
OASIS

An Open Architecture for
Secure Interworking Services

Richard Hayton

Fitzwilliam College

University of Cambridge

A dissertation submitted for the degree of

Doctor of Philosophy

cRichard Hayton March 1996

ii

Abstract

An emerging requirement is for applications and distributed services to cooper-

ate or inter-operate. Mechanisms have been devised to hide the heterogeneity

of the host operating systems and abstract the issues of distribution and object

location. However, in order for systems to inter-operate securely there must

also be mechanisms to hide di�erences in security policy, or at least negotiate

between them.

This would suggest that a uniform model of access control is required. Such

a model must be extremely exible with respect to the speci�cation of policy,

as di�erent applications have radically di�erent needs. In a widely distributed

environment this situation is exacerbated by the di�ering requirements of dif-

ferent organisations, and in an open environment there is a need to interwork

with organisations using alternative security mechanisms.

Other proposals for the interworking of security mechanisms have concen-

trated on the enforcement of access policy, and neglected the concerns of freedom

of expression of this policy. For example it is common to associate each request

with a user identity, and to use this as the only parameter when performing

access control. This work describes an architectural approach to security. By

reconsidering the role of the client and the server, we may reformulate access

control issues in terms of client naming.

We think of a client as obtaining a name issued by a service; either based

on credentials already held by the client, or by delegation from another client.

A grammar has been devised that allows the conditions under which a client

may assume a name to be speci�ed, and the conditions under which use of the

name will be revoked. This allows complex security policies to be speci�ed that

de�ne how clients of a service may interact with each other (through election,

delegation and revocation), how clients interact with a service (by invoking

operations or receiving events) and how clients and services may inter-operate.

(For example, a client of a Login service may become a client of a �le service.)

This approach allows great exibility when integrating a number of services,

and reduces the mismatch of policies common in heterogeneous systems. A

exible security de�nition is meaningless if not backed by a robust and e�cient

implementation. In this thesis we present a systems architecture that can be

implemented e�ciently, but that allows individual services to `�ne tune' the

trade-o�s between security, e�ciency and freedom of policy expression. The

architecture is inherently distributed and scalable, and includes mechanisms for

rapid and selective revocation of privileges which may cascade between services

and organisations.

iii

iv

To my wife, Maria

What's in a name? that which we call a rose

By any other name would smell as sweet.

Romeo and Juliet II.ii.43

v

vi

Preface

I would like to thank my supervisor, Ken Moody, for his invaluable support, en-

couragement and constructive criticism. I would also like to thank Jean Bacon,

and other members of the Opera group for their valuable advice and helpful dis-

cussions. I appreciate the assistance provided by Ken Moody, Jean Bacon, John

Bates, Ralph Becket, Sai Lai Lo, Oliver Seidel and Mark Spiteri who suggested

improvements to the dissertation.

I would like to thank my sister, Karen, for drawing the palm tree on the front

cover, and my wife and parents, for their moral and �nancial support.

This work was supported by a studentship from the Engineering and Physical

Sciences Research Council.

Except where otherwise stated in the text, this dissertation is the result of my

own work and is not the outcome of work done in collaboration.

This dissertation is not substantially the same as any I have submitted for a

degree or diploma or any other quali�cation at any other university.

No part of this dissertation has already been, or is being currently submitted

for any such degree, diploma or other quali�cation.

This dissertation does not exceed sixty thousand words, including tables, foot-

notes and bibliography.

vii

viii

Contents

1 Introduction 1

1.1 Models for Access Control : 1

1.2 What's in a Name? : 1

1.3 Research Motivation : 2

1.4 Research Statement : 2

1.5 Outline of Dissertation : 2

2 Naming 5

2.1 Introduction : 5

2.2 Open Systems : 5

2.3 Naming Clients : 6

2.3.1 Discrimination : 6

2.3.2 Wide Area Issues : 7

2.3.3 Security Mismatch : 7

2.4 Server-centric Security : 7

2.5 Related Work : 8

2.6 Emerging Areas : 9

2.7 An Alternative Approach to Naming : : : : : : : : : : : : : : : : 10

2.8 Client Identi�ers : 10

2.8.1 Hosts Supporting Multiple Clients : : : : : : : : : : : : : 11

2.9 Service-speci�c Naming | Roles : : : : : : : : : : : : : : : : : : 12

2.10 Scope Issues : 12

2.11 Summary : 13

3 Language De�nition 15

3.1 Limitations of Existing Schemes : : : : : : : : : : : : : : : : : : : 15

3.1.1 Access Control Lists : 15

3.1.2 Capabilities Schemes : 16

3.1.3 Election : 16

3.1.4 Revocation : 16

3.2 RDL : 17

3.2.1 Role Declaration : 17

3.2.2 Role Entry Statements : 18

3.2.3 Specifying Revocation : 20

3.2.4 Constraint Expression : 21

3.3 Extensions to RDL : 22

3.3.1 Attribute Based Access Control : : : : : : : : : : : : : : : 22

3.3.2 Role Based Revocation : 22

ix

x CONTENTS

3.3.3 Expressing Access Control Lists : : : : : : : : : : : : : : : 23

3.4 Some Examples : 24

3.4.1 High Score Table : 24

3.4.2 Open Meeting : 24

3.4.3 Login with Passwords : 25

3.4.4 Shared Authorship : 26

3.4.5 Playing Golf : 26

3.5 Summary : 26

4 System Architecture 27

4.1 Introduction : 27

4.2 Validating Certi�cates : 27

4.3 Certi�cate Format : 29

4.4 Delegation : 29

4.5 Revocation : 31

4.6 Credential Records : 32

4.7 Constructing Credential Record Graphs : : : : : : : : : : : : : : 33

4.8 Format of a Credential Record : : : : : : : : : : : : : : : : : : : 34

4.8.1 Credential Records for Group Membership : : : : : : : : 35

4.9 Distribution Issues : 35

4.9.1 External Records : 35

4.9.2 Event Noti�cation : 35

4.10 The E�ect of Failures : 36

4.11 RDL Extensions : 38

4.12 Interworking with other Mechanisms : : : : : : : : : : : : : : : : 38

4.13 Auditing and Accounting : 39

4.14 Conclusions : 39

5 The MSSA 41

5.1 Introduction : 41

5.2 A Brief Overview of the MSSA : : : : : : : : : : : : : : : : : : : 41

5.2.1 The Original MSSA Access Control Scheme : : : : : : : : 42

5.3 Access Control Issues : 43

5.3.1 Grouping Files : 43

5.3.2 Meta-Access Control : 44

5.4 Shared ACLs : 45

5.4.1 ACLs as Objects : 45

5.4.2 Recursive ACL Checks : 45

5.4.3 Relating ACLs to Role�les : : : : : : : : : : : : : : : : : : 46

5.4.4 ACL format : 48

5.5 Enforcing Access Control : 49

5.5.1 E�ect of Compromise : 50

5.5.2 Volatile ACLs : 50

5.6 Optimising Access : 51

5.7 Summary : 53

CONTENTS xi

6 Events 55

6.1 Introduction : 55

6.2 An Event Architecture : 55

6.2.1 Event Classi�cation : 55

6.2.2 Registration and Noti�cation : : : : : : : : : : : : : : : : 56

6.2.3 Library Support : 57

6.3 The Active Badge System : 57

6.3.1 A Scalable Approach : 59

6.3.2 Movements Within a Site : : : : : : : : : : : : : : : : : : 59

6.3.3 Namer Lookups : 61

6.4 Composite Events : 62

6.4.1 Distributed Time : 62

6.4.2 Regular Expressions : 63

6.5 A Composite Event Language : 65

6.5.1 Side Expressions : 67

6.6 Examples : 68

6.7 Implementation : 70

6.8 Distribution Issues : 74

6.8.1 Registration Delay : 74

6.8.2 Detecting Event Absence : : : : : : : : : : : : : : : : : : 75

6.8.3 Trading Correctness : 75

6.8.4 Clock Drift : 76

6.9 Aggregation : 77

6.9.1 Requirements : 77

6.9.2 Data Structures : 78

6.10 A Language for Aggregation Functions : : : : : : : : : : : : : : : 78

6.10.1 Variables : 79

6.10.2 Constructs : 80

6.11 Examples : 80

6.11.1 Counting : 80

6.11.2 Maximum : 82

6.11.3 First / Once : 82

6.12 Conclusions : 83

7 Event Security 85

7.1 Introduction : 85

7.2 The Problem with Events : 85

7.3 Policy Speci�cation : 86

7.4 Implementation Issues : 87

7.5 Badge System Requirements : 88

7.5.1 Local Policies : 90

7.5.2 De�ning Local Policy : 90

7.5.3 Remote Policy : 92

7.6 Conclusions : 92

8 Conclusions 95

8.1 Summary : 95

8.2 Further Work : 97

xii CONTENTS

List of Figures

3.1 An Example Role�le, and Associated Axioms : : : : : : : : : : : 19

3.2 An Ambiguous Role�le? : 20

3.3 Constraint Expression : 21

4.1 Preventing Forged Certi�cates : 28

4.2 Format of a Role Membership Certi�cate : : : : : : : : : : : : : 29

4.3 Format of Delegation and Revocation Certi�cates : : : : : : : : : 30

4.4 Chaining Capabilities : 31

4.5 Delegation with Credential Records : : : : : : : : : : : : : : : : : 32

4.6 Entering a Delegated Role : 33

4.7 Format of a Credential Record : : : : : : : : : : : : : : : : : : : 34

4.8 External Credential Records : 37

4.9 Managing Credential Records for Role Based Revocation : : : : : 38

5.1 Access Paths Within the MSSA : : : : : : : : : : : : : : : : : : : 42

5.2 The Access Matrix : 45

5.3 An Example Using Shared ACLs : : : : : : : : : : : : : : : : : : 46

5.4 Cycle Checking of ACLs : 47

5.5 Cycle Checking of ACLs with Constrained ACL Placement : : : 47

5.6 Access Paths for a VAC Operation : : : : : : : : : : : : : : : : : 49

5.7 Sub-typing of Interfaces : 51

5.8 Bypassing One or More Custodes : : : : : : : : : : : : : : : : : : 52

6.1 A Detailed Example : 58

6.2 Badge Movements Between Sites : : : : : : : : : : : : : : : : : : 60

6.3 Intra-site Badge Events : 61

6.4 The E�ect of Delay on Composite Event Detection : : : : : : : : 63

6.5 Regular Expressions with Explicit Alphabet : : : : : : : : : : : : 65

6.6 A Two Section Priority Queue : : : : : : : : : : : : : : : : : : : 78

7.1 Stages in Preprocessing ERDL : : : : : : : : : : : : : : : : : : : 89

7.2 Policies for the Three Sites : 91

7.3 Enforcing Remote Policy using Proxys : : : : : : : : : : : : : : : 92

xiii

xiv LIST OF FIGURES

Glossary

Roles

certi�cate A signed statement issued by a particular service. Also used as

an abbreviation for role membership certi�cate.

credential An assertion of simple fact (for example `Fred is logged on') or

an assertion of a boolean combination of these facts.

credential record A record representing knowledge about the value of a

credential. Credential records are linked so that a change in the value of

one credential may e�ect others.

domain See protection domain.

election A generalised form of delegation, whereby a client who is a member

of one role uses this credential in order to allow another client to enter a

(possibly di�erent) role.

entry conditions Conditions that must be satis�ed in order for a client to

be granted entry to a role.

membership rules Entry conditions that must remain true during the life-

time of a certi�cate. If such an entry condition becomes false, the certi�-

cate is revoked.

protection domain The smallest unit of naming for an Oasis client, gen-

erally equivalent to a process. In architectures where a process's privileges

change when they invoke protected subroutines, the process is in a di�er-

ent protection domain for each set of privileges.

RDL Acronym for role de�nition language.

RMC Acronym for role membership certi�cate.

role A name assumed by a client, representing the authority they are acting

under. In Oasis each process is associated with one or more roles. In other

models each user is associated with a role.

role de�nition language A language used to specify the relationships be-

tween roles, and the entry conditions and membership rules for each.

role membership certi�cate A process speci�c capability entitling that

process to act under the authority of a role.

xv

xvi GLOSSARY

The MSSA

bypassing The act of optimising an access path through a series of value

adding custodes, by missing out one or more of them.

container A logical grouping of �les within a custode, used for management

and accounting purposes.

custode A storage server that provides a particular storage interface.

Shared acls Access control lists that are explicitly shared between more

than one �le.

value adding custode A custode that is implemented by abstracting the

interface of an existing custode, and then providing some additional func-

tionality.

Events

active database A database that generates events when its state changes.

admission control Access control checks during client registration.

base events Events that are not composite.

composite event An event expression in terms of a number of base events.

For example A followed by B. A composite event is signalled when the

expression is satis�ed.

event A named, parametrised occurrence signalled by an event server to

clients who have indicated that they wish to receive it.

event horizon time stamp A lower bound on the time stamps of events

yet to be signalled by a server.

event template An event speci�cation, possibly including wild card pa-

rameters.

generic event object A representation of an event or event template in a

type and machine independent form.

global view Complete knowledge about all events generated by a system up

to some point in time. The detection of composite events is considerably

simpli�ed, if processing is delayed until a global view is achieved.

heartbeat protocol A protocol whereby an event server periodically as-

serts its ability to transmit events. This is used to detect delays or failures.

independent evaluation The process of evaluating two or more expres-

sions simultaneously, so that evaluation of one does not e�ect evaluation

of the other. In particular network delays e�ecting one evaluation do not

necessarily a�ect another.

interesting events Events that a client wishes to be informed of, or has

indicated they wish to receive.

GLOSSARY xvii

pre-registration An indication by a client that it may later wish to retro-

spectively register interest in an event occurrence.

registration The process whereby a client establishes a session with an

event service, and indicates which event occurrences it wishes to be noti�ed

of.

retrospective registration Registration in event occurrences starting at

some point in the past. Event occurrences between the registration time

and the current time are signalled immediately.

xviii GLOSSARY

Chapter 1

Introduction

1.1 Models for Access Control

The world is full of access control systems. We have keys to doors, guest lists

at clubs, passports and driving licences. Early computerised access control

systems were designed to mimic one or other of these \real world" systems.

Capabilities are like keys. If you have a capability for an object, you may use

it. Identity based capabilities are a re�nement of these, and enable access by a

particular client | rather like a passport. Access control lists are much more

like membership lists | `if you're not on the list, you can't come in'.

An emerging and important issue for computer systems is how heterogeneous

systems can interact. This is a problem the `real world' has had for centuries.

We have mechanisms and policies for using British driving licences in Germany,

for becoming a member of a club and for providing references when renting a

house. This work proposes an analogous architecture for computing systems,

whereby security policies can interwork in a general and open way.

1.2 What's in a Name?

In order to interwork between systems, we must �nd some common ground.

Access control may be generalised in the following way. A client approaches a

server with a request. The server must then decide whether or not to grant each

request. To assist its decision making, the client will provide some credentials,

and the server will consult some stored policy. In a capability system, the

credential supplied is a capability, and the policy is `perform the request if the

capability is valid'. In an access control list scheme,the credential supplied is

the identity of the client, and the policy is determined by the contents of the

ACL. The essence of these mechanisms is the same; the client supplies a name

and the server consults a policy.

We can generalise this, and use it as a basis for interworking. The policy

stored within a server need only concern itself with the rights associated with

names. How a particular process obtains a name is a separate issue, and it is

this issue that this work concentrates on. Moving the problem to the domain

of naming has many advantages. Reasoning is often more natural in this do-

main. For example hiring and �ring, club memberships and being elected are

1

2 CHAPTER 1. INTRODUCTION

all concepts we are familiar with. We may also de�ne policy about how names

are acquired in a way that is independent of the services which ultimately make

use of the names. For example the enforcement of the policy statement users

must be members of the university should not a�ect the implementation of a �le

service for those users to use.

The ability to control access by controlling naming, is the proverbial extra

level of indirection that allows us to solve all computing problems.1 This can

lead to a simpler, and more e�cient, implementation than would otherwise be

possible. The alternative is to use the same naming mechanism for all clients

of all services. This is necessarily heavyweight. For example if all clients are

represented by a user identity, then this identity must be validated in all cir-

cumstances. This would force a homogeneity between secure console logins, and

insecure remote logins that may be unwarranted.

1.3 Research Motivation

In a widely distributed environment there will be many di�erent organisations.

If users and services in these organisations are to interwork with each other,

there must be standard mechanisms for the speci�cation and enforcement of ac-

cess control policies. Traditional approaches to wide area security have enforced

common semantics on all clients and services; for example by insisting that ac-

cess policy is de�ned purely in terms of user identity, and that all users have a

name in a global name space. This approach severely restricts the autonomy of

the organisations, and their ability to control their own security policy.

1.4 Research Statement

This work proposes a new, open, security architecture: Oasis. Oasis is di�erent

from other proposals, in that the emphasis is the speci�cation of policies for

client naming. The aim is to produce a clean and simple architecture that allows

all policy decisions to be made explicit, and hence aid reasoning about the secure

interworking of heterogeneous systems. As the issue of naming is separated from

the functional requirements of the di�erent services, it is believed that a general

and e�cient mechanism can be devised for the enforcement of these policies.

1.5 Outline of Dissertation

Chapter 2 considers the issues of client naming. It considers the arguments for

and against a global name space for all clients, and proposes a novel role based

model designed to capture the advantages of both approaches.

Chapter 3 considers policy de�nition itself. A role de�nition language is

derived to allow both static access control rules and interworking to be de�ned

in a clear and unambiguous way.

Chapter 4 outlines signi�cant details of the system architecture. In particular

the mechanisms for allocating, checking and revoking capabilities are considered.

1This remark has been attributed to Prof. David Wheeler.

1.5. OUTLINE OF DISSERTATION 3

Chapter 5 gives a detailed case study. The Oasis architecture has been ap-

plied to a complex distributed storage system, the MSSA[Lo94]. In the context

of this architecture, the issues of access control lists and meta-access control are

considered.

Chapter 6 describes a new paradigm for distributed programming to which

Oasis has been applied: Event Management. The issues of event speci�cation,

registration and noti�cation are discussed, together with the design of a dis-

tributed composite event detection scheme. An active badge system is given as

a case study of event programming techniques.

Chapter 7 considers the issues of access control speci�cation and implemen-

tation for distributed event management. The active badge example of the

previous chapter is used to illustrate the issues, and some solutions.

Chapter 8 summarises the research results and suggests further work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Naming

2.1 Introduction

In this chapter we discuss naming issues for distributed services, and for clients

of these services. In particular we concentrate on open, distributed systems,

where an `end client' may communicate with a service provider via several in-

termediate services, and where the client and service providers may exist in

di�erent administrative domains. In the following sections we derive the need

for multiple inter-working naming schemes de�ned on a per service basis. In

sections 2.5 and 2.6 we consider related work and emerging areas that a new

security model must be able to meet. Sections 2.7 to 2.10 de�ne the Oasis

two level naming scheme and section 2.11 summarises the issues raised in this

chapter.

2.2 Open Systems

When security systems were �rst designed for computer systems, it was in the

context of single multi-user systems. The designers considered what was to be

protected (generally �les) and who the clients were to be (processes). An ap-

propriate name space was designed that allowed authorisation policy for access

to these resources to be speci�ed in terms of the `signi�cant attributes' of the

clients. In most cases it was the identity of the user responsible for the process

that was chosen.

Modern computing systems are radically di�erent. The diversity and prolif-

eration of services can lead to considerable problems when attempts are made

to express authorisation policy purely in terms of user identity. In addition, the

trust relationship between services has become complex. In single multi-user

systems, all protected services were provided as part of the operating system,

and could be trusted to correctly interact without the need for formal autho-

risation. In today's systems, services are both distributed and distrustful of

each other. A request from one service to another must be treated as a client

request like any other, and must be authenticated and authorised. Typically a

server-server request will be made on behalf of an `end' client. It may be the

intermediate server identity, the end client identity or some combination of both

that is most appropriate for use in the authorisation test.

5

6 CHAPTER 2. NAMING

This problem is further compounded by the move to `Open' systems, where

services and clients interact over organisational boundaries. Such systems would

tend to imply a global name space is required for clients, in order that clients

in one domain may be named within another. As will be illustrated, such a

scheme would not only be complex, but is not generally necessary.

We believe that a change of focus is required, from clients to services. If we

reconsider the basis of client-server interaction, it is clear that the server must be

able to determine the `signi�cant attributes' of the client in order to determine if

the client is authorised to make the request.1 The user identity associated with

a client is only one attribute that might be considered signi�cant. We argue

that in a distributed environment there must be many inter-linked client name

spaces. Indeed, in general, each Oasis service is responsible both for naming

and authenticating its clients.

2.3 Naming Clients

A service must be able to identify its clients, and distinguish between them.

A simple, and widely used approach is to use some attribute of client identity

that is already securely available. Use of a single naming scheme has clear

advantages. Most important is simplicity. No system is truly secure if those

with the authority to control policy do not understand the full implication of

their actions, and all users control policy to some degree.2

As systems increase in scale and complexity, so do the possible dependen-

cies and contradictions implicit in the policy de�nitions for di�erent services.

An emerging area is automated reasoning about policy de�nitions in order to

discover loopholes or contradictions[LYS95]. Such reasoning (automated or oth-

erwise) is considerably simpli�ed if the same mechanisms are used throughout.

From the user's (or organisation's) point of view, it is clear that a single

name space for all services is advantageous, if not essential. In the rest of this

section we will consider security from the server's point of view. As will be

seen, a single name space causes considerable problems.

2.3.1 Discrimination

In systems with a �xed name space, a service may be unable to make useful

distinctions between clients. For example, if a user-identity is chosen for nam-

ing, then a service cannot distinguish between di�erent processes owned by the

same user. In particular, access control cannot be based on the identity of the

program text being executed, or the machine the process is executing on. Some

centralised systems [MO87] make these attributes available for use by system

services, such as �ling systems, but extending these schemes to a heterogeneous

distributed environment is di�cult. In particular the semantics of a process

identity vary across operating systems. In Unix, for example, processes are

protected from each other, whereas in a Microsoft Windows environment one

1We agree with [BGS92, Vin88] that the service must make this decision, not some cen-

tralised authority.
2For example, a manager may give his secretary his password, if he knows of no alternative

delegation mechanism.

2.4. SERVER-CENTRIC SECURITY 7

`process' could conceivable modify another whilst it was running. In this envi-

ronment it would be unwise to base access control on the program text a process

was executing. The authentication services provided on di�erent platforms also

vary. In some it may be possible to authenticate the program text, in others it

might not be, or might only be under certain circumstances (for example if the

program resided on a particular device).

An approach that initially appears favourable, is to `bundle' all relevant

naming information together; for example user-identity, program-identity and

host machine. However such a name is complex, and troublesome to authenti-

cate. Unlike user-identity, such a name has unclear semantics, and it is unlikely

that systems developed separately will use similar naming schemes for program

and machine identity. In addition, future systems may require that additional

attributes are included in such a name, for example the identity of the shared

library currently being executed, or the nature of the interconnecting network.

Such an approach is clearly unmanageable, and we therefore reject it.

2.3.2 Wide Area Issues

It is unlikely that in future we will have the luxury of a single global name

space for all possible clients of all possible services, or that distinct name spaces

in di�erent domains will have the same semantics, allowing identi�cation by

a (domain; id) tuple. We must then choose between closed systems, and an

approach that allows inter-working between naming schemes. Two approaches

are to allocate clients multiple identities, with one identity in each administrative

domain, or to allow services to interact with clients using multiple name spaces.

The latter approach is to be preferred, as the distinction between local and

remote clients is generally a useful one, and the inconvenience of multiple logins

is avoided.

2.3.3 Security Mismatch

When the clients of a service are taken from a wider domain than the local

network, it is likely that the degree of trust will di�er. For example, a client

on a remote portable machine, who is connected by a radio link may be much

more susceptible to eavesdropping than a user at a console terminal. In existing

systems this is tackled by either enforcing the higher level of security by use of

increasingly complex cryptographic techniques, or by accepting the lower level

from all clients. When wide area access, and access from portables that are sus-

ceptible to theft is considered, the former choice may be di�cult to implement,

and the latter unacceptable. Instead, we must distinguish between clients with

di�erent levels of trust, and allow each application to act accordingly.

2.4 Server-centric Security

In the previous section we indicated that a service must be able to distinguish

between requests from di�erent clients and that the `signi�cant client attributes'

used to make this distinction is a server speci�c issue. For example one service

may need to distinguish between requests from di�erent processes representing

the same user, another may not.

