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Observations on a Linear PCF
(Preliminary Report)

G.M. BIERMAN

Gonville and Caius College,
Cambridge. England.

ABSTRACT

This paper considers some theoretical and practical issues concerning the use of lin-
ear logic as a logical foundation of functional programming languages such as Haskell
and SML. First I give an operational theory for a linear PCF: the (typed) linear A-
calculus extended with booleans, conditional and non-termination. An operational
semantics is given which corresponds in a precise way to the process of 3-reduction
which originates from proof theory. Using this operational semantics I define notions
of observational equivalence (sometimes called contextual equivalence). Surprisingly,
the linearity of the language forces a reworking of the traditional notion of a context
(the details are given in an appendix). A co-inductively defined notion, applicative
bisimularity, is developed and compared with observational equivalence using a vari-
ant of Howe’s method. Interestingly the equivalence of these two notions is greatly
complicated by the linearity of the language. These equivalences are used to study a
call-by-name translation of PCF into linear PCF. It is shown that this translation is
adequate but not fully abstract. Finally I show how Landin’s SECD machine can be
adapted to execute linear PCF programs.

1 INTRODUCTION

Since its inception, Girard’s linear logic [11] has promised to give a refined view of com-
putation due to its resource-conscious nature. The intuitionistic fragment yields, via the
Curry-Howard correspondence, a (typed) linear A-calculus [3, 5]; where linearity means
that variables occur exactly once and, consequently, there are explicit operations to discard
and duplicate terms. An important result is that there are several ways of translating the
(typed) A-calculus (the foundation of functional programming languages) into the linear
A-calculus. Semantically this has proved a very useful viewpoint—rather than devising a
model of the A-calculus one can, in its stead, produce a model of the linear A-calculus [6].
This approach has been utilised, for example, by Plotkin in studying recursion and para-
metricity [21] and by Abramsky et al. [2] to produce fully abstract models of PCF.

A more operational perspective is to consider the linear A-calculus as some sort of
intermediate language to which the A-calculus is compiled.! This has an obvious practical
advantage in that the linear calculus is explicit about its manipulation of data and so
possible optimisations should be expressible as simple term rewrites. The picture in mind
is

'Maybe a more fashionable description is to say that the linear A-calculus can be thought of as a
computational metalanguage.




Functional Language
Compilation
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Translation

linear Acalculus

where the first step traditionally occurs in functional language compilers [15]. At the level
of the A-calculus we normally say that an optimisation is the replacement of a subterm
M with another, N, which we permit only if they are observationally equivalent, viz. if
no matter where they are placed in a program we can not tell them apart. Thus if we
are including an extra stage of translation to the linear A-calculus we need not only to
develop a theory of observational equivalence for the linear calculus, but also to consider
to what extent the translation process preserves this equivalence. This paper represents a
first step in that direction.

This paper is organised as follows. In §2 I give the syntax and operational semantics
for a linear PCF. I consider the question of a formal definition of a context for the linear
calculus and show that traditional treatments for non-linear calculi are inadequate. I give
a more precise definition which is suitable for the linear calculus. Using this definition I
give two versions of observational equivalence: one where observations are made only at
boolean type (ground) and one where observations are made at all types (lazy). I then
give a co-inductive definition of program equivalence known as applicative (bi)simularity.
Employing a variant of Howe’s method I show that applicative bisimularity coincides with
lazy observational equivalence. In §3.1 I give the syntax of PCF and also a translation
of terms from linear PCF to PCF. In §3.2 I give a call-by-name operational semantics
for PCF and also recall standard definitions of observational equivalence and applicative
bisimulation. In §4 I give a translation of terms from (call-by-name) PCF to linear PCF
and show that the translation is adequate but not fully abstract. In §5 I show how Landin’s
SECD machine can be adapted to execute linear PCF-terms. I conclude, in §6, with an
indication of future work.

2 A LINEAR PCF

The core corresponds via the Curry-Howard correspondence to the natural deduction
formulation of the (®, —o, !)-fragment of Intuitionistic Linear Logic (ILL). For the purposes
of this paper the core calculus has been extended with booleans, a conditional operator and
non-terminating constants (at all types) to yield a simple linear functional programming
language, which we refer to as linear PCF.

Types are given by the grammar

¢ ::= bool | g—o¢ | $®¢ | 14,



and raw terms are then given by the grammar

M true,false Booleans
z Variable
Az o.M Abstraction
MM Application
MM Multiplicative Pair

let M be z®z in M Split
if M then M else M Conditional

promote M for#in M Promote

derelict(M) Derelict

discard M in M Discarding

copy M asz,xinM  Duplication

(914 Non-termination;

where z is taken from some countable set of variables and ¢ is a well-formed type. A
typing judgement is written I'> M: ¢ where I is a multiset of (variable,type)-pairs. In this
paper we shall only consider well-typed terms, i.e. those for which there is a valid typing
judgement. The rules for forming typing judgements are given in Figure 1. A term M
containing no free variables (i.e. § > M: ¢) is said to be closed (otherwise it is said to be
open). The set of linear PCF-terms which can be assigned the type ¢ given I' shall be
written Ezpp(¢). If the multiset T is empty this shall be abbreviated to Ezp(¢).

The one-step ‘B-rules’ arise for the core calculus by analysing the process of normalisa-
tion via the Curry-Howard correspondence (those for the conditional are intuitive). They
are as follows.

(A\z: ¢.M)N ~g Mz := N]
let M®N be z®yin P ~»g Plz:= M,y := N]
derelict(promote M for Zin N) ~»5 N[7 := M)
discard (promote M for Zin N)in P ~»g discard MinP
copy (promote M for Zin N) asy,zin P ~sg  COpPY Masz,z"in
P [y := promote ' for Zin N,
z 1= promote 7 for & in N)
if true then Melse N ~g M
if falsethen Melse N ~pg N

Again further details can be found in earlier papers [3, 5]. Two important properties are
the following, which are known as closure under substitution and the subject reduction
property, respectively.

Proposition 1.

1. fT'>M:¢ and A, z:¢> N:9p then I', A> Nz := M]: 4.

2. fT'vM:¢ and M ~p3 N thenT'> N: ¢.
To use linear PCF in the operational réle mentioned in the introduction, we need to
consider how a program (a closed term) is reduced, or evaluates, to a value. To do this

we need to consider where and when to apply the S-rules from above. This can be done
by defining a big-step operational semantics, viz. an inductively defined relation, written

3




T P> TP @ > b: bool 0 Q% ¢

T, z: ¢ M:ep ToMig—otp  AbN:g
—0
T Az: g M: gotp =~ ~ T,A> MN:4

(—o¢)

Tio Ml - Tpv Mpildp z1:1d1,. .., 20 ldp b N:tp

— Promotion
I'1,...,I'n > promote M for Z in N: Iip

' M:1¢
I' > derelict(M): ¢

Dereliction

I'v M:1¢ Ab>N:vy
I’y A>discard M in N: 4

Weakening

v M:l¢ Az ld,ylpo N
T,Avcopy Masz,yinN:vy

Contraction

'>M:¢ Av> N:y
A> MQN: ¢@1

®z)

I'v M: ¢y Az, y:p> Nip
I'Avlet M be z®yinN:

(®e)

I'> M: bool A>N:¢ Ab P:¢
[, Avif M then N else P: ¢

Conditional

Figure 1: Type Assignment for Linear PCF.



