
otherwise processing Frames.

Flow Control

In almost any producer/consumer system there is the problem of flow
control, and the distinction between ‘push’ and ‘pull’ modes of
operation.  In a ‘push’ system, the source produces data as fast as it
can, and is slowed down by the sink when it is unable to consume the
data fast enough.  A ‘pull’ system, in contrast, relies on the sink to
request data when ready, at which point the source produces some.

Vicar has particular requirements in this regard. Firstly, we wish to
allow for connections between arbitrary types of source and sink,
where the relative speeds of producer and consumer are unknown in
advance and may differ by orders of magnitude.

Secondly, each source may have many sinks, and these will be of
differing speeds.  A framegrabber may be feeding a viewing window
which can be updated several times a second as well as an OCR engine
which takes several seconds to process a frame.

Thirdly, the currency of a frame received by a sink is important.  Our
systems will often wish to respond speedily to real-world events,
particularly in the case of interactive applications.   Frames cannot
therefore be stored in buffers for extended periods of time while
waiting for a slow component - a characteristic of many flow control

Grabber

RVAFilter Thresholder

VideoFilter

VideoSource

Source

FrameCounter ThreshBounder

VideoSensor Viewer

VideoSink

Sink

Component

Figure 20.  Some Vicar Components - An Object Inheritance Diagram



Vicar: A VAE construction kit

Chapter Six 59

systems.  However, we are not very concerned with jitter-free frame
rates, for three reasons:

i) We are not chiefly targetting human viewers.

ii) Many of the components we use will have different processing
times for different frames anyway, thus introducing jitter.

iii) The frames are time-stamped, so components which need timing
information have access to it.

Unused or out-of-date frames can therefore simply be discarded.  One
approach would be to have all components produce frames as fast as
they can and then simply dispose of them if no sink is waiting to
receive them.  This would involve a great deal of wasted processing,
though, which would only serve to slow down the system as a whole.

Freeman and Manasse [15] describe an interesting end-to-end flow
control system in a similar application, but their technique would be
difficult to implement in dynamically-reconfigurable circuits which
may have many start points, many end points, and many convoluted
interactions in the middle.

Frame transport in Vicar

After some experimentation, the following mode of source-sink
interaction was selected for Vicar.  It is a combination of ‘pushing’ by
the sources and ‘pulling’ by the sinks, but the two actions are not as
tightly linked as in some other systems.  The sources generate frames
at their own rate, uninterrupted by the sinks.  A sink requests an up-to-
date frame when it requires one and waits if it is not yet available. The
sources notice, however, if the frames are not being consumed as fast
as they are being produced, and slow themselves down to allow other
components more processing time.  They also notice if the sinks are
waiting too long for frames, and attempt to speed themselves up.

The system is aided by the multithreading and synchronisation
primitives available in Modula-3, some of which are wrapped up in
‘friendlier’ packages such as the Sync object:



Vicar: A VAE construction kit

Chapter Six 60

The Sync object

Each frame includes a Sync object, which has the following methods:

reset() Used by a source to indicate that the frame is not
ready.

wait() Used by a sink wishing to access the frame. If frame is
not ready, then wait until it is.

trigger() Used by a source when the frame is ready. Allows any
threads which have executed wait() to run, and also
any threads which execute wait() thereafter until the
next reset().

In addition, much of the access to components, frames and queues
must be controlled by mutexes, since multiple threads may be
accessing them concurrently.

The sequence of source-sink interactions

1

 framepool

source

A source wishing to produce a frame requests one from a framepool.
Each source has an associated framepool, and in simple circuits all
components will probably share the same pool.  The source can
specify criteria for determining a suitable frame; for video this will
generally be that the frame is capable of holding an image of a
specified size and depth.  If the pool does not have such a frame
available, it creates a new one.  Circuits where several frame sizes are
likely, and where particular components process fixed sizes, may
therefore find it profitable to have separate framepools dedicated to
different-sized frames.  The pool registers the source’s interest in the
frame by setting the frame’s reference count to one, and then returns
the frame to the source.



Vicar: A VAE construction kit

Chapter Six 61

2

framepool

not ready

source

The source marks the frame as ‘not ready’ (using sync.reset()) and
makes it its ‘current’ frame. In doing so it ‘deregisters’ its interest in
the previous ‘current’ frame by decrementing its reference count.  Any
frame whose count reaches zero is returned to the pool from which it
came.

3

framepool

sinksource
interest

Any sinks wishing to request data from the source register an interest
in its current frame (which they must deregister when they no longer
have need of the frame). This is the frame about to be, or currently
being, produced, and so will be the most current.  They also then wait
on the frame’s Sync.



Vicar: A VAE construction kit

Chapter Six 62

4

framepool

sinksource

sink

The source then pauses for a time Tp, giving other threads a chance to
run freely, and possibly register interest in the current frame.  The
delay Tp is specific to this component, and is dynamically adjusted
during the circuit’s operation as follows:

• The pause can be interrupted by another sink
registering interest in the current frame.  An
interruption causes Tp to be reduced.

• If no interest was registered in the current frame before
or during the delay, Tp is increased. If one sink
registered interest, it remains unchanged. Otherwise it
is reduced.

5

framepool

sinksource

sink

The source can then start to fill the current frame with data. Further
sinks can still register interest in the frame during this process.



Vicar: A VAE construction kit

Chapter Six 63

6

framepool

sinksource

sink

ready!

When the frame is ready, the source triggers its Sync.  This does a
broadcast, and all interested sinks’ threads become eligible to run.

7

framepool

sinksource

sink

The source moves on to the next frame as described in step (1).

The source, by adjusting Tp, therefore regulates its own speed of
operation.  If it produces frames faster than its sinks consume them, it
will realise this and slow down.  If it produces them too slowly for its
fastest sink, it will attempt to speed up.  Because filters and other
components which produce frames are all regulated in the same way,
changes will be propagated back up a ‘pipeline’ so that no component
need run faster than the slowest unless it is feeding other pipes.

