Technical Report R

Number 415

Computer Laboratory

Application support
for mobile computing

Steven Leslie Pope

February 1997

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1997 Steven Leslie Pope

This technical report is based on a dissertation submitted
October 1996 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Jesus College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-415

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-415

Abstract

In recent years small, completely portable computers have become available
on the marketplace. There is demand for such computers, termed walkstations,
to access network services while retaining their mobility, and to operate effec-
tively in a wide range of conditions. Future office environments are expected
to support wireless networks with bandwidths which are several orders of mag-
nitude greater than are available outdoors. In such environments, there will be
powerful compute servers available for a walkstation’s use.

This dissertation describes a novel architecture called Notus and its sup-
port for applications operating in a mobile environment. The concept of the
traded handoff is introduced, where applications are able to participate in the
handoff process, rebuilding connections to the most appropriate service. This
is expected to benefit walkstations which roam over large distances, where con-
nections to servers would otherwise be strained, and also between heterogeneous
networks where cooperation between the networks in performing a handoff
might be problematic. It is also proposed in this dissertation that applications
could benefit from the ability to migrate onto compute servers as a walkstation
moves into the office environment. This enables both the walkstation to con-
serve its own resources, and applications to improve the service provided to the
end user. Finally, by interleaving a traded handoff with the migration process,
it is possible for a migrating application to easily rebuild its connections as it
moves to a new host.

The Notus architecture has been implemented, including a traded handoff
service, and a new application migration service. The new application migration
service was designed since existing application migration services are unsuited
to mobile environments and it enables applications to migrate between hetero-
geneous hosts with little disruption. Applications which use the service are
written in a standard, compiled language, and normal running applications suf-
fer little overhead. A number of existing applications which are representative
of a walkstation’s interactive desk-top environment have been adapted to use
the Notus architecture, and are evaluated.

In summary, this work describes how mobility awareness and the support
from appropriate tools, can enable walkstation applications to better adapt to
a changing mobile environment, particularly when the walkstation is carried
between different network types or over great distances.

Preface

Except where otherwise stated in the text, this dissertation is the result of
my own work and is not the outcome of work done in collaboration.

This dissertation is not substantially the same as any I have submitted for
a degree or diploma or any other qualification at any other university.

No part of my dissertation has already been, or is being currently submitted
for any such degree, diploma or other qualification.

This dissertation does not exceed sixty thousand words, including tables,
footnotes, and bibliography.

Publications
Some of the work described in this dissertation has been published [Pope96].

Copyright (©)1996 Steven Pope. All rights reserved.

Trademarks

Ethernet is a trademark of the Xerox Corporation.

Mips is a trademark of MIPS Technologies Inc.

Ultrix is a trademark of Digital Equipment Corporation.

Unix is a trademark of AT&T.

X-Windows is a trademark of the Massachusetts Institute of Technology.

Contents

List of Figures
List of Tables
Glossary
1 Introduction
1.1 Contribution e
1.2 Mobile Network Architectures
1.3 Traded Handoffs
1.4 Application Migration
1.5 Summary e e
2 Research Context
2.1 Imtroduction.
2.2 Distributed Programming
23 Trading e
24 Binding e
2.5 The Spring Operating System
2.6 The Nemesis Operating System
3 Background
3.1 Transparent Mobile Networks
3.1.1 MobileIP
312 Mobile TCP. i i e
3.1.3 Mobile ATM e
3.1.4 Mobile Radio Networks
3.2 Mobile Applications
3.3 Application Migration
331 LoadBalancing
3.3.2 Process Migration
3.3.3 Object Migration
3.3.4 Parallel Programming
34 Summary e e

ix

xi

xiii

11
11
11
13
14
15
16

4 The Notus Architecture 37

4.1 Introduction. i i i e 37
42 Notus Overview o v i i v i it e e 37
421 Componentsttt 38

4.3 Naming and Location 40
4.4 Assumptions L e e e 40
4.5 Traded Handoffs 41
4.5.1 'Traded Handoff Initiation 42
4.5.2 Updating The Trader Namespace 42
4.5.3 Traded Handoffs for Mobile Clients 43
4.5.4 Default Traded Handoff Behaviour 46
4.5.5 Traded Handoffs for Mobile Servers. 48

4.6 Application Migration 49
4.6.1 Module Initialisation 49
4.6.2 Initiation of the Migration Process 50
4.6.3 Completion of the Migration Process 51
4.6.4 Interworking Migration with Handoffs 53

4.7 Checkpoint Consistency 53
4.7.1 Roll-Back Stratégies 54
4.7.2 Synchronisation Strategies 56

4.8 Garbage Collection L. 58
4.8.1 Fine Granularity Garbage Collection 59
4.8.2 Coarse Granularity Garbage Collection 59

4.9 Security e 60
4.9.1 Security During Traded Handoffs 61
4.9.2 Security During Application Migration 61

410 SUummaryo i e e e e e e e e e e e e e e e e 63
5 Implementation 65
5.1 Imtroduction. o e 65
5.1.1 Traded Handoff Review 66
5.1.2 Application Migration Review. 67

52 Environment e e 68
53 RPCImplementation. 69
5.4 Default Handoff Support 71
5.4.1 Notus Subcontracts 71
5.4.2 Subcontracts for Mobile Clients 72

5.4.3 Subcontracts for Mobile Servers. 73
544 Stashing o 74

5.5 Trader Implementation. 76
5.6 Quality of Service Support L L 77
5.7 The Notus Walkstation Manager 80
5.8 The Notus Application Manager 81

vi

5.9 The Notus Support Module
5.10 Notus Language Extensions

5.10.1 Example Annotations
5.11 Checkpoint Consistency e e e e e e e .
512 SUMMATY i ot e e e e e e e e e e e e e

6 Notus Evaluation

6.1 Introduction.
6.1.1 Experimental Program
6.1.2 Metrics
6.2 Platform e
6.2.1 System Metrics oL
6.3 Null Server @ @ i e e
6.3.1 Migration o e
6.3.2 Traded Handoffs
6.4 VideoPlayer e
6.4.1 Components and Operation
6.4.2 Migration oo
6.4.3 Traded Handoffs e e e e
6.5 A Migrating NewsReader
6.6 A Migrating Shell.
6.7 Checkpoint Consistency
6.7.1 Analytical Model
6.7.2 Measured Latency
6.7.3 Measured Disruption
6.7.4 Larger Checkpoints. e e
6.8 Conclusions v . v vt it e e e e e e
7 Related Work
7.1 Mobile RPC. e L.
7.2 Application Migration
7.3 Summary e e e e e e e e e e
8 Conclusion
8.1 Further Work oo
8.1.1 Extensions to the Current Notus Implementation
8.1.2 Extensions to the Notus Architecture
8.2 Summary
References

vil

91
91
92
92
93
93
95
95
97
99
100
101
103
104
105
106
108
110
112
114
115

119
119
120
124

125
125
125
126
128

131

List of Figures

1.1
1.2
1.3

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
45
4.6
47
438
49
4.10
4.11
4.12
4.13

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

A Mobile Network 3
A Comparison of Flat and Traded Handoffs 6
A Migrating Application 7
Trading for Services, 14
Mobile-IP Tunnelling 21
Inter-Campus Routeing 22
A Mobile ATM Handoff 25
The Notus Architecture 38
Trader Federation 39
The Handoff Interface 44
Blocking during a Traded Handoff 45
Default Traded Handoffs . -~ 47
Mobile Server Handoffs 48
The Initialisation of a Checkpointable Module 50
Initiating the Migration Process. 51
Transfer of Checkpoints and Target Restoration 52
A Traded Handoff during Application Migration 53
Checkpoints and Interacting Modules. 54
Consistency and Roll-Backs 55
A Distributed Mobile Application. 60
Traded Handoff Review 66
Application Migration Review 67
Method Invocation using the RPC Service 70
The Handoff Interface Definition 72
Subcontract Selection. 73
Subcontract Initialisation 74
A Handoff Interface Implementation 75
The Trader 76
QoS Constraints During Trading 78
The Notus Walkstation Manager 80

X

5.11 The Notus Application Manager 82

5.12 Checkpoint Assembly 84
5.13 Module Restoration 86
5.14 An Annotated Function 87
5.15 Checkpoint Consistency: Manager 88
5.16 Checkpoint Consistency: Client 89
6.1 Thread Creation Time vs Number of Threads 94
6.2 Unbound Null RPC Invocation Time 95
6.3 Server Migration Time vs Number of Servers 96
6.4 A Migrating Null Server Module 97
6.5 A Default Traded Handoff for the Null Server 98
6.6 Mounting a Video Server oL L. 100
6.7 Consistency Test Module: Main Loop 106
6.8 A Model for Strong Consistency Checkpoints 108
6.9 Latency vs Number of Modules 111
6.10 Disruption vs Number of Modules 112
6.11 Disruption vs Groupings of 20 Modules 113
6.12 Latency vs Checkpoint Size 114

8.1 Inter-Server Handoff 128

List of Tables

6.1 System Performance Metrics 93
6.2 Disruption for a Single Null Server Module During Migration . . 97
6.3 Traded Handoff Measurements for the Null Server 99
6.4 Video Player Disruption During Migration 102
6.5 Video Player Handoff Results 103

xi

Glossary

AMO At Most Once

ATM Asynchronous Transfer Mode
DPE Distributed Programming Environment
FSP Fixed Switching Point

HDI Handoff Interface

IDL Interface Definition Language
IP Internet Protocol

MRN Mobile Radio Network
MSBR Mobile Support Border Router
MSS Mobile Support Station

NAM Notus Application Manager
NFS Sun Network File System

NLE Notus Language Extensions
NSM Notus Support Module

NWM Notus Walkstation Manager
PVM Parallel Virtual Machine

QoS Quality of Service

RPC Remote Procedure Call

SAP Service Access Point

TCP Transmission Control Protocol
VCI Virtual Circuit Identifier
WLAN Wireless Local Area Network

WWW World Wide Web

xiii

Chapter 1

Introduction

In recent years, computers which are small and light enough to be completely
portable have become available. Such computers, termed walkstations [Imielinski92]
have the attraction of allowing users to access their computing environments
from wherever they happen to be: Since computing environments are becom-
ing inherently distributed, and walkstations are expected to make great use of
network provided services, wireless connectivity between walkstations and the
static network via base stations has become important.

As a walkstation roams in a wireless network, it is often not able to commu-
nicate with its current base station and must use another. These circumstances
require the rebuilding of a walkstation’s network connections, a process which
is termed a mobile handoff.

1.1 Contribution

This dissertation describes a novel architecture called Notus and its support for
applications operating in a mobile environment. The architecture supports the
new concept of a traded handoff, where applications are able to participate in
the handoff process, rebuilding their connections to the most appropriate ser-
vice. This is expected to benefit walkstations which roam over large distances,
where connections to servers would otherwise be strained, and also between
heterogeneous networks where cooperation between the networks in performing
a handoff might be problematic.

It is also proposed in this dissertation that applications could benefit from
the ability to migrate onto compute servers as a walkstation moves from an
out door low-bandwidth environment, to a high-bandwidth office environment.

J R

This would enable both the walkstation to conserve its own resources, and
applications to improve the service provided to the end user. However, existing
application migration services are unsuited to mobile environments.

~ An implementation of the Notus architecture has been made, and is de-
scribed and evaluated in later chapters. The implementation provides applica-
tions with flexibility in their use of the traded handoff, from a default which
requires no application involvement, to the complete involvement of an appli-
cation in the handoff process.

The implementation also demonstrates a new application migration service
which is suitable for interactive applications operating in a mobile environ-
ment. The service enables the migration of applications between heterogeneous
computers and with potentially little disruption to applications during the mi-
gration process. Consideration is made for the migration of multi-threaded
applications by providing a number of options which ensure consistency be-
tween threads during migration. Also, by interleaving a traded handoff with
the migration process, it is possible for a migrating application to rebuild its
connections as it moves between the compute server and walkstation.

In summary, this work describes how mobility awareness and the support
from appropriate tools, can enable walkstation applications to better adapt to
a changing mobile environment, particularly when the walkstation is carried
between different network types or over great distances.

This chapter will proceed with an introduction to current mobile network
architectures, and explains both the traded handoff concept and application
migration in a mobile environment.

1.2 Mobile Network Architectures

The means by which a walkstation interacts with its distributed computing
environment is first considered. In the simplest case, a walkstation might
be periodically connected to a network by plugging it into a docking station.
Many vendors currently offer docking stations which provide capabilities such as
charging a walkstation’s batteries, a network connection, and other peripherals
such as multimedia devices. This configuration has become quite popular, but
has problems when the walkstation is disconnected from its docking station for
long periods of time. During these periods the services available depend solely
upon the walkstation’s own resources.

In order to provide access to the network without requiring a walkstation to
be physically connected to a docking station, it is necessary to offer a wireless

network interface. In the local area, this is termed a Wireless LAN (WLAN),
and implementations have used radio [Kuo74, Porter94, Trotter95] or infra-
red [Adams93, Harter93, Condon95] as a communications medium. Current
research into hardware integration is progressing towards the availability of a
single device which provides both radio and infra-red connectivity [Hager93).

Currently, radio-based implementations offer bandwidths in the region of
10Mbit/s and bandwidths are expected to double in the near future; for ex-
ample, HIPERLAN defines a standard for 24Mbit/s, operating in the 5.2GHz
frequency band [ETS95]. Infra-red network bandwidth is lower, in the region of
2Mbit /s and since infra-red does not penetrate walls, the size of the communi-
cating cell is smaller. This small cell size has been used in applications where the
location of a person or piece of equipment in a building is important [Want92b,
Harter94]. In the wide area, connectivity is available using the existing Mobile
Radio Network (MRN) infra-structure [Rahnema93, Shearer95]. Bandwidths
available are much lower than for a WLAN, in the region of 20Kbit/s.

Communication.

Static Node.

Base Station.

Walkstation.

@ Static Network.

Figure 1.1: A Mobile Network

When considering a network containing walkstations (Figure 1.1), it is usual
to make a distinction between static hosts and walkstations. Static hosts are
connected to the network through a fixed link and tend to move infrequently.

‘-

Walkstations are able to access the network using a static host, termed a base
station as a gateway. Most walkstation architectures [Ioannidis91, Imielinski92,
Teraoka93, Bakre94, Comer94] have been designed around this concept.

It is generally accepted that wireless network connections suffer error rates
which are much higher than those experienced over wired connections!. This
can be caused by a number of factors such as:

¢ signal attenuation through material such as walls,

e front-end-overload, caused by a powerful transmitter of another frequency,
such as a microwave oven, overwhelming the filters of the receiver,

e narrow-band interference, caused by another transmitter overlapping the
frequency band used by the walkstation,

e multi-path interference, caused by reflections and diffractions of a signal,
resulting in destructive interference at the receiver, and

e background noise, for example an infra-red receiver in direct sunlight.

Conversely, errors on the static network are generally caused by dropped
packets due to congestion within the network. This has implications for the
treatment of errors by wireless network protocols and is discussed further in
Section 3.1.

In all walkstation architectures there arises at some point the need for a
mobile handoff. This occurs when a walkstation, due to its own movement,
is no longer able to communicate with its current base station and has to use
another base station. A mobile handoff is the process of rebuilding wireless
network communications when a walkstation moves from the range of one base
station to another. The criteria for defining the appropriate moment to handoff
and the choice of the new base station include the changing Quality of Service
(QoS) which is provided by the wireless medium, the static network, and the
walkstation’s servers, together with the predicted QoS and future intentions
of movement by the user. The user’s intentions of movement can be supplied
directly by the user, from diary applications, or guessed using hints from a
user-location mechanism such as the Active Badge [Want92b].

For network connections, QoS has generally been described in terms of band-
width, delay, and jitter, but might also include terms such as cost and expected
bit error rates. The end-to-end QoS available between a walkstation and its

Tt has been reported that in some circumstances an indoor WLAN can achieve comparable
error rates to that of a static network [Eckhardt96].

4

servers depends upon factors such as load on the server and congestion in the
static network. Perhaps most significant is the QoS available between the walk-
station and its base station. This is likely to be highly variable, depending
on: the shielding effects from the surroundings, the varying tariffs charged for
access, the distance from the base station, and the load upon the base station.

The salient features of computing in a mobile environment are that walksta-
tions are expected to move and operate over large distances, traversing many
different network types or providers. In doing so, walkstation applications are
required to adapt to a wide range of conditions, such as communication band-
widths which fluctuate over several orders of magnitude, intermittent connec-
tivity, and various levels of support from static compute resources.

1.3 Traded Handoffs

Existing walkstation architectures typically provide a transparent mobile hand-
off mechanism at the network level. This essentially redirects connections
through a new base station to the walkstation.

At the network level, a connection is described using terms which define
the network level Service Access Point (SAP), rather than the properties of
the service to which the connection is made. Handoffs made at the network
level can only redirect connections back to their original end-points, with the
disadvantages being that the network cannot consider the services to which an
application is communicating and no use can be made of replicated services
which are available locally. For this reason, handoffs of network level connec-
tions are termed flat handoffs in this dissertation.

Figure 1.2 illustrates a case where a flat handoff results in communication
with server S7, which requires the traversal of data over the backbone network.
This has ignored the existence of the locally replicated server Sz, which could
have been used instead of the original.

As well as the loss of any potential use of replicated servers, the implemen-
tation of a flat handoff mechanism over a wide area is potentially problematic.
As a walkstation moves between different network types and administration
boundaries, a uniform protocol for handoff requests must be supported and
with minimal disruption to the walkstation. Applications for which timeliness
is important, such as those dealing with multimedia streams, might well discard
data which is “late”. If this is due to the time spent by the network in per-
forming the handoff, then the effort expended by the network has simply been
wasted. Such circumstances would constitute a violation of the end-to-end ar-

Replicated Service.
Base Station.
Walkstation.

@ High Speed LAN.
\ (i)
———— Backbone Network. N ~

(1) Initial connection to S §

v
Wired Link. - (ii) Flat handoff to S 1

Walkstation M t
....... Wireless Link. alkstation Movemen (iii) Traded handoff to S7

@) =27
L4 -

e .

Figure 1.2: A Comparison of Flat and Traded Handoffs

gument, which suggests that functions placed at low levels of a system may be
redundant or of little value compared with the cost of providing them at that
low level [Saltzer84).

A traded handoff is a handoff where connections are rebuilt to the most
appropriate service. This requires that connections to services are described at
a higher level than the network level SAP. For example, in the case of a video
server this abstract description might indicate the service name, the title of the
film which is being transmitted, and the encoding format of the video stream.

Use of a traded handoff gives walkstation applications the added benefit
of greater flexibility than is possible using flat handoffs. Instead of reconnect-
ing the application to the original endpoint, it becomes possible to connect
to locally available, replicated or compatible services. For applications which
always require reconnection to their original servers, such as mail retrieval ap-
plications, the traded handoff can be reduced to the flat handoff by suitable
default behaviours. '

1.4 Application Migration

If a walkstation is in a WLAN environment where bandwidth is suddenly
reduced? or moves to an MRN environment, adaptations which could usefully
be made by the walkstation include: the pre-caching of “useful” information
and ensuring that information is presented in a bandwidth optimal manner; for
example, presenting textual dispatches of news instead of video clips.

*Bandwidth may be reduced, for example by interference or by moving into a cell where
bandwidth has been previously committed to other walkstations.

Conversely, when moving into a WLAN environment, the walkstation should
adapt to the higher bandwidth and the proximity of compute resources. Since
it is usually in the interests of a walkstation to conserve its own resources, the
WLAN environment provides the opportunity for the walkstation to move its
applications to static compute servers. An example application which might
benefit from migration as the walkstation moves is the video player shown in
Figure 1.3.

Compute Server.

Base Station

WalkStation.

Decoder Module.

Video Source.

Wired / Wireless Link.

High / Low Bandwidth.
————

Wireless LAN Environment. Mobile Radio Network Environment.

Figure 1.3: A Migrating Application

The part of the application which is decoding a compressed video stream
is a computationally intensive task. By moving it to a compute server on the
static network, the load on the walkstation is reduced, the trade-off being the
requirement to then transmit high-bandwidth frame updates to the walkstation.
If post-processing of the video stream were required, this computation would
also be a candidate for migration to the compute server. There are many other
applications which could be moved to static compute servers, such as news or
World Wide Web (WWW) browsers, and it could be argued that much of
the walkstation’s desk-top environment could usefully be moved onto the static
network.

An architecture which enables applications in a mobile environment to be
migrated in a uniform manner must support the following requirements:

e a low-latency implementation. It is especially important that migration
should seem instantaneous to the end user when interactive applications
are migrated,

e an implementation which allows migration between heterogeneous hosts.
There is no reason to suppose that a walkstation would be of the same
processor or operating system type as a compute server. It would also be
a requirement to migrate applications which have different source code
representations for different architectures,

e an implementation which imposes little overhead when applications are
running normally. Many applications, particularly those which are inter-
active, would not wish to compromise performance during normal execu-
tion in order to support migration.

Assuming that a mechanism is available for a,pplicatioh migration which
achieves the requirements specified above, there exists a further important re-
quirement. This is to ensure that an application’s network connections are
rebuilt after the application has migrated. For example, after migration, the
video decoder application must continue to receive encoded video from an ap-
propriate source, although not necessarily the original source. As far as the
application is concerned, migration to another host is similar to it running on
a walkstation which subsequently moves. It is thus desirable to use the same
handoff mechanism to support application migration as is used to support walk-
station mobility.

Existing application migration schemes [Rashid81, Theimer85, Zayas87,
Douglis91a, Litzkow92, Milojicic93] have not fully addressed the issues of per-
formance, heterogeneity, portability, and dependencies on the original host.
Implementations usually migrate large amounts of code and data, and require
the source and target machines to be of the same processor type and operating
system architecture. ’

1.5 Summary

This chapter has presented an overview of: current mobile networks, the new
traded handoff concept, and the usefulness of application migration in a mobile
environment. The remainder of this dissertation is as follows.

Chapter 2 describes the distributed computing and operating systems con-
text in which this dissertation should be placed. Previous work in the area of
mobile computing is discussed in Chapter 3 and further motivates the research
described in this dissertation.

Chapter 4 describes the components of the Notus architecture and their
interworking to support traded handoffs and application migration. Chapter 5
describes an implementation of the Notus architecture.

The Notus implementation is evaluated in Chapter 6, using a number of
interactive applications which are representative of those expected to operate
in a walkstation environment. The evaluation pays particular attention to the
disruption experienced by the applications and exercises all the consistency
options provided by the implementation for a multi-threaded application.

Related work is presented in Chapter 7. Finally, Chapter 8 describes possi-
ble further work and future directions for the Notus architecture.

10

Chapter 2

Research Context

2.1 Introduction

This chapter provides some historical Distributed Programming Environment
(DPE) background, including a discussion on trading and binding, which is
relevant to the design of the Notus architecture. The remainder of the chapter
then provides an overview of two recent operating systems, Spring and Nemesis.
Some functionality from both was used in the implementation of the Notus
architecture.

2.2 Distributed Programming

The Cambridge Distributed Computing System is an early example of a DPE,
where the distributed services included print servers, authorisation servers, and
compute servers, together with a name server to map service names onto their
locations [Needham82]. In this environment of clients and servers, the means
of interaction between the clients and servers becomes important. Typically a
client requests some service from a server, which responds with a result. Ex-
amples of requests and responses might be a request for a particular disc block
or to authorise a user to use a particular service. The responses might be
respectively: the disc block and an encrypted session key.

One consideration is whether or not the client should wait for the response
or continue to execute in the meantime. It has been shown that given an en-
vironment containing asynchronous threads of execution, the two models are
equivalent [Lauer78, Liskov85] although the synchronous case has gained greater
acceptance as it is viewed as being easier to program correctly. Another consid-

11

eration is that of the coding used for the information transmitted between the

client and server. There must be a common standard for the process of con-

verting application level data structures into a flat byte representation. This
function is called marshalling.

One synchronous distributed programming paradigm which has gained al-
most universal acceptance is the Remote Procedure Call (RPC) [Birrell84]. This
hides the complexity of marshalling and the concurrency issues of communica-
tion through the language level procedure call mechanism. A remote procedure
is a procedure which exists outside the linkage scope of the client program, but
which is invoked by the client in a similar manner to a local procedure. A client’s
view of an invocation of a remote procedure is semantically the same as invoking
a local procedure. It passes arguments and execution to the procedure, which
later returns with results. However, on an invocation of a remote procedure, ex-
ecution is passed to the RPC system. This uses stubs which are generated from
a description of the procedure to marshal the procedure call arguments into
a machine independent flat byte representation. At the server-side, the argu-
ments are unmarshalled by the RPC system and the remote procedure invoked.
Results and exceptions are marshalled and returned to the client as if from a
local procedure call. Standard representations for marshalled datatypes such
as Sun XDR [Sun87] and ASN.1 [ISO95a] enable clients and servers to execute
on heterogeneous machines and even be implemented in different programming
languages.

To some extent the RPC paradigm provides transparency between the lo-
cal and remote cases, although ultimately the failure properties of locally and
remotely executed procedures must differ. For this reason, some RPC imple-
mentations, such as [Hamilton84] make the differences between a local and
remote procedure explicit by the use of different calling conventions.

Any DPE must tackle the issue of naming and locating the services required
by the client. Using the RPC paradigm as an example, a remote service con-
sists of a group of related remote procedures. When the remote server which
supports the service initialises, it registers itself using a name service, providing
sufficient information for a client to initiate communication with the server.
Early examples of these name servers simply identified each service with a
unique name [Needham82, Birrell82, Sun88]. Later it became possible for a
client to specify its service requirements in terms of the properties it required
using a constraint language. This enabled the name server to match from a
number of offers of service, returning a set of suitable candidates for the client
to choose from. Such a name service has been termed a trader and is described
further in Section 2.3. '

One non-transparency in many RPC implementations is the requirement

12

that a client supply an RPC binding identifier as an argument to each remote
procedure invocation, enabling the RPC service to identify the server with
which to communicate. (See Section 2.4 for a discussion of binding.) With
the application of the RPC paradigm to object oriented languages [Black88,
ANSA92, Evers93] it became possible to hide the binding behind a prozy object.
Such an object has a suite of methods of the same type as the remote object
which it represents, but on an invocation calls into the RPC library. The state
contained within a proxy is roughly the equivalent to that of a traditional RPC
binding.

This technology has matured into standards, such as the Open Software
Foundation’s Distributed Computing Environment (OSF-DCE) [OSF91], the
International Standards Organisation’s Reference Model for Open Distributed
Processing (RM-ODP) [ISO95b], or the Object Management Group’s Common
Object Request Broker (OMG-CORBA) [OMGY95].

These standards define services such as an RPC subsystem, a trader with
constraint language and a stub compiler which is used to generated stubs from
descriptions of services. A DPE today allows an application to dynamically
lookup offers of service based upon a specified criteria and provides all the
mechanisms required to connect to, and use these services. The environment
is able to inform the application of communication failures and may allow the
application to negotiate Quality of Service (QoS) for its bindings [Friday96].

2.3 Trading

The representation of the properties of a service and the communication of
these properties to potential clients, can be achieved through the adoption of a
trading model.

An interface is an instance of an abstract data type. It describes the pro-
cedure signatures, data types and exceptions which a server exporting the in-
terface implements. Interfaces are often described using an Interface Definition
Language (IDL) [ANSA92, OMG95] and are useful for ensuring a modular struc-
ture and providing type safety for distributed systems, programming languages
[Cardelli88] and recently operating systems [Hamilton93a, Roscoe95b]. An in-
terface reference is a piece of information which enables a client to locate and
establish communication with its corresponding interface. Within a single ad-
dress space, this information contains a pointer; in a distributed environment,
it contains the transport level address of an RPC server. Other information
which might be contained within an interface reference includes the type of the
interface, QoS information, and the marshalling format required by the server.

13

The properties of a particular instance of an interface are described using
expressions in a grammar which should be defined together with the IDL. Hence
an offer consists of a property list and an interface reference, placed in a par-
ticular contezt. A client should, using a constraint language, be able to pose a
query concerning the properties of a given interface.

There is a requirement for a forum where offers can be published by servers
and where clients can issue requests for offers. The result of a successful request
should be that the client is able to select an interface reference from a list of
matched offers and use it to contact the interface instance (Figure 2.1). It is
common to call such a forum a ¢rader [ISO94]. As well as supporting a names-
pace for offers, together with a means of matching requests with offers, it is
usual for a trader to support the notion of the federation of a portion of another
trader’s namespace. After federation, the federated part of the namespace is
accessible by both traders. This is the means by which offers from one machine
‘become visible over an entire network.

