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CHAPTER 1

INTRODUCTION

Providing user views of a database is an important way of achieving data
independence and ease of use of DBMSs. This dissertation discusses one
aspect of the problem of supporting views. It is shown that a crucial
factor in the support of views is the richness of the data model used,
and in particular its ability to represent certain kinds of incomplete
information. This dissertation discusses various ways of handling
incomplete information, and the operations on views that can be
supported. The implementation of an experimental system which supports

views on a relational database is described.




The first chapter describes the problem of treating views as first-class
objects, that 1is, allowing all the wusual database operations to be
performed on data in views. It is shown how this 1is related to the
problem of representing incomplete information in the conceptual schema.
The second chapter proposes the use of lattices to represent incomplete
information, and shows how this covers various particﬁlar kinds of
imprecise information. The third chapter reviews other work relating to
imprecise information in databases. The fourth chapter discusses certain
further implications of representing imprecise information, and makes
proposals regarding the dinterpretation of keys, constraints, and the
open-world assumption in this environment. The fifth chapter discusses
in detail the relational operations that are appropriate with imprecise
data, and proposes modified Join and Group~-by operations. The
implementation of a system with these features is discussed. Chapter six
illustrates some of the points made by considering an example database,
and finally chapter seven concludes this dissertation with a summary and

examination of further possibilities.
1.1 Data independence and views

Data independence is concerned with enabling the user of a DBMS to refer
to his data in terms which are convenient for him, regardless of the
organisation of the database, or how that organisation may change. One
approach to data independence has been that of the ANST/SPARC X3 report
and others. This provides for several levels of description of the
database, called ‘schemas’. In the ANSI/SPARC proposal there are three:
Internal, Conceptual and External schemas. The Internal schema describes
the way the DBMS regards the data as being stored in the system. This
will include details of access paths and physical structures. = The
External schemas give the structure of the data as it is perceived by

various users of the system. Many external schemas may exist, containing




differing subsets of the data, and structuring it in different ways. It
has been argued [Nijs] that this should extend as far as allowing
different users of the DBMS to see their data according to different
types of data model, so that one might be using the relational model
while another works with the CODASYL model. While this proposal is
somewhat radical compared with what is commonly implemented, there is at
least widespread agreement that the provision of External Schemas, or

‘yiews’, should allow more than simple subsetting of the data.

The Conceptual Schema provides a central level mediating between Intermal
and External schemas. The Conceptual Schema will describe the whole
database in a form which is intended to be free of implementation
details, and provides a central reference in terms of which the other

schemas can be described.

The idea behind this structure is that the views of the database can be
tailored to the different requirements of different users of the system.
For example, data which is irrelevant to a given user, or which that user
is not allowed to see, will not be contained in the user’s view. The
structure of the data in the view will reflect the way the user regards
the world as being organised, so that the operations he wishes to perform
will be simple in terms of the objects in the view, and most of the work
will be done by the view support component of the DBMS. The Conceptual
Schema provides a unifying implementation—independent description so that
alterations to the way the data is stored (the Internal Schema) will not

affect the definitions of the views.

To describe the conceptual schema we require some kind of ‘high-level’
data model —— that is, a model free from details of how the data will be
stored. Many such models have been described, the best known being the

Relational model. This provides an implementation-free way to describe




data, but does not really allow much of the semantics of the data to be
described. Many models have been suggested to describe the semantics of
the data, in order to allow the DBMS to behave more intelligently. It
should however be emphasised that this is not a problem which can be
solved completely. It is possible to go on forever adding more semantic
description to databases, but the point up to which this is productive

will vary from application to application.

The pure Relational Model, for example, gives almost no way of describing
the many constraints which may apply to the data. It is very important
to describe these, in order to enable the DBMS both to optimise its

operation, and to detect errors in information supplied to it.

It has been suggested in several places that it 1s a good idea in
Relational database systems to implement the concept of domain, although
many existing systems do mot. One possible approach is described in this

dissertation.

1.2 The example schema

The following set of relations, describing a collection of rock samples,

will be used in examples throughout the dissertation wherever possible.




The samples are described by the SAMPLE relation:

Sample Site Class Age

S1 T44 D3 59 to 63
52 T44 D4 59 to 63
83 T41 D4 or D6 60 to 67
S4 T41 D6 65 to 67
S5 T4l ? 58 to 60
S6 T54 D3 60 to 63

In this relation, Sample is the key; the Site column gives the site at
which the sample was found; the Class column gives a classification of
the sample, which may be imprecise; and the Age column gives the age as
a real interval (din millions of years). Some imprecise information is
present in this relation.

The sites are described by the SITE relation:

Site Name Country ‘ Latitude Longitude
T44 Delmar USA i 34 to 35 268 to 269
T54 Elsworth | England | 52.3 0

T41 Branimir Bulgarial 42, 25.1

Here the Site column is the key, and the other information 1is fairly
self-explanatory. The latitude and longitudes are allowed to be

imprecise.




The EQUIPMENT relation is as follows:

Inv-no Site Descr Value
1137 T41 Auger 300
1139 T41 Auger 320
14290 T4l Concentrator 50
13054 T44 Typewriter 50

The EXPERT relation describes a many-many association between experts and

sites. It is as follows:

Expert Site
Mike T44
Mike 56
Ken T56
John T41
Hiyan T44

Those relations which appear in the conceptual schema will be referred to
as ‘base’ relations. These are the relations which we normally think of
as being ‘stored’, but this term will be avoided, since we will make no
assumptions about the Internal Schema, which describes what is actually
stored. We assume that the system can insert tuples into base relations,
retrieve them and delete them, as necessarye The other relations,
defined in terms of the base relations, are called ‘derived relations’ or

‘view relations’.




1.3 Views as first-class objects

The reason for providing the view facility in a DBMS is so that different
users (which may include not just persons having ad-hoc interactions with
the DBMS, but applications programs) can see the data organised in a way
that suits them. This can involve such things as changes of units, and
also different logical structure. However the value of such a facility
is 1largely removed 1if users are then restricted in the operations they
can perform. If any application program which accesses the database
through an external schema is thereby prevented from performing updates
to the database, for example, then the three—level schema architecture is

not really having its intended effect.

There are, however, difficulties in permitting updates to be performed on
views. For example, in a view where certain attributes are not visible,
there is no obvious unique way to deal with the addition of a new entity.
What values should be added for the attributes not given by the view? If
we have a view containing a projection of the Samples relation, in which
the age column is missing, and an attempt is made to add a tuple to this

view, some value must be inserted for the age in the base relation.

Even worse, suppose we have a relation giving the country of origin of
each sample, formed by joining the Sample relation with the Site relation

and projecting out the Site column.




SC

Sample| Type Age Name Country | Lat Long

S1 D3 59 to 63 . Delmar UsA

52 D4 59 to 63 |Delmar USA . .

S3 D4 or D6| 60 to 67 |Branimir!| Bulgaria |« .- e

S4 D6 65 to 67 !Branimir | Bulgaria .

S5 ? 58 to 60 |Branimir | Bulgaria .

S6 D3 60 to 63 |Elsworth| England | -+ .
Then an attempt to add a tuple to this relation is very hard to
interpret. If we regard it as valid, it will be necessary to find a

dummy value for the site to add into the Sample relation, and add a tuple

to the

Site

relation to

show that this site is in the right country.

Clearly this is going to result in a great deal of complexity.

On the other hand, if an attempt

is made

to delete

tuple from a

relation which is the join of two relations A and B, then there are three

ways that the desired result can be achieved.

the

former tuple can be deleted, or the latter, or both.

the

the information available, and depends on the meaning

result

The tuple to be deleted is

of joining a tuple from A and a tuple from B, so either the

and the join, and what the user is trying to do.

Which of

of

these 1is

correct interpretation of the users wishes cannot be determined from

the relations

There are problems with trying to delete information from the database in

general.

In a

system which

simply keeps

information newhrecords can be added and

deleted at

the

user’s

request.
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information in a more general way, an item of information presented to
the user may be the result of combining and manipulating several pieces
of information on a lower level. If the user asks for the ditem to be
deleted, he is giving the system one clear piece of information, namely
that this item is no longer known to be true, but this is in
contradiction with the information already in the database, and it is not
clear which items in the database need to be deleted (or amended) to
‘delete’ the unwanted item. The decision as to how to delete a given
item from the database will have to be made on the basis of more

information supplied by the schema designer.

This illustrates the problems of moving from a simple filing-system frame
of mind, where the database is essentially responsible for the safe
storage and fast retrieval of a collection of records, to an information-
storage frame of mind. In an information-storage system the addition or
alteration of information in one place may have effects in other places,
because of inference operations and mappings of information that are
taking place. Hence it seems too restrictive to insist, for example,
that an update to a view of a database should only be able to alter

information that is visible in that view.

There have been various proposals for specifying more semantics with the
relational model, which would help resolve the problem of identifying
meaningful ways to perform deletion from the database. Some of the best
known proposals are [SmSm], and Codd’s RM/T model [Codd]. Also Sciore
has given a proposal which specifically addresses this problem [Sciol}
his treatment is based on specifying to the system which combinations of
attributes can represent meaningful ‘facts’. This kind of approach
enables the database to perform more intelligently, although it is
necessary to take care, since different users may have different ideas of

the semantics of the database and what constitutes a meaningful fact (and
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correspondingly different intentions when deleting).

Various existing DBMSs provide support for views on the database, with

some facilities for updating them.

IMS is IBM’s main hierarchical database system, and provides a subschema
facility mainly of the subsetting type. There is some provision for

performing update operations on the data in the subschemas.

Similarly, the CODASYL model of database systems provides for subschemas

by subsetting, and data in these can be updated.

System R [SysR] allows a query in SQL, its query language, to be given as
the definition of a derived relation. This mechanism is heavily used for
control of access and authorisation for update; it 1is not Ilimited to
subsetting and almost any query can be used to define a view. However
the only views to which any update operation can be applied are those
where the tuples correspond one-to-one with those of a single base
relation; hence updatable views cannot be defined using Join, Union or
any Project operation that causes elimination of duplicates. This

philosophy is based on the discussion in [ChGT].

INGRES, another well-known relational database system, similarly allows
the definition of derived relations by queries, and updates on these are
supported by ‘query modification’ on the operation. Insertion and
deletion of tuples are not allowed wunless the view is a simple
restriction of a single existing relation, but operations to alter a
given tuple can often be translated, even if the tuple is materialised
from several base relations. This approach seems quite promising,
although for simplicity I have not treated alteration separately, but as

a deletion followed by an insertion.
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The possibility of performing updates to views of databases has also been

considered in a number of papers:

Chamberlin Gray and Traiger, in "Views, authorisation and locking in a
relational DBMS" [ChGT], describe the philosophy of views, update and
authorisation which was built into System R. Subsequent papers on System
R describe essentially the same approach. A view can be defined by any
query operation, allowing the user to produce subsets of tables, to join
tables together, to perform changes of units, and to produce statistical
summaries etc. This is one of the most comprehensive view mechanisms

available.

It is used heavily for the control of authorisation for updates to the
database. In order to make the view mechanism suitable for controlling

update, they specify two rules:

* The uniqueness rule —-— an update to a view is permitted only if
there is a wunique operation which can be applied to the base
relations that will result in exactly the specified changes to

the view.

* The rectangle rule —— an update to a view must only affect

information visible within the view.

With these rules, it is possible to control a user’s update privileges by
defining the view which contains all the fields that he is allowed to
alter. Thus for example a manager of a department might have a view of
the employee relation which contains only those employees 1in his
department, and might have authority to update this view. These rules
ensure that the updates that the user performs on his view can have no

effects on other information in the database. This is a rather limited
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way of controlling authorisation, because it may well be reasonable for a
user to perform some action which causes the alteration of certain
information as a side-effect, even though he is not allowed to update it
directly, or perhaps even to see it. We might well have a situation in
which a clerk has the authority to alter an employee’s tax code, thereby
altering his total pay, although he does not have authority to alter the
latter directly. Thus to describe the set of ways in which a given user
is allowed to update the database simply by giving a set of fields which
he is allowed to alter is not realistic. A more powerful mechanism for
authorisation would be desirable, based perhaps on giving a list of the
transactions which a user is allowed to invoke. The effect of the above
rules is to limit very severely the cases in which users who have views
of the database will be able to perform any updates, thus defeating the

purpose of the view mechanism.

[FuSS] proposes a rather more liberal approach to permitting updates to
views in a relational database. It is slightly harder to follow because
it is described in terms of a ’‘quotient algebra’ relational system, where
the relations are divided into blocks. This proposal regards neither the
rectangle rule nor the uniqueness rule as necessary, observing that
updates may well need to have effects on data not actually in the view,
and that where there is more than one possible translation of an wupdate
the user can supply more information. One rule they do stick to,
however, is that the effect of the update on the view relation itself
must be exactly the same as if it had been a stored relation. (This will
be called the correct—-effect rule). Thus an update is forbidden if it
would have a side-effect on the view as well as the one originally
requested. This seems rather arbitrary once the step has been taken by
the authors of discarding the rectangle rule and permitting side-effects
on data not in the view. It is based on the wish, apparent in several

papers on the subject, to make each relation in the system, including
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derived relations, behave like a flat file which can be wupdated in any
way. Once we have constraints in the system, this will not even be true

of base relations.

[FuSS] goes on to discuss how updates can actually be propagated through
relational operations, and points out that insertion through a Project
operation can be performed by adding nulls in the missing positions.
However the implications of wusing nulls in this way are not really
covered. Simple rules are given for each relational operation. In the
next section it is pointed out that these rules do not in fact map the
information in all the cases that they should, and to remedy this some
further special cases are discussed where a better method can be applied,
such as a Join followed by a Project, or a Select followed by a Project.
Patching up a few more cases like this by no means ensures that the
system will always behave correctly, and will make the system more
complex and harder to understand. What is required is a general system

for passing updates through relational expressions.

Bancilhon [Banc] defines yet another rule characterising the correctness
of wview update: this is that any sequence of operations on the view
which leaves it unchanged, such as inserting a tuple and then deleting
it, will also leave the whole database unchanged. The motivation for
this ingenious rule is that when taken in combination with the rectangle
rule, it allows the view update to be described entirely by the ‘constant
complement’ of the view. This is another subset of the database which is
specified as being unchanged by any operations omn the view. The constant

complement is also used to characterise view updates in [Spyr].
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Klug [Klug] argues very well the case for full support of views,
including updates to them and constraints defined on them. He insists
that rules such as the rectangle and uniqueness rules are far too
restrictive. He seems to argue that the meaning of an update on a view
should be specified by the user when he defines the view. Next he
develops a mathematical formulation of the question of whether the view
definition is ‘correct’, that is whether constraints and updates are
mapped properly. He then investigates whether this correctness can be
checked automatically by a schema compiler. Unfortunately, the answer
seems often to be ‘no’, and in any case to depend very closely on the
precise features of the system in use; for example the mathematical
treatment seems to need to be largely reworked when he adds one new kind
of constraint, and the decidability depends crucially on which relational

(or other) operations are available.

What is being investigated, then, is support for extra semantic modelling
facilities over the relational model, such as constraints of various
kinds and richly structured domains, and in particular support for views

as first—class objects.