M v

where M and v are closed terms and v is a value (defined later).

Normally when defining this relation there are a number of choices corresponding to the
different calling mechanisms. In his influential paper, Abramsky [1] demonstrated that
the refined connectives of linear logic effectively suggest their own evaluation strategy.
However, Abramsky’s semantics was for a slightly different calculus (one which fails to
have the properties given in Proposition 1), although the main difference is with the rules
involving the exponential.

Firstly values are defined inductively as

v true, false
Az: .M
VRV

promote ¥ for £ in M.

———j

The operational semantics is given in Figure 2.
Two remarks are worth making here. Firstly it is tempting to suggest that as attention

is restricted to just closed terms, all occurrences of the Promotion rule yield terms of the
form

promote — for — in M,

and so one need only consider the syntactic form promote(M) (c.f. [17, p. 403]). Unfortu-
nately, as there are constants, this simply is not true; for example the closed term

promote (promote — for — in true) for z in z.
Secondly, there are alternative definitions of the rules for Weakening and Contraction, viz.

M |} promote ¥ for £in P discard 7'in N | ¢/
discard M in N || v/

-
z := promote 2’ for Z'in P '

- -
M | promote i for Zin P copyvasz',z'inN - .
:= promote 2" for Zin P

copy M asz,yin N | o/

" These are given directly by the S-rules and were included in a first draft of this paper.
However given the definition of values above, they are equivalent (and much less efficient)
to those in Figure 2. If we had constants of exponential type, it might be the case that
these rules were preferable. Another reason for not using them here is practical. In the
alternative rule for Contraction given above, the upper two substitutions involve open
terms, which is quite unusual and would require a complicated implementation involving
pointers (the rules of Figure 2 can be implemented quite simply, see §5).

An alternative method of presenting program evaluation is to define a transition rela-
tion, written

M= M




v VB e veen VP

M | dz:¢.P N v Plz :=v]
MN §

(I —o¢)

Mo N |
M®N | v@v'

{ ®1)

M | v’ Nz := v,y =] | "
let M be z®yin N { v

(I ®¢)

M § true N v M | false PYw

({} Cond) - (I} Cond)
if M then N else P | v if M then N else P |} v

M; | v; 0<i<k

promote M; for z; in N |} promote v; for z; in N

({ Promotion)

M | promote ¥ for & in N N[Z:=4]§
derelict(M) { v/

(I} Dereliction)

M |} promote ¥ for Z'in P N{z,y := promote ¥ for Zin P] | v/

copy M asz,yin N | v/ ({} Contraction)
)

M | promote @ for Zin P N
discard M in N | o/

(I} Weakening)

Figure 2: Operational Semantics for Linear PCF.



(Az: p.M)v = Mz := v]
let v®v' be 2@y in P = Plz := v,y := v']
derelict(promote ¥ for Zin N) = N[Z := 7]
discard (promote ¥ for £ in N) in P = discard ¥'in P
copy (promote @ for Zin N) as y, z in P = copy ¥as z', 2" in P Y = promote x_i for m_.l.n N
z = promote z" for T in N
if true then M else N = M
if falsethen M else N = N

M= M N= N’
MN = M'N ovN = N’

M= M
if M then N else P = if M then N else P

M= M N = N’
M®N = M'®N v®N = v@N'

M= M
let M be z®y in N = let M’ be z®y in N

promote Mi,...,M;,...,Myforzy,..., %5 ..., 2 in N
= promote M1,...,M},..., My forzq,...,2;, ...,z in N

M= M
derelict(M) = derelict(M")

M= M
discard M in N = discard M’ in N

M= M
copy M asz,yin N = copy M’ asz,yin N

Figure 3: Transition Semantics for Linear PCF.




where M and M’ are closed terms. In contrast to the operational semantics given earlier,
this is a single-step semantics. The rules are given in Figure 3.2
The two systems are equivalent in the following sense.

Theorem 1. M | v iff M =* v,

Proof. From left to right by induction on M | v. From right to left by proving that if
M = M' and M' § v then M | v (by induction on M = M'"). [

I shall use the big-step semantics of Figure 2 in the rest of this paper as it is more abstract.
Next we need to introduce the notion of a contezt. This is to be thought of as a linear
PCF-term with a typed ‘hole’ in it; in to which another term may be substituted. Unlike
ordinary substitution, this process is permitted to capture variables.

Unlike the case for PCF, formally defining this notion of a linear context is surprisingly
difficult. More details are given in Appendix A. For now it is sufficient just to understand
the notation:

o(T): ¢ A b L[o]: )

denotes a linear context, £, of type 1, with free variables A, and with a single hole of type
¢ and free variable set given by I'. An example may be useful. Consider

o(z: ¢): p®bool; B > Az: p.e: p—o(p®bool),

which is a linear context with a single hole. The rule governing placement of a context for
a hole is A

H;I'>M: ¢ H',o(T): ;A N:p

Placement.
H,H'; Av> N[M/e]: )

Thus for the example above we could place the term

z: ¢ > z@true: pQbool

in the hole to yield the term

0> Az: d.z@true: g—o(d®bool)

where one should notice that the free variable z has become bound by the process of
placement.

It is now possible to define a notion of observation. As is the case for PCF we are
able to give two definitions which differ on what can be observed: either elements of the
ground type(s) (in this case just booleans) or termination at all types. For call-by-value
PCF these notions coincide, but there is some doubt as to whether they do for linear PCF
despite the fact it is a call-by-value language. This point will be considered in more detail
at the end of this section.

Definition 1. Given I'> M: ¢ and I'> N: ¢ we shall say that M ground-observationally
refines N, written I' > M Qi"d N, where for all closing boolean contexts, o(T): ¢;0 >

L[e?]: bool, if L[M] | true then L[N] | true.

One could present these rules more succinctly by defining a notion of evaluation context.
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We would then write I'c M ~4" N iff ['> M £5™ N and T'> N T M and refer to this
relation as ground observational equivalence.

Definition 2. GivenI'> M: ¢ and I'> N: ¢ we shall say that M lazy-observationally refines
N, written I'> M Ef;zy N, where for all closing contexts, o(T'): ¢; 0 > L[o%]:9p, if L[M] |}
then L[N] .

