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Abstract. A special final coalgebra theorem, in the style of Aczel’s [2],
is proved within standard Zermelo-Fraenkel set theory. Aczel’s Anti-
Foundation Axiom is replaced by a variant definition of function that
admits non-well-founded constructions. Variant ordered pairs and tuples,
of possibly infinite length, are special cases of variant functions. Ana-
logues of Aczel’s Solution and Substitution Lemmas are proved in the
style of Rutten and Turi [12]. The approach is less general than Aczel’s,
but the treatment of non-well-founded objects is simple and concrete.
The final coalgebra of a functor is its greatest fixedpoint. The theory is
intended for machine implementation and a simple case of it is already
implemented using the theorem prover Isabelle [10].

? Thomas Forster alerted me to Quine’s work. Peter Aczel and Andrew Pitts offered
considerable advice and help. Daniele Turi gave advice by electronic mail. I have
used Paul Taylor’s macros for commuting diagrams. K. Mukai commented on the
text. Research funded by the ESPRIT Basic Research Action 6453 ‘Types.’
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1 Introduction

A recurring issue in theoretical computer science is the treatment of infinite
computations. One important approach is based upon the final coalgebra. This
category-theoretic notion relates to the methods of bisimulation and coinduction,
which are heavily used in concurrency theory [6], functional programming [1] and
operational semantics [7].

Aczel and Mendler [3] and also Barr [4] have proved that final coalgebras
exist in set theory for large classes of naturally occurring functors. This might
be supposed to satisfy most people’s requirements. But Aczel [2] has argued the
case for a non-standard set theory in which infinite computations, and other
non-well-founded phenomena, can be modelled directly. He proposes to replace
set theory’s Foundation Axiom (FA) by an Anti-Foundation Axiom (AFA) that
guarantees the existence of solutions to x = {x} and more generally of all systems
of equations of the form xi = {xi, xj , . . .}. His general final coalgebra theorem
serves as a model construction to justify AFA.

Under AFA, a suitable functor F does not merely have a final coalgebra. That
final coalgebra equals F ’s greatest fixedpoint. This is the natural dual of the
theorem that a functor’s initial algebra is its least fixedpoint. These fixedpoints
are exact, not up to isomorphism.

The elements of the final coalgebra are easily visualised. For instance, the
functor A×− (the functor F such that F (Z) = A×Z on objects) yields the set
of streams over A. The final coalgebra is also the greatest solution of S = A×S.
If s ∈ S then

s = 〈a1, s1〉, s1 = 〈a2, s2〉, s2 = 〈a3, s3〉, . . . ;

s is the infinite stream 〈a1, 〈a2, 〈a3, . . .〉〉〉.
In standard set theory, the Foundation Axiom (FA) outlaws infinite descents

under the membership relation. Under the standard definition of ordered pair
we have b ∈ {a, b} ∈ 〈a, b〉. Infinitely nested pairs such as s above would cre-
ate infinite ∈-descents, and therefore do not exist. In other words, the greatest
fixedpoint of A×− is the empty set. This is not the final coalgebra (which does
exist).

The approach proposed in this paper is not to change the axiom system, but
instead to adopt new definitions of ordered pairs, functions, and derived concepts
such as Cartesian products. Under the new definitions, the stream functor’s final
coalgebra is indeed its (exact) greatest fixedpoint and each stream is an infinite
nest of pairs. Recursion equations are solved up to equality.

My approach handles non-well-founded tuples, and more generally ordered
structures. But it does not model true non-well-founded sets, such as solutions
of x = {x}. It does not work for the powerset functor, even with cardinality
restrictions. I do not know whether it can express nondeterminism; one way of
handling sets of outcomes may be to well-order them using the Axiom of Choice.

Aczel’s book [2] puts the case for non-well-founded sets with clarity, simplic-
ity and eloquence. Especially attractive is its presentation of four anti-foundation
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axioms in a uniform framework. Each axiom creates new sets and gives criteria
for set equality. The axioms turn out to be pairwise incomparable; the various
logicians who devised these axioms conceived four distinct notions of non-well-
founded set. Is this really a fundamental notion?

I have devoted considerable effort to machine-assisted proof in ZF set theory,
using the theorem prover Isabelle [8, 9]. It would be easy to separate FA from
the other ZF axioms and move most of the formalisation into the resulting
theory of ZF−. Isabelle can support parallel developments in ZF and ZF− +
AFA. Mechanisation of AFA requires a formalisation of the axiom and its main
consequences, such as the Solution Lemma, in a form suitable for working with
particular final coalgebras. A partial implementation of my approach to final
coalgebras already exists [10].