It is debatable to what extent the information in any view of the
database can be considered updatable. In a ’statistical’ view, for
example, containing only information such as the total number of samples,
and the average age, but no references to individual samples, it would
seem unreasonable to allow an update to the total number of samples.
Although an attempt to increase this number by one could be construed as
adding a new sample to the database, there is in general no way to map
statements in the view back into statements in the base relations, and so

such a statistical view cannot really be considered updatable.
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It might, however, be remarked that for certain purposes the user might
wish to wupdate even such a view as this. If a relation formed by a
summarising operation of some kind is subjected to no further processing,
then there would be little point in updating it, but in a complex schema
there might be many more levels of calculation above it. The user might
then want to perform some kind of ‘what-if’ operation; ’What if the
number of samples were to be 5000 and the average time to process them
3.7 hours?’ so that he would want the change made in some way to the
‘statistical’ view, just as if it were a base relation, in order to see
the effects on other computations involving it. To take another example,
in a database being used for designing something, we might wish to store
in advance some information about a part, for example the mass or volume,
which when the design is complete will be computed from the detailed
design. We will not be considering the treatment of such ‘hypothetical”’
operations on views, but will look only at information which can
definitely be mapped back to the base relations. It will not be possible
in my system to place any information into a view except insofar as it

can be made to appear there by updating the base relations.

The problem is to devise a system of sufficient expressive power for the
base relations so that updates to views can be translated. In order to
be able to translate any update to any view, we would need a system that
could store any statement =-- this would mean at least a system which
could store any assertion in first-order predicate calculus. Such
systems have many attractions, but are hard to implement in such a way
that they go as fast as conventional database systems. What is sought is
some system of less expressive power which will still be reasonably
complete, will allow the translation of most updates to views where it
seems sensible to do so, and which can be implemented fairly efficiently.
This is clearly a compromise, and it will not be possible to translate

any view-updating operation perfectly.
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The approach to propagating updates through views adopted here 1is as
follows. Rules such as the rectangle rule, the uniqueness rule, the
correct—effect rule and the identity-operation rule are too restrictive.
The reasons for this have been argued above. When information is added
to the system, deductions may occur which cause side-effects to appear in
other places. It is therefore essential that the user should understand
what he is doing, and that the system should also understand what he 1is
doing. Rather than thinking of his operations as acting on a set of
physical records, he must have semantically meaningful operations;
enough semantics must be specified to the system that the updates can be

correctly propagated.

When translating updates on derived relations the system should not
introduce any extraneous (incorrect) information, and should try always
to preserve as much of the given information as possible. It is often
possible to map all the information present from the view to the base
relations, but there are some cases where this cannot directly be done,
for one of several reasons. The information implied by the view may not
be directly representable in the data model used at all, it may mnot be
representable by the conceptual schema in use, or the translation system
in use may not be able to find a translation of the update which has the
desired effect. We would like to design the translation system to
eliminate the third possibility, and enrich the data model to minimise
the first. The second possibility is in the hands of the schema
designer. There are many papers on how to design schemas so that the

right sets of statements are representable.

Consider the cases for which [FuSS] gives special rules. These
essentially fall into two kinds. The first is where a tuple containing a
null (missing) value has to be inserted into a view which is the result

of a Select operation, where the selection condition restricts the
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possible range of the null or missing value. The second is where a tuple

to be inserted into a Join has a null value in the joining column(s).

In the first case the selection condition gives us some information about
the range of possible values of the ‘null’. We would like to be able to
record this information, and so we need to be able, for any select
expression, to put an entry in a tuple which represents the set of values
that the select expression accepts. For example, if we have a view
relation defined to consist of all those samples with age between 65 and

70 million years, with the age column projected out,

Sample Site ' Class

S4 T4l D6

and we insert a new sample into it, this would cause the new sample to be
added to the selection with null age; we would like the age field in the
tuple inserted in the base relation to convey the dinformation that we
know the age of this sample to be in the range 65 to 70 million years.
Unless we do this, the sample will not appear in the view relation into
which we asked to insert it. Thus what we want 1is some way of
representing, in the base relation, the imprecise value (65 to 70 million
years) which is dimplied by the selection condition. This places a
requirement on the data model itself, rather than on merely the schema
design or the translation algorithm. In practice we will not be able to
represent perfectly the information implied by any predicate, but we
would like to be able to describe ranges of values such as in the example

above.
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The kind of selection predicates we are likely to meet include
restricting an attribute to a particular value, or to a given range, as
above, or to one of some set of values; also selecting those values
which satisfy some arithmetical property, or which when looked up in some
other relation produce a given value —- these also give rise to a set of
possible values. We will consider predicates restricting values to sets
or to ranges later as particular cases of our scheme for representing

imprecision.

The other class of problem is that of inserting a tuple into a Join,
where the entry in the Join column is not precise. This gives rise to
two tuples, one in each of the relations joined, with a copy of the
imprecise value in each, plus the extra knowledge that these two entries
represent the same unknown real-world value. We would like to be able to
store two separate null entries in the two underlying relations, flagged
to indicate that although we know neither precisely, we know that they
are equal. One solution to this is the brute—force method: generate
entries flagged in precisely this way. This has attractions, and 1is
discussed at some length later. There are some serious objections to
using this method. The other possibility is to discard the information
that the two values are equal, and this is what has been done in
constructing my experimental system, in order to see how far it 1is a
problem. The justification for this is that the Join is regarded as
applying to the tuples in one relation a function represented by the
other relation, which we can regard for the purposes of this operation as

fixed.

When we have a well-controlled system for update with some set of
transactions that can be invoked by users, we can regard these
transactions as representing the dynamic constraints on the database.

Updates will then have some clear conceptual meaning; the operation of
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adding a new sample is quite distinct from that of adding a new site. If
we wish to add a new sample that was found at a new site, it will be
necessary to add the new site first, and then the sample, rather than
just adding the sample and thereby introducing the new site. This is why
we will often be able to assume that only one relation in a Join is being
updated, rather than both at once. This is discussed more fully in the

section that describes my Join operation.

Suppose, for example, we wish to add a tuple to relation SC saying that
sample S10 was found in country Britain. This will result in an attempt
to add a tuple to the join of SAMPLES and SITE with a null in the column
on which they are joined. We can attempt to resolve this by finding out
from the SITE relation which sites the unknown site could be, in other
words inverting the function represented by the Join. If we discover
that there are two sites in Britain, then we can store the Sample tuple
with the information that S10 was found at one of those two sites (making
the assumption that a new site is not also being introduced). This will
ensure that the desired tuple appears in the view SC. While this does
not represent the given information perfectly, it is the best that can be
done given the schema in use, and we need not regard this as a serious
problem, since if we wished to be able to record exactly which country a
sample came from without knowing the site, we could use a different

schema.

We might hope to find that users would only expect to be able to update
such a view when the attribute they have in their view is a candidate
key; in other words the function they are applying is one-to-one. This
is precisely the case 1in which the above trick will give exactly the

right answer.

- 2] =




1.4 Summary

What is proposed is to have a representation for certain kinds of
incomplete dinformation. It is clear that this will be useful in many
applications anyway, but the motivation here is to enable us to translate
statements from views to base relations. The extent to which we can
carry out this translation depends on the richness of the model for
representing incomplete information. Two kinds mnaturally arise:
incomplete values corresponding to selection predicates, and missing
entries which represent the same real-world value. These will be
discussed in more detail later. As mentioned above, it was found
practical in the experimental system to handle some values of the former

kind, but not the latter.
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CHAPTER 2

REPRESENTING MISSING INFORMATION

As was pointed out in the previous section, problems arise in the
translation of operations on views to base relations when there is
information in the base schema that is missing in the view. The approach
proposed 1is to have a mechanism for representing missing information in
relations, and this section discusses various ways of doing this, and how
it affects various functions in the DBMS. A complete solution to this

problem would allow us to

(a) store an entry representing any partial information about a

real-world value that can be deduced from a selection predicate
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(b) record in some way the information that two entries in relations

represent the same partially-known real-world value.

This section first describes a simple approach to missing information,
the so-called ‘null value’, which is essentially standard, except for the
section on ‘merging information’. Similar treatments are described in,
for example, Codd [Codd], Date [Dat2], and others. It is seen that
catering even for this has many implications. Then an extension to this
is discussed which allows us partly to carry out (a) above. In the next
chapter the possibility of catering for (b) is discussed, but my

conclusion is that it is more practical not to attempt this.

It is generally desirable to have some means of representing missing
information in a database system anyway. Most applications will have
some area where missing information is 1likely to arise. When a new
entity is added to the database some of its attributes may at that stage
not yet be known. A rock sample could be added to the Sample relation

before the age has been measured.

The usual method suggested to deal with this is to store a ‘null’ value
for the attribute, which stands for ‘value not (yet) known’. There is a
distinction between this and another common use of null, to stand for
‘attribute not applicable’. This ‘inapplicable’ type of null might occur
if for example there were a column in the Samples relation called
‘Species’, giving the species for any sample which was in fact a fossil,
and null for all other samples. This latter type of ’“inapplicable’ null
does not represent any missing information, and must be clearly
distinguished from the other type of null, as the techniques appropriate
for handling it may be quite different. It will not concern us further

in this dissertation.
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The null which stands for “this value has not yet been made known to the
DBMS’ is often required in real databases and indeed in other programs,
and if not provided by the system is likely to be fudged by the user, by
reserving some value which cannot otherwise occur to stand for it. The
user of the sample database might decide to use an AGE entry of -1 to
stand for ‘age unknown’. However this has undesirable side-effects; if
the system is asked for the average age of samples, the result will be
wrong, for example. In fact many parts of the DBMS need to be designed
with missing information in mind, and the null value must be integrated

into the system at a deep level.

2.1 Comparisons and three-valued logic

There are many places in the system where values are compared with ome
another. What should the result be if a value is compared with null?
For example, what should the result be if a test "AGE > 50,000,000 1is
applied to a sample with null age? The answer cannot be TRUE, as we do
not know that the age is greater than 50 million, but equally it cannot
be FALSE, since that would assert that the age was less than or equal to
50 million, which is not known to be true either. The answer is that we
do not know whether the age is greater than 50 million, and so an unknown
truth-value must be the result; a null in the domain of truth-values.
There are thus three truth-values: True, False, and ‘Maybe’. These
three truth-values can be operated on with all the usual functions, such
as AND, OR and NOT, with definitions extended so that for example the

truth-table for AND is:

AND T ? F
T T ? F
? ? ? F
F F F F
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If the database system is designed to work with domains that contain an
‘unknown’ value anyway, then the set of truth-values will fit into this

scheme.

2.2 OQuter operations

When there is provision in the data model for representing ‘unknown’,
certain modifications to some of the relational operations become
desirable. For example, suppose we are joining the Sample relation with
the Site relation to get a list of all the samples with their countries
of origin. Then if for some sample in the Sample relation, the site
number does not appear in the Site relation, there will be no record of
that sample in the result at all. This is unsatisfactory; since we have
a way of saying ‘unknown’, it would be preferable for the Join operation
to produce a tuple for that sample, with ‘unknown’ as the country. This
modified Join operation is called ‘outer Join’ and there are outer
extensions of various other operations. The precise type of outer Join

which I propose is described fully later.

2.3 Merging information in tuples

Normally in a DBMS if an attempt is made to add a new tuple to a relation
and it is found that a tuple with the same key already exists in the
relation, it is an error and the attempt is rejected. The word ADD here
refers to inserting a new tuple, rather than modifying an existing one,
gso there is no intention to discard or replace any existing tuple that
has the same key. If a tuple exists already for a given key, an attempt
to insert a new (different) tuple for that key will be an error. However
when null values can be present in the database, it may no longer be

appropriate to reject insertions that match existing keys.
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It may be possible to merge the information in the new tuple with that
already in the database. For example, in the Sample relation, if there
exists a tuple for sample 309 giving the age as 30,000,000 and the site
unknown, and an attempt is made to add a new tuple to the relation with
the same key, namely SAMPLE = 309, giving the age unknown and the site
as D37, then the information in the two can be combined so that the
relation finally contains a tuple giving age as 30 million and site as
D37. When we merge information in this way we still end up with only one
tuple and so the rule that there can be only one tuple with a given key

still applies.

The request for insertion of the tuple would only have to be rejected if
the information in it could not be merged with that in the existing tuple

with the same key, for example if it gave the age as 40 million.

For databases with no unknown values this way of dealing with insertion
of new tuples reduces to the rule that a tuple with the same key as an
existing one must be rejected unless it is identical in every column with
the existing tuple. This is because two tuples with no nulls would have

to contradict one another if they were not identical.

2.4 Other kinds of imprecise information

There are various other kinds of imprecise information which we might

want to store 1n a database which have features very similar to those

discussed above for unknown values. Two examples are discussed below.
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Real numbers with tolerances

Suppose we wished to manipulate real numbers with tolerances attached to
them, or, equivalently, ranges of real numbers. For example in the
Sample relation the age of a sample might be given by some measuring
technique as being in the range 35 to 37 million years. If the system
did not provide for storing a value of this kind, the user might be able
to build one up for himself, as with null values. For example the upper
and lower bounds of the range could be packed together in some way, and
the resulting words stored as the age. The user would then have to
provide himself with the necessary routines for doing interval arithmetic

on values in this format.

However as with null values there are wvarious parts of the database
system that would need to understand this representation. For example an
attempt to compare the ages of two samples for equality in the system
would just compare the patterns bitwise, whereas what is really wanted is
a more intelligent comparison that yields a result in three-valued logic.
If two samples have ages 35 to 37 million years, and 36 to 38 million
years, then an uninformed system would simply regard these as different,
whereas the actual ages of the samples could well be the same. Hence, as
with the simple null value, it is necessary for the database system to

understand the representation of imprecise information in use.

The facility to store and manipulate imprecise real numbers might well be
useful in many applications, and also enables us to store the information
implied by certain kinds of selection predicate, namely those which

restrict the value of some real-valued attribute to a given range.
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P-domains

Another kind of incomplete information that it might be useful to be able
to store is discussed at some length in [Lips]. Lipski suggests that it
would be useful to have a system in which our knowledge about the value
of an attribute takes the form of knowing that its value lies in some
given set. For example, the type of a sample in the Sample relation
could be given as ‘39 or 40’ if the classification were uncertain. The
attribute could be given precisely, or specified as being known to belong
to some finite list of values, or not known at all. In this case, again,
the whole system should know about values of this kind. The user should

be able make requests such as

‘List all samples that may be of type 39’

or ‘List all samples definitely of type 39’

Lipski’s example is of recording the blood groups of patients in a
medical database, where the information can be recorded that a patient’s
blood group has been established as being either A or 0. We will refer
to such a domain as a P-domain, where P might stand for ’possibility’.
This facility also allows us to represent the information represented by

some more selection predicates. Any predicate that effectively restricts

the value of an attribute to lie in some finite set can be represented.
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2.5 Lattice Domains

The above sections describe three kinds of domain with incomplete
information structure:

(a) Ordinary domain of values plus ’‘unknown’

{b) Real number intervals

(c) P-domains

Many of the considerations that apply when handling these domains are
very similar; for example, the need for three-valued logic. The
treatment of them can be unified by describing them all din the
terminology of lattices. This is a very general mathematical structure
of which they are all particular cases. The theory of lattices was wused
by Scott and Strachey in the description of programming languages, and in
that area some powerful theorems about lattices could be applied to
produce the results they wanted. In this case, the use of lattices
merely provides a convenient terminology to talk about these domains. No
results are produced from the theory of lattices, and in fact no
mathematics is being done in this dissertation. However the language of
lattices has been used before [Vass] in discussing nulls in databases
(although he did not apply it to the other two kinds of domain) and so it

seems worthwhile to use it.

For the purposes of this dissertation we define a lattice domain as a set
of elements with a partial ordering, which in this application represents
information content. Thus some elements are regarded as giving more
information than others. It also has the property that if two elements
do not contradict, we can form a third element which contains all the
information in both of them. This is called the ’least upper bound’.

There exists a ‘bottom’ element which contains no information, and this

....30_




can be regarded as the ‘unknown’ value in the domain. See for example

[Stoy].

The usage here differs from the conventional usage there in that my
lattices have no ‘top’ element, and if the least upper bound of two
elements would be ‘top’ we shall say they are not ‘lub-compatible’, or

that they contradict one another.