Sub-optimal states can still be reached. But given that in many circuits
we may have arbitrary combinations of sinks, each taking varying
amounts of time, it is difficult to make general scheduling rules, and to
require the user to specify scheduling methods would compromise
much of Vicar’s simplicity.



Vicar: A VAE construction kit

Chapter Six 64

We will discuss some of the implications of this strategy later.

Other component types

Filters, sensors and other component types use the same basic
interactions as sources and sinks, but the ‘factory’ thread which
performs the operations described above has additions for processing
the frames, executing callbacks, etc. A component that wishes to
modify the contents of a frame must request a new frame from a pool
and write the modifications into that.  Any component which does not
modify the frame, however, such as a sensor or a gate, may pass it on
to other components.  This saves a great deal of copying, which can
often be the bottleneck in such systems and means that a single frame
may be passed to multiple components in parallel.

Vicar in use:
The Software Cameraman and other examples

Figure 21 shows a way in which we can use Vicar to create a version
of the software cameraman described in Chapter 4, by considering the

Grabber

RVA filter

Difference

Threshold

Find bounds

Crop

Scale

Viewer

bounds

Figure 21.  A simplified software cameraman, viewed as a collection of
sensors and filters. Dotted lines indicate the flow of non-video data.



Vicar: A VAE construction kit

Chapter Six 65

operations as a ‘circuit’ through which video frames flow.  The left-
hand portion finds the area of the image in which movement is
occurring, and the right-hand portion takes this information and uses it
to scale the relevant portion of the image to a fixed eyepiece size.

The full TCL code for this circuit can be seen in Appendix C.

We can see that much of the left-hand portion might be useful in other
applications which need to track movement or detect changes, so we
define the differencing and thresholding section to be a new module
which we call ‘ChangeThresh’; it detects changes above a certain
threshold:

RVA filter

Difference

Threshold

ChangeThresh
is

equivalent
to

This can be done within the scripting language.  We need to create a
‘changethresh’ command which creates the appropriate components
and links them together, and which registers the thresholder with the
appropriate name, so that later components can link to it as a source.
In TCL this requires the following code:

proc changethresh {name src} {
rvafilter $name_rva $src
differ $name_diff $name_rva $src
threshold $name $name_diff

}

Programs can then create a ‘ChangeThresh’ module in the same way
that they can create other components; for example, the command:

changethresh ct1 grab1

will create the three connected components and attach them to grab1.
The thresholder is the output stage, and will be named ct1 so that
other components using the name of the combined unit for connections
will in fact be connected to it. The RVA filter and differencer will be
named ct1_rva and  ct1_diff respectively.

It is also possible for the definition of changethresh to create a TCL
command called ct1, so that the module as a whole can respond to
reconfiguration commands.  The command:

ct1 sensitivity 4

might adjust both the RVA length and the threshold used, for example.
By default, such a command would simply be passed to the



Vicar: A VAE construction kit

Chapter Six 66

thresholder, as it has that name. Vicar therefore provides an alias
command which allows new Vicar component names to be attached to
existing components:

proc changethresh {name src} {
rvafilter $name_rva $src
differ $name_diff $name_rva $src
threshold $name_thresh $name_diff
alias $name $name_thresh
proc $name {

...configuration commands...
}

}

The thresholder would now be called ct1_thresh, but could still be
referred to as ct1 for the purposes of inter-component connections.  In
fact, creating commands on the fly tends to be rather messy in TCL
because of its peculiar scoping rules, but it can be done.

The automatic cameraman can now be created as shown in Figure 22.

In addition to alias, Vicar provides some other TCL commands.  For
example, mutex handling is available, to simplify the use of the TCL
interpreter in a multi-threaded environment:

mutex m1
lock m1 {

...protected code...
}

In/Out Board monitor

We can use the changethresh module to build an application which
monitors the In/Out board described in Chapter 2.  For this we will
make use of the ‘areaselector’ component.  This displays the incoming

Grabber

ChangeThresh

Find bounds

Crop

Scale

Viewer

bounds

Figure 22.  The cameraman, using a changethresh module



Vicar: A VAE construction kit

Chapter Six 67

image in a window, much like a viewer, but allows the user to drag out
an area with the mouse, causing a callback which includes the bounds
of the area selected. We can use this to create a module as shown in
Figure 23, which  we call a ‘selchangecount’ module.

We can then create as many of these as required to monitor areas of
the board (Figure 24)  In the diagram, the three modules select the
parts of the camera’s view corresponding to the ‘In’ zones for Bob,
Sue and Pete.

A User Interface for Vicar

To simplify the creation of basic circuits, we have implemented a
front-end to the scripting language using Python and the Tk toolkit

AreaSelector Crop

ChangeThresh

PixelCount

bounds

Figure 23: The ’selchangecount’ module

Capture frame

If larger than a
certain threshold,
Bob has come in.

If larger than a
certain threshold,
Sue has come in.

If larger than a
certain threshold,
Pete has come in.

SelChangeCount SelChangeCount SelChangeCount

Figure 24: A simple in/out board monitor using Changebounds module



Vicar: A VAE construction kit

Chapter Six 68

(Figure 25).  This illustrates what might be done in the way of ‘visual
programming’.  Users can select different component types from the
‘Create’ menu, name them and position them on screen.  Connections
can be set up by ‘dragging’ lines using the mouse. The program
creates a Vicar script which, by selecting from the File menu, can
either be saved to disk, or executed (sent to a Vicar shell which it runs
as a child process), so circuits can be drawn and tested immediately.
In addition, Vicar commands can be entered in the text box at the
bottom of the window to reconfigure the running circuit.

Future Possibilities

Jack of all trades...

Vicar was developed as a ‘proof of concept’ and as such it works well.
The implementation, though novel, does have some drawbacks. A
generic tool designed for multiple applications will seldom be as good
at any of them as a specific tool created for an individual task.  This is
particularly apparent in two areas of Vicar.