(i) Export offer.
®

(ii) Request service with desired properties.

(iii) Import matching offers.

(i) (iv) Establish binding with interface.

(v) Invoke server operation.

@Gi)

Figure 2.1: Trading for Services

When a client application has selected an offer from the set returned by the
trader, it must use the information contained within the interface reference to
establish communication with the server interface. This requires the creation of
an invocation reference, which is an object containing all the mechanisms nec-
essary for communication with the interface. An invocation reference appears
to the client as a proxy to a local instance of the interface.

2.4 Binding

Binding [Saltzer79] is the action of associating a name with a value. In the
context of distributed programming, binding refers to the association of an
interface with an invocation reference. The establishment of a binding occurs
when all state required for communication with the interface has been fully
created.

14

There are tradeoffs in making this establishment transparent to the client.
If binding establishment is transparent, also known as implicit binding, then all
information concerning the binding process is hidden from the client, with the
illusion that the binding is always available for use. As well as freeing the client
from considering establishment, implicit binding allows for dynamic resource
allocation. For example, bindings can be established lazily or multiplexed over
a single channel. Implicit binding has been implemented in many distributed
systems [Birrell93, Hamilton93a, OMG95]. It does however suffer from the dis-
advantage that a client has no control over the establishment process. This is
required in cases such as multimedia applications, where explicit QoS negotia-
tion is required, or for mobile aware applications which require explicit control
over their bindings as their environment changes. Conversely, non-transparent
establishment, also known as ezplicit binding, requires the client to establish
communication whenever necessary. This allows the client to remain in full con-
trol of the binding process, but requires additional implementation effort and
requires that the distributed nature of the application is visible to the program-
mer. Explicit binding is supported by some existing distributed programming
environments [Roscoe95b, Otway95] and is assumed in later discussion.

2.5 The Spring Operating System

The Spring operating system [Hamilton93a] is a recent example of a micro-
kernel operating system, where system services are placed in separate protection
domains, communicating with each other and applications via a small kernel.
Other examples include Mach [Accetta86] and Chorus [Rozier89]. The advan-
tages of this system structure are that the system as a whole becomes more
tolerant to the failure of individual services, and is easier to extend and re-
configure than traditional monolithic kernels, such as UNIX [Bach86]. However,
the cost of communication between clients and system servers becomes a major
issue.

Spring addresses the cost of communication between protection domains
through the use of an efficient cross domain, object invocation mechanism
termed doors. A door is a piece of protected kernel state which describes a
particular entry point, typically corresponding to a server object in another do-
main. As used in the Spring inter-domain RPC protocol, a client in one domain
issues a door invocation for a server object in another domain. This causes the
kernel to allocate and transfer control to a thread in the server domain, passing
information associated with the door invocation and argument data. On return,
the kernel deactivates the server thread and reactivates the client with either
return data or exceptions raised.

15

While Spring and other work such as [Bershad89, Yarvin93, Liedtke93] have
successfully addressed the communication costs between clients and servers in
a micro-kernel operating system, all micro-kernel architectures depend heavily
on the use of shared system servers executing tasks on behalf of many clients.
Operating system services are multiplexed at a high level and this can lead
to applications suffering from an effect which has been termed QoS crosstalk,
where a system has difficulty in providing QoS guarantees and accounting for
the resources consumed by a particular application [Roscoe95b].

The Spring RPC service contains an interesting feature which enables new
behaviours to be added to RPC bindings, termed a subcontract [Hamilton93b).
In Spring, a subcontract is a module (some code) which is given control of the
mechanism for object invocation after marshalling has taken place. This enables
different invocation behaviours to be implemented. For example, a subcontract
might encrypt marshalled invocations between a client and server. Other sub-
contracts have implemented behaviours including caching and replication. New
subcontracts can be introduced to the'system without modification to the base
RPC service, and if a server receives an invocation from a client using an un-
expected subcontract, it is able to consult a registry to find an appropriate
subcontract.

Client and server-side subcontracts are not required to be identical so long
as they are compatible. Spring defines subcontract A to be compatible with
subcontract B if the marshalling code for subcontract B can cope with receiving
an object from subcontract A. Although subcontracts are typed in the Spring
object oriented type system, the compatibility relation between subcontracts
cannot be deduced from their type. This results in ad-hoc type comparisons
within the subcontract at the time invocations are made.

The Spring work on subcontracts has influenced the design of CORBA Ob-
ject Adaptors [OMG95]. These differ from the Spring subcontracts in that
there is no scope for application writers to create new object adaptors or for
the dynamic selection of object adaptors during binding establishment.

2.6 The Nemesis Operating System

The Pegasus project [Mullender92] is a joint effort between the Computer Lab-
oratory and the University of Twente, and has resulted in the design of the
Nemesis operating system which supports multimedia applications, providing
QoS guarantees and resource accountability.

This is achieved through the multiplexing of resources at the lowest levels

16

of the system, eliminating shared servers as far as possible, the adoption of a
single address space, and the use of a scheduler which provides QoS guarantees.

Applications in the Nemesis environment consist of a number of modules,
which are units of loadable code, containing no unresolved references and no
mutable data [Evers94]. To use the code within a module, an application must
first locate (possibly dynamically) an interface for the module. As with the
Spring operating system discussed in the previous section, the structure of
modules with strongly defined interfaces is maintained at all levels of the system.
Interface types are defined using Middl IDL [Roscoe94] which was developed
from ANSA IDL [ANSA92] with the notable addition of constructs for local
machine and low level operating system interfaces. The Middl stub compiler
is used to translate the module type definition into a programming language
template for a concrete implementation and to generate marshalling code for
the data types defined, arguments to operations, and exceptions.

In Nemesis, a module is instantiated through binding state to a closure,
where a closure consists of a pair of pointers: one to a module’s methods, and
the other to per-instance state. When instantiating a module, an application
either binds state which is known from the module’s IDL or requests that the
module bind its own state by invoking an initialisation method of the module.
In the former case, the state of a module is ezplicit, its type being defined in
the module’s interface. In the latter, the type of this implicit state is visible
only within the module.

At the start of this investigation, the Nemesis implementation was incom-
plete, however the type system, linkage structure, namespace, IDL, and stub
compiler were all well developed [Hyden94, Black95, Roscoe95b]. The type
system provides a primitive form of dynamic typing, with operations such as
IsType, which determines whether a given type conforms to a particular type,
and Narrow, which converts one type to another specified type, so long as the
conversion is permitted.

These features, together with the uniform namespace and linkage model,
were sufficiently powerful to support the Clanger interpreted programming lan-
guage [Roscoe95a). Subject to authorisation, a Clanger script is able to bind
to an interface exported by any system module and invoke operations. This
should be compared to a similar interpreter for the Spring operating system,
which is forced by the lack of a dynamic type system to parse IDL descriptions
on the fly in order to determine the type of objects.

17

18

Chapter 3

Background

This chapter presents a survey of previous work in the area of wireless net-
work architectures and the applications which are expected to use them. The
discussion aims to justify the claims of Chapter 1. First, that there are diffi-
culties in providing transparency in a mobile network — not least in that new
mobile aware applications do not require this transparency; second, that pre-
vious research has not produced a solution which satisfies all the requirements
for application migration in a mobile environment.

3.1 Transparent Mobile Networks

This section describes mobility considerations for a number of different Wireless
LAN (WLAN) classes, followed by a discussion of Mobile Radio Network (MRN)
developments. The different approaches to wireless connectivity have advanced
independently, and interoperability is likely to become a major issue in the
future.

One classification of network architectures differentiates between connec-
tionless and connection oriented networks, with the former perhaps most com-
monly associated with the Internet Protocol (IP) [Postel8la], and the latter
currently receiving great attention with Asynchronous Transfer Mode (ATM)
networking.

Development of ATM has continued over many years [Hopper78, Fraser93]
and is now accepted as a solution in environments where networks are expected
to carry audio and video, along with other forms of data. The ATM compro-
mise enables the network to provide Quality of Service (QoS) guarantees for
connections where timeliness is important, whilst at the same time retaining

19

the statistical multiplexing characteristics of packet switched networks. Large
numbers of IP based networks currently exist and their number is rapidly in-
creasing as the commercialisation of the Internet continues apace.

WLAN implementations have consequently tended to interwork with either
IP or ATM. Those based around IP have the advantage that IP processing on
reception is able to accommodate the out of order packets which might result
from mobile handoffs. This reduces the handoff problem to one of re-routeing.
ATM based implementations require the additional synchronisation between the
old and new connections during a handoff, and consideration to the problem of
preventing lost or out of order cells.

For the following discussion, it is necessary to distinguish between the home,
which is the area where a walkstation is normally connected to the network, and
the local area, which is the proximity to the walkstation, wherever it happens
to be.

3.1.1 Mobile IP

The Columbia Mobile-IP scheme [loannidis91] is designed around two fun-
damental assumptions: that protocols at or above the transport layer should
continue to operate as if they were on ordinary static hosts, and that the addi-
tion of mobility should require no changes to the software of non-participating
hosts or gateways.

The protocol associates a single IP address with each walkstation, regard-
less of where it is on the network. Ancillary compute servers known as Mobile
Support Stations (MSS) are responsible for ensuring that packets are correctly
routed. The scheme defines a campus as a small number of cooperating MSS
and might also be considered a single administrative domain. Within the same
wireless cell (using the same MSS), walkstations are able to communicate di-
rectly using a modified address resolution protocol, and the MSS acts as a
gateway when routeing packets between the walkstation and hosts on the static
network.

A host wishing to contact a walkstation will send packets to the walk-
station’s home MSS. This will then determine the MSS which is local to the
walkstation. Packets are then tunnelled to the walkstation via this MSS. Here,
tunnelling refers to the encapsulation of a packet addressed to a walkstation
within another IP packet addressed to the walkstation’s local MSS. On receipt
by this MSS, the encapsulating packet is stripped and the original packet for-
warded to the walkstation.

20

Communicating Host. Communicating Host’s Campus.

Walkstation’s Home Campus

Walkstation’s Local Campus.

Mobile Support Station.

Figure 3.1: Mobile-IP Tunnelling

Problems with this scheme occur when a walkstation moves out of its home
campus. A walkstation entering a new campus receives a transient IP address
for communication with its local MSS and the walkstation must inform its home
MSS of its new location. Packets are forwarded from the home MSS, to the local
MSS, and on to the walkstation. This results in communication often following
sub-optimal routes. For example, Figure 3.1 shows a walkstation which has
been carried over a large distance. All packets are sent to the walkstation via
its home MSS instead of a more direct route.

The Columbia scheme is compatible with standard IP, relying on encap-
sulation to transfer data between support stations, and the Internet Draft
[Perkins96] is set to be adopted as an Internet standard. Other IP based
schemes, such as [Teraoka93] rely on unusual IP options, with the associated
danger that these might not be dealt with correctly by all routers in the net-
work.

The efficient provision of inter-campus mobility has been addressed in [Aziz94].
If a static host wishes to initiate an inter-campus communication with a walk-
station, two IP tunnels are set up, one leading to a Mobile Support Border
Router (MSBR) at the edge of the walkstation’s local campus, the other from
the edge MSBR to the walkstation’s local MSS, and so to the walkstation over a
wireless link. When the walkstation changes location within the same campus,
re-routeing is only required for the second tunnel.

The case that the connection originates from somewhere other than the
walkstation’s home campus is illustrated in Figure 3.2. The first packet (i)
reaches the walkstation’s local MSBR after being tunnelled via the walkstation’s
home MSS. The local MSBR sends a redirect message (ii) to the originator’s
MSBR, causing a tunnel to be established directly between the originator and
the local MSBR (iii) thus removing the home MSBR from the data path.

21

Communicating Host.

Walkstation’s Home Campus \

Communicating Host’s Campus.

(i) First packet sent via home MSS.
(ii) Redirect sent to originator’s MSBR.

(iii) Subsequent packets routed directly.

Mobile Support Station.

Mobile Support Border Router. Walkstation’s Local Campus.

Figure 3.2: Inter-Campus Routeing

By redirecting these tunnels in a hierarchical manner during a handoff,
the involvement of routers within the network is minimised, and the optimal
route to the walkstation is maintained. A similar scheme has been described
[Johnson94] where the new location of a walkstation is propagated between
routers along the data path from the walkstation. The drawback with this
addition to the Mobile-IP architecture is the requirement for the modification
of intermediate routers.

Future versions of the Internet Protocol (IPv6) [Deering95] will update the
current addressing scheme'. As well as increasing the size of the address space,
a generalisation of the existing IP loose source route is to be adopted which
will enable an address to specify a cluster of hosts. This increased flexibility in
addressing can be used to optimise routes to a walkstation. If the address of the
cluster of hosts which comprises the local campus is embedded in all outgoing
packets from the walkstation, then hosts which are sending to the walkstation
can route directly, once a packet has been received from the walkstation. How-
ever, initial contact with the walkstation must still be made using an indirection
through the walkstation’s home campus.

There is one final limitation with the described Mobile-IP schemes. Packets
sent to the walkstation are encapsulated and tunnelled via the home MSS, while
packets sent from the walkstation are simply launched using the walkstation’s
fixed IP address as the source address. It is likely that such packets are re-
garded as invalid by intermediate security conscious routers, and dropped. This
problem has previously been addressed, with the home MSS used to forward
encapsulated packets both to and from the walkstation [Baker96, Cheshire96].
However the scheme might still fail in circumstances where the connection is

LA general overview of the IPv6 addressing scheme is described in [Francis94].

22

required to pass through an intermediate security firewall which is not prepared
to accept encapsulated packets.

The authors of [Cheshire96] advocate the use in different environments of
a number of different options for the encapsulation and indirection of both in-
coming and outgoing packets. They also stress the importance of a walkstation
having the option of no Mobile-IP support, that is sending and receiving un-
encapsulated packets using a temporarily allocated address. This option was
thought useful for applications which make use of short lived connections or
possess a higher level recovery mechanism.

3.1.2 Mobile TCP

One of the main applications over Mobile-IP is the Transmission Control Pro-
tocol (TCP) [Postel81b]. If unmodified TCP is used in a wireless environment
there are a number of performance problems. The most serious is that TCP
treats packet loss as an indication of network congestion. Once packet loss is
detected, a TCP sender will retransmit using an exponential back-off and also
reduces subsequent throughput, typically through initiation of the slow start
algorithm [Jacobson88]. Over a wireless link there is a relatively high error rate
compared with the wired network, and packets lost here, should be retransmit-
ted without back-off or reduction in the sender’s rate of transmission.

With this problem in mind, I-TCP [Bakre94] interworks a wireless trans-
port protocol between a walkstation and base station, with unmodified TCP on
the static network. The protocol is designed so that packet loss on the wireless
link does not invoke the end-to-end congestion control mechanisms of T'CP.
Instead, retransmissions are made from the base station, using a retry strategy
which may be tuned to the wireless link. The authors have reported improved
throughput over unmodified TCP. Other schemes for improving transport layer
throughput include [Balakrishnan95a] which is similar to I-TCP, except that a
single end-to-end T'CP connection is maintained.

Once the transport layer becomes aware of the mobile nature of the net-
work and particularly in the case of I-TCP, where the connection is split and
buffered at the base station, a potentially large amount of connection state can
be held at the base station. A transparent handoff would require that this state
be transferred between base stations. In the I-TCP implementation, handoffs
require cooperation between two MSS, transferring the state of I-TCP connec-
tions from one to the other. The amount of state transferred depends upon the
amount of data buffered; for idle connections the implementation [Bakre95a]
requires 265ms to handoff. Most of this time is spent to synchronise the walk-
station and base stations, but about 50ms is required to transfer state for each

23

idle connection. This time dramatically increases as more data is buffered at
the base station, from about 300ms when 4Kbytes are buffered, to over one
second when 32Kbytes are buffered.

One other option which avoids modifications to TCP is to hide non-congestion
related errors from the T'CP sender, in effect making the lossy wireless link
appear as a higher quality link with a lower bandwidth. Implementations
[Ayanoglu95, Balakrishnan95b, Balakrishnan96] typically cache packets and
perform local retransmissions over the wireless link. Use is made of TCP ac-
knowledgements, and a retransmission timeout is used which js shorter than
that used by TCP. It is possible to consider the data cached by these reliable
link layers as a hint and not copied over to the new base station during a hand-
off. Although this enables the reported handoff time to be significantly reduced,
the TCP sender is still required to retransmit any data which was buffered on
the path to the old base station, causing considerable disruption to the end
application.

3.1.3 Mobile ATM

ATM networks are connection oriented, with communication taking place over
virtual circuits. Data is transmitted in small cells?, each with a header con-
taining amongst other information, a Virtual Circuit Identifier (VCI). During
connection establishment, a virtual circuit is established from one host to an-
other using a number of intermediate switches. Each hop on the data path in
both directions is allocated a VCI. During data transmission, when a switch on
the transmission path receives a cell for forwarding, it must insert the correct
VCI into the cell’s header for the next hop and transmit the cell on the correct
output port.

Figure 3.3 illustrates a mobile handoff in an ATM network. The handoff pro-
tocol must first establish a route from the walkstation’s base station to a switch
which intersects the old route (i). This switch is termed the Fixed Switching
Point (FSP). A new connection is made from the FSP to the walkstation via
the new base station (ii). Once the new connection is established, the handoff is
performed. This requires a change in the entry of the VCI table of the FSP, so
that cells will subsequently be forwarded on the new data path. The connection
from the FSP to the old base station is then closed down (iii).

The above mechanism is at the heart of most recent ATM based mobile
handoff implementations [Porter94, Rajagopalan95, Condon95]. The difficulties

2The current ATM standard defines a 53 octet cell, containing 48 octets of data and 4 octets
of header information.

24

> Wired ATM Link.

rieap Wireless ATM Link.

ATM Switch.

Walkstation.

Base Station.

Walkstation Movement.

(i) Fixed switching point (F) identified.
(ii) New connection made from (F) to walkstation via base station (B).
(iii) Old connection from (F) to walkstation via (A) torm down.

Figure 3.3: A Mobile ATM Handoff

in performing the mobile handoff are in:

e synchronising between the walkstation and the two data paths from the
FSP, so that cells are not lost or received out of order,

e ensuring that routeing updates resulting from mobile handoffs scale in the
network, and

e locating a switch which is common to the two data paths and which is
prepared to perform the mobile handoff.

A slightly different approach to the problem of synchronisation in an envi-
ronment which does not require continuous connectivity has been considered
[Condon95]. Here, any possibility of cell misorder is removed by completely de-
stroying the old connection from the FSP to the walkstation before establishing
a new connection. The large disruption resulting from this method is acceptable
only because the environment does not require continuous connectivity.

The disruption to applications during an ATM handoff from experimental
evaluation is not currently available. However, [Keeton93] describes an analyt-
ical model of a number of handoff algorithms, reporting a best disruption to
the walkstation of about 100ms. Also, a simulation of ATM handoffs has been

25

made [Toh95] with handoffs performed by VCI remapping within the Fairisle
switch [Leslie94]. The author reports disruptions to the walkstation of about
7ms and also compares this method with the earlier work of [Biswas94] where
handovers and cell forwarding are performed by a redirection module at the
transport layer. Cell forwarding at a high level in the protocol stack not only
affects performance in terms of bandwidth, but also changes the temporal char-
acteristics of the network traffic.

3.1.4 Mobile Radio Networks

The existing MRN infra-structure has primarily evolved for the purpose of
Mobile Telephony. Most network implementations, such as those described in
[Lambley84, Goodman91] solve the problem of a limited bandwidth for a large
number of users in the wide area by splitting the area of coverage into small
cells, so that the frequencies used in adjoining cells do not overlap. This enables
frequencies to be reused in distant cells and also reduces the transmission power
requirements. For these reasons, the cellular network concept has also been
adopted by indoor WLAN implementations.

Each cell is generally allocated a fixed bandwidth, giving a fixed maximum
number of simultaneous connections at each base station. Hence, great care
is taken to ensure that cells are sufficiently small to cope with the expected
demand. The positioning of cells takes into account radio propagation effects
caused by the natural topology and structures such as buildings.

The first systems to evolve tended to be incompatible with each other, but
moves have been taken to reach an international standard, notably with the
introduction of GSM [Rahnema93]. Recent digital systems have started to
offer data channels to subscribers. GSM, for example offers data channels of
various bandwidths up to 9.6Kbit/s.

Using GSM as a typical example, the location of each mobile user is tracked
by the base stations periodically broadcasting interrogation messages. A time
division multiplexing scheme is used to arbitrate the wireless accesses by dif-
ferent mobile units in the same cell. During the period when a mobile unit is
not transmitting or receiving data, it is able to examine the signal strengths
from other base stations using a broadcast channel specially allocated for this
purpose. The mobile unit initiates a handoff by transmitting the average signal
strengths for each of the surrounding base stations to its current base station.
This determines whether a more appropriate base station is available to accept
the call. The handoff itself can be executed anywhere in the network hierarchy.
For example, locally between base stations which share a base station con-
troller, between regional mobile switching centres, or between national network

26

centres. The actual handoff might take up to 320ms, although much of the
work is performed in advance and the disruption to the end user is considerably
reduced.

A walkstation with both MRN and WLAN interfaces might, when operating
in an MRN environment, wish to choose between different network operators in
order to minimise tariffs or to ensure good coverage. Applications running on
the walkstation might also wish to take advantage of additional services pro-
vided by the different network operators. For example, some operators already
provide mail facilities. These are currently much cheaper to use than the cost
of a call to an Internet service provider or some other gateway computer. As
the user moves into a WLAN environment, applications which were configured
to use these additional services would be expected to adapt to use services
provided in the new environment. °

3.2 Mobile Applications

The main advantage of a network which provides transparency is that it en-
ables a walkstation to run all the applications which were previously used in
a static environment without modification. This section describes a number of
applications and application frameworks have been implemented, which adapt
in different ways to a changing mobile environment. All require information to
be available which concerns their changing environment.

The types of applications which are expected to be used on walkstations are
next considered:

e Database queries over the static network for information such as weather,
or traffic conditions, and performing share transactions, or home shop-

ping.

¢ Client—server applications, such as World Wide Web (WWW) brows-
ing, electronic mail, Usenet news, and remote sessions on static computers.

e Multimedia applications, such as a video phone, television broadcasts,
video mail, and video on demand (the first two applications imply “live”
sources of data).

e Collaborative working, requiring a group protocol for distributed trans-
actions and floor control.

While some of the simpler applications, such as electronic mail might operate
effectively in a transparent environment, the more ambitious applications would

27

be expected to adapt to such changes as network bandwidth, connectivity, and
the proximity of useful resources.

The MOST project [Davies94b, Friday96] has centred on a cooperative ap-
plication for field engineers in the electricity supply industry. This application
requires the use of mobile, peer-to-peer communication paradigms and empha-
sises operator safety. The project has made extensions to the ANSA/REX com-
munications protocol [ANSA92] to introduce QoS managed bindings whereby
call-backs are made to applications if QoS constraints are not met. The com-
munications protocol which was implemented (QEX) has also been used to
investigate back-off and fragmentation strategies pertinent to mobile comput-
ing. The MOST environment makes use of replicated services and different
network types, but requires the selection of services to be made by the user
of the application. The additional flexibility of the traded handoff might have
been beneficial in automating this process.

The Bayou Architecture [Demers94] consists of variable consistency, repli-
cated databases in a mobile environment, and is intended for collaborative ap-
plications which require read and write access to shared data. Walkstations are
able to interact with any available database server, taking into account locality
and network performance. For Bayou clients, this offers similar advantages to
applications using a traded handoff.

IP Fast Fail [Montenegro95] recognises that applications should be in-
formed of disconnections from the network. This enables applications to con-
tinue to function in a diminished capacity, instead of blocking as network oper-
ations fail. The implementation takes the form of a daemon which monitors for
disconnections of the host from the network. On a disconnection, the daemon
configures the system so that the network driver returns an error whenever
transmission is made on a non-loopback interface. A number of unmodified
applications are demonstrated which immediately fail rather than hang when
the system is disconnected. Other applications are introduced (a mail server
and a file system) which are able to continue using their own caching strategy
on disconnection.

The Odyssey Architecture [Noble95] allows applications to register an
interest in available resources. Call-backs are made to the application when
these resources change and are used by the application to change its data fidelity.
For example, a video server may support the movie abstraction, which consists
of a number of different copies of the same video at different levels of fidelity.
The video client requests the highest fidelity stream which can be played out
given the available bandwidth. On receipt of call-backs indicating a reduced
available bandwidth, the client requests that the video stream changes to a
lower fidelity.

28

A mechanism for walkstation access to file systems has been implemented
which allows a walkstation to Hot Replace its read-only file systems [Zadok93].
It is argued that this is desirable even if the underlying network provides trans-
parent connectivity, since both the latency and reliability of operations worsen
as the walkstation moves away from the file system server. The work is based
around an extension to the Sun Network File System (NFS) [Sandberg85] and
because of its stateless server model, the implementation is able to switch over
open (read-only) files to a new server without any client state transfer. A
method has been described of supporting a read/write, replicated file service
[Tait92). Walkstations are assigned a primary file server, which propagates
updates to a quorum of secondary file servers. The walkstation caches its re-
quests until it has received an acknowledgement that the request has been
safely propagated to the secohdary servers. This caching makes it possible for
the walkstation to switch to a new p‘ﬁmary without the transfer of any state.
A special module called the matchmaker is used to locate a suitable primary as
a walkstation is moved.

It has been noted that migration of a compute desk-top is an aid te coop-
erative working. In the X-Windows Teleporting environment [Richardson93]
the windows which comprise a user’s desk-top can be Teleported from one work-
station to another. This is achieved through a proxy window server which acts
as a client to the real window server on the remote workstation. Using this
arrangement, window updates from Teleported applications are passed via the
proxy to the remote workstation. The Teleporting environment has the attrac-
tion that applications and servers do not require modification and are unaware
of mobility. However, high-bandwidth applications suffer from the indirection
through the proxy server. Such applications would benefit from being restarted
on the same host as the real window server and are candidates for a low-latency
migration mechanism.

Finally, work in the area of Context Aware applications has investigated
how the behaviour of applications should adapt to changes in a context which
represents their location and nearby resources. For example, an alarm appli-
cation might be configured to respond in a different manner when the user is
in a meeting, compared with when the user is alone or with co-workers. Other
examples of context aware computing include an investigation into the control
of peripherals depending upon the individual’s location [Want92a, Want92b]
and the use of a walkstation with knowledge of its physical location to attach
virtual reminder notes to physical objects and locations [Brown95]. Another
project, [Schilit93b] presents a dynamic Remote Procedure Call (RPC) service
for the Parc-Tab walkstation [Schilit93a] which allows environmental changes
to be propagated to applications. Clients subscribe to the RPC service and
receive call-backs when their environment changes. Cited uses for the service

29

include: determining the closest printer or finding a suitable display onto which
to migrate an application’s user interface.

3.3 Application Migration

In Chapter 1, a motivation was provided for application migration in a mobile
environment. It outlined the primary requirements for a migration service as
being heterogeneity, a low-latency, and the imposition of a low overhead on
running programs. Other requirements include:

e the removal of all dependencies on the original host after migration. An
application with dependencies, such as a requirement to redirect system
calls, requires communication with the original host and becomes more
vulnerable to failure as it migrates.

e the implementation of the migration service should not be dependent upon
a particular operating system or compiler. The use of a special compiler
or operating system would reduce the availability of the migration service
over a large number of platforms.

This section describes the significant amount of work which has been carried
out in this area and shows that no existing scheme matches all the requirements
for application migration in a mobile environment. Much of this work has taken
place for reasons of load balancing and is described in its historical context.

3.3.1 Load Balancing

Application migration, also known as task or process migration, should be dis-
tinguished from both static and dynamic load balancing. These techniques aim
to assign computational tasks to computational resources such that the time to
process all tasks is minimised. Once assigned to a host, a task runs to comple-
tion and may not be migrated to another host. This is based on the assumption
that the cost of moving an already started task will outweigh any benefits of
migration and that all tasks have similar resource requirements [Eager88].