We say that an element A approximates another element B if B 1is a more
precisely specified version of A. In other words, B contains all the

information in A, plus some more.

In the case (a) of a domain of values with ‘unknown’, the lattice
contains all the values and ‘unknown’. ‘Unknown’ is the bottom element
and approximates every other element, but all the other elements
contradict one another and so no other element approximates any element.

This is called a ‘flat lattice’.

4 eb eb el e

elez\\se

bottom

In case (b), the real intervals, the lattice consists of every finite
real interval, plus the ‘interval’ (- inf, + inf) which is the bottom
element. This element conveys no information about the value of a real
number. An interval approximates all those intervals that are subsets of
it., Thus for example the element (3.0 to 5.0) approximates the smaller
interval (4.0 to 4.l1), as the latter is compatible with it but gives a
smaller range. This element itself approximates the precise element 4.0

(i.e. the interval (4.0 to 4.0)) which does not approximate anything.
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The lattice structure would also be able to model the domain of real
intervals including semi-infinite intervals, as these form a lattice.
These correspond naturally to selection predicates of the form

(Attr > Value) or (Attr < Value).

In case (c), the elements of the lattice are all the possible subsets of
the base domain other than the empty set. The approximation ordering is
by set inclusion, and the bottom element is the set of every element in
the domain. Thus for example over the integers, the subset (39, 42)
representing the information that the true value is either 39 or 42

approximates the precise value (39) and also the precise value (42).

Thus in this use of lattices we always have some ‘precise’ elements which
correspond to the ‘true’ values in the real world, and we have other
values which approximate these, representing possible states of
incomplete knowledge. The bottom element represents a completely unknown

value, and approximates all the other elements of the lattice domain.

It could also be said that the precise values are those which would be
acceptable in the primary key of a relation, and indeed this would be the
translation of the usual ‘relational rule of integrity’. Some discussion

of preciseness of keys follows later.
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Comparisons in lattices

When comparing two values from a lattice domain for equality, the result
will be in three-valued 1logic, as was explained earlier for the flat
lattice. Thus the result will be false, unknown or true depending on
whether the precise values represented by the elements cannot be equal,
may be equal or must be equal. The true result can only be given when
comparing two precise elements. Similar remarks will apply to the other

comparisons such as greater than, less than etc.

Arithmetic in lattices

For domains based upon real number or integer values, it is possible to
extend the definition of arithmetic operators to cover all elements. Any
operation involving the bottom element will give a bottom result, and
otherwise the result is the g.l.b. of the possible results of applying
the operation to the precise values approximated by the operands. In the
case of imprecise real numbers, for example, this gives the usual

‘interval arithmetic’.

Merging of information in lattices

When an attempt is made to add a new tuple to a relation whose domains
are lattices, suppose an already existing tuple is found with the same
key. Then as was explained earlier, an attempt can be made to merge the
new tuple with the existing one, by forming the least upper bound, column
by column. If in any column the two tuples are not compatible, then the

insertion must be rejected.
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For example, if there is a tuple giving the age of a rock as being in the
range 30 to 35 million years, and an attempt is made to imsert a new
tuple keyed to the same sample with age field 32 to 40 million years, the

system should store the merged value 32 to 35 million years.

2.6 Domains in relational database systems

What is proposed, then, is that the domains in a relational DBMS can be
based on lattices. How this is implemented in my system is described
later, but it is appropriate here to say something about the role of
domains in relational systems. They function in a way very like that of
data—-types in programming languages, providing extra semantic information
which tells us what operations make sense. For example, a relational
system with domains should not allow us to compare two values from

columns over different domains, or Join on two such columns.

Two papers discussing the definition of domains for relational database
systems are [Mcle] and [Robs]. The first of these, ‘High level domain
definition’ by Dennis McLeod, suggests a syntax for a domain-defining
language which gives, for each domain, a description of the component
elements, specification of any sort—order on them, and details of actions
to be taken if errors are encountered. The elements of a domain can be
numbers, strings or enumerated sets, or a union of these, and can be
restricted by a selection clause. These domains all contain a null
value. He goes on to conjecture that it might be possible to have a
hierarchic system where domains are defined on top of other domains, and
that domains may have their own operations associated with them. He
draws the comparison with abstract data types, and points out that his
own approach is rather representation-orientated, and that the domains

are better characterised by the set of operations available on them.
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In [Robs], Mike Robson describes the domain definition features available
in the system CODD., There, domains may indeed be defined hierarchically
on one another; however the only operations available for forming new
domains are ‘filters’, which restrict the values available. The basic
domains are again numbers, strings and enumerated sets, but this time
null values are not catered for. The domains are described in terms of
routines to recognise values of the domain, and to compare values for
ordering. Provision is not made for operations to be defined over

domains.

Certainly we will want to provide for primitive domains the sets of
operations that apply to them, including their own routines for
recognising and printing their values, comparison, arithmetic if
applicable, validity testing, and so on. We will also want operations

for defining new domains hierarchically on top of other domains.

Questions analogous to those for programming language data-types
therefore arise: for example, what types are there, and what operations
to form new types? The usual base types for programming languages will
carry over: Integers, Real numbers, Character strings, Truth Values;
but these will all have to be lattices, so each will (at least) have to

contain a null element.

In this section the operations for forming new lattices (i.e. types)
will be described. These are of two kinds: operations for constructing
compound types, as found in programming languages such as Algol 68, and
operations for forming ‘imprecise’ versions of types, according to a set

of ’imprecision operations’.
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The usual operations in programming languages to create new types are:
forming structures containing several objects of possibly different
types, forming arrays or sets of objects of a given type, and forming the
union of several types. Ideally operations like these should be provided
by the data model in use, and most data models provide at least some of
them. The relational model specifies that the objects stored in
relations should be atomic, and so forming structures and arrays are not
really allowed; these operations can be carried out in terms of
relations anyway, for example rather than have a column where the entries
would be a pair of real numbers, we should have two columns. The other
operations are not so directly provided by the simple relational model,
but would be available in more sophisticated semantic data models, such

as RM/T or SDM.

These domain-forming operations do, however, need to be considered in the
light of the fact that the underlying domains are to be lattices. For
example, in a ‘united’ domain formed from two other domains, what is the
bottom element? [Each of the domains united will have its own bottom
element. The operations have to be considered as lattice-operations, and
certainly the theory of lattices gives us some operations for forming new

lattices which we can use. These are as follows:

Cross—product of lattices

This forms a lattice where the elements are n—tuples of elements from the
underlying 1lattices. Hence this gives the ‘structuring’ operation we
require (and really the array-forming operation as well.) In the cross-
product lattice things such as the bottom element and the l.u.b. of two
elements are simply formed column-by-column. Hence 1if the data-model
supplies these operations, as most do, then they will work correctly

anyway.
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Sum of two lattices

The sum of two lattices is effectively their wunion, and provides the
united domain we want. The theory of lattices offers us two ways of
forming the union so as to preserve the lattice structure. We can either
unite the two bottom elements of the domains, or keep them separate and
create a new bottom element below both of them. These are called the
‘coalesced’ and ‘separated’ sums. Thus for example if we are creating a
domain which is the union of strings and integers, we can either have a
domain which contains all the strings, all the integers, and one
‘unknown’ null, or we can have a domain containing the strings, the
integers, a ‘null’ standing for ‘unknown integer’, one for ‘unknown
string’, and one for ‘completely unknown’. In either case, the l.u.b.
and other operations are performed within the sub-domains, and elements

from different sub-domains are not lub-compatible.

Domain of subsets of a lattice

We can form a lattice consisting of elements which are subsets of a given
lattice; in other words it corresponds to it in the same way as a
powerset does to a set. This gives us the function necessary for the
user to form ‘set’ domains, but some care is necessary. We can define
the ‘set’ domain formally as the lattice of functions from the base
lattice into the set membership lattice, and we have to choose the latter
with care, in order to get the desired behaviour. The wusual choice in
lattice theory is the lattice (a) of two elements, True and False, where
True is the bottom element, and False is above it. However for this
purpose we could use our usual lattice of truth-values (b), with three
truth-values. In fact three truth-values are wusually an embarrassment
here, and we generally use the lattice (c), giving only “true’ and

‘maybe’.
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With the choice of (b) or (c), we get a lattice where the bottom element
is a set where every element has membership ‘unknown’; the least upper
bound is then formed by taking the 1l.u.b. element-by—element of the
membership function. This models what we want in an imprecisely known
set. The distinction between them is that with (b) we can specify those

elements which are certainly not in the set.

(a) | (b) \/ (e) |

We must consider what we want the set—forming operation to be. Some
languages (such as Pascal) and some high-level data models support the
notion of sets of values. In a set-domain, each element is a set of
values from the underlying domain; in the example concerning blood
groups, a patient might have an attribute ‘blood groups accepted’ which
lies in the domain of sets of blood groups. There are two obvious ways
to implement this: as a list of the members of the set, or, where the
base domain is small (e.g. blood groups) as a bit-map giving the

membership function for each element of the underlying domain.

What about databases that support incomplete information? Date, for
example, asks ‘the question of whether sets are allowed to contain null
values’ [Dat2]. Clearly we could decide to support only precisely—known
sets. The members of a real-world set are real-world values, i.e.
precise values, and hence a precise set will give a function f£rom the
precise elements of the underlying domain to the truth-value set {T, F}.
It will be implemented as a list of precise values, with  the
understanding that any values not in the list are definitely not in the
set, or as a bitmap giving true or false for each precise element of the

underlying domain. (We nmust additionally provide a bottom element, to
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make this a lattice.)

If we decide to allow imprecisely known sets, there is a plethora of ways
in which we can weaken our knowledge; there are many convenient ways of
allowing a partial description of a set to be given. Hence the immediate
answer to a question such as ‘If there is a null in a set, does it stand
for one unknown value or for possibly many?’ is that there are many
possible schemes. The information must assign one of the three truth-
values to each element of the underlying domain, but could also carry
additional information such as ‘the cardinality of the set is definitely

N’ or ‘exactly one of the following elements is in the set’ and so on.

Considering what we can actually implement reasonably, we consider the
two ways mentioned above of representing sets. If we use a bit-map over
a small domain, then we can use it to give the truth-values true and
false, in which case we are just representing precise sets, or the truth-
values true and maybe, in which case we have sets where there may be
other members than those known. This corresponds to lattice (c) above.
We could use two bit-maps, to permit the assignment of any of the three
truth-values to each element, as for lattice (b), but this seems slightly
clumsy. Better is to use just one bit-map, plus a ‘switch’ to allow it

to be interpreted in either of the above ways.

If we decide to store a list of the precise values in the set, we have
similar arguments: we can have two lists, giving elements that are
definitely in the set and those that may be, or just one list and a
switch. However it might also be possible to extend the expressive power
by allowing imprecise elements to be given in the list. We might have a
set of reals where the membership function is given precisely as true or
false, but the values are subject to slight imprecision. This raises the

question mentioned above, of whether each imprecise value stands for just
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one real-world value or can stand for many. If each value stands for one
real-world value, then we know the cardinality of the set; this means
our list may contain duplicates, which must represent different real-
world values, which 1is a slight nuisance. If we permit each imprecise
element to stand for zero or more values then we can remove duplicates,
but have rather less information. Unfortunately, neither of the above
constructions gives rise to a lattice, since it is not always possible to
form the 1l.u.b. of two such sets. This is not merely a mathematical
difficulty, but corresponds to a practical problem, which is that when
comparing two such sets we cannot tell which element corresponds to
which. In order to have a lattice, it is necessary to insist that all
the values in each list are ’‘incompatible’ with one another. This means
that they cannot stand for the same real-world value, so that they can
definitely be distinguished. With this adjustment, either of the above

schemes becomes tenable.

Date [Dat2] proposed a scheme called ‘N-sets’, which are sets that
contain precise values, and may also contain one ‘null’ i.e. bottom
element. If the null is present, it may stand for an arbitrary number of
other wvalues. Hence this scheme is in fact didentical to the one
mentioned above, where there is a list (or bit-map) of precise values
only, plus a switch to say whether other values may be present. In
Date’s scheme, the switch is represented by the presence or absence of

the null in the list.

Storing an imprecisely known set may seem a rather unreasonable thing to
do, and indeed it is not being suggested here that this should be done;
the point is rather that if an advanced data-model is provided which
supports sets for the user, and imprecise information is to be supported,
the choice of how to allow sets to be approximated needs to be made

carefully with an understanding of the principles involved.
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The discussion above mentioned the lattice (a) with false above true, for
forming ‘set’ domains. This may seem strange, since true is not normally
an approximation to false. What we get when we form the Ilattice of
functions into the lattice (a) is a lattice where the bottom element is
the set containing every value, and the least upper bound of two subsets
is their intersection. This models exactly what we want for the
P-domains described earlier. This is where an entry stands not for a set
of values in the real world, but for one value which is known imprecisely
in such a way that its value is restricted to be in a given set. Thus if
we know nothing about it, the set of values it can take on is the whole
domain, and if we have two items of information describing it, we merge
them by taking their intersection. This distinction must be made clear:
if we refer to Lispki’s example of this kind of domain, we might have a
record for a patient in a medical database giving his blood-group as a
set of possibilities over the enumerated set (0, A, B, AB); for example
a given patient might have had a test establishing that his blood group
was either O or A, so the system could record (0 or A) for him. This
stands for one unknown value. On the other hand, he might also have an
attribute ‘set of blood groups accepted’, for example (O, A, AB), and
this attribute describes a value which is a set in the real world -- this

set might itself be imprecisely known.

This brings us to the subject of another reason for forming new lattices
from old =- that is in order to represent certain kinds of imprecision.
Just as we can create new lattices for operations corresponding to
programming-language type—operations such as structuring and uniting, we
can also form lattices describing imprecise knowledge of values over
‘precise’ (i.e. flat) lattices. One such is the operation described
above, for forming the P-domain over a flat lattice; the other useful
one, corresponding to the case of ranges of real numbers described

earlier, is to form the lattice of intervals over an ordered flat

- 4] -




lattice. Both of these operations take a flat lattice and give us a more
richly structured lattice with many approximations to each precise

element.

Thus our base types are flat lattices, containing precise values plus
null. The data model may provide structural operations on these, to
create more types such as set or array types, and we also have domain
operations which introduce the representation of forms of imprecision
into the system, such as representing P-domains, or representing

intervals.

2.7 Summary

Domains for a relational database system to contain imprecise values can
be modelled on lattices; this will cover both the well-known '"null
value" and other forms of imprecise information. We can provide the same
kind of data-structuring facilities for lattice domains as are found in
typed programming languages, but this level of structuring is subordinate
to the facilities provided by the data model itself. Although in the
relational model these may be few, in a more semantic data model there
are likely to be found facilities of aggregation and generalisation (see
[SmSm]) which themselves play the part of ‘structured’ and ‘united’ modes
in an Algol-like language. Hence in this case it is not necessary to
provide these structuring operations on domains as well, but rather the
implementation of the semantic data model must have regard for the fact
that the domains are lattices. The theory of lattices supplies us with
the necessary operations. We can also use operations on the lattices to
{ntroduce the various forms of imprecision that we wish to store in the

system.
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CHAPTER 3

OTHER APPROACHES TO MISSING INFORMATION

Codd’s paper [Codd] describes a simple scheme for handling nulls, roughly

equivalent to the treatment of flat lattices here.

Vassiliou [Vass] considers ‘imperfect information’ in database systems,
and attempts to treat both missing information and inconsistent (self-
contradictory) information in the same system, adopting an approach based
on flat lattices of values. It is true that inconsistent values can be
fitted nicely into the lattice framework, but it is not clear whether it
is useful to try to maintain in this way a self-contradictory database.
At any rate, it is not a treatment of missing information, so will not be
discussed further here. Although he uses flat lattices, he does not go
on to consider other possible lattices of imprecise information. His

work relates mainly to the definition of functional dependency, and the
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effect of nulls on the universal relation assumption and database design.