Currency

The emphasis in Vicar has been for each component to have an input
as close as possible to the current state of the real world.  Vicar
connections can perhaps best be pictured as a ‘leaky hosepipe’, where
some water will always flow from the source even when the sink is not

Figure 25. A simple Vicar GUI.



Vicar: A VAE construction kit

Chapter Six 69

receiving, so that water in the pipe does not become stagnant.
Currency has been emphasised above many other criteria in an effort
to improve response time in interactive systems.  The overhead which
results from this in Vicar, for example in processing frames which are
later discarded, may well slow down the system as a whole to the
extent that the images are less current than they might have been if
other priorities had been higher.

Frame timing & synchronisation

A source feeding multiple sinks does not necessarily give the same
frame to all of them.  When a sink is ready to receive, the source
endeavours to give it an up-to-date view of the world at that time, and
does not force faster sinks to wait for their slower peers.  Imagine a
situation in which we wish to compare the outputs of two motion-
tracking engines, which both take their input from the same grabber.
The problem with the current system is that the inputs to the two
engines will not necessarily be the same, which can make comparisons
difficult.  Another example of the problem can be seen in the
automatic cameraman described above (Figure 22). One half of the
circuit analyses the video and the other half displays it in a way which
depends on the analysis. There is no synchronisation mechanism
between the two.  The eyepiece view may therefore show the area that
was of interest in the previous frame or a future frame, but which may
be irrelevant in the current frame.  This is of limited concern at high
frame-rates, but on our SPARCstation 2, due to the speed limitations
of the frame grabber, the X server, and the TCL interpreter, we see
only two or three displayed frames per second, and such effects are
therefore more noticeable. In some applications it may be particularly
important that frames can be synchronised, for example in a system
which splits incoming frames into three colour components, processes
them in parallel, and then recombines them.

The problem is not insurmountable. Vicar components can be created
which enforce particular scheduling policies.  We can create gates, for
example, which will only let a frame through when instructed to do so
by the script.  A gate could be triggered by downstream sensors thus
enforcing something closer to ‘end-to-end’ flow control, or by
combinations of downstream components on different branches, thus
ensuring that frames are only released at the speed of the slower
branch.  Gates could be set to trigger on certain conditions, such as a
frame having a given timestamp or ID.  Buffers can also be created for
situations where the preservation of all frames is more important than
their currency.

In Vicar’s design, as in that of the Medusa system [58], the possibility
of making each connection into a distinct object, so that different types
of connections could be used between different types of component,
was considered and rejected as being unnecessarily complex.
Medusa’s approach was to make the connections reliable, so that
commands could be passed between components using the same
mechanism as the multimedia data. Buffering or unreliability in a
connection is implemented by means of extra components.  Vicar was



Vicar: A VAE construction kit

Chapter Six 70

designed more with the non-technical end-user in mind, and it was felt
that the ‘leaky hose’ model would satisfy the requirements of most
VAEs without requiring too many decisions on the part of the user.
Reliable connections can be created by placing gates as ‘pressure
regulators’ at the start of a pipeline and matching the incoming
pressure to the outgoing pressure so that the ‘hose’ does not leak.

User interface improvements

The simple GUI shown earlier allows for the construction of circuits,
but is not very far removed from the direct editing of scripts.  It
requires the user to visualise the results of each operation in the
abstract.  One way to improve on this would be to represent each
component in the circuit by a small window showing its live output.
The circuit could be laid out in the same way or, when appropriate,
filters could be ‘stacked’ to conserve screen space, so that the window
just shows the output of the top filter in a manner reminiscent of the
‘Magic Lens’ system [4].  A mock-up is shown in Figure 26.

grabber
cropper

grabber

thresholder

rvafilter

cropper

Figure 26: A mock-up of an alternative user interface for Vicar

Faster scripting

It would be nice to use a scripting language which was fast enough for
simple pixel processing, so that components themselves could be



Vicar: A VAE construction kit

Chapter Six 71

prototyped without the need for compilation.  This is certainly not true
of TCL!

Related Work

Perhaps the system closest in concept to Vicar is the VuSystem [32]
developed at MIT at about the same time.  VuSystem has the same
basic motivation as Vicar – the manipulation of multimedia streams,
and the data that flows along them, by computer. Like Vicar, it uses a
TCL interpreter for the creation and control of  circuits.  The
underlying architecture, however, is rather different, particularly in the
area of scheduling and flow-control.

VuSystem is designed to run under Unix and draws heavily on the X-
Windows system, not just for display, but also for timing, I/O, and for
data exchange between components, which is accomplished using the
X shared memory extension.  The system is single threaded, and a
scheduler allocates processing time to components based on the flow
of data.  Each component has a ‘Work’ method which can be called by
the scheduler and which allows it to perform computations.  The
scheduler will not normally do so, however, unless the component has
a frame to process.  When a component receives a frame, it calls the
scheduler’s StartWork method, and at some point thereafter, the
component’s Work method will be called.  By linking the allocation of
processing time directly to the arrival of data, the system ensures that
computational power is available where it is needed.  In addition, none
of the code needs to be reentrant, and external libraries for performing
such tasks as image-processing or compression can easily be linked in.

VuSystem’s flow control is simple.  A source which has a frame ready
to be sent calls its ‘Send’ method, which in turn calls the ‘Receive’
method of the sink. If the sink is not ready to receive the frame, it
returns  ‘false’, and will not be sent any more until it calls its ‘Idle’
method. If it can receive the frame, it returns ‘true’, and ownership of
the data is passed to the sink. An ‘Idle’ call indicates that a sink is
ready to receive data, but the source may not have any available. After
the ‘Idle’ call, though, it is allowed to call ‘Send’ when the data is
ready.  The sources are thus regulated by ‘back-pressure’ from their
downstream components.

VuSystem is simple and fast, and has been used for many projects.
Vicar does have some advantages, though:

Scheduling

The scheduler in VuSystem is not preemptive.  Components which
need to perform lengthy calculations need to relinquish control from
time to time.  Modula-3 has efficient multi-threading built in.