Static load balancing algorithms [Tantawi85, Agrawal88] attempt to pre-
compute the placement of tasks according to their known resource require-
ments. This is useful where a system is running a well understood distributed
application, but cannot handle a system where new applications may be intro-
duced or where the behaviour of applications is unpredictable. Dynamic load

30

balancing algorithms [Barak85, Eager86, Zhou88, Douglis91b, Zhou93] react to
changes in system state when placing tasks on suitable hosts. This requires
an exchange of state information. A host with a new task to execute, probes
other hosts to determine the most suitable location for the task. These schemes
offered improved performances, even when modest heuristics for transfer and
location policies were used [Eager86, Benmohammed94). The transfer policy
determines whether to execute the task locally or remotely, and the location
policy determines the host to which a task selected for transfer should be sent.

3.3.2 Process Migration

The motivation for application migration emerged as the use of distributed en-
vironments containing workstations used by individuals became widespread. It
was noticed that at any one time, a large number of workstations in the environ-
ment were idle and could be utilised for other long running or computationally
intensive applications, such as simulations. In this environment, the interactive
response time of a workstation is an important issue and results in a require-
ment to evict applications which have been placed on an idle workstation when
its interactive user returns. This new requirement of achieving load balancing
while respecting the interactive workstation users, promoted application migra-
tion as a useful tool. However, the main issue. is the speed by which resources
are returned to the interactive user, not the latency of the migration process or
the disruption to the migrating application.

For this reason, application migration has usually been implemented by
migration of the underlying operating system process abstraction, enabling un-
modified applications to be used. Although process migration has been imple-
mented at various levels in different classes of operating system, none of these
implementations have fully addressed the issues of performance, heterogeneity,
dependencies on the original host, and portability. As a result, these schemes
do not fulfill all the requirements for a mobile environment.

Condor [Litzkow92] was motivated by the need to provide a migration
mechanism for long running applications such as simulators. The implemen-
tation provides a user-level process migration facility for UNIX. Migration was
carried out at a coarse grain (decisions every 10 minutes) and the whole ad-
dress space was copied. This took a long time (2min over 10Mbit/s Ethernet).
A facility called remote system calls was provided, where system calls from a
migrated process were passed back to the originating machine where objects
such as file handles could be resolved correctly.

Spice [Zayas87] implemented process migration within the Accent kernel
[Rashid81] using a method of demand paging from the source, as and when

31

pages belonging to the migrated process were later referenced. This method
was found to greatly reduce the amount of data which needed to be transferred
since many pages were never referenced. However use of the method leaves-a
dependency on the source for the servicing of page requests, leading to prob-
lems of performance and reliability. Chains of these requests were possible for
processes which migrated more than once.

Sprite [Douglis91a] implemented transparent process migration in a mono-
lithic kernel using a similar method of demand paging, but with dirty pages
from the source machine first copied and later serviced from a network server.
This method has the advantage that the source is not required to satisfy page
requests, although in a mobile environment, these requests would still be re-
quired to be serviced over the wireless network.

V [Theimer85] implemented a process migration scheme within a message
based distributed operating system, called preemptable remote execution. The
implementation used a pre-copying scheme, where most of the pages of the
executing process were copied to the target before the migrating application was
suspended. This was intended to minimise the disruption to the application,
though at the expense of copying some pages more than once. Essentially this
scheme reduces the disruption experienced by the application during migration
by increasing the amount of time spent in preparation. However, in a mobile
environment a walkstation might have little notice that it is about to loose
a communication link, hence it is important that its applications are able to
migrate with little preparation.

An implementation of process migration in the Mach [Accetta86] operating
system has been described [Milojicic93]. This implementation has the potential
of also providing migration support for operating systems emulated by Mach.
The mechanism used depends heavily on distributed shared memory between
hosts and the transparent message passing facilities of Mach, leaving a large de-
pendency on the original host after migration. The implementation also leaves
an emulated process abstraction on the original machine and much communi-
cation is directed back to the original host.

Finally, a recent effort has been described which improves the disruption
experienced by applications during migration [Rouche95]. When migrating, the
application’s working set of pages is first transmitted to the target, together with
enough state to restart the application. Other pages and state then follow. The
aim is to quickly restart the application, while preventing it from immediately
stalling on page faults. However this scheme still requires large amounts of state
to eventually be transferred and as with all the process migration schemes, does
not allow process migration between heterogeneous platforms.

32

3.3.3 Object Migration

Heterogeneous object migration has appeared in some object management sys-
tems such as [Olsen92, Davies94a]. Here, the aim is to support the dynamic
reconfiguration of the placement of objects for load balancing or in response to
changes in the distributed environment. Before migration, these systems require
objects to respond to a passivation request by suspending all further activity. In
[Davies94a| objects are then issued with a checkpoint request requiring them to
generate and return their state for transfer. This step is automated in [Olsen92]
provided that the application programmer has declared the object’s persistent
state in an Interface Definition Language (IDL). Both these schemes address
the problem of heterogeneity by the use of distributed programming techniques
for marshalling state in a manner similar to Notus (described in Chapter 4).
However, neither support the migration of thread state for active objects.

3.3.4 Parallel Programming

The existence of very large computationally intensive applications, provides a
motivation for application partitioning and parallel execution. Both have been
achieved over specialised parallel hardware and also in the context of clusters
of heterogeneous workstations. In the later case, parallel programming is now
supported through de-facto standards such as Parallel Virtual Machine (PVM)
[Geist93] which provides message passing facilities and other support for parallel
execution on heterogeneous computers. Two programming models which have
become accepted are task and data parallelism.

Data-parallel applications execute within the single instruction multiple
data paradigm and can be thought of as a single program replicated over a
number of compute servers, with all instances executing in lock-step. This en-
ables operations which can be parallelised to be evaluated with different portions
of data at the same time. In the context of ensuring reliability for large data-
parallel programs, the Dome [Beguelin94] heterogeneous migration scheme was
implemented over PVM. Applications make use of pre-defined objects which im-
plement data-parallel operations. Additionally, each of these objects contains
a method which marshalls its internal state. No transfer of execution state is
required because of the model of synchronised execution. The implementation,
however, provides no support for applications which use any objects other than
those in the pre-defined library.

Task-parallel applications are characterised by their readiness to partition
along functional lines and a typical application might be a discrete event simula-
tion of a distributed system. Migration of the parallel tasks from one computer

33

to another has been motivated by load balancing and fault tolerance, and has
been achieved by the migration of the underlying operating system abstraction
[Casas95]. Unsurprisingly, this form of migration has similar characteristics
and shortcomings in a mobile environment to the process migration schemes
described earlier.

There is another method for parallel task migration in circumstances where
all compute servers execute copies of the same program, with each program
copy supporting different active tasks. To achieve migration, the underlying
facilities of PVM are used to activate one instance of a task and deactivate
another instance. Before activation of the new task, it is necessary to marshall
and transfer all the task’s state. Such a mechanism has been implemented
[Prouty94] and extended [Shum96].

Although techniques for parallel task migration have been refined over many
years, parallel programming models and the heavyweight mechanisms for paral-
lelism in a cluster of workstations do not fit the programming model or resource
requirements for the interactive applications which are expected to be common
on walkstations.

34

3.4 Summary

This chapter has described a trend towards exposing mobility at higher layers
in the network protocol stack. At the network layer, efficient routeing solutions
have required the cooperation of intermediate switches (or routers). This leaves
unresolved problems of switch conformance to the handoff protocol in existing
networks, which have been deployed without mobility considerations.

Even with mobility implemented at the network layer, there is a significant
disruption experienced by the walkstation during a handoff, and in circum-
stances where the walkstation roams over large distances, it has already been
described how applications suffer from the increased latency and poor error
characteristics of their connections to remote servers.

Mobility was exposed at the transport layer in order to improve throughput.
This places the additional burden of transport level state being transferred
from one base station to another during a handoff. Since this state might
include a large amount of buffered data, transport level handoffs impose a
significant disruption on the application. Without the application’s knowledge
of the semantics of the data being transferred over the network, there can be
little optimisation at this level. For many applications, such as those processing
multimedia streams, this disruption might result in the data copied during a
handoff being regarded by the application as being late and so discarded.

At the same time, applications and application frameworks have appeared
which make good use of information concerning their environment. Such appli-
cations are aware of mobility and their existence weakens the main argument for
transparency, namely that applications should continue to run in a mobile en-
vironment without any modification. Where the environment does not provide
transparency, legacy code can be supported through libraries which implement
a default behaviour.

This motivates an investigation of the traded handoff concept, which was
introduced in Chapter 1. By involving applications in the handoff process, good
use is made, as the walkstation roams over large distances and administrative
boundaries, of replicated servers and different network types or providers, of-
fering different QoS, such as tariffs or bandwidths.

This chapter has also examined a number of existing application migration
schemes, with the conclusion that none are entirely suitable for use in a mobile
environment. In order that the two main requirements of heterogeneity and a
low-latency implementation be met, it was felt that an implementation should
concentrate on minimising the state required to be transferred during migration,
and ensuring that state is transferred in a heterogeneous manner.

35

36

Chapter 4

The Notus Architecture

4.1 Introduction

The Notus architecture was designed to provide support to application develop-
ers, enabling the construction of applications which take an active role in both

' the traded handoff process and migration.

Section 4.2 will outline the various components of the architecture. The
approach taken to naming and location, and the assumptions on which the
architecture is based are discussed in Sections 4.3 and 4.4.

The chapter then describes, in Sections 4.5 and 4.6, how the components
interact with each other and a walkstation’s applications, to perform traded
handoffs and application migration.

Finally in Sections 4.7 to 4.9, the issues of consistency, garbage collection,
and security which are raised by the architecture are addressed.

4.2 Notus Overview

In the Notus architecture, an application consists of a number of objects, termed
modules. Each module carries out a well-defined task, and may contain asyn-
chronous threads of execution (emphasised using the term active module). The
type of a module is defined using an Interface Definition Language (IDL), and
consists of the signatures of operations and the data types implemented by an
instance of the module. For implementation purposes, there exists a mapping
from the module type description onto a language level template. The No-
tus architecture assumes that all applications execute within a context, termed

37

a domain, where invocations between modules incur no additional overheads
other than the function call conventions.

4.2.1 Components

" Application Domain,

Figure 4.1: The Notus Architecture

The components of the Notus architecture are shown in Figure 4.1. Services are
grouped by the degree of shared state and synchronisation which they require,
with the aim of reducing interaction with shared servers. Each of these service
classes is supported by a different component of the architecture.

e The walkstation runs an instance of the Notus Walkstation Manager -
(NWM). This supports services which require the orchestration of all the
walkstation’s applications or mediation with the network, such as the
federation of traders through new base stations.

e Every application contains an instance of the Notus Application Manager
(NAM). This supports services which require synchronisation within an
application, such as the assembly of a consistent checkpoint from a number
of independent application modules.

¢ Each of the application’s modules is associated with an instance of the No-
tus Support Module (NSM). The form of this association depends upon
the implementation environment, for example class inheritance or argu-
ment passing. The NSM supports services which are relevant to a single
application module, such as the assembly of the module’s checkpoint, or
the synchronisation of the module’s threads during a traded handoff.

38

e The implementation language environment has its functionality extended
through Notus Language Extensions (NLE). For example, to provide facil-
ities for the back-ti‘acing of a module’s execution stack when building its
checkpoint. It is possible to implement the NLE using compiler extensions
or a preprocessing step.

e In order to provide transparency for legacy code or where simple de-
faults are sufficient to specify an application’s behaviour on a handoff
(Section 4.5.4), enhanced functionality from the Middleware is required.
Similarly, the standard trading functions require enhancements to support
the additional consideration of Quality of Service (QoS) over different ac-
cess routes (Section 4.5.1). It is intended that Notus should use, as far
as possible, standard trading ahd Middleware services, and that any ad-
ditional functionality in these areas be kept to a minimum.

Base Station. /
‘
Application Domain.
Static Node._/
Trader.
Static Network.
Module.

Lookup In Federated Trader Namespace.

Figure 4.2: Trader Federation

As shown in Figure 4.2, each application has a trader module within its
own domain, federated with a trader running on the walkstation. This in turn
is federated over the wireless network with (potentially) a number of traders
on the static network. A trader within an application’s domain allows queries
which can be resolved within the scope of the application to be handled without
the overhead of inter-domain communication.

39

4.3 Naming and Location

This section briefly outlines the implications of the adoption of a trading envi-
ronment on the naming and location of walkstation exported services.

The wireless network implementations described in Chapter 3 allocate a
uniquely identifiable machine-oriented name to the walkstation. This name is
used to route to the home location of the walkstation, where an indirection
determines a route to the current location of the walkstation. The reason for
this indirection is that a single name cannot provide hints to the changing
location of a walkstation.

The Notus architecture supports walkstation mobility between heteroge-
neous network types, using the trading environment as the point of indirection
between service offers and machine oriented names. If communication is re-
quired with a walkstation, and this indirection maps onto a globally unique
name, the network must perform a further indirection in order to route to the
walkstation. This provides motivation for an argument which favours the net-
work allocating only temporary names to the walkstation at each base station,
thus removing the requirement for an additional network level indirection. This
approach has been recently adopted [Baker96], and is described in Section 3.1.1.

In the trading environment, services are located using names which are
composed of properties and a context. An indirection through the walkstation’s
home location is required to locate the services exported by its applications.
This is achieved in the Notus architecture by the federation of the walkstation’s
trader with a fixed trader at the home location, thereby enabling a third party
to import offers from the walkstation through the home trader.

Hence, a suitable name for locating the services exported by a walkstation
is an interface reference to its home trader. A global directory service would
only be required to perform a mapping from the user’s subscribed name onto
this interface reference. There have been similar proposals for global location
in a mobile environment, such as [Findlay96] which uses a scheme based on the
X.500 directory service [ISO88] to perform a mapping from subscriber directory
names onto mobile services. However, the problem is not considered further in
this dissertation.

4.4 Assumptions

The Notus architecture makes a number of assumptions concerning the rela-
tionship between itself and the underlying wireless network environment. First,

40

there is an assumption that information, such as the status of all of a walk-
station’s network interfaces, will be provided to the walkstation’s NWM as the
network environment changes. The means by which this information is com-
municated are beyond the scope of this dissertation, though call-backs or the
probing of interfaces would be suitable.

Second, as a walkstation moves into the area of coverage of a new base
station, it is necessary for a greeting to take place, so as to register the walk-
station with the base station and to ensure that communication is possible. It
is assumed that the mechanics of a greeting are handled entirely by the cor-
responding wireless network protocols. Once a greeting has been made, the
network should ensure that the walkstation is able to set up and later tear
down communications using the base station. If a walkstation creates a com-
munications endpoint, this endpoint riuist be named and in such a manner that
the name can be used by a third party to initiate communication.

Finally, it is anticipated that some wireless networks will perform handoffs
without providing any information to the walkstation. In such cases, a traded
handoff can only be initiated based upon the QoS experienced by the walksta-
tion’s applications. A working example of such a network has been provided in
the context of mobile telephony, where the motivations for transparent handoffs
are that the end receivers are intended to be simple devices and because the
main application is a telephone call between two people, where communication
is always required to be re-established between the original end-points. There
are other circumstances where handoffs should be handled transparently, such as
when handoffs are expected to occur frequently. This situation might occur in a
large gathering of mobile users where bandwidth is shared between a number of
base stations. These frequent handoffs are handled efficiently by existing Wire-
less LAN (WLAN) implementations [Ioannidis91, Johnson94, Porter94] since
the scope of re-routeing remains within the local area and a single network
instance.

4.5 Traded Handoffs

The Notus architecture supports a number of different traded handoff be-
haviours suited to mobile client and server applications, which may or may
not be aware of the walkstation’s mobility, and which are designed to use either
stateless or stateful servers.

This section first describes the general scenarios which would cause a traded
handoff to be initiated, and the means by which the trader environment is
used to make visible the changing properties of services as the walkstation

41

moves. The traded handoff protocol is then described in Section 4.5.3 for a
client application which is aware of its mobility and wishes to be involved in the
traded handoff. The architectural support for applications which are unaware
of mobility and require a default traded handoff mechanism is then described
in Section 4.5.4. Finally, in Section 4.5.5, consideration is made for server
applications which are running on a walkstation. These are required to redirect
their clients as the walkstation moves.

4.5.1 Traded Handoff Initiation

There are two general scenarios which cause a traded handoff to be initiated:
the use of a new network type, or the realisation that the movement of the
walkstation has resulted in strained connections to servers through the existing
network.

New Network Type: Communication is required through a new network
type, because either service is (or is expected to be) unavailable through an
existing network, or where a new network becomes available which offers better
service than the first; for example, when moving into a building supporting a
WLAN.

The motivation for performing the handoff in this case results primarily
from the wireless network providing information to the NWM. When the NWM
decides that communication ought to take place through the new network, it
instructs the walkstation’s trader to federate over the new wireless network with
a default trader. Once the new trader has federated, all offers available through
the new network are visible to the walkstation’s applications.

Existing Network: A traded handoff can be initiated even where there
is no change of network type, but a number of applications are dissatisfied
with their services. Thus, an application which has noticed that it is unable to
negotiate an acceptable level of QoS with a server, will independently perform
a traded handoff, reconnecting to more appropriate services. This activity can
be noticed by the NWM, which would then initiate a traded handoff for all the
walkstation’s applications.

4.5.2 Updating The Trader Namespace

For an application to find more appropriate services during a traded handoff,
it must have a means of determining whether such services are available. This
corresponds to a requirement for maintaining the trading environment, to reflect
the available services as the walkstation moves.

42

The namespace seen by an application potentially contains the offers from a
number of federated traders through different base stations, each corresponding
to different network types, providers, or gateways. When trading for offers in
this environment, a client may wish to place additional constraints on the offer
based upon the QoS obtainable; for example: minimising the cost of communi-
cation or maximising the available bandwidth.

These constraints do not relate to properties of the service exported by the
server, but instead to properties of the service which would be received by an
application given the current and expected behaviour of the walkstation. It
would therefore be impossible for an offer to contain these properties when
exported. Hence QoS constraints are applied by the walkstation’s trader at
the time a client requests that offers are imported. The walkstation’s trader is
aware of the context of the request arid ensures that these additional properties
are eventually present in the offers received by the client. A

Consider as an example, a client which issues the constraint that a particular
service type must be available with a low-latency and that the cost must be
within a given bound. The walkstation’s trader would make requests only to
other federated traders which are available over links within the given bounds.
When the offers are returned to the client for consideration, the walkstation’s
trader inserts additional properties which reflect the cost and latency of each
offer, as far as it is able to discern.

What the trader cannot do is negotiate precise QoS parameters for a par-
ticular service. These will vary according to the load on the server and the
availability of different wireless network types. At the same base station QoS
is dependent upon factors such as: congestion on the static network, signal
quality, and the number of walkstations simultaneously using a particular base
station. An application must negotiate its own QoS at the time a binding is
established and re-negotiate as conditions change.

4.5.3 Traded Handoffs for Mobile Clients

Using the pure Remote Procedure Call (RPC) paradigm, the function of the
RPC mechanism is to execute a procedure which is remotely exported by a
particular server. The extent to which these servers hold state corresponding
to a particular client is a tradeoff for application designers. For example, the
Sun Network File System (NFS) [Sandberg85] was originally built around a
stateless model, with the advantage of a fast recovery from server crashes, but
with the disadvantage that client caches must make more coherency calls than
would have been the case had the server held enough client state to make cache
invalidations. In this case, client state held at the server would potentially

43

have improved the performance of the implementation. Other examples of
client state transfers to servers occur during authorisation and authentication
activities, and there has also been a trend towards a model of distributed objects
placing an emphasis on server objects with state [ANSA92, OMG95].

Stateful server applications can be built using a standard RPC service. Af-
ter a binding is established with a server, the client then creates a session,
possibly transferring state to the server in the process. In order that subse-
quent client invocations are identified with the session, and so with the state, it
then becomes necessary to prefix all invocations with an application defined ses-
sion identifier. This has led some RPC implementations, such as [Hayton96] to
maintain an abstraction of a session which might last longer than the lifetime of
an established binding. The traded handoff is intended to support applications
which use stateful servers, whilst not penalising those that do not.

Module.

Figure 4.3: The Handoff Interface

A module which is to use the traded handoff mechanism must provide an
implementation of the Handoff Interface (HDI), shown in Figure 4.3. The appli-
cation invokes these methods during startup or on a communication failure, and
the NAM invokes the methods to coordinate a mobile handoff. The semantics
of an implementation of the HDI are first described, followed by an example
which illustrates the traded handoff protocol.

The Open method requires the module to create all its bindings to servers.
The Unmount method requires a module to close down its bindings, and op-
tionally the module should block its threads at one of a set of well-defined
synchronisation points. This is necessary in order to prevent the module from
attempting to use a binding during the handoff process. Mount requires the
module to initiate a new session with the server, transferring any appropriate
client state. At this point, the module’s threads (if blocked) continue. Callback
and Redirect are required when a module is acting as a server (see Section 4.5.5).

44

The separation of Open and Mount follows from the observation that a
binding may be established with a server before a session is formed. It is possible
to create a binding in advance of any disruption to the application, and to store
the binding as a hint, temporarily in a local repository termed a stash. A stash
differs from a cache in that coherency of data is not maintained. This was
originally termed quasi-caching [Alonso90] though later stashing by the same
authors. The stashing of bindings is especially useful during a mobile handoff,
where it is advantageous to perform as much work as possible in advance,
minimising the disruption to the application.

The following example shown in Figure 4.4, illustrates how the traded hand-
off is performed, assuming a module which already has a number of open ses-
sions. The NAM first invokes Open, resulting in bindings to new servers being
placed in the stash, then Unmount, which causes the module to close its existing
sessions and block.

If the module’s threads do not reach synchronisation points within a short
time, for example because one thread is blocked at another point, the initial
invocation of Unmount made by the NAM should time-out. The NAM may
then request that the module’s bindings be destroyed by a subsequent invo-
cation of the Unmount operation, which specifies no synchronisation with the
module. This would typically cause an exception later within the module if the
application attempts to use the destroyed bindings.

Module’s Thread. RPC Calls on Handoff Interface by Manager.

| | (i) Open and stash new connections.
----------- I I (ii) Unmount and synchronise with

Blocked. module’s thread.

(iii) Mount taking connections from
- 1 """" stash and transferring client state

to new servers.

Figure 4.4: Blocking during a Traded Handoff

Once the module has synchronised, the client is instructed by the NAM to
Mount its new servers. The stashed bindings are used by the client to establish
sessions with the new servers!. At this point the traded handoff is completed,
the client module’s threads are unblocked and the application continues normal
execution. It should be noticed that during the handoff process, it is only
necessary to disrupt the module for the time taken to Unmount and Mount the
remote server.

1 A stateless server would not require any session establishment.

45

In cases where the Unmount and Mount operations require the transfer of
much state, then the application should take into account the relative advan-
tages of possible communication with a more local server, over the resumption
of communication with the old server. If the latter is chosen, the client appli-
cation can either use its old interface reference to the old server or else specify
the old server’s unique properties in a trader query. In this case, after binding
is re-established, it is important that the server is able to associate the client
with its old state.

4.5.4 Default Traded Handoff Behaviour

In the above discussion, it has been assumed that an implementation of the
HDI be provided where necessary by an application’s modules. If the applica-
tion wishes to use a default behaviour or where the application is unaware of
traded handoffs, the invocation references? for the application’s bindings should

provide an implementation of the HDI and directly respond to requests from
the NAM.

Applications which are aware of the traded handoff specify a default be-
haviour of either rebuilding bindings to the original server interface or to another
server which matches a given constraint. For applications which are unaware of
mobility, the invocation reference should respond by rebuilding bindings only to
the original interface. This would enable the use of legacy code in an environ-
ment which relies on traded handoffs. In the general case, it would be expected
that even within a single application, some bindings would require a default
handoff behaviour, while others corresponding to modules which provide their
own implementation of the HDI would not.

The default traded handoff is illustrated in Figure 4.5, showing a single
invocation reference, together with four separate client invocations made dur-
ing the handoff. A client invocation (i) made before the handoff takes place,
results in a communication over the existing connection to the server. When
the invocation reference receives the Open request, a new connection is made
to either the original or a new server (depending on the specified behaviour),
and stashed. At this point, client invocations (ii) are still made on the exist-
ing connection to the server. On receipt of the Unmount request, outstanding
client invocations are awaited for a short period of time, before the old con-
nection to the server is destroyed. New client invocations (iii) made after the
Unmount request are blocked until the invocation reference receives the Mount
request. Further client invocations (iv) are then made over the new connection
to the server. In the case that a client invocation is made before the Unmount,

? Appearing to the client as a local instance of the server interface.

46

Handoff Requests.

| L

Open. Unmount. Mount.

Client Invocation (i). Client Invocation (ii). Client Invocation (iif). | Client Invocation (iv).

Invocation on old

connection. Invocation on old New connection Invocation on new
connection. made ready. connection.
New connection Old connection
(Stashed). destroyed.
Progression of Handoff.

Invocation Reference.

Figure 4.5: Default Traded Handoffs

but does not return before the server connection is destroyed, the invocation is
retried on the new connection.

If the default is chosen which supports reconnection to the same server,
a retry because of a traded handoff should be recognised by the server and
the unacknowledged results retransmitted to the client. However, selecting the
default of any server matching a set of properties, might result in repeated
invocations being made over different server instances during a handoff. It is
important that applications which use this default accept the possibility of this
behaviour. This usually implies a requirement for the use of stateless servers
by the application.

In both the default cases, there is no state transfer between servers, and
the client perceives no obvious change to the binding. It is important to note
that supporting the handoff only at this level is insufficient for applications
with stateful servers, since there is no possibility for transferring client state to
another server.

47

4.5.5 Traded Handoffs for Mobile Servers

The case of an application running on a walkstation, which has exported a
service over the wireless network, is next considered. When the walkstation
moves and a traded handoff occurs, it is necessary to ensure that its clients are
able to rebind.

The redirection of clients could be achieved by the server closing its bindings
and forcing clients to rebind through the new offer, after waiting for the new
offer to propagate through the trader environment. However, this might cause
considerable disruption to clients and a more direct method is desirable. The
solution adopted here, requires both the client and the server to export an
instance of the HDI and is illustrated in Figure 4.6.

(i) Client arranges Callback.
(ii) Server sends Redirect .

1
1
1 4
1
H (iii) Client resumes communication.
’
L]

’

[4
Walkstation Movement.

Figure 4.6: Mobile Server Handoffs

First, assuming that a client is aware of the mobile nature of the server,
the client locates the server’s HDI and invokes the Callback method (i). The
invocation passes the interface reference to the client’s HDI to the server, where
it is stashed for future use. As the servef performs a handoff, it creates a new
offer of service then, using the stashed interface references, binds to the HDI
of each of its clients and invokes their Redirect methods (ii). This informs each
client of the new server offer. When the client receives a Redirect, it must
synchronise with relevant application threads to ensure that no invocations are
made during the handoff. The client then binds to the new offer and releases any
blocked threads. Subsequent invocations made by the client (iii) are transmitted
using the new binding. Since the same server instance is rebound to, there is
no need for a client to Unmount or Mount. However, a client which does not
require a rebinding to the same server can choose another server at the time
the Redirect is received.

Second, if a client is unaware of the mobile nature of the server or does not
wish to ever take any action given a Redirect, other than to rebind to the original
server, then it would be appropriate for the redirection to be handled trans-

48

parently. This is provided, as was the case for mobile clients in Section 4.5.3,
through defaults implemented by the RPC service.

In the case that the server is unable to contact the client, for example
because the client is also mobile and is performing a handoff at the same time
as the server, then the Redirect call is lost. The client will eventually find its
binding broken, but should be able to rediscover its server through the trader.

4.6 Application Migration

In the Notus architecture, application migration between hosts is achieved by
an application — the source, first prodiicing a checkpoint, which contains the ex-
ecution state of the application, then starting a version of the application — the
target, on the remote host and transferring the checkpoint to the target. The
target application then restores from the transferred state and continues exe-
cution. This section describes how the Notus architecture provides the support
required for application checkpointing and restoration. '

The transferred ezecution state consists of thread function call state and
module state. A checkpointable module is a module which inherits from a base
type containing one operation: Restore. Each NSM can be configured to contain
the heterogeneous representation of the execution state of its associated check-
pointable module. It also supports the operation Checkpoint, which returns the
execution state of the checkpointable module.

It is possible for the actual format of the execution state to be module
specific. For example, a module which does not contain a thread of execution is
not required to supply thread call state. It is also possible for applications with
existing state saving functionality to store this state in the NSM or transfer it
directly to the target during migration.