Outline. My strategy is to construct a final coalgebra to replace AFA, and then
to re-play Rutten and Turi’s categorical proofs [12]. Section 2 presents basic
motivation — Quine’s ordered pairs and their generalisation to functions —
and proves some lemmas about the cumulative hierarchy, Vα. Section 3 defines
the functor QI and its greatest fixedpoint U I and proves that U I is a final QI -
coalgebra. Section 4 proves the Solution and Substitution Lemmas for set equa-
tions and the special final coalgebra theorem. Section 5 discusses functors that
are (or are not!) uniform on maps. Section 6 presents conclusions.

2 An Alternative Definition of Pairs and Functions

Let us begin with informal motivation based on the work of Quine. The following
section will make formal definitions.

2.1 Quine’s Ordered Pairs

In standard ZF set theory, the ordered pair 〈a, b〉 is defined to be {{a}, {a, b}}.
The rank of 〈a, b〉 is therefore two levels above those of a and b; there are no
solutions to b = 〈a, b〉. Quine [11] has proposed a definition of ordered pair that
need not entail an increase of rank. Quine’s definition is complicated because
(among other things) it avoids using standard ordered pairs. I regard standard
pairs as indispensable, and they let us define Quine-like ordered pairs easily.

Let 〈a, b〉 denote the standard ordered pair of a and b. Let tuples of any
length consist of ordered pairs nested to the right; thus 〈a1, . . . , an〉 abbreviates
〈a1, . . . , 〈an−1, an〉〉 for n > 2. Let A×B denote the standard Cartesian product
{〈a, b〉 | a ∈ A ∧ b ∈ B}.

Define the variant ordered pair, 〈a; b〉 by

〈a; b〉 ≡ ({0} × a) ∪ ({1} × b). (1)

Note that 〈a; b〉 is just a + b, the disjoint sum of a and b (in set theory, every-
thing is a set). The new pairing operator is obviously injective, which is a key
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requirement. Also, it admits non-well-founded constructions: we have 〈0; 0〉 = 0
for a start.2

The set equation 〈A; z〉 = z has a unique solution z, consisting of every
(standard!) tuple of the form 〈1, . . . , 1, 0, x〉 for x ∈ A. The infinite stream

〈A0;A1; . . . ;An; . . .〉

is the set of all standard tuples of the form

〈1, . . . , 1︸ ︷︷ ︸
n

, 0, x〉

for n < ω and x ∈ An. Now 〈a; b〉 is continuous in a and b, in the sense that it
preserves arbitrary unions; thus fixedpoint methods can solve recursion equations
involving variant tupling. Later we shall see that such equations possess unique
fixedpoints.

Variant pairs can be generalised to a variant notion of function:

λ̃x∈Abx ≡
⋃
x∈A
{x} × bx (2)

Note that λ̃x∈Abx is just Σx∈Abx, the disjoint sum of a family of sets. Also
note that 〈b0; b1〉 is the special case λ̃i∈2bi, since 2 = {0, 1}. Replacing 2 by
larger ordinals such as ω gives us a means of representing infinite sequences.
More generally, non-standard functions can represent infinite collections that
have non-well-founded elements.

Merely replacing 〈x, bx〉 by 〈x; bx〉 in the usual definition of function, ob-
taining {〈x; bx〉 | x ∈ A}, would not admit non-well-founded constructions. The
rank of such a set exceeds the rank of every bx. For example, if b = {〈0; b〉} then
{1} × b ∈ b, violating FA; thus b = {〈0; b〉} has no solution.

Application of variant functions is expressed using the image operator “. It
is easy to check that (λ̃x∈Abx) “ {a} = ba if a ∈ A. Also if R is a relation with
domain A, then R = λ̃x∈AR “ {x}; every standard relation is a variant function.
The set

{f ⊆ A×
⋃
B | ∀x∈A f “ {x} ∈ B}

consists of all variant functions from A to B and will serve as our definition of
variant function space, A →̃B.