Frame re-use

The description of VuSystem in [32] makes no mention of frame
reference counting and garbage collection.  The frames would thus



Vicar: A VAE construction kit

Chapter Six 72

have to be duplicated if they were to be passed to more than one
component.  We understand that VuSystem does now include
reference counting for the payloads – only the wrapper objects are
duplicated.

Portability

VuSystem is closely tied to Unix and X, while Vicar is dependent only
on Modula-3, which runs on a variety of operating systems in addition
to Unix.  In particular, Vicar runs well under Windows NT and
Windows 95.



73

Chapter Seven

Conclusions and
Future Possibilities

“I approached graduate work as a continuation of my liberal
arts education.  I saw the encounter between human and
machine as the central drama of our time ...

It was clear that the human was the most important
component in a computer system.  Therefore, it followed that
the human interface should be the central research problem in
computer science.”

Myron Krueger, Artificial Reality II

Future Possibilities

Several suggestions for future work have been given in the preceding
chapters.  Here we outline some further possibilities.

Software Cameraman

The automatic cameraman does not move a real camera; it moves a
rectangle which delineates an area to be extracted from the view of a
fixed camera.  It would be interesting to translate the system onto a
physical camera equipped with a motorised pan/tilt/zoom head.  The
movements of a professional camera operator in response to particular
situations could be measured and used to train the software, or as a
benchmark against which to measure its success.

The physical camera has disadvantages, though, when compared to our
software simulation:

• Mass. The real camera cannot pan and zoom as fast as the zero-
mass ‘virtual’ camera. In particular, a single camera cannot perform
‘cuts’ while recording live action.

• Limited View. A single fixed camera, like a human cameraman,
can survey the entire scene and decide where to point the lens,
virtual or real.  A system which relied purely on the image obtained
from the camera it was moving would have a significantly harder
task.  Not only would it be blind to off-camera activity, it would



Conclusions and
Future Possibilities

Chapter Seven 74

have to cope with moving backgrounds when panning and
zooming.  A better alternative would be to use one camera to
survey the broader scene, which would then control the movement
of one or more others.  The problem then becomes one of
correlation of these multiple views.

The physical camera also has some advantages, though:

• Mobility. Cameras need not stay in a single fixed location.  They
can ‘track’ as well as pan and tilt.

• Resolution. By selecting a subsection of a captured image, we are
sacrificing resolution.  This may become less of a problem with the
increasing availability of high resolution cameras.

A challenging project, then, would be the automatic television studio.
Two or three fixed cameras monitor the overall scene from different
viewpoints.  Mobile high-resolution cameras detect activities of
interest in their field of view and track them.  They are basically
autonomous, but also respond to hints and commands from each other
and from the fixed cameras.  All cameras are equipped with radio- or
ultrasound-based location devices so that their position and orientation
are known to themselves and to each other.  The system could be
calibrated using a hand-held unit consisting of a bright light connected
to a location device, which transmitted its position to the cameras as it
was carried around the set and appeared in their views.

Of course, the cameras would also have to learn to keep out of the way
of the automatic boom microphone operators...

BrightBoard

BrightBoard currently makes limited use of its knowledge of a user’s
movements. The user is either visible, in which case he or she may be
writing on the board, or absent, in which case the board may be worth
examining.  There are possibilities for improvements here.  If
BrightBoard could distinguish the user’s face from the back of their
head, for example, more inferences could be made.  A user who was
always facing the camera while in the image could not have been
writing on the board.

Secondly, the system currently waits for the user to be completely
absent before commencing its analysis of the whiteboard.  Response
time could be improved if sections of the board were only analysed in
response to change.  Parts of the image not obscured by the user could
be examined while the user was still in the frame, though commands
which wished to perform some processing of the unobscured board
image (such as printing) would still require the user’s absence before
the command was finally executed.

A simple analysis of the user’s actions could also allow a richer
interaction with the system.  A ‘thumbs-up’ gesture might be required
as confirmation before the execution of a command, for example.
Speech recognition would also suffice for this purpose; even a crude



Conclusions and
Future Possibilities

Chapter Seven 75

system which could only distinguish between a few words. However,
extensive audio interaction between user and machine can be
disruptive in a meeting situation.

In Chapter Five we mentioned the current use of some additional video
feedback, and touched on the possibility of using laser projection
devices.  An advantage of laser light is that, being bright and of a fixed
colour, it should be easily discernible in the camera image, allowing
the system to calibrate the coordinate system of the video input against
that of the projected output, perhaps in a manner similar to that
employed for the DigitalDesk [56].  Laser projection systems could be
valuable in other VAEs as well.

A simple laser pointer is used by Kuzuoka et al in the GestureCam
system [30, 31].  This is fixed to a camera which forms one end of a
videoconferencing link. The orientation of the camera (and thus the
laser) can be controlled by the remote user, and the laser can be
switched on and off from the remote end. This allows the remote user
to ‘point’ at things in the local environment while discussing them
over the audio link.  It allows the user ‘to use the pronoun “this”
effectively’ [30].

GestureCam’s laser, though, was a simple on/off pointer.  It could not
be moved independently of the camera.  As small directable lasers
become available, more informative information could be displayed.
Imagine a film studio ‘continuity checker’ application, which used an
overhead camera to compare the current items in a film set with their
position during an earlier shoot, and a laser to highlight any
differences.  It might project onto the floor the required position of a
piece of furniture, for example, or display the expected location of
some missing prop (or actor!).

Laser displays form the natural output device to complement video
input because they can project onto a variety of surfaces, potentially
some distance away, and will operate under normal daylight.  The
chief drawback would appear to be the need for precautions in
situations where the light might shine into the eyes of the users.

Image signatures

A component which would be useful in many VAEs would be one
which, given an image, could quickly answer the question, “Have you
seen this before?”.  It should try to answer this in the way that a human
would.  This means that it should be unaffected by small amounts of
rotation, translation and change of scale, and should cope with
differing light levels and slight focus shifts.  Essentially, the goal is to
define a compact ‘signature’ for an image which is invariant to these
transformations, which can be calculated quickly, and which is
unlikely to be the same for two views that users would describe as
distinct.