4.6.1 Module Initialisation

A checkpointable module is initialised by invoking its Restore operation. There
are two cases to consider, depending upon whether the associated NSM contains
a fresh or a filled checkpoint. A fresh checkpoint has not been used to store the
state of the module, whereas a filled checkpoint contains the execution state of
a previously checkpointed instance of the module. ’

Figure 4.7 illustrates the two cases for module initialisation. In case A, the
associated NSM contains a fresh checkpoint. This is detected by the module,

49

which initialises and begins to execute normally. In case B, the associated
NSM contains a filled checkpoint. The module restores its state from the filled
checkpoint and restarts execution.

Checkpoint |2

(A) Initialisation during application startup. (B) Initialisation after migration.

Figure 4.7: The Initialisation of a Checkpointable Module

During initialisation, NLE support is required to detect a filled checkpoint
and to enable a checkpointable module to automatically restore state from
the checkpoint. If all datatypes which can be checkpointed are defined in the
| checkpointable module’s interface, the NLE enables function call and nomi-
nated module state to be automatically marshalled using stubs generated from
the interface. State which cannot be described in the module’s interface is mar-
shalled using code supplied by the application. The NLE allow this additional
state to be appended to the module’s automatically generated checkpoint.

4.6.2 Initiation of the Migration Process

The migration process is initiated when the application’s NAM is requested to
migrate a subset of the application’s checkpointable modules to another host.
This request is made either by the application itself or the NWM. Once the
decision to migrate has been made, a specific target must be identified. The
choice of target should be made by the user after consideration of information
provided by the NWM, which performs a resource location operation. It is
important that the user of the walkstation remains in control of the migration
process, since there is little point in migrating unwanted applications.

The most basic resource requirements are that a target host is willing to
accept the user’s application and that an executable version of the application
exists on the target. The first requirement is essentially a system administration
issue, requiring authentication of the user at the target. The second might
require the transfer of an executable to the target in advance of the migration.
Other requirements of the target are specified in the form of property constraints
and are queried using the trader.

50

With a suitable target found, the most appropriate subset of the applica-
tion’s modules should be specified for migration. It is possible that an ap-
plication supports a number of different configurations, depending upon the
computational resources of the source and target. In such cases, it would be
useful to allow the user to choose between the different possible configurations.

s ~ (i) Invoke Checkpoint.
‘ (ii) Create target application.
(iii) Invoke Restore and create stream.

Source Application Domain. Target Application Domain.
. J \. -

Figure 4.8: Initiating the Migration Process

Figure 4.8 shows an active checkpointable module in the source application
domain, which initiates application migration by invoking (i) the Checkpoint
method of its NAM. The NAM requests the creation of a target application
domain, via the NWM at the source and target (ii). Once the target domain
has been created and a target NAM is running, the source NAM invokes the
Restore method of the target NAM (iii) to request the creation of a stream for
the transfer of execution state.

4.6.3 Completion of the Migration Process

At the target, an instance of the application is initialised with no modules
instantiated other than the NAM. After the invocation by the source NAM
of the Restore method of the target NAM, a stream is created between the
source and target NAM which is used to transfer the application’s state. At
the source, the associated NSM for each module which is to be migrated is
called to add its checkpoint of the module’s execution state onto the stream to

51

|

the target. Support is required to create the checkpoint in a consistent manner
and is described later in Section 4.7. The target NAM then receives the stream
of data and decomposes it into a number of checkpoints for individual modules.

. . A ' j
(A) Source Application Domain. (B) Target Application Domain.)

@v)

(v)

(ii)

\. / N

(i)
> (Checkpoint State 1)

Figure 4.9: Transfer of Checkpoints and Target Restoration

Each checkpoint is typed, enabling the target NAM to instantiate a mod-
ule of the correct type and invoke its Restore operation. With the new target
module is associated a new NSM containing the received checkpoint. During
initialisation, the target module notices, with the support of NLE;, the filled
checkpoint, unmarshals execution state, and re-starts execution at the correct
point in the module. The migration process is completed when all target mod-
ules have successfully restored from their checkpoints. For migration, the mod-
ules at the source which correspond to those restored at the target are killed®.

Figure 4.9 shows the completion of the migration process. The source NAM

8 Application replication would result if the source modules were allowed to continue.

52

invokes the Checkpoint method (i) of the application’s checkpointable modules.
The modules return their checkpoint state, which is transmitted to the target
application (ii) and received by the target NAM. The target NAM creates new
modules and seeds each associated NSM with the appropriate state (iii) finally
invoking the Restore method of each module (iv).

4.6.4 Interworking Migration with Handoffs

It is possible to interleave the traded handoff and application migration services,
the intention being to rebuild an application’s bindings as the applicatibn mi-
grates to another host. The process of handing-off bindings during migration
is shown in Figure 4.10 and starts V&Lith the source NAM issuing an Unmount
request to the source application’s modules, followed by a request for the appli-
cation to migrate. When the application has restarted on the target host, the
target NAM issues the Open and Mount requests.

Source module’s thread. | RpC calls to ‘
source module.
________ || () Unmount. (iii) Create module instance.
——
Blocked. o A
|(n) Migrate. (iv) Restore from state. RPC calls to
Thread Exit. :—> target module.
-------- Target module’s thread.
J (v) Open
I
| J(vi) Mount
I —
Transfer of execution state. Module continues execution. |

Figure 4.10: A Traded Handoff during Application Migration

4.7 Checkpoint Consistency

This section considers the issues which arise when an application contains mod-
ules whose state must remain consistent with other modules within the applica-
tion or the external environment. Here, a consistent checkpoint from a number
of asynchronously executing (active) modules, is a checkpoint which captures
the state of all the modules at some instant in time. The Notus architecture
provides migration support for applications which are comprised of a number
of active modules, and since it would be expected that some of these will com-
municate with each other, support is required to assist these modules in the

53

creation of a consistent checkpoint.

Time. A

Time = T

Time = T2

Checkpoint.

_“\/\— Communication.

Figure 4.11: Checkpoints and Interacting Modules

For example, Figure 4.11 shows the two modules A and B, which are check-
pointing without consideration of consistency. Module A updates its internal
checkpoint over time, producing checkpoints A; and As. Module B similarly
produces checkpoints B; and By. At time 7 the modules synchronise and
exchange state. However, if at time 75 the most recently available checkpoint
from each module is taken to form a global checkpoint of the whole application,
the resulting checkpoint (Ag, B1) is not consistent, since the effect of the state
exchange has been reflected in Ay, but not in Bj.

The problem of ensuring a consistent global checkpoint can be solved using
one of two basic strategies: roll-backs or synchronisation. The aim of the work
described in this dissertation is to facilitate checkpointing of the current state of
an application in order that it be restarted on another host at the same point
in its computation. For this reason, the Notus architecture adopts a variety
of synchronisation strategies, though for completeness, roll-back strategies are
first described.

4.7.1 Roll-Back Strategies

When using a roll-back strategy, such as those described in [Randell75, Strom85)
a stream of checkpoints is produced by each module, without synchronisation
with any other entity. At the time that a global checkpoint is required, one

54

of each module’s checkpoints is chosen such that the set of checkpoints is con-
sistent. In order to determine the consistent set of checkpoints, it becomes
necessary for a module’s checkpoint to contain a log of all messages sent and
received from other modules since the last checkpoint was taken. The check-
points of two modules are inconsistent if one module’s checkpoint has recorded
the receipt of a message from another module and the sender has no knowl-
edge of the transmission. In the example shown in Figure 4.12, it is possible
to create a consistent checkpoint between modules A and B, since at time T3,
although receipt of the message X is not recorded in Bj, its transmission has
been recorded in A;, and X can be replayed. However, it is not possible to
create a consistent checkpoint between modules C' and D, since D; contains
no record of transmission of the message Y, and the receipt of Y, could have
caused a change in state which is reflected in C;. After the restart, circum-
stances might be such that D does not reach a state where ¥ may be correctly
sent.

. Consistent. i
Time. Inconsistent.

A

<. X
T~- ~a)
A 4
Y v v .
Time =T

=~ * Message.

Figure 4.12: Consistency and Roll-Backs

Roll-back strategies have the attraction of causing little disruption to each
module as it produces checkpoints. This is particularly useful when the motiva-
tion for checkpointing is the recovery from infrequent failures. However, at the
time the application is restarted, it is sometimes necessary to roll-back through
the stream of checkpoints from each module to form a consistent set. In some
circumstances a large number of checkpoints must be discarded, resulting in
the application potentially being forced to repeat large amounts of work. An-
other disadvantage is that for each module, every checkpoint made after the
last which was known to be part of a consistent group must be stored until
another consistent group is determined. This can be problematic, especially
if checkpoints are large, and storage space, as in the case of walkstations, is
limited. Finally, it should be noted that interactive applications are difficult to
reconcile with a checkpointing strategy which does not save the current state

55

of the application. It would be a requirement to store and subsequently replay
during a restart, all of the user inputs to each module made after the last con-
sistent checkpoint from that module. For these reasons, a roll-back strategy
was not adopted for the Notus architecture.

4.7.2 Synchronisation Strategies

Synchronisation strategies, such as the distributed snapshot algorithm [Chandy85],
require some synchronisation between modules at the time a checkpoint is made
so as to ensure that each checkpoint from a module is a member of a globally
consistent set of checkpoints. In the example shown in Figure 4.11, the check-
point initiated by module A at time 75 would not complete until checkpoint
By became available. The use of synchronisation strategies results in greater
disruption to an application’s modules during checkpointing, than would the
use of a roll-back strategy, since some modules are required to wait for others to
produce a checkpoint. However, synchronisation strategies guarantee that an
application is never required to roll-back, and only one checkpoint per module
need ever be stored.

If an application contains a number of modules, of which only some com-
municate with each other, then synchronisation is not required between all the
modules when forming a consistent checkpoint. If a number of checkpointing
groups are formed, each containing a set of modules which exchange information
between any two checkpoints (subject to a transitive closure), then a consistent
checkpoint for an application is formed from an amalgamation of the consistent
checkpoints from each checkpointing group.

An implementation should allow a module to join and leave a named check-
pointing group at any time, and the specification of the checkpointing group
which a module wishes to join, together with the desired consistency, are ex-
pressed for each module using NLE. Since the membership of a group is dynamic
and the required consistency depends upon the current members of a group,
the determination of each group’s membership and consistency must be made
by the NAM at the time an application migrates. Also for performance reasons,
an implementation such as that described in Section 5.11, should output the
state from checkpointing groups as they synchronise, directly onto the stream
between the source and target, rather than waiting for all groups to synchronise
before commencing output.

By partitioning an application into a number of consistent groups, it is
expected that the disruption to individual modules should be reduced. If one
or more groups fail to reach a checkpoint, it is possible for an application
to produce a partial checkpoint from the other groups. This might be useful

56

during application migration, where the transfer of a partial checkpoint would
correspond to an application migrating whilst leaving behind groups which
were unable to reach a consistent checkpoint. Such groups might be expected
to follow at a later time. '

Support for three levels of consistency: strong, intermediate, and weak is
incorporated into the Notus architecture.

Strong Consistency: A group of modules which is required to remain
consistent with external state or with other asynchronously executing modules
within the same group, is termed strongly consistent. In order to reach a
consistent checkpoint, members of a strongly consistent checkpointing group
must block after producing their own checkpoint until all members of the group
have produced a checkpoint. This adds to the latency of the checkpointing
operation. If one of the group does not reach a checkpoint within a useful
period of time, a consistent checkpoint will not be available from that group.

Intermediate Consistency: A group of modules which must remain con-
sistent with external state, but not with each other has the property of inter-
mediate consistency. Since there is no requirement to synchronise with other
modules, members which reach their own checkpoint can immediately add their
checkpoint to the application’s globally consistent set of checkpoints and con-
tinue execution. It is possible to represent an intermediate group as a number
of strongly consistent groups, each of which contains a single module.

Weak Consistency: Other applications might contain groups of modules
which are not required to be consistent with other modules or external events;
these are termed weakly consistent. When checkpointing a weakly consistent
group, it is possible to use the last checkpoint produced by each member of
the group. This enables checkpoints to be prepared in advance, reducing the
latency of the checkpointing operation.

Trade-offs: In choosing between weak and intermediate consistency, appli-
cations must balance the trade-offs between the overhead of producing sufficient
checkpoints, so as to ensure that there is always a recent checkpoint available
for each module, against the latency caused by waiting for each module to
reach its next checkpoint. For this reason, weak checkpointing is an option
only when the size of a module’s checkpoint is small. An advantage of interme-
diate (and strong) checkpoint consistency is that it is not necessary to store a
module’s checkpoint in an intermediate buffer, since at the time the checkpoint
is required, the module has blocked. This enables very large checkpoints to
be sent directly onto the checkpoint stream. On the other hand, once at least
one checkpoint has been made by each module, an application which uses weak
checkpointing can make available a complete checkpoint at any time. This en-

87

ables the application to migrate, even if one or more of its source modules are
blocked at the time of the request to migrate.

The checkpoint synchronisation techniques which have been described in
this section would appear similar to those used in transaction processing. For
example, it is possible that a module checkpoints before starting a new trans-
action. On a failure or abort, the module could be rolled back to the previous
checkpoint and restarted. However, the emphasis of the Notus architecture is
on checkpointing the current state of the application and so there is no re-
quirement to support more general circumstances such as nested transactions.
Integration of the architecture with a complete transaction processing suite is
beyond the scope of this dissertation.

4.8 Garbage Collection

The Notus architecture enables a subset of an application’s modules to mi-
grate to another host (see Section 4.6.2). For example, it might be useful to
migrate computationally intensive modules from a walkstation to a compute
server while retaining modules which manage the application’s user interface.
It is anticipated that applications which were formerly designed to operate in
a single domain may, through the use of Notus migration facilities, become
distributed over a number of domains on different hosts. Omnce applications
become distributed in this manner, there is the requirement for some form of
distributed garbage collection in order to re-use resources which are no longer
required.

Where resources are collected at the level of abstract data types, such as a
shared parse tree, garbage collection is at a fine granularity. Here, a piece of
state is collected only when no module possesses a reference to it. Although
not explicitly supported, an implementation of the Notus architecture does not
preclude distributed garbage collection at a fine granularity.

Conversely at a coarse granularity, garbage collection ensures that all the
resources held by all the components of a distributed application are collected
when the application terminates. Since this also preserves the failure properties
of a single domain, probably expected by existing applications which have been
adapted to use the Notus architecture, garbage collection at a coarse granularity
is directly supported by Notus.

58

4.8.1 Fine Granularity Garbage Collection

Garbage collection at a fine granularity is generally achieved in a single domain
by tracing references to determine the unreachability of state from a set of
root objects; such techniques are described in [Wilson92]. In a distributed
environment, garbage collection at a fine granularity is further complicated by
the requirements to operate in the face of independent failure modes, where no
single component has knowledge of global state and where there are significant
communication costs between collectors. There has been a considerable effort
[Dijkstra78, Shapiro90, Evers93| in implementing garbage collection schemes for
a distributed environment. Because of their complementary properties, these
generally employ a hybrid of a reference counting and tracing schemes.

Using a reference counting schenie, a collector propagates the existence of
local references to remote state (and a subsequent indication of the lack of
such references) to the local collector for the state. The local collector collects
the state if the reference count drops to zero. This scheme is attractive in a
distributed environment, since it requires little modification to local garbage
collectors or synchronisation between collectors on different hosts. However, in
their simplest form, reference counting schemes are unable to collect distributed
cycles of garbage. Tracing schemes follow references from root objects, collect-
ing all garbage, but requiring greater synchronisation and cooperation between
collectors.

4.8.2 Coarse Granularity Garbage Collection

In Notus, a distributed application is represented as a number of modules, some
resident on a walkstation, others on the static network. The modules on the
static network may execute on a number of different hosts, but on any one
host an application’s modules execute within a single application domain. An
instance of the NAM also resides within this domain.

As shown in Figure 4.13, one particular NAM is nominated as the Master
and is responsible for ensuring that all other NAM instances are running. In
order to minimise communication over the wireless link, any NAM on the static
network is chosen to be the Master. With this arrangement, only one message
in each direction between the walkstation and Master is required to assure both
the walkstation and Master that the application is executing in all domains.

Each application must specify, using NLE at the time its NAM is initialised,
a criteria which permits the Master NAM to determine the reachability of all
the application’s domains, and the policy for when it is found that a domain is

59

-

Static Network.

Application Manager.

Master Application Manager.

Application Module. Compute Server.

Base Station.

Compute Server.

Walkstation.

Figure 4.13: A Distributed Mobile Application

unreachable. The criteria may specify a timeout to be applied when attempting
to contact other domains, together with an exception handler for failures. The
default should be to propagate a termination request to all domains. If a
walkstation intends to disconnect whilst leaving parts of its applications running
on the static network, the Master NAM is informed so that the remaining
domains are not terminated. When the walkstation reconnects, its NAM greets
the Master NAM to ensure that the application is still running.

4.9 Security

Although the Notus architecture does not explicitly provide a secure environ-
ment for applications, it does not introduce any activities that greatly degrade
security. Neither does Notus prevent the integration with a model such as Ker-
beros [Steiner88] which provides an authentication and authorisation service in
an environment of untrusted workstations, using a trusted third party. The
security issues which arise from the Notus architecture include:

authentication and authorisation between clients and servers during the
traded handoff,

the movement of a walkstation between insecure and secure environments,

authentication and authorisation between a walkstation and a compute
server before commencing application migration activities, and

the secure transfer of an application’s execution state during migration.

These issues are addressed in the following subsections.

60

4.9.1 Security During Traded Handoffs

Mutual authentication and authorisation between a client and server is possible
during a traded handoff, since the application is invited to partake in the same
procedure as it made during initial establishment with the server.

The traded handoff protocol offers a sensible behaviour when a walkstation
is carried behind a security firewall. After the traded handoff, the walkstation
communicates using new bindings which have been created from behind the
firewall. It would be hoped that most bindings are re-established to services
within the secure network. However, if bindings are required to be established to
services outside the firewall, then no encapsulation of network traffic is required
and the firewall can apply normal scrutiny.

Finally, the Notus architecture does not make any assumptions concerning
admission, and it is acceptable for the administrative environment to choose
to accept or reject a walkstation which attempts a greeting based upon any
criteria which it chooses.

4.9.2 Security During Application Migration

When a walkstation migrates an application to a target host, there should be
some form of mutual trust between the target and the walkstation. In the Notus
architecture, this is achieved by the target making its own authentication and
authorisation of the walkstation and its user at the time when the walkstation
attempts to start an instance of the application and the walkstation’s user
manually chooses the target. If the architecture were extended so that this
process became automated, then steps would also need to be taken to ensure
that the choice of target did not compromise the walkstation.

Once the target has been chosen, the walkstation must ensure that a suitable
version of the migrating application executes on the target. This executable is
chosen by the walkstation and may be transferred in advance from a trusted
repository to the target. During migration, security of the state transferred
between the applications can be ensured through the establishment of a secure
channel between the two applications; for example through the use of the Need-
ham and Schroeder key distribution protocol [Needham78], with the addition
of timestamps.

Other attacks, such as eavesdropping over the wireless network after appli-
cation migration, are possible, and might require the application to switch to
a secure mode of communication between its modules. Since bindings are re-

established through a traded handoff during migration, this may be arranged

61

in a similar manner to the application’s QoS negotiations. The subcontract
mechanism, described in Section 5.4, which allows additional functionality to
be incorporated after the marshalling stage of an RPC invocation, can be used
to hook into a standard interface for security mechanisms, such as the GSS-API
[Linn94]. Such issues have been addressed further [Wernick96].

62

4.10 Summary

This chapter has introduced the Notus architecture, which supports applications
in a mobile environment through the provision of traded handoff and application
migration support. The main components of the architecture are:

e the Notus Walkstation and Application Managers, which support the co-
ordination and synchronisation of traded handoffs and application mi-
gration for both the walkstation and individual applications respectively,
and

¢ the Notus Support Module, associated with each application module re-
quiring Notus functionality and which is exposed to the application pro-
grammer through Notus Language Extensions.

These components and their interaction with applications as they perform
traded handoffs and migration have been described. The principal points cov-
ered are:

e the components of the architecture and their functions,

e the assumptions made by the architecture regarding the programming
and network environments in which it is expected to operate,

e the means by which the architecture supports traded handoffs for various
cases when both client and server applications are mobile,

e the means by which application migration is achieved and the consistency
issues when the application contains a number of concurrently executing
modules,

e the interworking of the handoff and migration schemes, to ensure that
an application’s bindings to services are maintained during application
migration,

e the extent to which the architecture should attempt to resolve the garbage
collection issues raised when applications become distributed over a num-
ber of hosts after migration, and

e the security issues raised by the architecture.

The next chapter will describe an implementation of the Notus architec-
ture which concentrates on the key features: traded handoffs and application
migration.

63

64

Chapter 5

Implementation

5.1 Introduction

This chapter describes an implementation made of the Notus architecture. In
Section 5.2 the implementation environment is described, followed by a descrip-
tion in Sections 5.3, 5.4 and 5.5 of the work undertaken to construct the re-
maining features which were required. This included a Remote Procedure Call
(RPC) service providing default traded handoff support and a trader which
supports Quality of Service (QoS) during service negotiation.

The chapter then describes the implementation of the various Notus com-
ponents in Sections 5.7 to 5.10 and finally, examines the algorithm used to
ensure the formation of a consistent checkpoint from a number of modules, in
Section 5.11.

As a review of the interaction between the Notus components, this chapter
first presents a brief overview of the traded handoff and application migration
processes.

65

5.1.1 Traded Handoff Review

Modules, invocation references
and server instances
exporting the HDI.

1
Federation Requests.
|

Base Station.
ase on Federation with

other Traders.

g
Q
ﬂ' =
3 :
- &
2 g 4
-g T Static Network.
o
Application Domain.
Network Information and
User Requests.

Walkstation.

Figure 5.1: Traded Handoff Review

Figure 5.1 shows a walkstation which is communicating via a base station with
the static network. The walkstation is running a Notus application, an instance
of the Notus Walkstation Manager (NWM) which receives network information
and user requests, and a trader which is federated with other traders on the
static network. The NWM responds to changes in the environment by instruct-
ing both the trader to federate via new base stations and the application to

rebuild its connections.

Within the application domain is an instance of the Notus Application Man-
ager (NAM), which responds to traded handoff requests from the NWM. The
application also contains a number of modules which export the Handoff Inter-
face (HDI). During a traded handoff, the NAM invokes operations on the HDI

Instances.

66

5.1.2 Application Migration Review

Che{kpointable Modules.

Target Application

.'&
o [
Base Station. ™
Domain.
(i) Locate NWM and authorise migration. \%mserven
(ii) User authorises migration and :

icati Static Network.
selects application. ¢ Networ -~

Source Application Domain. (iii) Create target application.

(iv) Create consistent checkpoint
from source modules.

Walkstation. . (v) Create stream to target and
transfer checkpoint.

(vi) Create target modules and
restore execution.

Figure 5.2: Application Migration Review

Figure 5.2 shows a walkstation in a high-bandwidth environment containing
compute servers. The two NWM instances on the walkstation and compute
server establish communication (i) and the compute server authorises the walk-
station to transfer its applications from the walkstation to the compute server.

At this point, the user of the walkstation must be consulted (ii) to authorise
application migration and to nominate particular applications for migration.
The NWM then creates a target instance of the application on the compute
server (iii) and instructs the source NAM to assemble a consistent checkpoint
from the application (iv). The source and target NAM both cooperate, creating
a stream between themselves (v) and a transfer of the application’s state takes
place. At the target, instances of the application’s modules are created from
the application’s state (vi) and restored. Finally, the source application is killed
and the target application continues execution.

67

5.2 Environment

A starting requirement for an implementation of the Notus architecture is the
availability of a Distributed Programming Environment (DPE) with the follow-
ing features:

e QoS support during service negotiation,

e an RPC service providing the default traded handoff support,

support for a modular application structure and the evaluation of existing
interactive applications, and

a stable programming environment.

One potential implementation environment was the object oriented systems
programming language, Modula-3 [Cardelli88]. This would have provided a
distributed programming environment with a modular structure and strong
typing. However, it was thought that implementation through this route would
require extensive compiler modifications and would detract from the primary
goal: an implementation of Notus which is sufficient for an evaluation of the
core features of the architecture for interactive applications. Other options,
such as Spring [Hamilton93a] and Spin [Bershad95] were not used because of
the unavailability of resources or the lack of suitable applications with which to
evaluate the implementation.

The chosen implementation route for Notus was to port the Nemesis type
system and module support to the DEC MIPS and DEC ALPHA, UNIX based
platforms. Nemesis was reviewed in Chapter 2 and its features include a het-
erogeneous, modular programming environment, a dynamic type system, and
a uniform namespace.

The port was achieved quickly, and the resultant hybrid of a Nemesis and
UNIX platform was stable and offered standard development tools. It was pos-
sible to incrementally port existing UNIX based, interactive applications to this
hybrid environment.

It should be noted that whilst the Middl Interface Definition Language
(IDL) used by the Nemesis operating system contains some unusual features
which are not present in other mainstream object based DPE, such as OSF-
DCE [OSF91], RM-ODP [ISO95b], and OMG-CORBA [OMG95], no unusual
features were required for the Notus implementation. By using only the upper
layers of Nemesis on a UNIX platform, any advantages from the single address

68

space environment and QoS based scheduling were lost; however, neither were
required for the experimental work undertaken.

This left a requirement for the implementation of an RPC service with
default handoff support, a trader which provided support for QoS considerations
during service negotiation, and the Notus components.

5.3 RPC Implementation

An RPC service was implemented as an extension to the Nemesis inter-domain
communication model. This enabled all interfaces in the system to be described
using the same IDL, with module invocations uniform in the cross machine and
same machine cases, although with different failure properties. Stubs were cre-
ated in the conventional manner, using the Middl stub compiler from the type
definition of an exported interface. These stubs are dynamically available using
the Nemesis type system and are stored in a repository. The implementation
supports both TCP/IP [Postel8la, Postel81b] and MSNL [McAuley89] trans-
ports and some performance measurements are given in Chapter 6.

Using the RPC service, instantiating a service results in a number of actions
taking place at the server:

e A thread is assigned the task of listening and accepting network connec-
tions from clients who wish to establish bindings with the server.

o A service offer is created which packages appropriate stubs, a subcontract
(see Section 5.4), and a dispatch mechanism. The service offer is coupled
to the interface of the server module and contains the SvrControl interface
which enables the service to later be withdrawn.

e The application which has instantiated the service, or the RPC service
itself, can export an offer for the service in a trader.

Given possession of a suitable interface reference, a client establishes a bind-
ing to a server. In the implementation, an interface reference consists of: a
network address, which is used to establish communication with the server, a
subcontract type, an interface type fingerprint, and a server identifier. The lat-
ter two are used to provide an assurance that an interface reference is used for
the intended server. The interface reference does not contain QoS information
from the exporting server. Such QoS information is likely to be inaccurate at
the time a client establishes a binding and in any case, cannot reflect the QoS

69

over all possible network routes to a server. QoS negotiations take place during
binding establishment.

In the case that the client and server are on different machines, the client’s
request to establish an RPC binding with the server results in the establishment
of a network connection between the client and server, and at the server-side
a thread is dedicated to the receipt and processing of invocations. The client
is returned an invocation reference (introduced in Section 2.4), which supports
methods corresponding to two interfaces. One, the ClntControl interface enables
the client to make control operations on the binding, for example to destroy it.
The other, the Prozy interface, has the same type signature as the server module
and is used by the client to make remote invocations of server methods. The
following steps describe how a remote invocation made by a client progresses
after the client has invoked a proxy method and is illustrated in Figure 5.3.

Client Method Invocation.

Server FM‘o'd:u'l.e. SR

Invocation Reference. Service Offer.
Figure 5.3: Method Invocation using the RPC Service

e The client identity, method, and argument values are marshalled in the
client-side stubs.

e A marshalled invocation is transmitted over the network to the server
handler thread, which passes it to dispatch code. The arguments are
unmarshalled and a call made into the server.

e When the server module call returns, results or exceptions are marshalled
by the server stubs and transmitted to the client.

e The client-side acknowledges the return from the server. Results or ex-
ceptions are unmarshalled by the client stubs and control returned to

70

the client, either as a return from the proxy method invocation with the
results or by raising the appropriate exception.