We write I'v M zf;zy NiffTo M _l;f;”y NandT'>N Ef}fz Y M and refer to this relation as
lazy observational equivalence. It is clear that lazy observational equivalence is a stronger
notion than ground observational equivalence.

Lemma 1. f ' M zf;zy N thenT'> M zi"d N.

Lemma 2.
L IfT'> M C$* N then Av L[M] EJ L[N] for all contexts o(T): ¢; A > L[o%]:4).
2. T> M Cy* N then A L{M] T L[N] for all contexts o(T"): ¢; A > L[o%]: 9.

Proof. Effectively by composition of contexts. |

A linear pre-congruence relation is essentially a relation on linear PCF-terms which re-
spects the rules of term formation.

Definition 3.
1. If R is a family of relations Rpr 4 C Ezpp($) x Ezpr(¢) which satisfies the rules in
Figure 4, then it is said to be a pre-congruence.

2. If R is a pre-congruence and, in addition, satisfies the rule

' MRN:¢

—— Symmetry
b NRM: ¢

then it is said to be a congruence.

Lemma 3. Let R be a pre-congruence relation. Suppose that I'> M R N:¢. Then for a
linear context o(I'): ¢; A > L[o]:9) it is the case that A L[M] R L[N]: 4.

Proof. By induction on the derivation of L[e]. (The rules for formation are given in
Appendix A.) ]

Lemma 4. C is a pre-congruence.

The problem with both definitions of observational equivalence is that the quantification
over all contexts makes them very difficult to work with. Instead a co-inductive definition
of program equivalence called applicative bisimulation can be given, which can then be
compared to the notions of observational equivalence.

The relation of applicative simularity is defined as the greatest fixed point of a certain
monotone operation on relations. This operation is given in two stages.




T M: ¢

e R fle x5t
o MR M. g ity

' MRN:¢ I'>NRP:¢
C>MRP:¢

Transitivity

e M: ¢ Az:dpp NR Piap
I'Av Niz := M| R Plz := M]:¢

Sub51

I'bMRN:¢ A,z Piyp

Subsy
I'Ab> Plz:= M]R Plz := N]:¢

Lz:g> M RN
> Az:p. MR Az: . N: p—otp

(~oz)

Tio My RM gy T My RM: 1y @111, .. Tt g > NR N': 9

—— = —— Promotion
Iy,...,Tn > promote M for £ in N R promote M’ for Zin N': lip

o MRM:¢ A,z 1,y 1> N RN
I',Avcopy Masz,yin N Rcopy M'asz,yin N':¢p

Contraction

' M RM: ¢xv Az y: b NRN @

®
]_",Al>IetMbem@yinN’RIetheaz@yinN:@( 2

Figure 4: Rules for a Linear Pre-Congruence Relation.
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Definition 4. Given a family of (type-indexed) relations R = (Ry C Fxp(¢) x Ezp(¢))
between closed linear PCF-terms, we can define a family of relations (R)s between closed
values as follows.

o b{R)poo V' ifb=V,

o v1®V2 (R)yey v1®VS if v1 (R)g v and vp (R)y vp,

* \z: $.M (R)y—oy Az:¢.M'if Vv: p.M[z := v] Ry M'[z := v], and

e promote ¥ for Z in M (R)14 promote v for @ in M if M| := 7] Ry Mz’ = ).

This definition can be extended to closed linear PCF-terms as follows.
M[R]4N <= Wv.if M | v then 3v'.N | v and v (R)4 v'.

Lemma 5. The function R+~ [R] is monotone.
Proof. Essentially by induction over v (R)4 v'. =

A family of relations, R, satisfying R C [R], is called a (linear PCF) simulation. As the
function described in Lemma 5 is monotone and the families indexed by their types form
a complete lattice then it has a greatest fixed point, which is denoted by <, and referred
to as (linear PCF) applicative simularity. Associated with this greatest fixed point is a
co-inductive principle:

To show (M, N) € < it is sufficient to find an S such that S C [S] and (M, N) € S.

Applicative simularity can be extended to open linear PCF-terms as follows.

Tty i bn > M <G N = Vo 06 M[# = 7] <y N[# = 7]
where 0 > v;: ¢,

where the v; are values. It is easy to show that the relation < is a partial order. Applicative
bisimularity, written ~%? is defined as the symmetrisation of <, viz.

FDM%;ppNiﬂ'FDMS;NandI‘DNS;M.

An important property is that < is a pre-congruence. It turns out, as is the case for PCF,
that this is rather difficult to prove. A well-established and ingenious technique was given
by Howe [14]. One defines another relation, which is trivially a pre-congruence, and, rather
less trivially, is an applicative simulation. I shall adapt his technique here for linear PCF.

Definition 5. The relation <* between two well-typed expressions is defined inductively

11




as follows.

w:ppz <G N iff ziérz <o N
Oob<f,o N iff 0>b<pooa N
0oQ <EM I 00 QP <4 M
oAz M <o, N iff 3M'T,z:¢5 M <4 M’ and
To .M <5, N
,AS (MiMy) <N it 3ML, MLT o M, <5y, M,
Ab My <5 Mj and
T,Ab (MMy) <4 N
N iff 3M{, Mo M, <5 M,
ADMQ S& Mé and
T, A M@M, 3®¢ N
I', A b let My be 2Qy in My <P N iff 3M],MyTv>M; < ¢®¢ 1
A,z y: > My <5 M and
I', A v let M{ be z®y in Mé <o N
T, Avif My then My else M3 <§ N iff 3IMj, My, M3.T'> My <§.,, M1,
ADMz <* M2,
Ab> Mz < <* M3 and
I, A[>|fM’ then M} else M} <gN
I'>derelict(M) <g N iff 3IM'.T'> M <y M’ and
I‘l>derehct(M’) <sN
ry,..., Iy l>promoterora:mN<.¢P iff 3IM',N'Tiv M; <, M,
Zitld1y. .o, Ty '¢nl>N <y N’ and
ry,.. I‘ t>promoteM’forxm N' <G, P
I',Avcopy Masg,yin N < P iff 3M’.N’.I"(>M <ty M',
A,z:lg,y:lg> N <3 N’ and
I'yAvcopy M’ asz,y in N’ <3P
T,Avdiscard Min N <} P iff 3M',N'T'> M <ty M,
Ab N <v N’ and
I', A v discard M’ in N’ Sfb P

T Ab Mi®M, < ¢®¢

An important property of this relation is the following
Lemma 6. If ' M S’;N and I'> NV <8 P then FDMS’; P,

Proof. By induction over I'> M <3 IN. Here I give three example cases.