Conclusions and
Future Possibilities

Chapter Seven 76

The situations in which such a signature could be useful include the
following:

• Watching an OHP screen – If the same slide is displayed at
different points in a presentation, there would be no need to
capture and store it twice. A pointer could be saved instead.

• Photocopying – The copier could examine the first page of a
document to be copied and ask the user:

 “I have a stored copy of the original of that document.
Would you like me to print from that?”

 or an environmentally-conscious copier might suggest:

 “Mike just copied that an hour ago. Why not look at his
copy?”

• A desk-monitoring camera could be used, in conjunction with
such copiers, to trace the flow of documents through an
organisation and answer questions about the current location of
particular papers.

• A camera fixed to the front of a car might inform you when you
were last in that street. A camera fixed to the back might let
you know that you travelled in the opposite direction last time!

• A whiteboard recorder, seeing an image of the board that had
been seen previously, could assume that different intervening
frames were probably the result of obstructions in its view, and
could be discarded.

• A video-indexing system could mark all the points on a tape of
a cricket match which showed the scoreboard, or could delete
all occurrences of a particularly infuriating advertisement.

After discussions with Prof. David Wheeler, some simple tests were
done using thresholded images of paper documents.  A 2x2 grid was
passed over the image and the number of occurrences of each of the 16
black/white pixel combinations was used to create a histogram.  The
entropy of this distribution is a measure of the density of information
when the image is stored under this particular representation.  It is
quick to determine and results in a single real number. Other filters
can be used as well as the 2x2 grid, and the results can be recorded at a
variety of resolutions, to build up a set of numbers representing the
image.

Early tests proved encouraging, distinguishing well between
handwritten and printed documents, for example, and detecting when
different pages had originated from the same publications. However,
there was a tendency for the system to highlight the characteristics of
the thresholding algorithm almost as much as those of the document,
and our tests were restricted to a very narrow domain.  The creation
similar tool for full-colour images would present a very interesting
challenge.



Conclusions and
Future Possibilities

Chapter Seven 77

Summary & Conclusion

This thesis has discussed the use of video as a means of enabling
computers to monitor, and possibly to enhance, our day-to-day lives.
There are many applications where a keyboard and mouse are ill-
suited to the task in hand, and systems based on video input may play
an important rôle in filling the gap left by more conventional devices.
We have examined applications ranging from the ‘In/Out Board’
monitor, which just performs very simple image analysis, through the
‘automatic cameraman’, which makes decisions based on past and
present video activity, to the more complex ‘BrightBoard’, which
performs rather more sophisticated processing of the video, recognises
artefacts in the images, analyses the logical relationship between these
artefacts, and then acts on the results.  Through these examples we
have looked at ways of tackling some of the problems common to the
analysis of real-world video.  Finally, we have discussed a single
application, Vicar, which can be programmed through the use of a
scripting language to perform many varied VAE tasks.  We have thus
achieved the goals set out in Chapter One: discussing the importance
of video as a sensor, trying it out in some applications, and
incorporating the techniques learned in a VAE-building toolkit.

Together the examples illustrate an alternative class of  human-
computer interaction techniques which become possible when we
focus on the video camera as a general-purpose input device.
Furthermore, they show the viability of such applications on standard
hardware which can now be found in many homes and offices and is
no longer the sole preserve of the research lab. Most households now
have video recorders, and many also have access to video cameras.  At
the same time, the personal computers being bought for home and
office use have the power and memory capacity to process video
signals at a sufficient speed to be useful. More than one personal
computer manufacturer is now supplying a camera as a standard
component on many systems.

In 1970, Myron Krueger started work on his METAPLAY, and later
VideoPlace, systems [29].  These explored the combination of video
and computer graphics as an artistic medium; recognising the potential
of a combination which could “utilize today’s most potent means of
communication–video and the computer”.  His work is notable for its
originality, longevity, and for his accomplishments given the limited
computing resources available.  It was not unknown for video cables to
be run for distances of half a mile or more to reach the computer
centre. In a couple of decades we have moved to the situation where a
large number of households have the technology to duplicate his
experiments in the living room.

A new design space has opened up as a result of this mass availability
of video and computing technology. Novel applications are not only



Conclusions and
Future Possibilities

Chapter Seven 78

becoming possible, but they are becoming worth investigating.  A few
years ago the idea of devoting such a valuable resource as a video
camera to the trivial task of monitoring a whiteboard would have been
laughable; now it seems plausible, and in a very few years it may seem
like the obvious solution.



79

Appendix A

The BrightBoard
Program Suite

This Appendix shows the set of programs which make up the
BrightBoard system, and the flow of data between them.  There are
many programs in addition to these which perform non-essential
analysis tasks – these are the ones needed to make the system work.

tscreate
Grab ‘training set’ images from camera

Display, & allow user to label blobs

train
Create Feature Vectors for blobs

Transform blobs & create ‘fake’ FVs

images label info files

labelled feature vectors

run
The main program

weightings

prolog rules

command
configuration

BrightBoard - Standard Version



The BrightBoard Program Suite

Appendix A 80

The neural-network version of BrightBoard requires a few more
stages. as can be seen below:

BrightBoard - Neural Version

tscreate
Grab ‘training set’ images from camera

Display, & allow user to label blobs

train
Create Feature Vectors for blobs

Transform blobs & create ‘fake’ FVs

images label info files

labelled feature vectors

netrun
The main program

prolog rules

command
configuration

netdata
Convert vectors to values appropriate for network inputs

Create mapping of network outputs onto symbols
Configure size parameters for network.

network weights

net output <->
symbol mapping

network size
configuration
parameters

nettrain
Train neural net on part of feature

 vector set, testing on the remainder.

scaled feature
vectors

In addition to the files shown in these diagrams, all programs read a
master configuration file, which specifies such things as the locations
of the other files, and the resolution and frame-rate of the MRVA.



