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Abstract

The impossibility of tiling the mutilated chess board has been formalized and
verified using Isabelle. The formalization is concise because it is expressed
using inductive definitions. The proofs are straightforward except for some
lemmas concerning finite cardinalities. This exercise is an object lesson in
choosing a good formalization.
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1 Introduction

A chess board can be tiled by 32 dominoes, each covering two squares. If
two diagonally opposite squares are removed, can the remaining 62 squares
be tiled by dominoes? No. Each domino covers a white square and a black
square, so a tiled area must have equal numbers of both colours. The muti-
lated board cannot be tiled because the two removed squares have the same
colour.

The mutilated chess board problem has stood as a challenge to the au-
tomated reasoning community since McCarthy [9] posed it in 1964. Robin-
son [17] outlines the history of the problem, citing Max Black as its originator.

Anybody can grasp the argument instantly, but even formalizing the prob-
lem seems hard, let alone proving it. McCarthy has recently renewed his chal-
lenge, publishing a formalization that he claims is suitable for any “heavy
duty set theory” prover [10].

Formalizations like this deny the simplicity of the original problem. They
typically define complicated predicates to recognize objects. To recognize
dominoes, a predicate checks whether its argument contains two adjacent
squares. Subramanian defines “adjacent” by comparing co-ordinates [19, 20]:

(defn adjp (s1 s2)
(or (and (equal (car s1) (car s2)) (equal (plus 1 (cdr s1)) (cdr s2)))

(and (equal (cdr s1) (cdr s2)) (equal (plus 1 (car s1)) (car s2)))
))

Subramanian makes other definitions whose combined effect is to recognize
a list of non-overlapping dominoes and to compute the region covered. Mc-
Carthy’s formalization has a similar flavour, though posed in the language
of sets. It is concise but formidable.

An alternative is to express the notion of tiling by an inductive definition.
It is concise and nearly as clear as the informal problem statement.

2 Mathematical development

First we must make the intuitive argument rigorous. A tile is a set, regarded
as a set of positions. A tiling (using a given set A of tiles) is defined induc-
tively to be either the empty set or the union of a tiling with a tile a ∈ A
disjoint from it. Thus, a tiling is a finite union of disjoint tiles drawn from A.

This view is abstract and general. None of the sets have to be finite;
we need not specify what positions are allowed. Now let us focus on chess
boards.
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A square is a pair (i, j) of natural numbers: an even (or white) square if
i+ j is even and otherwise an odd (or black) square.

Let below(n) = {i | i < n}. (In set theory n = {i | i < n} by definition,
but readers might find this confusing.) The Cartesian product below(8) ×
below(8) expresses a 64-square chess board; it is the union of 8 disjoint rows
of the form {i} × below(8) for i = 0, . . ., 7.

A domino is a tile of the form {(i, j), (i, j + 1)} or {(i, j), (i + 1, j)}.
Since tilings are finite, we can use induction to prove that every tiling using
dominoes has as many even squares as odd.

Every row of the form {i} × below(2n) can be tiled using dominoes. As
the union of two disjoint tilings is itself a tiling, every matrix of the form
below(2m)×below(2n) can be tiled using dominoes. So every 2m×2n matrix
has as many even squares as odd squares. The diagonally opposite squares
(0, 0) and (2m − 1, 2n − 1) are both even; removing them results in a set
that has fewer even squares than odd squares.1 No such set, including the
mutilated chess board, can be tiled using dominoes.

3 The formal definitions

Isabelle [13] is a generic proof assistant, supporting many logics including zf
set theory and higher-order logic. I have done this exercise using both Isa-
belle/zf and Isabelle/hol. The definitions and proofs are similar in both sys-
tems. My formalization should be easy to mechanize in type theory provers,
such as Coq [5] and HOL [6], that support inductive definitions. Type theory
simplifies the presentation slightly, as type checking eliminates premises such
as i ∈ nat.

Figure 1 presents the Isabelle theory file. Inductive definitions are made
implicitly by listing the desired introduction rules. An Isabelle package de-
fines the appropriate least fixedpoint and proves the introduction and induc-
tion rules [12]. The set of dominoes is inductively defined by two axioms:

{(i, j), (i, j + 1)} ∈ domino {(i, j), (i+ 1, j)} ∈ domino

Most mathematicians would define dominoes like this instead of reducing the
definition to first principles, even though the “induction” here is trivial.

The set of tilings using a set A of tiles is defined inductively too:

∅ ∈ tiling(A)
a ∈ A t ∈ tiling(A) a ∩ t = ∅

a ∪ t ∈ tiling(A)

1This holds only because the board has finitely many squares; recall that there are as
many even integers as there are integers.