1. T'> derelict(M) <§ N. Thus 3M'T'> M <ip M' and T > derelict(M") <¢ N. By
assumption and transitivity of <° then I' & derelict(M’) <3 P and we are done.

2. T'> promote M for z in Q <*¢5 N. Thus 3IM",Q'T> M <ty M and z: 1> Q <5 Q
and I" > promote M’ for z’ in Q' <f N. By assumption and transitivity of <° then
I'> promote M’ for 2’ in Q' <f; P and we are done.

3. T, Avcopy Masz,yin @ <§ N. Thus 3M’, Q' I'> M <ty M'and A, z: b, y: 9ppQ <5
Q’ and I, A > copy M’ as w, yin@Q' < <3 N. By assumptlon and transitivity of <° then
T, Al>copy M asz,yinQ < <¢ P and we are done.

12



One direction of the equivalence is now immediate.
Proposition 2. If I'c M <3 N then I'> M <3 N.

Proof. It is clear that I'v M <} M (reflexivity) and, by assumption, that I'c M <g N.
From Lemma 6 we conclude I'> M S:s . =

It is also relatively straightforward to prove the following.
Lemma 7. If Ab M <} M' and T',z: ¢> P <, P' then I', Av Plz := M] < Pz := M"].
Proof. By induction on the structure of P. |

An important property is the following.
Lemma 8. If §> M <3 N and M | v then Jo' such that N | v/ and fv v <% v

Proof. By induction on structure of M | v. Four example cases are the following.

1. promote M for z in Q@ | promote v for zin Q: By assumption 3M’,Q".0 > M <f, M’
and z: 19> Q <% Q’ and @>promote M’ for z in Q' <4 N. By induction we have M’ |
v and @ v <* v'. We can deduce that promote M’ for z in Q' || promote ¥’ for z in Q'
and hence it follows that N | w and @ > promote v’ for z in Q' <14 w. From Proposi-
tion 2 we can conclude () > promote v for z in Q <f; w and we are done.

2. derelict(M) | v: By assumption 3M'.0> M <}, M’ and 0 > derelict(M') <4 N.
By induction we have M’ |} v" and @ > promote v’ for ¢ in P <j v". By definition
3w, P.Ovo <, wand z:lp> P <% P’ and 0 > promote w for zin P' <y v". By
Lemma 7 we have that (> Pz := v'] <§ P'[z := w]. By determinancy of evaluation
we have that v” = promote w" for yin Q and then as @) > promote v for z in P’ <4
promote w" for i in Q we can conclude that § > w <, w” and 0> P'lz := w] <y
Qly := w"). From Lemma 6 we have that > Plz := ¢'] <§ Q[y := '] and then by
induction Q[y := w'] |} @ and @>v <} a. We can now conclude that derelict(M Nda
and hence that N | c and 0>a <4 ¢. From @ <§aand 0> a <4 c we can conclude
that § > v <% c and we are done.

3. discard M in P | v: By assumption 3M’, P'.0> M <}, M’ and 0> P < P and
(@ > discard M' in P! <4 N. By induction we have both M' ) wand 0> Sﬁp w; and
P'§ w' and @>v <3 w'. We can deduce that discard M’ in P’ || w' and hence N { a
and 0> w' <y a. By Lemma 6 we can conclude Powv <¢ a and we are done.

4. copy M asz,yin P | v: By assumption IM’, P'.0> M <3, M' and z:1¢,y:1¢> P <j
P' and 0 > copy M’ asz,y in P' <y N. By induction we have that M’ | v" and
§>o' <y 0", By Lemma 7 we have that 0> Plz,y =] <3 Plz,y:=v "1. By
induction we have that P'[z,y := v"] § v" and fvv <J, v". We can deduce that
copy M' asz,y in P’ § v and by assumption then N J w and @ v 0" <y w. From
IIEY, _<_fp v" and 0> v" <y w, we can conclude that Do v SQ w and we are done.
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Lemma 9. If 0> v <} o' then v(<*)o

Proof. By induction on the structure of v. For example, assume that promote ¥ for Z in M <t
promote o' for @' in M viz. 3w, N such that f>v; <,¢ w;, T>M <;; N and @promote  for Z in N <i¢

promote o' for z' in M’. By definition this implies § > N[Z := 0] <, M'lg' = v]. By
Lemma 7 we have also that § > M(% := 9] <} N[ := &]. By Lemma 6 we can conclude

that 0> M(% := 7] <} M'[z := v'] and we are done. |
We can now prove the other direction of the equivalence.
Proposition 3. If I'v M S; N thenT'v M S; N.

Proof. Form the set
8 {(M,N)|0> M <} N} C Eap(¢) x Bap(¢)

and show that S C [S] which holds given Lemmas 8 and 9. Thus we have that @ M <3N
implies fo M <, N. We have that Vv.fov <y ¥, hence given any open terms Z: I'> M <3N
we have by Lemma. 7 that > M([%:= 9] < N [m = ¢ and then we can invoke the above
reasoning for the resulting closed terms. |

Proposition 4. <* is a pre-congruence.

Proof. Simply by checking that <* satisfies the rules given in Figure 4. The Subs, and
Subsy rules follow from Lemma 7. The other rules hold trivially by definition and given
that < is reflexive. [ ]

Theorem 2. <° is a pre-congruence.

Proof. Immediate from Propositions 2, 3 and 4. [

It is now possible to consider to what extent the two notions of program equivalence,
observational equivalence and applicative bisimularity, are equivalent.

Proposition 5. IfI'> M <3 N then ' M C5*¥ N.

Proof. Suppose that I'v M <¢ N. As <° is a pre-congruence we have that for any closing
linear context o(T'): ¢; 0 > L[#®]: 1) that

0o £IM) <y LIN]

which by definition gives that if L[M] § v then 3o’ such that L[N] | v’ and we are done.
[

Corollary 1. IfT'> M <§ N then T'> M 5™ N.

Proposition 6. If (> M Ci*Y N then 0> M <4 N.
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Proof. We form the set
S={(M,N)|0>MCL™ N}

and show that S C [S]. Thus take M and N such that §> M Eg”y N and M |} v. As they
are lazy-observationally equivalent, taking the identity context gives that there exists a v’
such that N || v/. We show that v ()¢ ' by induction on the type ¢.

1. (¢ = bool) Build the context

Lo % if o then true else Q.

Thus L[M] | true iff M || true iff L[N] || true iff N || true and we are done. The
case for M | false is similar.

2. (¢ = ¢®1p) This holds by induction.

3. (¢ = p—otp) We have that M { Az.P and N | Az.Q. Take any context L[s¥] and
call £’ the context which results from replacing the occurrence of the hole ¥ with
the term o ~°%y. Thus

L[P[z:=v]] | L{(Az.P)v] §
L' Mz.P] |
LMy
LINT Y
L'z.Q
L[(Az.Q)v] ¥

LQlz =] § .