A timer is set at the client-side after the server invocation is made and is
cleared once results arrive. At the server-side, a timer is set after results are
transmitted to the client and is cleared when an acknowledgement is received.
A timeout at the client-side causes an exception to be raised and control passed
to the client application, which may choose to retry the RPC. A timeout at
the server-side causes the results to be retransmitted and the timer reset (for a
small number of times). This corresponds to At Most Once (AMO) semantics
[Birrell84].

5.4 Default Handoff Support

The principal features of the RPC service which was implemented to support
Notus are present in other mainstream object based DPE. The Notus architec-
ture however, requires additional support for default traded handoffs (described
in Section 4.5.4). These features were implemented using a general mechanism
for adding new behaviours to RPC bindings, which is heavily influenced by the
Spring! Subcontract mechanism.

5.4.1 Notus Subcontracts

In the Notus implementation, a subcontract is a module positioned between the
stubs and the RPC transport layer, and is used to modify the manner in which
invocations are made to the server.

The positioning of subcontracts beneath the stubs enables their use to be
transparent to the application. New subcontracts can be introduced to the
system without requiring modifications to the base RPC service. Subcontracts
are typed, and the type expected by a server is placed in its exported interface
reference. This is used by a client as a hint, and selection of compatible sub-
contracts between client and server is made at the time a binding is established.
A client can attempt to bind using a subcontract of a different type to that ex-
pected by the server. In this case, the server can dynamically select a different
subcontract for the binding to match the client, according to the subcontract’s
subtyping rules.

For example, consider the Encrypting subcontract, which is specified as the

!The Spring operating system is reviewed in Section 2.5.

71

subtype of the Null subcontract. A server which specifies the Encrypting sub-
contract would not accept bindings from clients who attempt to use the Null
subcontract. However conversely, a server which specifies the Null subcontract
might dynamically select the Encrypting subcontract if a client requests it dur-
ing binding establishment.

In the Notus implementation, three subcontracts were implemented to sup-
port traded handoffs: the Null subcontract, which supports unmodified method
invocations; the Flat subcontract, which implements rebinding to the original
end-points on a handoff; and the Traded subcontract, which rebinds to any
server which matches the properties of the client’s existing binding.

The subcontract mechanism allows applications which are unaware of mobil-
ity to respond to the traded handoff protocol. This includes legacy applications
or applications which use stateless servers. An application which is aware of
mobility, but wishes to use a default for some or all of its bindings should select
either Flat or Traded subcontracts. For bindings where the application itself,
as opposed to the underlying subcontract mechanism, wishes to take part in a
traded handoff, a custom HDI interface should be exported.

5.4.2 Subcontracts for Mobile Clients

Handoff : INTERFACE =

BEGIN

Unmount : PROC [synch : BOOLEAN] RETURNS [1;

Mount : PROC [] RETURNS [1;

Open : PROC [constraint : STRING] RETURNS [1;
Callback : PROC [ref : InterfaceReference] RETURNS [];
Redirect : PROC [ref : InterfaceReference J;

END.

Figure 5.4: The Handoff Interface Definition

The Flat and Traded subcontracts both instantiate the HDI, which is used to
coordinate the traded handoff for both mobile clients and servers (described in

72

Section 4.5). Figure 5.4 illustrates using Middl, the HDI definition used by the
implementation.

In the case of a mobile client application, an offer for the HDI instantiated
by the client-side subcontract is exported in the application’s local trader and
so is visible to the NAM. During a traded handoff, the NAM locates the HDI
and invokes its operations. This is illustrated in Section 5.4.4 using the Traded
subcontract as an example.

Static Client. Static Server. Mobile Client. Mobile Server. Static Client.
Expected Subcontract. | Null Null Flat Flat Null
Flat <: Null
Established Subcontract Null Flat Flat

Figure 5.5: Subcontract Selection.

A server running on the static network might request the Null subcontract
as a default. However, all the handoff subcontracts (for example, the Flat
subcontract) are a subtype of the Null subcontract, and a static server offer
would be prepared to dynamically select one of the handoff subcontracts if
requested by a mobile client during binding establishment. This and other
subcontract type selections are illustrated in Figure 5.5.

It should be noticed that in the current implementation, a mobile client
does not require any form of redirection from a static server, and a handoff
subcontract dynamically selected by a static server is used only for compatibility
reasons. Hence, the Notus RPC service could communicate with a static server,
which is unaware of the subcontract mechanism through the interposition of a
translation module on the invocation path which strips subcontract information
from the client’s requests.

5.4.3 Subcontracts for Mobile Servers

A mobile server requires a client to select a handoff subcontract during binding
establishment in order to receive redirection messages if the server moves.

The initialisation and binding process for the mobile server subcontracts is
shown in Figure 5.6. At the time a server initialises, its subcontract creates an
instance of the HDI with interface reference H;. During binding establishment a

73

client also instantiates a subcontract which creates an instance of the HDI with
interface reference Hy. The client-side subcontract establishes communication
with the server-side subcontract (i) passing the interface reference H to the
server, which returns H; to the client (ii). The server-side subcontract invokes
the Callback method (iii) of H, stashing the client’s interface reference.

(i) Open connection
Passing H

(ii) Return H I
(iii) Callback for Hy

(iv) Redirect.

Figure 5.6: Subcontract Initialisation

The client can at any time make further invocations of the Callback method,
either to register a new client-side HDI (useful if the client itself has performed
a traded handoff), or to withdraw its requirement for a call-back altogether.
If a binding is destroyed, the server-side subcontract ensures that the client’s
call-back is removed.

The server is requested to perform a traded handoff by an invocation of the
Open method of its HDI. This causes the server to use the interface references
of its stashed clients (here only Hy), establishing bindings with the client-side
HDI, and invoking their Redirect methods (iv), passing the interface reference
for the new server offer. At the client-side, the invocation of the default Redirect
method causes further RPC invocations to block before rebuilding a connection
to the server. If the redirection of a client fails, the client would find its bindings
broken and would be required to re-locate the server using the trader.

5.4.4 Stashing

The RPC service implements the stashing facility which is used to store open
connections during a traded handoff and client call-back interface references for
mobile server bindings. The stash is implemented as an abstraction on top of
the local trader interface, and is manifested as a set of options for use during
binding establishment.

Figure 5.7 illustrates some of the stashing options, using the implemen-
tation of the HDI made by the Traded subcontract for a mobile client as an

74

example. The ACQUIRE and RELEASE macros are used to block client invocations
on the binding during a traded handoff, and MOBILE_IDC_DELETE is used to de-
stroy a given connection. The MOBILE_IDC_OPEN macro, when invoked with a
constraint, queries first the stash, then the trader for offers which match the
constraint, and the macro then establishes a binding with any matched offer.
The MOBILE_IDC_STASH macro carries out the same operations as MOBILE_IDC_OPEN,
but additionally places the opened connection in the stash.

Open(self, c)
{

MOBILE_IDC_STASH(self->context, self->constraint);
} .

Unmount (self, synch)
{
if (synch) ACQUIRE;
MOBILE_IDC_DELETE(self->offer);
}

Mount (self)

{
self->offer = MOBILE_IDC_OPEN(self->context, self->constraint);
RELEASE ;

}

Figure 5.7: A Handoff Interface Implementation

During the traded handoff, the Open method is first invoked. This calls
MOBILE_IDC_STASH to open a connection to a server with the appropriate proper-
ties, placing the opened connection in the stash. When the Unmount method
is called, ACQUIRE prevents any further client invocations on the binding, and
MOBILE.IDC_DELETE destroys the old connection. Finally, the Mount method
invokes MOBILE_IDC_OPEN to open a new connection, replacing that which was
destroyed. The opened connection is found in the stash, and RELEASE allows
further client invocations to be made.

The main difference between this default implementation and an application
exported HDI is that the Unmount and Mount phases would also be used by the
application to cleanly unmount the old server and to transfer client state to the
new server, so re-establishing the session. The stash is also used for the mobile
server and client call-back cases. In all cases, it is possible for the application
to consider and optionally stash all offers in a returned list. This should be
compared with the example shown above, where the MOBILE_IDC_STASH macro
binds to the first offer imported from the trader.

75

5.5 Trader Implementation

A trader implementation was required primarily to provide the standard set
of trading functions for service mediation, based upon properties offered by
servers and the constraints of clients [ISO94]. It was decided not to adopt
existing trader implementations, such as [ANSA92, Beitz94] since the impact of
mobility was not easy to predict at the time of implementation and its inclusion
in existing trader implementations was considered potentially problematic. It
was later found possible to implement these additional functions in a separate
QoS Filter module.

QoS Filter., Trader.

@" P“fg%- Refﬁ'esh.—®

Interface Reference.

j

Trading Interface. Property List.

@ Timer.

Figure 5.8: The Trader

The trader shown in Figure 5.8 supports two interfaces. One, the Trading
interface, supports the methods: Put which allows clients to export new offers
to the trader, Get which is used to query for offers using constraints, Delete to
remove exported offers, and other methods with functions such as the modifica-
tion of the properties of existing offers. The other supported interface, provides
Control operations, such as initialisation and federation with other traders.

76

When querying a trader, a client requests a list of offers which match a set
of constraints. The grammar used to specify both the properties of an exported
offer and the constraints imposed by the client is similar to that defined in
[ANSA93] and supports integer, string, and set data types, together with the
usual operators. As a simple example, a video server offer in the context:
’services/videoPlayers’ might posses the following properties:

(Type = Mpeg) , (Title = {’Bambi’,’Snow White’}).

A client wishing to watch the Bambi video would find a match in the above
server offer with a constraint such as:

(Type = Mpeg) and (Title = ’Bambi’).

On receipt of a query, the trader examines its own offers, producing a list of
those which match the given constraints. The trader then forwards the query
to other federated traders and finally, returns the list of all matched offers to
the client. For performance reasons, the trader stashes offers received from
federated traders. These are subject to a timeout and are later removed by the
trader, if the timeout elapses or if the offer is shown to be stale.

Similarly, when a server exports an offer, the trader stores the offer in its
own stash. Again, according to the scope of the offer, the trader exports it to
federated traders. As a garbage collection mechanism, exported offers which
are received from federated traders are also subject to a timeout and must be
periodically refreshed by the exporting trader. Hence for any offer in a trader’s
stash, two timeouts must be set: one which purges the offer and another which
refreshes the offer in any federated trader to which the offer has been exported.

5.6 Quality of Service Support

Section 4.5.1 highlighted the fact that in a mobile environment, any properties
which are related to the QoS available for an offer are difficult to express owing
to the effect of mobility on QoS. Since it is not possible to determine the exact
QoS available for a particular offer without direct negotiation with the exported
server interface, a heuristic is used during trading. Offers from federated traders
are matched only if the QoS experienced between the federated traders matches
the QoS constraints from the client.

77

| Trader: T1

Application Domain. Static Network.
: Get: (Cost< 100 and Service = A)
Trader. or (Cost< 50 and Service = B)/ _/
Trader: T2
Static Node.
Module.
Get : (Cost< 50 and Service =B)|
Base Station.

Static Node.

Get : (Cost < 100 and Service = A) or (Cost < 50 and Se;vice =B)

T
“—(T: AB), (Ty: A)

Walkstation.

Figure 5.9: QoS Constraints During Trading

This is illustrated by the example shown in Figure 5.9. Here, the walkstation
is federated with two traders, T} and T%, over links with respective Costs of 40
and 70. If the walkstation’s client queries its trader with the constraint:

(Cost < 100 and Service = A) or (Cost < 50 and Service = B)

the walkstation’s trader considers the QoS available to each of its federated
traders 71 and 75 and sends a request to trader 77 with constraint:

(Cost < 100 and Service = A) or (Cost < 50 and Service = B)
and to trader T5 with constraint:

(Cost < 100 and Service = A)

The second or clause is dropped in the request to trader 15, since it requires
a link of Cost < 50 and the link to trader T5 has a Cost of 70. These queries
would result in the list of returned offers: ((71 : A, B), (75 : A)). The walksta-
tion’s trader inserts the appropriate values for the Cost QoS property to each
of these offers’ property lists, so that they are considered by the client.

If the same server instance is available through a number of different routes,
the offers returned to the client must be distinguishable. Different routes which
use different transport types are distinguishable in the exported interface refer-
ences. However, a choice of different network types for the initial wireless link

78

from a walkstation would not be immediately distinguishable. In this case, the
interface references returned to the client must be modified by the walkstation’s
trader to indicate the appropriate outgoing route.

Rather than modify the base trader implementation, these -QoS considera-
tions were implemented using the Filter module, interposed between the trader
and its clients. The Filter module parses constraints before they are passed
on to the trader. Clauses containing QoS properties are matched against the
known QoS to each trader which is federated over a different network type and
a number of modified queries are produced in the manner described above. Dif-
ferent traders are federated in a different context in the namespace and queries
are targeted at different routes by modifying their contexts.

In the current implementation, the QoS properties which a client may use
include Cost and Bandwidth. Queries from the client are expected to be a
disjunction of clauses, (C1 V --- V Cy), where each clause C; is a conjunction
of QoS and service related properties, (Q A S). This restriction was made
simply for implementation purposes and allows QoS constraints to be specified
in an intuitive manner. However, more sophisticated QoS expressions could be
handled through extensions to the parser used by the Filter module. Before the
offers from the various queries are returned to the client, the Filter adds the
values of Cost and Bandwidth to the properties of each returned offer.

The Filter module implementation requires the trader to provide QoS in-
formation concerning its federated traders via its control interface. Different
network types are simulated using the different RPC transports available. Since
these were immediately distinguishable by the client, the Filter module did not
need to make modifications to the imported interface references.

If the implementation were to be used over a number of different network
protocols, the Filter module could easily be extended to insert into the returned
interface references — an indication to the client of the network level options
required to select the appropriate outgoing network interface. This can be
achieved for example, in the IP domain by using the loose source routeing
extensions which were mentioned in Section 3.1.1.

By propagating the QoS constraints in the queries to federated traders,
each trader in a chain of federated traders is able to consider the constraints
and the QoS available between itself and the next trader, and so refine the
constraints for the query. If a federated trader in the chain does not support
QoS considerations, then propagation of QoS constraints cannot made. Using
the above example, the constraint (Service = A or Service = B) would be
propagated to trader 77 and (Service = A) to trader T5.

79

Where QoS constraints are dropped, the walkstation uses only an initial QoS
consideration on the first step to select its own outgoing routes. Subsequent
trading then proceeds along existing lines, without QoS support. However, for
a walkstation importing an offer exported by another walkstation, it is essential
that the home trader of the exporting walkstation supports QoS considerations
in order that a comparison be made between any different wireless links from
the exporting walkstation to the static network.

5.7 The Notus Walkstation Manager

The Notus Walkstation Manager (NWM) implementation shown in Figure 5.10,
has the task of mediating between the user, network, and applications. It sup-
ports two interfaces: the user interface, which is invoked by the walkstation’s
user to query and control running applications; and the network interface, which
receives connectivity information from the various network types supported by
the walkstation. Information received via the network interface is used to initi-
ate the federation of new traders, traded handoffs, and application migration.
Since a wireless network was not part of the implementation, this information
was simulated.

User’s Intentions and Requests.

Remote Walkstation Managers.
Network Connectivity Information.

Walkstation Manager Domain.
\ _J

mRmmes==== Network Connection.

Figure 5.10: The Notus Walkstation Manager

Application migration from the walkstation to a compute server is initiated
when the NWM perceives a high-bandwidth environment and is able to com-
municate with other NWM instances on compute servers. The source NWM
contacts the prospective target NWM instances (which are running under an ad-

80

ministrative user account), requesting permission to migrate the walkstation’s
applications.

The walkstation’s user is then required to nominate, via the user interface,
the target host and the applications which are required to migrate. For each
migrating application, the user should specify the modules which should migrate
using a trading constraint. The use of a constraint enables the specification of

" the modules required to migrate to be made in a flexible manner. For example,

it is possible to specify every one of an application’s modules, all modules of a
specific type, or a particular instance of a module.

The implementation assumes the availability of an executable version of
the application on the target host?, and the source NWM uses the UNIX rsh
mechanism to start the application under an account belonging to the user of
the walkstation, specifying via command line arguments that the application
should initialise from the state of another application instance. The target
application instantiates only the NAM and the remainder of the migration
process is handled by the NAM at both the source and target.

A traded handoff is initiated when the network interface receives simulated
events indicating a change in the connectivity available through the walksta-
tion’s network links. If the walkstation loses connectivity through a particular
network type, the NWM informs the walkstation trader to cease its federation
with other traders over that network, and then instructs each instance of the
NAM on the walkstation to perform a traded handoff. Conversely, if a new net-
work becomes available, the walkstation’s trader is instructed to federate with
a trader over the new network and all NAM instances are similarly informed.

5.8 The Notus Application Manager

An instance of the Notus Application Manager (NAM) shown in Figure 5.11 is
created whenever an application starts and supports the modules of an appli-
cation, in coordinating registration, traded handoff, and migration activities.
By convention, applications which are a migration target are informed via their
command line arguments, and this information must be passed on to the NAM
as it is initialised.

In the case that an application starts normally, the NAM accepts the reg-
istration of modules which wish to be notified of migration or traded hand-
off events. Otherwise, when an application is started as a migration target,
the NAM creates a stream on which it expects to receive the state of the

2A transfer of an executable from a repository could be made in advance of migration.

81

|

Handoff and Migration Requests.

Application Trader.
Notus Application Manager Module.

1d pff Interfaces

Application Domain.

Network Connection.

Remote Application Managers.
Figure 5.11: The Notus Application Manager

source’s checkpointed modules and passes back an interface reference to the
stream’s endpoint to the source NAM. While the source is creating its consistent
checkpoint3, the source NAM connects to the stream and is later responsible
for coordinating the transmission of each migrating module’s checkpoint to the
target NAM.

On receipt of each source module’s checkpoint, the target NAM first deter-
mines the type of the source module from the checkpoint state. This is used by
the dynamic type system to create a new module instance. The target NAM
then creates a Notus Support Module (NSM) instance filled with the received
checkpoint, and a thread which will invoke the new module’s Restore method
with its associated NSM as an argument. The new module will then, with the
assistance of its NSM, restore from the checkpoint state and continue execution.

After each module has been migrated, the source NAM instructs the mod-
ule at the source either to terminate or continue. The former corresponds to
migration, while the latter might be used as part of a replication scheme, but
is not considered further in this work.

3The algorithm for creating a consistent checkpoint is described in Section 5.11.

82

The second function of the NAM is to receive and propagate traded handoff
requests from the NWM. Given a traded handoff request, the NAM uses the
application’s trader to locate all the HDI interfaces exported by the application
and passes on requests for each phase of the traded handoff protocol, by making
invocations on these HDI interfaces, as described in Section 4.5.

5.9 The Notus Support Module

It was mentioned in Section 4.2 that Notus Support Module (NSM) instance is
associated with any module which uses Notus functionality. In the implemen-
tation, this association is made during the module’s initialisation, by passing
a reference to the associated NSM as an argument of the module’s Restore
method. This means of association was chosen over other mechanisms, such as
class inheritance, simply for convenience in the Nemesis programming environ-
ment.

The NSM is intended to draw functionality away from, and so simplify
the implementation requirements of the Notus Language Extensions (NLE). It
provides the application with simple synchronisation primitives for use during
a traded handoff. However, its main requirement is to support the construction
of a module’s checkpoint during migration.

When the NSM initialises, it registers with its NAM, providing an inter-
face reference to a Control interface, with properties which include the module
type, the name of its checkpointing group, and the level of consistency (selected
from the set: strong, intermediate, or weak) which, must be maintained with
the other members of the checkpointing group. The consistency information
is communicated to the NSM via NLE, and at any time during the module’s
execution, the NSM can inform its NAM of changes to these properties. This
for example, allows a module to change its consistency requirements or check-
pointing group membership at any time.

Part of the state of an active module transferred during migration is its
marshalled thread call trace. This state is maintained by the NSM using a
stack which represents the call trace and contains pointers to marshalling code
for the state local to each stack frame. At the time a checkpoint is required,
this stack is unwound and the marshalling code invoked.

The NSM is also required to provide a marshalled representation of the
global module state (the self closure in Figure 5.14). This additional state
can be marshalled automatically if it is described in the module’s interface,
but if not, must be marshalled using NSM call-backs to functions provided by

83

r Y
Checkpointable Module.
Restore() I::numeratcd points Normal execution of module code.
{ / in code.
State_1;
(1) Fool(); .
Foo2() Local Function State.
(2) Foo2(; =1 { /
State_2; |
(3) Foo3(); Bar()
} (1) Bar(j; > {
- State_3;
}
(1) *Checkpoint*
J Marshall Module State. ;o
Unwind Stack.
Module State.

Z

g

& (2 ,State_1)} (1, State_ 2) | (1, State_3)
8 y /
Q

& Buffer.

)

Notus Support Module.

Marshalled local
Marshalled, enumeration point in code. ~ function state.

Figure 5.12: Checkpoint Assembly

the module. The programmer is assisted in creating these application specific
marshalling functions, with access to marshalling code for all the data types
defined in interfaces imported by the application.

The example shown in Figure 5.12 illustrates how a checkpoint is produced
by the NSM. The programmer has specified that a checkpoint be produced
whenever execution reaches CHECKPOINT in the function Bar. At this point, the
NSM stack contains a trace of the function calls and marshalling code references.
The NSM unwinds the stack and invokes the marshalling code to fill its buffer
with the call sequence leading to CHECKPOINT, the local state for each function
call, and the module’s global state. The checkpoint held is now available to the
NAM and can be used as part of the consistent checkpoint for the module’s
checkpointing group.

84

5.10 Notus Language Extensions

A module which wishes to use the functions provided by the Notus implemen-
tation must interface with its associated NSM. The architecture requires that
applications partake in migration and traded handoffs. This potentially requires
each module with an associated NSM to implement a number of functions.

e During its own initialisation, a module must detect when its associated
NSM contains a filled checkpoint and if so, must undertake to retrieve the
checkpoint and restore itself. The module is also required to register itself
during initialisation, with its NAM, specifying its checkpointing group and
required consistency. .

e An active module must inform the NSM whenever a function call or return
is made, and of the nominated state to be marshalled for each call.

e The module must specify points where traded handoffs and migration can
take place and synchronise with the NSM at these points when required.

e The module should have a means of requesting that a checkpoint be
formed for the application.

Also, when an application first starts, it must initialise an instance of the
NAM. During its initialisation, the NAM must be informed if the application
is being started normally or as a migration target. In the case that it is a
migration target, the NAM does not return control to the application and
instead coordinates the restoration. Otherwise, the NAM allows the application
to initialise as normal, creating and registering its modules and associated fresh
NSM instances.

Without Notus Language Extensions (NLE) support, these requirements
would be a burden on the application programmer. The NLE extends the
programming environment, automating to various degrees, all the above tasks.
The implementation supports the C programming environment, with NLE ex-
tensions appearing as a set of macros. These are resolved during pre-processing
into both embedded code and calls to the NSM. This implementation enables
migration to take place between two executable instances of an application
which have been compiled for different architectures using different compilers.

Figure 5.13 shows an example of expanded NLE macros which are used to
restore the execution state of a module. The Restore method of this module
has been invoked and the module’s associated NSM contains a filled checkpoint.

“This is detected by the application through its command line arguments.

85

f Checkpointable Modle.)
| Foo(){ Bar(){
goto labl goto labl
Restart Execution. I aan I
() ommst— labl: labl:
-{Rcs l if ckpt_pos = ckpt_1 if ckpt_pos == ckpt_1
. T { {
Q; Restore local state
<
} }
g Bar() s— else goto lab2 j
e } .
"% : lab2:
2, Restore Global if ckpt_pos == ckpt_2
S State, G2 {
< @D &) Restore Local State
}
Module State. CHECKPOINT
Filled Checkpoint. }
\—/
7

Figure 5.13: Module Restoration

The module’s global state is unmarshalled and the expanded macros extract the

thread call chain.
/

In Foo, the macros pass execution to the point where the call to Bar is
about to be made and unmarshal local Foo state. Bar is then invoked and the
restoration continues until the point is reached at which normal execution con-
tinues. During this process, the NSM’s thread call stack is also reconstructed,
enabling the restored module to produce another checkpoint as soon as normal
execution is resumed.

5.10.1 Example Annotations

When using NLE to adapt a module for migration, it is necessary to annotate all
checkpointed functions. Here, a checkpointed function either contains a check-
point or calls another checkpointed function. Figure 5.14 shows a checkpointed
function which contains two checkpoints, indicated by the macro POINT. The
function initiates an application wide checkpoint, using the macro SCHEDULE,
based upon a test of the variable iteration. The VARS macro is used to indi-
cate local state which should be marshalled during a checkpoint, and the ARG
macro is used to introduce the associated NSM to the NLE.

As the pre-processing stage stands, there is a requirement for several further
annotations. The call to the checkpointed function Bar must be decorated with
the CALL and AFTER macros. These are used to maintain the thread call stack,
and also expand into code which passes execution on to the correct point when
the module is restored. Finally, TOPS and BOTS are required to mark the.scope of

86

Foo(self)

{
uint32_t i;
uint32_t temp;

CKPT VARS uint32_t &i;
CKPT ARG (self->checkpoint);
CKPT TOPS;

CKPT POINT; /* checkpoint */

if (self->iteration == 100)
CKPT SCHEDULE; /* initiate an application wide checkpoint */

CKPT CALL;
Bar(self);
CKPT AFTER;

CKPT POINT; /* checkpoint */
CKPT BOTS;

Figure 5.14: An Annotated Function

the checkpointed function, and expand to code which detects a filled checkpoint
and initiates restoration.

With an improved version of the pre-processor, it should be possible to
eliminate the need for the TOPS, BOTS, CALL, and AFTER macros, and a tool may
be envisaged which, given programmer assistance in determining the points in
a program where checkpointing can occur, will determine and annotate the
function call paths to each point. Along the way, the tool might also assist the
programmer in determining the state which should be nominated for transfer.

5.11 Checkpoint Consistency

The source NAM is required to ensure that a consistent checkpoint is available
from an application’s modules during migration. This is achieved in the imple-
mentation through the use of the algorithm shown in Figures 5.15 and 5.16.

In general, a consistent checkpoint might be required from a number of mod-
ules which are members of a number of checkpointing groups (see Section 4.7).

87

Here, the algorithm first determines the grouping of modules and the consis-
tency requirements of each group, by querying the properties of the modules
through the trader. This allows groupings to be flexible and modules can enter
or leave groups during their execution, so long as they update their properties
in the trader. Since the consistency of a group is as strong as the strongest re-
quested by any one module, the addition or removal of a module from a group
can change the group’s overall consistency.

1. Open stream.
2. Determine and group all modules to checkpoint:
let g; := {m& modules |Vn' € g; - GroupName(m) = GroupName(m') }
let CG := | gi - modules C CG
3. Request that all members of strongly consistent groups produce a checkpoint.
4. Write the last checkpoint from all weakly consistent group members on the stream.
5. As each strongly consistent group reaches a checkpoint, write it on the stream:
while CG # 0
do .
let G := { g € CG | g has reached a consistent checkpoint }
ifeG=10
then
wait
else
VgeG, Vmeg
do
5.1 Write out the checkpoint from module m on stream.
5.2 Signal m to allow module to continue execution.
done
let CG :=CG- G
fi
done
6. Close stream.

Figure 5.15: Checkpoint Consistency: Manager

The algorithm is only required to directly consider strong and weak groups,
with an intermediate group interpreted as a number of strong groups, each
containing one element.

It is the intention that at all times the algorithm takes advantage of any
possible progress in forming the application’s global checkpoint. While strongly
consistent checkpointing groups are in the process of synchronising to produce
their consistent checkpoints, the checkpoints from weak groups are output. The
algorithm then waits for strongly consistent groups to synchronise and imme-
diately writes out the checkpoint from groups which have synchronised. This
process continues until either all the groups have synchronised or until the mi-
gration is aborted.

88

if Checkpointing required.
then
Prepare checkpoint for the module.
if module is not weakly consistent.
then
if All other modules in this group have produced a checkpoint and are waiting.
then :
Signal manager that a group has reached a consistent checkpoint.
fi
while Manager has not released module Wait.
fi
fi

Figure 5.16: Checkpoint Consistency: Client

The implementation of the algorithm assumes that all members of a check-
pointing group are resident on the same machine. This is because it is only
intended to be used prior to the transmission of a checkpointing group from
one host to another. If the implementation were to be extended such that a
checkpointing group may be distributed over a number of machines, the pos-
sibility of a communication failure leading to the unavailability of a consistent
checkpoint for the group must be considered.