8 CHAPTER 2. NAMING

In addition there may be reasons why di�erent mechanisms are appropriate

for di�erent services. For example one service may require an access control

list scheme, whilst another may prefer capabilities. If the services are to inter-

operate, a compromise is necessary.

There are many reasons why each service might wish to choose its own nam-

ing scheme for its clients and its own mechanisms for the expression and en-

forcement of authorisation policy. However, if services are to interact, common

mechanisms must be used.

In Oasis there may be many client name spaces. A client will approach an

Oasis server and request that it is granted the use of a name. It may then

use this name when making requests to servers that understand it. Crucially,

when a client requests a name, it may provide names from other name spaces,

or issued by other servers, as credentials. This allows interaction between name

spaces, and allows us to reason about interacting policies.

In addition, if a service requires access to client attributes not available in

an existing name space, it may create a new name space. Typically a new name

space is created by each service that has clients that might interact (perhaps

through delegation), and by each service that must base access control on client

attributes not available in some other name space. For example the fact that a

particular client may access �le foo is an attribute of the client known only to

the �le server.

A similar, although more restricted use of assuming names in order to in-

crease (or restrict) access privileges is present in many experimental systems.

In common with these systems, the term role is used for such a name. However

unlike these schemes, in Oasis a pseudonym is assumed by a process not by

a user. This removes the special status of the human user associated with a

computing activity, and allows more general reasoning. In the following section

a number of existing role-based systems are considered.

2.5 Related Work

Although the majority of existing systems rely on security architectures origi-

nally devised for centralised systems, several recent proposals have been targeted

speci�cally at open distributed environments. ODP architectures, in particular,

require the ability to delegate access rights, as invocations on one object typ-

ically involve nested accesses to other objects. In [BGS92] the authors argue

that a centralised authority is unrealistic, and that a server based view of secu-

rity is more appropriate. Their work proposes a system wide model based on

capabilities, whereby the interface to a service consists of both an object name

and a token allowing (some) client access to that object. The capability may

be delegated, but a complete history of delegations is kept, and when the capa-

bility is used in a request, the server may apply whatever policy is appropriate.

Their paper describes a scalable and open mechanism for enforcing security, but

the issues of policy expression are not discussed. The mechanism itself has the

traditional capability features of exible delegation, but poor revocation.

Vinter [Vin88] proposes an `extended discretionary access control scheme'

for a closed, but distributed operating system. In this scheme roles are used for

naming clients and a declarative policy expression mechanism is used. However

the declarative policy statements are simply ACLs and the policy declaration

2.6. EMERGING AREAS 9

does not cover client interaction. For example it is not possible to express \A

manager may only delegate to his secretary".

Mo�ett [MST90] provides another mechanism for expressing access control

in a distributed environment. In this paper, clients and objects are grouped

into domains, and interaction between domains is expressed using access rules.

This is a reasonably general mechanism, and although it is scalable, it relies on

uniform naming mechanisms for all clients and servers.

Several proposals have concentrated on a formal approach to policy expres-

sion. Lampson [LABW93] proposes a calculus for expression of authorisation

and client interaction. This formalism is accompanied by a complete implemen-

tation. However there is only a single naming scheme for clients, and although

clients can extend their name using roles, these may only be used to limit au-

thority, not to increase it. The system also su�ers from `over delegation', where

more authority is delegated than is strictly required. Delegation is performed

by a client allowing a proxy to use its identity. Although the identity may �rst

be restricted, it is only possible to delegate the use of names. More general

criteria, such as `allow X to act as Y but only when accessing object Z' can only

be speci�ed by explicit inclusion in an ACL for Z. Lupu, Yialelis and Sloman

[LYS95] concentrate on the formal modelling of organisational policies, with the

aim of automated reasoning about these policies. They argue that policies must

be modelled formally, in order that managers may query, negotiate and change

policies. Although Oasis does not consider these issues in detail, it is designed

in such a way that such a high level architecture could be implemented using it.

2.6 Emerging Areas

There are three emerging areas of research that are particularly in need of access

control measures.

Open Distributed Programming There has been a great deal of recent

work on the design of architectures to support open distributed program-

ming. In particular, CORBA has emerged as a reference architecture

adopted by many vendors in order to allow interworking between their

products[Gro92]. The controlling body of CORBA, the OMG, recently

published a white paper on the security requirements for CORBA[OMG94].

In relation to access control, this paper emphasizes the need for exibil-

ity especially with respect to delegation (nested invocations), the physical

location of an object (trust dependent on host) and the need to access

object state in order to make security decisions. The general requirements

given are for consistency and scalability. The document also stresses the

point \If security is di�cult to administer and use, it will not be set up

correctly and users will try to bypass it : : : ".

Cooperative Work This area has received renewed attention recently, as the

emergence of open systems and fast networks have allowed cooperative

work between people separated by large distances. It is often argued that

access control requirements for cooperative work are more complex than

those for the majority of other systems[GS86]. This is in part due to the

dynamic nature of objects in a cooperative environment. If there is a need

10 CHAPTER 2. NAMING

to protect and share objects which have rapidly changing security require-

ments, then it is unreasonable to expect a manager to make the changes

manually. Consequently access control for cooperative work frequently

requires access to the state, or attributes of the protected objects. For ex-

ample, a requirement might be that access is controlled by the last person

to make a modi�cation to an object. A second requirement for cooperative

work is that policies must be clearly de�ned, as they may be negotiated

between a number of organisations, and are therefore harder to update.

In particular an access control policy might be part of a larger policy de-

termining the obligations and motivations of the various members[Slo94].

Recent work has suggested that a role based model is appropriate in order

to aid policy speci�cation for cooperative applications[CD94].

Event Management Access control is generally speci�ed in terms of clients

making requests to a service, which determines whether or not to grant

each request. Event management is a new distributed programming paradigm

that does not �t this model. In event based systems, a service noti-

�es clients whenever `signi�cant events' occur. For example a network

switch may generate events whenever it su�ers from overload, and an

ODP Trader[APM93] might generate an event whenever a new instance

of a service is registered with it. When security policies are applied, a

client may or may not be allowed to receive noti�cation of particular in-

stances of events. For example, in a Military environment, a client may

only be told about new services registered with a Trader if that service

has an access class lower than the client's[Den76]. The issues of access

control for event based systems are considered in chapter 7.

2.7 An Alternative Approach to Naming

In Oasis a two-level approach to client naming is employed. Each process is

given a unique identi�er which is easily authenticated, and then gains higher

level names called roles by interaction with di�erent services. This idea was

�rst proposed in Lampson's famous `protection' paper [Lam71]. Our roles are

approximately equivalent to Lampson's access keys, however in our scheme a

client may obtain many high level names, and these may change during the

lifetime of the client.

Typically, each service will provide its own name space, and arbitrate with

processes wishing to gain these names. In the following section, the design and

advantages of, low level identi�ers are described, and the use of roles is discussed

in section 2.9.

2.8 Client Identi�ers

In Oasis a client identi�er is a tuple (host; id; boot time), where host is the iden-

tity of the machine the client is executing on and id is an identity chosen by that

machine that identi�es the client. The third parameter boot time is to ensure

that client identi�ers remain unique for all time.

This scheme is extremely simple to implement on a variety of operating

systems, and requires little from an authentication service. The host name

2.8. CLIENT IDENTIFIERS 11

must be authenticated in any system3, and, in general, it is not possible to

distinguish between clients on the same host, without the cooperation of the

local operating system.

As the id part of the name is chosen by the client operating system, the

identi�er is `future-proof'; each protection domain can be named individually,

regardless of the nature of these domains. In the following section a suitable

de�nition of id for a multi-user system is derived. This is the naming scheme

used in our implementation, but each host is at liberty to choose its own names.

2.8.1 Hosts Supporting Multiple Clients

Protection domains on a client machine are rarely independent. Typically one

domain will be responsible for the creation of another (such as when a process is

forked in Unix). When a protection domain is created, the creator will typically

wish to pass on some (but not all) of its credentials to the new domain. For

example in Unix, the user identity relating to a process is generally copied to

any sub-process. Although such `handing on' of credentials could take place by

explicit delegation, it is more e�cient to provide a special mechanism for this

common form of delegation.

Again, this problem can be solved by an extra level of indirection. The op-

erating system is modi�ed to provide virtual client identi�ers that a protection

domain may use to name itself. The intuition behind a VCI is that it is a name

a client will use when performing a particular task. If a client performs several

tasks and wishes to keep the credentials for these tasks separate, then it will

use di�erent VCIs. The operating system ensures that a domain may not use a

VCI relating to a di�erent domain, unless that domain explicitly delegates use

of the VCI.

Whenever a protection domain obtains a credential, the credential is asso-

ciated with a particular VCI, and can therefore only be used by protection do-

mains who may name themselves using the VCI. A domain may therefore control

the propagation of credentials to other domains, by controlling the propagation

of VCIs. This is a lesser burden on the operating system, as VCIs are simple

names that are meaningless outside the context of a particular host. There is

considerable freedom in the detailed design and implementation of VCIs for a

particular operating system.

For example, if a domain has credentials A and B relating to VCI x, and

credentials C and D relating to VCI y; then it would be able to use any of A,B,C

or D. If a child domain were created and allowed access to only VCI x, then it

would be able to use A and B, but would be unable to use C and D, even if it

`stole' these from it's parent in some way.

A common requirement is for a login process to restrict access in this way.

It may be used by many users and, for each, it would create a new VCI and

acquire a suitable high level name from the login service. It would then fork a

process for each user, passing on only the relevant VCI and login name.

3We do not need to know which machine it is, merely that a set of requests had the same

origin.

12 CHAPTER 2. NAMING

2.9 Service-speci�c Naming | Roles

An Oasis role is a name that a service uses to distinguish classes of clients. Each

name may be parametrised to identify a particular client, or list signi�cant

attributes of the client. For example a login service might provide a single

role LoggedOn with parameters UserId and Host. A conferencing application

might have roles Chair and Member. De�nitions for these two examples are

given in the next chapter, and used to illustrate how roles interact.

For each role it de�nes, a service provides a set of policy statements de�ning

how a client may enter the role, and how roles interact. A client of the service is

classi�ed by obtaining signed bit-strings called `Role Membership Certi�cates'4

based on supplied credentials. The client is said to have `entered' the role,

and remains a `member' of the role until membership is explicitly, or implicitly,

revoked by the service. When performing an operation, a client presents the

certi�cate to the service which interprets the certi�cate's parameters and decides

the degree of access to allow.

A Role Membership Certi�cate is an idealised membership card. It is possi-

ble to examine its attributes, and to tell if a card has been forged, tampered with

or revoked. An authentication mechanism is adopted that prevents certi�cates

being used by other clients. This reduces the concerns of stolen certi�cates, and

restricts clients to delegating access within the policies laid out by the service

provider.

A crucial feature of the system is that certi�cates from one service may be

provided as credentials when requesting a certi�cate from another service. This

mimics real life, where a person may have to produce one card in order to obtain

another (for example providing a proof of identity when applying for a credit

card). It is this inter-operability, together with well-de�ned mechanisms for

validation and revocation that is the basis for secure inter-working.

2.10 Scope Issues

De�nitions of roles apply to some context, for example an instance of a Confer-

ence, or access to a set of �les. To de�ne the scope of a role, a set of de�nitions

for role membership are grouped into a role�le, and certi�cates for these roles

are make speci�c to this role�le, within the current instance of the service. For

example there may be many instances of a conferencing application, each with a

single role�le de�ning who is the Chair, and rules for membership. Alternatively

we may have a single conferencing application that supports many conferences,

each with their own role�le. In either case role membership certi�cates would

be conference-speci�c.

To allow inter-working between services, a service may o�er to validate role

membership certi�cates for use in other services. Services o�ering this facility

register a standard interface with a name server, thus allowing other services

to (indirectly) validate certi�cates that they did not themselves issue. In the

following chapter a conferencing application is used as an example, and this uses

certi�cates from a Login service in the de�nitions of its roles.

4The architecture involves various certi�cates, but the term `certi�cate' will be used where

there is no ambiguity.

2.11. SUMMARY 13

2.11 Summary

In this chapter we have reasoned that there are two conicting requirements

for client naming in a distributed environment. A single naming mechanism

is required for simplicity and to enable secure interworking. However, diverse

applications have di�erent naming requirements and a single name space cannot

hope to meet them all. In section 2.7 we suggested a compromise; a two level

naming scheme that allows uniformity at the lower level, and diversity at the

higher level. The lower level is easy to implement securely and uniquely identi�es

clients. The higher level represents contextual information about those clients.

This is analagous to associating an object identi�er and a type with each object

in an object oriented programming environment.

14 CHAPTER 2. NAMING

Chapter 3

Language De�nition

In the previous chapter the need for a exible access control mechanism was

highlighted. In particular the following points were made:

� Each service should be able to make appropriate distinctions between

clients, by classifying them according to its own naming scheme.

� Clients of one service should be speci�ed in terms of names given to them

by other services.

� The speci�cation of client roles, and interaction between roles should be

distinct from the functional de�nition of the service.

� Speci�cation should be exible, but easily understood.

In this chapter, a role de�nition language (RDL) is proposed to meet these

goals. In section 3.1 interaction between clients is considered, and the need for

exible speci�cation of delegation and revocation is highlighted. Section 3.2

gives the de�nition of RDL itself, and section 3.3 considers extensions to this

de�nition. Section 3.4 gives a number of examples, and uses these to discuss

the extent to which RDL meets the above requirements.

3.1 Limitations of Existing Schemes

Traditional access control schemes have relied on either access control lists or

capabilities, both for policy expression and as a mechanism for enforcing this

policy. In this section we will consider the limitations of each of these schemes,

with reference to their expressive power.

3.1.1 Access Control Lists

In an access control list scheme, a list of potential clients, and the level of access

allowed by each, is stored with each protected object. ACLs are fundamentally

limited by the choice of naming scheme for clients. As discussed in chapter 2,

such a scheme must be exible enough to allow all useful distinctions between

clients, but simple enough to be veri�able and to be easily understood.

ACLs have a second limitation, in that there is no provision for speci�cation

of client interaction, where one client delegates access privileges to another. In a

15

16 CHAPTER 3. LANGUAGE DEFINITION

distributed environment, clients of a service may be `software agents', printers,

fax machines, and network gateways, as well as human users. The ability for a

user to temporarily grant access rights to one of these `value-adding' services is

becoming increasingly important.

3.1.2 Capabilities Schemes

In pure capability schemes, there need be no classi�cation of clients, and in-

teraction between clients can take place easily by copying and/or re�nement of

capabilities. However, this is a mechanism not a policy. In capability schemes,

there is generally no expression of policy regarding the kind and degree of del-

egation that may take place, and no mechanism for enforcing such a policy, if

it existed. This limitation is overcome by several advanced capability schemes,

such as I-Cap [Gon89]. In I-Cap, the service that issued a capability must be

consulted whenever delegation takes place, and is in a position to enforce policy

control. The method of policy expression is not de�ned in [Gon89], but it is

reasonable to assume that it would take the form of an extended access con-

trol list1. This, unfortunately, requires a client naming scheme, and has the

associated disadvantages.

3.1.3 Election

Emerging cooperative applications call for more complex client interaction. Vot-

ing and Election are common requirements; whereby one or more clients agree

to give an individual special privileges. For example, clients of a conference

may elect a Chair-Person. A similar process takes place in secure systems re-

quiring `joint delegation' whereby two or more `signatures' are required before

an action can take place. Little work has been done on delegation models, al-

though several people have recognised the need for more general mechanisms

[SL87, Yu89].

In the following, the term election is used to describe the process of one client

granting role membership to another. If the role granted is already held by the

electing client, then this is equivalent to delegation in traditional capability

schemes.

3.1.4 Revocation

Revocation is the opposite to delegation. If delegation is allowed, then it is often

reasonable to allow the delegator to reverse his decision. Typically, capability

schemes that allow delegation also support some form of revocation. However,

revocation is notoriously hard to implement e�ciently and few schemes allow

both immediate and selective revocation.

Although the decision to revoke is generally taken by the delegator, this

may not always be the case. In some circumstances policy may dictate that the

delegator may not revoke at all. For example once a voter has voted during an

election, they may not change their mind. Equally, a full policy might dictate

that a role membership should be revoked for reasons that are beyond the control

1A mixed capability and ACL scheme such as this is used as the basis of access control for

the MSSA[Lo94], and is discussed in chapter 5.

3.2. RDL 17

of the delegator. For example a certi�cate might be revoked if it were based on

an existing membership that was itself revoked.

A full policy de�nition must include details of when revocation will take

place, both in terms of the delegator's request, and these other issues. In section

3.2.3 we will discuss how such choices may be speci�ed in RDL.

3.2 RDL

RDL is a language for specifying all aspects of role management. Its three main

functions are:

� To name a set of roles, and specify the parameters associated with each

one.

� To give the conditions for client entry to each role, in terms of existing

role membership, election and other constraints.

� To specify the conditions under which a client's membership of a role

should be revoked.

These functions are considered in turn, in the following three sections.

3.2.1 Role Declaration

Role declaration statements declare the names of roles, and the type and number

of their arguments. They do not, in themselves, de�ne how the role is entered,

or how it is used. They are of the form

def Rolename(arg, : : :) arg : type [arg : type : : :]

Arguments are strongly typed and type may be one of `Integer', `String', a

speci�cation of a set type such as frwxg, or the name of an object type. If an

object type name is speci�ed, then a table of parse functions is consulted, to

allow the RDL parser to interpret literals of this type. Object and set types are

`simple' in the sense that there is no sub-typing or type compatability. These

features were not considered important for such a simple language.

RDL provides a comprehensive type inference scheme, and only argument

types that cannot be inferred by examination of other statements need to be

speci�ed explicitly in declaration statements. If all argument types can be

inferred in this way, the declaration statement is redundant and may be omitted.

Roles de�ned in one server may make use of object types de�ned in another

server by importing type de�nitions. For example

import Login:userid

def Member(u) u : userid

As with declaration statements, import statements may be omitted if the source

of a type may be inferred. In the rest of this chapter, role declaration and import

statements are only given where necessary.

18 CHAPTER 3. LANGUAGE DEFINITION

3.2.2 Role Entry Statements

There are two forms of role entry statement, both of which de�ne admissible

forms of role entry. The �rst form is used to indicate role entry based a candidate

client's credentials, and the second form is used to specify delegation, or election.

Standard Form

The standard form of a role entry statement de�nes entry to a role in terms of

role memberships a candidate client already holds. It is of the form

Role Name([arg; : : :]) Role Reference [^ Role Reference : : :]

[: Constraint]

A role reference may correspond to a role de�ned in the same role�le, or to a

role issued by another service. In the latter case, the role reference consists of

a service name identifying the instance of the issuing service, and an optional

identi�er to locate a particular role�le within the service. By explicitly naming

the issuing service, the need for a global name space for roles is avoided. Each

role reference may have a number of arguments, each of which may be a variable

or literal of the appropriate type. These can be type-checked by a callback to

the issuing service, and object identi�er literals are also parsed in this way.

The constraint is an optional expression in terms of the roles' arguments

that limits the applicability of the statement.

Election Form

In the election form of role entry statement, a client may only enter the role if

a third party wished to elect them. An additional phrase speci�es a role that a

suitable elector must hold, and the constraint expression may limit the extent of

election. Delegation statements are a special case of election statements, where

the elector role is the same as that being de�ned.

Role Name([arg; : : :]) Role Reference [^ Role Reference : : :]

/ Elector's Role Reference [: Constraint]

RDL statements as axioms

An RDL role entry statement can be considered as an axiom in a proof system,

where the conditions on the right hand side of the are premises and the

role entry on the left is the conclusion. Role entry is validated by proving the

premises, and inferring the validity of the conclusion.

An example role�le for a conferencing application is given in �gure 3.1,

together with the axioms it represents. This consists of two role entry statements

de�ning the roles Chair and Member. The �rst states that a client holding

a LoggedOn certi�cate issued by the Login service for user jmb may enter

the role Chair. The second statement is an election statement and speci�es

that a client may be elected by the Chair to the roleMember, providing that

they already hold a suitable LoggedOn certi�cate. The constraint `u in staff'

constrains the applicability of this statement to clients that represent users who

are members of the group staff.

3.2. RDL 19

import Login:useridy

def Chairy

def Member(u) u : useridy

Chair Login.LoggedOn(jmb; h)

Member(u) Login.LoggedOn(u; h) /Chair : u in staff

c owns Login.LoggedOn(jmb; h)

c requests entry to Chair

c owns Chair

c owns Login.LoggedOn(u; h)

c / c
0

c
0 owns Chair

u in staff

c requests entry to Member(u)

c owns Member(u)

Figure 3.1: An Example Role�le, and Associated Axioms

The role�le given consists of two rules de�ning entry to the roles for a

conferencing application. The statements marked with a dagger may be

omitted as the typing information they contain can be inferred.

Multiple Rules

There may be several statements de�ning entry to the same role, and a client

meeting the constraints in any of the statements will be granted role entry. As

the application of di�erent statements may result in role entry with di�erent

parameters or semantics, it is important to de�ne a precedence between state-

ments.

In addition a client may be able to enter a role indirectly | by obtaining

some intermediate role. Although in theory, a client could enter each interme-

diate role explicitly, it is desirable for entry to intermediate roles to take place

automatically when required. This allows intermediate roles to be introduced

whenever this aids expression of policy without the need to modify each client

application to take appropriate action. An added bonus is that such an ap-

proach is more e�cient, both in terms of the number of RPCs required and the

amount of cryptographic computation.

Clearly the use of intermediate roles and multiple statements referring to the

same role could, in theory, lead to ambiguous role�les. In practice it is unlikely

that a policy would be expressed in such a way as to appear ambiguous, but for

completeness, the precedence between conicting rules is given below.

For each request, a list of role memberships is created. This initially

contains the roles the requesting client already holds.

Each statement in the role�le is applied in turn, and if a membership

results, this is appended to the tail of the list.

20 CHAPTER 3. LANGUAGE DEFINITION

Bas(1) Foo

Bas(2) Foo

Bar(1) Bas(2)

Bar(2) Foo

Figure 3.2: An Ambiguous Role�le?

For a client holding Foo and wishing to enter Bar which should be applied

Bas(2) Foo followed by Bar(1) Bas(2), or Bar(2) Foo? In RDL,

the former de�nition is used.

When applying each statement, any of the memberships in the list

may be used as a credential, and the �rst suitable one found will

be used. Ultimately, all but the requested membership is discarded,

and this is returned to the client.

Consider the example in �gure 3.2. Should a client holding role Foo and

wishing to enter role Bar receive Bar(1) or Bar(2)? Application of the above

rule will result in the list of memberships

Bas(1);Bas(2);Bar(1);Bar(2)

The �rst suitable membership, Bar(1), is returned.

3.2.3 Specifying Revocation

In the above sections, entry to a role was speci�ed in terms of a number of

conditions that must be true to allow entry. We term these conditions entry

conditions. In section 3.1.4 a number of potential reasons were given for choosing

to revoke a client's membership of a role; these correspond to the negation

of `signi�cant' entry conditions. Signi�cant conditions are termed Membership

Rules as their continuing validity is a condition of role membership. Membership

rules are indicated by annotating entry conditions within a role entry statement

with asterisks.

There are four kinds of entry condition which may also be membership rules.

� The fact that a candidate is a member of one or more roles.

� The fact that an elector wishes the client to become a member of the role.

� The fact that an elector is in a position to elect the client (a member of

an appropriate role).

� The fact that a parameter to one of the speci�ed roles, is or is not the

member of some group (for example, a user being a member of sta�).

The �fth kind of entry condition | that there is a particular relationship be-

tween the parameters to these roles | cannot change during the lifetime of

the role membership, so need not be considered here. In traditional capability

schemes, only negation of the second or third condition can lead to revocation.

3.2. RDL 21

Constraint! Unit
��:Constraint �� (Constraint)

! Constraint_Constraint

! Constraint^Constraint

Unit! Atom

! Atom � Part of membership Rule

Atom! Variable Comparitor Expression

Comparitor! =
�� 6= ��< ��� ��> ��� Integer Comparitors

! =
�� 6= ��� ��� ��� ��� Set Comparitors

! =
�� 6= �� in Object Identi�er Comparitors

Expression! Integer Expression

! Set Expression

! Group or Object Identi�er

Figure 3.3: Constraint Expression

RDL is considerably more powerful, as not only can the circumstances of this

form of revocation be clearly speci�ed, but other conditions that may breach

security policy may be identi�ed and used to trigger revocation.