Vassiliou does also consider query evaluation, but rejects the usual
three-valued logic approach on the grounds that not all the tautologies
of two-valued logic are tautologies of three-valued logic, and instead
provides a more complicated algorithm which will return the correct
answer more often. It might be useful to include this algorithm in a
system supporting nulls (although I have not done this in my system)
especially if the processing, which is of exponential order, could be
done once when ‘compiling’ a query that might then be used many times.
It should however be noted that no such system can always give the
correct answer, in the general case. A simple example of the problem is
a select—expression such as
select SAMPLE where (AGE>40.0) or (AGE<50.0)
which is tautologically true. If the age of a sample 1is unknown, the
simple truth-functional algorithm will evaluate the selection condition
as (maybe or maybe) which gives a ‘maybe’ result although the result
should be ‘true’. The algorithm given by Vassiliou, and similar
algorithms elsewhere, will detect that this condition 1is tautologically
true. It is not however possible in principle to do this for any
condition: if we have a condition on three integer-valued attributes
I,J,K of the form
(I>0) & (J>0) & (KDO) & (I**3 = J#*3 + K¥*3)

and each of I,J, and K is unknown, it may well be that this condition 1is
tautologically false (if Fermat’s Conjecture holds) but no simplification

algorithm will be able to arrive at this result.

Lipski [Lips] also avoids the truth-functional three-valued logic
approach to nulls, on the same grounds, and gives a complicated algorithm
to get better answers. He considers what we have called P-domains; that

is where an imprecise value can be completely unknown, or restricted to a
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finite set of possible values._ He treats this case fairly fully, but
does mnot use lattice terminology, or consider other lattices. He
describes two possible interpretations of queries on incomplete
databases, which he calls the “external interpretation’ and the ‘internal
interpretation’. The difference between these is that in the former,
queries are understood to be asking about the real world, whereas in the
latter they are about the state of knowledge of the database. He gives
the opinion that the former, being more natural, is more suited to naive
users, whereas the latter, being more powerful, is  better for
sophisticated users. An example might be: if the user asks ‘what is the
total population of all cities’, the result in the external model might
be ’‘not known’, meaning that the system does not believe it knows about
all cities, whereas in the internal model it might be ‘123,000’, where
this 1is the total of all cities that the database does know about.
Clearly neither of these answers 1is at all satisfactory without any
explanation. My belief is that queries should be understood in the
external model unless operations are used which explicitly request
information about the state of the database; my experimental program
would reply to the above query to the effect that it does not know about
all cities (unless it has been told that it does), but it would be
possible to specify that the set of all known cities was intended.
Blurring the distinction between these interpretations gives rise to many

of the ‘anomalies’ of incomplete information.

Biskup [Bisk] describes null values in a mathematical formalism. The
approach 1is essentially the same as in most other papers on this, except
that he includes ‘universally quantified’ nulls as well as the wusual
‘existentially quantified’ type, which means that the tuple containing
the null is true for every possible value of this null symbol, rather
than for some unknown value of it. While this may be a useful shorthand,

allowing ome tuple to stand for many, it 1is mnot a representation of
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missing information and so will not concern us further here. He also
describes briefly another system which he calls ‘indexed nulls’, a system
where there is an unlimited supply of different null symbols that can be
used to stand for different unknown values. In such a system it can be
recognised when two null entries represent the same real-world value,
which solves a number of problems (this is discussed further later). He
criticises this approach on various grounds; firstly, that it will be
difficult to check and enforce global consistency, and indeed that any
global operations on the database will be very difficult when these
‘cross-referenced’ values are present; secondly, that there is a danger
that with certain kinds of operations, semantic problems can arise, for
example an indexed null which is supposed to stand for one distinct
unknown value in the real world, might end up playing the role of many.
This approach was considered for the experimental system, and various
problems were found tending to confirm Biskup’s criticisms, of which the
following is an example: If we attempt to add a tuple to the join of the
samples and experts relations, |

SAMPLE ’ SITE EXPERT

101 l ? Mike

then using this method, we might create a new unknown site ‘alpha’ and
add (101, alpha) to Samples and (alpha, Mike) to experts. This will
cause exactly the desired tuple to arise in the Join. However the symbol
‘alpha’ is intended to stand for some unknown site, and there is no site
for which Mike 41is the only expert; in other words this cannot
consistently be the Join, for any existing site alpha. If we think we
know about all sites this is a problem, as it forces the assumption that
‘alpha’ is some new site for which Mike is the only expert. Of course,

what we probably meant when we inserted the tuple 1is that Mike is an
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expert on that site, and we would be pleased if the system could fill in
for itself who the others are or may be. To put it another way, there is
a multi-valued dependence of expert upon site, and unless we are careful

we can create an indexed null which cannot satisfy it.

Imielinski and Lispki [ImLi] give a mature survey of some different ways
of representing incomplete information. They state as their criterion of
correctness that a system should not allow any incorrect conclusion to be
derived, and that every correct conclusion can be derived. These
conditions depend critically on the set of operations provided. The
latter condition, which seems desirable, is almost impossible to satisfy

in a realistic system, as is explained below.

They consider first a system with one null symbol, equivalent to the flat
lattice case discussed above. They show that this is correct for the
operations of project and select and union. They point out, however,
that when the Join operation is included some correct statements may not
be derivable. This is because there may be two nulls which in fact
represent the ‘same’ unknown value, and thus should be matched in the
join, but will not be matched because the system simply considers them as

two nulls.

They therefore go on to consider indexed nulls. In this system, it can
be recognised when two different occurrences of the null symbol actually
refer to the same unknown value, and so the above problem does not arise.
Such a system is a reasonable candidate for a real implementation. It is
correct for the operations of Project, Join, Union and positive
Selection. (Some expressions involving selection with negative
conditions cannot be produced). It has the advantages that the symbols
can be manipulated just like regular values, and are easy to interpret

intuitively. The problem of generating new null symbols as required
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might not be insuperable; a relational system might have the entries in
relations as 32-bit identifiers pointing to the actual values in some
kind of value-set storage system, in which case perhaps all those with
the top bit as ‘1’ could be reserved for nulls, allowing 2%*31 different
nulls to be generated and 2%*%31 real symbols. There might be valid
solutions to the problems raised above by Biskup concerning this kind of
system; however working with a null value which generalises towards
partly-known values, such as ranges of integers and real numbers with
tolerances, rather than towards ‘distinguished nulls’, seems more likely
to be useful in practice. An system to allow both kinds of null value
would  Dbe theoretically possible, but would seem insupportably

complicated.

They go on to consider a third possibility, which is mainly for
theoretical argument, although it could be implemented. This is a system
of indexed nulls where each tuple in the database also has associated
with it a predicate making a statement about the values in the tuple.
Manipulating such a system would be rather more expensive, but it is
correct for all the operations they consider: Project, Select, Union and

Join.

One of the most important recent papers on the subject of null values 1in
database systems is [Dat2]. In this paper Date describes a method of
handling ‘null’ in database systems which is again similar to the
particular case of the flat lattice in my treatment above. He states
that this ’‘is as reasonable as any that has been given in the
literature.’ He then goes on to describe some of the problems that arise
in following this approach, and concludes that it is not a good idea to
support nulls. He proposes instead a scheme which he calls “default
values’. Since Date concludes that the accumulation of the problems he

describes is so great as to make the implementation of any scheme to
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handle nulls inadvisable, we will consider his arguments in some detail.

He states that his objections to null values are caused largely by
ramifications of the fact that null values cannot be assumed to be equal,
and so the tautology ‘X=X’ is no longer necessarily true if X ‘takes the
value Null’. He proposes a scheme which he calls ’‘default’ values, which
act rather like nulls except that they are regular values, and so do
compare equal. He describes this as ’less ambitious but more
straightforward’. It is argued here that this approach, by refusing to
get entangled in the difficulties surrounding nulls, forces the user to

do this for himself instead, with much greater chance of disaster.

In his scheme there is a default value associated with each domain; this
value is inserted by the system whenever a value 1is missing.
Subsequently it is processed just 1like any other value. The word
‘default’ suggests choosing a ‘sensible’ value, perhaps corresponding to
the most typical or likely value for an attribute from that domain.
However this is not what the user will usually have to do, as he will
need to be able to recognise the values that have been put in on his
behalf, in order to be able specifically to take them out again. Date
gives the example of computing an average, with the query

select AVG (SP.QTY)

from SP

where QTY NOT EQUAL TO DEFAULT(SP.QTY)

in order not to have the average perturbed by the default values.
Clearly this will only work if the default chosen is a value that can
never arise 1n practice. Again, in the definition of functional
dependency that Date suggests in his scheme, the default value is
specifically excepted and this could cause real problems 1if this value

could ever occur mnaturally. Hence the user is left with the task of
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choosing some value that can never occur. If he is so unlucky that there
is no such value, then there is little he can do. Date criticises nulls
on the grounds that the system has to decide between implementing them by
finding an dimpossible value or by a hidden field to indicate null; at
least this choice is open to the system, whereas if the task is thrust

upon the user, he has only the former option.

Since the default value functions as a real value, the user must be aware
that test for equality will succeed. Hence for example in a Join of two
relations, tuples may appear which were matched because both contained

the default value.

Date points out that there are some problems with the definition of
Functional Dependency when nulls are present. As he mentions, there are
several formal papers which cover this problem; the definition of
functional dependency needs to be altered slightly (and indeed it is

altered in the same way in his default scheme.)

One real problem however is pointed out, in the procedure for normalising
a relational schema. This is that in the world of relations without
nulls, when we find certain functional dependencies in relations, we can
decompose them into smaller relations with exactly the same expressive
power; this is normalisation. However if nulls can be present then the
decomposed schema has slightly less expressive power. The decomposition
may still be desirable, but it is no longer quite the same process
mathematically, as the schema when decomposed is not equivalent to the
original one; it will be necessary to decide in some other way whether
this decomposition should be made or not. For example, in the SAMPLES
relation, suppose we had a column giving the country in which each sample
was found. Then we could store the statement ’“sample 109 was found at

some site in Britain’ but Country is functionally dependent on Site, and
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so we have split off this attribute into the SITE relation; now we
cannot store the above statement. This is the problem that indexed nulls

solve; with them we could have in the SAMPLES relation

‘sample 109 was found at site alpha’

and in the SITE relation

‘site alpha is in Britain’

where ‘alpha’ represents some unknown site.

We simply have to decide whether we wish to be able to store the above
information or mnot; whether it is a ‘meaningful fact’ in the terms of

Sciore and others. If not, then the decomposition can be carried out.

Date also objects to null values on the grounds that tautologies of two-
valued logic are not preserved in three-valued logic. For example, if we
ask for a list of all samples of age less than or equal to 50 million,
and another 1list of all samples of age more than 50 million, we might
expect to cover all the samples; however samples of indeterminate age
will not appear. This problem, which is really the problem of what to do
with the ‘maybe’ truth-value, can be approached in a number of ways, none
of them entirely satisfactory, but between them probably sufficient in
practice. First of all, expressions which should really be tautologies
can often be recognised as such. [Vass] gives an algorithm for this, as

mentioned above. Then such constructions as
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IF (x GT 50) or (x LE 50) THEN....

will not give ‘maybe’ for unknown x but ‘true’. Also, the wuser can be
given the facility to request that if a test is applied to a truth-value,
as above, and it IS maybe, then a warning can be given. Finally, the
problem of Select operations where some tuples ‘maybe’ satisfy the
selection criterion can, if desired, be addressed by extending the
membership of tuples in relations to three-valued; a computed relation
might then contain some ’definite’ tuples and some ‘maybe’ tuples. This

possibility is discussed in a later section.

Date points out that when we ask for a list of all the tuples in a
relation sorted in order of some attribute, for example asking for
employees in order of salary, then it will be necessary to sort the null
values into some position in the listing for convenience, and this
appears to contradict the principle that we cannot obtain a non-null
result when performing an order comparison such as X > Y with a null.
However as he admits, sorting the tuples into order for processing and
comparing values are distinct operations, and there is no reason why the
null values cannot be sorted into some position for processing. If the
user really asks for employees in salary order, the system can give an
error or warning message if it finds a null salary. A rather worse
version of the same problem occurs in his scheme, namely that all the
employees with default salary (zero) will appear at the top of the
listing, implying that they are the lowest paid, when this is not the
case. Since he is treating the default value as a vregular value, this
could not even be trapped, as the system will not know it is not the true
salary. Hence if for example the user were to be looking at a view
giving employees in salary order, but with the actual salaries not shown

(projected out) he really could be misled.
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He states that we need additional operators, including in particular the
outer equi-join, and goes on to show that this operation is no longer
properly associative as he defines it, which is a nuisance. Also the
outer natural join is not, as one might expect, a projection of it. It
can however be argued that this is a consequence of the fact that the
‘outer equi-join’ he defines 1is a very odd operation, and not very
useful. These objections do not arise if we stick to the outer natural
join. Also note that if we do want the outer equi-join, the same

problems arise using his ‘default’ mechanism.

He says that since we do not accept the identity ‘null=null’, the
elimination of duplicate tuples from relations is hard to justify
intuitively (although it is clear formally). It seems intuitively clear
enough to me that there is no point (although perhaps little harm) in

storing two copies of the same statement.

He goes on to describe ‘implementation anomalies’, all of which arise
from traumas suffered with System R. The only one which is likely to be
a problem in systems in general is that programming languages do not
include the notion of unknown values, and hence the translation of the
desired concepts into, in his case, PL/1 is ghastly. The solution to
this would have to be the extension of the programming language in use to
contain lattice domains, which would be helpful in itself anyway. At the
moment the database operations in the language are handled by passing the
source through a pre-processor which translates the embedded database-
language statements into wvalid PL/l. This could be extended to cover
translating operations which refer to variables from lattice domains into
corresponding standard PL/1, if it were desired to keep this kind of

interface.
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He also describes some problems with the aggregate operations such as
SUM, AVERAGE and COUNT in System R. The definitions of these operations
are simply wrong; they can be correctly defined so that no anomalies
such as he describes arise (see section 5.5). However, in his ‘default’
scheme there are going to be more problems with aggregates. He points
out that in this case the user would have to take the trouble
specifically to exclude tuples with default values from aggregates, since
otherwise incorrect values would be obtained, and the system could not
recognise them for him. If the user failed to realise this, he could
find that the SUM value given for salaries was rather less than the

actual wage-bill, because of the ’default’ zero entries present.
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CHAPTER 4

VARIOUS SEMANTIC ISSUES

We have suggested a style of ‘information management system’ that
involves support for complex views of the database, constraints and
updates on those views, and treatment of partial information. In the
light of these requirements, certain aspects of our data modelling must

be looked at again carefully.
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4,1 The negative information problem

A problem which arises even in databases that havé no concept of null is
that of negative information: how to interpret the absence of certain
information from the database. In the relational model, for example, how
do we interpret the absence of a tuple from a relation? Or to put it
another way, what is the truth-value assigned to the statement that it
represents? Sometimes, no information is implied about that statement,
and so it might be true or false; in fact the truth-value is ‘maybe’ .
This is called the open-world assumption. For example, a relation giving
the populations of cities might not be exhaustive, and so if a city did
not appear, it would not imply that that city did not exist. More often,
however, we have complete information about the enterprise that the
database describes, and so we have the closed-world assumption, that any

tuple not in the relation is definitely false.