3



Mutil = Finite +
consts

domino :: "(nat*nat)set set"
tiling :: "’a set set => ’a set set"
below :: "nat => nat set"
evnodd :: "[(nat*nat)set, nat] => (nat*nat)set"

inductive "domino"
intrs

horiz "{(i, j), (i, Suc j)} ∈ domino"
vertl "{(i, j), (Suc i, j)} ∈ domino"

inductive "tiling A"
intrs

empty "{} ∈ tiling A"
Un "[| a ∈ A; t ∈ tiling A; a ∩ t = {} |] =⇒ a ∪ t ∈ tiling A"

defs
below_def "below n == {i. i<n}"
evnodd_def "evnodd A b == A ∩ {(i,j). (i+j) mod 2 = b}"

end

Figure 1: Isabelle/hol Definitions of Dominoes and Tilings
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goal thy "!!t. t ∈ tiling A =⇒
u ∈ tiling A → t ∩ u = {} → t ∪ u ∈ tiling A";

by (etac tiling.induct 1);
by (Simp_tac 1);
by (simp_tac (!simpset addsimps [Un_assoc]) 1);
by (blast_tac (!claset addIs tiling.intrs) 1);

Figure 2: Isabelle/hol Proof: the Union of Disjoint Tilings is a Tiling

Here is an example of inductive reasoning from this definition. We shall prove
that the union of two disjoint tilings is itself a tiling:

t ∈ tiling(A) u ∈ tiling(A) t ∩ u = ∅
t ∪ u ∈ tiling(A)

By induction on t there are two cases.

• If t = ∅ then t ∪ u = u ∈ tiling(A).

• If t = a∪t′ where a∩t′ = ∅, then by assumption we have (a∪t′)∩u = ∅.
So a∩u = ∅ and t′∩u = ∅. From the latter and the induction hypothesis
we have t′ ∪ u ∈ tiling(A). And since a is disjoint from both t′ and u,
we may add it to this tiling to obtain a ∪ (t′ ∪ u) ∈ tiling(A).

Figure 1 contains two simple definitions. The set below(n) is defined to be
{i | i < n}. The set evnodd A b denotes the even squares of A if b = 0 and the
odd squares if b = 1; it has an obvious explicit definition using intersection
and set comprehension.

4 The mechanical proof

The Isabelle proofs offer few surprises. Finite cardinalities are tricky to
reason about, as I have noted in previous work [16]. It took a couple of hours
just to prove that a domino consists of one even square and one odd square;
a richer library of arithmetic facts would have helped. Another trouble spot
was to prove that removing elements from a finite set reduces its cardinality:
|A− {x}| < |A| if A is finite and x ∈ A.

Apart from these trouble spots, the mechanized proof was straightfor-
ward. Developing the original zf version took under 24 working hours. Ex-
cluding facts added to libraries, the (hol) definitions and proof script occupy
under 6400 bytes. They execute in 21 seconds on a SPARC SS-10.
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Figure 2 presents part of the script: the inductive proof outlined in the
previous section. Isabelle’s simplifier and classical reasoner prove the base
case and inductive step, respectively.

The development comprises 17 theorems. They include simple facts about
below(n+ 1) and Cartesian products:

below(Suc n) × B = ({n} × B) ∪ ((below n) × B)
A × below(Suc n) = (A × {n}) ∪ (A × (below n))

Any row or matrix with an even number of rows can be tiled with dominoes:

{i} × below(n+n) ∈ tiling domino
(below m) × below(n+n) ∈ tiling domino

There are facts about the set evnodd A b, the squares of a given colour:

(i,j) ∈ evnodd A b = ((i,j)∈ A ∧ (i+j) mod 2 = b)
evnodd (A ∪ B) b = evnodd A b ∪ evnodd B b

Each domino contains a square of each colour:

[| d∈domino; b<2 |] =⇒ ∃ i j. evnodd d b = {(i,j)}

Crucial to the cardinality argument is that a tiling by dominoes covers only
finitely many squares:

t ∈ tiling domino =⇒ finite t

Every set tiled by dominoes (such as the full chess board itself) contains as
many black squares as white ones.

t ∈ tiling domino =⇒ card(evnodd t 0) = card(evnodd t 1)

The main result is proved for any board t with positive even dimensions. The
mutilated board, t′, cannot be tiled with dominoes.