In terms of a proof system, revocation takes place when membership can no

longer be proved using the axioms formed by the membership rules involved in

role entry. For example, consider the role entry statement

Member(u) Login.LoggedOn(u; h)� /� Chair : (u in staff)�

If a client c1 representing the user dm on host ely is elected to the roleMember

by a client c2, then its continued membership is represented by the axiom

c1 owns Login.LoggedOn(dm; ely)

c1 / c2

dm in staff

c1 owns Member(dm)

If, for example, dm was subsequently removed from the group staff, it would

no longer be possible to prove

c1 owns Member(dm)

and membership of this role would be revoked. Equally, if the delegation (c1/c2)

were revoked, or the login certi�cate was invalidated, the membership of the role

Member would also be revoked.

3.2.4 Constraint Expression

The constraint expression in a role entry statement is a boolean expression in

terms of the parameters of the associated role membership certi�cates. If this

expression contains one or more instances of the � operator, then a membership

rule is formed by substituting in the value of all the other subexpressions at

the time of role entry. The full grammar for a constraint expression is given in

�gure 3.3.

22 CHAPTER 3. LANGUAGE DEFINITION

3.3 Extensions to RDL

The language described above allows entry to a role based on restricted election,

or on ACL like structures within a role de�nition �le. Membership of a role may

be revoked if the elector so decides, or if assumptions made on entry no longer

hold. In this section possible extensions to RDL that allow greater expressive

power are considered. These, or other extensions, are provided by applications

that require them.

3.3.1 Attribute Based Access Control

Statements in RDL are in terms of attributes of the principal requesting access,

and those of electors. Protected objects themselves are not de�ned within RDL,

and there is therefore no way of allowing access based on attributes of these

objects. Attribute based access control is relatively costly to implement [MS91],

but is necessary for some applications.

RDL can be extended to allow access to an object's state by providing a

server speci�c set of functions to be used in the constraint expression. These

functions may be entry conditions or membership rules, although the latter

requires considerable cooperation from the service itself. The example `Shared

Authorship' in section 3.4.4 makes use of two of these functions.

3.3.2 Role Based Revocation

Revocation has been considered as the negation of a delegation. In some cir-

cumstances we require revocation without a matching delegation. For example,

consider an open meeting. We may wish to reserve the Chair's right to revoke

the membership of a client, despite the fact that they were not involved in the

client's original award of the `Member' role.

There are other situations, where a client is elected to a role, but where a

client other than the elector has the right to revoke. For example, in business,

the election `Hire' and associated revocation `Fire' are rights associated with a

Manager. However they are associated with the roleManager, not the particular

person currently �lling that position.

RDL can be extended to accommodate these situations. We add additional

syntax in the form of a `revoke' operator (.), which has the intuitive meaning

that a membership may be negated by a member of the role indicated. The

parameters of the delegated role are used by the revoker to specify which role

membership certi�cates are to be revoked. This is signi�cant as a revoker may

not be aware of the client's identity.

The RDL for an open meeting with this extension is as follows

Chair : : :

Member(p) Person(p) .� Chair

This indicates that a client holding the role Person(p) may enter the role

Member(p), but that that membership may later be revoked by a client holding

Chair. In terms of a proof system, the membership condition axiom is extended

with an additional clause stating that revocation has not taken place. For

3.3. EXTENSIONS TO RDL 23

example, the axiom indicating that a process p representing a person Fred may

become a member is

p owns Person(Fred)

p requests entry to Member

:Revoked(Member(Fred))

p owns Member

The implementation of this extension is considered in section 4.11.

3.3.3 Expressing Access Control Lists

Access control lists are a common form of policy speci�cation, and in order

to support legacy systems, it is useful to be able to represent existing access

control lists as a set of RDL rules. However, depending on the semantics of

the ACL system being mimicked, this translation may not be straightforward.

In particular RDL statements are independent. Entry to a role will result in

the application of a single rule. ACL systems are often cumulative whereby the

rights granted are based on the application of several `rules'. For example the

ACL statement `students may have read access' and the statement `user

rjh21 may have write access' may be combined to give both read and write

access to rjh21 if he were a student.

Whatever the semantics of an ACL system, it can be generalised to a map-

ping between a client identi�er and a set of access rights. In RDL, this may be

represented by extending the constraints expression with a parametrised func-

tion of this form. For example the Unix acl `rjh21=rwx staff=r-x other=r--'

may be expressed as

UseFile(r) LoggedOn(u)

:r = unixacl(\rjh21=rwx staff=rx other=r"; u)

This indicates that a client may obtain a role UseFile(r) where r is the rights

allocated to them on the ACL for the protected �le.

In the Unix �ling system, access to a �le is restricted by the access control

lists on the parent directories, in addition to the ACL on the �le itself[RT78]. In

order to aid reasoning about the interworking of such legacy systems with Oasis

services, it is useful to be able to express such a scheme in RDL. This can be

done using the extensions discussed in section 3.3.1. Two functions are required,

a function InDir(f; d) that returns true if f has an entry in the directory d,

and a function Root(d) that returns true if the directory d is the root directory.

We represent each ACL as an entry within a single role�le of the form

ACL(r;�leid) LoggedOn(u)

:r = unixacl(\access control list"; u)

We then add two rules indicating how ACL entries are related to rights given

to clients.

Rights(r; f) ACL(r; f) :Root(f)

Rights(r; f) ACL(r; f) ^ Rights(s; d) :InDir(f; d) ^ fxg � s

Under Oasis ACLs for new applications are speci�ed using a standard format,

accessible by the parametrised function acl. This is described in the context of

a storage service in section 5.4.4.

24 CHAPTER 3. LANGUAGE DEFINITION

3.4 Some Examples

Some simple examples of the use of roles are given in the following sections.

Longer case studies are given in chapters 5 and 7.

3.4.1 High Score Table

A game with a private high score table is often given as an example application

requiring access control. Only processes running the game application may write

to the high score table, which is stored in a �ling system, but any logged in user

may read it. For this example, it is assumed that a Loader service is available

that will validate that a particular client identi�er represents the execution of a

particular program image. This loader is likely to consist of two parts; one local

to the client machine, that interfaces with the operating system and certi�es

loading, and a central secure service that will rule on the validity of statements

made by client loaders, based on the assumed integrity of the client host. The

central loader may then issue certi�cates to client processes. The role�le given

is that for the high score �le, and is self explanatory.

def UseFile(r) r = frwxg

UseFile(frg) Login.LoggedOn(u)

UseFile(frwg) Loader.Running(\Space Invaders")�

3.4.2 Open Meeting

This is similar to the Conferencing example used throughout this chapter, but

with more exibility with regard to delegation. It is assumed that the meeting

has a Chair, and that any member of sta� may join the meeting. A requirement

is that any member of the meeting may invite someone else to join. This is an

example of unrestricted, recursive delegation.

Chair Login.LoggedOn(rmn; h)

Member Login.LoggedOn(u) : u in staff

Member Login.LoggedOn(u) /Member

We could extend this example still further by allowing the Chair to eject anyone

from the meeting. This may be done using the extension described in section

3.3.2. Revocation of this form is speci�ed using the parameters of the delegated

role. We could modify the role Member to take the user's identity as a pa-

rameter, but this might involve modi�cations to the application code. Instead,

we add an intermediate role Candidate. Note that clients may still request

entry to the role Member by supplying the same credentials as before; the role

Candidate is entered automatically, as describe in section 3.2.2

Chair Login.LoggedOn(rmn; h)

Candidate(u) Login.LoggedOn(u) .� Chair

Member Candidate(u) : u in staff

Member Candidate(u) /Member

3.4. SOME EXAMPLES 25

3.4.3 Login with Passwords

A common example of role entry using multiple candidate certi�cates is au-

thenticated login. Generally there will be a central password service, that is

responsible for maintaining passwords, or other user authentication informa-

tion. This may be used by any other service requiring user authentication, for

example a login service. After a discourse between the client and the password

service, the password service issues the client with a role membership certi�cate

stating that they have been authenticated.

Internally, the password service stores a set of secrets associated with a

number of keys. For example a client wishing to perform login may request a

password certi�cate of the form Passwd(userid; Login). Login itself can then

be performed by presenting the password certi�cate to the login service, which

will perform any additional checks, such as on the identity of the host.

Login(u) Pw.Passwd(u; Login) ^ Host(h) : h in hosts

Secure(u) Pw.Passwd(u; Login) ^ Host(h) : h in secure

Untrusted(u) Pw.Passwd(u; Login)

Visitor(u)

The above rules de�ne four di�erent login roles. Login is the role usually used;

Secure is a login on one of a set of trusted machines; Untrusted is login from

an unknown machine; and Visitor is a login consisting of an unchecked client

claim that they represent a particular user. The above role�le requires a client

to decide which role they wish to enter, This decision could be left to the login

service by �xing the role type as a parameter. For example

def Login(l; u) l : integer

Login(3; u) Pw.Passwd(u; Login) : h in secure

Login(2; u) Pw.Passwd(u; Login) : h in hosts

Login(1; u) Pw.Passwd(u; Login)

Login(0; u)

This gives a client the `maximum' permissible role, dependent on the machine

they are on. If a client wishes to explicitly Login at a particular level, they may

specify the l parameter in their login request. Note that in the second set of

de�nitions, the rules for `secure' and `hosts' have been reversed. This is because

the �rst matching rule is used.

26 CHAPTER 3. LANGUAGE DEFINITION

3.4.4 Shared Authorship

For shared authorship a requirement may be to identify the author implicitly

as the creator of the document, rather than explicitly by entering their userid

in the role�le. This would allow one role�le to be used for many documents

with di�erent authors. Let us imagine that each document has one author, and

one editor. The author may edit or annotate the document, and the editor may

annotate it, and decide when it is in its �nal form. Once �nalised, the author

and editor may still make annotations, but no more edits are allowed.

Role�le for document DOC:

Author Login.LoggedOn(u) : u creator(DOC)

Editor Login.LoggedOn(MrEd)

def Rights(r) r : feafg

Rights(faeg) Author : :finalised()�

Rights(fag) Author

Rights(fafg) Editor

3.4.5 Playing Golf

In many golf clubs, a new player wishing to join the club requires two recom-

mendations from di�erent existing members. This may be modelled in RDL

as the acquisition of a set of credentials, followed by entry to the role Mem-

ber. Constraint expressions are used to ensure the recommendations are made

by di�erent members. Assuming the role Candidate and Member have both al-

ready been de�ned, and take a single argument of a `person identi�er', a suitable

role�le is as follows.

Recommended(p; x) Candidate(p) /Member(x)

Member(p) Recommended(p; x) ^Recommened(p; y) : x 6= y

This example demonstrates how quorum delegation can be easily speci�ed. It is

possible to arrange that any of the electors may revoke the membership simply

by adding the appropriate *s. For a service to specify a quorum for revocation,

the extension described in section 3.3.2 is required.

3.5 Summary

In chapter 2, we indicated that role membership certi�cates provided a exible

and e�cient means of distinguishing between the clients of a service. In this

chapter we have derived a language for specifying the conditions for role entry

and exit, and described how the interaction between clients may be clearly

speci�ed. This allows us to determine when a certi�cate should be issued, and

when it should be revoked. Policy statements may be represented as axioms

in a proof system, aiding automatic reasoning about the interaction of di�erent

policies. In the following chapter we will discuss how such certi�cates can be

validated, and how the detection of the conditions for revocation described in

this chapter can be implemented e�ciently.

Chapter 4

System Architecture

4.1 Introduction

The notion of roles and the role de�nition language described in the last chapters

provide a comprehensive and exible access control architecture. This chapter

considers how such an architecture can be implemented, both in terms of the

interface between di�erent servers, and the exibility that a particular service

has in optimising its performance.

4.2 Validating Certi�cates

When a client performs an operation, it will supply a role membership certi�-

cate. Validation of this certi�cate should fail if any of the following is true:

1. The client is acting under an identi�er other than its own.

2. The certi�cate is forged, or modi�ed.

3. The certi�cate is stolen.

4. The certi�cate was issued by a di�erent service, or for use in a di�erent

context.

5. The certi�cate is valid, but does not embody su�cient rights for the re-

quested operation.

6. The certi�cate has been (or may have been) revoked, either explicitly, or

implicitly (for example by a change in group membership).1

If any of the �rst three conditions hold, then this constitutes fraud by the client.

If conditions 4 or 5 hold then the client is acting incorrectly; either erroneously

or in an attempt to gain illicit access. Condition 6 is the only condition that a

`well behaved' client may trigger. It is advantageous to be able to distinguish

between these three classes of failure. Fraudulent or erroneous accesses could

1Issues such as network failure may lead to a server being unaware of a revocation request.

If there is a possibility that a certi�cate has been revoked then the server should generally act

as if it has been. This issue is considered in depth in section 4.9.

27

28 CHAPTER 4. SYSTEM ARCHITECTURE

Secret

Certificate

Client Identifier

Rolefile Identifier Signature

SignatureCertificate

True Signature

?

Secret

Certificate

Client Identifier

Rolefile Identifier

SignatureCertificate

(a) (b)

Figure 4.1: Preventing Forged Certi�cates

A one way function is used to protect the text of a certi�cate, and to

associate it with a particular client-id and role�le(a). When the certi�cate

is later presented for veri�cation, if the value of any of these has changed,

then the recorded signature will not match the true signature (b). As

`Secret' is known only to a single instance of a service, clients are unable to

discover the value of the true signature to match a modi�ed certi�cate. In

addition, certi�cates may only be validated by the instance of the service

that created them, and thus use out of context is prevented.

then be recorded and used to identify miscreant users, or suspect applications.

In Oasis, validation failures due to fraudulent or erroneous use are detected

separately from those caused by revocation. This information can be made

available for administration purposes.

There are three stages to validation; �rst the client identi�er is validated

using a suitable authentication protocol. Secondly, the integrity of the certi�-

cate, and the context in which it is used, are validated by (re)computation of a

digital signature. Finally a �eld within the certi�cate is used to detect revoked

certi�cates. After these three stages the certi�cate is known to be valid, and it

is left to application speci�c code to check whether it embodies suitable access

rights for the requested operation.

A typical digital signature function is shown in �gure 4.1. This is based

on that used in [Gon89]. Unlike other schemes, in Oasis, the only function

of the digital signature is to check that the signature is not forged. Once the

check has been performed, the integrity of the certi�cate may be cached, and re-

computation avoided. This is particularly signi�cant in distributed architectures

where validation may involve a remote procedure call to the issuing service.

By contrast, some existing architectures make use of the fact that a re-

computation of the signature will fail if the secret is changed. In the original

MSSA scheme, for example, revocation took place by changing the secret[Lo94].

Although e�cient, this has the disadvantages that fraudulent behaviour could

not be distinguished from reasonable behaviour, and that revocation could not

take place on a per-certi�cate basis.

Although a digital signature is the mechanism generally used in Oasis, a

service is at liberty to use other forms of integrity check. For example, a service

that issues only a small number of certi�cates may simply maintain a record of

what has been issued, rather than relying on cryptography. Equally, a service

requiring little security may use a cheap signature function, with small signa-

tures; whilst a more security conscious service may use long signatures, and

more expensive cryptographic techniques. This is in keeping with the aim of

4.3. CERTIFICATE FORMAT 29

roles ...L1 L2 Signaturearg arg

L1 L2

CRR

Figure 4.2: Format of a Role Membership Certi�cate

allowing a service to choose its own e�ciency trade-o�s. The format of a cer-

ti�cate allows for a variable length signature, although a particular service will

generally issue certi�cates of a particular length, which allows for more e�cient

manipulation.

4.3 Certi�cate Format

A certi�cate must contain the name of the role it represents, together with any

arguments that the role takes. In addition it must contain su�cient information

to protect it against misuse, as described above.

To alleviate the need for a client to hold several certi�cates for related roles,

compound certi�cates can be returned. These represent membership of more

than one role. For example in the meeting example, it is likely that a client who

holds the Chair role will be a Member. Both of these roles may be entered

with a single request, and the client application need not distinguish between

the roles when performing operations. To allow for compound certi�cates, the

certi�cate format contains a set of role names. The current implementation of

this architecture is limited to compounding roles that have identical arguments,

although this is not a fundamental limitation. Each role is represented by a

speci�c bit, and although the actual mapping is unimportant, it must not change

during the lifetime of the service. To ensure this, the mapping is provided as

con�guration information when a service is initialised.

The format of a certi�cate is shown in �gure 4.2. CRR is a credential

record reference. This is an eight byte �eld used for revocation purposes, and is

described in section 4.6. The arguments of the certi�cate are strongly typed by

the issuing service, and must be marshalled into a host independent format to

allow other services to examine their values. Object identi�ers may be compared

for equality in their marshalled form, which is the only admissible comparison

for object identi�er types. Sets are marshalled to a bit-set type, which allows

equality and subset tests to be performed. Operations gettypes and parsename

are provided in the server interface to allow other services to determine argument

types and parse literals.

4.4 Delegation

In order to delegate membership of a role, a client requests a `Delegation Cer-

ti�cate' from the appropriate server. As a side e�ect of this a `Revocation

Certi�cate' may be returned which the client can use to revoke the delegation.

The Delegation certi�cate is then passed to the client to be elected, who accepts

the delegation by using the certi�cate as a credential when entering the named

role. In this way both parties must agree to the delegation, and the delegator

30 CHAPTER 4. SYSTEM ARCHITECTURE

Required Role:

New Role:

Delegator:

L1

Role L1 arg arg...

RolefileServer

L1

Role L1 arg arg...

CRRNew Role DelegatorNo. L2 Signature

L2No.

Required Roles

CRR2 L2 Signature

L2

Delegation Certificate:

Revocation Certificate:

CRR1

Figure 4.3: Format of Delegation and Revocation Certi�cates

can be assured of the ability to revoke, regardless of network failures during this

process.

As clients are identi�ed by low level identi�ers, when delegating membership

of a role, the candidate client must be identi�ed by one or more roles that they

hold. For example a client representing user Bob would delegate to a client

representing user Jim by explicitly stating that a candidate client must hold

Login.LoggedOn(Jim). This allows for delegation to clients who have yet to

be given low level identi�ers, and reduces the chance of a client being fooled

into delegating to an imposter. A delegator is at liberty to specify any number

of roles that a client must possess in order to utilise the delegation certi�cate.

This may lead to a large number of certi�cates being involved in role entry.

For this reason, role entry due to delegation, and role entry due to `standard'

credentials are implemented by separate RPC calls.

An additional advantage in specifying candidate clients in terms of the roles

that they hold is that delegation may be speci�ed for periods longer that the

lifetime of a low level client identi�er. It is often appropriate to use one digi-

tal signature function for short lived certi�cates, such as role membership cer-

ti�cates, and another more secure function for long lived certi�cates, such as

delegation certi�cates, that might be prone to di�erent forms of cryptographic

attack.

Although long term delegation can be useful, short term delegation is much

more common. A safety feature is that a delegator may specify a time limit on

the life of the delegation, after which automatic revocation should take place.2

This prevents the situation of un-revokable delegation due to a lost revocation

certi�cate, and has the useful side e�ect of allowing the server to delete stale

revocation information periodically. A delegator may also specify that revoca-

tion should take place if and when their own role is exited.3 These features are

2Of course, this is only possible if the role�le allows revocation.
3A client exits a role by voluntarily giving up membership, for example by logging o�.

4.5. REVOCATION 31

Client 3 Client 1

Capability for RW access

Capability for R access

Copy used for delegation

Capability for RW access

Copy used for delegation

Protected
Object

Client 2

Figure 4.4: Chaining Capabilities

In this example, client 1 has delegated to client 2, who in turn has dele-

gated a restricted form of his capability to client 3. For client 3 to use the

capability all capabilities along the chain must be validated. Client 1 may

revoke the delegated accesses by destroying the shaded capability. This will

prevent access by both clients 2 and 3.

signi�cant, as they help reduce the number of forgotten delegations, and hinder

attacks whereby a client is prevented from accessing a server in order to issue

revocation requests.

The format of delegation and revocation certi�cates are given in �gure 4.3.

Note that the `required roles' speci�ed in the delegation certi�cate are the roles

the delegator requires the candidate to have. In addition to these, the candidate

must supply certi�cates matching the candidate roles speci�ed in the role�le.

In the revocation certi�cate, there are two credential record references. The

�rst ensures that the delegator is still a member of the delegating role, and the

second represents the credential to be invalidated. This is described in detail in

the following sections.

When long term delegation takes place, there must be a method of revoca-

tion available which is suitably long lived. To allow this, a special delegation

certi�cate is created that delegates the right to revoke, rather than the right to

enter a role. There is a �xed policy for this: that a client may only delegate to

another member of the `elector' role.

4.5 Revocation

There are three approaches to revocation commonly used in capability schemes.

Firstly, when a capability is revoked, all instances of it may be physically re-

moved from clients. This is a reasonable approach in centralised systems (for

example Multics [Org72]), but in a distributed environment where copying of ca-

pabilities cannot be prevented, this is not appropriate. The second approach is

to store state about all invalid or revoked capabilities, and consult this database

on each access. If revocation is rare, and capabilities are short lived, or even-

tually collected by some other complementary system, then this is a reasonable

approach. This scheme is used in I-Cap, together with an (unde�ned) long term

collection scheme.

The third approach, which is used by Oasis, is to store information about

every valid capability. This is consulted on each access. This approach has the

32 CHAPTER 4. SYSTEM ARCHITECTURE

Client 3

Client 1

Client 2

Credential Records

Cap 1 is valid

Cap 2 has not been revoked

Cap 3 has not been revoked

Capability for R access

Capability for RW access

Capability for RW access

Figure 4.5: Delegation with Credential Records

Recursive delegation corresponds to a tree structure in the credential

records. For example client 1 may revoke the capability delegated to client

2 by invalidating, or deleting, the shaded credential record. To allow this,

client 1 is given a special `revocation certi�cate' that contains a reference

to the shaded record.

disadvantage that state must be stored for all capabilities, even if there is no

revocation. However, if revocation is common, or capabilities are long lived,

there are likely to be more revoked capabilities than valid ones.

A common implementation of this method is `capability-chaining' whereby

a delegator passes on an indirected capability, thus allowing later revocation by

breaking the path[Red74]. This is illustrated in �gure 4.4. Such a scheme is

exible, but is ine�cient as long chains of capabilities due to recursive delegation

require a large amount of stored state and many cryptographic checks.

In the design of Oasis, a key aim was to allow revocation for a number of

reasons, such as change of group membership. This requires a more e�cient

mechanism than capability-chaining. A secondary issue is that revocation must

be performed in a distributed environment, and so a solution must be scalable,

and tolerant to independent server failure, or message loss. In the following

section the notion of `credential records' is introduced, as a basis for revoca-

tion. Sections 4.6 to 4.8 discuss the implementation of a revocation scheme

within a single service and section 4.9 expands the discussion to a distributed

environment.

4.6 Credential Records

Credential records are a methodology to allow exible, selective revocation due

to any number of `signi�cant events'. A credential record is a small record stored

in a server that represents that server's current belief about some fact. Unlike

certi�cate-chaining, only the belief is stored, not the actual fact. This allows

credential records to be small, and to represent arbitrary facts. Records form

a directed graph, such that a child represents some function of the beliefs held

about its parents. In this way, only a single credential record need be consulted

to con�rm an arbitrary number of facts. A �eld is added to each certi�cate

called a `credential record reference'. This is a reference to a record within the

issuing server that represents the validity of the certi�cate. The name space

4.7. CONSTRUCTING CREDENTIAL RECORD GRAPHS 33

Record representing
Delegation

Membership Certificate for LoggedOn

Record Representing
membership of group ‘Opera’

Record representing validity
of LoggedOn Certificate.

Record representing that
revocation has not taken place

Delegation Certificate

Figure 4.6: Entering a Delegated Role

When a client enters the role Member, they must supply a Login Certi�cate,

and a delegation certi�cate. From the references embedded in these two

certi�cates, and the one found by group membership lookup, the illustrated

graph can be constructed, in which the shaded record represents the logical

conjunction of the three membership rules. A reference to this credential

record is included in the membership certi�cate.

for credential record references is designed so that references are never reused,

and credential records representing facts that are false, and will always remain

false, can be deleted. Figure 4.5 illustrates the data-structures for the example

in �gure 4.4.

4.7 Constructing Credential Record Graphs

Graphs in the credential records correspond directly to statements in RDL.

Each membership rule involved in the de�nition of a role will be represented by

a single credential record. Consider the de�nition of `Member' from the previous

chapter.

Member(u) Login.LoggedOn(u; h)� /� Chair : u in Opera�

There are three membership rules for this de�nition:

1. The supplied logged on certi�cate must remain valid. The certi�cate con-

tains a reference to the credential record representing this fact.4

2. The delegation must not be revoked. A new credential record is created to

represent this fact. The delegator is given the right to delete this record.