Closed-world relations are more useful: for example, we must be careful
in performing any kind of aggregate operation on an open-world relation,
since there may be true tuples that we do not have stored. We cannot
sensibly ask for the total population of all cities, or even the total
number of cities in the world, from our open-world relation giving the
populations of cities. For the system to reply to this query by giving
the total for the cities that it happens to know about would violate the
principle that the answer given should be an approximation to the true
answer. If the user has explicitly asked for the total of the cities in
the database then it might reasonably be claimed that that is what he
wants, but as we move to higher-level query languages, the query will be

more like:
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"What is the total population of all cities?"

and the user’s thoughts should be moving in the direction of asking
questions about the real world, rather than about the database.
Therefore, because this is an open-world relation, a warning must at
least be given that the question asked is not the one being answered. He
can reasonably ask for the total number of samples that we have, since

the Samples relation will be closed-world (we know about all samples).

Also, we cannot answer negative questions from an open-world relation,
because we cannot in general tell that a given tuple is not true. This
means we cannot, for example, compute the set-difference operation if the

relation to be subtracted is open.

It is not a facility generally provided in database systems to allow the
user to specify whether a given relation is to be regarded as closed~ or
open-world. Enen in a system without nulls, it would be necessary for
the system to know whether the open or closed-world assumption is in
force, as it can affect the definition of some relational operators, such
as set difference, and it would be a useful piece of semantic information
to prevent misunderstandings such as performing aggregate operations on

open-world relations.

In a system that represents unknown values, more care is necessary. The
definition of closed-world is that any statement that is not known from
the relation to be true, must be false. If a relation is to be closed-
world in that sense, every true tuple must be present in the relation.
In particular, no imprecise values can be present in the relation; each
true tuple must be represented precisely, and those are the only tuples
present. Thus the system should know which relations are to be closed-

world, and forbid any imprecise values in those. From here on, this type
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of relation will be referred to as ‘fully closed’, because it 1is useful

to define a slightly more relaxed version of the closed-world assumption.

The most important point about the closed-world assumption is that we
have a tuple for each entity in the universe of discourse; for example
in a closed-world employee relation, we Know that there is a tuple for
each employee. It 1is unnecessarily restrictive to insist that there
should be no imprecision at all in the relation in order to achieve this.
We can define our ‘closed-world’ relation to mean that there is a tuple
for each entity, but some of the non-key columns may not be precises
What this means is that any tuple representing a true statement will be
present in the relation, but perhaps with some entries ‘weakened’. Any
tuple that is not approximated by a tuple in the relation is known to be
false. Since we will not permit imprecise values in key columns in this
kind of relation, we are assured of a one-to-one correspondence between
our tuples and the ‘true’ tuples representing a state of perfect
information; we can therefore meaningfully perform operations such as

counting and summation, and form set differences.

This kind of relation semantics, in which we can have imprecise values in
non-key columns, but still preserve the useful one-to-one correspondence
between the entities in the Universe of Discourse and the tuples in the
relation, seems to satisfy all our requirements. Why then will we ever
want to have open-world relations? The answer is that apart from the
fact that we may occasionally want to store information about something
without covering it exhaustively, as with cities in the world, we will
also generate open-world relations whenever we perform operations in the
database., If we perform Joining, for example, on two relations, then
even if they are both closed-world, as defined above, the result will be
open-world if there are any missing values in the join columns, because

matching cannot be guaranteed. Also, when a Select 1is performed, if the
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result of testing the selection criterion on a tuple is ‘maybe’, it will
not be included in the result, as it is not known to be correct. Hence
some tuples that are entitled to be selected may be rejected, and thus
the result relation is open-world. All the tuples in it are known to be
correct, but some that are not in it may also be correct. Hence some of
the computed relations that appear in views, or that occur as
intermediate results in the evaluation of more complicated relational

expressions, will be open-world.

One possible way of dimproving this situation slightly 1is to allow
computed relations to consist of two sets of tuples, those that are
definitely in the relation and those that ‘may’ be in the relation. What
this really means is converting the membership function of relations to
be three-valued instead of two-valued. Then when evaluating expressions
such as the above, no tuples need to be discarded, and a certain amount
of ’‘negative information’ can be retained; any tuple not found in the
sets for ‘true’ or ‘maybe’ can definitely be said to be false,

approximate values of aggregate functions can be calculated, and so on.

What this would mean would be a rather different kind of interface for
specifying queries on the imprecise database. Instead of building
relational expressions out of operations such as maybe-join or true-join,
maybe-select or true-select, the query is expressed in terms of Join,
Select etc, and the result is a relation containing maybe-tuples and
true-tuples. Then at the end the user can request to see just the
definite tuples, or the maybe-tuples as well. This gives a rather more
high-level interface, where the wuser can ask his question about his
Universe of Discourse, rather than about the state of the database; he
describes the information he would like, assuming perfect knowledge, and
the system describes to him how good an approximation it can give him to

what he asked for. In such a system, for example, we would not name two
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separate derived relations for (a) samples definitely over 50 million
years old and (b) samples which may be over 50 million years old; we
would simply name the set of samples over 50 million years old, and the
database could answer questions about which samples definitely are, or

may be, in this set.

Such a system would preclude some operations that might otherwise be
possible, such as selecting on two conditions which have different levels
of certainty (e.g. all samples that have site definitely equal to T44,
and age maybe equal to 50 million). Such an operation would have to be
requested in terms of more explicit operators making it clear that tuples

were being promoted from ‘maybe’ to ‘true’, or vice-versa.

It might also be felt that for many purposes the maybe-tuples are merely
an encumbrance, and not worth computing unless specifically asked for.
In this case the above approach might be discarded on grounds of

efficiency.
4,2 Open-world relations and keys

In an open-world relation, the tuples describe some subset of the
entities in the Universe of Discourse; the essential one~to—-one
correspondence between tuples and entities is not present. In this case
it can be argued that there is no reason to insist any longer on the rule
of ‘relational integrity’, that the key fields of each tuple must be
precise. We could consider permitting tuples with key columns that are

imprecisely specified.
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What would such a tuple signify? The meaning would have to correspond to
an ’‘existentially quantified statement’; that is, it would be of the

form
‘There exists some entity with these properties’.

One argument for allowing tuples with nulls in key fields 1is that they
arise naturally anyway in connection with Project operations that remove
all or part of the key of a relation. This is the kind of projection
which causes elimination of redundant tuples. The resulting derived
relation will have its own key; if the base relation was in third normal
form, this will be the whole of the result relation. When we perform
such a projection some of the entries in the key columns of the result
relation may well be null. Ways that this has been dealt with in the
past include ignoring the fact that computed relations have keys (which
any relation must), or saying that the integrity rule does not apply to
them. Tuples with null values in key fields could be discarded, but it
is very hard to find any rationale for doing this. Hence, we end up with

a view relation that has nulls in some of its key fields.

Nulls can also be made to appear in the key of the base relation, if we
permit insertions of tuples into the view. This operation is commonly
regarded as dubious in the extreme, as we are updating a view in which
the original key is no longer present. However, the view relation
presumably has meaning to the user, in virtue of the fact that it has a
key of its own. The entities in it are in some sense ’aggregate’
entities or ’‘associative’ entities; hence it is arguable that it 1is

reasonable to allow the view to be updated.
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For example, consider the EQUIPMENT relation. This 1is classified as
open-world in this example, since it is not clear that every piece of
apparatus or equipment will always be recorded —- it is not even clear
exactly what constitutes a ‘piece of equipment’. The key of this
relation is ‘inventory-number’, a key which has been assigned arbitrarily
so that this relation can be used to keep track of certain pieces of
gear, to know where they are at any time. To somebody in charge of this
task, the descriptive information may be of no interest. However
somebody who needs to allocate or use the facilities of certain kinds of
equipment might simply want to know which facilities are available at
which sites. They might well then use a view of this relation with the
inventory number and the value projected out. This will incidentally
remove duplicate tuples if there is more than one of the given item at a
given site. Each tuple will mean ’there is an X available at site Y’.
This user might then wish to record the availability of certain
facilities at certain sites without worrying about assigning (or without
having the authority to assign, or knowing the system for assigning) an
inventory number for the item. He would simply wish to insert a
statement such as the above into his view; we will have to propagate

this to the underlying relation.

If we wish to do so, then we can easily map the statement back to the
base relation, as it corresponds exactly in meaning to a tuple with an
imprecise value in the key position. The rule that missing columns in
projections are filled in with nulls will then apply uniformly, even if
the missing column is a key column; no different action 1is required.
The above example could alternatively be handled by allowing the database
system to assign a new inventory-number to any item added din the view
where inventory numbers are not seen, but this may not be convenient;
the inventory-number may have to be assigned in some way that the DBMS

cannot carry out; in any case, this is not necessary, since creating a
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tuple with a null in the inventory-number key field does exactly what is
required. Permitting imprecise values in key fields in this way seems to
offer an extension to the expressive power of the relations entirely

free, as no extra complexity is required if we decide to permit it.

4.3 Checking constraints

One of the more important things that a database system needs to be able
to do 1is to store and maintain constraints on the data. These
constraints give extra semantic information to the system, and are used
in two ways: the database system must ensure that changes to the
database do not violate the constraints, and the system must also use the
constraints in organising itself; for example a constraint on the range

of values an item can take might be used in deciding how to store it.

How do we check constraints on a database that contains imprecise
information? A constraint is a function on the database that evaluates
to a truth-value, saying whether the constraint is satisfied or not. We
can evaluate such an expression when imprecise values are involved, and
the result will be in three-valued logic. For example, if there 1is a
constraint 0 < AGE < 100 million, then if a tuple has age=(50 to 55
million) this gives result TRUE, whereas a tuple with age=(90 to 110

million) will give result MAYBE.

Clearly, if the result of checking the constraint is TRUE, then there is
no problem; similarly if the result is FALSE, the database is clearly in
an invalid state, and action will need to be taken, just as in any other

system. What, however, if the result is MAYBE?
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What this signifies is that the stored data is imprecise, in_such a way
that it describes some possible states that satisfy the constraint and
gsome that do not. Ideally, what the system should do is to eliminate the
possibilities that describe invalid states, by increasing the precision
of the stored data according to the constraint rule. Thus in the example
above, when there is a constraint on samples that the age must be between
0 and 100 million, if the system finds a sample with age attribute (90 to

110 million), it should change this to (90 to 100 million).

This may seem a rather dangerous step, altering the database to make it
satisfy the constraint. We might say, ‘if the constraint evaluates to
MAYBE, does that not mean that we don’t know whether the constraint is
satisfied?’ The answer to this is that although the ‘true’ values in the
real world are not precisely known, we do know that they satisfy the
constraint, because this must always be true —— that is what a constraint
is. The values stored in the database, on the other hand, are at least
perfectly known to us. Hence there is no uncertainty about the status of
the constraint. We can use it to refine the stored data, just as
constraints are used in determining other aspects of the behaviour of the
database. What the MAYBE result to constraint evaluation tells us is
that the stored values are compatible with the constraint, but represent

certain possibilities that can be discarded.

A distinction must be made clear here between this use of the word
‘constraint’, meaning something which is always true in the universe of
discourse, and another possible interpretation, meaning a rule which the
system is 1intended to enforce. The latter could be dealt with by
something like a ‘trigger’, as available in some systems. For example,
in an airline booking system, there might be a rule that the total weight
of all packages booked on a freight aeroplane must not exceed the

capacity of the plane. This is not a constraint in my sense, since there
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is no implication that the total weight booked canmot exceed the limit;
it 1is a trigger, to take some action if it does exceed the limit. 1Im
this case if some package has imprecisely known weight, the desired
action would be to issue a warning, rather than to make the ‘deduction’
that the package must be sufficiently light ‘because the constraint says

so’,

Given the above distinction, what is proposed is that when constraints
are checked, a MAYBE result should initiate some action which will refine
the stored values to make the constraint TRUE. How this can be done will
of course depend on what form the constraint takes. The constraint-

enforcement component of my experimental program will be described later.
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CHAPTER 5

IMPLEMENTATION

This chapter describes the implementation of an experimental program
which allows the user to define base relations over lattice domains,
define derived relations in terms of these, and apply update and

constraint operations to all relationms.

The program consists of about 4000 lines of BCPL. As well as the
standard run-time facilities it uses a set of indexed access—method

routines for operations on stored relations.

The program allows the user to define a set of base relations, specifying
the domain of each column and giving the key of each relation. Derived
relations can then be defined in terms of relations already defined,

using relational operations: Project, Select, Join, Group-by, and
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Computed Column operations are supported. These are described in detail
later in this chapter. The user can then add tuples to any defined
relation, or delete tuples, and operations on derived relations are
propagated to the base relations. The contents of relations can be

displayed.

The user can also specify a constraint on the database in the form of a
predicate applied to any relation. Since the relation can be a derived
relation, this can express constraints which link several base relations.
The constraint is stored in the form given, that is, expressed in terms
of the derived relation; it is not translated into a constraint on the
base relations, since this would in general be much more complex. Thus
the derived relation mechanism is used to express complex constraints in

a simple way. How the constraints are enforced is described later.

The program consists of the following sections:

*# a gimple value-set system for storing and retrieving

variable-length data items in the database by pointers

* routines for maintaining and indexing stored relations over

lattice domains, described below

% gimple cataloguing routines

* routines for  Thandling predicates: reading, writing,

intersecting etc. A description of predicates is given later
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* routines describing the relational operations available: how
each transforms predicates, and in terms of this, how to

evaluate it and transform updates through it

* routines to read in, print out, and evaluate arithmetic

expressions over lattice domains

* routines to read, analyse and carry out commands

5.1 Managing lattices

To store relations containing entries which are elements of lattices, we
must be able to sort these so as to perform retrieval operations on them
efficiently. In my system, each element has a one-word representation,
which could be either some packing of it, or a pointer into the value-set
storage mechanism. Sorting the tuples in order of this representation is
unlikely to be helpful with retrieval, except for the simplest query
‘find all tuples containing the value X’. In fact this problem will
arise with any system using a value-set mechanism, quite independently of
the question of lattice domains. Where lattice domains affect the issue,

however, is in what kinds of query are likely to occur.

In a system with no imprecise values, the kinds of retrieval request
likely to occur are

(a) most commonly: find all tuples where attr=X

(b) for an attribute in an ordered domain: find all tuples with

attr in range (X < attr < Y)

The former can be satisfied by any well-defined sort order; for the

lattef, we want the target tuples to be clustered together, so the tuples
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need to be sorted in the ordering in the domain of the attribute in
question. This may well not be the same as the ordering of the
representation; for example, if we are storing variable-length strings
in a hashed value-set store, the lexical order of the strings will
probably not be preserved in the hash keys stored in the relation. Hence
we must either give up the power to perform retrieval (b), or refer to
the value-set store for the real value whenever we are searching for a

value or searching for the place to insert one.

Essentially the same considerations apply when considering the sorting of
elements from lattice domains. The retrieval requests that can arise
are, however, more varied. We can request records with attribute X such
that:

(a) X is approximated by some lattice element A

(b) X is lub-compatible with some element A

where A can be a precise or imprecise element of the lattice.

If A represents a precise value then these operations have the effect of
retrieving tuples where:
(a) X is definitely equal to A

(b) X may be equal to A

There is however another possible way of using these two requests, which
is to perform retrieval of tuples where attribute X falls in a given
range (where the domain of X has some intrinsic sort order). We can do
this by wusing the value A to describe the range, which is a slight
twisting of the use of the lattice. Thus if we want all samples where
the age 1lies in the range 30 to 40 million then we can use the lattice

element (30 to 40 million), which normally represents imprecise
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information, to describe this range. Using the value A in this way, our
two requests now have the effects of retrieving tuples where:
(a) X definitely lies in the range given by A

(b) X may lie in the range given by A

Thus these two lattice operations can be used to describe all the simple
types of request that we can expect our sorting to deal with. What kind
of sorting order, then, will cluster the tuples which satisfy these

requests?