Since λ̃x∈Abx is not the function’s graph, it does not determine the function’s
domain. For instance, λ̃x∈A0 = A × 0 = 0. Clearly λ̃x∈A0 = λ̃x∈B0 for all A
and B. If 0 ∈ B then A →̃ B will contain both total and partial functions:
applying a variant function to an argument outside its domain yields 0.

2 As usual in set theory, the number zero is the empty set.
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2.2 Basic Definitions and Properties

Once we have defined the variant pairs and functions, we can substitute them in
the standard definitions of Cartesian product, disjoint sum and function space.
The resulting variant operators are decorated by a tilde: ×̃, +̃, →̃, etc. Having
both standard and variant operators is the simplest way of developing the theory.
The standard operators relate the new concepts to standard set theory and
they remain useful for defining well-founded constructions. But the duplication
of operators may seem inelegant, and it certainly requires extra care to avoid
confusing them.

Definition 1. The variant ordered pair 〈a; b〉 is defined by

〈a; b〉 ≡ ({0} × a) ∪ ({1} × b).

If {bx}x∈A is an A-indexed family of sets then the variant function λ̃x∈Abx is
defined by

λ̃x∈Abx ≡
⋃
x∈A
{x} × bx

The variant Cartesian product, disjoint sum and partial function space between
two sets A and B are defined by

A ×̃B ≡ {〈x; y〉 | x ∈ A ∧ y ∈ B}
A +̃B ≡ ({0} ×̃A) ∪ ({1} ×̃B)

A →̃B ≡ {f ⊆ A×
⋃
B | ∀x∈A f “ {x} ∈ B}

The operators ×̃ and →̃ can be generalised to a family of sets as usual.

Definition 2. If {Bx}x∈A is an A-indexed family of sets then their variant sum
and product are defined by∑̃

x∈A
Bx ≡ {〈x; y〉 | x ∈ A ∧ y ∈ Bx}

∏̃
x∈A

Bx ≡ {f ⊆ A× (
⋃
x∈A

⋃
Bx) | ∀x∈A f “ {x} ∈ Bx}

A first attempt at exploiting these definitions is to fix an index set I and
solve the equation U = I →̃ U . There is at least one solution, namely U = {0},
since λ̃i∈I 0 = 0. But we cannot build up variant tuples starting from 0 as we can
construct the distinct sets {0}, {0, {0}}, . . . . A variant tuple whose components
are all the empty set is itself the empty set.

Since I →̃ 0 = 0 if I 6= 0, one possible solution to U = I →̃ U is U = 0. Also
I →̃ {0} = {0}. As it happens, U = {0} is the greatest solution.

Proposition 3. If U = I →̃ U then U = 0 or U = {0}.
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Proof. Suppose not, for contradiction. Then U contains a non-empty element;
there exist y0 and x0 with y0 ∈ x0 ∈ U . By the definition of →̃ it follows that
y0 = 〈i, y1〉 where i ∈ I and y1 ∈ x1 ∈ U for some x1. Repeating this argument
yields the infinite ∈-descent y0 = 〈i, y1〉, y1 = 〈i, y2〉, y2 = 〈i, y3〉, . . ., contra-
dicting FA. ut

If tuples are to get built up, we must start with some atoms. To keep the
atoms distinct from the variant tuples, each atom should contain some element
that is not a (standard) pair. One atom seems sufficient. We may use 1 since by
definition 1 = {0} and the empty set is not a pair. Our final coalgebra theorem
will therefore be based upon the greatest solution of

U = {1} ∪ (I →̃ U).

Some background lemmas are needed first.

2.3 Basic Properties of the Cumulative Hierarchy

The following results will help prove closure and uniqueness properties below.
Let α, β range over ordinals and λ, µ range over limit ordinals. The cumula-

tive hierarchy of sets is traditionally defined by cases:

V0 = 0
Vα+1 = P(Vα)

Vµ =
⋃
α<µ

Vα

More convenient is the equivalent definition

Vα ≡
⋃
β<α

P(Vβ). (3)

Kunen [5, pp. 95–7] discusses the cumulative hierarchy, using the notation
R(α) instead of Vα. Note some elementary consequences of these definitions:

Lemma 4. If α is an ordinal and µ is a limit ordinal then

α ⊆ Vα
Vα × Vα ⊆ Vα+2

Vµ × Vµ ⊆ Vµ
Vµ + Vµ ⊆ Vµ

It turns out that Vµ is closed under the formation of variant tuples and
functions.