3. The client must remain a member of the `opera' group. Each group

membership is represented by a single credential record, and membership

lookup returns a reference to this as a side-e�ect.

4For the moment, we will ignore the fact that this was issued by a di�erent service.

34 CHAPTER 4. SYSTEM ARCHITECTURE

32 8 8 8 328

Magic child listUnknownN D A
Parent Counters Flags

PUS Op True False

Flag Description

State Current truth value, True or False

Unknown Value is currently unknown due to network failure

Permanent The state will never change

Notify Another service is using this credential

Direct Use A certi�cate has been issued that embeds this credential

Auto Revoke This credential should be revoked if a parent exits

Op Binary operation performed on parent values

Figure 4.7: Format of a Credential Record

To create a suitable credential record to represent the truth of all three of these

facts one new record must be created (for rule 2) and a second record must be

created to `and' together the records representing rules 1,2, and 3, as illustrated

in �gure 4.6. A small optimisation is possible in that the two new records can

be combined into one ful�lling both functions. In general one new credential

record is required for each (revokable) delegation, and one for each entry to a

role with multiple membership rules.

In order to support role entry involving complex constraint expressions, op-

erators other than a logical `and' are required when combining the values of

credential records. To this end, records which perform logical `or', `nor' and

`nand' operations on the truth values of their parents are added, and the `not'

operation is added as a distinguished parent!child reference. Although `and'

and `not' would be su�cient to represent an arbitrary set of constraints, the

other operators allow for more compact expressions, and hence fewer credential

records are required.

4.8 Format of a Credential Record

The format of a credential record is shown in �gure 4.7. Credential records are

stored in a large table within a server. Whenever a table entry is reused, the

Magic �eld is incremented, thus ensuring that (table index; Magic) forms an

identi�er which is unique over the life of the service. This tuple is used to form

a 64 bit identi�er used as the credential record reference. This method can also

be used for credential records stored in persistent store, and is described in more

detail in [Lo94, 6.4].

Each credential records stores a list of its children, so that when its state

changes, the information is propagated to its children, which will change their

value and recurse, if appropriate. Rather than storing backwards pointers from

child records to parents, a more e�cient scheme is used, and counters are kept

of the number of parents that are `true', `false' or `unknown' due to network

failures. This information is all that is required to set the state of a record.

A Permanent ag within each record indicates if state changes are possible.

Whenever a state change is not possible, for example after revocation, the record

itself is redundant and can be garbage collected. A record may also be deleted

if it represents a fact that is uninteresting, i.e. one that has not been used for

4.9. DISTRIBUTION ISSUES 35

issuing certi�cates directly, and that no longer has any child records.

Garbage collection takes place unlinking parent!child links whenever the

value of a parent is made permanent. The record cannot be immediately deleted

because this might leave dangling references from its parents. A periodic sweep

algorithm unlinks these references, and deletes uninteresting and permanent

records.

4.8.1 Credential Records for Group Membership

Credential records representing group membership can be considerably simpler

than `standard' records, as they have no ancestral dependencies, and are not

used directly. However, it is essential that when group membership changes,

the corresponding record can be updated. Unlike revocation, where the relevant

CRR is supplied explicitly, a service managing group membership must be able

to determine the identity of the related credential record whenever there is a

group membership change.

It is not necessary to store a credential record representing every possible

group membership, or even those that are currently valid. Instead, a hash

table of `interesting' credentials is created, indexed by (userid; groupid). An

interesting credential, in this case, is one that has child records, or that is used

by an external server.

4.9 Distribution Issues

In a distributed environment, certi�cates issued at one server may be used as

credentials at another. Consequently, a credential record in one server may be

required to be the parent of a record in another. This raises issues of nam-

ing, independent failure modes and robustness[Bac92]. In order to decouple the

name space and failure modes of two services, external records are used to rep-

resent remote facts and event noti�cation is used to communicate state changes

between servers.

4.9.1 External Records

If a server requires a reference to a credential record on another service, it cre-

ates a local surrogate record called an external record. This record contains

information about the identity, location and state of the record being repre-

sented, together with the standard attributes of a credential record, including

an identi�er within the local name space. The state of the record is maintained

by event noti�cation, as described below, and in all other respects the record is

treated as a local credential record. When the local garbage collector decides

the record is no longer required, the external server is informed so that it can

delete corresponding state.

4.9.2 Event Noti�cation

Asynchronous event noti�cation is an important feature of distributed systems,

and the RPC mechanism used in the current implementation of Oasis has been

36 CHAPTER 4. SYSTEM ARCHITECTURE

extended to add event management functions.5 Oasis makes use of these func-

tions by de�ning the event type Modi�ed(CRR;newstate) in the interface def-

inition �le of an Oasis server. A server may then register interest in the state of

a particular credential record, and will be informed if its state changes, by being

sent an event with CRR and newstate set to appropriate values. In this way,

revocation taking place in one server may a�ect certi�cates issued by another.

The e�ect of external records and event noti�cation is illustrated by �gure

4.8, which uses the example from 4.6, but highlights the distribution issues.

4.10 The E�ect of Failures

Event noti�cation between servers may be delayed inde�nitely by network con-

gestion or failure. Additionally, either of the parties may fail and restart inde-

pendently. These situations must be taken into account in the design of any

distributed system involving events. The approaches described here are imple-

mented as part of a generic event library, and are equally admissible to any

event based application.

Consider two parties A and B, where A wishes to send B a stream of messages.

If every message A sends contains a sequence number, then B will be able to

detect if any previous message has been lost. If in addition, A ensures that a

message is sent at least every t seconds, then B will know within time t if a

message has been lost or delayed.

This is the basic requirement for event handshaking. In addition, B must

periodically inform A that events have been received, so that A may delete any

associated state.

This protocol is called a heartbeat protocol, and a form of this is used in the

event system implemented. The server responsible for signalling events is used

as the initiator of the protocol and ensures that a heartbeat event is sent every t

seconds. Individual events (and heartbeats) are not acknowledged for reasons of

e�ciency, but every i heartbeats the client replies, so that the server can detect

failures and resend event instances if required.

This leads to a system with the following characteristics:

� A client can be certain of receiving an event within time t of its generation,

or of detecting that noti�cation may have failed or been delayed.

� A server can detect a client that is not responding, and after a period, can

assume that it is no longer running.

� A client who processes and forwards events can treat heart-beats in a

similar manner. This feature allows a service to provide guarantees about

`indirect' events from other services.

In Oasis, a missed heartbeat leads to external credential records being marked

as `unknown'. This state propagates to child records, and possibly other servers.

When connection is re-established the state of each record is read and, if neces-

sary, events are re-registered with the remote service. The period of the heart-

beat and the frequency of response can be set on a per-service basis, allowing

each service to choose the trade-o� between failure tolerance and security.

5This is described in Chapter 6

4.10. THE EFFECT OF FAILURES 37

(L.32)

Record representing
Delegation

Membership Certificate
for LoggedOn

L.1

Record representing validity
of LoggedOn Certificate.

External Record representing validity
of LoggedOn Certificate.

Login Service

Conference Service

Server Record
for Login Service

State
Change
Events

C.6

1

Record Representing
 membership of group ‘Opera’

(L.5)

C.3
(L.1)

Record representing validity
of LoggedOn Certificate.

External Record representing validity
of LoggedOn Certificate.

Login Service

Conference Service

Record Representing
 membership of group ‘Opera’

Record representing validity
of LoggedOn Certificate.

Delegation Certificate 6

Figure 4.8: External Credential Records

In the diagram the identi�ers `L1','L5' and `L32' are used to represent

records stored in the login service, and `C.3' and `C.6' are used to represent

records stored in the conference service. As these name spaces are managed

separately, external identi�ers must be mapped to internal identi�ers, as

is illustrated by the external record `C.3 (L.1)', which is a local record

with identi�er `C.3' that represents the record `L.1' in the login service.

Event noti�cation is used to abstract the distribution issues from the graph-

walking algorithms, and the server record stores su�cient information to

allow connection to be re-established after a communications failure.

38 CHAPTER 4. SYSTEM ARCHITECTURE

Member(tjm15) Chair()

Member(tjm15)

Person(tjm15)

Role Instance Revoker CRR

Role Based Revocation Database

Figure 4.9: Managing Credential Records for Role Based Revocation

4.11 RDL Extensions

In section 3.3.2 a number of extensions to RDL were considered. The majority

of these have a straightforward implementation, but the implementation of Role

Based Revocation is more complex. To recap, Role Based Revocation is used

when a client other than the delegator wishes to revoke. Indeed, there may

not be a delegator at all. In these circumstances there can be no revocation

certi�cate, and therefore no direct reference to the credential record representing

the state of the delegation. Consider the example from section 3.3.2.

Chair : : :

Member(p) Person(p) .� Chair

When a client enters the roleMember then a credential record graph with the

structure shown in �gure 4.9 will be created. A client wishing to revoke must

supply a Chair certi�cate, and the server must locate the relevant credential

record. The information required is stored in a database in the server, in records

of the form

(Instance of role,revoker,credential record reference)

Once a revocation has taken place, a client must not be able to re-enter the role.

A second database of revoked role instances must therefore be kept inde�nitely.

As a revocation of this form is `forever', clients holding the revoker's rule are

allowed to remove entries from this second database. This allows hire, �re,

re-hire semantics.

4.12 Interworking with other Mechanisms

Role membership certi�cates are issued on the presentation of other role mem-

bership certi�cates. Clearly there must be an auxiliary mechanism, or `boot-

strapping' a client would not be possible. In general a service may issue and

revoke role membership certi�cates for any reason. Role entry due to policy

expressed in RDL is simply the more usual case. The loader and password ser-

vices described in section 3.4.1 and 3.4.3 are both services that issue certi�cates

4.13. AUDITING AND ACCOUNTING 39

based on policy not de�ned in RDL. Although generally used for bootstrapping,

the ability to arbitrarily issue and revoke certi�cates is a useful mechanism, es-

pecially when inter-operating between Oasis services and those protected by

legacy or alternative access control schemes.

For example, consider a system using organisational roles, such asmanager

and project leader as well as, or instead of UserIds[SCFY96]. A service could

be devised that issued an equivalent Oasis role for each client holding one of

these roles, and the two schemes could therefore interwork. This is facilitated

by the fact that multiple name spaces are fundamental to the design of Oasis.

Perhaps strangely for an access control architecture, Oasis manages names

not access rights. A role membership certi�cate is therefore a name, not a

promise of access privileges. When presented to a service, the name is inter-

preted in order to determine the level of access to be given. This extra indi-

rection allows legacy systems to be converted to Oasis services. For example,

an NFS �le server could be amended to accept Oasis role membership certi�-

cates and extract a client's user identity and group memberships from it. It

could then apply its own access control measures based on this name. This �ts

within the Oasis model of server behaviour. In addition, as was demonstrated

in section 3.3.3, this check can be represented as a set of RDL statements thus

simplifying reasoning about interworking between the two systems.

4.13 Auditing and Accounting

A disadvantage of capability schemes is that it is not possible to list all the

clients who currently have access to an object, or determine how that access

was authorised. In Oasis, each interaction between a client and a service, or

a client and another client, must take place with the service's knowledge and

consent. For example if client A elects client B as a member of a meeting, then

the server managing the meeting will be involved in the delegation process,

and in any subsequent revocation. The server may record these requests and

this information can be used to answer queries about current clients or when

performing other auditing tasks.

A similar approach may be taken to accounting. Each role membership

certi�cate can trivially be extended to include the identity of the account that

should be charged for any resources used. Indeed, the notions of roles and

accounting go hand in hand. This work simply notes that su�cient `hooks'

are in place to allow auditing and accounting information to be gathered, and

does not consider these issues in detail. Further discussion of these management

issues can be found in [Neu93, OMG94, 3.2.3].

4.14 Conclusions

In this chapter we have presented a mechanism for enforcement of access control

and naming policies written in RDL. In particular a scalable mechanism to allow

rapid and selective revocation of capabilities was presented. Reasoning about

policy interaction and possible attacks is aided by a direct implementation, and

by the fact that strong guarantees can be made by an issuing service about

the length of any undetected failure. It is di�cult to quantitatively evaluate

40 CHAPTER 4. SYSTEM ARCHITECTURE

the implementation as there are few architectures o�ering similar semantics. It

is certainly clear that if there is little or no revocation, then the background

activity is likely to be less than that found in other schemes where capabilities

must be continually refreshed (for example [LABW94]). This is primarily due

to the event driven nature of credential updates and the increased scope for

caching of cryptographic checks.

Chapter 5

The MSSA

5.1 Introduction

This chapter presents an overview of The Multi Service Storage Architecture

(MSSA). This is a complex distributed storage system which has been used as

a test application in the development of Oasis.

Section 5.2 gives a brief overview of the MSSA, and the original access control

mechanism proposed in [Lo94]. Section 5.3 considers the issues for access control

speci�cation in the MSSA in more detail, and discusses the extent to which the

original scheme and other approaches meet these requirements. Section 5.4

proposes a model of shared acls as an aid to policy expression and complexity

management. Section 5.5 discusses the enforcement of access control, and relates

Oasis certi�cates to the original MSSA capability scheme. Section 5.6 considers

possible optimisations and section 5.7 concludes.

5.2 A Brief Overview of the MSSA

The Multi Service Storage Architecture (MSSA), is a networked storage service

that manages a number of di�erent types of �les. The architecture is open in the

sense that new services may be added, and servers may be mutually distrustful.

Clients of the MSSA may be users, databases or entire operating systems, and

this leads to complex access control requirements.

The MSSA consists of three levels of server. Byte Segment Custodes are

responsible for physical storage of data. They mask device speci�c details and

provide a standard interface for use by File Custodes. These provide an open

interface for the storage of particular kinds of data. For example a at �le

custode stores regular �les, a structured �le custode stores structured data, and

a continuous media custode stores continuous medium data, such as audio or

video. Each �le custode provides a di�erent interface, but common schemes

for naming, accounting and access control allow integration of services. In par-

ticular, each �le is named with a machine oriented unique identi�er, that may

be examined to locate the (�le) custode responsible for it. A feature of the

structured �le custode is that �les stored on it may contain references to �les

on other custodes, allowing complex compound documents to be stored.

41

42 CHAPTER 5. THE MSSA

Value-adding
Custode A

Value-adding
Custode B

(eg indexed
Mail Server)

(eg Mail Server)

Structured
File Custode

BSCBSC BSC

Value-adding
Custode C

(eg Directory Server)

Flat File
Custode

Continuous Medium
File Custode

Client 1 Client 2 Client 3

End Clients

Value Adding Custodes

File Custodes

Byte Segment Custodes

DISC

Archive RAID

Figure 5.1: Access Paths Within the MSSA

Value Adding Custodes (VACs) form the third layer of the MSSA. These

appear to clients as `standard' �le custodes, but are implemented by abstracting

the interface of �le custodes or other value adding custodes. Value adding

custodes are a powerful feature of the MSSA, as they allow rapid integration of

new services in a secure and e�cient manor.

File custodes provide strongly typed interfaces, and other �le or value adding

custodes can provide interfaces which are sub-types of these in an object oriented

sense. For example an indexed at �le custode will provide all of the operations

of a �le custode, and in addition will provide lookup operations based on index-

ing information. An overview of the MSSA is shown in �gure 5.1 and a detailed

description can be found in [Lo94].

5.2.1 The Original MSSA Access Control Scheme

The MSSA has complex access control needs. Naturally, all client access to a

custode must be authenticated. As the MSSA is a layered architecture, and

each level is distrustful of the levels above it, a client access may involve a check

at each of several levels. A naive solution to this problem would be dreadfully

ine�cient, so an extensible capability scheme [BMLH94a] was derived to reduce

the overhead. As capabilities have many disadvantages as a basis for policy

control, MSSA capabilities were used merely as a fast mechanism, and an access

control list scheme was added to allow policy expression.

Derivation of this scheme was undertaken jointly with Sai Lai Lo, and is

presented in his thesis [Lo94]. Some of the advantages and shortcomings of this

scheme led directly to the design of Oasis, and in this chapter the re-application

of these ideas to the MSSA is discussed. The term MSSA will be used to refer to

5.3. ACCESS CONTROL ISSUES 43

the original MSSA extended with the new access control scheme, and the term

`original MSSA' will be used when it is necessary to emphasise a di�erence.

5.3 Access Control Issues

In this section we consider a number of access control issues that are poorly

addressed in the majority of storage systems. In the following section we propose

a mechanism to address these issues.

5.3.1 Grouping Files

Although a storage system may consist of many hundreds of thousands of �les, in

general there will be considerably fewer distinct sets of access rights. Files may

be grouped and given the same access rights. For example an individual may

group �les as `private', `public' or associated with some project. Grouping �les

in this way makes management easier, and can provide considerable performance

bene�ts, as access control information can be cached. Existing storage systems

generally provide access control grouping by overloading this function onto some

other grouping mechanism.

Grouping by directory

In a traditional �ling system, this function is controlled by a directory service.

In a hierarchical scheme, access to a �le is only possible provided that a client

has su�cient rights to access all of the enclosing directories. This feature may be

utilised by a user by creating suitable `public', `private' and `project' directories,

with associated ACLs.

However, if the �les maintained within a storage service have a number of

di�erent types, it is unclear how access control information associated with a

directory can be extended to cover all the possible operations on the contained

objects. For example at �les require protection of read and write operations,

whereas continuous media requires protection of play and record. Although

for some �le types, the rights can be cast to generic read and generic write,

this is not always the case. A bank account has operations deposit, withdraw

and query balance. These clearly do not �t `read/write' semantics.

In some storage services, including the MSSA, it is argued that the directory

service should not be an integral part of the system [BN80] - as its functionality

is not required in some circumstances, for example when storing databases, or

data from persistent programming languages. It is also argued that the type

of directory service should be data dependent. Mail is likely to be classi�ed

and indexed, but this `directory' system is unlikely to resemble that used for

program development[DO85]. If the directory service is not an integral part of

the storage system, then it cannot be wholly responsible for access control.

Grouping by structure

Emerging systems such as OLE [Bro94], make considerable use of structured

documents, where one �le contains references to other �les, or the embedded

contents of a �le of a di�erent type. Structured �les are also commonly used

44 CHAPTER 5. THE MSSA

to store databases, or other structured information. Within the MSSA, the

structured �le custode is responsible for managing such structured �les.

It is often a requirement that the access control information associated with

di�erent parts of a structured �le is the same, or that users who may access

one part may also access another. Although this grouping mechanism appears

suitable for access control, complications arise if a sub-object is shared between

several objects. In addition a secondary mechanism is required, as there are

likely to be many more structured objects than access control groups.

Explicit Grouping for Access Control

Mo�ett [MST90] proposes grouping of protected objects solely for provision of

access control. These groups are called domains. Domains may be nested,

and an object can be a member of more than one domain. Access rules are

maintained for each domain, and indicate how clients may access (any) objects

within the domain. Although domains are an appropriate mechanism for �le

grouping, and the nesting of domains gives powerful semantics, the system is

also complex and di�cult to understand. For example, if an object is a member

of two domains, the access rules may contradict. Nested grouping structures

were considered for MSSA access control, but were rejected on the grounds of

complexity and computational cost.

The MSSA approach

In the MSSA, �les are grouped into containers for accounting purposes. In the

original scheme, a container was also used as the basis of access control. Each

container had an ACL, and this was combined with an optional per-�le ACL,

to indicate the level of access allowed.

Although this approach removes the overloading of access control informa-

tion with directory or structural information, it is inexible and di�cult to

maintain. For the scheme to be e�ective, �les that are to be grouped for access

control must either exist within their own private container, or be treated indi-

vidually. As containers are relatively heavyweight the second option is usually

taken, and the semantic and e�ciency bene�ts of �le grouping are lost.

5.3.2 Meta-Access Control

Within a storage system, it is not only the �les themselves that must be pro-

tected. Control over the access control lists is also important, and a policy for

examination and modi�cation of ACLs must be speci�ed.

The notion of �le `owner' is most commonly used to specify control of ACLs.

In Unix �ling systems, for example[RT78], the �le owner is the only client who

may modify an ACL, but anyone with su�cient access to the enclosing directory

may read it. This is restrictive for shared �les, and unnecessarily high read

access is a potential security risk. In general, there may be many users who

may modify an ACL, and many more who may examine it. The ACL itself is

an object, like any other, and therefore best protected by a second ACL. The

pragmatics of ACLs for ACLs seem at �rst infeasible. In the following section

a mechanism for shared ACLs is proposed as a mechanism for �le grouping.

5.4. SHARED ACLS 45

User 1

User 2

User 3

User 4

File
1

File
2

File
3

File
4

File
5

User 5

R

RW

-

-

R

RW

-

-

R

R

RW

-

-

RW

-

R

RW

-

-

R

RW

-

-

R

R

User 1

User 2

User 3

User 4

File
1

File
2

File
3

File
4

File
5

User 5

RW

-

-

R

R

RW

-

-

RW

-

R

RW

-

-

R

ACLACL ACL

(a) (b)

Figure 5.2: The Access Matrix

(a) The traditional ACL approach to storing an Access Matrix.

(b) In the new approach, �les are logically grouped.

Section 5.4.2 describes how this technique can be extended to allow meta-access

control without the risk of in�nite recursion.

5.4 Shared ACLs

Access control is often expressed in terms of an Access Matrix [Lam71]. In ACL

systems the columns of this matrix are stored as access control lists within each

�le, and there is no conceptual �le grouping (Figure 5.2a). In the MSSA under

Oasis, each ACL is used to protect a set of �les, allowing �les to be logically

grouped, and access control uniformly applied to them all (Figure 5.2b).

Each ACL is given a meaningful name, and users may manipulate access

control information, either by changing which ACL is used to control a �le, or

by modifying the ACL itself. For example, �les relating to the Empire project

may be controlled by an ACL called `Empire Private'.

5.4.1 ACLs as Objects

Although the primary function of this grouping is to improve the semantics

and usability of ACLs, a useful side e�ect is that the number of ACLs required

is drastically reduced. This allows them to be e�ciently treated as objects in

their own right. Each ACL is stored as a �le on a suitable custode, and each

�le the ACL protects contains an embedded reference to this �le. As ACLs are

themselves �les, they also have ACLs to control them, and so any policy for

meta-access control can be implemented. Figure 5.3 gives an example system.

5.4.2 Recursive ACL Checks

When a custode accesses an ACL to determine if a client operation is valid, then

that custode must have su�cient rights to read the ACL.1 If the �le is stored

1Note, custodes should not (and do not) trust each other.

46 CHAPTER 5. THE MSSA

Empire Private ACL

Empire Public ACL

Control over Empire ACLssecret file 1

secret file 2

welcome.html

README.PUBLIC

job(RW),tjm(RW),dah(RW) world(R)

job(RW),tjm(RW),dah(RW)

job(RW)

Figure 5.3: An Example Using Shared ACLs

In this diagram, seven �les are protected; four regular �les and three ACLs.

The two central ACLs e�ectively de�ne a group of users, and their associ-

ated access. User job has control over membership of this group, and also

has control over his own position.

in the same custode, this is not an issue, but for remote ACLs a long chain of

access checks may be required. This would be extremely ine�cient. Indeed a

cycle of ACLs could lead to in�nite checks, as illustrated in �gure 5.4.

A simple solution to this would be to give custodes special privileges to read

ACLs. However this was rejected, as an important feature of VACs is that they

need not be trusted by the underlying system, and hence can be freely used

without the worry of introducing security loopholes.

To reduce the ine�ciency of recursive checks, and to prevent the problems

of cyclic checks, a constraint is placed on the use of ACL �les as follows.

The ACL �le protecting an ACL �le must reside in the same custode.

This constraint restricts access checks to at most one remote call, and avoids the

problems caused by cyclic checks (Figure 5.5). As there are typically hundreds

of �les per access control list, this overhead may be reduced still further by

server caching.

5.4.3 Relating ACLs to Role�les

Each MSSA ACL �le is represented by a single role�le containing de�nitions for

two roles. UseAcl(rights) controls access to the �les governed by the ACL. The

�le identi�er of the ACL corresponds to the role�le identi�er, and a UseAcl

certi�cate is therefore speci�c to a particular ACL. Whenever a �le is accessed,

and a UseAcl certi�cate is suppled, the server must determine which ACL the

�le is protected by and then use this information when validating the certi�cate.

The second role UseFile(�le; rights) is �le speci�c and is used when delegating

access to a particular �le.

Generally each role�le will consist of a single ACL rule relating users to

rights, together with `standard' statements de�ning allowable delegation. To

simplify de�nition of these role�les, a simple ACL may be given instead of the

full role�le, and this is merged with a `policy template' during parsing.