If we have a flat lattice, then we can sort the proper values in the
normal way, and sort the null values to some fixed place, say the end.
The null attribute will never satisfy a query of type (a), but will

always satisfy one of type (b).

Suppose we are dealing with real intervals. If they are all of fairly
similar size, then we could sort them roughly into order in order of the
lower bound, say, although there 1is mno natural ordering. This will

enable us to retrieve on the two query types efficiently.

In the general case, there is no natural ordering for lattice elements.
If we have, for example, real intervals which vary widely in size, or a
P-domain, how do we sort them? The method used by my program 1is a
generalisation of the two methods mentioned above: the elements are
sorted into buckets by how imprecise they are, and within buckets can be
roughly sorted to enable fairly efficient retrieval. Real intervals, for
example, are assigned into buckets depending on the leﬁgth of the
interval, and within the buckets sorted on the lower bound of the
interval. (See figure).

For flat lattices there are only two buckets, one of which just contains
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Buckeer 1

Bucket A N RBucket 3

FIGURE

the null value, and the other the precise values, which can be sorted
perfectly in the normal way. In other words, this scheme reduces to the

obvious method described earlier for flat lattices.

There is a description of an elegant algorithm for sorting real intervals
in [WoEd], which also uses buckets. This algorithm is adaptive, in the
sense that the elements are allocated to buckets depending on the
existing population, rather than in a fixed way. This avoids the need to
have any idea of the possible distribution in advance. It is not really
suitable here, however, because

% it does not easily generalise to other lattices

* elements migrate from bucket to bucket, which would be very

inconvenient here
%# it is necessary to keep all the elements of the lattice in one

place, to control the algorithm.
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5.2 How lattices are described

The experimental program allows the user to specify the lattice domains
that he requires, and store and manipulate elements of these lattices.
The definition of a lattice consists of the definitions of the various

objects that are required to be able to operate on elements of it. These

are:
* lub and glb functions
% bottom —— the bottom element of the domain
* is-precise -- tells whether a given element is precise
* the function giving the approximation ordering of two elements
% read and print functions for the domain
* arithmetic and ordering functions as appropriate
% definitions of any special functions on this domain
% functions to implement the retrieval scheme
* mappings to corresponding imprecision domains
The last three of these require further comment: ‘special functions’

covers things 1like ’concatenate’ for the domain of strings, which are
accessed by their names. The standard symbols for plus, minus multiply,
divide, and comparison are recognised in expressions, and if used must
refer to the usual arithmetic functions, since assumptions are made about
their behaviour in order to enable arithmetic expressions to be inverted
when performing updates through ‘computed-column’ type views. Any other
functions must be named, and no assumptions are made about such
functions. Hence the plus-sign cannot, for example, be used to denote
string concatenation. There are two functions to implement the retrieval
scheme: the first gives, for an element of the domain, the bin-number to
which it is assigned, and a key by which it can be sorted into that bin.
(It does not matter if different elements may have the same bin and key~-

values). The other function takes a bin-number and a selection predicate
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on elements of that domain, and returns upper and lower bounds on the
key-values of elements that can satisfy the predicate within that bin.
The access-method code refers to these functions. The mappings to other
domains correspond to the imprecise-domain building operations in this
system. There are two of these: the domain of intervals, and the
P~domain. Hence for any flat lattice, there may be functions giving the
corresponding elements in either of these domains; correspondingly in a
domain of either of these types, there can be a function giving the set
of elements of the flat lattice which a given element represents. This
may not always be possible; we cannot in general give a list of all the
precise real numbers represented by an element of the interval-domain.
However when this is possible, it is wused in forming Joins, and in

Grouping, as described in the sections on those operations.

The definitions of these functions are written in BCPL for each domain,
compiled, and loaded by the system as required. The definitions of many
of the functions take on a standard form; for example the P-domains of
all domains essentially have the same code, with references to the
definition of the underlying domain inserted. It would be possible to
compile just one definition for all P-domains, and supply the reference
to the appropriate underlying domain at run-time. The same 1s true of

the other domain-forming operations.
All the values in relations are stored as 32-bit words which represent
lattice elements, either directly or by pointing into the value-set

storage system.

The domains provided are
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* variable-length character strings (flat lattice)
* integers (flat lattice)

* imprecise integers (interval-domain of above)

* truth-values (flat lattice)

* real numbers (flat lattice)

* imprecise real numbers (interval-domain of above)

The character strings and imprecise numbers are stored in the value-set
system, and the representation 1is the pointer to this, whereas the
precise numbers and truth-values are stored as themselves, with a value

reserved for the null element.

In addition, a general routine is provided which allows the formation of
the P-domain of any flat domain. This is implemented as follows: An
element (other than bottom) of the P-domain of a lattice consists of an
finite non-empty subset of that lattice. Hence it is represented by a
pointer to a block giving the list of the elements in the subset. The
first word of the block gives the number of elements, and the remaining
words are the elements. Least upper bound in this lattice 1is the
intersection of the subsets; if this is empty then they are not
lub-compatible. A precise element is a subset with exactly one element.
Ordering and arithmetic operations can be defined, rather expensively, by
performing the operation required on every possible pair of elements from
the arguments, in the underlying domain, and then forming the GLB of the
possible results. Performing arithmetic on these domains is unlikely to

be useful in practice.
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5.3 Predicates

One of the main data—-types used in the program is called a ‘predicate’;

it describes a predicate on the tuples of a relation, such as

‘column one is approximated by (3.0 to 3.1)".

It consists of a series of terms, each of which is of of the form
{Col> <OP> <Valued> where the OP can be ‘is approximated by’ or ‘is
compatible with’. The predicate is true of tuples that satisfy all the
terms. Note that these operators have results in two-valued logic, and
the predicate is evaluated in two-valued logic. These predicates look
quite 1like select—expressions for the relational Select operation, and
indeed they are used for this purpose. They are also used as ‘index
requests’ to describe to the access method the tuples that should be

retrieved, and also could be used for predicate locking in a way that

will be described, although this has not been implemented.

(Predicate locking [EGLT] is a method of locking part of a database where
rather than recording which records are actually locked, for example by
tagging them, they are specified by a predicate. This means that any new
records created while the lock is active that satisfy the predicate will

also be locked, which overcomes certain problems.)

The question as to whether the predicates should be expressed 1in two-
valued or three-valued operations 1is a delicate one. Since the
predicates describe select-expressions, which will be expressed by the
user in three-valued logic comparisons such as ‘X =Y’, we might expect
that the operation we would use would be the three-valued equality
comparison operator, described earlier. There d1is a slightly more

suitable three-valued operator, which I named ‘Meets’ in [Gral]. The
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problem with three-valued equality is that it can only be True when both
values are precise. By contrast the value ‘X meets A’ gives the truth-
value of the statement ‘X lies in the range described by A’, and so the

definition is

X meets A :== if A approximates X
then TRUE
else (X = A4A) // three-valued comparison

which forces X meets A to be True rather than Maybe when X lies wholly
within the range of A. It can be seen that

(X meets A) is True iff X is approximated by A

(X meets A) is True or Maybe iff X is compatible with A
and hence Meets is equivalent in power to the pair of two-valued

operations described earlier, whereas three-valued equality is not.

Essentially the choice is as described earlier in the section about
assigning three-valued logic to the membership function of relations. If
we have two-valued predicates, then they simply describe some subset of
the tuples; if we have three-valued then they describe two subsets, and
we must additionally specify for the operation overall whether we want
the maybe-tuples to be included or not. This means that if we have
three-valued predicates, we cannot select for example ‘all tuples such
that attribute X is definitely equal to 3 and attribute Y may be equal to
4’, whereas with the two-valued functions we can mix maybe- and definite-
type operations in this way. My system implements two-valued rather than
three-valued predicates so as to allow these more flexible ‘mixed’
predicates. Thus the predicates correspond exactly to the types of

retrieval request described earlier.
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It should also be noted that a predicate is adequate to carry all the
information in a tuple; we can characterise a given tuple by a predicate
describing all the tuples above the given tuple. Hence we can regard

tuples as corresponding to a subset of predicates.

5.4 Cursors

The other data-type which features commonly in the program is the
‘cursor’. This points to a relation currently being processed for
retrieval or update, giving a ‘current position’. This notion of
currency is internal to the system, and is not visible to the user in any
way. When it is necessary to perform any operation on a relation
(whether derived or base), a cursor must be opened on it; if it is a
derived relation, this will in turn involve opening cursors on all
relations involved in its definition; if it is a base relation, it will
point to the disk relation that represents it. Associated with each
cursor is a predicate, which defines the subset of the tuples in the
relation that may be touched in this operation. Thus 4if a cursor 1is
opened on a derived relation that is a Selection of tuples from a base
relation, the cursor that is opened on the base relation will have a
predicate that specifies that only tuples passing that selector are
concerned. These predicates can be regarded as predicate locks [EGLT]
which can be used, at base relation level, to determine whether two

cursors represent operations which may interfere.
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5.5 The relational operations available

The experimental program provides the following operations on relations:
Project, Select, Join, Computed column, Group-by. These are defined on

Open- and Closed-world relations as follows.

Project

The projection of a relation onto a set of columns is, as always, formed
by removing the other columns and then performing any removal of
redundant tuples that may be necessary. In the standard relational
algebra, redundant tuples are just those that are duplicates; in this
system, any tuple that is an approximation to another tuple is redundant.
This is just the normal rule in this system for removing redundant tuples
in open-world relations. We are not allowed to remove dominated tuples
in this way in a closed-world relation, but the condition for a

projection to be closed ensures that there will be no such tuples anyway.

A projection can be guaranteed to be closed-world if the base relation is
closed-world, and it is not the kind of project that causes tuples to be
combined, in other words none of the key columns are removed. This kind
of projection is just the removal of some of the attributes, without
really changing the entities described; it would be used for example to
remove some information about the entities 1in question that was
unnecessary or privileged. It can also be guaranteed to be closed (given
a closed base relation) if all the columns left by the projection are

constrained to be precise; in fact in this case it is ‘fully-closed’.
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We can widen this condition for closedness of the result if we have a
list of the functional dependencies for each relation, so that we can
deduce the key of the result of the projection, but as this system does

not carry this information, the above condition is used.

Selection

Selection in this system consists of discarding those tuples that are not
accepted by a given predicate. As we have chosen to use two-valued
predicates, we do not require a maybe-select and a true-select operation,
as the predicates themselves contain these options. The reasons for
choosing this kind of predicate have just been discussed. The user can
enter selection-expressions in the usual form, and this is translated

into the lattice operations, as described in that section.

The result of selection can be guaranteed to be closed if the selection
predicate refers only to columns which are not allowed to be imprecise;
otherwise it may be impossible to tell whether a value satisfies the
selection condition. (It would in fact be possible to note, during the
computation of the projection at any one time, whether such an
undecidable condition arose, and flag the result relation as being closed
if it did not; this would allow the result to be closed if the selection
predicate can always be decided ‘in practice’; however an approach which
allows a given relation to be sometimes open-world and sometimes closed

seems dangerous, and has not been followed here.)
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Computed column

This operation adjoins an extra column to the relation, whose value is
given by an expression in terms of the other columns. This can involve
arithmetic, comparison, or any of the operations defined on the relevant
domains. The arithmetic and other operations are defined with due regard

to the domains in question, as mentioned in section 2.5,

The result will be closed-world if and only if the base relation 1is

closed—-world.

Note that this operation allow the selection of tuples on conditions more
general than those of a predicate; if we require to select all tuples
where attribute A is greater than the square of attribute B, we can

define a computed column with the expression

A > (B*B)

which will be in the domain of truth-values, and then wuse Select to

select those tuples which have ‘true’ in this column.

Group-by

It is also possible to extend the GROUP-BY operator [Gra2] which 1is a
combination of projection and forming aggregates. This operation forms a

given aggregate for all tuples in groups defined by a particular

attribute or attributes.
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Aggregate operations can be defined in exactly the normal way in terms of
arithmetic operations; once the arithmetic operations are defined, the
definitions of the aggregate operations follow automatically. For
example, SUM(A) where A is some attribute of a relation is just the sum
of the values of the attribute from each tuple. Of course, if any tuple
has ‘unknown’ for A, then the sum will be ‘unknown’. This is the correct
answer. It is however because of this that the implementors of System R
chose to define instead that all tuples with unknown values should be
excluded when computing the aggregate. This allows the aggregate to be
computed even when there are unknown value present, but only at the cost
of discarding the correctness of the sum, and producing the anomalies
criticised by Date [Dat2]. (This is rather like interpreting the query
in the ’internal’ model [Lips]). With this approach, they take imprecise
information and appear to produce a precise answer from it; this is a
dangerous practice. We would suggest the principle that the result of
any database operation should always be at least an approximation to the
true result that would be obtained if all the precise values were
available for the stored information. (In other words the query must be
interpreted in the ‘external’ model unless explicitly told otherwise).
If the best approximation to the true answer that can be given is
‘unknown’ then this is what must in all honesty be delivered. If what
the user really wants is the sum of all precisely known values, he can of

course ask for this.

In fact it will often be possible to do rather better than this. If we
define the SUM aggregate as the arithmetic sum of the values, then if any
value is completely unknown, the result will also be unknown. However
very often there may be a constraint on the range of values that the
unknown can take. With this constraint, the wvalue 1is not entirely

unknown, and so the possible range of the sum or average is restricted.
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Given that we know how to form aggregates, we can define GROUP-BY. The
base relation must be closed-world, as explained before, and the result
can be guaranteed to be closed if all the columns upon which grouping is

being done are constrained to be precise.

Consider grouping the SAMPLES relation in the introductory section.

GROUP SAMPLES by SITE forming average(age)

Site | Avg age
T44 59 to 63
le 61 to 64.6
T54 60 to 63

The problem is how to define the groups if some of the grouping attribute
values are imprecise. For example, suppose we wish to group samples by
Class. We will remove sample S5 where the class is wunknown, since we
have no restriction on the values that this might take. If the algorithm
forms a new group whenever a value is found that does mot compare equal
with any existing group, (which is what system R does, for example) then
“each tuple where the grouping attribute is not precise will occur in a

group of its own.
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LET SAMPLE2 = SAMPLE - (S5, T4l, ?, 58 to 60)

SAMPLE2

Sample Site Class Age

Sl T44 D3 59 to 63
S2 T44 D4 59 to 63
S3 T4l D4 or D6 60 to 67
sS4 T41 D6 65 to 67
S6 T54 D3 60 to 63

GROUP SAMPLE2 by CLASS forming count

Class Count
D3 2
D4 1
D6 1
D4 or D6 1

This seems quite attractive, but it does mnot follow the principle
mentioned above, that the values 1in the relation should be an
approximation to the ‘true’ values. How can the tuples in the above
relation be interpreted? The meaning of the tuples should be “the total
for group X is Y'. The result relation produced is not an approximation
to the truth; it contains tuples giving precise values for aggregates
that may well be wrong. We should insist that the results given indicate
the true range of uncertainty of the result. Also the above relation,
which could well be closed-world, has imprecise values in the keys. What

must be done is to form a result tuple for each group, and where an input
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tuple cannot be precisely grouped, its contribution must be taken into
account for every group to which it could possibly belong. Thus an

imprecise value for the aggregate will be produced.

GROUP SAMPLE2 by CLASS forming count

Class | Count
D3 2

D4 1 to 2
D6 1l to 2

Thus the key columns, i1.e. the set of attributes on which grouping is
done, contain only precise values in the result, and the result relation
can be closed-world. Those columns can be defined to be over the
‘flattened’ versions of the domains in the base relation, since they must

be precise.