Lemma 5. If A ⊆ Vµ and bx ⊆ Vµ for all x ∈ A then λ̃x∈Abx ⊆ Vµ.
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Proof. This follows by the definition of λ̃, monotonicity and the facts noted
above:

λ̃x∈Abx =
⋃
x∈A
{x} × bx

⊆
⋃
x∈Vµ
{x} × Vµ

⊆ Vµ × Vµ
⊆ Vµ

ut

Thus Vµ+1 has closure properties for variant products and sums analogous
to those of Vµ for standard products and sums. It is even closed under variant
function space.

Lemma 6. Let µ be a limit ordinal.

(a) If A ⊆ Vµ then A →̃ Vµ+1 ⊆ Vµ+1.
(b) Vµ+1 ×̃ Vµ+1 ⊆ Vµ+1.
(c) Vµ+1 +̃ Vµ+1 ⊆ Vµ+1.

Proof. Obvious by the definitions and the previous lemma. ut

These results will allow application of the Knaster-Tarski fixedpoint theorem
to construct a final coalgebra. The next group of results will be used in the
uniqueness proof.

Lemma 7. If A ∩ Vα ⊆ B for every ordinal α then A ⊆ B.

Proof. By the Foundation Axiom, V =
⋃
α Vα, where V is the universal class.

Thus A =
⋃
α(A ∩ Vα). If A ∩ Vα ⊆ B for all α then

⋃
α(A ∩ Vα) ⊆ B and the

result follows.

Using the lemma above requires some facts concerning intersection with Vα.

Definition 8. A set A is transitive if A ⊆ P(A).

Lemma 9. Vα is transitive for every ordinal α.

Proof. See Kunen [5, p. 95]. ut

Now we can go down the cumulative hierarchy as well as up.

Lemma 10. If 〈a, b〉 ∈ Vα+1 then a ∈ Vα and b ∈ Vα.

Proof. Suppose 〈a, b〉 ∈ Vα+1; this is equivalent to {{a}, {a, b}} ∈ P(Vα) and to
{{a}, {a, b}} ⊆ Vα. Thus {a, b} ∈ Vα and since Vα is transitive {a, b} ⊆ Vα. ut
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Lemma 11. If {bx}x∈A is an A-indexed family of sets then

(a) (λ̃x∈Abx) ∩ Vα+1 ⊆ λ̃x∈A(bx ∩ Vα)
(b) (λ̃x∈Abx) ∩ Vα ⊆

⋃
β<α λ̃x∈A(bx ∩ Vβ)

Proof. For (a) we have, by the previous lemma,

(λ̃x∈Abx) ∩ Vα+1 = {〈x, y〉 | x ∈ A ∧ y ∈ bx} ∩ Vα+1

⊆ {〈x, y〉 | x ∈ A ∧ y ∈ bx ∧ y ∈ Vα}
= λ̃x∈A(bx ∩ Vα).

For (b) we have, by the definition of Vα and properties of unions,

(λ̃x∈Abx) ∩ Vα = (λ̃x∈Abx) ∩
⋃
β<α

P(Vβ)

=
⋃
β<α

(λ̃x∈Abx) ∩ Vβ+1

⊆
⋃
β<α

λ̃x∈A(bx ∩ Vβ).

The last step is by (a) above. ut

3 A Final Coalgebra

Rutten and Turi’s excellent survey [12] of final semantics includes a categorical
presentation of Aczel’s main results. Working in the superlarge category of classes
and maps between classes, they note that FA is equivalent to ‘V is an initial P-
algebra’ while AFA is equivalent to ‘V is a final P-coalgebra.’ Put in this way,
AFA certainly looks more attractive than the other anti-foundation axioms.

The present treatment of final semantics follows their development closely.
Instead of assuming that V is a final P-coalgebra, we shall define a functor QI ,
where I is an arbitrary index set, and construct a final QI -coalgebra, called U I .
The Solution and Substitution Lemmas and the Special Final Coalgebra Theo-
rem carry over directly.

I work not in the category of classes but in the usual category Set of sets,
which has standard functions as maps. While the former category allows certain
statements to be expressed succinctly, it also requires numerous technical lemmas
concerning set-based maps, etc. From the standpoint of mechanised proof, one
must also bear in mind that classes have no formal existence under the ZF
axioms, and class maps are two removes from existence.