[N A

4. (¢ =!¢) Thus we have that M |} promote #'for Zin P and N | promote v for 7 in Q.
Take any context L£[#¢] and call £’ the context which results from replacing the hole
o? with the term derelict( ¢'¢ ). Thus

L[P[Z:=7]]§ <= Llderelict(promote 7 for Zin P)] |
<= ['[promote ¥ for Zin P] |}
= C'[M]}
— L[N]§
« L['[promote v’ for ' in Q] |
< L[derelict(promote v for 7 in Q)] I
= Ll =v]{.
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Lemma 10. If I, z: > M Eifzy N then I'> M|z := v] ;f;fzy Nz := v] for any 0> v: ¢.

Proof. Assume.that T',z:¢> M E_?ﬁl‘fzy N. Then for a given context o(T'): ;0 > L[e¥]: ¢,

we call £’ the context which results from replacing the hole ¥ which the term (A\z: ¢.o%)v
(hence o(T', z: ¢); 0 > L'[¥]: ¢p).

L{(Az.M)v] |
LM}y
LN
£lOw.NY] §
L[N[z :=v]] §

111t

Proposition 7. If I'> M CL* N then I'v M <3 N.

Proof. By definition Z:I'> M <3 N iff > M[& := 9] <4 N[Z := 7] for values #. From
Lemma 10 we have that §o M[Z := o] I;f;zy N[& := 7] and then we can apply Proposition 6
to get > M[Z := 7] <4 N[Z := %] and we are done. n

Thus two notions of program equivalence coincide; this is often called operational ezten-
sionality.

Corollary 2. I'> M ~4™ N i T> M ~IP N.

Discussion. However it does not appear that ground observational equivalence coincides
with applicative bisimularity (unlike call-by-value PCF). This seems to be a problem with
linearity: there are very few linear contexts of type bool. For example there appears to be
no boolean context which distinguishes®

Az: Ibool.discard z in Q20 from Q'bool—obool
thus @ > Az: Ibool.discard z in © CI™¢ (2. However given Definition 4 they are clearly
lbool—0Cbool g

not applicatively similar. A co-inductive definition of applicative bisimularity which coin-
cides with ground observational equivalence must wait for a future paper.

3 PCF

3.1 Syntaz

We shall consider a PCF which is simply the A-calculus extended with pairs, booleans, a
conditional and non-terminating constants. More precisely, types are given by the gram-
mar

o u=boolloc Do|oAa,

8Any context either entirely discards the term (in which case they are observably the same), or uses
the term, viz. it is applied to an argument (in which case they both fail to terminate and are observably
the same). Any other alternative seems excluded by the type system.
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and raw terms by the grammar

e 1= true,false Booleans
| =z Variable
|  Azioe Abstraction
| ee Application
| (ee) Pair
| fst(e) First Projection
| snd(e) Second Projection
| ifetheneelsee Conditional
| Q° Non-termination;

where z is taken from some countable set of variables and o is a well-formed type. A
typing judgement is written I' > e:0 where I' is a set of (variable,type)-pairs. Again we
shall consider only well-typed terms. The rules for forming typing judgements are given
in Figure 5.

| 3 o ) I' > b: bool L'v Q%o

T'veo e f:7 R 1‘l>e:a/\7”(/\ ) T'bpeocAT (Ae_2)
I'o{e flioAT g > fst(e): o -t I'>snd(e): 7 &2
Tziover F'vetoc DT v fio

(o1) (O¢)

T'vAziceoDT Poef:r

I'> e: bool I'v fio I'vgio
I'>if ethen felseg:o

Conditional

Figure 5: Type Assignment for PCF.

There is a simple translation on formulae from ILL to intuitionistic logic (IL}, which
replaces the linear connectives with their intuitionistic counterparts and removes any oc-
currences of the exponential. This is denoted by (—)® and is given by

bool* % bool
(p—op)® ¥ ¢ oy
(¢o9)” & ¢ Ay

(g)s & ¢,

It can be extended to terms (in context) as follows, where I'* denotes the application of
the translation to all the members of I'.
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def

|z: ¢ > z: P|* z:¢° >z P°
105 b:bool* € 6> b: bool
06 Qs 9]0 L goasge
Do Az: 6. M: p—op|* B T9 b Ag: g |M|S: ¢° D
IT,As MN:)* € T3 A% |MJ|NJS: ¢
T, A5 MON: ¢@ypls & T, A%s (|MJ7, |N|*): ¢° A g*
IT,Ablet Mbez®yin N:gl* % I, Ao |NJ*[z = fst(|M|*),y = snd(|M]*)]: ¢°
|y A v if M then N else P: ¢|° def I, A% b if |M|® then [ N|® else | P|*: ¢°
. . def
IT,Avdiscard Min N:¢|* = AS»|N|*:¢°
IT,Abcopy M asz,yin N:ypl* & T3 Aso |NP[z,y = |M|*]: ¢*
IT> derelict(M): ¢* & oo |M: ¢°
IT, A b promote M for Zin N:1g|* & T As o |N|*[ := |M]s]: ¢*

3.2 Call-by-Name Semantics
The defining feature of call-by-name is that arguments are passed in unevaluated, viz.
el Az:og glr == fldc
ef §c

Another feature is that pairs are considered to be values (we do not evaluate the elements
of the pairs). Values are given by the inductive definition

¢ u= true,false
|  Az:ce
I

(e, €).

The (call-by-name) operational semantics are given in Figure 6.

Now we need to define both observational equivalence and applicative bisimularity for
the PCF as well. Both Gordon [12] and Pitts [20] have offered definitions—here I shall
follow those given by Pitts.*

A context is a PCF-term with typed hole(s) in it. One can carry over the definition of
a linear context to the non-linear setting (the details are left to the reader). I shall adopt
similar notation, viz.

o(I):0; A Cle]:T

to represent a (PCF) context of type 7, with free variables contained in A and with hole(s)
e, of type ¢ and free variable set given by T.

Definition 6. Given I'> e:0 and I' > f:0 we shall say that e observationally refines
f, written I' > e CI™ f, where for all closing boolean contexts, o(I"): 030 > C[e]: bool, if
Cle] § true then C[f] | true.

*I shall use the same symbols as for the linear counterparts. The types should ensure that there is no
confusion.
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bbb Ixioeld dz:ioe

el A\z:o.g glz:=f]lc

ef e
(e, f) 4 (e, f)
el (fig) Flc eldlfig) glc
fst(e) | ¢ snd(e) | ¢

e true flc el false glc
if ethen felseg ¢ ifethen felsegldc

Figure 6: Call-By-Name Operational Semantics for PCF.

We write I'> e =3¢ f iff I'be 9™ f and I'> f £9™ e and refer to this relation as ground
observational equivalence.’