In addition to this, all role�les are merged with a set of standard statements,

which typically allow access by system administrators. This is preferable to a

5.4. SHARED ACLS 47

Custode Z

ACL
Object

Protected By

ACL
Object

A

B
Custode X

Custode Y
Client C

Read F

File
Object

F

...

Custode X consults

Custode Y consults

Custode Z consults

Custode Y consults

Custode Z consults

ACL A to verify "C

ACL B to verify "X

ACL A to verify "Y

ACL B to verify "X

ACL A to verify "Y

may read F

may read A

may read B

may read A

may read B

"

"

"

"

"

Figure 5.4: Cycle Checking of ACLs

An attempt to access �le F will result in an in�nite cycle of checks.

ACL
Object

Protected By

ACL
Object

A

B
Custode X

Custode Y
Client C

Read F

File
Object

F

Custode X consults ACL A to verify (C may read F)

Custode Y consults ACL B to verify (X may read A)

ACL B is located in Y, so (Y may read B)
is trivially true and Y may read it directly.

Figure 5.5: Cycle Checking of ACLs with Constrained ACL Placement

Although there is logical cycle between the ACLs, the placement of the �les

ensures that an access check rapidly terminates.

48 CHAPTER 5. THE MSSA

`root' identi�er, as it allows �ner grain control over administration, and removes

the need for an additional mechanism.

5.4.4 ACL format

As discussed in section 3.3.3, any form of ACL could be used within an MSSA

ACL/Role�le. Indeed, di�erent ACLs could use expressions of di�erent formats.

However, for the sake of clarity it was decided to choose a `standard' ACL format

for use in the MSSA, and this is also the preferred format for other Oasis services

requiring ACLs.

The primary decision to be made was how conicting ACL statements should

be interpreted. For example the ACL

Bob(Read/Write), student(Read)

is ambiguous in the case that Bob is a student. Should he gain read and write

access or just read access? The majority of existing systems choose most closely

binding semantics, whereby only the entry directly referring to Bob is used, as

this is more speci�c to the user Bob than the student entry. In more compli-

cated situations, such as when there is no individual entry for a user, and a user

is a member of two or more groups, di�erent systems have di�erent semantics.

For example, in Phoenix/MVS [Doc], access rights are ordered, and the

`highest' rights are given when multiple group entries match. In Andrew [Sat89],

there are two forms of entry, those granting rights, and those denying them.

When more than one entry matches, the union of all `negative' rights is sub-

tracted from the union of all `positive' rights. A fuller discussion of di�erent

policies is given in [Lun88].

A common failing of early ACL systems was that it was not possible to

restrict the access available to a class of user, without also de�ning what access

was allowed. For example the rule `Students may not have write access' is

clearly di�erent from `Students may have (only) read access'. Such di�culties

are overcome by the addition of negative or restrictive rules. These rules limit

the actions of other rules, but do not in themselves de�ne allowable access. Such

a scheme is used in NT [Pow93], and was developed independently for use in

the MSSA.

In this scheme the entries within an ACL are ordered, and the rights given

to a client are formed by examining each entry in turn and applying any part

that does not conict with an earlier entry. More formally,

Two sets are created, the rights to be granted, G (initially empty),

and the set of possible rights, P (initially full). Each entry that

matches the client is consulted in turn. Assuming this involves rights

R:

� A negative entry will restrict the possible rights granted

P(P�R

For example if P is fread; writeg and a negative entry speci�es

write access is to be disallowed, then P will be reduced to

freadg.

5.5. ENFORCING ACCESS CONTROL 49

S

200

File Custode (F)

Bank Account Custode (B)

Z
X

Y
Jim(CDB)

Sheila(CDB)

User Fred

X

Y
R

Acls

Acls

Fred(CDB)

bank(RW)

Q

Credit(B.X,40)
ACL RMC

Read(F.X)
ACL RMC Write(F.X,240)

ACL RMC

To perform Credit(B.X,40):

Validate R.M.C.
Map B.X to F.X
Perform Read and Write operations on F.X

To perform Read(F.X) / Write(F.X)

Validate R.M.C. (cached)
Map F.X to file on Byte Segment Custode
Perform operations using private interface

Z

Figure 5.6: Access Paths for a VAC Operation

A client operation such as `Credit' on a �le in a value adding custode will be

validated by ensuring that the supplied role membership certi�cate contains

su�cient rights, and relates to the correct ACL �le (shaded). For the Value

adding custode to perform corresponding actions on the �le at the server

below, it will use a certi�cate relating to the ACL for all of its �les.

� A positive entry will grant the rights indicated, providing this

does not contradict an earlier negative entry.

G(G [(P \R)

This process continues until all matching entries have been con-

sulted. The client is then granted the rights indicated in G.

This scheme is considerably more expressive than systems involving a �xed

priority between entries of di�erent types. It is also considerably clearer as

there are no `di�cult cases'.

5.5 Enforcing Access Control

Although ACLs are used to represent access policy, actual �le accesses take

place using role membership certi�cates issued by the custode controlling the

�le. In the case of �les managed by value adding custodes, the data is stored on

50 CHAPTER 5. THE MSSA

lower level custodes, and access to a �le will involve one or more corresponding

accesses to the level below. This is illustrated in �gure 5.6. As the �les controlled

by each VAC are generally all protected by the same access control list, each

VAC need store only one role membership certi�cate for use at the level below,

and it is likely that the validation of this will be cached.

In the original MSSA scheme, ACLs were not shared, and in general, the

value adding client would have required one capability per �le. Storage of these

capabilities was not feasible, and this lead to the derivation of a multi-level

capability scheme[BMLH94b]. In the new scheme, such complications are un-

necessary.

5.5.1 E�ect of Compromise

When a certi�cate is issued, it is protected by a signature derived from a secret

stored in the issuing server. In theory, only a single secret need be stored in

each server, and a signature check based on this would be su�cient to guarantee

the integrity of all certi�cates. However reliance on a single secret is dangerous,

as discovery of this would allow unlimited access to all �les.

The approach taken in the MSSA (and some other Oasis servers) is to main-

tain a rolling table of secrets. Periodically, a new secret is generated, and cer-

ti�cates are issued using it. Certi�cates issued using the older secrets may still

be validated, but as these certi�cates eventually time out, the secrets have a

limited lifetime. In order to compromise the system, an attacker must not only

discover the value of the secret, but must do so during its lifetime. The prob-

ability of a secret being discovered is linked to the duration of its use, and the

number of certi�cates issued. By tuning the rate of secret generation based on

these parameters, the integrity of the system is ensured.

5.5.2 Volatile ACLs

In all protected systems, access policy may change and it is important that

access tokens, such as certi�cates, that relate to outdated policy are revoked or

timed out. File systems in particular tend to have volatile policies, as access

control lists may be frequently modi�ed.

In the original MSSA, each �le custode maintained one secret for each �le it

controlled. When an ACL was modi�ed, the secret associated with the corre-

sponding �le could be changed, and capabilities issued using the ACL would be

revoked. In the new scheme, ACLs are shared, and a per-�le secret would there-

fore be of no help when performing revocation due to policy change. Instead we

need per-acl state. In keeping with the Oasis philosophy, this is accomplished

using credential records. A credential record is associated with each access con-

trol list in use. This record represents the validity of certi�cates issued based

on the contents of the ACL. When an ACL is changed, the credential record is

deleted, and another created to represent the new ACL state. Certi�cates issued

using the old version of the ACL will therefore be revoked using the standard

mechanisms described in chapter 4.

In both schemes, a certi�cate may be revoked when it represents a valid role

membership. Client applications must therefore be able to cope with such `non-

fatal' revocation, and request replacement certi�cates transparently. It should

be noted that a delegated client need only re-apply to the server, not to the

5.6. OPTIMISING ACCESS 51

FFC: INTERFACE =

IS COMPATIBLE WITH FileCustode;

BEGIN

read : OPERATION [cert : Certificate;
 ssid : SSID;
 start: Cardinal;
 len : Cardinal]
 RETURNS [data : Bytes]
 RAISES AccessDenied;

write: OPERATION [cert : Certificate;
 ssid : SSID;
 start: Cardinal;
 len : Cardinal;
 data : Bytes]
 RETURNS []
 RAISES AccessDenied;

END.

Other FFC Operations

Inherits standard operations such
as creation, deletion and attribute
checks.

IFFC: INTERFACE =

IS COMPATIBLE WITH FFC;

BEGIN

lookup: OPERATION [query: String;
 cert : SEQUENCE OF
 Certificate
]
 RETURNS [hits : SEQUENCE OF
 SSID
];
END.

Inherits all operations from FFC

Flat File Custode Interface Indexed Flat File Custode Interface

Figure 5.7: Sub-typing of Interfaces

The operations for the indexed �le custode are a superset of those for the

at �le custode. In particular the IFFC Read operation is implemented

by passing the request to the FFC without modi�cation. The IFFC need

not implement this operation at all, but instead directs the client to call

the FFC directly. This leads to more e�cient access, and a considerably

simpli�ed IFFC.

electing client(s), as delegation certi�cates themselves will remain valid. This

is signi�cant, as the elector may no longer be present. This is an improvement

over the original MSSA delegation scheme, where there was no mechanism for

refreshing delegated capabilities.

5.6 Optimising Access

During the design of value adding clients, it was noted that many of these per-

form a specialisation of the custode below them. For example an indexed at

�le custode provides search operations in addition to read and write. It was

also noted that many value adding custodes only modify some of the supported

operations, whilst others are passed through to the level below without modi�-

cation. For example, read operations on the indexed at �le custode are passed

directly to the custode below.

It was proposed that such unmodi�ed accesses could be bypassed around the

value adding custode, as it takes no functional part in the operation. This is

facilitated by the organisation of custodes using sub-typing similar to that in

object oriented programming languages[BMLH94c]. Figure 5.7 gives the inter-

face to the Flat File and Indexed Flat File custode as an illustration. In the

original MSSA multi-level capability scheme, at all levels other than the lowest,

access checks consisted purely of computation, and not access to stored state.

These computations could be safely moved to a di�erent custode without com-

52 CHAPTER 5. THE MSSA

VAC
(Q)

w.x Op(...)

x

q.x Op(...)

VAC
(W) x

File
Custode

(F)
x

f.x Op(...)

Q

w

VAC
(Q) x

q.x Op(...)

VAC
(W) x

File
Custode

(F)
x

Validate

(possibly
 cached)

(a) (b)

Figure 5.8: Bypassing One or More Custodes

If bypassing does not take place, each custode checks the credential sup-

plied by the one above it using its stored secret and credential record (a).

If the operation may be bypassed, the client may call the `bottom' custode

directly. A callback is made to the top level to check the supplied certi�-

cate. If a credential changes and this leads to the client's certi�cate, or

the bypassing route, becoming invalid; then the `bottom' custode will be

informed by event noti�cation. Note that the callback validates a crypto-

graphic check and this may be cached.

promising security. The custode could therefore by bypassed and a signi�cant

optimisation could be made for some operations. Indeed, for the majority of

custodes, operations such as the examination of standard attributes need not

be specialised and can be bypassed in this way. Experience with existing �ling

systems suggests that these operations make up a large percentage of the total,

and this optimisation is therefore signi�cant[HKG+88].

In the new scheme such an optimisation is not quite so straight forward. The

mechanisms for the revocation of capabilities, and the mechanisms for certi�cate

checking rely on the issuer performing the check. However, bypassing can still

take place, with the proviso that a callback is made to the top level of the

`stack of custodes' to validate the capability. This is never less e�cient than a

straightforward call down the stack, and in the majority of cases, where caching

of credential checks has taken place, this is considerably more e�cient. This is

illustrated in �gure 5.8.

5.7. SUMMARY 53

5.7 Summary

The MSSA is a complex distributed storage service, with correspondingly com-

plex security requirements. As such, it is a useful test bench for the abilities

of Oasis. The original design of the MSSA access control system was tuned for

exibility and e�ciency, and was itself an impressive scheme. What then has

Oasis added? Semantically, it has clari�ed many of the `meta' issues, relating

to how capabilities are gained and lost, especially in the light of changes to

policy (e.g. modi�cation to access control lists). In particular the issues about

who may change this policy, and how changes e�ect existing clients have been

clari�ed.

More importantly, Oasis has allowed reasoning about the interworking of the

MSSA access control scheme with other applications and services. For example

it is now possible to indicate explicitly that the members of a meeting are the

only people who may read the �le used to store the minutes. This encourages

the use of high level naming schemes and reduces the likelihood of forgotten

updates. The alternative would be to explicitly list the members of a meeting

on the ACL for the minutes �le. If someone was ejected from the meeting the

ACL would have to be manually updated. This not only poses a security risk,

but complicates auditing, as the reason why a client is allowed access to a �le

would not be recorded.

In term of e�ciency, the new scheme is certainly no less e�cient, and given

the event driven nature of updates, rather than continual refreshing of capabil-

ities, it is believed that there will be a small performance bene�t. In addition

to semantic bene�ts, the use of shared ACLs reduces the storage overhead re-

quired for managing access control policies, and reduces the total number of

capabilities in use. This in turn enables more e�ective capability caching.

54 CHAPTER 5. THE MSSA

Chapter 6

Events

6.1 Introduction

Many classes of service provide information in the form of asynchronous call-

backs. In this chapter we will consider the class of callbacks that represent

information about some event that has occurred. We will identify special char-

acteristics of such callbacks which allow them to be treated in a uniform way,

thus simplifying the design of secure, robust distributed systems.

Events have already been touched on in chapter 4, where they were used for

credential record coherency control. In that application, the robustness of event

noti�cation was of paramount importance. Later in this chapter an Active Badge

System will be used to illustrate other advantages of our event system, such as

patten matching and composite event noti�cation. Section 6.2 gives an overview

of our event architecture, emphasizing the approach to distribution and naming.

The Active Badge System [HHB93] was chosen as a suitable testbed for event

programming techniques. Section 6.3 gives an overview of this, and presents an

alternative, event-based approach. This is used in later sections as a motivating

example. Section 6.4 describes how event monitoring applications, such as those

required by the badge system, may be handled by a composite event service. A

speci�cation language is derived and examples given in the following sections.

Section 6.12 summarises the chapter, and draws some conclusions.

6.2 An Event Architecture

6.2.1 Event Classi�cation

In our architecture, events are speci�ed using an extended RPC interface de�-

nition language (IDL). Like RPCs, events are of distinct types, and may have

a number of parameters of simple or complex types. This combination of RPC

and Event speci�cation simpli�es naming issues, and allows existing Trading

mechanisms[APM93] to be used for the location of event servers of a particular

type. In addition, it is common for services to combine both RPC and event

interfaces, which simpli�es the passing of parameters between the two domains.

For example the interface to a print server is shown below.

55

56 CHAPTER 6. EVENTS

Printer: INTERFACE =

BEGIN

Print : OPERATION [file : STRING]

RETURNS

[jobno : CARDINAL];

Finished: EVENT [jobno : CARDINAL];

END.

This de�nes a service interface in terms of (typed) operations that may be

performed on an instance of a service conforming to this interface, and gives the

types of events that may be generated by an instance of a service conforming

to the interface. In addition, as the interface de�nition contains events, the

interface will automatically inherit standard event operation, such as Register

and Deregister. These will be de�ned in the following section.

The IDL �le is preprocessed to produce client and server stubs for the op-

erations, and to create constructors and destructors for the events. The event

constructor creates a generic event object representing an instance of the event

of the given type. This may then be signalled or manipulated using a set of

standard utilities that need not be aware of the concrete type of the event. The

destructor unmarshalls an instance of an event of a given type, and returns

its original arguments. The constructor and destructor for the `Finished' event

above are as follows

Event *Printer_Finished(int jobno)

and

Decode_Printer_Finished(Event *e,int *jobno)

6.2.2 Registration and Noti�cation

In order for a client to be noti�ed of the occurrence of an event, it must have �rst

registered interest in the event with the issuing service. The alternative scheme

is for all events to be broadcast to all possibly interested parties. Although

suitable for a centralised system, such an approach clearly does not scale to a

distributed environment. Registration has other bene�ts. Monitoring need not

take place continuously | but only when a client is interested, and for many

events (such as the example above) registration can take place as a side e�ect

of some other operation.

Registration takes place in two stages. Firstly, a client registers with the

service establishing a session, and supplying a delivery address for event noti-

�cation. During this process, the client may provide various credentials, and

admission control based on these will take place. This will be discussed in detail

in chapter 7.

Once a session has been established, the client may register interest in event

occurrences of di�erent types. In order to reduce the number of uninteresting

events that the client is noti�ed about, the client supplies an acceptance ex-

pression to �lter interesting events from uninteresting ones. The format of this

expression is signi�cant. A complex acceptance expression might reduce the

number of uninteresting expressions that are noti�ed, but it is less likely that

6.3. THE ACTIVE BADGE SYSTEM 57

the event server will be able to derive useful information to enable it to restrict

the amount of unnecessary monitoring. In addition, complex expressions are

more di�cult to create automatically, for example by a composite event service

(described later).

The form of acceptance expression chosen is an event template. This is an

instance of an event with a number of wild card parameters. (cf. query by

example [Zlo77]). For the printer example, if a client were to register with a

particular print service, use of the template

Finished(27)

would lead to noti�cation when job 27 was complete, whereas registration using

Finished(�)

would lead to noti�cation whenever that service completed any job. If a client

is interested in Finished events generated by any print server, then they must

explicitly register with each server.

Templates are a simple, but powerful mechanism. In particular, they are

amenable to automatic generation, which is required for composite event de-

tection. This issue will be discussed when composite events are considered in

section 6.4.

6.2.3 Library Support

As events are marshalled into generic event objects, a library of utilities can be

created to manipulate them. In particular, event services, such as composite

event servers and event multiplexers, need not understand the concrete type

of the event instances they manipulate. Libraries have been created to deal

with both client and server action on event noti�cation, template matching,

event trading and failure tolerance. In addition, the client and server libraries

interact using a secure protocol based on Oasis roles. This will be considered

in detail in the following chapter. Figure 6.1 outlines the action of a client

submitting a job to a printer and awaiting the event indicating its completion.

Note that the client application, server instance and stubs require knowledge

about the concrete type of the event, but that the client and server libraries do

not.

6.3 The Active Badge System

Active Badges are small electronic name tags that periodically broadcast their

identity using a simple infra-red protocol. Sensors placed in di�erent rooms

within a building receive these signals and inform a central database. This may

then be consulted to determine the current location of a badge, and hence the

location of its owner.

Active badges were developed by Olivetti Research Limited, and badge sys-

tems are currently being used in a number of sites including several departments

within The University of Cambridge, and sites as remote as Xerox Parc. There

are several versions of active badge software in use in di�erent sites, each opti-

mised for di�erent purposes. A general failing is that communication of `foreign'

58 CHAPTER 6. EVENTS

Register(t,C)

Print("thesis")

ok

jobno = 12
Print

Register

Finished

Notify

void Done(Event *e)
{ int job;
 Decode_Printer_Finished(e,&job);
 printf("Done job %d\n",job);
}

main()
{
 ...
 j = p->print("thesis");

 t= Printer_Finished(j);
 Register(p,t,Done);
 ...
}

Client Side
Event Library

Client Code

1
2

4

5

6

7

13

14

15

PrintRegisterFinished

Print(char *filename)
{
 ...
 return jobno;
}

main()
{
 ...
 e = Printer_Finished(i);
 signal(p,e);
 ...
}

Stubs

Server Code

Notify

Server Side
Event Library

P

8

9

10

11

12

3

C

Figure 6.1: A Detailed Example

Consider a client wishing to print a �le \thesis" on a particular printer, and then

wait for the job to complete. First, the client locates the interface for the print

server (1). The client then sends an RPC to the server (2). This is marshalled by

the client stubs, sent over the network to the server, unmarshalled and eventually

the server routine `Print' is invoked (3). When this completes, the job number is

returned in an analogous fashion. Next, the client creates a template for the event

indicating completion of the job, by using the constructor for `Finished' (4). The

local event library is then called to register interest in events that originate from P

and match this template. The client indicates that the procedure `Done' should be

called whenever a matching event occurs (5). The library contacts the server and

establishes a session (not shown). It then registers interest in events matching the

given template, and supplies a call-back interface C (6,7). The server side event

library adds this registration to a list it maintains (8).

At some time in the future, the print server will complete the job and decide that

an event should be signalled (9). The server creates a generic event to represent

the completion of the job by using the constructor for `Finished' (10). This event is

signalled to the server side library (11). The library consults its database of requests

and informs all interested clients (12). Note that the server library can perform this

matching without knowing the concrete type of the event. When the illustrated client

receives the event (13) the client library consults stored state, and passes the event

to the Done method (14). The event is decoded using the destructor for `Finished'

(15) and the result is printed.

6.3. THE ACTIVE BADGE SYSTEM 59

badge sightings is poor: a badge from organisation X is useless in organisation

Y | despite the fact that badge identities are globally unique, and the same IR

protocols are used on all sites.

As an inherently distributed, and event based, application, a `global' badge

system was chosen as a suitable example application for the development and

demonstration of event based programming techniques. In addition, location

information maybe extremely sensitive, and the complex access requirements

of the badge system form a good testbed for the development of access control

models for events.

6.3.1 A Scalable Approach

In designing a `global' badge system, it is clear that there can be no central

database of badges. Instead, each site (or organisation) must be responsible for

maintaining information about its own badges. A protocol must be designed

to allow this information to be exported to other sites | when a badge is seen

elsewhere. Each site should have relative freedom with the design of its own

badge system, and in particular must decide on the degree to which it publishes

badge movements.

When the (physical) badges were designed, each was given a small amount

of memory designed to store a `pointer to home'. This may be interrogated by a

sensor to determine the badge's home site. The global badge system makes use

of this information, and when a previously unknown badge is sighted, its home

site is informed, and in return that site returns naming information related to

the badge. There is no way to detect when a badge leaves a site, but when it is

seen elsewhere, this information can be used to delete unnecessary information

from other sites. Figure 6.2 illustrates this protocol. The information that

a badge has moved site may also be of use to other clients or servers. For

example, an application watching a particular user will need to know when that

user moves site.

For this reason, the movement is signalled by an event of the form

MovedSite(badge; oldsite;newsite)

This information is used by remote servers, to detect when a badge has left

their site, and is also available to client applications.

6.3.2 Movements Within a Site

There is considerable freedom in the design of a badge system within a site.

In this section a badge system is described that splits the functionality of the

badge system in two. Monitoring is performed by a process called the Master.

This interfaces with the sensors, and signals badge sightings directly as events

of the form Seen(badge; sensor). Naming is performed by the Namer. This is

responsible for mapping badge and sensor identi�ers to User and Room names,

as well as performing the inter-site protocol and managing updates.

The namer must be informed of the arrival of badges from other sites. As the

Master does not support this function directly, an intermediate service called

the `Sighting Cache' maintains a list of current badges, and signals when a new

one is seen. Figure 6.3 illustrates the architecture.

60 CHAPTER 6. EVENTS

Site A

1
3

Site B

Badge User Location

3 A.Sheila B

2

Badge User Location

1
2
3

Fred
Jim
Sheila

A
A
B

Badge 3 Seen

3 belongs to Sheila

(a)

Badge 3 Seen

3 belongs to Sheila

Badge 3 Left B

3

Site C

Badge User Location

3 A.Sheila C

Site B

Badge User Location

Site A

1
2

Badge User Location

1
2
3

Fred
Jim
Sheila

A
A
C

(b)

Figure 6.2: Badge Movements Between Sites

In (a) a badge based at site A is seen in site B. In (b) the same badge is

seen in site C. Note how the `home' site of each badge always knows of its

location, and that the naming information at B is deleted when no longer

required.

6.3. THE ACTIVE BADGE SYSTEM 61

Sighting
Cache

Seen(Badge,Station)

Namer

Site S

FirstSight(Badge)

Badge Master

Database
Operations

MovedSite()

Badge System Clients

MovedSite(*,S,*)

Figure 6.3: Intra-site Badge Events

6.3.3 Namer Lookups

The namer is primarily an active database[WC96]. It stores a number of simple

relations, and in addition signals events when the database changes. Moni-

toring applications will generally wish to discover the badge associated with a

particular user, and will then contact the Master to watch for sightings of this

badge.

The Namer database is not static. It is often useful to change the badge

associated with a user | for example if the batteries are at, or the badge is

lost. Long running monitoring applications need to be made aware of these

changes. In keeping with the event philosophy, the solution chosen is to make

the database active by signalling updates as events.