81

Appendix B

The features used for
BrightBoard’s symbol
recogniser

Within the north, south, west and east bounds of the blob, a histogram
of the number of pixels with each x-coordinate is built up, and
likewise for the y-coordinates. This allows us to calculate:

• The entropy of the distribution of pixels in the x-direction

• The entropy of the distribution of pixels in the y-direction

• The position of the centre of gravity of the blob in the x-direction,
expressed as a value between 0 & 1

• The position of the centre of gravity of the blob in the y-direction,
expressed as a value between 0 & 1

• The moment of inertia about the vertical line through the C of G,
proportional to the total number of pixels in the blob.

• The moment of inertia about the horizontal line through the C of G,
proportional to the total number of pixels in the blob.

In addition, we calculate:

nr the number of black pixels at a right-hand edge
(ie. the pixel to the right is white)

nt the number of black pixels on a top edge
(ie. the pixel above is white, but to the left and right are black)

ntl the number of top-left corner pixels
(ie. the pixel above and the one to the left are white)

ntr the number of top-right corner pixels
(ie. the pixel above and the one to the right are white)



The features used for
BrightBoard’s symbol recogniser

Appendix B 82

We total these four numbers to give ne, the number of pixels on
checked edges. We can then calculate:

• nr/ ne , which is a rough measure of the proportion of pixels on
vertical lines.

• nt/ ne , which is a rough measure of the proportion of pixels on
horizontal lines.

• ntl/ ne , which is a rough measure of the proportion of edge pixels on
upward-sloping diagonals.

• ntr/ ne , which is a rough measure of the proportion of edge pixels on
downward-sloping diagonals.

Finally we calculate:

• The aspect ratio of the bounding box.

• The pixel density of the blob (the ratio of black pixels to total
pixels within the bounding box)

These final two are very dependent on styles and size of the
handwriting, so they are given a lower weighting.



83

Appendix C

The TCL source code
for a simplified
automatic cameraman

#! SPARC/vsh -f

# A simple automatic cameraman

# Create a video source
grabber grab1
grab1 size half

# and find its dimensions
set b [grab1 bounds]
set width [expr [lindex $b 2] - [lindex $b 0]]
set height [expr [lindex $b 3] - [lindex $b 1]]

# The viewfinder is a cropped area of the image...
cropper scan1 grab1

# initially the full image...
set currpos "$b"
eval scan1 bounds $currpos

# Which is scaled to a fixed size
scaler bigscan scan1
bigscan bounds 0 0 240 180

# and we want to see the output.
viewer ViewFinder bigscan

# Now we create the control side.
# First we create an RVA filter...
rvafilter rva1 grab1
rva1 length 4

# and something which compares its output
# to the current frame.
differ diff1 grab1 rva1

# Then we find the area of this comparison
# above a given threshold.
threshbounder tb1 diff1
tb1 thresh 20
# This will generate a callback with the bounds.
# We now need a procedure it can call...



Appendix C

Appendix C 84

# The eyepiece bounds can be set as follows:

proc epcallback {obj w n e s} {
global width height currpos

# find height and width of interest area
set ht [expr $s-$n]
set wd [expr $e-$w]

# An empty rectangle means no significant change
# so stay where we are.
if {($ht==0) || ($wd==0)} {

eval scan1 bounds $currpos
return

}

# Expand to be 4x3
if {$ht * 4 > $wd * 3} {

set wd [expr int(($ht*4)/3)]
} else {

set ht [expr int(($wd*3)/4)]
}

# Find the centre of the interest area
set cx [expr ($w+$e)>>1]
set cy [expr ($n+$s)>>1]

# And position the 4x3 rectangle at the centre
# We could use more complex rules here!
set w [expr int($cx-($wd >> 1))]
set n [expr int($cy-($ht >> 1))]
set e [expr int($cx+($wd >> 1))]
set s [expr int($cy+($ht >> 1))]

# Don’t go beyond the edge of the picture
if {$w < 0} {

incr e [expr -($w)]
set w 0

} elseif { $e>$width } {
incr w [expr $width-$e]
set e $width

}
if {$n < 0} {

incr s [expr -($n)]
set n 0

} elseif { $s>$height } {
incr n [expr $height-$s]
set s $height

}

# We can now update the eyepiece position
scan1 bounds $w $n $e $s
set currpos "$w $n $e $s"

}

# Finally, we set the threshbounder to use the
# above procedure as its callback.

tb1 setcb epcallback



85

References

References

[1] Ballard, D.H. and Brown, C.M., Computer Vision, Prentice-Hall, 1982

[2] Baudel, T. and Beaudouin-Lafon, M. “Charade: Remote Control of
Objects using Free-Hand Gestures”, Comm. ACM, Vol. 36 Number 7,
July 1993, pp 28-37.

[3] Baumberg, A. and Hogg, D., “Learning Flexible Models from Image
Sequences”, Proceedings of ECCV’94, pp. 299-308.

[4] Bier, E.A., Stone, M.C., Pier, K., Buxton W., and DeRose, A.D.,
“Toolglass and Magic Lenses: The See-Through Interface”.
Proceedings of Siggraph’93, ACM, pp. 73-80.

[5] Cardelli, L., Obliq: A Language with Distributed Scope ,
DEC SRC Research Report 122, available from
http://www.research.digital.com/SRC/.

[6] Carter, K., “Computer Aided Design: Back to the drawing board” in
Proceedings of Creativity and Cognition, Loughborough, April 1993

[7] Cash, G.L. and Hatamian, M., “Optical Character Recognition by the
Method of Moments”, Computer Vision, Graphics, and Image
Processing, Vol. 39, pp. 291-310 (1987)

[8] Castleman, K., Digital Image Processing, Prentice-Hall Signal
Processing Series, 1979. The tile-based thresholding algorithm was
developed originally by R.J.Hall.