Definition 7. Given a family of (type-indexed) relations R = (R, C Ezp(o) x Ezp(o))
between closed PCF-terms, we can define a family of relations [R], as follows.

e ¢[R]poorf iff Vb. if e | b then f } b,
o ¢[R)sarf iff fst(e) R, fst(f) and snd(e) R, snd(f),
o ¢[R],>-f iff Vg:0.eg R, fg.

A family of relations, R, satisfying R C [R], is called a (PCF) simulation. As the function
R — [R] is monotone and the families indexed by their types form a complete lattice then
the function has a greatest fixed point, which is denoted by <, and referred to as (PCF)
applicative simularity.

Applicative simularity is extended to open PCF-terms as follows.

T1:01,.. ,Tn:0nbe <0 f <= Vg.0>elZ:=g] <, f[T:=7]
where 0 b g;: 03,

where the g; are PCF-terms. Applicative bisimularity, written ~%? is defined as the
symmetrisation of <, wiz.

e~ fiffTre<) fand ' f <je.
It is then possible to show that these two notions of program equivalence coincide.
Theorem 3. I'>be ~9"¢ f iff T'>e ~%P f.

Proof. An analogous proof is given in detail in Pitts’s notes [20, §4]. [

50One could also develop a notion of observation at all types but observation at ground (boolean) type
seems to be the norm.
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4 THE CALL-BY-NAME TRANSLATION

In his seminal paper, Girard presented a translation of formulae from IL to ILL which he
denoted by (—)°. It has been folklore that this corresponds to a call-by-name translation.
The translation is as follows.®

bool> % bool
(6D71)° E1goore
(e AT)° & geglre

The operational intuition is that objects of type !¢ are left unevaluated. Thus the trans-
lation of a function type o D 7 to lo°—o7° indicates that arguments are passed in uneval-
uated, viz. a call-by-name strategy. The translation can be given at the level of typing
derivations as follows.

def

|#: T > b: bool|® Z:1T° > discard Z in b: bool
- def . L.
|Z:T>Q%0l° £ Z:IT°pdiscard Zin Q°°: 0°

Z:1T°, y: lo° > discard Z in derelict(y): o°

|Z: T, y:0 > y: 0°

IT'>Ay:o.e:0 D 7|° IT° > Ay:lo®.|ef°: lo® —or®

|Z:T>ef:7|° e !I‘°l>copy_.:2’as o, g .
in ((|e[Z := 2']|°)(promote z” for Zin |f|°)): 7°
|Z:T > (e, f):o AT|° def ﬁ:!F°>copy§‘as:§,m7’
in (promote z’ for Z in |e|°)
® -
(promote 2" for £ in | f]°): lo°®!r°
IT' > fst(e): o|° o fet lef° be z®y in (discard y in derelict(z)): o°
|T' > snd(e): 7|° © e et lef° be zQy in (discard z in derelict(y)): 7°
|Z: T > if e then f else g: o]° e e copy & as 7/, 7"

in (if |e[# := ]|° then | f[Z := &"]|° else |g[Z := £]|°): 0°

The way this translation interacts with substitution means that the | — |° translation does
not preserve evaluation, viz. if e | ¢ then it is not necessarily the case that |e|® | |¢[°. A
counterexample is the term (Az.Ay.z)true, viz.

Az Y.z | Az Ay Ay.true | Ay.true

(Az.\y.z)true | Ay.true

and
|(Az.\y.z)truel® & (Az.Ay.discard y in derelict(z))promote(true),

|Ay.truel® dof Ay.discard y in true;
where I have used the shorthand promote(M) for promote — for — in M. However

Az.Ay.discard y in derelict(z) § Az.Ay.discard y in derelict(z)
promote(true) |} promote(true)
Ay.discard y in derelict(promote(true)) | Ay.discard y in derelict(promote(true))

(Az.Ay.discard y in derelict(z))promote(true) | A\y.discard y in derelict(promote(true))

®In fact Girard translates products into additive products—this variant is considered at the end of this
section.

20



If attention is restricted to programs which evaluates to booleans then a similar result
does hold.

Proposition 8. If e || b then |e|° | b.

There are maps between PCF and linear PCF in both directions. The maps are related
in the following sense. '

Proposition 9. For all PCF-terms e, ||[Ibe:ol’|* ='beio.
Proof. By induction on the typing derivation I' > e: 0. [

However there is little interesting to say about the composition of the maps in the other
direction.” The | — |* translation erases all the information concerning the exponential,
which are then re-introduced in an entirely uniform way by the | — |° translation. Indeed,
the composition need not even preserve the type of a term, for example

[|0 > Az: bool.z: bool—obool|*|° oo Az Ibool.derelict(z): Ibool—obool.
In addition one might wonder whether the | — |° translation preserves evaluation, viz.
If M | v then |M|° § |v/*,

but a moment’s thought shows that this is not true; the | — | translation does not even
preserve values. For example the term

promote — for — in (Az.M)N
is a (linear) value and thus evaluates to itself, but
lpromote — for — in (Az.M)N|* & (\z.|M|*)|N|*
which contains a top-level redex. However, we can prove the converse to Proposition 8.
Proposition 10. If |e|° | b then e | b.

There is now enough information to consider whether the call-by-name translation pre-
serves and reflects observational equivalence—these properties are commonly known as
full abstraction and adequacy respectively. Surprisingly full abstraction fails.

Theorem 4. The call-by-name translation is not fully abstract, viz. there are PCF-terms
e and f such that I'> e "¢ f and IT° b |e]° #22¢ |F]°.

Proof. In call-by-name PCF we have that I'> e Il (fst(e),snd(e)), for all PCF-terms
e [20, Equation 25]. Consider the case when e = QP°°A\bo0l thyg

|Q° def Q!bool®!boo|, and

|(fst(§2),snd(2))|° o promote(let {2 be z®y in discard y in derelict(z))
®
promote(let 2 be zQ®y in discard z in derelict(y)).

"This contrasts with the case for Ritter and Pitts [22] who consider translations between a fragment of
SML and an idealised A-calculus with references. There the translations are mutually inverse.
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Unfortunately these two terms can be distinguished by the boolean context

Lle 'b°°'®'b°°'] 4 et o be z®y in discard z in discard y in true.

However we can prove that the call-by-name translatlon is adequate, the essence of which
is given in the following proposition.