89

5.12 Summary

The implementation of the Notus architecture and programming environment,

"described in this chapter, has concentrated on enabling an evaluation to be

made of the key features the architecture, with:

e an RPC service which supports default traded handoff behaviours,

e atrader implementation supporting queries which include QoS constraints
in an environment where there are a number of different routes to services,
and

e an implementation of the Notus components, with a particular concen-
tration on the formation of a comsistent checkpoint for an application
consisting of a number of asynchronous modules. This involved the im-
plementation of an algorithm which ensures the correct synchronisation
of modules for consistency, and a mechanism for the creation of the het-
erogeneous representation of a module’s state.

This implementation is able to support an experimental evaluation of the
traded handoff and migration services, in a programming environment which
supports a large number of representative applications.

90

Chapter 6

Notus Evaluation

6.1 Introduction

The evaluation of the Notus implementation aims to demonstrate its perfor-
mance in conjunction with specially written applications, as well as with a
number of existing interactive applications which have been modified to use
Notus.

In this evaluation, all walkstation mobility is simulated by applications run-
ning on static hosts. This was for two reasons: first, a wireless testbed which
could have offered connectivity in both the local and wide areas, was unavail-
able to the author at the time of the implementation; second, that it is possible
to fully exercise the implementation without a wireless component.

91

6.1.1 Experimental Program

The experimental work which was undertaken may be considered in three parts.

e In Section 6.3, the Null Server application is introduced to provide a basic
evaluation of the performance of the implementation.

e Then, in Sections 6.4, 6.5 and 6.6, a suite of existing applications which
have been adapted to use the Notus implementation, consisting of a video
player, news reader, and shell, are evaluated. These applications are rep-
resentative of those expected to operate in a walkstation environment,
demonstrating applications for which it is important to minimise the dis-
ruption to the end user during migration and handoffs, and applications
which transfer significant amounts of state during migration.

e Finally, in order to fully exercise all the options for consistency during
application migration, a simple application which consists of a number
of periodically activated modules is evaluated, in Section 6.7, against an
analytical model.

These experiments demonstrate all the features of the architecture including:
default traded handoffs for both client and server applications, a traded handoff
with application involvement, application migration for a number of existing
interactive applications, the interworking of the traded handoff protocol during
migration so that the application’s bindings are re-established as the migrated
application is restarted, and all the checkpoint consistency options supported
by the architecture.

6.1.2 Metrics

There are two measurements which can usefully be taken for migrating appli-
cations, namely disruption and latency. Disruption is the amount of time for
which the migrating application is not able to do useful work because of the
migration process. If the application is interactive, this is the time during which
the end user would perceive the application as being unavailable. Latency is
the total elapsed time from the initial migration request, to the completion of
the transfer of application state to the target.

Disruption is perhaps the most important metric, since it is the time during
which the end user is affected. The application is still available to the user
during much of the measured latency time, since this includes the time spent

92

in preparation for the migration®

. However, latency is a useful measurement
when considering the various checkpoint consistency algorithms and becomes
an issue when the time available for completion of the migration is limited. For
example, when a walkstation is quickly moving from a low-bandwidth to a high-
bandwidth environment, it is important to complete any required application

migration before the high-bandwidth connection is lost.

The principal metric for the traded handoff is the disruption to the end user.
During the experimental program, disruption was measured both for the case
where the client is executing on a walkstation and must reconnect to its server
on the static network, and the case where the server is on the walkstation and
must redirect its clients as it moves.

6.2 Platform

Unless stated otherwise, all measurements are the average of 100 runs and were
taken on 150 MHz DEC ALPHA platforms running the Digital OSF1 3.2 UNIX
operating system. These were connected via a shared 10 Mbit/s Ethernet and
used TCP/IP. This configuration does not contain a wireless component, but is
able to provide a useful demonstration of the implementation. Current Wireless
LAN (WLAN) implementations are achieving the performance of this Ethernet,
so measurements taken using this platform should be comparable to those from
a WLAN.

6.2.1 System Metrics

Thread Creation 2.9 £+ 0.5 ms
Bound Null RPC 1.4 £+ 0.2 ms
Unbound Null RPC | 6.9 + 1.7 ms

Table 6.1: System Performance Metrics

Prior to conducting the experimental program, measurements were taken in
order to give an indication of the performance of the communications environ-
ment. These measurements included the time to create a single thread, and
cross machine Null Remote Procedure Call (RPC) times on both a bound and
initially unbound interface®
Table 6.1.

. The average of 5000 measurements is shown in

!The time spent opening a stream, instantiating a target, during module synchronisation.
2Binding is described in Sections 2.4 and 5.3.

93

250 T T T T T T T T T
Thread Creation +o—

200 .

150 |

100 +

Time (ms)

50

_50 1 1] 1 1 L 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Number of Threads

Figure 6.1: Thread Creation Time vs Number of Threads
Thread creation time is not linear and is subject to larger deviations when a

number of threads are required to be created in a single batch. This is shown in
Figure 6.1 and has ramifications for the Null Server experiment in Section 6.3.

94

(i) Import server offer from trader 1.7

(ii) Open network connection to server 2.3

(iii) Dedicate handler thread for binding 2.9

Unbound Null RPC time: 6.9 ms

(iv) First client invocation overlaps (iii) 1.4 ms

Null client.

Null server.

Trader.

Server handler thread.

Figure 6.2: Unbound Null RPC Invocation Time

The Null RPC times are given for a Null server interface which contains
one method called Ping. This takes an integer argument and returns the string
"Hello There!’. A marshalled invocation of Ping on a bound interface results in
the transfer of 16 bytes from the client to the server and returns 32 bytes. The
Null client’s unbound invocation time, illustrated in Figure 6.2, is comprised of
an RPC to a federated trader (i) to import an offer exported by the Null server,
(ii) the time to open a network connection with the Null server interface, and
(iii) the time taken on the server-side to create a dedicated handler thread for
the binding. In the unbound case, the time elapsed during the invocation of
Ping (iv) is masked by the time spent at the server creating the handler thread.

6.3 Null Server

The Null Server application was developed as a first test of the migration and
traded handoff facilities of the Notus implementation. The application is con-
figured to create a given number of independent modules, with each module
implementing a single server which exports the Null interface.

6.3.1 Migration

The application was migrated to another host with all the server modules re-
stored at the target machine. This resulted in the transfer of a checkpoint of

95

Time (ms).

300

250

200

150

100

50

1 ! T I I I T I

Source ©
Target +

t=9+5s for (0<s < 10) +

t=5+2s

20 25 30 35 40
Number of Servers (s).

Figure 6.3: Server Migration Time vs Number of Servers

also includes the time spent preparing the checkpoint at the source.

96

45

size 156 bytes per moduie. In Figure 6.3, the gradient of the Source plot gives
the application’s latency as 5ms, with an additional 2ms per server module.

The Target plot shows the elapsed time at the target, after accepting a
connection from the source, until each module has restored from a received
checkpoint. The required time was 9ms, with an additional 5ms per module
for small numbers of modules. For larger numbers of modules, the Target plot
is non-linear as a result of the cost of creating larger numbers of threads. The
disruption to the application can be estimated from the Target plot, since this

50

(i) Open stream to target.

(ii) Transfer checkpoint to target.

(iii) Create Null Server module at target.
Source. Target.

Null Server Module.

Figure 6.4: A Migrating Null Server Module

For one module (s = 1) the components of the time measured at the Target
are shown in Table 6.2 and illustrated in Figure 6.4. Here, Source represents
the time spent at the target, once the stream has been opened (i) while waiting
for the source to prepare and transmit the checkpoint. Read represents the
time taken to transfer the checkpoint from the source to the target (ii). Thread
represents the time taken to create the server module at the target (iii), and
Offer represents the time taken for the Null server to initialise at the target

(iv).

Target Restore Time (ms)
Source | Read | Thread | Offer
7.4 1.8 2.9 2.3

Table 6.2: Disruption for a Single Null Server Module During Migration

It was also found that as the number of modules increases in the range
(0 < s < 10), the Source and Read times remain constant, while the Thread
and Offer times both increase as a multiple of the number of modules.

These results have demonstrated application migration for a simple applica-
tion. When considering a single Null Server module, the overheads of migration
above the time spent at the source preparing the checkpoint are similar to those
required to establish an RPC binding.

6.3.2 Traded Handoffs

The Null Server application was then configured so that a single server instance
was created which requested the Flat subcontract when exporting an offer. Flat
subcontracts were discussed in Section 5.3 and provide default traded handoff
semantics where, on a traded handoff, connections are rebuilt to their original
end-points without the application being aware of mobility. There are two (sim-
ulated) cases to consider: first, where the client is executing on a walkstation

97

and must reconnect to its server on the static network; second, where the server
is on the walkstation and must redirect its clients as the walkstation moves.

In the first case, the client-side Flat subcontract exports an instance of
the Handoff Interface (HDI) which is invoked during the traded handoff (see
Sections 4.5.3 and 5.8). The average time taken for the subcontract to Open a
new connection to the server in the background, was measured as 2.3ms. This
is essentially the time taken to create a binding given an interface reference and
is a component of the unbound RPC invocation time shown in Figure 6.2. Since
there is no client state to be transferred, the Unmount and Mount phases, and
hence the disruption to the client were unmeasurable using the experimental
platform.

In this simulated environment, both the old and new connections are simul-
taneously available and there is little disruption to the client. This would not
always be the case, and might even depend upon the direction of the handoff.
For example, when moving from a Mobile Radio Network (MRN) to a WLAN
environment, it might be expected that offers made using the MRN would be
available from the WLAN. However, moving in the other direction, a WLAN
offer would be immediately unavailable as soon as the walkstation moved into
the MRN environment.

(i) Callback registered during binding establishment.
Client Subcontract.

(ii) Client invocation on SAP A.

(iii) Traded handoff initiation.

(iv) Server subcontract creates SAP B.

(v) Server subcontract sends Redirect.

@[\ O ® _
(vi) Client invocation on SAP B.

Null Server.

Null Client.

A Network SAP.

\
Server Subcontract.

Figure 6.5: A Default Traded Handoff for the Null Server

The second case of a mobile server is illustrated in Figure 6.5. The server’s
subcontract exports an instance of the HDI at the time the Null RPC server offer
is created. When the client establishes a binding using the offer, the requirement
to use the Flat subcontract is detected. During binding establishment, the client
and server-side subcontracts initialise, and the interface references of the client

98

and server-side HDI are exchanged. The server’s Callback method is invoked
(i) to register and stash the client’s HDI interface reference, as described in
Section 4.5.5. At this point (ii) client invocations are made through Service
Access Point (SAP) A.

When the (simulated) walkstation moves, the server is required to perform
a traded handoff and is informed by the Notus Application Manager (NAM)
(iii). It creates (iv) the new SAP B and exports a modified offer to the trader.
The server then binds to the stashed HDI of each of its clients, instructing each
client (v) to Redirect and use the new SAP. The traded handoff is completed
once each client has reconnected to the new server offer. After the traded
handoff, client invocations (vi) will be made through B.

In the experiment, a single client was connected to the Null server. The
server was then requested to perform a traded handoff and the time taken for
a new server offer to be created was measured, together with the time taken to
inform the client of the new offer and to destroy the old offer. At the client-
side, the disruption time during the redirection was measured. These results
are shown in Table 6.3. .

Server Handoff (ms) Client Disruption (ms)
Create | Inform | Destroy
15.2 3.0 3.1 21

Table 6.3: Traded Handoff Measurements for the Null Server

The results demonstrate the default traded handoff facilities of the Notus
implementation, which require no application modifications. By performing
much of the handoff in advance, the disruption experienced by the application
is comparable to other implementations which perform mobile handoffs within
the network. For example, in Section 3.1.3 mobile handoffs performed within
an Asynchronous Transfer Mode (ATM) switch are simulated and show a 7ms
disruption to the client.

6.4 .Video Player

A Public domain MPEG player [Rowe93] was obtained and modified to take
input from a network video server, rather than a file. This application was
intended to represent a scenario where a video player running on a walkstation
receives, decodes, and displays compressed video from a replicated. network
server. As the walkstation moves, the client application is required to take
advantage of replicated servers and the changing network environment by per-

99

forming traded handoffs, and rebuilding its session with a suitable video server.
If the walkstation moves into a WLAN environment, it could be appropriate
to migrate the client to a static compute server, in the process performing a
traded handoff and ensuring that the video stream is rebuilt as the application
is restored. This application was chosen because it is important to minimise
any disruption to the playing out of the video stream.

The components and normal operation of the video player application are
first described in Section 6.4.1. Then Section 6.4.2 describes the modifications
made to support the migration of the video player client and presents results
obtained by measuring the migration time. The migration of the video player
interworks with the traded handoff mechanism and the migration results include
a traded handoff. However as an illustration of an application which is fully
involved in the traded handoff, Section 6.4.3 describes the traded handoff for
the video player client in isolation.

6.4.1 Components and Operation

Video Streams on Storage Device. (i) Export video server offer.
(ii) Match video server offer.

(iii) Mount video server,
returns an interface
reference to a
video stream.

iv) Open Player Stream.
* Control Operations. :
P Video Stream.

A Stream Endpoint.

O Player Thread.

Play Out Decoded Video on Frame Store.

Figure 6.6: Mounting a Video Server

The application consists of two modules shown in Figure 6.6 — a server which
plays streams of MPEG compressed video out from a storage device and a client
which decodes and displays the video. The server accepts requests on a control
interface to play out streams. It exports an offer in a trader (i) consisting of
an interface reference to the control interface and the properties of the video
streams which it is able to play out. The client queries the trader (ii) and
imports. an appropriate offer. The client then binds to the server’s interface
and invokes a method to Mount the required stream (iii). This causes the
server to dedicate a Player thread to the playing out of the stream. The Player

100

accepts a network connection from the client, and an interface reference to this
end-point is returned to the client as the result of the Mount. The client is
then able to connect to the Player (iv) and receives the video stream. The
bandwidth requirement of the video clips used was approximately 226 Kbit/s.

6.4.2 Migration

The MPEG [ISO91] compression scheme uses an interframe coding, with frames
of three types, Intra Picture (I), Predicted Picture (P), and Bidirectional Pic-
ture (B). An Intra Picture is directly decoded and displayed, providing a random
access point within the stream. A Predicted Picture is coded with reference to
a previous frame, and a Bidirectional Picture is coded possibly with reference
to both a previous and a future picture.

If the restoring video player were required to correctly decode and display
the next frame in the stream, it would have been necessary to transfer as part
of the application’s state, a number of Predicted frames, together with the
previous and future Intra Picture frames. Since Intra Picture frames tend to
appear frequently in the stream?®, it was decided that during migration, the
client should skip forward through the stream to the next Intra Picture frame.
From this point, the stream is decoded without reference to any frames held in
the source application.

The application is structured around a tight loop, each iteration decodes
and displays a single frame of video, requesting new data from the video server
as required. It was sufficient to place a single checkpoint within this loop, at a
point where a complete frame had been decoded and displayed. This required
the annotation of a single function using the Notus Language Extensions (NLE).
Other state identified for checkpointing was limited to the video’s title, offset,
aspect ratio, bit rate, and the thread call chain. In the experiments, the size of
the checkpoint was 240 bytes.

Since the size of the transferred checkpoint was small, the application was
modified to produce a checkpoint while processing each frame of video with
no noticeable impact on performance. This enabled the weak checkpoint con-
sistency option from the Notus implementation to be used, thereby improving
the latency of migration. When requested to migrate, the NAM is able to
immediately access the most recently produced checkpoint.

During migration, the client application is moved from one host to another.
In order to ensure the rebuilding of the video stream, a traded handoff is in-

3 Although this depends upon the encoding parameters used, but is typically about every
8 frames.

101

terleaved with migration. The source application cleanly unmounts its server
and the restoring target application mounts a new server at the correct offset in
the video stream. The client application is configured so that during a traded
handoff, a query is made for a (different) server which supports the required
video stream.

The time taken to migrate the application is shown in Table 6.4 below. After
the source application is disrupted, it must first Unmount its server connection,
then Read in the checkpoint from the Source. Restore is the time taken from
when the checkpoint has been read in, to when the first frame of video is
displayed. This time has been further broken down into the time taken in the
Open phase of the traded handoff protocol to import and establish a binding
with a suitable Video Server offer?, the time taken to Mount the server, and
to Connect to a new stream of video. Display is the time taken. to reset the
user interface and could have been optimised out of the process through pre-
initialisation.

Video Player Disruption Time (ms)

Source Target
Unmount | Read Restore
Open | Mount | Connect | Display
7.0 11.3 2.3 9.6
1.4 1.8 30.2
33.4

Table 6.4: Video Player Disruption During Migration

These results show that it is possible to migrate the video player with the
end user disrupted and unable to view the video stream, for a time which is
comparable to the loss of a single frame of video. For this application the goals of
migration in a mobile environment, particularly heterogeneity and low-latency
are both achieved.

Examining the components of the migration time, it appears that much of
the time is spent mounting the new video server offer. If the Flat subcontract
had been used, which would have re-established the binding to the original
server, the Open time would have been reduced to the 2.3ms of the Null Client
in Section 6.3.2. The largest component of the Mount time is the new server
opening and seeking through the video file. If the same server were used, this
time would also be significantly reduced, since it is likely that a file handle
at the correct place would be available. Further optimisations to the traded
handoff protocol are suggested in Section 8.1.

4This is equivalent to the unbound Null RPC shown in Figure 6.2.

102

6.4.3 Traded Handoffs

The video player application was then instructed to perform a traded handoff
of its connection with the server, while in the process of playing out a video
stream. The time taken was measured and shown in the Table 6.5.

Video Player Handoff Time (ms)
Open | Unmount | Mount | Connect
7.0 1.4 11.3 2.3

Table 6.5: Video Player Handoff Results

Here again, Open is the time taken to import a new server offer from the
trader and to establish a binding. Unmount is the time taken by the client to
close down its connection with the old server, while blocking any attempt to
read the video stream. The new server is then Mounted, the client indicating
the correct point in the stream at which to play out, and a Connection is made
to the new stream. It should be noticed that these results are a component of
the migration results for the video player, shown in Table 6.4.

During the traded handoff, the client must transfer its session to the server
and so makes use of a custom HDI, rather than using a default. This illustrates
an example application where client-side synchronisation during the handoff
involves more than just swapping a network SAP. Here, it is also required to
block operations on the video stream, which is a completely separate entity to
the video server control interface.

In this example, the Open phase of the traded handoff is performed in the
background and the client is disrupted for only the time taken to Unmount and
Mount a server, and to Connect to a new video stream (about 15ms). This
corresponds to a time which is significantly less than the play out time for a
frame of video.

If the traded handoff were being made in an environment where network
latencies were much greater, then an estimation of the expected performance
might be made based upon these results. For example, where a traded handoff
is being made because of the availability of local services, it would be expected
that the time required to Unmount would reflect the additional latency from
the invocation of the existing (now remote) server, while the Mount of the new
server would be local and hence a low-latency operation. In the limit, the total
handoff time would be expected to be dominated by the latency of the Unmount
operation. However, this time would be quickly recouped by the use of local
services.

103

When comparing the traded handoff time against schemes which perform
handoffs at lower levels in the network, it should be noted that for this stream
based application, it would be likely that there are large amounts of buffered
state requiring transfer between base stations during a handoff. The results
described in Section 3.1.1 show transport layer handoffs requiring times of about
300 ms in the presence of about 4 Kbytes of buffering. A

6.5 A Migrating News Reader

As a demonstration of the migration of a desk-top application with significant
state, a public domain news reader [Sentovich88] was modified to be migratable
using NLE. The application is structured around a state based model, with the
behaviour of the application depending upon the application’s current mode
and events received through the user interface.

For each available news group, the unmodified news reader application
records information regarding the articles which the user has read into a file
when the application exits. This action makes it possible for subsequent in-
stances of the application to display only the unread articles for the user. This
existing facility was incorporated into the migration process to transfer the ap-
plication state directly to the target (using the checkpoint stream rather than
a file). The other required state, including: the current and previous modes
of the application, the current news group, and article being read — were de-
scribed using the Middl Interface Definition Language (IDL) and a,utomatlcally
transferred during migration.

In order for the migrated application to remain consistent with received in-
terface events, and because of the performance impact of periodically producing
the checkpoint, strong checkpoint consistency was chosen.

It was found that the time taken to produce, transfer, and parse the (16Kbyte)
description of the read articles for each news group, and to resolve this infor-
mation against the available articles provided through the new connection to
the news server, dominated the disruption time experienced by the application,
and amounted to the order of 2 seconds.

Although this disruption time is tolerable, it was thought that an order of
magnitude reduction could be achieved both by transferring only the changes
made by the source application to the article state, and also by the target ap-
plication not re-querying the news server during restoration. The modifications
made to the news reader program for migration were minimal, requiring only
a superficial understanding of the structure of the program. Extensive mod-

104

ifications to the program would have been required to implement the above
improvements and were not undertaken.

6.6 A Migrating Shell

Work by Ashton has involved modifying a public domain shell [Joy80] in order
to explicitly identify state for migration [Ashton96]. This work was motivated
by a requirement for load balancing in a cluster of homogeneous computers.
During migration, an instance of the shell is created on the target host, with
a pipe arranged for communication with the source. Various ad-hoc methods
(including writing state to a file) were used to transfer state between the two
instances, until the target is able to take over execution from the source. Ash-
ton observed that much of the work in modifying the application was spent
in ensuring the robustness of the mechanism used for transferring state and
restoring the target application.

Ashton’s migrating shell was adapted by the author to use the Notus imple-
mentation. It was found that the required modifications to the application for
migration were greatly reduced in comparison to those made by Ashton. In par-
ticular, Notus transparently instantiates and connects to the target application.
This left only a consideration of the state to be transferred:

e the values of all the shell variables which had been defined.

e the values of any aliases, which are used to introduce new keywords to
the shell.

e the history of commands executed by the shell, used for example by a
user of the target shell, who might request the last command executed by
the source shell to be re-executed at the target.

e the value of the path, which is a list of directories in the file system to be
searched to find a command.

In the case of the shell’s history, there already exists a mechanism to store

the history in a file when the shell exits, and a new instance of the shell is

then able to load the history as it starts. This existing facility was used to

' transfer the history directly to the target. The implementation allowed this

transfer to be made directly on the checkpoint stream, thus avoiding use of the
intermediate files of Ashton’s migrating shell.

As well as demonstrating another migrating desk-top application with sig-
nificant state, this example gives anecdotal evidence that use of the Notus im-

105

plementation reduces the work required in adapting applications for migration
and ensures that all participating applications can be uniformly controlled by
one manager.

It was found that the size of the checkpoint, for the migrating shell, de-
pended upon the particular instance of the shell, but was typically around
6Kbytes, giving rise to a measured disruption time of 87ms during migration.
This disruption time is half that of Ashton’s migrating shell, because even
though the same state is transferred, there is no requirement to use various
intermediate files to store the state. Additionally, this state was correctly mar-
shalled during migration, enabling migration between heterogeneous computers.

6.7 Checkpoint Counsistency

The following experiments are intended to evaluate the tradeoffs associated with
the various checkpoint consistency options of the Notus implementation. The
experiments are focussed on the formation of a globally consistent checkpoint
within the migrating source application. Consequently, there was no require-
ment to consider a target application. To reduce experimental complexity, the
source application was configured to store its checkpoint in a file. The main
difference in measurements taken using this configuration to the previous mea-
surements is that the time required to open the file using the Sun Network File
System (NFS) [Sandberg85] was much greater than would have been required
to open a TCP/IP connection between the source and target.

while(true)
{
wait (random(T));
if (iteration == 100)
CKPT SCHEDULE;
CKPT POINT;
}

Figure 6.7: Consistency Test Module: Main Loop

An application was developed to test the algorithm, which aims to form
a consistent checkpoint from a group of modules. The application initialises
a number of modules, each of which performs the loop shown in Figure 6.7.
Every iteration of the loop blocks the module for a random, discrete interval
of up to a maximum of T' ms. An iteration also contains a checkpoint, marked

106

by the macro POINT, where the module can synchronise during the checkpoint
consistency algorithm. After a fixed number of iterations, one module, termed
the initiator, uses the SCHEDULE macro to initiate a consistent checkpoint for all
of the application’s modules.

The NAM performs the algorithm described in Section 5.11, to form the
checkpoint according to the consistency requirements specified by the appli-
cation. For example, if strong checkpoint consistency were specified and all
the modules placed in a single checkpointing group, the NAM would block each
module as it reaches its next checkpoint, until all the modules have reached this
point. Before presenting experimental results, the application is first modelled
analytically for the strong and intermediate consistency cases. This model is
intended to provide a benchmark for the performance of the implementation.

107

6.7.1 Analytical Model

The time taken to reach a consistent checkpoint is the elapsed time between the
initiator I starting the checkpoint process (by reaching the SCHEDULE macro),
and every other module reaching a checkpoint (at the macro POINT). If there
are only two modules in the checkpointing group (I and A), the probability of
A reaching its checkpoint at any time ¢ after I has initiated checkpointing can
be determined. Generally, checkpoints can occur at any time, however since
this application was implemented using a discrete time model, the analysis is
somewhat simplified by also assuming discrete intervals of time.

If an event is said to have occurred when a module reaches a checkpoint
(with a maximum period T'), then Figure 6.8 shows three events: E; at time e;
when A reaches a checkpoint, Ey at time es when I initiates checkpointing, and
Es3 at time ez when A reaches its next checkpoint. The uniformly distributed,
random delay means that the probability of an independent event at any time
is 1/T. Hence the probability of Ej given E; is 1/T2.

Previous checkpoint of A I Next checkpoint of A
By E, Ej
'y 4 4
Time
¢) 3 -
(T-1) t
Range of times for E1
given E at time es
T
T T

Range of times for Ej Range of times for E4
before e, aftere 2

Figure 6.8: A Model for Strong Consistency Checkpoints

In general, it is possible for F; to occur at any time within the period T
before Es, and for E3 to occur at any time within the next period T after Es.
However, if E3 is constrained to occur at the given time ¢ such that es —es = ¢,
then E; is also constrained such that es —e; < T, hence eg — ey <T —t.

Hence, there are T — t discrete possibilities for the occurrence of event F;
given E3 at a time ¢ after Ey and the probability «(t) of such an event Fj is

108

thus:

The probability 3, of an event in some interval 0 < ¢ <t is thus:

t’

iy =3 =t (6.1)

2
t=0 T

Given N + 1 checkpointing modules (including the Initiator I), the proba-
bility «y, of all N events from synchronising modules occurring in the interval
0 <t<¢ after I is:

() = BN

Once all N events have occurred, the modules have synchronised and a
consistent checkpoint can be taken. Hence, the average time £ to synchronise
the modules can be found from the normalised probability of all the events
occurring within the interval 0 < ¢ < ¢, and is given by:

20 _
) =2
= BN = 4(T)/2
= B(F) = B(T) /24N (6.2)

The sum of the arithmetic progression for 3(¢') in Equation 6.1 gives:

iy =3 Lt

2
t=0 T

' t
=1/TY 1-1/T*> ¢
=0 t=0

t'+1 "+t
7 Y T* 2
B(t') = —t" 2T +#'(1)T — 1/2T%) + 1/T (6.3)

The Equations 6.2 and 6.3 (substituting ¢ for ¢'), can be combined forming
a quadratic in #:

—82/2T% + #(1)T — 1/2T?) + 1/T — B(T)/2""N =0

and solving for ¢ gives:

E= (T +1/2) £ /T2 + 3T + 1/4 — 2T?(T) /21/¥

109

In the application T' = 250, hence 3(T") = 0.502. For these values, the roots
of the quadratic are approximated to:

faT(1+4/1—271/N)

Since synchronisation occurs within the period T', the lesser root gives the
average time ¢ taken to reach a consistent checkpoint for the N + 1 strongly
consistent checkpointing modules.

FaT(l— \/1v— 2-1/N) (6.4)

6.7.2 Measured Latency

The plots shown in Figure 6.9 compare the three consistency schemes, strong,
intermediate, and weak, introduced previously in Section 4.7, together with the
points Ezpected for strong and intermediate consistency derived from Equa-
tion 6.4 in the analytical model when T' = 250ms. The plots show latency
against the number of checkpointing modules, encompassing the total time
elapsed from the initial request to form the application’s checkpoint, to the
completion of writing out the checkpoint to a file. The size of the checkpoint
produced by each module was 176 bytes.