3.1 The Functor Q and the Set U

Let I be an index set, which will remain fixed throughout the paper. A typical
choice for I would be some limit ordinal such as ω. Note that ω →̃ A contains
all ω-sequences over A; we shall find that Uω contains all ω-sequences over it-
self. Moreover, finite sequences can be represented by ω-sequences containing
infinitely many 0s, because 0 ∈ U I (see Lemma 31 below).
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Definition 12. The functor QI : Set→ Set is defined on objects by

QI(A) ≡ {1} ∪ (I →̃A)

and on maps as follows. If π : A→ B then QI(π) : QI(A)→ QI(B) satisfies

QI(π)(1) ≡ 1
QI(π)(λ̃i∈I ai) ≡ λ̃i∈I π(ai).

Reasons for this definition of QI were given after Prop. 3. It is easy to check
that the functor preserves the identity map and composition. The next step is
to define a set U I to be the greatest solution of U I = QI(U I) and prove that U I

is a final QI -coalgebra. Since U I = {1} ∪ (I →̃ U I) we may regard the elements
of U I as nested I-indexed tuples built up from the atom 1. If some application
requires a larger set of atoms, the modifications to the theory should be obvious.

To solve U I = QI(U I) we may apply the Knaster-Tarski fixedpoint theorem.
This gives an explicit definition.

Definition 13. Let µ be a limit ordinal such that I ⊆ Vµ. Then

U I ≡
⋃

Z⊆Vµ+1

Z ⊆ QI(Z).

Henceforth let us regard I as fixed and drop the superscripts. The next two
results indicate that U really is a fixedpoint of Q, in fact the greatest post-
fixedpoint. This justifies proof by coinduction on U . The second result also con-
firms that the choice of the ordinal µ above does not matter, provided I ⊆ Vµ.

Proposition 14. U = Q(U).

Proof. For the Knaster-Tarski theorem to apply,Qmust be a monotone operator
over the powerset of Vµ. Clearly Q is monotone and, by Lemma 6, Q(Vµ+1) ⊆
Vµ+1. ut

Proposition 15. If Z ⊆ Q(Z) then Z ⊆ U .

Proof. The result follows by the definition of U if we can establish Z ⊆ Vµ+1. By
Lemma 7 it suffices to prove ∀z∈Z z ∩ Vα ⊆ Vµ for all α. Proceed by transfinite
induction on the ordinal α.

Let z ∈ Z. Then z ∈ Q(Z) = {1} ∪ (I →̃ Z). The case z = 1 is trivial. So we
may assume z = λ̃i∈I zi, with zi ∈ Z for all i ∈ I. In this case we have

(λ̃i∈I zi) ∩ Vα ⊆
⋃
β<α

λ̃i∈I (zi ∩ Vβ)

⊆
⋃
β<α

λ̃i∈I Vµ

⊆ Vµ
by Lemma 11, the induction hypothesis for zi and Lemma 5. Since z ∩ Vα ⊆ Vµ
for all α we have z ⊆ Vµ for all z ∈ Z. This establishes Z ⊆ Vµ+1. ut
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3.2 U is a Final Coalgebra

To prove that U is a final coalgebra requires showing that for every map f : A→
Q(A) there exists a unique map π : A→ U such that π = Q(π) ◦ f :

A
π - U

‖
‖
‖f

?
‖
‖

Q(A)
Q(π)
- Q(U)

For the remainder of this section, let the set A and the map f : A → Q(A)
be fixed.

Lemma 16. There exists π : A→ U such that π(a) = Q(π)(f(a)) for all a ∈ A.

Proof. The function π is defined by π(a) ≡
⋃
n<ω πn(a), where {πn}n<ω is as

follows:

π0(a) ≡ 0
πn+1(a) ≡ Q(πn)(f(a))

Suppose a ∈ A and prove π(a) = Q(π)(f(a)) by cases. If f(a) = 1 then the
equation reduces to 1 = 1. If f(a) = λ̃i∈I ai then simple continuity reasoning
establishes the equation:

π(a) =
⋃
n<ω

πn(a)

=
⋃
n<ω

πn+1(a)

=
⋃
n<ω

λ̃i∈I πn(ai)

= λ̃i∈I
⋃
n<ω

πn(ai)

= λ̃i∈I π(ai)
= Q(π)(λ̃i∈I ai)
= Q(π)(f(a))

To show π : A → U , use coinduction (Prop. 15). Let Z = {π(a) | a ∈ A}
and prove Z ⊆ Q(Z). If z ∈ Z then z = π(a) for some a ∈ A. There are two
cases, as usual. If f(a) = 1 then z = 1 ∈ Q(Z) and if f(a) = λ̃i∈I ai then
z = λ̃i∈I π(ai) ∈ Q(Z).