Proposition 11. If > |¢|° ~9%¢ | £|° then O b e ~gnd f.
Proof. Form the set

S {(e,£) 100 el° =527 |£1°)
and show that S C [S]. We consider the types of o.

e o = bool. By assumption 0> |e|° ~{"% |f|°. Assume that e |} b then by Proposition 8,
le|]° 4 b and then by taking the identity (linear) context we can conclude |f|° |} b.
From Proposition 10, f |} b and we are done.

e 0 =0 D T. We have that §v |e|° ~%"% _ _ |f|°. Take any context L£[¢""] and call £’

~go—oro
the context which results from replacing the hole o™ with the term ¢/°~°7° promote(|g|°),
where g is an arbitrary PCF-term (of the appropriate type). Thus

Llleg’] $b <= Lle|*promote(|g|°)] 4 b

= Lfel14b
&= LfI°140b
< L[|f|°promote(|g]°)] 4 b
<= L]fgl’T¥b

® 0 = o A7. We have by assumption 0 & |e|° ~f’:°d®,T° |7|°. Take any context L[e’"]
and call £' the context which results from replacing the hole ’° with the term
let ¢'7°®'° be z®y in discard y in derelict(z). Thus

L{lfst(e}|°] $ b <= Lllet|e|° be z®y in discard y in derelict(z)] |} b
= L] b
= LfIT4b
< L[let|f|° be zQy in discard y in derelict(z)] | b
= L[fst()°] § b

A similar argument holds for [snd(e)|°.

Corollary 3. The call-by-name translation is adequate.
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Discussion. Rather than translate PCF pairs into linear multiplicative pairs we could
extend linear PCF with additive pairs and change the translation to

(o AT)® W o°&7°, and
ITo (e, flroAr]> & 100 (Je°, I£1°): 0°&7®
Do fst(e):o]° & 10 b fst(le]*): 0°
ITosnd(e):7]° & 10° b snd(e]°): °.

In fact this was the original translation given by Girard. The counter-example to full
abstraction given above would then be translated as

[(fst(Q),snd(Q))]° X (fst(Q2), snd(Q)).

’Qlo def Qbool&bool,and

These two (translated) terms are easily seen to be applicatively similar (after a suitable
reworking of the definition). It is still an open question as to whether this modified
translation is fully abstract.

The reader will recall that at the end of §2 it was conjectured that the notion of
applicative bisimularity and ground observation equivalence did not coincide for linear
PCF (failure of operational extensionality). If this conjecture turns out to be false then it
will entail that full abstraction fails for both call-by-name translations.

Lemma 11. If for all linear PCF-terms M and N, I'> M zi"d Nif'> M zgp” N then
full abstraction fails for the call-by-name translation.

Proof. In call-by-name PCF we have [20, Equation 133]
d
0o /\51:.9. ngonool Q
but it is clear that |Az.Q|° 4 \z.discard z in Q %% Q o |€2]°, and hence

0o |Az.QJ° 9 1Q°.

lbool—0Obool

5 A LINEAR SECD MACHINE

In this section I shall describe a simple implementation of linear PCF by a variant of
Landin’s SECD machine. For the most part this machine has previously been described
by Abramsky [1] and implemented by Mackie [17]; although, as mentioned earlier, this was
for a slightly different calculus. At the very least this section demonstrates that despite
some of the syntactic complications of linear PCF, it can be quite easily implemented.

The machine consists of four stacks: (S)tack, (E)nvironment, (C)ode and (D)ump. In
what follows I shall use SML list notation for the stacks; thus ‘::’ for the cons operation,
‘[’ for the empty list, and ‘@’ for the append operation.

Definition 8.
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S, E,PUSHENV :: C,D env(E) :: S,E,C,D

env(v:: E): S, B uD :: C,D v S, E,C,D
env(v:: E): S, E',TL:: C,D env(E) : S,E',C,D
S, E, TRUE :: C,D true : S,E,C,D

S, E,FALSE :: C,D

S, E,BOMB :: C,D

v S,E,pUsH :: C,D

s,vu E,popr:: C,D

v S, E, TENSOR :: C,D
tensor(v,v') : S, E,SPLIT :: C,D
S, E,MAKEFCL(C") :: C, D
fcl(C, E') = S,v = E,AP:: C, D
v: S, E,RET :: C,(S",E',C") = D
true :: S, E,conp(C’,C") :: C,D
false :: S, E,coNn(C’,C") :: C, D
S, [v1,...,v,]@E,MAKEECL(n, C") :: C, D
ecl(C",E') : S,E,DER :: C,D
ecl(C',E'):: S,E,p1sc :: C, D
ecl(C',E'):: S,E,pUuPL:: C,D

false: S,E,C,D
S,E,BOMB :: C,D
S,vu E,C,D
vuS,E,C,D
tensor(v,v') :: S, E,C,D
vuv' S, E,C,D
fc1(C",E) : S,E,C,D

i E C(S,EC)::D
v S, E,C'\D
,E,C,(SEC):D
0,E,C",(S,E,C) =D
ecl(C',[v1,...,v)) : S, E,C,D
0,E,C (S,EC): D
S,E,C,D
ecl(C',E') : ec1(C',E') =: S,E,C,D

LELLLLIELLELL e

Figure 7: Transition Rules for the Linear SECD machine.

e An instruction is of the form

TRUE FALSE PUSH POP BOMB
TENSOR SPLIT MAKEFCL(c) AP

RET COND(c,c/) MAKEECL(n,c) DER

DISC DUPL HD TL

where n is a number and ¢, ¢ are codes (lists of instructions).

o A value is of the form
true false tensor(v,v')
fcl(c,e) ecl(ce)
where v, v’ are values, ¢ is a code and e is an environment (list of values).

The stacks are then of the form f

S: a list of values,

E: a list of values,

C: a list of instructions,

D: a list of (S,E,C)-triples.

Computation steps are simply transition rules for each possible state of the machine. These
are given in Figure 7.

One can now define a compilation from linear PCF-terms to SECD instructions. This
is achieved by defining a function §(M, Z), where M is a linear PCF-term and 7 is the list
of free variables of M, which returns a list of instructions.
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S(z,1) o [PusHENV]@lookup(z, {)
S(true,l) o [TRUE]
S(false,l) j-%: [FALSE]
5@, ¥ [soume]
S(M®N,l) ¥ §(M,1)@S(N,1)@[TENSOR]
S(let M be z®y in N, 1) o 8(M,1)@[spLIT,PUSH,PUSH|QS (N, y :: z :: [)@[POP,POP]
S(Az.M,1) o [MAKEFCL(S(M, z :: |)@[POP,RET])]
S(MN,l) ¥ S(N,l)@[pusH@S(M,!)Q[AP]
S(if M then N else P, 1) o S(M,1)@[coND(S(N, 1), S(P,1)), RET]
S(promote M for Z in N, I) W S(M,,1)Q[PUsH]@ - - - @S(M;,1)@[PUSH|@

[MAKEECL(n, S(N,)@[RET])]
S(derelict(M),l) ¥ S(M,1)@[pER]
S(discard Min N,1) ¥ S(M,1)@DIsc]@S(N, 1)

S(copy M as z,y in N, i) o S(M,1)@[DUPL,PUSH,PUSH]@S(N, z :: y :: [)@[POP,POP]
where lookup(z,y 1) = ifz=y
then
[BD]
else

[TL]@lookup(z,!)
Following Abramsky [1], we can prove that this is a correct implementation of the opera-
tional semantics of Figure 2 in the following sense.