[| t = below(Suc m + Suc m) × below(Suc n + Suc n);
t’ = t - {(0,0)} - {(Suc(m+m), Suc(n+n))}

|] =⇒ t’ 6∈ tiling domino

5 Related work

In this note there is no space for a full literature review. Several recent ef-
forts [2, 18, 20] are in the same spirit as the present work: the chess board is
formalized and impossibility of tiling proved following the intuitive argument
about colours. Other work has used exhaustive search or radical reformula-
tions of the problem.
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The Isabelle formalization compares favourably with the others. The def-
initions are short, and in my view, easy to understand. The script is quite
short at just over 200 lines, compared with over 500 for Subramanian [19].
(In terms of characters, which is more accurate, the ratio drops to 1.8.) Ac-
cording to McCarthy [10], Bancerek’s mechanization [2] in Mizar requires 400
lines. Rudnicki’s version [18] (also in Mizar) requires 300 lines. Andrews [1]
reports a complex proof; it is not clear how much effort is needed to generate
it.

The inductive definition plays the same role as Subramanian’s finite state
machine [20]. The initial state is the empty board; next states are obtained by
adding disjoint tiles; properties that hold of all reachable states are proved by
induction. There are two reasons why the Isabelle mechanization is shorter.
Error states need not be formalized: they never occur. And many of the
concepts expressed in pure Lisp can be expressed using library notions of
Cartesian product, intersection, etc.

The finite state machine approach that Subramanian describes has been
applied to substantial system verifications [11]. The inductive approach
described above is an effective means of verifying cryptographic protocols
[15, 14]. It seems, therefore, that inductive definitions also scale up to seri-
ous problems.

6 Conclusions

The mutilated chess board has no practical significance. But it is a telling
example of the importance of formalizing the problem in a natural way.
Inductive definitions have already demonstrated their worth in proofs about
the λ-calculus and programming languages semantics. Their utility here
suggests that they will find many further applications.

Acknowledgements. I learned of the expressiveness of inductive defini-
tions through participation in the ESPRIT project 6453 TYPES, and espe-
cially through the work of Gérard Huet [7, 8]. John Harrison commented on
this paper.
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A Full proof script

(* Title: HOL/Induct/Mutil
ID: $Id: Mutil.ML,v 1.4 1997/06/06 08:46:26 paulson Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1996 University of Cambridge

The Mutilated Chess Board Problem, formalized inductively
*)

open Mutil;

Addsimps tiling.intrs;

(** The union of two disjoint tilings is a tiling **)

goal thy "!!t. t: tiling A ==> \
\ u: tiling A --> t <= Compl u --> t Un u : tiling A";
by (etac tiling.induct 1);
by (Simp_tac 1);
by (simp_tac (!simpset addsimps [Un_assoc]) 1);
by (blast_tac (!claset addIs tiling.intrs) 1);
qed_spec_mp "tiling_UnI";

(*** Chess boards ***)

goalw thy [below_def] "(i: below k) = (i<k)";
by (Blast_tac 1);
qed "below_less_iff";
AddIffs [below_less_iff];

goalw thy [below_def] "below 0 = {}";
by (Simp_tac 1);
qed "below_0";
Addsimps [below_0];

goalw thy [below_def]
"below(Suc n) Times B = ({n} Times B) Un ((below n) Times B)";

by (simp_tac (!simpset addsimps [less_Suc_eq]) 1);
by (Blast_tac 1);
qed "Sigma_Suc1";

goalw thy [below_def]
"A Times below(Suc n) = (A Times {n}) Un (A Times (below n))";

by (simp_tac (!simpset addsimps [less_Suc_eq]) 1);
by (Blast_tac 1);
qed "Sigma_Suc2";
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goal thy "{i} Times below(n+n) : tiling domino";
by (nat_ind_tac "n" 1);
by (ALLGOALS (asm_simp_tac (!simpset addsimps [Un_assoc RS sym, Sigma_Suc2])));
by (resolve_tac tiling.intrs 1);
by (assume_tac 2);
by (subgoal_tac (*seems the easiest way of turning one to the other*)

"({i} Times {Suc(n+n)}) Un ({i} Times {n+n}) = \
\ {(i, n+n), (i, Suc(n+n))}" 1);
by (Blast_tac 2);
by (asm_simp_tac (!simpset addsimps [domino.horiz]) 1);
by (Auto_tac());
qed "dominoes_tile_row";

goal thy "(below m) Times below(n+n) : tiling domino";
by (nat_ind_tac "m" 1);
by (ALLGOALS (asm_simp_tac (!simpset addsimps [Sigma_Suc1])));
by (blast_tac (!claset addSIs [tiling_UnI, dominoes_tile_row]

addSEs [below_less_iff RS iffD1 RS less_irrefl]) 1);
qed "dominoes_tile_matrix";