Checkpointing using weak consistency allows the NAM to take the most
recent checkpoint from each module. This requires no synchronisation with the
module, except where there is contention if a module is updating its stored
checkpoint at the time the NAM requires access. The latency for weak check-
pointing in this experiment was dominated by the NFS file open operation,
which took on average 49ms. The additional time required for larger num-
bers of modules resulted from the time required to write out each module’s
checkpoint (approximately 1ms per module). This time would be expected to
be more significant as the size of the checkpoint was increased, as would the
cost of periodically creating unnecessary checkpoints. The cost of checkpoint
creation was unmeasurable in the experiment, because of the small checkpoint
S1ze.

The strong plot (Figure 6.9) shows the latency experienced when all modules
are placed in a single, strongly consistent group. The intermediate plot shows
the modules placed in a single group of intermediate consistency®. For small
numbers of modules in both the strong and intermediate cases, the time spent
opening the checkpoint file results in the measured latencies being greater than

$Which is equivalent to placing the modules in strongly consistent groups where each group
contains one member.

110

300 T T T T

Strong -e—
Intermediate -+ - 4
Weak -0~ +°F
Expected -x—: .
250 1

200

150

Time (ms).

100

50

0 5 10 15 20 25
Number of Modules.

Figure 6.9: Latency vs Number of Modules

the Ezpected latency. As the number of modules is increased, the file is opened
while the modules are synchronising, and both plots more closely match the
Ezpected plot. For larger numbers of modules, the plots diverge to a much
greater degree. Here, the additional time (S) in the strong plot, is caused
by the increasing overhead from writing out the global checkpoint once all
modules have synchronised. During intermediate consistency checkpointing,
each module writes out its checkpoint immediately upon synchronising with
the NAM. However, for small checkpoint sizes, any saving from this is offset by
the time (I) required for additional locking, signalling, and scheduling between
the manager and each group.

It is interesting to note that for intermediate numbers of modules, both the
strong and intermediate consistency plots show that the time spent performing
the NF'S file open operation does not contribute to the overall latency. This is
because the modules start to synchronise before the file is opened.

111

6.7.3 Measured DiSruption

90 T
80 - ,
70
Strong -o—
Intermediate -+ -
60 - —
é 50 .
o
E
= 40 -
30 -
20 —
+
10 R
a Lt
+‘* *
b oy g e ¥
0 U ol ot e bl At Al |
0 5 10 15 20 25

Number of Modules.

Figure 6.10: Disruption vs Number of Modules

The plot shown in Figure 6.10 gives the average disruption experienced by each
module during the checkpointing of 20 modules.

The results show that the disruption experienced by modules during check-
- pointing is reduced when using intermediate rather than strong consistency.
For strong consistency, a module is disrupted from the time that it synchro-
nises until all other modules in the checkpointing group have synchronised. For
intermediate consistency, a module continues execution once it has synchronised
with the NAM. Where there are small numbers of modules, each module is dis-
rupted only for the time taken for the NAM to respond to the module’s signal,
write out the checkpoint, and release the module. As the number of modules
increases, there is a greater chance of a module synchronising while the NAM
is in the process of dealing with another. This would result in an additional
delay to the newly synchronising module. As expected, the intermediate plot
appears flat until high numbers of modules are reached.

112

- - — T/

90 I T T T 1 1 T 1 T

Strong -o—
. Intermediate -+ -

70

50

Time (ms).

40 |

30

20

10 -

+*

1
0 2 4 6 8 10 12 14 16 18 20
Number of Groups.

Figure 6.11: Disruption vs Groupings of 20 Modules

Figure 6.11 shows how the ability to group strongly checkpointing modules
enables an application to minimise the disruption experienced by each mod-
ule. The plot shows the disruption for various groupings of 20 checkpointing
modules. When the number of strongly consistent groups equals the number of
modules, the algorithm performs as for an intermediate consistent grouping.

113

6.7.4 Larger Checkpoints

600 T T T T T T T T+ T

Strong -o—
Intermediate -+ -

550

500

450

400

Time (ms).

350

300

250

200 L 1 1] I 1 1 1]
0 285 535 785 1035 1285 163.56 1785 203.5 2235 253.5

Total Checkpoint Size (Kbytes).

Figure 6.12: Latency vs Checkpoint Size

Finally, the experiment was modified to evaluate the increase in latencies as
checkpoint sizes were increased. Each module was configured to add extra
data to its nominal checkpoint of 179 bytes, the extra data varying in steps
of 256 bytes from 0 to 12.5 Kbytes. Figure 6.12 shows latency plotted for 20
modules in the strong and intermediate cases against the size of the total check-
point produced by all 20 modules. These results show that the implementation
does not diverge significantly from the Ezpected plot (208ms) until the size of
the checkpoint reaches about 73Kbytes. After this point, the latency becomes
dominated by the time required to write out the checkpoints using NFS. The la-
tencies then appear to increase significantly as the checkpoint size is increased
through steps of 73Kbytes. This is probably a scheduling artifact, since the
algorithm used by NFS batches small requests up to 8 Kbytes.

114

6.8 Conclusions

During the modification of a number of existing applications to use Notus, it
was found that traded handoff support was easily accommodated. The required
functionality was generally already contained within the application, for exam-
ple to handle network errors, and it was usually only necessary to encapsulate
the functions in an interface.

For application migration, programmer assistance was required to identify
the state for transfer. It is likely that this task would have been eased had the
applications been originally written using Notus modules, particularly because
of the explicit state in module interfaces and the requirement for no global
variables. However, all the applications considered in this chapter were well
structured and amenable to modification. The general steps which should be
taken to adapt the applications for migration are as follows.

e The application is compiled with a NAM and NLE added which will cor-
rectly initialise the Manager during application startup. The application’s
command line arguments must be processed to determine whether the ap-
plication is a target for migration and if so, the NAM informed. At this
point it is important to ensure that the application is able to coexist with
the Notus implementation environment, in particular the trader and RPC
service.

e The structure of the application is examined for points at which migration
may take place. At these points, there should be no outstanding transac-
tions and few partial calculations in progress. For example, in the case of
the video player, it would have been inappropriate to attempt migration
during the decoding of a video frame.

e Once migration points have been identified, function calls are traced to
these points, local function state which requires transfer identified, and
NLE annotations added.

e The application’s global state which must be transferred is identified and
described using Middl. In general, attempts should be made to determine
the minimal amount of state to be transferred. Much state, such as that
associated with the user interface, for example, can be recreated at the
target.

e Finally, it must be ensured that all the established bindings use either the
default traded handoff or directly respond to traded handoff requests.

For the applications which were adapted, there was no requirement for a

115

deep understanding of the application’s internal structure or for extensive mod-
ifications. It was noticed in the case of the news reader, that migration through
application modifications at a high level of abstraction resulted in large amounts
of state being transferred and hence, a significant disruption during migration.
In the case of the video player, migration considerations at a high level of ab-
straction resulted in inconsistencies in the video stream, but reduced the state
required for transfer during migration.

There appear to be two trade-offs between migration at different levels of
abstraction: first, if the behaviour of the application is approximated at high
levels of abstraction, inconsistencies after migration may result, but the amount
of state requiring transfer can be reduced; second, without approximating the
application’s behaviour, migration considerations at a lower level of abstraction
also reduces the amount of state required for transfer, since the state is specified
at a fine granularity. However, this requires a greater understanding of the
application and more effort in its modification. It also appears that at lower
and lower levels, the potential reduction in state which is transferred does not
outweigh the effort required to achieve that reduction.

It was also found that care should be taken in the selection of the appro-
priate checkpoint consistency options. The strong and intermediate checkpoint
consistency options are suitable for larger checkpoint sizes, and give applica-
tions direct access to the checkpoint stream between the source and target. The
synchronisation required to form a consistent checkpoint means that applica-
tions which consist of many active modules are likely to experience considerable
disruption, especially if some of the modules are blocked for other reasons. Ap-
plications which use the weak consistency option maintain a small, continually
available checkpoint. This reduces the disruption to the application, provided
that the application is able to tolerate the inconsistencies caused by the transfer
of checkpoint state which is not current.

The video player application was suited to the weak consistency option,
since its checkpoint size was small and it was required to minimise the disrup-
tion experienced during migration. Also the application was tolerant to slight
inconsistencies in the video stream. Conversely, the news reader and shell ap-
plications are both more suited to the strong consistency option, since their
checkpoint sizes are larger and access to the checkpoint stream allows use to be
made of the application’s existing state saving mechanisms.

116

In summary, this chapter has evaluated a suite of applications using the
Notus implementation. The results show that it is possible to migrate interac-
tive applications in a heterogeneous manner and with little disruption. Traded
handoffs are easily accommodated by existing applications and impose little
disruption on the end user.

117

118

Chapter 7

Related Work

This chapter compares other work which is related to the Notus architecture.
Section 7.1 describes work providing support for handoffs in a distributed pro-
gramming environment, which is similar to the default traded handoff behaviour
(described in Section 4.5.4) of the Notus Remote Procedure Call (RPC) service.
Section 7.2 describes other work which is relevant or has addressed some of the
requirements of application migration in a mobile environment.

7.1 Mobile RPC

The M-RPC [Bakre95b] architecture is an extension to the Sun RPC ser-
vice, which supports binding re-establishment for mobile client applications in
a manner similar to the Notus traded handoff. Agents on the static network
perform an indirection of RPC calls from a walkstation. These agents collab-
orate, performing mobile handoffs by transparently creating new bindings to
servers. This transparency removes the requirement, of the Notus traded hand-
off protocol, to synchronise the handoff process with the application’s threads.
However, all servers which use the M-RPC architecture must be stateless.

It was suggested that future extensions of the M-RPC architecture would
support stateful servers. If this were the case, synchronisation with either the
client or the server would have to be introduced. The M-RPC implementation
described, uses a variant of the Sun RPC portmapper service for mapping service
names onto offers. This naming scheme does not allow for flexibility in choosing
a service and there is no equivalent to the trading concept.

The Notus architecture provides support for applications which use both
stateless and stateful servers, and offers the application various levels of in-

119

volvement in the handoff process. Stateless servers are supported in Notus
through the use of the default handoff subcontracts. These provide a number
of different handoff semantics, without requiring application modifications. No-
tus RPC invocations are not indirected through user-level agents on the static
network, thus avoiding major performance bottlenecks from which the M-RPC
scheme is likely to suffer.

7.2 Application Migration

Work by Ashton has involved modifying a public domain shell [Joy80] in order
to explicitly identify state for migration [Ashton96]. This was motivated by a
requirement for load balancing in a cluster of homogeneous computers. During
migration, an instance of the shell is created on the target host, with a pipe
arranged for communication with the source. Various ad-hoc methods (includ-
ing files) are used to transfer state between the two instances, until the target
is able to take over execution from the source. It was observed that much of
the work in modifying the application was spent in ensuring the robustness of
the mechanism used for transferring state and restoring the target application.
Section 6.6 describes how this work was modified to use the Notus implemen-
tation, enabling the shell to be migrated between heterogeneous computers. It
was also noticed that by using the Notus implementation, fewer modifications
were required to be made to the source code of the original shell.

The Emerald distributed programming language has been extended so that
objects can be migrated between heterogeneous computers [Steensgaard95]. It
uses a mechanism for marshalling thread and object state in a manner similar
to Notus, but with no requirement for a separate Interface Definition Language
(IDL) description of state. Instead, the Emerald compiler generates templates,
describing objects and activation records in detail. The compiler also enumer-
ates points in the code where migration can take place and code is generated,
such that restarting an object at the same enumerated instruction on different
architectures will always be valid. Between these points, the different instruc-
tion formats and code optimisations used for different architectures can make
direct migration difficult. It was proposed that for migration between these
points, code patches be generated on the fly to bridge between the different
architectures. However, this is likely to be difficult to implement efficiently
over a large number of architectures. Emerald programs require a close cou-
pling with a large run-time system, and have an unusual model of computation
which is not likely to be adopted in the near future by walkstation applications.
Probably the greatest limitation of Emerald is the lack of popularity of the
language.

120

Tui [Smith96] is a heterogeneous process migration scheme. Programs are
written in a type safe subset of ANSI C and compiled using a specially modified
compiler. When migration is requested, the memory image of the running
process is scanned for all data values. The type of these is determined from tags
introduced by the compiler and they are marshalled and stored on disc. On the
target host, a new process is created and the global variables, heap, and stack
are recreated from the marshalled state and execution is restored at the correct
point. As with Emerald, the compiler enumerates points at which migration can
take place, inserting preemption points at the beginning of loops and at the end
of each compound statement. During optimisation, code must not be moved
across these points. Tui does not address the reconnection of communication
links to migrated applications and has only been demonstrated with very simple
applications. Since all the state of the running application is marshalled and
transferred, migration using Tui or Emerald results large disruptions to the
user. The use of a specially modified compiler introduces a requirement for the
compiler’s availability on all target architectures. In contrast, Notus requires
the programmer to specify suitable points in an application where migration
can take place and also to nominate application state for transfer. The Notus
implementation also ensures that an application’s connections are rebuilt after
migration and requires no compiler modifications.

Empire [Bates96] is an example of the use of migration techniques for
interpreted languages. Modifications have been made to a Scheme [Steele75]
interpreter, allowing the state of a running application to be captured and
migrated. The implementation has been used as part of a framework for co-
operative working in a ubiquitous computing environment. As workers move,
objects dependent on the user’s physical location are migrated. The authors
report that due to performance limitations, interpreted objects were only used
for management functions and compiled stateless objects were used for tasks
such as media processing, which required better performance. During. migra-
tion, these stateless objects were restarted on the target host and reconnected
with their media streams. Notus does not migrate all the state of an application
and has been shown to be suitable for the migration of compiled modules which
perform video processing.

Another example of the migration of user interface applications has been
made using the Obliq [Cardelli94] interpreted scripting language [Bharat96].
During migration, the application’s user interface is traversed to identify, mar-
shall, and transfer to a target host all mutable state using the Obliq network
copy facilities. At the target, the unmarshalled representation is used to recre-
ate a user interface using the local user interface toolkit (which potentially can
be different to the source). The implementation uses a heavily modified Obliq
run-time to achieve user interface migration and does not yet consider either

121

the reconnection of an application’s network connections after migration, or
applications for which the migration of thread state is important. The paper
reports migration times for “small to medium” sized applications of 5 to 45
seconds over a, local area network.

Recently interest has been revived for compiling applications into a ma-
chine independent format. This ensures the portability of one distribution of
the application over different architectures. ANDF [Macrakis93, Toft94] de-
fines a low level, machine independent program representation. Programs are

" statically specialised for specific architectures by installers. Java [Sun95] is an

object oriented programming language which compiles to a portable byte code
format. This is then interpreted or compiled at load time. It is intended that
applications written using Java are available dynamically over the network and
attempts have been made to reduce the security risks caused by their execution.
In both these cases, because of the intermediate representation and subsequent
translation into a native format, it is possible to use a single distribution of an
application over heterogeneous architectures.

When applications are compiled in the current Notus implementation envi-
ronment, they are targeted at different architectures. Prior to migration, it is
necessary to ensure that an appropriate executable version of the application is
available on the target computer (described in Section 4.6.2). The use of a sin-
gle distribution format would have removed the requirement for the existence
of a repository for executables targeted at different architectures. The Notus
architecture places no requirements on any particular compiler or execution
format and so does not preclude the adoption of a single distribution format
for the implementation environment.

It should also be noted that these schemes, while providing for a single code
distribution over heterogeneous architectures, do not permit the interruption of
a running application and its migration to another host. There has been great
interest in Java, and it is probably only a matter of time before a migration ser-
vice appears. However, the security implications of migrating Java applications
should be seriously considered.

Approaches which enable checkpoint consistency for distributed applica-
tions were discussed in Section 4.7. However, there has been some recent work
[Acharya94] which is relevant to the checkpointing of distributed applications
in a mobile environment. This work is based upon the assumptions that a
walkstation is not suitable for the long term storage of checkpoints due to its
physical vulnerability and that disconnection should not prevent the recording
of the global state of an application. The paper presents a roll-back algorithm,
which is similar to those described in Section 4.7.1. Essentially the scheme
requires an application’s modules to leave a trail of checkpoints on the static

122

network which may later be resolved to form a consistent checkpoint. There are
two potential problems with this scheme. First, checkpoints are left at many
different locations on the static network, requiring a significant effort when at-
tempting to determine those which are consistent. Second, a walkstation is
required to checkpoint before disconnection. This makes the voluntary, short
term disconnection of a walkstation an expensive option.

In general, roll-back algorithms defer the work of creating a consistent check-
point until the time at which it is required, usually when recovering from an
application’s failure. In the case of application migration, the formation of a
consistent checkpoint must take place at the time of migration, so no defer-
ment is possible. This, and other roll-back algorithms, are unsuitable for the
Notus architecture because the formation of a consistent checkpoint must take
place at the time of migration, and because all roll-back algorithms potentially
restart applications from state which is very old, thereby causing much work to
be repeated.

123

7.3 Summary

This chapter has described:

e the M-RPC mechanism for re-establishing RPC bindings after a mobile
handoff, but which imposes undesirable restrictions on applications and
is thought likely to suffer from performance problems,

e an ad-hoc solution for application migration which would have benefited
from the support of a general suite of migration facilities, and

e a number of application migration schemes which have used compiler
or interpreter modifications to automatically marshall an application’s
state for migration. Without programmer hints for both the state to be
transferred and the most appropriate execution points for migration, all
these schemes tend to migrate more state than is necessary.

None of the work reviewed has offered the suite of facilities which are pro-
vided by Notus, namely:

¢ traded handoffs with various levels of application involvement, supporting
binding re-establishment for both mobile clients and servers,

e programmer support for low-latency application migration between het-
erogeneous platforms, without compiler or operating system modifica-
tions,

o facilities which ensure consistency between an application’s modules dur-
ing its migration, and

e the rebuilding of an application’s connections after migration.

124

Chapter 8

Conclusion

8.1 Further Work

Time and resource constraints during the research of Notus have meant that
there remains much scope for further work in this field. The following section
describes some possible extensions to the current implementation and future
directions for the Notus architecture.

8.1.1 Extensions to the Current Notus Implementation

Wireless Network Evaluation: The implementation environment did not
contain a wireless network, and consequently the parts of the Notus architec-
ture which interface with a wireless network have been simulated. Further work
could concentrate on evaluating the architecture over wireless network proto-
cols, so as to consider the issues for traded handoffs between different network
types or over large distances. For application migration, other tradeoffs might
be considered, such as increased bandwidth usage against power consumption.

Further Application Support: Future work could include producing a
complete suite of mobile applications such as: electronic mail, World Wide Web
(WWW) browsing, and multi-media broadcasting. It should be noted that for
each of these applications there are different considerations to be made when
operating in a mobile environment.

For example, if a WWW client browser [Berners-Lee94] were running on a
walkstation which moves into a Wireless LAN (WLAN) environment, migration
of the browser from the walkstation to a compute server might be useful. In
this case, it would be appropriate to distribute the application between the

125

walkstation and compute server, since the transfer to the compute server of
data cached at the client is not likely to be productive.

Traded handoffs might also be considered for the WWW browser. Given the
relatively static nature and large distribution of WWW pages, their caching has
been found to be useful in reducing the otherwise large numbers of long distance
requests. Current browsers can be configured with the fixed address of a prozy
cache. However, use of a single proxy cache can become counter productive if a
mobile browser is expected to be carried over large distances. On performing a
traded handoff, a browser can locate and use the most appropriate proxy. An
exported offer from a proxy might contain other properties, allowing a particular
proxy to specialise in caching pages relating to a particular subject.

Extensions to Marshalling: The Notus implementation is restricted in
that only data types described using an Interface Definition Language (IDL)
can be automatically marshalled during migration. For other data types it
is necessary for the application to provide marshalling code using base types
defined in the IDL. Further work could extend the marshalling facilities of
Notus, integrating with existing packages which allow marshalling of complex
and self referential data types (using techniques described in [Herlihy82]). It
might be the case that these aims require a closer coupling with the compiler
than is defined in the current architecture.

8.1.2 Extensions to the Notus Architecture

Adaptive Architectures: These were described in Chapter 3 and enable ap-
plications to adapt to changes in their environment. One such adaptation is
an application changing its data representations on the basis of long term vari-
ations in bandwidth. For example, an application presenting news dispatches
might move from a video to a text-based representation. Other work such as
[Hyden94] has demonstrated architectures which enable applications to adapt
to changes in their allocated Quality of Service (QoS) over short time-scales;
for example a video decoder application which adapts to QoS fluctuations on a
per-frame basis. The Notus architecture can be extended so that applications
are informed of changes over a greater range of conditions. This might involve
an integration with the techniques used by other mobile aware architectures.

However, it remains an unresolved issue as to how an application is able to
effectively adapt to new resources after migration. In such circumstances, it
is likely that the application would be required to make use of services with a
different QoS, possibly requiring the use of a different set of algorithms at the
target from those at the source.

126

Extensions to the Traded Handoff Protocol: The traded handoff pro-
tocol enables the establishment of new bindings to servers to be performed in
the background. The application is disrupted if client state corresponding to a
session is transferred to a new server.

Further work might investigate how this state transfer can also be made
in the background. For example, the video player application described in
Section 6.4 could be made to predict where in the stream the new server should
continue to play out the video. This would enable the client, in the background,
to mount a new server, stashing a connection to the video stream endpoint. The
client application might then use this stashed stream endpoint during the traded
" handoff, removing the requirement for any communication with the server while
the client is disrupted.

Optimisations of this nature would also be useful where traded handoffs
are interworked with application migration (see Section 4.6.4). Another useful
optimisation might be that prior to migration, the source application sends to
the target the properties of the network services which it requires. The target
application could then use this information to establish and stash bindings to
servers which match these properties, reducing the time required to restore the
migrating application at the target.

All these optimisations require cooperation with the application. In the for-
mer case, session level state can never be transferred without some application
involvement, and inconsistencies in the predicted state must be reconciled. In
the latter case, the target cannot choose to establish a binding with one offer
from a list of imported offers without assistance from the application.

Inter-Server Handoffs: It was mentioned in Section 4.5.3 that where there
are very large amounts of session level state, a client might wish to reconnect
with the original endpoint rather than suffer a disruption caused while state is
being transferred from the client to the new server. In these circumstances, it
might also be appropriate for the client to locate a new server and then request
that the servers cooperate with each other to transfer the state.

The above scenario is illustrated in Figure 8.1, with a client first communi-
cating with server A. During a traded handoff, the client first opens a connec-
tion (i) with a new server B and requests (ii) that B retrieve the client’s state
from A. Given an extension to the Handoff Interface (HDI) which enables one
server to Retrieve the state from another, server B is then able to request (iii)
that the client’s state be transferred from A over the static network.

Such inter-server handoffs would benefit from interworking with the Notus
application migration facilities when creating a channel between the two servers,

127

(i) Client opens connection with B.
(ii) Client requests session transfer.

(iif) B requests session state from A.

/

/

/
7 ‘Walkstation Movement.

Figure 8.1: Inter-Server Handoft

the marshalling of a client’s state, and the transfer and restoration of the client’s
state at the target. Authentication between servers must be ensured, and the
point at which there is a performance gain to be had from using this mechanism
(compared to a client-server handoff) investigated.

It would be expected that for small amounts of state, the time spent au-
thenticating and transferring state between the servers would be greater than
simply transferring the state from the client to the new server. Client-server
handoffs are facilitated by the fact that existing applications are structured in
such a manner that an HDI implementation is often easy to produce.

8.2 Summary

This dissertation makes two direct contributions to the field of mobile com-
puting: first, the use of application migration to exploit available compute
resources; second, the introduction of the traded handoff concept, where ap-
plications are able to participate in the handoff process, thereby rebuilding
connections to the most appropriate services.

An implementation has been made of a new application migration service
which satisfies the requirements for application migration in a mobile environ-
ment, in that:

applications can be migrated between heterogeneous platforms,

there is little disruption experienced by applications during migration,

applications are written using a standard compiled language,

and applications running normally suffer little overhead.

128

Additionally, the implementation required no compiler modifications and
provided facilities for the consistent migration of multi-threaded applications.
The migration service has been demonstrated in the local area using three pre-
existing applications which are representative of those expected to be used by
walkstations. In each of the three cases, it was found that the application
had been originally designed using a modular approach, and neither a detailed
understanding of the application’s internal structure or extensive modifications
to the application were required when adding the capability for migration.

By involving the application programmer in the process of adding a migra-
tion capability to an application, the following issues can be addressed:

policies for migration under different circumstances,

the favoured distribution of the functional modules of an application be-
tween a walkstation and compute server, '

the consistency requirements between different modules, and

the minimal state required for transfer during migration.

A system which transparently migrates applications, without programmer
involvement, cannot fully address these issues. Future work might be directed
towards the development of programming methodologies and tools which as-
sist the application programmer in developing migration aware applications.
For example, a simple tool might assist a programmer in choosing appropriate
execution points and nominating application state for migration. It would be
desirable that such tools are integrated into the program development environ-
ment.

A Traded Handoff requires coordination between the wireless network, a
federated trader environment, and the walkstation’s applications. An imple-
mentation has been made which enables traded handoffs to be evaluated in the
local area and has challenged the currently held belief that the provision of
mobile handoffs is purely a function of the underlying wireless network.

Applications participating in traded handoffs are required to implement a
standard interface. It was noticed that an implementation of the interface re-
quires functionality which is already an important feature of many applications
in a distributed programming environment (to recover from network errors).
For legacy code or applications which wish to remain unaware of mobility, an
implementation of an Remote Procedure Call (RPC) service has been made
which provides default traded handoff semantics.

129

It was found necessary for the trader to consider of the QoS of different
routes so as to allow an application to choose between offers of service in a
mobile environment. These QoS considerations were implemented through an
extension to a standard trader and are also relevant to trading in a general
distributed programming environment.

This dissertation has argued that mobility awareness and the support from
appropriate tools, can enable walkstation applications to better adapt to a
changing mobile environment, particularly when the walkstation is carried be-
tween different network types or over great distances.

130

Bibliography

[Accetta86]

[Acharya94]

[Adams93]

[Agrawal88]

[Alonso90]

[ANSA92]

[ANSA93]

[Ashton96]

M Accetta, R Baron, W Bolosky, D Golub, R Rashid,
A Tevanian, and M Young. Mach: A New Foundation for
UNIX Development. In Proceedings of USENIX Summer
Conference, pages 93-112, 1986. (pp15, 32)

A Acharya and B Badrinath. Checkpointing Distributed
Applications on Mobile Computers. In 3rd Intl. Conf. on

Parallel and Distributed Information Systems, September
1994. (p122)

N Adams, R Gold, B Schilt, M Tso, and R Want. An
Infrared Network for Mobile Computers. In Symposium on
Mobile and Location-independent Computing, pages 41—
52. USENIX, August 1993. (p3)

R Agrawal and H Jagadish. Partitioning Techniques for
Large-Grained Parallelism. IEEE Transactions on Com-
puters, 37(12):1627-1634, December 1988. (p30)

R Alonso, B Barbara, and H Garcia-Molina. Data Caching
Issues in an Information Retrieval System. ACM Trans-

actions on Database Systems, pages 359-384, September
1990. (p45)

Architecture Projects Management Limited, Poseidon
House, Castle Park, Cambridge, CB3 ORD, UK. An
Overview of ANSAware 4.0, March 1992. Document
RM.099.00. (pp13, 17, 28, 44, 76)

Architecture Projects Management Limited, Poseidon
House, Castle Park, Cambridge, CB3 ORD, UK. ANSAware
4.0 DPL Reference Manual, 1993. Document TR.032.00.
(p77)

P Ashton. Migrating Tcsh. Personal Communication, 1996.
University of Canterbury, New Zealand. (pp 105, 120)

131

[Ayanoglu95]

[Aziz94]

[Bach86]

[Baker96]

[Bakre94]

[Bakre95a]

[Bakre95b]

[Balakrishnan95a]

[Balakrishnan95b]

[Balakrishnan96]

[Barak85]

E Ayanoglu, S Paul, T LaPorta, K Sabnani, and R Gitlin.
AIRMAIL: A Link-Layer Protocol for Wireless Networks.
ACM Wireless Networks, February 1995. (p24)

A Aziz. A Scalable and Efficient Intra Domain Tunnelling
Mobile IP Scheme. ACM Computer Communication Re-
view, 24(1), 1994. (p21)

M Bach. The Design of the UNIX Operating System.
Prentice-Hall, Englewood Cliffs, N.J., 1986. (p15)

M Baker, X Zhou, S Cheshire, and J Stone. Supporting
Mobility in MosquitoNet. In Technical Conference, pages
127-139. USENIX, January 1996. (pp22, 40)

A Bakre and B Badrinath. I-TCP: Indirect TCP for Mobile
Hosts. Technical Report TR-314, Rutgers, August 1994.