A simple monitoring application to watch user rjh21 would then perform

the following:

1. Lookup rjh21's badge

Select b from OwnsBadge(u; b) where u = rjh21

2. Register Interest in changes of rjh21's badge ownership

Register OwnsBadge(rjh21; b)

3. Register Interest in movements of badge b.

4. Whenever b is seen:

5. Whenever OwnsBadge(rjh21; b) occurs, restart from stage 3.

This sequence of operations su�ers from a race condition. If the database

changes between the lookup and the registration of interest in state changes,

then this event will be overlooked. Although such race conditions can be avoided

by careful coding, the combination of related Lookup and Register operations

is so common, that it is advantageous to treat it as a special case, and allow

registration and lookup to take place atomically. A special combined form of

Lookup and Register is therefore used for such database events.

DBRegister(event template; callback)! event : : :

62 CHAPTER 6. EVENTS

This will return all existing database entries matching the template, in the

form of events, and in addition will register interest in updates resulting in

additional matching entries being created. This feature is deceptively powerful,

and examples of its use within the context of composite expressions are given

in section 6.6.

6.4 Composite Events

Clients of event services typically perform monitoring functions. For example,

monitoring the location of a person, or counting the number of people in a meet-

ing. Monitoring applications are generally interested in particular sequences of

events, rather than the occurrence of a single event.

Although each application could be designed in an ad-hoc manner, it is ad-

vantageous to design a general purpose composite event recogniser. There are

several existing architectures for composite event recognition[GJO92, GD93,

CKAK94]. However these were generally designed for centralised event sys-

tems and are unsuitable for distributed event recognition. In this section we

consider the issues for distributed composite event detection, and in particular

highlight the similarities and di�erences with more common pattern matching

mechanisms. In section 6.5 we will consider the design of a composite event

language.

6.4.1 Distributed Time

In a distributed environment time is the key consideration. There is, in general,

no global clock and care must therefore be taken when comparing time stamps on

two events from di�erent sources. Distribution also leads to variable delay. If we

are interested in determining which of the two events A and B occurred �rst, we

cannot rely on the order in which we are noti�ed, but must examine the events'

time stamps. Equally, we cannot conclude that an event has not occurred, until

we have waited to see if noti�cation has been delayed, or determined this by

other means. Together with the increased scale and complexity of a distributed

environment, these features make it di�cult to determine a global view of the

system. In general we can only ensure that we have received all events up until

time t after we have received events from the most delayed event source; i.e. at

time t+�worst.

Evaluation models that require a global view will therefore have an inherent

delay of �worst. Unfortunately the majority of existing composite event detec-

tion schemes rely on such a simplifying assumption. An important motivation

in the design of a composite event detector for distributed events was to reduce

this requirement.

For example, in the badge system, we may wish to detect sightings of two

users Giles and Roger, in order to detect if Giles ever enters a room in which

Roger is situated. This could be represented by the expression

Whenever Seen(Roger,x)

Repeat

If Seen(Giles,x) then Signal Together(x)

Until Seen(Roger,y)

6.4. COMPOSITE EVENTS 63

Time

Event
Occurrences

Received

Delay

Optimal
Detection

Global View
Detection

1 2 3 4 5 6 7 8 9 100

Seen(Giles,T14) Seen(Giles,T15)Seen(Roger,T14) Seen(Roger,T15)

Together(T14)
at time 3

Together(T15)
at time 7

Together(T14)
at time 3

Together(T15)
at time 7

Figure 6.4: The E�ect of Delay on Composite Event Detection

Consider the situation in which Roger and Giles are �rst seen in room T14, and

then seen in room T15. If the events from the badge sensor in room T14 are

delayed, we do not want this to disrupt the detection of the second meeting. A

possible trace of events and detection is shown in �gure 6.4. As can be seen an

optimal detector processed events in the order in which they are received, and

would detect the second meeting �rst, but a `global view' detector, which must

process event in the order in which they occur, would block and (eventually)

detect the �rst meeting �rst. Note that both evaluations ultimately return the

same results.

A secondary issue is that by enforcing a global view, we must create a total

order on all event instances. The operators in our language require only pairwise

comparison of (some) event time stamps and this lesser requirement is easier to

justify in an environment where clocks are not completely synchronised.

6.4.2 Regular Expressions

Composite event detection is a form of pattern matching, and regular expres-

sions are an obvious formalism for describing composite events. In this section

we will highlight several important areas in which event detection di�ers from

regular expression matching, and derive the features required by a composite

event language.

Parameter Matching

As events in our environment are more complex than symbols in a regular

language, additional expressive power is required. In particular, an instance of

an event has a number of parameters. Instantiation and matching of parameters

are essential parts of composite event detection. For example, in the badge

application, all sightings are signalled using the Seen(badge; room) event. An

application that monitors for two people entering the same room might use a

composite event

Seen(Badge 12; r1) : : :Seen(Badge 15; r2)

Where the variables r1 and r2 should match, to indicate that the badges are in

the same room. It should be noted that the value assigned to r1 and r2 is not

64 CHAPTER 6. EVENTS

known in advance, and variables must be instantiated during evaluation, not

simply before evaluation takes place.

The language for expressing regular expressions may be extended by adding

variable instantiation, and expressions in this new form may be converted back

to standard regular expressions, providing the range of each parameter is known.1

We call the mapping between a set of variables and the associated values the

environment for the evaluation. As evaluation takes place, variable instantia-

tion will update the environment. The expression A(x) may simply be replaced

with A(i) if x = i in the current environment. If x is uninstantiated, then

A(x);E expands to

(A(x1);E1)j(A(x2);E2)j : : : j(A(xn);En)

where x1 : : : xn are the possible values of the parameter x, and E1 : : : En are the

expressions formed when the substitution x = xi is made into E.

Care must be taken with the expansion of the Kleene star. It is tempting to

expand A(x)� to

nulljA(x)jA(x);A(x)jA(x);A(x);A(x)j : : :

However, this de�nition is restrictive. Consider A�. This is true for a sequence

of zero or more A's. However, using the expansion given above, A(x)� is only

true for a sequence of zero or moreA's with the same parameter. The expression

`a sequence of zero or moreA's with any parameter' cannot be expressed. More-

over, this is a particularly useful expression. For example to express `whenever

a person enters a room...' we need to match a sequence of Enters() events with

di�erent parameters. This requirement lead to the derivation of a new operator

`Whenever' ($) which is similar to the Kleene star but which allows a di�erent

assignment in each repetition. For example $A(x) is equivalent to

A(x)jA(x0);A(x)jA(x00);A(x0);A(x)j : : :

Open Environment

Regular expressions are de�ned over a �nite `closed' alphabet of symbols. We

wish to de�ne event expressions in an open environment where there are both an

(e�ectively) in�nite number of event types and an (e�ectively) in�nite number of

di�erent event `symbols' due to instantiation of variables. A regular expression is

an expression which indicates which sequences of symbols from a given language

are acceptable, and rejects all other sequences of symbols. For example, the

regular expression A may be represented by the �nite state machine shown

in �gure 6.5a. For a similar e�ect in an open environment we must indicate

which symbols make up the language of `interesting events' at each point in the

evaluation. This is illustrated in �gure 6.5b.

Although this process appears cumbersome, the semantics are very natural.

For example the event expression for `Fred is seen in a room and then Mary

enters before he leaves' is

Enter(Fred; r) followed by Enter(Mary; r) before Leaves(Fred; r)

1This exercise is useful for formal reasoning, but does not aid implementation.

6.5. A COMPOSITE EVENT LANGUAGE 65

Accept

Reject

A

Start

any

Accept

Reject

A

Start

B,C,D

FSM for regular expression

A

(a)

FSM for event expression

A before B,C or D

(a)

Figure 6.5: Regular Expressions with Explicit Alphabet

In (a) the regular expression A succeeds only for input A and fails for all

other inputs. In a distributed environment the language must be speci�ed

explicitly as `any' is meaningless (b).

which is more natural than the equivalent regular expression

x= fRoom 1; Room 1; : : : ; Room ng

alphabet= fEnter(Fred; x);Enter(Mary; x);Leaves(Fred; x)g

Enter(Fred; r);
�
any except

Leaves(fred;r)
Enter(Mary;r)

��
;Enter(Mary; r)

An additional advantage is that by specifying the alphabet at each point in the

expression, the number of events in which interest must be registered is kept to

a minimum. This point will be considered in more detail in section 6.7 where

implementation is discussed.

6.5 A Composite Event Language

In this section we derive a composite event speci�cation language, based on the

modi�cations to regular expressions described above. This is of equal expressive

power to regular expressions but has the advantages of clarity and use of param-

eters. In addition it has an e�cient evaluation machine (described in section

6.7) and may be trivially extended to deal with operational criteria, such as

network delay, that might lead to the misordering of events.

A composite expression is constructed from base event templates using the

set of operators de�ned below. The parameters to these templates may be

literals or variables. An evaluation � of a composite expression C is de�ned

in terms of the start time of the evaluation s, and an initial set of variable

bindings given in an environment E. An evaluation returns a set of tuples of

(occurrence time; environment). occurrence time is the time at which the com-

posite event triggers, and environment is a set of (variable name; value) pairs. A

composite event may trigger many times, with the same or di�erent occurrence

times. The operators were constructed so that evaluation of di�erent parts of

an expression can take place independently. That is to say, delays a�ecting eval-

uation of one sub-expression need not a�ect the evaluation of di�erent parts of

66 CHAPTER 6. EVENTS

the expression. This reduces the need for a global view, and helps reduce the

impact of delay or network failure. This was aided by the implicit speci�cation

of the alphabet of `interesting' symbols for each sub-expression, as discussed in

section 6.4.2 above.

The evaluation function � is de�ned as follows

�(T) A base event.

The �rst time at which a base event matching the template T occurs

after s.

�(T; s; E) = f(t; E0)g
where t is the time stamp of the

�rst base event which matches T

after time s.

A base event B matches a template T if it is of the same type as

T, and each parameter in T is either a literal equal to the matching

parameter in B, or a variable that is either unde�ned in the environ-

ment, or de�ned in the environment and has a value equal to that

matching parameter in B. The updated environment (E0) is the en-

vironment unioned with all variables in T and their associated values

from B. This is similar to the base case for regular expression, with

the alphabet set to symbols matching T. A naive implementation

would be to register interest in T and then wait for a matching event

to occur. However in a distributed environment the delay associated

with registration may lead to an incorrect evaluation. This problem,

and a solution, is discussed in section 6.8.1.

�(C1-C2) The `without' operator. C1 occurs without C2 having occurred �rst.

C1 and C2 are independent and may be evaluated independently. If

events matching both C1 and C2 occur, the order must be determined.

If the di�erence in time stamps is smaller than the clock drift between

the sources of the events, then this is a di�cult problem. For the

moment, we note that time stamp order will always give the most

probable order, and in section 6.8.4 we return to this issue and discuss

how stronger statements about event ordering may be made.

�(C1-C2; s; E) = f(t; E
0) : (t; E0) 2 �(C1; s; E)^

:(9t1; E
00
s<t1�t s.t. (t1; E

00) 2 �(C2; s; E))g

�(C1;C2) The `sequence' operator, C1 followed by C2

As C1 and C2 evaluate to sets of occurrences, this is de�ned as the

union of all occurrences of C2, starting at the time stamp of each

occurrence of C1. Note that sequence does not imply `immediately

following', as in regular expressions. This removes the need to register

interest in events other than those involved in C1 and C2.

�(C1;C2; s; E) =
[

(t;E0)2�(C1;s;E)

�(C2; t; E
0)

6.5. A COMPOSITE EVENT LANGUAGE 67

�(C1jC2) The `inclusive or' operator.

This evaluates to the union of all occurrences of C1 and all occur-

rences of C2. Note that C1 and C2 may be evaluated independently.

�(C1jC2; s; E) = �(C1; s; E) [�(C2; s; E)

�($C) The `whenever' operator.

This is the replacement for the Kleene star, as discussed in section

6.4.2. The intuition behind `whenever' is that a new evaluation is

started each time the previous one completes. Often it may be read

as `for each'. For example evaluation of ($Enter(x));C2 creates a

separate evaluation of C2 each time an Enter(i) event occurs, each

with a (potentially) di�erent value assigned to x. These evaluations

are independent and may be evaluated separately.

�($C; s; E) = �(C; s; E) [
[

(t;E0)2�(C;s;E)

�($C; t; E)

�(null) The null event

This trivial event is included as it is required in order to prove equiv-

alence between event expressions and regular expressions.

�(null; s; E) = f(s; E)g

Care must be taken with the combination of `whenever' and `null'.

In all cases, the least solution is taken. For example `whenever null'

($null) is de�ned as the least solution to

�($null; s; E) = �(null; s; E) [
[

(t;E0)2�(null;s;E)

�($null; t; E)

i.e.

�($null; s; E) = f(s; E)g

6.5.1 Side Expressions

In the language above, event templates are matched by events with matching

parameters. Occasionally though, we require a more complex matching rule. For

example we may require that a parameter should not be equal to a certain value,

or that there is an algebraic relationship between variables.2 These requirements

are met with the use of side expressions analogous to those found in formal

methods. For example

Seen(x; y) fx 6= rjh21g

Withdraw(z) fz > 500g

Side expressions may also be used to perform variable assignment, and are useful

for decreasing the complexity of expressions.

2This only applies for integer types

68 CHAPTER 6. EVENTS

6.6 Examples

In this section we give a number of examples of composite events de�ned using

the new language. The �rst four of these are from the badge system, the last

was initially given as an example for an alternative composite event language

designed by Gehani [GJO92].

Enters(B;R)

Leaves(B;R)

Trigger whenever someone enters/leaves a room.

In order to detect someone entering a room, they must �rst

be seen in one room and then be seen in a di�erent room.3

�
$Seen(B;R0)

�
;
�
Seen(B;R)� Seen(B;R0)

�

In the above expression, we start a new evaluation each time

a badge is seen. When the badge is next seen, another eval-

uation starts, and the previous one either accepts or fails de-

pending on the room the new sighting is in. `Whenever' is

the most closely binding operator, and `Sequence' is the least

closely binding, so the parentheses given above are not re-

quired. The expression for Leaves is identical, except that

the old location is signalled, rather than the new one.

Leaves(B;R0) = $Seen(B;R0);Seen(B;R)� Seen(B;R0)

Together(A;B) Detect when two people are in the same room.

This is similar to the example above. A �rst attempt is

$Seen(A;R); $Seen(B;R)� Seen(A;R0)

Note the second whenever. The expression can be read as

\Whenever a person is seen, signal whenever another person

is seen in the same room.". In this expression, the order in

which the badges are seen is signi�cant. If evaluated with an

initial environment in which A or B is de�ned, this may not

give the intended semantics. A more robust solution is

($Seen(A;R); $Seen(B;R)� Seen(A;R0))

j ($Seen(B;R); $Seen(A;R)� Seen(B;R0))

Trapped(P) By combining events from the badge system with those from

a �re alarm service, we can signal all people who are seen after

an alarm is raised. This can be done by waiting for an alarm,

and then signalling each badge sighting before the all clear.

We make use of the fact that database lookup can be modelled

as an event, in order to determine the name associated with

each badge.

$Alarm(); ($Seen(B) �AllClear());OwnsBadge(B;P)

3For simplicity we assume one sensor per room.

6.6. EXAMPLES 69

Trapped2(P) A re�nement of the above example is to trigger only once for

each person still in the building one minute after the alarm.

In this example, a side expression is used to set a variable to

the time after which badge sightings should be signalled. @

is a special variable indicating the occurrence time of the last

event.

$Alarm()ft(@+ 60g;AbsTime(t);

$OwnsBadge(B;P);Seen(B)

The power of treating database lookups as events is made

clear in this example. $OwnsBadge(B;P) will create one

evaluation for each tuple in the database matching this tem-

plate; i.e. one per person. Interest will be registered in each

person's badge, and the composite event will trigger the �rst

time a badge is seen.

EndOfPoint() This is a nice example of a complex, but easily understood

composite event, that was �rst published by Gehani [GJO92].

The aim is to detect the end of a point in the game of Squash

(Racket Ball). The events of interest are serve(i), when player

i serves; hit(i) when player i hits the ball; and oor,wall

and front when the ball hits the oor, side wall, or front wall

respectively.

A point starts when the ball is served. It ends when one of

the following occurs:

� After the serve, the ball fails to hit the front wall �rst.

\Trigger if the ball hits something other than

the front wall �rst."

(oorjwalljhit(i))� front

� After the ball hits the front wall, a player fails to hit it

before it bounces twice.

\Whenever a ball hits the front wall, trigger if it

hits the oor twice before being hit by a player."

$front; (oor;oor)� hit(i)

� After the ball is hit, it hits the oor or is hit again before

it hits the front wall.

$hit(i); (oorjhit(j)) � front

� The players fail to take turns.

Trigger if the server hits the ball before the other

player, or if one player hits the ball twice in a

row

(hit(s)� hit(i)fi 6= sg)

j($hit(i);hit(i)� hit(j)fj 6= ig)

70 CHAPTER 6. EVENTS

The full expression is the disjunction of these cases, and is

started each time there is a serve.

$serve(s)(((oorjwalljhit(i))� front)

j($front; ((oor;oor)jfront)� hit(i))

j($hit(i); (oorjhit(j))� front)

j(hit(s)� hit(i)fi 6= sg)

j($hit(i);hit(i)� hit(j)fj 6= ig))

There is however, one problem with this expression. When a

point is ended, it is likely that more than one of the above con-

ditions will hold, and the end of the point will be therefore be

signalled multiple times. A solution is to add a `reset' event,

similar to the `All Clear' in the �re alarm example. However,

we would prefer a mechanism to signal the �rst matching event

that does not require additional infrastructure. Unfortunately

this cannot be speci�ed in the language given thus far. We

require an aggregation function that can take a set of occur-

rences and map them to a single occurrence. This requirement

will be considered in section 6.9.

6.7 Implementation

The composite event language was designed to have an e�cient implementation

using a `push down' �nite state machine. An expression is represented by a

sequence of states, where each state evaluates a sub-expression using a sub-

machine. Each of the operators in the language can be directly represented

by a state, and there is therefore a straightforward correspondence between an

expression and the machine used to evaluate it.

An evaluation consists of a `bead' traversing the machine. Each bead car-

ries with it an environment, and beads may `split' when appropriate to give

branching evaluation. Beads are evaluated independently and this removes the

need for a global view of event instances. However, the relationship between

beads is maintained, so that they may be destroyed when no longer required.

When a bead enters a state it is `pushed down' to the sub-machine and leaves a

record behind detailing its current environment. During evaluation of the sub-

expression the bead may be destroyed, or may split any number of times. When

any of these beads return, the stored environment is examined to determine if

the bead should proceed or if some other action should be taken. For example

when a bead enters the state for A�B, it will split and one bead will be sent

to each sub-machine. When a bead from A returns, it will only proceed if no

bead from B has arrived (or may arrive) with an earlier time stamp.

In the rest of this section an extended example is given to illustrate how

evaluation takes place. The example chosen is a simpli�ed version of `detect

when two people are together'. The event expression used is

$Enter(A;R);Enter(B;R)-Leaves(A;R)

This may be represented by the sequence of two states, one representing the

sub-machine for $Enter(A;R) and the other for Enter(B;R)-Leaves(A;R).

6.7. IMPLEMENTATION 71

Each of these states is evaluated by a push-down to a machine for the corre-

sponding sub-expression. Consider evaluation of this expression with the initial

environment A = rjh21. This will be represented by a single bead about to

enter the �rst state, as illustrated below.

Start End$

Enter(A,R) Enter(B,R) Leave(A,R)

-
1

A=rjh21

When the bead enters the �rst state, it will be pushed down to the sub-

machine for Enter(A;R). In order to allow for future evaluations, a copy of

the bead is left behind. As the bead has entered a state containing an event

template, this template is merged with the bead's environment, and interest is

registered in events matching the resulting template; i.e. Enter(rjh21; R).

Start End$

Enter(A,R) Enter(B,R) Leave(A,R)

-

1

A=rjh21

A=rjh21

2

When a matching event occurs, such as Enter(rjh21; T14) the evaluator

will be noti�ed. All beads waiting for this event will then advance and their

environments will be updated. In this example there is only one bead (bead 1).

Start End$

Enter(A,R) Enter(B,R) Leave(A,R)

-

1

A=rjh21
R=T14

A=rjh21

2

As bead 1 has now completed the sub-machine, it returns to the level above

and moves to the next state. The semantics of `whenever' are that when one

72 CHAPTER 6. EVENTS

evaluation completes, another should start. The stored copy of the bead is

therefore copied and starts evaluation in the sub-machine, ready for the next

room that rjh21 enters.

Start End$

Enter(A,R) Enter(B,R) Leave(A,R)

-
1

A=rjh21
R=T14

3

A=rjh21

A=rjh21

2

Bead 1 has now arrived at a `Without' state. In order to evaluate this

two independent evaluations are required, so the bead is split, and one copy

is sent to a sub-machine for each of the expressions. Interest is registered in

Enter(B; T14) and Leaves(rjh21; T14).

Start End$

Enter(A,R) Enter(B,R) Leave(A,R)

-

4

A=rjh21
R=T14

3

A=rjh21

5

A=rjh21
R=T14

A=rjh21

2

1

At this point three beads are active. Bead 3 is waiting for Enter(rjh21; R),

bead 4 is waiting forEnter(B; T14) and bead 5 is waiting for Leaves(rjh21; T14).

There are also two inactive beads. Bead 1 is used to represent the relationship

between beads 4 and 5, so that one can be destroyed when the other completes.

Bead 2 is simply a stored environment, ready to spawn a new bead when bead

3 completes.We will consider two possibilities, �rstly a second person entering

T14 and secondly rjh21 leaving T14. No other events of interest can occur.4

Someone enters the room

If another person enters room T14, an event will be generated that matches the

template bead 4 is waiting for. For example, if Enter(tjm15; T14) is signalled,

bead 4 will advance and return to the level above and rejoin bead 1. The

semantics of `without' are that this bead may continue5 and it will therefore

reach the accepting state for the whole machine, and the composite event will

trigger. Beads 1 and 5 will be deleted.

4Assuming rjh21 cannot enter one room without leaving the other �rst.
5For simplicity, we assume that the evaluation of bead 5 has not been delayed. This issue

is considered in section 6.8.2.

6.7. IMPLEMENTATION 73

Start End$

Enter(A,R) Enter(B,R) Leave(A,R)

-

3

4

A=rjh21
R=T14
B=tjm15

5

A=rjh21
R=T14

A=rjh21

A=rjh21

2

1

rjh21 leaves the room

If rjh21 were to leave T14, then the event Leaves(rjh21; T14) would be de-

tected. This would lead to the advance of bead 5 which would rejoin bead

1.

Start End$

Enter(A,R) Enter(B,R) Leave(A,R)

-

3

A=rjh21

4

A=rjh21
R=T14

A=rjh21

2

1

5

The semantics of `without' are that once the second bead completes, evalu-

ation has failed, and so all three beads (1,4,5) will be deleted.

Start End$

Enter(A,R) Enter(B,R) Leave(A,R)

-

3

A=rjh21

A=rjh21

2

Evaluation has not terminated, as bead 3 is still active, and awaiting an

event signalling that rjh21 has entered a new room. As can be seen, multiple

simultaneous evaluations can take place each represented by a `string' of beads.

For example, if the same expression was used with an empty initial environment,

then a bead would be generated for each person who entered a room. In this

way multiple simultaneous evaluations can be represented extremely e�ciently.

Only events that are truly of interest are ever registered, and as beads are linked

74 CHAPTER 6. EVENTS

there is no need for searching or other `expensive' operations.

6.8 Distribution Issues

In section 6.4 we indicated that distribution issues lead to the desire for a new

composite event language. In the previous sections we explained how these

issues can be taken into account in the design and implementation of such a

language. In this section we consider other distribution issues, and how these

can be tackled.

6.8.1 Registration Delay

In the implementation of the sequence A;B, interest is initially registered in

events matching the template A. When noti�cation of an event matching this

is received, the bead advances and interest is registered in events matching B.

Clearly there will be a delay between the occurrence of A and interest being

registered in B. If any events matching B occur during this period, they will

be missed, leading to an incorrect evaluation.

A naive solution is to initially register interest in bothA andB, and to bu�er

information about events matching B until it is required. However in general

there is insu�cient information available to make this a reasonable approach.

For example, in a simple badge application, A might be OwnsBadge(rjh21; b)

andBmight be Seen(b; s). Clearly if Seen(b; s) were registered before the value

of b were known, then many events relating to badges that did not belong to

rjh21 would also be noti�ed. This is clearly ine�cient, especially if a large

proportion of the noti�cations are unlikely to be relevant (as is the case in the

badge system).