(*** Basic properties of evnodd ***)

goalw thy [evnodd_def] "(i,j): evnodd A b = ((i,j): A & (i+j) mod 2 = b)";
by (Simp_tac 1);
qed "evnodd_iff";

goalw thy [evnodd_def] "evnodd A b <= A";
by (rtac Int_lower1 1);
qed "evnodd_subset";

(* finite X ==> finite(evnodd X b) *)
bind_thm("finite_evnodd", evnodd_subset RS finite_subset);

goalw thy [evnodd_def] "evnodd (A Un B) b = evnodd A b Un evnodd B b";
by (Blast_tac 1);
qed "evnodd_Un";

goalw thy [evnodd_def] "evnodd (A - B) b = evnodd A b - evnodd B b";
by (Blast_tac 1);
qed "evnodd_Diff";

goalw thy [evnodd_def] "evnodd {} b = {}";
by (Simp_tac 1);
qed "evnodd_empty";

goalw thy [evnodd_def]
"evnodd (insert (i,j) C) b = \

\ (if (i+j) mod 2 = b then insert (i,j) (evnodd C b) else evnodd C b)";
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by (simp_tac (!simpset setloop (split_tac [expand_if] THEN’ Step_tac)) 1);
qed "evnodd_insert";

Addsimps [finite_evnodd, evnodd_Un, evnodd_Diff, evnodd_empty, evnodd_insert];

(*** Dominoes ***)

goal thy "!!d. [| d:domino; b<2 |] ==> EX i j. evnodd d b = {(i,j)}";
by (eresolve_tac [domino.elim] 1);
by (res_inst_tac [("k1", "i+j")] (mod2_cases RS disjE) 2);
by (res_inst_tac [("k1", "i+j")] (mod2_cases RS disjE) 1);
by (REPEAT_FIRST assume_tac);
(*Four similar cases: case (i+j) mod 2 = b, 2#-b, ...*)
by (REPEAT (asm_full_simp_tac (!simpset addsimps [less_Suc_eq, mod_Suc]

setloop split_tac [expand_if]) 1
THEN Blast_tac 1));

qed "domino_singleton";

goal thy "!!d. d:domino ==> finite d";
by (blast_tac (!claset addSEs [domino.elim]) 1);
qed "domino_finite";

(*** Tilings of dominoes ***)

goal thy "!!t. t:tiling domino ==> finite t";
by (eresolve_tac [tiling.induct] 1);
by (rtac Finites.emptyI 1);
by (blast_tac (!claset addSIs [finite_UnI] addIs [domino_finite]) 1);
qed "tiling_domino_finite";

goal thy "!!t. t: tiling domino ==> card(evnodd t 0) = card(evnodd t 1)";
by (eresolve_tac [tiling.induct] 1);
by (simp_tac (!simpset addsimps [evnodd_def]) 1);
by (res_inst_tac [("b1","0")] (domino_singleton RS exE) 1);
by (Simp_tac 2 THEN assume_tac 1);
by (res_inst_tac [("b1","1")] (domino_singleton RS exE) 1);
by (Simp_tac 2 THEN assume_tac 1);
by (Step_tac 1);
by (subgoal_tac "ALL p b. p : evnodd a b --> p ~: evnodd ta b" 1);
by (asm_simp_tac (!simpset addsimps [tiling_domino_finite]) 1);
by (blast_tac (!claset addSDs [evnodd_subset RS subsetD] addEs [equalityE]) 1);
qed "tiling_domino_0_1";

goal thy "!!m n. [| t = below(Suc m + Suc m) Times below(Suc n + Suc n); \
\ t’ = t - {(0,0)} - {(Suc(m+m), Suc(n+n))} \
\ |] ==> t’ ~: tiling domino";
by (rtac notI 1);
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by (dtac tiling_domino_0_1 1);
by (subgoal_tac "card(evnodd t’ 0) < card(evnodd t’ 1)" 1);
by (Asm_full_simp_tac 1);
by (subgoal_tac "t : tiling domino" 1);
(*Requires a small simpset that won’t move the Suc applications*)
by (asm_simp_tac (HOL_ss addsimps [dominoes_tile_matrix]) 2);
by (subgoal_tac "(m+m)+(n+n) = (m+n)+(m+n)" 1);
by (asm_simp_tac (!simpset addsimps add_ac) 2);
by (asm_full_simp_tac

(!simpset addsimps [mod_less, tiling_domino_0_1 RS sym]) 1);
by (rtac less_trans 1);
by (REPEAT

(rtac card_Diff 1
THEN asm_simp_tac (!simpset addsimps [tiling_domino_finite]) 1
THEN asm_simp_tac (!simpset addsimps [mod_less, evnodd_iff]) 1));

qed "mutil_not_tiling";
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