Since U is the greatest post-fixedpoint of Q, this establishes Z ⊆ U . And
since Z is the range of π, this establishes π : A→ U . ut
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Lemma 17. If π = Q(π) ◦ f and π′ = Q(π′) ◦ f then π = π′.

Proof. Again using Lemma 7, let us use transfinite induction on the ordinal ξ to
prove

∀a∈A π(a) ∩ Vξ ⊆ π′(a).

Let a ∈ A. If f(a) = 1 then π(a) = π′(a) = 1. If f(a) = λ̃i∈I ai then

π(a) ∩ Vξ = (λ̃i∈I π(ai)) ∩ Vξ
⊆
⋃
η<ξ

λ̃i∈I (π(ai) ∩ Vη)

⊆
⋃
η<ξ

λ̃i∈I π
′(ai)

= π′(a)

using the hypothesis, Lemma 11, the induction hypothesis for η < ξ and mono-
tonicity of λ̃.

Since π(a) ∩ Vξ ⊆ π′(a) for every ordinal ξ, we have π(a) ⊆ π′(a). By sym-
metry we have π′(a) ⊆ π(a) and therefore π(a) = π′(a) for all a ∈ A. ut

Theorem 18. U is a final Q-coalgebra.

Proof. Immediate by the previous two lemmas. ut

4 Solutions of Equations

In his development of set theory with AFA, Aczel [2] defines systems of set-
equations and proves the Solution Lemma: each system has a unique solution.
Aczel introduces a class X of variables and a class VX of sets built up from
variables (but not themselves variables). His Substitution Lemma says that any
assignment f : X → V of sets to variables can be extended to a substitution
function f̂ : Vx → V . Aczel uses these lemmas to exhibit a unique morphism for
his Special Final Coalgebra Theorem.

Aczel proves the Solution and Substitution Lemmas using concrete set theory,
but in Rutten and Turi’s categorical presentation the proofs are much shorter. A
key fact in their development is that V is (assuming AFA) a final P-coalgebra.
My presentation is similar, replacing V by U , P by Q and AFA by Theorem 18.
Also I replace the category of classes by the category of sets, but this I think is
only a matter of taste.

4.1 Preliminaries: the Binary Sum Functor

Recall that +̃ is the variant form of disjoint sum, defined by A+̃B ≡ ({0}×̃A)∪
({1}×̃B). It is a coproduct in the category Set, which means that for every pair
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of maps f : A→ C and g : B → C there exists a unique map [f, g] : A +̃B → C
making the diagram commute:

A
˜Inl- A +̃B �

˜Inr
B

@
@
@
f @@

@R ?

[f, g]

	�
�
� g
�
�
�

C

Here the injections ˜Inl : A→ A +̃B and ˜Inr : B → A +̃B and the case analysis
operator [f, g] are defined in the obvious way.

To make +̃ into a functor we must define its action on maps. If j : A → A′

and k : B → B′ then j +̃ k : A +̃A′ → B +̃B′ is defined (as usual) by

j +̃ k ≡ [ ˜Inl ◦ j, ˜Inr ◦ k]. (4)

Some obvious properties of [f, g] and of j +̃k are listed below for later reference.

Lemma 19. Let f : A→ C, g : B → C, h : C → D, j : A→ A′ and k : B → B′

be maps. Then

[f, g] ◦ ˜Inl = f

[f, g] ◦ ˜Inr = g

h ◦ [f, g] = [h ◦ f, h ◦ g]
[ ˜Inl , ˜Inr ] = idA+̃B

[f, g] ◦ (j +̃ k) = [f ◦ j, g ◦ k]
(j +̃ k) ◦ ˜Inl = ˜Inl ◦ j
(j +̃ k) ◦ ˜Inr = ˜Inr ◦ k

4.2 An Expanded Version of U

Let X be a set of variables or indeterminates for use in equations. The set U IX is
constructed in the same way as U I except that each level contains a copy of X.
Thus an element of U IX is just like an element of U I except that it may contain
elements of X at each stage in its construction. In formalizing equations between
sets, each left-hand side will consist of a variable from X while each right-hand
side will be drawn from U IX . The definition of U IX closely resembles that of U I .