The solution adopted is to allow clients to use a two stage registration pro-

cess. A client may pre-register interest in an event that they will be interested

in in the future, and matching events will be recorded, and stored at the issuing

server | but not immediately noti�ed to the client. When the client is ready, it

speci�es a time in the past at which it wishes to retrospectively register. Match-

ing events between the registration time and the current time are then noti�ed

immediately.

In the above example, a client would initially register interest in events

matching OwnsBadge(rjh21; b) and pre-register interest in events matching

Seen(b; s). When a matching OwnsBadge event occurs (say at time t), the

value of b will be know and the client can then retrospectively register interest

in events matching Seen(b; s) from time t. In this way, no event noti�cations

can be lost, and correctness is ensured.

Clearly pre-registration may incur a considerable cost on the issuing service,

and in general a service will only be willing to bu�er events for a relatively short

period, after which they will be discarded. This period should be su�cient to

allow for `reasonable' network delay in the noti�cation of earlier events, but short

enough to prevent starvation of resources. In addition, a client may repeatedly

narrow the pre-registration as more parameters to matching events become

known.

The advantages of pre-registration are three fold. Firstly, unnecessary net-

work tra�c is avoided. Secondly, as event occurrences are bu�ered at the source

6.8. DISTRIBUTION ISSUES 75

rather than the client, they may be shared by clients with similar requests. For

example in the badge system, the Master bu�ers recent sighting information

for all badges. This information is used for retrospective registration, and pre-

registration incurs no additional per-client overhead. Finally, this approach

allows the ultimate in exibility. If a server is unwilling to bu�er occurrences

for long enough, or a client cannot a�ord the later registration delay, then the

client can for-go pre-registration and register early.

6.8.2 Detecting Event Absence

In order to implement the `without' operator, we must be able to detect if

and event has not occurred. For example. evaluation of the expression A �B

involves registering interest in both A and B, and signalling if anA event occurs

�rst. If an A event is received, the client must be certain that a B event has

not also occurred | and been delayed | before signalling.

A naive solution is to assume a global view. For example [SR90] proposes

that all event noti�cations should be bu�ered for a period greater than the an-

ticipated maximum delay. This allows re-ordering of out of sequence events, so

that A and B will always be received in the correct order. [MS95] proposes an

improvement, whereby only particular events are delayed | those of particu-

lar importance or that originate on less reliable hosts. However both of these

solutions necessarily introduce delay, which may be unacceptable, and neither

guarantees correctness. If the `expected delay' is exceeded then an error is likely

to result.

We propose an alternative based on the heartbeats described in section 4.10.

We arrange that a client is aware of the earliest event that may be produced by

any server. If a client receives A with time stamp tA then it must wait until

it receives B with tB < tA or noti�cation that there are no more events to be

received from B's server with a time stamp < tA.

This information is supplied by means of an event horizon time stamp sent

with every heart beat and event noti�cation. This indicates a lower bound on

time stamps of future noti�cations from that service. Use of event horizon time

stamps does not preclude a service from producing events out of order, which

is important for the independence of composite event activations that are re-

signalled as base events. Event horizon time stamps ensure correctness in the

light of failures but introduce an expected delay equal to half the heart beat

interval. In the following section we will consider how this method may be

combined with probabilistic correctness gained from bu�ering solutions in order

to give a tunable trade-o� for di�erent application environments.

6.8.3 Trading Correctness

In the previous section a computation/delay trade-o� was explained. If a rapid

heartbeat is chosen, then there is a relatively high computation and network

cost, but a low delay when evaluating A �B. Alternatively, a slow heartbeat

can be used that is computationally inexpensive but that leads to longer ex-

pected delays. In some application environments a third parameter, certainty

of correctness, can be traded for reduced delay.

76 CHAPTER 6. EVENTS

To facilitate this, a parameter Delay is added to the Before operator.

C (C1 � C2fDelay = �g

Where � is the maximum time that evaluation should be delayed after C1 is sig-

nalled before :C2 is assumed. The heartbeat rate can be reduced independently,

although the two factors clearly interact. An in�nitely slow heartbeat will give

the same correctness semantics as the delay system presented in [MS95].

6.8.4 Clock Drift

As indicated earlier, the clocks in di�erent computers can only be synchronised

to a certain degree, and this can make it di�cult to reliably order events that

originated from di�erent machines. In a centralised machine we may order E1

and E2 simply by comparing their time stamps. However, in a distributed

environment we can only order events to within a certain probability. This

probability will depend on the expected clock drift between the machines and

in the di�erence in the actual time stamps.

We can take account of this probabilistic ordering by extending the spec-

i�cation of `sequence' and `without' to include a minimum probability. For

example

C (C1 � C2fProbability = �g

If the time stamps for C1 and C2 are similar, then the probability of them being

correctly ordered is low, whereas if the time stamps indicate that they took place

a long time apart, then there is a high probability of correct ordering. Equally,

if C1 and C2 originate from machines with well-synchronised clocks they may be

ordered more reliably than if they do not. A client may take account of ordering

probabilities in their speci�cation. Expressions for

Signal if A almost certainly occurred before B

(high minimum probability)

and

Signal if A might possibly have occurred before B

(low minimum probability)

may both be speci�ed. If the probability distribution of the clocks is known,

these speci�cations may be translated into modi�cations in the acceptable time

stamps for A and B, and no additional run time overhead need be incurred.

However there are other issues to be considered. Clock synchronisation is

remarkably good in many circumstances[Mil91], and other issues may have more

bearing on apparent event ordering than clock drift. For example the time taken

for sensors running on a multi-processing machine to detect an event occurrence

may vary considerably. This will a�ect the time stamp the event is given and

hence the apparent ordering of events. Even if clock drift is the main source of

errors, the clock distribution may not be known to a su�cient degree of accuracy

to allow meaningful processing of a client's speci�cations.

The method presented above allows for exible speci�cation of the impor-

tance of correct event ordering. However further research is required in order

to create implementations that can match the intended semantics. Other work

6.9. AGGREGATION 77

[SHM96] has tackled this issue by introducing concurrency operators into the

composite event language, to allow a client may indicate that ordering is un-

known. This gives equivalent expressive power to the above mechanism, if the

clock variation is assumed to be rectangular.

6.9 Aggregation

In the previous sections, much has been said about the aim of reducing the

dependence on a total ordering of event instances, and the need for a global

view. The methodology used to achieve this is to split evaluation into a number

of independent instances. However, there are occasions where it is necessary to

take a number of evaluations and treat them together. For example in order to

count the number ofDeposit events between anOpen event and a Close event

we may treat the evaluation of Deposit events separately, but must ultimately

aggregate them. In general an aggregation function will take the form

�(f(C); s; E) = f

0(�(C; s; E))

Although an evaluation � conceptually returns a set of occurrences, evaluation

may never terminate and a realistic implementation will return a stream of

matching occurrences. In the following sections we discuss what facilities are

required in a language for the speci�cation of aggregation functions, and how

these functions may make use of meta events such as noti�cation of network

delays.

Although an aggregation function will process a set of event occurrences,

there may be many simultaneous and independent evaluations of an aggregation

function. For example, to count the number of deposits made into each of several

bank accounts, a candidate expression might be

$Open(x);COUNT($Deposit(x; y)-Close(x))

where COUNT is a suitable aggregation function. The evaluations for each ac-

count should be independent, and indeed aggregation functions are implemented

by a single push-down state in the same way as the basic operators.

6.9.1 Requirements

An aggregation function collates a number of composite event instances from

one or more streams and then generates new events based on the collected

information. The aggregation function should generate `aggregate events' at

the earliest possible moment. This may be when a sub-event occurs, when the

stream is terminated6, or when information about event absence is discovered.

An aggregation function should be able to perform processing on any of these

occurrences.

For example, in order to signal the �rst of A and B to occur, it is not

su�cient to receive noti�cation of A. It is also necessary to receive information

that B has not occurred.

78 CHAPTER 6. EVENTS

Time

Event
Occurrences

Received

Delay

1 2 3 4 5 6 7 80

A(x) A(y) A(z)B(p) B(q)

Two
Section
Priority
Queue F

ix
ed

V
ar

ia
bl

e

A(x) A(x)
A(y)

A(x)

A(y)
B(p)

A(x)

A(y)
B(p)

A(z)

A(x)

A(y)
B(p)

A(z)
B(q)

Figure 6.6: A Two Section Priority Queue

The diagram above illustrates the growth of a priority queue as event in-

stances from the expression AjB are received. As events are received, they

are added to the queue in occurrence order. In addition the �xed portion of

the queue grows as the system gains knowledge about delayed events. For

example at time 5 the event received indicates that no B events occurred

prior to time 2.

6.9.2 Data Structures

The data structure chosen to represent a stream of events is essentially a priority

queue, extended to allow the meta-events to be clearly speci�ed. The priority

queue stores (sub)events in time stamp order, and delayed events are inserted

into the queue at the appropriate point. The queue has two sections. The �rst

section is `�xed'. The system guarantees that there will be no more insertions

into this section. The second section is variable, and inserts may be made into

it. Gradually, as delayed events are received and processed, and as heartbeats

`promise' the absence of events from particular servers the �xed portion will

grow. The aggregation function is made aware of changes to the size of the

�xed portion via meta-events, and may act accordingly. Figure 6.6 illustrates

this data structure.

6.10 A Language for Aggregation Functions

Aggregation functions could be speci�ed in any programming language capable

of managing queues of structured data. Lisp is a strong contender, as it is

interpreted and clearly suited to this task. However a simple language will

su�ce for the majority of aggregation requirements, and to this end a `toy'

language based loosely on C has been devised[ANS90]. An aggregation function

6Some streams are �nite (e.g. A), some potentially in�nite (e.g. $A) and some are poten-

tially in�nite but bounded (e.g. $A-B).

6.10. A LANGUAGE FOR AGGREGATION FUNCTIONS 79

is speci�ed by a block of the following format:

{ int t =0; Local variable de�nitions.

expr: $Deposit(x)-Close An event expression

event: t=t+new.x The action to be taken on an event

occurrence.

var: The action to be taken if a portion of the

queue becomes �xed.

end:

}

hd.t=t;accept hd; The action to be taken when (if) the queue

is terminated.

The above example calculates the total amount deposited in a bank before the

close of business. t is a local variable used to accumulate the values associated

with Deposit events, and is initialised to zero. The sub-expression evaluated

yields a stream of deposit events which is eventually terminated when Close

occurs. The phrase event: : : : indicates the action to be taken on each deposit

(update of the accumulated total); and the statement end: : : : indicates the

action to be taken when the Close event occurs (assignment of the total to

an event and acceptance of that event). This example is explained in detail

in section 6.11.1. The var: phrase is empty as no action should be taken on

meta-events.

If an aggregation function requires more than one stream of events, then

there will be more than one expr statement, and matching event, var and end

statements for each one. The action taken on a (meta)event occurrence can be

to update variables in the local environment, or in the environment of one of

the queued event instances; and to accept or reject one or more events.

6.10.1 Variables

The bead representing each event instance carries with it an environment con-

sisting of a set of variable!value mappings. An aggregation function might

require access to these variables. Queues of event instances are represented

within the aggregation function by a linked list of records. A single pointer

type is provided, and variables of this type point to an event instance record.

hd points to the head of the queue7, and p.tl points to the record after p (or

null if p is the last record on the queue). In addition, var is a pointer to the

�rst record on the variable portion of the queue and new is a pointer to the last

item added to the queue. Pointers may be compared if they point to records

on the same queue, and p<q if p is closer to the head of the queue than q. Any

non-null pointer is <null. The following relations can be proved trivially.

if hd=null then the queue is empty

if hd<var then the �rst item on the queue represents the earliest event.

The aggregation function may access an event's environment via indirection

of a pointer. For example p.x=4 sets the variable x in the environment of the

event instance pointed to by p to the value 4.

7When more than one queue is used, these are enumerated, i.e. hd0,hd1, : : :

80 CHAPTER 6. EVENTS

6.10.2 Constructs

A C-like syntax is chosen for statements. In addition to variable assignment

two ow control constructs and two statements are provided.

if(expr1) stmt1 elseif(expr2) stmt2 : : : else stmt0

Conditional execution, with the expected semantics.

loop(pt=hd) stmt

This construct evaluates stmt once for each record in the queue pointed

to by hd. In each evaluation pt is set to point to the current record.

accept pt

The record pointed to by pt is accepted and removed from the queue.

kill pt

The record pointed to by pt is removed from the queue. If pt is omitted,

then all current (and future) records are deleted. This is used to signal

that evaluation should terminate.

6.11 Examples

Some example uses of aggregation are shown in this section.

6.11.1 Counting

A common use of aggregation is for counting. Reconsider the bank account

example of section 6.10. We may wish to calculate the total amount deposited

in each bank account between the opening of the account (Open(x)) and the

closing of the account (Close(x)). A possible solution is shown below:

$Open(x);{ (1)

int t=0; (2)

expr: $Deposit(x; a)�Close(x) (3)

event: t=t+new.a (4)

end: hd.t = t;accept hd; (5)

}

The �rst line states that an evaluation of the aggregation function should start

each time there is an Open(i) event. The event expression within the aggre-

gation function will be given the initial environment (x = i). The second line

declares a local variable, t, and assigns it the initial value 0. This is used to

store the total amount deposited. The third line is an expression that evaluates

to a set of event instances, one for each deposit in the appropriate account. The

fourth line indicates that the total should be updated by the deposited amount,

each time an event instance is added to the queue.

The �fth line indicates that when the queue is terminated (i.e. when the

Close event has occurred, and all delayed events have been received) then

an event instance should be signalled with an environment updated with t =

total deposited. As all queued events are equally suitable, the event at the head

of the queue is taken.

6.11. EXAMPLES 81

There are a number of improvements that can be made to the above de�-

nition. Firstly, there is a bug. If no events are signalled, and an empty queue

is terminated, then hd = null and the statements for the end meta-event are

invalid. Secondly, when the aggregate event is eventually signalled, the sub-

event that is updated will have a time stamp indicating when it occurred. For

this example, a more appropriate time stamp would be that of the Close event.

This may be achieved by setting the time stamp variable (@) to the time of the

end meta-event.

82 CHAPTER 6. EVENTS

Finally, as only one event instance in the queue is required, the others may

be deleted as they occur, thus saving resources. A �nal version of the expression

is therefore:

$Open(x);{

int t=0;

expr: $Deposit(x; a) �Close(x)

event: t=t+new.a;kill hd.tl;

end: if(hd) {hd.t = t;hd.@=@;accept hd;}

}

6.11.2 Maximum

Another common use of aggregation is to select one from a set of candidate event

instances. In this example, we will select the event representing the longest long-

jump during a competition delimited by Start and End events.

$Start();{

pt q=null;

expr: $Jump(d)�End()

event: if(q==null)

{q=new;}

elseif(new.d>q.d)

{kill q;q=new;}

else

{kill new;}

end: if(hd) {accept hd;}

}

In this expression, only one event is kept on the queue; the one representing

the longest jump. Unlike the previous example, when this event is eventually

signalled, it retains its original time stamp, as this is more appropriate in this

case.

6.11.3 First / Once

Consider an expression to detect the �rst athlete to cross a �nishing line. In

order to signal this, we must ensure that the event representing an earlier athlete

has not been delayed. This may be done by examining the var pointer, and by

using the var meta-event.

$Start();{

expr: $Finish(a)

event: if(var>hd)

{accept hd;kill;}

var: if(var>hd)

{accept hd;kill;}

}

When the �rst event occurs, this is immediately signalled | providing that

there is a guarantee that no more events will be inserted before it. If this is

not the case, then an earlier event will eventually arrive (and be signalled) or

6.12. CONCLUSIONS 83

a var meta-event will occur indicating that the �rst event is no longer in the

variable section of the queue. Whatever the reason, when the �rst event is

signalled, other events are no longer of interest and are all `killed'. In terms

of implementation this will stop further evaluation of the sub-expression and

de-register interest in all pertinent events. The mechanism required for this is

exactly the same as that for destroying beads during evaluation of `Without',

as described in section 6.7.

In the squash example of section 6.6, `First' could be used as a suitable

aggregation function to ensure that the end of the point was only signalled

once. However a function with weaker semantics will su�ce. We are interested

in the �rst detection of the end of the point | so that we may stop play. This is a

common requirement of composite expressions representing alarms. In general,

an alarm should be signalled on the �rst occasion that events warranting it are

detected. If two sensors detect a �re, the alarm should ring as soon as a Fire

event is received, regardless of possible delayed events from the second sensor.

Both of these examples may be performed by the trivial aggregation function

$Start();{

expr: expression

event: accept hd;kill;

}

6.12 Conclusions

Although many systems are inherently event driven, there has been little re-

search into the design of general mechanisms for the noti�cation and manage-

ment of distributed events. This chapter presents an event architecture which

allows implementation details to be hidden, and thus simpli�es the construction

of complex distributed applications.

In an open environment, it is not plausible to maintain a central database of

every event occurrence, and registration is therefore the natural approach. The

extension of object interface de�nition to include event classes is intuitive, and

�ts the object oriented paradigm well.

Composite event detection in a distributed environment is a complex prob-

lem. In particular the requirements are very much application speci�c. Speed of

detection, accuracy and failure tolerance are trade-o�s that di�er from domain

to domain. The language presented to represent composite event expressions is

both more exible, and, in the author's opinion, more intuitive than other com-

posite event grammars. The implementation of this language is both e�cient

and `tunable' to application domain requirements.

In this chapter the design of a global badge system was given as an example

event driven system. This presents many challenges for an event architecture,

in particular there are both a large number of producers of events and a large

number of consumers. In the following chapter, the administrative problems

inherent in such an application are considered; in particular how security poli-

cies for event noti�cation can be represented, and how policies from di�erent

organisations will interact.

84 CHAPTER 6. EVENTS

Chapter 7

Event Security

7.1 Introduction

Access control for event noti�cation is a quite di�erent problem to that for pro-

cedural systems. In this chapter we will investigate why this is the case, and

explain the design of an access control system for events. Section 7.2 highlights

both the di�erences and similarities between access control for events and oper-

ations. Section 7.3 describes how a trivial modi�cation of RDL will allow it to

be used as a policy expression mechanism for event based systems. Section 7.4

discusses implementation problems, and o�ers some solutions. Section 7.5 uses

the Active Badge System of the previous chapter as an example to evaluate the

requirements of a real system, and the extent to which these are met. Finally

section 7.6 concludes.

7.2 The Problem with Events

With `standard' procedural systems, whenever a client wishes to perform some

operation, there is a dialogue between the client and the server whereby the

client supplies a number of credentials. The server examines these, consults

stored policy, and if the client has su�cient privileges, the operation is allowed

to proceed. For each operation, the client need only supply credentials required

for that operation. If access is denied, the client is informed and may try again

with a stronger set of credentials.

With an event based system, such an approach is not feasible. When an

event occurs, the server must decide which clients are interested in this event,

and which of the interested clients are allowed to see the event. Clearly a client

cannot be consulted at this point to provide credentials, and so all relevant

credentials must be supplied at an earlier point.

In general, credentials will be supplied at registration, for later consultation

when an event occurs. In addition the process of registration may itself be

subject to access control. However, this is a procedural request like any other

and may be protected using the mechanisms discussed in previous chapters.

This is not considered further here.

A second problem with events is that the expected computation cost of

access control checks is considerably higher than in procedural systems. In a

85

86 CHAPTER 7. EVENT SECURITY

procedural system credentials must be examined on each client call; however

there is a great deal of scope for caching optimisations. Generally client calls

are bursty - a client may perform many operations on one object before accessing

another, and the number of clients in the current `working set' may be quite

small. In an event system, supplied credentials must cover all event instances,

and so there may be more of them. In addition each event is independent, and a

large number of clients may be interested in it. Caching relies on rapid re-use of

information, and it is not clear how it could be applied to event access control.

A more subtle solution than caching is therefore required in order to reduce

the O(no.events � no.clients) cost. In section 7.4 we will derive a suitable

system that reduces the need for per-client checks on each event occurrence.

Despite these di�erences, event access control has a number of similarities to

procedural approaches. In particular the issues raised in chapter 2 about client

naming and inter-working between applications still apply. As events are a key

tool in the development of cooperating applications, these issues are arguably

even more signi�cant for event based systems than for procedural ones.

The badge system is an example of a cooperating set of servers. Each server

may be in a separate site, each with separate schemes for (human) client naming.

A client interested in badges currently located in a number of di�erent sites must

be able to inter-work with each of these services. The issues of such a system are

considered in detail in section 7.5 and used as a basis to evaluate the proposed

model.

7.3 Policy Speci�cation

Access control should be speci�ed in terms of client roles and in terms of the

parameters to events. For example, a simple policy statement from the badge

system might be that a user may be told of sightings relating to their own badge.

i.e.

clients with Login.LoggedOn(u; h) may be informed of

Seen(b; s) where b = Badge(u)

This is clearly syntactically similar to the role de�nition

MaySee(b; s) Login.LoggedOn(u; h) : b = Badge(u)

Indeed, modifying the semantics of RDL in this way leads to a uniform mech-

anism for expressing access control policy. In the extended, event form of RDL

(ERDL) the left hand role speci�cation is replaced with an event template, and

the modi�ed semantics are that a client supplying suitable credentials is al-

lowed access to events matching the event speci�cation. Conceptually, when an

event occurs, the service �rst discovers which clients have registered interested

in the event. For each interested client, if a matching ERDL rule is found, and

the client has provided su�cient credentials to allow entry, then the client is

informed of the event. If no such rule is found, then the client is not informed.

A complication is that the type scheme for events is considerably richer than

that for RDL. To deal with the mismatch, each event instance is mapped to a

representative used for access control. The representative is a model of the

event, which has parameters that are signi�cant for access control purposes. An

7.4. IMPLEMENTATION ISSUES 87

alternative to the example above would be to map the badge and sensor identi-

�ers in the Seen event to the corresponding user and room. Seen(user; room)

could then be used in policy statements rather than Seen(badge; sensor). This

mapping can simplify the syntax of the policy de�nition, and can hide imple-

mentation issues that are not relevant to the policy administrator.

As with the expression of access control lists, it is useful to be able to specify

both positive and negative access control entries. For example `students may

not see sta� when they are in a meeting room' is a plausible negative rule

that might take precedence over other positive rules such as `a student may see

their supervisor'. We further extend ERDL by allowing negative entries to be

speci�ed. When an event occurs, each interested client is noti�ed providing the

(event,client) pair match a positive rule, without a preceding matching negative

rule. For example, the above example may be speci�ed as

�Seen(u; r) (1 Login.LoggedOn(s; h)

: u in staff^ s in students^ r in Meeting

Seen(u; r) (Login.LoggedOn(s; h)

: Supervisor(u; s)

This has analagous semantics to the interpretation of MSSA ACLs, as discussed

in section 5.4.4.

7.4 Implementation Issues

When an event occurs, the stored policy must be consulted to see if each in-

terested client may be informed of the event. In this section, we will discuss

how the access control information can be pre-processed in order to reduce the

expected cost.

The ERDL relating to each event type can be parsed to produce an accep-

tance function (event representative; client). This will be a boolean expression

of three kinds of term.

� Those that involve only event parameters. For example

Seen(u; r) (: : : : u in staff

Terms of this type indicate access to be allowed (or denied) dependent

only on the parameters to the event, and not the parameters of the role

membership certi�cates supplied as credentials. Computations relating to

these terms can be cached and used for all clients.

� Those that involve only client parameters. For example

: : : (Login.LoggedOn(s; h) : s in students

Terms of this type indicate access rights dependent solely on the pa-

rameters of supplied role membership certi�cates, and not on the event

parameters. Computations relating to these terms may be calculated at

registration, and cached for use whenever an event occurs.

1The (symbol is used to denote that this is an ERDL statement.

88 CHAPTER 7. EVENT SECURITY

� Those that involve both event and client parameters. For example

Seen(u; r) (Login.LoggedOn(s; h) : Supervisor(u; s)

These terms cannot be optimised. They must be recalculated for each

(event,client) pair.

The ERDL rules are processed to separate these types of terms, and in ad-

dition order the expression, so that `expensive' calculations are only made if

acceptance/rejection cannot be based solely on `cheap' ones.

Figure 7.1a,b gives a subset of the access control rules for one site in the

badge system. These are used to illustrate the transformations that are applied.

Firstly negative rules are distributed over positive rules, to remove the rule

ordering. The set of rules are then converted into a single boolean expression.

This is illustrated by �gure 7.1c. The expression is then converted to disjunctive

normal form and each clause is further divided into terms of the three types

indicated above (Figure 7.1d).

Client expressions (C0 : : : Cn) need not be evaluated for each event occur-

rence, as they are only dependent on client credentials. They may therefore be

computed at registration. If a group membership later changes to invalidate a

credential, this is managed by the mechanisms described in section 4.6.