[9] Eden, M., “Handwriting and Pattern Recognition”, IRE Trans. on
Information Theory, 1961, pp. 160-166

[10] Elrod, S., Bruce,R., Gold, R., Goldberg, D., Halasz, F., Janssen, W.,
Lee, D., McCall, K., Pedersen, E., Pier, K., Tang, J., and Welch, B.,
“Liveboard: A Large Interactive Display Supporting Group Meetings,
Presentations and Remote Collaboration”, Proceedings of CHI, ACM,
1992, pp. 599-602.  This paper describes the Liveboard, a large
interactive display system using cordless pens.  The underlying
hardware and software are discussed, along with several applications
that have been developed.

[11] Elrod, S., Hall, G., Costanza, R., Dixon, M. and des Rivieres, J.,
“Responsive Office Environments”, Comm. ACM, Vol. 36 Number 7,
July 1993. This is a discussion of monitoring office occupancy using a



References

References 86

variety of sensors, especially for the purpose of energy saving and
environmental control.

[12] Feiner, S., MacIntyre, B. and Seligmann, D., “Knowledge-based
Augmented Reality”, Comm. ACM, Vol. 36 Number 7, July 1993, pp
53-62. A head-mounted ‘Private Eye’ display is used to overlay on the
user’s view of a laser printer the information required to service it.

[13] Freeman, H., “On the Encoding of Arbitrary Geometric
Configurations”,  IEEE Trans. Elec. Computers, vol. EC-10, pp. 260-
268.  The original paper on chain-coding.

[14] Freeman, H., “Computer Processing of Line Drawings”, Comput.
Surveys, vol.6, pp.57-97

[15] Freeman, S.M.G. and Manasse, M.S., “Adding digital video to an
object-oriented user interface toolkit”, Proc. ECOOP 94, Bologna, July
94, Springer-Verlag

[16] Gaver, W.W., “A Virtual Window on Media Space”, Proceedings of
CHI, ACM, 1995, pp. 257-263

[17] Gee, A. and Cipolla, R., “Fast Visual Tracking by Temporal
Consensus”. University of Cambridge Engineering Department
technical report CUED/F-INFENG/TR207, February 1995. Available
by FTP.

[18] Gibson, J., The Perception of the Visual World, The Riverside Press,
1950

[19] Gonzalez, R.C., and Woods, R.E., Digital Image Processing, Addison-
Wesley 1992.  A very useful reference on all aspects of image
processing. Thresholding is discussed on pp. 443-458, and Chain Codes
on p.484 ff.

[20] Hand, D.J., Discrimination and Classification, Wiley, 1981

[21] Hatamian, M., “A Real-Time Two-Dimensional Moment Generating
Algorithm and Its Single Chip Implementation”, IEEE Trans. on
Acoustics, Speech, and Signal Processing,  Vol ASSP-34, No. 3, June
1986, pp. 546-553

[22] Hertz, J.A., Krogh, A.S. and Palmer, R.G. Introduction to the Theory of
Neural Computation. Addison-Wesley,1991

[23] Hodges, S. and Louie, G., “Towards the Interactive Office”, CHI ’94
Conference Companion, ACM, 1994, pp. 305-6

[24] Hollerbach, J.M., “An Oscillation Theory of Handwriting”, Biol.
Cybern., 39, pp.139-156, 1981.

[25] Horn, B.K.P. and Schunck, B.G. “Determing Optical Flow”, Artificial
Intelligence,  17:185-203, 1981

[26] Hu, Ming-Kuei, “Visual Pattern Recognition by Moment Invariants”,
IRE Trans. on Information Theory,  Vol. IT-8, 1962, pp. 179-187.  One
of the earliest papers on the use of moments in recognition.  Hu derives
seven moment-based characteristics which are invariant  under
translation, scaling and rotation.



References

References 87

[27] Apple Computer Inc., Hypercard Script Language Guide

[28] Ishii, H., Kobayashi, M., and Grudin, J., “Integration of Inter-Personal
Space and Shared Workspace: ClearBoard Design and Experiments”,
Proceedings of CHI, ACM, 1992, pp. 33-42.  ClearBoard is a
combined shared drawing space and video conferencing system which
uses the metaphor of a glass whiteboard, where the parties in a two-way
video conference are on either side of the board.

[29] Krueger, M.W., Artificial Reality II, Addison Wesley, 1990

[30] Kuzuoka, H., and Kosuge, T. “GestureCam: A Video Communication
System for Sympathetic Remote Collaboration”, Proceedings of CSCW
‘94, ACM.

[31] Kuzuoka, H., Ishimoda, G., Nishimura, Y. Susuki, R. and Kondo, K.,
“Can the GestureCam be a Surrogate?”, Proceedings of ECSCW ‘95,
Stockholm.

[32] Lindblad, C.J., Wetherall, D.J., and Tennenhouse, D.L., “The
VuSystem: A Programming System for Visual Processing of Digital
Video”, Proceedings of ACM Multimedia 94, San Francisco, CA,
October 1994.

[33] Longuet-Higgins, H.C. and Prazdny, K., “The interpretation of moving
retinal images”, Proceedings of the Royal Society,  Vol. B 208, 1980,
pp. 385-387

[34] Maes, P., “Artificial Life meets Entertainment: Lifelike Autonomous
Agents” in Communications of the ACM, Special Issue on New
Horizons of Commercial and Industrial AI, Vol. 38, No. 11, November
1995. Also available from
http://pattie.www.media.mit.edu/people/pattie/alife-cacm95.html.

[35] Maes, P., Darrell, T., Blumberg, B. and Pentland, A. “The ALIVE
System: Wireless, Full-body Interaction with Autonomous Agents”,
M.I.T. Media Laboratory Perceptual Computing Technical Report No.
257. Available from http://www-
white.media.mit.edu/vismod/publications/publications.html

[36] Marr, D., Vision, W.H. Freeman and Company, 1982. A classic
introductory text to the human visual system.  The beginning of chapter
3, in particular, discusses the detection of motion.

[37] Mullen, K.T. and Boulton, J.C., “Absence of Smooth Motion
Perception in Color Vision”, Vision Res., Vol. 32. No.3, 1992, pp. 483-
488. This paper discusses experimental evidence for the different roles
played by colour and luminance in the perception of motion. It is found
that, while subjects can identify direction of motion at color contrasts
quite close to the detection threshold, smooth motion is highly impaired
without the aid of luminance changes.