It is apparent why we had to remove sample S5. If a tuple were present
with completely undefined Class, we would have to produce a result tuple

for every possible Class, or report it as an error.

It will be noticed that if the totals for the groups are then added
together, the result is not the precise total for the whole relation, but
an approximation to it; information has been lost. However it is not a
disaster that information has been lost by computing the ‘grand total’ in
this way; there are many expressions that can be computed in the
database that discard information; at least no incorrect information has
been introduced. The precise grand total can always be found by asking

for it directly.
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Join

The discussion of this has been left till last, since there 1is some
difficulty in deciding how to define Join in a system which caters for
imprecise‘values. This difficulty arises because of the very syntactic
way in which Join is defined. The normal Join operation is the primitive
in the relational model for combining together statements represented by
different relations, but it is defined in the simplest possible way;
this has its virtues, but it fails to take account of the many ways in
which relations can be used to express statements. A better system (such
as Codd’s RM/T [Codd]) would set out a description of a number of fixed
ways in which relations are to be used and could then define joining

operations which are appropriate to them.

Unfortunately there was not time to build into my system a full semantic
data model such as RM/T, and so the problem remained of defining a
joining operation to make sense in all cases. The normal extension of
Join to take account of nulls is the Outer Natural Join, in which tuples
that would normally take no part in the Join are mated with tuples
consisting of all nulls. Thus for example if we are joining the SAMPLES
relation with the SITE relation, and there is a sample tuple which would
not be joined to anything, rather than lose that sample we put it into

the result with nulls for country and other attributes of Site.

This is done because it is better not to lose all record of the sample;
looked at in the light of the present discussion, we can say that it may
enable us to produce a closed-world result, whereas 1f we discarded

tuples we would be left with an open-world result.
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Codd points out that the use of this depends on the relation semantics.

He says:

‘If an operator generates one or more nulls, these are of the value
unknown type, which is consistent with the open-world view. If we
were dealing with the closed-world view, the ‘inapplicable’ type

would be more appropriate’.

In other words, if a tuple fails to be matched in a Join, we can extend
with nulls if the other relation was open-world, since there could be a
missing tuple that should have joined with 1t however 1if the other
relation was closed-world, there can be no missing tuple, and so there
can be no valid value to extend with; the ‘inapplicable’ value should be
used if supported, or in my system, the tuple should not be joined.
However the above analysis is partly wrong; a tuple in a Join can fail
to be joined for two reasons: either there is no corresponding tuple in
the other relation, in which case the above comments apply, or because
the tuple is imprecise in the joining colunn(s) and so its matching
tuple(s) cannot be identified even if present. I would thus amend Codd’s
analysis to say that the ‘inapplicable’ case arises i1f the unmatched
tuple is precise in the joining columns, and the other relation closed-
world, and yet no match can be found. In this case, my system must

discard the unmatched tuple, just as in the traditional Join.

With the above tinkering, we could supply the Outer Natural Join as the
joining operation to be used in the system quite satisfactorily. There
are one or two things that can be improved, however, by considering the
way in which Join is used. Usually when using Join, we have one relation
which we are ‘interested in’, and we are joining it to the other relation
to apply some function to the tuples; for example, when joining the

Sample and Country relations, we might be interested in samples, and want
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to know for each sample what country it came from, or we might be
interested in countries, and want to know for each country what samples
came from it. We are unlikely to have both points of view at once. From
here on the relation of interest will be written on the left~hand side of
a Join symbol, and referred to as the left-hand relation. This will tend

to result in a natural-looking form for expressions.

When we use a Join in this way, we want each tuple in the relation we are
‘interested in’' to participate, and so we wish to use the ‘outer’
operation to make sure that no tuples are lost; however we don’t care if
some tuples in the other relation are unused. The sensible operation to
have is therefore an outer join which is ‘outer’ on one side only. If we
accept this point of view, which is implemented in my system for
experiment, there is one further improvement we can make to the Join

operation, in a particular case.

The ’function’ we are applying to the left—hand relation in a Join can in
general be multi-valued; several tuples can match each left-hand tuple.
For example, if we are interested in countries, there will be in general
several samples that belong to each country. However there is the
special case where the function is known to be single-valued; this 1is
when the joining columns contain the key of the right-hand relation. In
this case the cardinality of the Join will be equal to the cardinality of
the left-~hand relation. This case can be easily detected, and two
observations apply to it: firstly, this is the one case in which we can
deliver a closed-world result, if the left-hand relation is itself
closed. This foilows from the fact that the key of the Join is in this
case the key of the left—hand relation. Secondly, if the joining
column(s) in the left-hand relation are imprecise, we may be able to do
slightly better than the normal outer operation of extending with null

values; i1if the joining value is imprecise, but not completely null, it
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may be possible to represent it as a choice of some finite set of precise
values, find the tuples that join to those, and take the GLB of those
tuples as the result. For example, if a sample is given as coming from
one of two sites, the country value joined to it can state that it comes
from one of the two corresponding countries; i1if we are so lucky that
they are the same, then we can fill in the country even though the site
was not precisely known. This would happen, for example, if the site
information was originally derived from an input giving just the country

of origin, in the first place.

SAMPLE SITE

Sample | Site Site Name Country
S1 T44 T44 Delmar USA

S2 T41 T41 Branimir | Bulgaria
S3 T4l or T44 T54 Elsworth | England
S4 ? oo oo N

SAMPLE * SITE

Sample ; Site Name Country

81 T44 Delmar USA

52 T41 Branimir Bulgaria

53 T41 or T44 Delmar or USA or
Branimir Bulgaria

S4 ? ? ?

To summarise, the join operation provided is not symmetrical, but takes a
left-hand relation and applies the right-hand relation to it; every
tuple in the left-hand relation participates, being extended with nulls

if it cannot be matched (but this is not done if the left-hand value is
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unmatched even though precise and the right-hand relation 1s closed-
world); if the joining columns contain the key of the right-hand
relation, then instead of extending with nulls, we may be able to use the

GLB of the possible matches on the right.
5.6 How updates are propagated

In the experimental system, there are two update operations, ADD and
DELETE, for dinserting and deleting tuples from relations (stored or
derived). In most cases it is fairly clear how these operations should

be performed on a derived relation.

A request for an update operation on a relation will be taken in
conjunction with the locking predicate that was placed on the relation
for this operation; see the section about predicates. This means that
only tuples satisfying the predicate are concerned, and so any tuple to
be added or deleted must also be compatible with the predicate, and if so
can be assumed to satisfy it. For example, if we attempt to insert a
tuple with a null in column 3 into a relation opened with the restriction
passed down from above that only tuples where column 3 = 7 are being
accessed, the system will assume that col 3 = 7. This would be done if
for example there were a select operation at some point higher up

specifying that col 3 = 7.

There are thus three pieces of information to be considered when
translating a request for an update to a derived relation: the values in
the tuple, the locking predicate, and any information resulting from the
definition of the derived relation itself; for example if the derived
relation is a computed-column relation, then the definition itself gives
an arithmetic relationship amongst the columns which may be used to £1i11

in missing values.
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Projection

A tuple in a projection corresponds exactly in meaning to a tuple in the
base relation with nulls filled in for the missing columns. No extra
information is provided by the definition of the operation, and the
locking predicate can be translated exactly into a locking predicate on
the base relation, thus avoiding any need to consider it further. Hence
when we access a projection, the locking predicate is translated and
passed down, and then dinsertions and deletions are translated into
requests on the base relation by expanding the tuple with the necessary

nulls.
Selection

A tuple in a selection corresponds directly to a tuple in the base
relation; similarly the locking selector can be passed back directly;
however there is extra information about the tuple provided by the
definition of the selection; any tuple referred to as being in the
selection must satisfy the selection predicage. This is dealt with by
intersecting this predicate with the locking predicate to be passed back,
ensuring that only tuples which pass the selection predicate will be
accessed. Thus when we access a selection, the locking predicate passed
back is the conjunction of the one handed down and the selection
predicate; then requests for insertions and deletions are simply passed

on to the base relation.
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Computed column

It is very important to be able to update computed columns in relations,
since otherwise we cannot use the operation to implement such useful
things as change of scale or units. However there will clearly be some

kinds of arithmetic and other operations that are not invertible.

When we pass the tuple back to the base relation, we remove the computed
column. Hence ‘ to capture the information in that column, we would like
to ensure that the other values are sufficiently precise that it can be
recomputed from them. We can try to improve any imprecise values in the
tuple using the precise values in it, and the definition of the computed
column, and also any dinformation in the locking predicate, which in

general we will not have been able to pass back perfectly.

It can be seen that the problem of translating the locking predicate onto
the base relation is a slight generalisation of that of translating a
tuple from the derived relation to the base. A predicate can hold all
the information in a tuple, as described in the section about predicates.
When we are trying to translate the locking predicate into a predicate
about the base relation, any terms that refer to columns present in.the
base relation can be translated directly; however for terms referring to
the computed column we must try to invert its definition, just as when
mapping tuples. For example, if the computed column is defined as (7.0
times column three) and the locking predicate is (computed col = 42) then
we ought to translate this into a locking predicate on the base relation

saying (column 3 = 6.0).
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The least we can reasonably do is to make such deductions as

if (unknown)*7 = 42 then (unknown) = 6

that is, we can reasonably expect to invert arithmetic operations which
have inverses when all the operands except one are precise. However we
cannot really deduce much from knowing that the product of two unknowns

is 42,

When we access a computed column relation the locking predicate will be
translated as best we can, using the definition of the computed column.
It will not matter if the translation is not perfect; this will simply
mean that (a) we lock slightly too much of the database and (b) we must
refer to the locking selector again when we come to translate tuples.
When translating update requests, we must attempt to ensure that the
computed column can be reconstructed from the other columns, using its
definition and the locking predicate. This means trying to £fill in any
imprecise values present by inverting the expression defining the

computed column.

What are the implications if we caunot map back all the information
present? For insertion, it means that we are losing information, and the
update will not succeed completely. However, for deletion, it 1is more
serious; the result would be that too much information would be deleted.
While in a sense this is only ‘losing some information’ too, we do not
want - to lose information that we already had stored in the database. We
would regard this as an error.. Consequently, the system must adopt a

safe approach to deletion, and this is described below.
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Group—by

There seems to be no justification for trying to update this kind of

aggregate relation, and so it is treated as read-only in my system.
Join

A tuple appearing in a Join corresponds in meaning to two tuples, one in
each base relation. Additional information provided by the definition of
the Join is that the joining columns of the tuples are equal. The
locking predicate can be represented precisely by two predicates on the

base relations.

Thus when a Join relation is opened for access, the locking predicate
will be split into two predicates on the base relations. Then when any
tuple is passed down, it will be similarly split, and the precision
improved as far as possible by using the definition of the Join and the
locking selector. For insertion requests, the two halves will be
inserted into the base relations. For deletion requests, there is a
choice of deleting from the left, from the right, or both. Given the
semantics of the Join operation as described earlier, the right-hand side
represents a function which for the purpose of this operation is fixed,
and the left-hand side represents the entities of interest; hence the
deletion is performed on the left. It would of course be easy enough to

provide a switch to allow the user to over-ride this.
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General methods to improve insertion and deletion

As has been explained before, if a tuple to be inserted into a Join is
imprecise in the joining column(s), this gives rise to two imprecise
entries A and B which refer to the same real-world value. This
information cannot be represented explicitly, because we have no way of
flagging two values to say that they are the same; if one of the entries
were to be precise, we could use all the information by setting the other
to the same value. If both are unknown we can do mnothing. Thus our
ability to use the information available is limited by the imprecision in
the tuple. Furthermore since the source of the above extra information
A=B 1is from the definition of Join itself, it follows that if one value
is unknown then both will be, and so we can do nothing. However it may
be that the database can supply the value of one of the unknowns. If we
can retrieve from the database the value of one of A and B, we can set
the other to the same value, and thus improve the completeness of the

update operation.

What the above describes, in a rather roundabout way, 1s the operation
described much earlier for updating a Join, whereby we ’invert’ the
function represented by the Join, to work out what the missing value in
the Join column is. Now that we have settled on a function—applying
meaning for Join, this is even clearer. If the value in the Join column
is imprecise, we attempt to discover its value by retrieval from the

right-hand relation, in order to use this in the left-hand relation.

Going back to general terminology, the strategy is as follows: if in an
insertion operation on a derived relation (of any kind) there is
information available which cannot be used because some value has been
passed down as missing, attempt to retrieve from an underlying relation

the value of that attribute.
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This is implemented as follows. When a tuple is dinserted into any

relation, a result tuple is passed back, whose interpretation is

‘this stronger statement must in fact be made’ .

Formally speaking the definition of this is that the tuple passed back is
the GLB of the tuples above the one passed down that can actually be
stored. The restriction on what can actually be stored may be any kind
of constraint, such as the key of the relation, or the fact that it is
defined in a particular way. Hence, for example, if we pass a tuple down
with attribute A undefined, if the underlying relation into which we are
inserting 1s the result of a selection such that A=7, the tuple fed back
will have A set to 7; similarly if a tuple already exists with the same

key, and A=7 in that tuple, then A=7 in the tuple fed back.

These fed-back tuples can be used to dimprove update operations as
described above. The routine to insert into a Join, for example, inserts
first into the right-hand relation, and then uses the fed-back tuple to
make possible improvements before inserting into the left-hand relation.
If the fed-back tuple from the left were also to yield extra information,

then the above could be repeated, although this is unlikely.

Similarly for the computed-column relation, if the operation cannot be
inverted because some values are imprecise, the tuple is inserted, and
the fed-back tuple examined to see if the values have been made

available. If so, the improved tuple can be inserted.
Turning to deletion, again it may be impossible to wuse all the

information present, but in this case, as explained earlier, the result

would be the deletion of too many tuples.
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For example, if we were given a tuple to delete from a Join, with the
Join column unknown, we could not simply split this tuple and pass it on
to be deleted from the left—hand relation, because this would mean the
deletion of tuples with any value in that column, not just those that
participate in the Join., Similarly we could not describe the set of
tuples to be deleted below a computed—column operation, as it might be
all those tuples satisfying some complicated arithmetic condition. Thus
the problem again arises from our inability to translate the predicate

through the relational operation.

In this case the solution adopted is to scan the derived relation for the
tuples to be deleted, and then delete them one by one. Once a tuple to
be deleted has been found, the values in it are known exactly and so we
can request its deletion. Thus the general strategy is as follows: 1if,
in a request for deletion from a derived relation, there 1is information
about the tuples to be deleted which cannot be passed down, then rather
than pass down one request for the appropriate deletion, we must instead
scan the derived relation, indexing as efficiently as possible to find
tuples satisfying the deletion condition, and request their deletion one

by one.

It can be seen from the above discussion that.the crux of the matter is
understanding the relational operations as transformers of predicates.
The possible tuples correspond to a subset of the predicates. The choice
of the set of predicates to be used will determine the efficiency and
power of the system. Allowing completely general logic formulas as
predicates might produce a very powerful system, perhaps complete in ways
which this one is not, but would be more expensive and rather less like a

traditional database system.
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5.7 Constraint enforcement

The system provides for specifying constraints on the database by
attaching a predicate to any relation, specifying that all the tuples of
that relation must satisfy the predicate. This is fairly general, since
the relation can be a derived relation, and thus involve joining of
several relations, and computation of arithmetic expressions by computed-
column. No more generality would be achieved by allowing several
constraints on a relation, since in their place we can attach the single

predicate which is the their conjunction.

This mechanism does not cover every kind of constraint we might want; it
is = necessary to make at least some attempt to model functional
dependencies, and in this system that is done by noting which columns of
each relation constitute the key. We might well also want some

implementation of referential constraints [Datl].