El[‘l]:e[?ruer[r]l)s. I M 4 v then 3e.(, [, S(M, [), 1) —* (], 0, (1, 0) and ([, [, S (v, D, ) —*

Remark. One might be tempted to ‘optimise’ the compilation of the Weakening rule to

S(discard Min N,1) ¥ S(V,1).

Of course, with the presence of non-termination this would mean that the termination
properties of the SECD machine would not match the operational semantics from Figure 2.
For example, consider the term

discard € in true;

clearly discard €2 in true f} but
S(discard Qin true, ) & [rrUE],

which is a terminating program.
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6 CONCLUSIONS

In this paper I have developed the operational theory of a linear PCF: the typed lin-
ear A-calculus extended with booleans, conditional and non-terminating constants.® I
have shown how to define a notion of context and, using this, two variants of observa-
tional equivalence. I then gave a co-inductive notion of program equivalence, applicative
(bi)simularity, and showed that it coincided with one of the notions of observational equiv-
alence. After recalling some of the details of an operational theory of a call-by-name PCF,
I considered translations to and from linear PCF. I showed that the translation is adequate
but not fully abstract. I then addressed more practical concerns by demonstrating how
Landin’s SECD machine can be adapted to execute linear PCF-terms.

One obvious outstanding piece of work is to give a co-inductive definition of program
equivalence which does coincide with ground observational equivalence. I have also dodged
the question of how to allow recursive definitions by opting instead for non-terminating
constants. At the time of writing, there is still no real consensus for the correct form of
recursion in the linear setting. Braiiner (9] presents a comprehensive study of one proposal.
Another possibility, currently being investigated, is the use of a form of trace operator [16].
However, whatever form linear recursion takes, I would expect it to be relatively straight-
forward to include it in this work. Another outstanding topic, currently being studied,
is the call-by-value translation of PCF into linear PCF (which is a considerably more
complicated translation).

Benton and Wadler [4] have shown that both Girard translations are related to Moggi’s
translations of the A-calculus into the computational A-calculus. I have been unable to
find any work considering full abstraction and adequacy for Moggi’s calculus. One would
hope that Benton and Wadler’s work could be used to derive these results from those in
this paper. Maraist et al. [18] have also considered the Girard translations, but only for
term reduction and also for a formulation which does not include syntax for the rules of
Weakening and Contraction.

My original motivation for this work was not only practical but theoretical. I intend
to investigate to what extent notions of observation are useful in proof theory. Current
technology is quite weak: proofs are compared with respect to their cut normal forms
(maybe modulo Kleene permutabilities). Is observational equivalence a useful notion?
One possible test is to reconsider work by Schellinx [23] on optimal translations.

Future applications of this work is to study operational aspects of both the classical
linear A-calculus [7] and the untyped linear A-calculus [8]. Another interesting exercise
would be to give a categorical explanation of the treatment of contexts in Appendix A.
On a more practical level, it would be interesting to develop more fully the implementation
side of this work. The SECD machine, whilst a standard implementation technique, is not
terribly efficient. Two possibilities are to develop a categorical abstract machine (which
would be given by work on the categorical models of the linear A-calculus [6]) and to
develop a more low-level abstract machine which includes details of memory access.
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A LiINEaArR CONTEXTS

To formalise the notion of placing terms into larger programs we define the notion of a
context. A context is simply a term with designated place-holders, or holes, into which
other terms may be placed. An important feature is that this placement of terms for holes
is permitted to capture free variables, pace substitution of terms for variables.

For PCF a traditional treatment (e.g. [20, Page 13]) is first to extend the syntactic
class of terms to allow holes (here written ‘e’) and add a new typing rule®

o:0,'>e:o.
For linear PCF we would add the rule

o e

However it is not hard to see that this is insufficient. One can not even form the linear
context

e p> Az p.e: p—ogp.

The solution (as is familiar with the linear setting) is to be more explicit. As explained
earlier, holes are place-holders into which open terms may be placed whose free variables
may be captured, or bound. The important information here is the free variables. Con-
sequently I propose to parameterise holes with these free variables. Thus the typing rule
for holes becomes

o(Z:T): ; Z:I'> o(F:T'): .

I separate the holes and variables in the antecedent with a semi-colon but this is simply
a matter of hygiene. The typing rules for contexts are given in Figure 8. The earlier
example is thus well-typed, viz.

o(z:9): $yz: P> o(7:9): ¢
o(z:P): o> Ax: . @ (T2 @): p—0

The action of placing a term (actually, context) for a hole is then given by the rule

(—OI).

H;To M: ¢ H,o(T): ;A N:p
H,H'; Av N[M/e):9p

Placement.

Thus one can only place a term, M, for the hole o(T) if its set of free variables is I'. The
result of this placement is then defined by induction on the structure of N. If a context
N has only one hole o, we often write it as L[s], or even L[®?] and the result of placing
another context M for the hole as L[M].

It should be noted that there is nothing inherently linear about this treatment of
contexts, indeed I suggest its use with any calculus. A number of other people have
suggested extensions to the notion of context; for example, Pitts [19] and Hashimoto and
Ohori [13].

®The recording of the hole in the antecedent is often omitted.
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O:z: v 0: 0 > b: bool 0:00 Q% ¢
o(Z:T):; Z:T' > o(ZT:I'): ¢

H;T,z:p> M:op ( H;T> M: p—otp H;A>N: ¢
—o

HiT o Aoz g M: p—oth © ~ H H:T,A> MN:9

(—o¢)

Hi;Tio Mgy o Hp; Do Mp:ldn, Hiz1:ldy, ..., znildn b N

. P Promotion
Hi,oooyHpyH'; T,y ..., Ty > promote M for  in N: )

H; o M: 1o
H; T > derelict(M): ¢

Dereliction

H;T'o M:1¢ H'; A N:iop
H,H';T, A discard M in N: )

Weakening

H;To M: !¢ Hi A z:1p,y:1p > N:p

- - Contraction
H,H;[,Av>copy Masz,yin N:yp

H;T> M: ¢ HiAv Ny
H,H;T,A> MQN: ¢

(®1)

H;T> M: g1 H Az, 29> N
H,H;T,Avlet M bez®yin N: @

(®¢)

H;T > M:bool H;A> N:¢ HiAv P: ¢

Conditional
H,H';T, Avif M then N else P: ¢

Figure 8: Type Assignment for Linear Contexts.
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