Equally, event expressions (E0 : : : En) need only be computed once for each

event, as they do not involve client credentials.

By construction, each clause in the acceptance function contains exactly

one client expression, so that once E0 : : : En have been evaluated, it can be

expressed as

(Ci _ Cj _ Ck : : :) _ ((Cu ^ fu(e; c)) _ (Cv ^ fv(e; c)) : : :)

A bitmask representing the truth values for C0 : : : Cn is stored with each client

record, and therefore for each client can be rapidly computed by performing

the intersection of this with the bitmask representing fCi _ Cj _ : : : g. If any

terms match, the client may be informed of the event. If no terms match, the

intersection with fCu _ Cv _ : : : g is performed. It is only if this succeeds that

terms dependent on both the client and the event need be computed.

Access control can therefore be performed by some precomputation, followed

by a series of calculations of increasing cost. Further gains can be made by com-

bining these computations with the matching operation required to determine

which clients are interested in an event. For each client who might be interested,

cheap access control checks are preformed. It is only if these indicate that the

client may be eligible to receive the event that the pattern matching takes place.

Finally the more expensive access control checks take place if required.

These transformations, together with careful implementation, can dramati-

cally reduce the amount of computation required for access control for events.

7.5 Badge System Requirements

In this section we will consider the access control implications for both inter and

intra site communications within the badge system. We will consider three sites,

\CL", \Eng" and \ORL". CL is a university computer science department, and

7.5. BADGE SYSTEM REQUIREMENTS 89

1. Anyone may see their own badge.

2. rmn's secretary may see him.

3. Sta� may see rmn.

4. Students may not see rmn.

5. Students may see sta�.

6. Students may not see each other.

7. Sta� may see each other.

(a)

Seen(u; r) (LoggedOn(u; h) (1)

Seen(rmn; r) (LoggedOn(akl; h) (2)

Seen(rmn; r) (LoggedOn(p; h) : p in staff (3)

�Seen(rmn; r) (LoggedOn(p; h) : p in student (4)

Seen(u; r) (LoggedOn(p; h) : u in staff ^ p in student (5)

�Seen(u; r) (LoggedOn(p; h) : u in student ^ p in student (6)

Seen(u; r) (LoggedOn(p; h) : u in staff ^ p in staff (7)

(b)

 (Seen(u; r);LoggedOn(p; h)) =

(u = p)

_(u = rmn ^ p = akl)

_(u = rmn ^ p in staff)

_(u in staff ^ p in student ^ :(u = rmn ^ p in student))

_(u in staff ^ p in staff ^ :(u = rmn ^ p in student) ^

:(u in student ^ p in student))

(c)

Client Expressions:

C0 ((true)

C1 ((p = akl)

C2 ((p in staff)

C3 ((p in student)

C4 ((:p in student ^ p in staff)

Event Expressions:

E0 ((u = rmn)

E1 ((u in staff)

E2 ((u in student)

 (Seen(u; r);LoggedOn(p; h)) =

(C0 ^ p = u)

_(C1 ^ E0)

_(C2 ^ E0)

_(C3 ^ :E0 ^ E1)

_(C4 ^ :E0 ^ E1)

_(C4 ^ E1)

_(C2 ^ :E0 ^ E1 ^ :E2)

_(C4 ^ E1 ^ :E2)

(d)

Figure 7.1: Stages in Preprocessing ERDL

An example policy from the badge system is given in (a), and speci�ed in

ERDL in (b). This is transformed to a boolean acceptance function (c),

and then rewritten to eliminate common expressions, and separate event

and client clauses (d).

90 CHAPTER 7. EVENT SECURITY

\Eng" is the engineering department in the same university. The two depart-

ments are administered separately. ORL is a local company that has close links

with CL. Indeed some members of sta� at ORL are also sta� members at CL.

In the next section we will consider the access control requirements of each

of the three sites, and in the rest of the chapter we will consider how these may

be implemented using the access control methods explained in the �rst part of

this chapter.

7.5.1 Local Policies

In this section we will propose a (somewhat Draconian) set of access control

policies that might exist between the sites, in order to illustrate some of the

issues of distributed administration. Only Seen events are considered. Other

events such asMovedSite will also require access control, but these are omitted

for clarity.

� The engineering department only issues badges for use by sta� members.

It is the policy that any sta� member may see any other, when in the de-

partment. Sightings of visiting badges are also available to all sta�. Badge

sightings are normally made available only within the department, the ex-

ception being that sightings from visiting members of other departments

may be seen by members of that department - subject to that depart-

ment's policy. Badges are not issued to students, and students have no

access to badge sightings.

� The computer laboratory has a complex policy for local and visiting

badges. Students may only see sta� when they are in their own o�ce,

or in public areas within the laboratory. Sta� may see each other at any

time. Few students have badges, and those that do may be seen by any-

one at any time. Requests from external sites are given the same access

rights as students, unless they come from named individuals who are sta�

members at both the computer laboratory and the external site.

� The sta� at ORL are allowed access to all local badge sightings at all

times. Requests from external sites are always disallowed - unless they

come from one of the sta� members who is currently at the university.

Although the three organisations are administered separately, they are not com-

pletely separate, and there is some degree of cooperation between the sites. For

example, the engineering department wishes to respect the computer labora-

tory's policy with respect to those members of it who are currently in the en-

gineering department. Equally, the computer laboratory and ORL cooperate

over sightings of people who hold positions in both organisations.

7.5.2 De�ning Local Policy

Figure 7.2 gives ERDL statements for the policies for the three organisations.

These will be considered in turn.

� Policy for ORL may be expressed simply and directly. Statement 1 indi-

cates that all users logged into the local system may see all badge sight-

ings. Statements 2 and 3 name users with accounts on remote systems

7.5. BADGE SYSTEM REQUIREMENTS 91

Seen(u; r) (Login.LoggedOn(p; h) (1)

Seen(u; r) (CL.LoggedOn(ah; h) (2)

Seen(u; r) (CL.LoggedOn(djg; h) (3)

(a) ORL

Seen(u; r) (: u in staff^ (r in

PubRoom_O�ce(u; r))(1)

Seen(u; r) (Login.LoggedOn(p; h) : u in staff^ p in staff (2)

Seen(u; r) (: u in student (3)

Seen(u; r) (ORL.LoggedOn(ah; h) : u in staff (4)

Seen(u; r) (ORL.LoggedOn(djg; h) : u in staff (5)

(b) Computer Laboratory

Seen(u; r) (Login.LoggedOn(p; h) : p in staff (1)

Seen(u; r) (??? : Home(u) = CL (2)

(c) Engineering

Figure 7.2: Policies for the Three Sites

who may also see sightings when using these accounts. In the Oasis name

server, Login maps to the services responsible for issuing local (ORL)

login certi�cates, and CL maps to the equivalent service in the computer

laboratory2.

� The computer laboratory has a more complex policy, and correspond-

ingly complex ERDL. Statement 1 indicates that, under certain conditions,

sightings of sta� badges may be seen by anyone. In the original policy it

was stated that this access was available to students, and to users from

external sites. As there is no way to distinguish between external users

(who have no useful credentials), and internal users who choose not to

provide credentials, this statement is weaker that the original speci�ca-

tion. Statements 2 and 3 are straightforward, and 4 and 5 perform the

same function as the analogous ones in the ORL policy.

� Expressing policy for the engineering department is more di�cult. The

�rst statement is straightforward, but the second is more troublesome.

The intention is to specify that sightings of badges belonging to members

of the computer laboratory may be seen by members of the computer

laboratory, subject to the computer laboratory's policy. A simple solution

would be to manually insert the computer laboratory's policy speci�cation

into the engineering department's badge system. However, this requires

too much cooperation between the administrators on the two sites, and

an alternative, distributed, solution is preferred. This will be considered

in the following section.

2This requires a mechanism for trading of interfaces between organisations. ODP archi-

tectures such as ANSA [APM93], and CORBA [Gro92] provide such mechanisms.

92 CHAPTER 7. EVENT SECURITY

Proxy
Master

Engineering

Master

Computer Lab.

Eng.

Client

Client

Client Client

Client

Client

Figure 7.3: Enforcing Remote Policy using Proxys

In the diagram, badge events within engineering are only noti�ed to clients

within the computer laboratory via the proxy server. This ensures that

computer laboratory policy is not breached.

7.5.3 Remote Policy

When cooperation between organisations is required as in the above example,

this can be achieved by inserting a level of indirection between the event source

in one site, and the clients in the other. For the above example, a proxy server

is created in the computer laboratory that receives event noti�cations from

engineering, and �lters these according to the computer laboratory's policy,

before echoing them to computer laboratory clients. This is illustrated by �gure

7.3. Additional advantages in this scheme are that the network bandwidth

between the two sites is reduced, and that administrators on both sites may

collate auditing information. The ERDL for the engineering department's badge

service may now be completed by adding the line

Seen(u; r) (CLsys.BadgeProxy(`Engineering') : Home(u) = CL

In this instance the Oasis service named by CLsys is the computer laboratory's

role service responsible for naming and authenticating system services.

7.6 Conclusions

Distributed event management is a very young area of computer science. Cur-

rently, events are used to aid management or monitoring within closed systems.

For example, telecommunications switches may report faults and accounting

information to a management system, and active databases may use events for

consistency or constraint checks. In these environments, security is not an im-

portant issue, as there is e�ectively only one client (the manager) who may see

everything.

We belive that the event paradigm is also useful in the development of more

open applications, where there are many event sources and a number of un-

7.6. CONCLUSIONS 93

trusted clients. In this environment event access control is essential. Addition-

ally, the exercise of extending RDL to meet the requirements of event access

control is a signi�cant test of the ability of Oasis to extend naturally to new

problem domains.

94 CHAPTER 7. EVENT SECURITY

Chapter 8

Conclusions

This dissertation presents an open architecture for access control that allows

�ne grain speci�cation and enforcement of arbitrary access control policies. This

chapter summarises the main conclusions and suggests further work.

8.1 Summary

The fundamental problem that this work attacks is the degree of compromise

present in access control systems. Trade-o�s are made on the grounds of e�-

ciency, security and readability.

Openness Existing access control architectures do not interwork well with each

other. This is a di�cult problem. Mechanisms often interwork badly, as

they rely on conicting assumptions. In addition, it is di�cult to reason

about the interaction of policies that are not formally speci�ed, or that

are speci�ed in terms of di�erent concepts and use di�erent languages.

Recent work has addressed this issue by developing large scale security

architectures, such as Kerberos, Sesame or the ODP proposals. Although

these systems allow interaction between di�erent organisations that use

the same security architecture; they are not open with respect to inter-

action between organisations using di�erent mechanisms.

Oasis tackles this problem in two ways. Firstly, policy is speci�ed using a

exible grammar. Policies written in other grammars can be translated

into this grammar to aid reasoning (chapter 3). Secondly, credential

records provide a general mechanism for the enforcement of access con-

trol policies based on the notion of beliefs (chapter 4). Within Oasis

these beliefs relate to Oasis concepts, such as the validity of a certi�cate.

However, the concept of belief is very general, and when interworking

with other architectures, beliefs may be related to other concepts such

as the time of day or the integrity of a Kerberos host.

Flexibility The exibility of an access control mechanism is limited by the

granularity of client naming. An architecture which names clients by

UserId, for example, cannot perform access control based on process

identity. A more subtle point is that policy that is implicit in an im-

plementation is inexible. For example, in the Unix �ling system, the

95

96 CHAPTER 8. CONCLUSIONS

policy relating to who may read or modify an access control list is �xed.

A good test of an access control architecture is how well it extends to

protect itself. Are the same mechanisms used for the speci�cation and

enforcement of meta-policy?

In chapter 2, we considered the issues of client naming, and derived a two

level naming scheme to overcome the problems of granularity. In chapter

5 we considered the issues of meta-access control in the context of the

MSSA storage architecture, and showed that Oasis does indeed extend

in this way, and that meta-access control need not be unduly expensive.

In chapter 7 we considered how Oasis may be extended to protect a new

class of objects | events. As computing environments are constantly

evolving, it is important that security architectures may evolve to meet

emerging requirements. As events are protected by Oasis and Oasis is

built using events, the mechanisms used in Oasis may themselves be

protected, and (for example) the noti�cation of policy changes may be

subjected to access control.

Clarity Security policies must be expressed in a clear and unambiguous way.

If this is not the case, then security breaches will occur through mis-

takes. Early access control list schemes tended to provide either clarity

or expressive power but not both. Some schemes are simple and easily

understood (for example Unix ACLs) whereas others are powerful but

confusing (for example Phoenix/MVS ACLs).

The author believes that policies expressed in RDL are easily understood

(chapter 3). In addition, by moving the problem to the domain of nam-

ing, the majority of policy speci�cation can be left to a small number of

administrators, who allocate roles to users. Most policies under the con-

trol of `ordinary' users are likely to be expressed as simple access control

lists, and for this reason the representation of ACLs was given careful

attention (chapter 5).

E�ciency The most e�cient security mechanism is none at all. E�ciency

is therefore always a trade-o�. The expressive power available when

specifying policy and speed of propagation of policy updates are likely

to be compromised in the �ght for faster systems. A side e�ect of this

battle is that systems tend to exhibit artifacts that are not part of the

policy de�nition. For example, revocation, group membership updates or

policy modi�cation may be delayed for e�ciency reasons, giving system

behaviour that only approximates to the stated policy. These trade-o�s

lead to an unsatisfactory profusion of loop-holes and quirks that are not

formally speci�ed or amenable to reasoning.

Oasis is unusual in that the implementation closely matches the spec-

i�cation. Where e�ciency trade-o�s are required, they correspond to

bounded delays that are only applicable in the case of failure. For ex-

ample a server may reduce load by sending only occasional heartbeats.

This will result in revocation delays, but only if the network or server

fails (chapter 4).

8.2. FURTHER WORK 97

The approach to access control in this thesis may be summarised as the

exible speci�cation of access control policy and the e�cient and direct imple-

mentation of this policy.

8.2 Further Work

Further work falls into four categories; mechanisms for the expression of policies;

extensions to the implementation; the application of Oasis principles to other

domains; and formal reasoning.

Policy Expression There are many possible security policies that cannot be

directly speci�ed in RDL. However it is believed that the majority of

these can be expressed by RDL statements extended with special oper-

ators, which might be provided by a particular service. Crucially, other

Oasis services should be una�ected by such extensions.

For example organisational roles have received much recent interest. In

these schemes there are constraints such as no user may be both an ac-

counts manager and a purchasing manager. Such a statement may be

speci�ed in an extended RDL statement as

AccountManager(u) CandidateAccountManager(u)

: :PurchasingManager(u)

Further work is required to determine the extent to which alternative

schemes can be represented in this way.

Implementation Extensions The primary extension to Oasis that is needed

is the replication of Oasis servers. This is a hard problem, as it is fun-

damental to the implementation that the issuer of a certi�cate must

validate it. A possible approach is to use a signature based on a secret

shared between the replicas of a service for the cryptographic check, but

e�cient validation of credential records is more di�cult. Further work

is required to determine suitable mechanisms.

Other Problem Domains The mechanisms presented in this thesis relate as

much to naming as to access control. As such, they ought to prove useful

when considering issues of auditing, accounting or non-repudiation.

Formal Reasoning Much has been said about the advantages of RDL as a

means for clear policy speci�cation. RDL statements correspond to ax-

ioms, which should be amenable to automatic analysis. Such analysis

would have many bene�ts. For example queries such as `determine the

circumstances in which a user from outside the organisation may access

the database' would prove very useful for closing loopholes and tracing

leaks. This work has not considered the details of these issues, and it is

clear there is scope for further work.

98 CHAPTER 8. CONCLUSIONS

Oasis is an architecture designed for the provision of access control in large

distributed systems. It is designed to be exible and e�cient. A prototype

system has been built and tested, however experience in applying Oasis to a

`real world' system is the only way to quantify the true cost of such a exible

scheme. The world is, and always will be, heterogeneous. Existing schemes for

interworking rely on homogeneous mechanisms that are unrealistic when inter-

action between a large number of organisations is considered. Oasis does not

make such an assumption, and whilst in an ideal world Oasis could be adopted

as the universal scheme, this thesis demonstrates that secure interworking in a

heterogeneous environment is possible.

Bibliography

[ANS90] ANSI. Programming Language C. American National Standard for

Information Systems, New York, 1990.

[APM93] APML. The ansa model for trading and federation. Technical

Report AR.005.00, Architecture Projects Management Ltd, 1993.

[Bac92] Jean M. Bacon. Concurrent Systems. Addison-Wesley Publishing

Company, 1992.

[BGS92] J.A. Bull, Li Gong, and K. R. Sollins. Towards security in an open

systems federation. Lecture Notes in Computer Science, (648),

1992. ESORICS 92.

[BMLH94a] Jean M. Bacon, Ken Moody, Sai Lai Lo, and Richard John Hay-

ton. Access control for a modular, extensible storage service.

In IEEE SDNE, Services in Distributed Network Environments,

Prague, June 1994.

[BMLH94b] Jean M. Bacon, Ken Moody, Sai Lai Lo, and Richard John Hayton.

Extensible access control through a hierarchy of servers. ACM

Operating Systems Review, July 1994.

[BMLH94c] Jean M. Bacon, Ken Moody, Sai Lai Lo, and Richard John Hay-

ton. Modular, extensible storage services through object interfaces.

In ACM SIGOPS European Workshop, pages 141{146, September

1994.

[BN80] A. D. Birrell and Roger M Needham. A universal �le server. In

IEEE Transactions SE, volume 6(5), 1980.

[Bro94] Kraig Brockschmidt. Inside OLE2. Microsoft Press, 1994. ISBN

1-55615-618-9.

[CD94] George Coulouris and Jean Dollimore. A security model for co-

operative work. Technical Report 674, Department of Computer

Science, Queen Mary and West�eld College, University of London,

1994.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim.

Composite events for active databases: Semantics, contexts and

detection. In Proceedings of the 20th VLDB Conference, Santiago,

Chile, September 1994.

99

100 BIBLIOGRAPHY

[Den76] Dorothy E. Denning. A lattice model of secure information ow.

Communications of the ACM, 19(5):236{243, May 1976.

[DO85] James Donahue and Willie-Sue Orr. Walnut: Storing electronic

mail in a database. Technical report, Palo Alto Research Centre,

1985.

[Doc] Phoenix/MVS Online Documentation. Help �le protection.

[GD93] S. Gatziu and K.R. Dittrich. Events in an active object-oriented

database system. In Proceedings of the 1st International Workshop

on Rules in Database Systems, Edinburgh, August 1993.

[GJO92] N. H. Gehani, H. V. Jagadish, and O.Shmueli. Composite event

speci�cation in active databases: Model & implementation. In 18th

VLDB Conference, Vancouver, British Columbia, Canada, 1992.

[Gon89] Li Gong. A secure identity-based capability system. In IEEE 1989

Symposium on Security and Privacy, pages 56{63, May 1989.

[Gro92] Object Management Group. The Common Object Request Broker:

Architecture and Speci�cation. John Wiley & Sons, Inc., 1992.

[GS86] I Greif and S. Sarin. Data sharing in group work. In First Con-

ference on Computer Supported Cooperative Work, pages 175{183,

Austin, Texas, December 1986.

[HHB93] Andy Hopper, Andy Harter, and Tom Blackie. The active badge

system. In ACM INTERCHI'93, Amsterdam, April 1993. Olivetti

Research Ltd Technical Report 93.7 (video).

[HKG+88] John H. Howard, Michael L. Kazar, Sherri G.Menees, David A.

Nichols, M Satyanarayanan, Robert N. Sidebotham, and Michael J.

West. Scale and performance in a distributed �le system. ACM

Transactions on Computer Systems, 6(1):51{81, February 1988.

[LABW93] Butler Lampson, Martin Abadi, Michael Burrows, and Edward

Wobber. A calculus for access-control in distributed systems. ACM

Transactions on Programming Languages and Systems, 15(4):706{

734, 1993.

[LABW94] Butler Lampson, Martin Abadi, Michael Burrows, and Edward

Wobber. Authentication in the taos operating system. ACM Trans-

actions on Computer Systems, 12(1):3{32, 1994.

[Lam71] B. W. Lampson. Protection. In Fifth Princeton Symposium on

Information Sciences and Systems, pages 437{443, Princeton Uni-

versity, March 1971. Reprinted in Operating Systems Review, 8,

1, January 1974 pp.18-24.

[Lo94] Sai Lai Lo. A Modular and Extensible Network Storage Architec-

ture. PhD thesis, University of Cambridge, January 1994. Technical

Report No. TR 326.

BIBLIOGRAPHY 101

[Lun88] Teresa F. Lunt. Access control policies: Some unanswered ques-

tions. Technical report, SRI International, June 1988.

[LYS95] Emil C. Lupu, Nicholas Yialelis, and Morris Sloman. A policy

based role framework for access control. In First ACM Work-

shop on Role-Based Access Control, Gaithersburg, Maryland, USA,

November 1995.

[Mil91] D. L. Mills. Internet time synchronization: The network time pro-

tocol. IEEE Transactions on Communications, 39(10):1482{1492,

October 1991.

[MO87] Masaaki Mizuno and Arthur E. Oldehoeft. An access control lan-

guage for object-oriented programing systems. Technical Report

TR-CS-87-12, Department of Computer Science, Kansas State Uni-

versity, November 1987.

[MS91] J. D. Mo�ett and M. S. Sloman. Content-dependent access control.

ACM SIGOPS Operating Systems Review, 25(2):63{70, April 1991.

[MS95] Masoud Mansouri-Samani and Morris Sloman. Gem a generalised

event monitoring language for distributed systems. Technical Re-

port Doc 95/8, Impreial College, July 1995. Revised version of

Report No Doc 93/49, December 93.

[MST90] Jonathan Mo�ett, Morris Sloman, and Kevin Twidle. Specifying

discretionary access control policy for distributed systems. Com-

puter Communications, 13(9):571{580, November 1990.

[Neu93] B. Cli�ord Neuman. Proxy-based authorization and accounting

for distributed systems. In 13th International Conference on Dis-

tributed Computing Systems, Pitsburgh, May 1993.

[OMG94] OMG Security Working Group. OMG White Paper on Security,

April 1994.

[Org72] E. Organick. The Multics System An Examination of Its Structure.

1972. ISBN 0-262-15012-3.

[Pow93] Joel Powell. Multitask Windows NT. Waite Group Press, 1993.

ISBN 1-878739-57-3.

[Red74] David D. Redell. Naming and Protection in Extendible Operating

Systems. PhD thesis, University of California, Berkeley, CA, USA,

1974. published as Project MAC TR-140, Massachusetts Institute

of Technology, Cambridge, MA, USA, November 1974.

[RT78] D. M. Ritchie and K. Thompson. The unix time-sharing system.

The Bell System Technical Journal, 57(6)(2):1905{1930, 1978.

[Sat89] M. Satyanarayanan. Integrating security in a large distributed sys-

tem. ACM Transactions of Computer Systems, 7(3):247{280, Au-

gust 1989.

102 BIBLIOGRAPHY

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feistein, and Charles E.

Youman. Role based access control models. IEEE Computer,

February 1996.

[SHM96] Scarlet Schwiderski, Andrew Herbert, and Ken Moody. Monitoring

composite events in distributed systems. Technical Report 387,

University of Cambridge, February 1996.

[SL87] S. Stepney and S. P. Lord. A formal model of access control. Soft-

ware - Practice and Experience, 17(9):575{593, September 1987.

[Slo94] Morris Sloman. Policy driven management for distributed systems.

Journal of Network and Systems Management, Plenum Press, 2(4),

1994.

[SR90] Y. C. Shim and C.V. Ramamoorthy. Monitoring and control of

distributed systems. In First International Conference on Systems

Integration, pages 672{681, Morristown, NJ, 1990. IEEE Comput-

ing Press.

[Vin88] S. T. Vinter. Extending discretionary access controls. In IEEE 1988

Symposium on Security and Privacy, pages 39{49, April 1988.

[WC96] Jennifer Widom and Stefano Ceri. Active Database Systems: Trig-

gers and Rules for Advanced Database Processing. Data Manage-

ment Systems. Morgan Kaufmann Publishers, Inc., 340 Pine Street,

Sixth Floor, San Francisco, CA 94104-3205, USA", 1996.

[Yu89] Che-Fn Yu. Access control and authorization plan for customer

control of network services. In IEEE GLOBECOM '89, pages 862{

869, Dallas, Texas, November 1989.

[Zlo77] M. M. Zloof. Query-by-example: a data base language. IBM Sys-

tems Journal, 16(4):324{343, 1977.