[38] Nadler, M. and Smith, E.P., Pattern Recognition Engineering , Wiley,
1993

[39] Nelson, G., editor, Systems Programming with Modula-3, Prentice
Hall, 1991. This is the original 'Modula-3 bible', incorporating the
language definition, tutorials and examples.



References

References 88

[40] Ousterhout, J.K., Tcl and the Tk Toolkit, Addison-Wesley, 1994

[41] Pedersen, E., McCall, K., Moran, T.P. and Halasz, F.G., “Tivoli: An
Electronic Whiteboard for Informal Workgroup Meetings”,
Proceedings of INTERCHI, ACM, 1993, pp. 391-398.  Tivoli is the
whiteboard software most commonly used on the Xerox Liveboard.
This paper covers some of the issues encountered in its design,
including the need to reconsider many assumptions behind the standard
desktop GUI.

[42] Pinhanez, C.S. and Bobick, A.F. “Intelligent Studios: Using Computer
Vision to Control TV Cameras”, M.I.T. Media Laboratory Perceptual
Computing Technical Report No. 324. Available from http://www-
white.media.mit.edu/vismod/publications/publications.html

[43] Apple Computer Inc., Inside Macintosh: Quicktime and Inside
Macintosh: Quicktime Components, Addison Wesley, 1993

[44] Samaria, F., Syfrig H., Jones,A. and Hopper, A., "Enhancing network
services through multimedia data analysers" Olivetti Research Lab
Tech. Report 96.1 Available from http://www.cam-orl.co.uk.

[45] Segen, J., "Controlling Computers with Gloveless Gestures",
Proceedings of Virtual Reality Systems’93 conference, NYC, March 15,
1993.

[46] Senior, A.W, “Off-line Handwriting Recognition: A Review and
Experiments”. University of Cambridge Engineering Department
technical report CUED/F-INFENG/TR105, December 1992. Available
by FTP.

[47] Simard, P.Y, Le Cun, Y. and Denker, J.S, “Memory-Based Character
Recognition Using a Transformation Invariant Metric” in Proc. 12th
IAPR International Conference on Pattern Recognition, Jerusalem,
1994, Vol. II pp. 262-267. When a pattern is transformed (eg. rotated)
by a transformation that depends on one parameter (eg. the angle of
rotation), the set of output patterns forms a one-dimensional curve in
the feature-vector space. Under n possible such transformations, a
manifold of up to n dimensions is formed.  The minimum distance
between the manifolds for two input patterns is invariant under
transformations of the inputs and so provides a more robust metric. A
planar tangent to the manifolds is used to approximate this metric
efficiently.

[48] Smith, S.M., Feature Based Image Sequence Understanding ,  D.Phil.
Thesis, Department of Engineering Science, Oxford University, 1992

[49] Suen, C.Y., Berthod, M., and Mori, S. “Automatic recognition of
handprinted characters – the state of the art” Prc. IEEE, 68(4):469–
487, April 1980.

[50] Tang, J.C., and Minneman, S.L., “VideoWhiteboard: Video Shadows to
Support Remote Collaboration”, Proceedings of CHI, ACM, 1991, pp.
315-322. A prototype tool to support remote shared drawing activity,
which allows each user to see the drawings and the shadows of
collaborators at other sites.



References

References 89

[51] Ueda, H., Miyatake, T., Sumino, S. and Nagasaka, A, “Automatic
Structure Visualization for Video Editing”, Proceedings of INTERCHI,
ACM, 1993, pp.137-141.  A set of functions is outlined for the
automatic description of a video sequence.  The descriptions include
details of various cinematic techniques such as cutting, panning,
zooming.  In addition, the presence or absence of particular objects,
detected by the combination of colours making up the object, is used
for indexing purposes.

[52] Weiser, M., “The Computer for the 21st century”, Sci. Am., Sept. 1991,
pp. 94-104.

[53] Wellner, P. “Interacting with paper on the DigitalDesk”, Comm. ACM,
July 1993, Vol. 36, Number 7, pp 87-96. A general description of the
DigitalDesk.  Wellner particularly emphasises the limitations of having
two desks: ‘one for paper pushing and one for pixel pushing’.

[54] Wellner, P. “Adaptive Thresholding for the DigitalDesk”, EuroPARC
Technical Report EPC-93-110.

[55] Wellner, P., Mackay, W. and Gold, R., “Computer Augmented
Environments: Back to the Real World”, Comm. ACM, Vol. 36 Number
7, July 1993, pp. 24-26. A discussion of “the opposite approach from
VR”: merging “electronic systems into the physical world instead of
attempting to replace them”.

[56] Wellner, P., Interacting with Paper on the DigitalDesk .  University of
Cambridge Computer Laboratory Ph.D. Thesis, October 1993.
Computer Lab Technical Report 330

[57] Winston, B. and Keydel, J., Working with video: a comprehensive
guide to the world of video production, Pelham, 1987. A discussion of
all aspects of video production, from camera electronics to the hiring of
actors.

[58] Wray, S., Glauert, T. and Hopper, H., "Networked Multimedia: The
Medusa Environment", IEE Multimedia, Vol.1, No.4 (Winter 1994), pp
54-63. Also available as an Olivetti Tech. Report from http://www.cam-
orl.co.uk.

[59] Zettl, H., Television Production Handbook , Wadsworth,  5th Edition
1992


	Cover
	Preface
	Abstract
	Acknowledgements
	Table of Contents
	Ch.1 - Video Augmented Environments
	Ch.2 - Example VAEs & related work
	Ch.3 - VAE techniques
	Ch.4 - The Software Cameraman
	Ch.5 - BrightBoard
	Ch.6 - Vicar: A VAE construction kit
	Ch.7 - Conclusions & Future possibilities
	App. A - The BrightBoard Program Suite
	App. B - The BrightBoard feature set
	App. C - The TCL automatic cameraman
	References