(pp4, 23)

A Bakre and B Badrinath. Handoff and System Support for
Indirect TCP/IP. In Second Symposium on Mobile and
Location-independent Computing. USENIX, April 1995.

(p23)

A Bakre and B Badrinath. M-RPC: A Remote Procedure
Call Service for Mobile Clients. In Proceedings of Mobi-
com, Berkeley, 1995. IEEE. (p119)

H Balakrishnan, S Seshan, E Amir, and R Katz. Improving
TCP/IP Performance over Wireless Networks. In Proceed-
ings of Mobicom, Berkeley, 1995. IEEE. (p23)

H Balakrishnan, S Seshan, and R Katz. Improving Reli-
able Transport and Handoff Performance in Cellular Wire-
less Networks. ACM Wireless Networks, December 1995.

(p24)

H Balakrishnan, V Padmanabhan, S Seshan, and R Katz.
A Comparison of Mechanisms for Improving TCP Perfor-
mance over Wireless Links. ACM Computer Communica-
tion Review, 26(4):256-269, October 1996. (p24)

A Barak and A Shilow. A Distributed Load Balancing Al-
gorithm for a Multicomputer. Software Practice and Expe-
rience, 15(9):901-913, September 1985. (p31)

132

[Bates96]

[Beguelin94]

[Beitz94]

J Bates, D Halls, and J Bacon. A Framework to Support
Mobile Users of Multimedia Applications. ACM Mobile
Networks and Nomadic Applications, 1996. (p121)

A Beguelin, E Seligman, and M Starkey. Dome: A Dis-
tributed Object Migration Environment. Technical Re-
port CMU-CS-94-153, Carnegie Mellon University, 1994.
(p33)

A Beitz and M Bearman. An ODP Trading Service for
DCE. In Proceedings of the First International Workshop
on Services in Distributed and Networked environments
(SDNE), pages 42-49, Prague, Czech Republic, June 1994.

- IEEE Computer Society Press. (p76)

[Benmohammed94]

[Berners-Lee94]

[Bershad89]

[Bershad95]

[Bharat96]

[Birrell82]

[Birrell84]

K Benmohammed and P Dew. A Periodic Symmetrically
initiated Load Balancing Algorithm for Distributed Sys-
tems. ACM Operating Systems Review, 28(1):66-77, Jan-
uary 1994. (p31)

T Berners-Lee, R Cailliau, H Nielsen, and A Secret. The
World Wide Web. Communications of the ACM, 37(8):76—
82, August 1994. (p125)

B Bershad, T Anderson, E Lazowska, and H Levy.
Lightweight Remote Procedure Call. ACM Operating Sys-
tems Review, 23(5):102-113, 1989. (p16)

B Bershad, S Savage, P Pardyak, E Sirer, M Fiuczynski,
D Becker, C Chambers, and S Eggers. Extensibility, Safety
and Performance in the SPIN Operating System. ACM
Operating Systems Review, 29(5):267-284, December 1995.
(p68)

K Bharat and L Cardelli. Migratory Applications. Tech-
nical Report Research Report 138, Digital SRC, February
1996. (p121)

A Birrell, R Needham, and M Schroeder. Grapevine: An
FEzxercise in Distributed Computing. Communications of the
ACM, 25(4), April 1982. (p12)

A Birrell and B Nelson. Implementing RPC. ACM Transac-
tions on Computer Systems, 2(1), February 1984. (pp12,
71)

133

[Birrell93]

[Biswas94]

[Black88]

[Black95]

[Brown95)

[Cardelli88]

[Cardelli94]

[Casas95]

[Chandy85]

[Cheshire96]

[Comer94]

A Birrell, G Nelson, S Owicki, and T Wobber. Network
Objects. Proceedings of the 14th ACM SIGOPS Sympo-
sium on Operating Systems Principles, Operating Systems
Review, 27(5):217-230, December 1993. (p15)

S Biswas. Handling Real Time Traffic in Mobile Networks.
PhD thesis, University of Cambridge Computer Labora-
tory, 1994. Technical Report 351. (p26)

A Black, N Hutchinson, E Jul, H Levy, and L. Carter. Dis-
tribution and Abstract Types in Emerald. IEEE Transac-
tions on Software Engineering, 13(1):65-76, January 1988.

(p13)

R Black. Ezplicit Network Scheduling. PhD thesis, Univer-
sity of Cambridge Computer Laboratory, 1995. (p17)

P Brown. The FElectronic Post-it Note: A Model for Mobile
Computing Applications. In Proceedings of Mobile Com-

puting and its Applications, Savoy Place, London WC2R
OBL, UK, November 1995. IEE. (p29)

L Cardelli, J Donahue, L, Glassman, M Jordan, B Kalsow,
and G Nelson. Modula-3 Report. Technical Report Techni-
cal Report no. 31, Digital SRC, 1988. (pp13, 68)

L Cardelli. Oblig: A Language with Distributed Scope.
Technical Report Research Report 122, Digital SRC, 1994.
(p121)

J Casas, D Clark, R Komuru, S Olto, R Prouty, and
J Walpole. MPVM: A Migration Transparent Version of
PVM. Technical Report CSE-95-002, Oregon Institute of
Science and Technology, 1995. (p34)

K Chandy and L Lamport. Distributed Snapshots: Deter-
mianing Global States of Distributed Systems. ACM Trans-
actions on Computer Systems, 3(1):63—75, February 1985.

(p56)

S Cheshire and M Baker. Internet Mobility 4z4. ACM
Computer Communication Review, 26(4):318-329, Octo-
ber 1996. (pp22, 23)

D Comer and V Russo. Using ATM for a Campus-Scale
Wireless Internet. In Proceedings of the IEEE Workshop

134

[Condon95]

[Davies94a]

[Davies94b]

[Deering95]

[Demers94]

[Dijkstra78]

[Douglis91a]

[Douglis91b]

[Eager86]

on Mobile Computing Systems and Applications, Dream
Inn, Santa Cruz, CA, U.S.A, December 1994. (p4)

J Condon, T Duff, M Jukl, and C Kalmanek. Rednet: A
Wireless ATM Local Area Network Using Infra Red Links.
In Proceedings of Mobicom, Berkeley, 1995. IEEE. (pp3,
24, 25)

N Davies. An Object Management System to Support Dis-
tributed Multimedia Design Environments. PhD thesis,
Lancaster University, February 1994. (p33)

N Davies, S Pink, and S Blair. Services to Support Dis-
tributed Applications in a Mobile Environment. In First In-
ternational Workshop on Services in Distributed Networked
Environments. IEEE, 1994. (p28)

S Deering and R Hinden. Internet Protocol Version 6
(IPv6) Specification. RFC-1833, December 1995. (p22)

A Demers, K Petersen, M Spreitzer, D Terry, M Theimer,
and B Welch. The Bayou Architecture: Support for Data
Sharing among Mobile Users. In Proceedings of the IEEE
Workshop on Mobile Computing Systems and Applica-
tions, Dream Inn, Santa Cruz, CA, U.S.A, December 1994.
(p28)

E Dijkstra, L Lamport, A Martin, C Scholten, and
E Steftens. On the Fly Garbage Collection: An Egzercise
in Cooperation. Communications of the ACM, 21(11):966—
975, November 1978. (p59)

F Douglis and J Ousterhout. Tmnspa%ent Process Migra-
tion: Design Alternatives and the Sprite Implementation.
Software—Practice and Experience, 21(8):757-785, August
1991. (pp8, 32)

F Douglis, J Ousterhout, M Kaashoek, and A Tanenbaum.
A Comparison of Two Distributed Systems: Amoeba and
Sprite. Computing Systems, 4(4):353-384, 1991. (p31)

D Eager, E Lazowska, and J Zahorjan. Adaptive Load Shar-
ing in Homogeneous Distributed Systems. IEEE Transac-
tions on Software Engineering, 12(5):662—-675, may 1986.
(p31)

135

[Eager88]

[Eckhardt96]

[ETS95]
[Evers93|

[Evers94]

[Findlay96]

[Francis94]
[Fraser93]

[Friday96]

[Geist93]

[Goodman91]

D Eager, E Lazowska, and J Zahorjan. The Limited Per-
formance Benefits of Migrating Active Processes for Load
Sharing. In Conf. on Measurement and Modelling of Com-
puter Systems, pages 63-72, Santa Fe, NM (USA), May
1988. (p30)

D Eckhardt and P Steenkiste. Measurement and Analysis
of the Error Characteristics of an In-Building Wireless Net-
work. ACM Computer Communication Review, 26(4):243-
254, October 1996. (p4)

ETSI Radio Equipment and Systems. High Performance
Radio Local Area Network (HIPERLAN), functional spec-
ification version 1.1 (draft) edition, January 1995. (p3)

D Evers. Distributed Computing with Objects. PhD thesis,
University of Cambridge Computer Laboratory, September
1993. (pp13, 59)

D Evers. Implementing Modules in Nemesis. Pegasus Cam-
bridge Working Document 009, February 1994. (p17)

A Findlay. The Multi-Media Telephone: Directory Service
and Session Control for Multi-Media Communications. In
Proceedings of the Third International Workshop on Ser-
vices in Distributed and Networked environments (SDNE),
pages 169-173. IEEE Computer Society Press, June 1996.

(p40)

P Francis and R Govindan. Flezible Routing and Address-
ing for a Next Generation IP. ACM Computer Communi-
cation Review, 24(4):116-125, October 1994. (p22)

S Fraser. Early Erperiments with Asynchronous Time Di-
vision Networks. IEEE Network, 7(1):12-26, January 1993.

(p19)

A Friday. Extensions to ANSAware for advanced mobile ap-
plications. In Proc International Conference on Distributed
Platforms, Dresden, 1996. (pp13, 28)

A Geist, A Benguelin, J Dongarra, W Jiang, R Manchek,
and V Sunderam. PVM 3.0 Users Guide and Reference
Manual, February 1993. (p33)

D Goodman. Trends in Cellular and Cordless Communica-
tions. IEEE Communications Magazine, pages 32—40, June
1991. (p26)

136

[Hager93]

[Hamilton84]

[Hamilton93a]

[Hamilton93b]

[Harter93]

[Harter94]

[Hayton96]

[Herlihy82]

[Hopper78]

[Hyden94]

[Imielinski92]

R Hager, A Klemets, G Maguire, M Smith, and F Reichert.
MINT - A Mobile Internet Router. In Proceedings of IEEE
VTC, May 1993. (p3)

G Hamilton. A Remote Procedure Call System. PhD thesis,
University of Cambridge Computer Laboratory, December
1984. Technical Report 70. (p12)

G Hamilton and P Kougiouris. The Spring Nucleus: A
Microkernel for Objects. Technical Report 93-14, Sun Mi-
crosystems Laboratories, Inc., 2550 Garcia Avenue, Moun-
tain View, California 94043, April 1993. (pp13, 15, 68)

G Hamilton, M Powell, and J Mitchell. Subcontract: A
Flezible Base for Distributed Programming. Technical Re-
port 93-13, Sun Microsystems Laboratories, Inc., 2550 Gar-
cia Avenue, Mountain View, California 94043, April 1993.
(p16)

A Harter and F Bennett. Low Bandwidth Infra-Red Net-
works and Protocols for Mobile Communicating Devices.
Technical Report ORL Report no. 93-5, Olivetti Research
Limited, Cambridge, 1993. (p3) .

A Harter and A Hopper. A Distributed Location System
for the Active Office. Technical Report ORL Report no.
94-1, Olivetti Research Limited, Cambridge, 1994. (p3)

R Hayton and O Seidel. MSRPC3. Technical Report, Uni-
versity of Cambridge Computer Laboratory, 1996. An Ob-
ject Based RPC Package. (p44)

M Herlihy and B Liskov. A Value Transmission Method
for Abstract Data Types. ACM Transactions on Program-
ming Languages and Systems, 4(4):527-551, October 1982.
(p126)

A Hopper. Local Area Communication Networks. Technical
Report 7, University of Cambridge Computer Laboratory,
1978. (p19)

E Hyden. Operating System Support for Quality of Ser-
vice. PhD thesis, University of Cambridge Computer Lab-
oratory, January 1994. (pp17, 126)

T Imielihski and B Badrinath. Mobile Wireless Computing:
Solutions and Challenges in Data Management. Technical

137

[Ioannidis91]

1SO88]

[1SO91]

[1S094]

[1SO95a]

[1SO95b)

[Jacobson88]

[Johnson94]

[Joy80]

[Keeton93]

[Kuo74]

Report CUCS-007-92, Department of Computer Science,
Rutgers University, New Brunswick, New Jersey, 1992.
(pp 1, 4)

J Ioannidis, D Duchamp, and G Maguire. IP-based Proto-
cols for Mobile Internetworking. ACM Computer Commu-
nication Review, 21(4):235-245, September 1991. (pp4,
20, 41)

ISO/CCITT. Recommendation X.500: The Directory -
Overview of Concepts, Models and Services, 1988. (p40)

ISO/IEC. Coded Representation of Picture, Audio
and Multimedia/Hypermedia Information, December 1991.
Committee Draft ISO/IEC CD 11172. (p101)

ISO/IEC‘. ODP Reference Model: Trading Function, Oc-
tober 1994. Committee Draft ISO/IEC/JTC1/SC21 N807.
(pp 14, 76)

ISO/IEC. Information technology — Abstract Syntaz No-
tation One (ASN.1): Specification of basic notation, 1995.
ISO/IEC 8824-1:1995. (p12)

ISO/TEC. ODP Reference Model: Overview, January
1995. Draft Recommendation X.902, International Stan-
dard 10746-1. (pp 13, 68)

V Jacobson. Congestion Awoidance and Control. ACM
Computer Communication Review, 18(4), August 1988.
(p23)

D Johnson. Scalable and Robust Internetwork Routing for
Mobile Hosts. In Proceedings of the 14th International Con-
ference on Distributed Computing Systems. IEEE, June
1994. (pp22, 41)

W Joy. Tesh V6.0. Distributed from: ftp.deshaw.com,
1980. (pp105, 120)

K Keeton, B Mah, S Seshan, R Katz, and D Ferrari. Provid-
ing Connection Oriented Network Services to Mobile Hosts.
In Symposium on Mobile and Location-independent Com-
puting. USENIX, August 1993. (p25)

F Kuo. The Aloha System. ACM Computer Communica-
tion Review, 4(1), January 1974. (p3)

138

[Lambley84]

[Lauer78|

[Leslie94]

[Liedtke93]

[Linn94]

[Liskov85]

[Litzkow92]

[Macrakis93|

[McAuley89]

[Milojicic93]

[Montenegro95]

R Lambley. Developments in Cellular Radio. Electronics
and Wireless World, June 1984. (p26)

H Lauer and R Needham. On the Duality of Operating
System Structures. Technical Report, Xerox Palo Alto Re-
search Centre, March 1978. (p11)

I Leslie, R Black, and D McAuley. Ezperiences of Building
an ATM Switch for the Local Area. ACM Computer Com-
munication Review, 24(4):158-167, October 1994. (p26)

J Liedtke. Improving IPC by Kernel Design. ACM Op-
erating Systems Review, 27(5):175-187, December 1993.
(p16)

J Linn. Generic Interface to Security Services. Computer
Communications, 17(7):483-491, July 1994. (p62)

B Liskov, M Herlihy, and L Gilbert. Limitations of
Synchronous Communication with Static Process Structure
in Languages for Distributed Computing. Technical Re-
port CMU-CS-85-168, Carnegie-Mellon University, 1985.
(p11)

M Litzkow and M Solomon. Supporting Checkpointing and
Process Migration outside the UNIX kernel. In Proceedings
of the Winter USENIX Conference, pages 283-290, January
1992. (pp8, 31)

S Macrakis. Delivering Applications to Multiple Platforms
using ANDF. Technical Report, Open Software Founda-
tion, 1993. (p122)

D McAuley. Protocol Design for High Speed Networks.
PhD thesis, University of Cambridge Computer Labora-
tory, September 1989. Technical Report No. 186. (p69) .

D Milojicic, W Zint, A Dangel, and P Giese. Task Mi-
gration on top of the Mach Microkernel. In Proceedings of
the 3rd USENIX Mach Symposium, Santa Fe, U.S.A, April
1993. (pp8, 32)

G Montenegro and S Drach. System Isolation and Network
Fast Fail Capability in Solaris. In Second Symposium on
Mobile and Location-independent Computing, pages 67—
78. USENIX, April 1995. (p28)

139

[Mullender92]

[Needham?78]

[Needham82]

[Noble95]

[Olsen92]

[OMGY5]

[OSF91]

[Otway95]

[Perkins96]

[Pope96]

[Porter94]

S Mullender, I Leslie, and D McAuley. Pegasus Project
Description. Technical Report Memoranda Informatica
92-75, University of Twente Faculty of Computer Science,
September 1992. (p 16)

R Needham and M Schroeder. Using Encryption for Au-
thentication in Large Networks of Computers. Communica-
tions of the ACM, 21(12):993-999, December 1978. (p61)

R Needham and A Herbert. The Cambridge Distributed

Computing System. International Computer Science Series.

Addison Wesley, 1982. (ppll, 12)

B Noble, M Price, and M Satyanarayanan. A Program-
ming Interface for Application Aware Adaptation in Mobile
Computing. In 2nd Symposium on Mobile and Location In-
dependent Computing, Ann Arbor, Michigan, April 1995.
USENIX. (p28)

M Olsen. A Persistent Object Infrastructure for Hetero-
geneous Distributed Systems. In Proceedings of 2nd In-
ternational Workshop on Object Orientation in Operating
Systems, pages 49-55. IEEE, September 1992. (p 33)

OMG (Object Management Group). Common Object Re-
quest Broker: Architecture and Specification 2.0, July 1995.
Technical Document PTC/96-03-04. (pp 13, 15, 16, 44, 68)

OSF (Open Software Foundation). Distributed Computing
Environment: An Overview, April 1991. (pp 13, 68)

D Otway. ANSA Phase III: The ANSA Binding Model.
Technical Report Document 1392.01, Architecture Projects

Management Limited, Poseidon House, Castle Park, Cam-
bridge, CB3 ORD, UK, January 1995. (p15)

C Perkins. IP Mobility Support. Internet Draft, May 1996.
(p21)

S Pope. Application Migration for Mobile Computers. In
Proceedings of the 3rd International Workshop on Services
in Distributed and Networked Environments, pages 20 —
27, Macau, June 1996. IEEE. (pi)

J Porter and A Hopper. An ATM Based Protocol for Wire-
less LANs. Technical Report ORL Report no. 94-2, Olivetti
Research Limited, Cambridge, 1994. (pp3, 24, 41)

140

[Postel81a]

[Postel81b]

[Prouty94]

[Rahnema93]

[Rajagopalan9s]

[Randell75]

[Rashid81]

[Richardson93]

[Roscoe94]

[Roscoe95a]

[Roscoe95D]

J Postel. The Internet Protocol. RFC-791, September 1981.
(pp 19, 69)

J Postel. Transmission Control Protocol. ~RFC-793,
September 1981. (pp 23, 69)

R Prouty, S Otto, and J Walpole. Adaptive Ezecution of
Dataparallel Computations on Networks of Heterogeneous
Workstations. Technical Report CSE-94-012, Oregon In-
stitute of Science and Technology, 1994. (p34)

M Rahnema. Owverview of the GSM System and Protocol
Architecture. IEEE Communications Magazine, pages 92—
100, April 1993. (pp3, 26)

B Rajagopalan. Mobility Management in Integrated Wire-
less ATM Networks. In Proceedings of Mobicom, Berkeley,
1995. IEEE. (p24)

B Randell. System Structures for Software Fault Tolerance.
IEEE Transactions on Software Engineering, SE-1(3):220—
232, June 1975. (p54)

R Rashid and G Robertson. Accent: A Communication
Oriented Network Operating System Kernel. Proceedings of
the 8th Symposium on Operating System Principles, pages
64-75, December 1981. (pp8, 31)

T Richardson, F Bennett, G Mapp, and A Hopper. Tele-
porting in an X Window Environment. Technical Report,
Olivetti Research Laboratory, Cambridge, November 1993.
(p29)

T Roscoe. The Middl Manual. Technical Report Pegasus
Working Document, University Of Cambridge Computer

Laboratory, New Museums Site, Pembroke Street, Cam-
bridge, 1994. (p17)

T Roscoe. Clanger: An Interpreted Systems Programming
Language. ACM Operating Systems Review, 29(2):13-20,
April 1995. (p17)

T Roscoe. The Structure of a Multi-Service Operating Sys-

tem. PhD thesis, University of Cambridge Computer Lab-
oratory, April 1995. (pp13, 15, 16, 17)

141

[Rouche95] -

[Rowe93]

[Rozier89]

[Saltzer79]

[Saltzer84]

[Sandberg85]

[Schilit93a]

[Schilit93b)]

[Sentovich88|

[Shapiro90]

E Rouche. The Fast Freeze Algorithm for Process Migra-
tion. PhD thesis, University of Illinois at Urbana Cham-
paign, 1995. (p32)

L Rowe, K Patel, and B Smith. MEPG Video Software De-
coder. Distributed from: toe.cs.berkeley.edu, 1993. (p99)

M Rozier, V Abrossimov, F Armand, I Boule, M Gien,
M GQGuillemont, F Herrmann, C Kaiser, S Langlois,
P Leonard, and W Neuhauser. CHORUS Distributed Op-
erating System. Technical Report CS/TR-88-7.8, Chorus
Systemes, February 1989. (p15)

J Saltzer. Naming and Binding of Objects. In R Bayer,
R Graham, and G Seegmuller, editors, Operating Systems:
an Advanced Course, volume 60 of LNCS, chapter 3.A,
pages 100-208. Springer-Verlag, 1979. (p14)

J Saltzer, D Reed, and D Clark. End-to-End Arguments in
System Design. ACM Transactions on Computer Systems,
2(4), November 1984. (p6)

R Sandberg, D Goldberg, S Kleiman, D Walsh, and B Lyon.
Design and Implementation of the Sun Network Filesys-
tem. In Proc. Summer 1985 USENIX Conf., pages 119-130,
Portland OR (USA), June 1985. (pp 29, 43, 106)

B Schilit, N Adams, R Gold, M Tso, and R Want. The Parc
Tab Mobile Computing System. Technical Report CSL-
93-20, Xerox Palo Alto Research Centre, December 1993.

(p29)

B Schilit, M Theimer, and B Welch. Customising Mobile
Applications. In Proceedings of Usenix Symposium on Mo-
bile and Location Independent Computing, pages 129-138,
August 1993. (p29)

E Sentovich and R Spickelmier. Xrn: News Reader.
Distributed from: ftp://ftp.com.ov.com/pub/xrn/xrn.tgz,
1988. (p104)

M Shapiro, D Plainfosse, and O Gruber. A Garbage De-
tection Protocol for a Realistic Distributed Object Support
System. Technical Report Rapport de Recherche 1320, IN-
RIA, November 1990. (p59)

142

[Shearer95]

[Shum96]

[Smith96]

[Steele75]

[Steensgaard95]

[Steiner88]

[Strom85]

[Sun87]
[Sun8s]
[Sun95]

[Tait92]

[Tantawi85]

E Shearer. TETRA - A Platform for Multimedia. In Pro-
ceedings of Mobile Computing and its Applications, Savoy
Place, London WC2R OBL, UK, November 1995. IEE.
(p3)

K Hong Shum. Adaptive Parallelism for Computing on Het-
erogeneous Clusters. PhD thesis, University of Cambridge
Computer Laboratory, August 1996. (p34)

P Smith and N Hutchinson. Heterogeneous Process Migra-
tion: The Tui system. Paper published at University of
British Columbia: http://www.cs.ubc.ca, February 1996.
(p121)

G Steele and G Sussman. Scheme: An Interpreter for the
extended Lamda Calculus. Technical Report Memo 349,
MIT Artificial Intelligence Laboratory, 1975. (p121)

B Steensgaard and E Jul. Object and Native Code Thread
Mobility Among Heterogeneous Computers. In Proceedings
of the 15th Symposium on Operating Systems Principles,
Colorado, December 1995. ACM. (p120)

J Steiner, B Neuman, and J Schiller. Kerberos: An Au-
thentication Service for Open Network Systems. In Usenix
Conference Proceedings, pages 191-202, February 1988.
(p60)

R Strom and S Yemini. Optimistic Recovery in Dis-
tributed Systems. ACM Transactions on Computer Sys-
tems, 3(3):204-226, August 1985. (p54)

Sun Microsystems. XDR: Esternal Data Representation
Standard, June 1987. (p12)

Sun Microsystems. RPC: Remote Procedure Call, Protocol
Specification, Version 2, 1988. (p12)

Sun Microsystems. The Java Language: A White Paper,
1995. (p122)

C Tait and D Duchamp. An Efficient Variable Consistency
Replicated File Service. In Proceedings of File Systems
Workshop. USENIX, May 1992. (p29)

A Tantawi and D Towsley. Optimal Static Load Balancing
in Distributed Computer Systems. Journal of the ACM,
32(2):445-465, April 1985. (p30)

143

[Teraoka93]

[Theimer85]

[Toft94]

[Toh95)

[Trotter9s)

[Want92a]

[Want92b]

[Wernick96]

[Wilson92]

[Yarvin93]

F Teraoka and M Tokoro. Host Migration and Transparency
in IP Networks: The VIP Approach. ACM Computer Com-

_ munication Review, 21(1):45-65, January 1993. (pp4, 21)

M Theimer, K Lantz, and D Cheriton. Preemptable Remote
Ezecution Facilities for the V-System. In Proc. 10-th ACM
Symp. on Operating System Principles, December 1985.

(pp8, 32)

J Toft and J Nielsen. Formal Specification of ANDEF. Tech-
nical Report, DDC International, A/A G Lundtoftevej 1B,
2800 Lyngby, Denmark, 1994. (p122)

C Toh. The Design and Implementation of a Hybrid Han-
dover Protocol for Multi-Media Wireless LANs. In Pro-
ceedings of Mobicom, Berkeley, 1995. IEEE. (p 26)

J Trotter and M Cravatts. A Wireless Adaptor Architec-
ture for Mobile Computing. In 2nd Symposium on Mobile

and Location Independent Computing, pages 25-31, Ann
Arbor, Michigan, April 1995. USENIX. (p3)

R Want and A Hopper. Personal Interactive Comput-
ing Objects. IEEE Transactions on Consumer Electronics,
38(1):10-20, February 1992. (p29) '

R Want, A Hopper, V Falaco, and J Gibbons. The Active
Badge Location System. Technical Report ORL Report no.
92-1, Olivetti Research Limited, Cambridge, 1992. (pp3,
4, 29)

P Wernick. MMN URI: Work Package 5 (Security) The
Trial Implementation and its Lessons. HATS Project Doc-
ument, University of Cambridge Computer Laboratory,
March 1996. (p62)

P Wilson. Uniprocessor Garbage Collection Techniques. In
Y Bekkers and J Cohen, editors, Memory Management:
International Workshop IWMM 92, volume 637 of LNCS,
pages 1-42. Springer-Verlag, September 1992. (p 59)

C Yarvin, R Bukowski, and T Anderson. Anonymous RPC:
Low Latency Protection in a 64 Bit Address Space. In Pro-
ceedings of the Summer USENIX Conference, pages 175—
186, Cincinnati, U.S.A, June 1993. (p16)

144

[Zadok93]

[Zayas87]

[Zhou88|

[Zhou93)]

E Zadok and D Duchamp. Discovery and Hot Replacement
of Replicated Read Only File Systems with Application to
Mobile Computers. In Proceedings of Summer Conference.
USENIX, June 1993. (p29)

E Zayas. Attacking the Process Migration Bottleneck. In
Proc. 11-th ACM Symp. on Operating System Principles,
pages 13-24, 1987. (pp8, 31)

S Zhou. A Trace-Driven Simulation Study of Dynamic Load
Balancing. IEEE Transactions on Software Engineering,
14(9):1327-1341, 1988. (p31)

S Zhou, X Zheng amd J Wang, and P Delisle. Utopia: A
Load Sharing Facility for Large Heterogeneous Distributed
Computer Systems. Software—Practice and Experience,
23(12):1305-1336, December 1993. (p31)

145