The system deals with the predicate constraints attached to relations in
the way described in section 4.3 on the meaning of constraints. We wish
to regard the constraints as being evaluated in three-valued logic. If a
constraint is found to be true, no action is required; if false, the
database state is invalid; if ‘maybe’, the database state needs to be
refined so as to make the constraint true. The predicates which are
acting as constraints are expressed in two-valued logic, as described
earlier, so this procedure is equivalent to: 1f a constraint is true, no
action is required; if false, then the database should be altered to the
least state above its current state that makes the constraint true, or if
there is no such state, then the database is invalid. (The word ‘above’

refers to the approximation ordering in the lattice.)
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At the end of each transaction, the constraints are checked. For each
relation, the attached constraint is evaluated on each tuple. If a tuple
is found which does not satisfy the predicate, then it is replaced by the
least tuple above it which does. If no such tuple exists, the
transaction is in error and is rolled back. When a tuple 1s replaced,
this is done by inserting the improved version into the relation, which
alters the database state to a state above the one it was in. Since the
relation may have been a computed relation, this can affect many of the
base relations, as the change is propagated back to them. Thus this
mechanism can produce effects on the database as a whole, not just on the
new information introduced by the transaction. Because the change only
takes the database state to a more precise state, however, the change
cannot affect the satisfaction of any previously checked constraint;
there is no danger that the enforcement of a later constraint will cause
the failure of one checked before it. An example of how this mechanism

works is given in the chapter on the example schema.

The actual job of checking every tuple of every relation on which a
constraint is defined is done, in my system, the hard way; that is by
computing the tuples of every such relation and checking them. This is a
very expensive way of carrying out the procedure, but fortunately it is
clear that there are ways of implementing it that will be more efficient.
There has not been time to program these, and so my system produces the
same effect in a more expensive way. The approach to this problem which
seems most likely to help is that of differential maintenance of views.
Koenig and Paige [KoPa] point out that this can be wused for efficient
maintenance of view relations, and checking of constraints on them.
After making any change to a base relation, the effect on any views
defined on it can be computed, and a list of alterations to the view
relation produced. This can be used in two ways. Firstly, 4if it is

desired to keep a stored copy of the derived relation then this can be
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kept in step, avoiding the need to re~evaluate it every time reference is
made to 1t. In a situation where the derived relation is referred to
more often than it is changed, and it is not very cheap to compute, this
represents a big saving. Secondly, even if a stored copy of the derived
relation is not kept, the changes to be made to it can be inspected, and
any insertions checked to see that the new tuples satisfy the constraint
on the relation. Any realistic system to support views would have to
include at least some facilities for maintaining derived relations

differentially.

Another approach to short-cutting the checking of constraints is that of
Hammer and Sarin [HaSa], which involves looking at the definition of each
update transaction, and observing which constraints can be affected by
it, and conditions under which it is safe. By this means, a system will
probably be able to avoid checking most of the constraints for any given
update transaction. Thus there are some grounds for hope that the
enforcement of constraints on a database is not a hopelessly impractical

scheme.
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CHAPTER 6

THE EXAMPLE SCHEMA

This section covers in detail the design of the example schema used
earlier. This should demonstrate the use of some of the facilities

discussed in the dissertation.

The entities of interest are samples, sites, experts on those sites, and
items of equipment. Each instance of these has a unique key to identify
it, which has been assigned to it in some way. All the relations are

closed-world except EQUIPMENT.
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The samples are described by the SAMPLE relation:

Sample Site Class Age Partof
S1 T44 D3 59 to 63 52

S2 T44 D4 59 to 63 ?

S3 T41 D4 or D6 60 to 67 ?

S4 T41 D6 65 to 67 ?

55 T4l ? 58 to 60 ?

S6 T54 D3 60 to 63 ?

S7 T54 D9 ? ?

S8 T54 D3 or.D6 59 to .60 ?

In this relation, Sample is the key; the Site column gives the site at
which the sample was found; the Class column gives a classification of
the sample, which may be imprecise; the Age column gives the age as a
real interval (in millions of years); and the Part—of column gives the
sample number of another sample of which this was a part, if any. 1If we
had an ‘inapplicable’ null in this system, it would be appropriate to use
it here for samples that are not part of any other sample, but since this

system does not provide ‘inapplicable’ I have used ’unknown’.

We can define selections from this relation:

SEL: Select SAMPLE (Age in [60.0, 70.0] )

Sample Site Class Age Partof
S3 T41 D4 or D6 60 to 67 ?
S4 T41 D6 65 to 67 ?
56 T54 D3 60 to 63 ?
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or on a ‘maybe’ condition:

SEL2: Select SAMPLE Maybe (Age = 66.0)
Sample Site Class Age Partof
S3 T4l D4 or D6 60 to 67 ?
84 T41 D6 65 to 67 ?
s7 T54 ? ?

If we add a sample to the former selection with a

D9

null entry for the age,

it will automatically be filled in as [60 to 70] but no similar deduction

can be made for the second selection, since we cannot limit the

possible

range of the age merely by knowing that it could be equal to 66.

The sites are described by the SITE relation:

Site Name Country | Latitude Longitude
T44 Delmar UsA 34 to 35 268 to 269
T54 Elsworth England | 52.3 0

T41 Branimir Bulgaria| 42.5 25,1

Here the Site column is the key, and the

The

self-explanatory.

imprecise.

to give all the above information for each sample.

latitude

«and longitudes are

We can of course Join this relation onto the SAMPLE
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The Class relation gives further information about each sample class:

Class Group Description
D3 A Conglomerate
D4 B Nodule

D6 B Eclogite

D9 C Shale

and we can again Join this onto the SAMPLE relation; this time, however,
entries for samples which are imprecisely classified will cause the g.1l.b
of the relevant information to be formed.

Join SAMPLE CLASS

Sample| Site} Class Age partof | Group | Descr

S1 T44 | D3 59 to 63 | S2 A Conglomerate
S2 T44 | D& 59 to 63 | ? B Nodule

S3 T41 | D4 oxr D6 | 60 to 67 | ? B ?

S4 T4l | D6 65 to 67 ? B Eclogite

85 T41 | 2 58 to 60 | ? ? ?

S6 T54 | D3 60 to 63 | ? A Conglomerate
s7 T54 | D9 ? ? C Shale

S8 T54 | D3 or D6 {59 to 60 |7 - | A or Bi?

Since the description is in the domain of strings, 1f there are two
different descriptions the result will simply be "?'"; however the Group
attribute is allowed to be imprecise, and so a list of possible groups

will be formed, as for sample S8.
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We can form a condensed version of the above Join by discarding some

columns that are not of interest:

Sample Site Age Group
Sl T44 59 to 63 A
§2 T44 59 to 63 B
S3 T41 60 to 67 B
S4 T41 65 to 67 B
S5 T41 58 to 60 ?
S6 T54 60 to 63 A
S7 T54 ? C
S8 T54 59 to 60 A or B

If we were to insert a new tuple into this:

59 T44 63 to 65 B

the result would be to imsert a tuple filled out with nulls dinto the

Join:

Sample | Site | Class Age partof | Group | Descr
S9 T44 ? 63 to 65 ? B ?

and this would cause the set of possible Classes to be inferred from the

Class relation; thus the tuple added to the SAMPLE relation would be:
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Sample Site Class Age partof
S9 T44 D4 or D6 63 to 65 ?
Enforcement of a constraint
Suppose we wish to place a constraint on the SAMPLE relation, to the

effect that where a sample is part of another sample, it must have the
same age and site. This can be specified as a constraint on the tuples
of the Join of the SAMPLE relation with itself:

Sample Site.Class Age P-of | Site|Class|Age P-of

Sl T44 | D3 59 to 63| S2 T44 | D4 59 to 63]?

S2 T44 | D4 59 to 63| ? ? ? ? ?

S3 T41 | D4 or D6{60 to 67| ? ? ? ? ?

S4 ? D6 ? ? ? ? ? ?

The constraint is that col 6 = col 2 and col 8 = col 4. The basic

predicates in this system do not give operations comparing columns, so
this is expressed by producing a computed column whose value 1s this
condition, and constraining it to be TRUE. We produce

Arith: (#6 = #2) & (#8 = #4)

Sample | Site|Class Age P-of |Site{Class|Age P-of | Constr

S1 T44 |D3 59 to 63| S2 T44 |D4 59 to 637 ?

S2 T44 | D4 59 to 63} ? ? ? ? ? ?

S3 T4l |D4 or D6|60 to 67| ? ? ? ? ? ?

S4 ? D6 ? ? ? ? ? ? ?
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and then constrain the above relation ARITH with the predicate (#10 = T).
If a tuple is inserted into SAMPLE marked as being part of S4, then the
corresponding tuple in the above computed relation will have the
constraint column 10 equal to ‘maybe’, because sample S4 has unknown site

and age.

\Sll T41 | ? 65 to 67| S4 ? D6 ? ? maybe

The action of the constraint enforcer upon detecting this will be to
insert a new tuple into the computed relation, obtained from the above by
strengthening it with the constraint (#10 = T). This is Jjust the same
tuple with column 10 set to True. Translating this insertion through the
cohputed—column operation will cause the following tuple to be inserted

into the Join:

[Sll T4l | ? 65 to 67| S4 T41| D6 65 to 67 7

This was obtained by inverting the computed-column expression and wusing
the existing wvalues in the tuple. Finally the translation of the above
by the Join operation will cause the following tuples to be inserted into

the SAMPLE relation:

Sample | Site | Class | Age | Partof
S4 T41 D6 65 to 67 ?
S1i T41 ? 65 to 67 S4

so that the Site and Age of sample S4 are now available; they have been
deduced from the constraint and the new data. Note that the tuple

affected was not the new input, but an existing tuple in the database.
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An open-world relation

The EQUIPMENT relation, as described in

relations, is as follows:

the section

Inv-no Site Descr Value
1137 T41 Auger 300
1139 T41 Auger 320
14290 T41 Concentrator 50
13054 T44 Typewriter 50

about

open—-world

Somebody concerned only with which facilities are available at each site

might use the projection:

Site Descr

T41 Auger

T41 Concentrator
T44 Typewriter

Inserting a new tuple into this:

56

Landrover

would cause the base relation to be modified thus:
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Inv=-no Site Value
I137 T4l 300
I139 T41 320
14290 T41 Concentrator 50
13054 T44 Typewriter 50

? Landrover ?

That is, a new tuple with a null key
‘there are

if we inserted “landrover’ into a view formed by selecting the

T56

one or more landrovers at T567.

appears. This

meaning

The same effect would occur

T56 and projecting to get only the description.

A many-many relation

items at

The EXPERT relation describes a many-many association between experts and

sites., It is as follows:

Expert Site
Mike T44
Mike T56
Ken T56
John T41
Hiyan T44

s

L)

If we Join SAMPLE to this, and project onto Sample and Expert, we get the

following
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Sample Expert
Sl Mike
Sl Hiyan
S2 Mike
S2 Hiyan
S3 John

If we add a new tuple to this:
$9 Mike J

then the most the system can do is deduce that the site is T44 or T56,

and so the new sample S9 is added to SAMPLE with ‘T44 or T56° for the

site. The effect on the above view is:

Sample Expert
Sl Mike
Sl Hiyan
S2 Mike
S2 Hiyan
S3  John
S9 ?

In other words, the desired tuple does mnot appear, because the

information cannot be stored in the given base relations.
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CHAPTER 7

CONCLUSIONS

Early applications of databases often tended to be little more than flat
files., The commonest examples used for database texts were employee
record files and ‘supplier-part—quantity’ files. The main demands in
cases like these were for systems that could access the data very
rapidly, and maintain integrity of files across system crashes, even with

concurrent use.

The requirement for application programs to remain usable after changes
to the layout of the database led to the development of multi-layer
models for databases, such as 1in the ANSI/SPARC report. This also
provided the possibility for different application programs to see the
database in different ways. At first, this ‘subschema’ type of facility

consisted only of restricting each application program to the subset of
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the database that it required. However there have been proposals to
allow subschemas, or ‘external schemas’, that are structured very
differently from one another; there have also been some systems, (not

usually commercial systems) that implement this.

Applications are now envisaged for databases in which this kind of
multi~level facility will be very important. To take one example,
consider a database used in designing a VLSI chip. At the bottom level,
the chip might be described in terms of rectangles of silicon in layers,
giving real-number coordinates of the corners of rectangles. This
information will be necessary to many programs, such as one thét drives a
machine to make the chip, or one that checks for interference between
blocks. At the next level up, the description will be in terms of
transistors, perhaps, and then gates. Above that, entities like
‘register’ or ‘adder’ might appear, and then even ‘processor’. Different

designers will want to have access to these different levels.

In the past it has been necessary to use different systems for storing,
retrieving and manipulating entities on these different levels. It is
far better, however, to have them integrated in one system, which can
perform the mapping of information from one level to another when
necessary. The different users can see different views of the same data,
structured and described quite differently. The system would ideally

allow users to perform any operation on their view of the database.

In order to allow this it is necessary for operations on views to be
translated into operations on the conceptual schema level. We have
pointed out three ways in which it may be impossible for an operation on

a view to be translated. These are:
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(a) The data model in use may not allow the required information to
be represented.

(b) The base schema in use may not be able to represent the
information.

(¢) The translation algorithm may not be able to find the necessary

operation on the base schema.

None of these problems can be easily solved. The second 1lies idin the
hands of the schema designer, and there has been much research into how
to design schemas so that all the necessary facts can be represented.
However it is not always possible to anticipate from the beginning how a
database will be used. To deal with the third problem mentioned above,
some methods are discussed in this dissertation to enable the translation

algorithm to find appropriate actions whenever possible.

The first problem is the main one addressed in this dissertation. The
only complete solution would be a system that could store “any
statement’, which would at least mean any statement of first-order
predicate calculus. This kind of system can be useful, but for many
applications is not practical because of the power required to manipulate
such a database. By considering operations on views defined by
relational algebra expressioms, it was shown that many of them naturally
give rise to certain kinds of imprecise information. Hence a data model
that catered for imprecise information would go some way towards solving
problem (a). Such a system, having a level of power intermediate between
the full predicate calculus and the flat relational model, would enable

the translation of operations on many views.
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It has been shown how the terminology of the theory of 1lattices can
usefully be applied to describing incomplete information. Using this, we
have proposed a system for handling incomplete information which will
extend the relational model so that operations on derived relations are
easier to translate. This system works by permitting the user to employ
an assortment of ‘blurring’ operators which give, for any domain of
‘precise’ values, a domain of imprecise descriptions of these values
which can be stored. These blurring operations effectively give
' predicates on the value of an imprecisely known attribute, and so the
classes of predicates that can be stored depends on the choice of
operations; these are chosen to correspond to those that arise naturally

for common types of view definition in relational algebra.

Various other proposals for dealing with imprecise or missing information
were also reviewed, most of which can also be described in terms of the

theory of lattices.

The implications of modelling partial information have been discussed at
some length; we have show how the relational operations can be extended
to deal with partial information, and how the semantics of constraints
and of relations themselves must be carefully considered with respect to
partial information. It should be clear from the examples given, and
from other papers on the subject, that the modelling of partial

information in databases is very useful in itself.

Two particular kinds of blurring operation were described, though these
are by no means the only ones that can be handled by the techniques

discussed above. These are
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* forming intervals over a base domain with an inherent
sort-order, e.g. allowing real numbers with tolerances
* forming the P-domain of a base domain, e.g. the set of possible

classifications of an object.

Finally, the implementation of an experimental system was described.
This system was used largely to explore the consequences of various
possible ways of handling views and partial information. It has not been
possible to test it on any large collection of data, because of the
limitations of the storage system it uses. Nonetheless, some of the
algorithms used give hope that the theoretical proposals of the rest of

the dissertation can be implemented at not too great cost.
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