Definition 20. Let µ be a limit ordinal such that X ∪ I ⊆ Vµ. Then

U I ≡
⋃

Z⊆Vµ+1

Z ⊆ QI(X +̃ Z).

Let us again drop the superscript I. The proof of the following result is
omitted because of its similarity to the proof for U .

11



Proposition 21. Let UX be defined as above. Then

(a) UX = Q(X +̃ UX).
(b) If Z ⊆ Q(X +̃ Z) then Z ⊆ UX .
(c) UX is the final coalgebra for the functor Q(X +̃−).

Proof. See Appendix A.

4.3 An Embedding

There is an obvious embedding σX : U → UX that copies an element of U
into UX and never introduces an element of X:

σX(1) = 1
σX(λ̃i∈I ui) = λ̃i∈I ˜Inr(σX(ui))

The equations can be summarised neatly by σX = Q( ˜Inr ◦σX). The embedding
will be useful for creating equations with constant right-hand sides.

Although the embedding is obvious, its existence deserves to be proved. Aczel
derives the analogous embedding from V into VX by direct recourse to AFA [2].
Rutten and Turi [12] omit this step, which in their categorical style might be
done by showing that VX is a final coalgebra for the functor P(X +−).

Lemma 22. There exists a unique map σX : U → UX such that

σX = Q( ˜Inr ◦ σX).

Proof. Recalling the equation UX = Q(X +̃UX), consider the following diagram:

U
σX - UX

‖
‖
‖Q( ˜Inr)

?
‖
‖

Q(X +̃ U)
Q(idX +̃ σX)

- Q(X +̃ UX)

Since (U,Q( ˜Inr)) is a coalgebra for Q(X +̃−) and UX is a final coalgebra, there
exists a unique map σX such that the diagram commutes. Now

σX = Q(idX +̃ σX) ◦ Q( ˜Inr)
= Q((idX +̃ σX) ◦ ˜Inr)
= Q( ˜Inr ◦ σX)

by Lemma 19. ut
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4.4 Substitution

Let f : X → U be a function. Then the substitution function f̂ : UX → U
essentially copies its argument, replacing everything of the form ˜Inl(x) by f(x)
for x ∈ X. This case analysis can be expressed with the help of the [f, f̂ ] notation:

f̂(1) = 1

f̂(λ̃i∈I zi) = λ̃i∈I [f, f̂ ](zi)

These two equations can be expressed succinctly by f̂ = Q([f, f̂ ]).
Clearly, substitution over a ‘term’ containing no ‘variables’ can have no effect.

The formal statement of this fact justifies calling σX an embedding.

Lemma 23 (Embedding). Let f : X → U and g : UX → U be functions. If
g = Q([f, g]) then g ◦ σX = idU .

Proof. By Lemma 22 and Lemma 19 we have

g ◦ σX = Q([f, g]) ◦ Q( ˜Inr ◦ σX)
= Q([f, g] ◦ ˜Inr ◦ σX)
= Q(g ◦ σX).

Since U = Q(U), the following diagram commutes:

U
ĝ ◦ σX - U

‖
‖
‖

‖
‖
‖

‖
‖

‖
‖

Q(U)
Q(ĝ ◦ σX)

- Q(U)

Since U is the final Q-coalgebra, it has only one homomorphism into itself,
namely the identity. This yields g ◦ σX = idU . ut

4.5 Solution and Substitution Lemmas

IfX is a set of variables then a function ν : X → UX defines a system of equations
of the form x = νx for all x ∈ X. Such a system has a unique solution f : X → U
such that f(x) = f̂(νx) for x ∈ X. More concisely, a solution satisfies f = f̂ ◦ ν.

Lemma 24 (Solution). Let ν : X → UX be a function. There exist unique
functions f : X → U and f̂ : UX → U such that

f = f̂ ◦ ν and f̂ = Q([f, f̂ ]).

13



Proof. Recalling the equation UX = Q(X +̃U), consider the following diagram:

X
ν - UX

π - U
‖
‖
‖Q([ν, idUX ])

?
‖
‖

Q(UX)
Q(π)
- Q(U)

Since (UX ,Q([ν, idUX ])) is a Q-coalgebra and U is a final Q-coalgebra, there
exists a unique map π such that the diagram commutes. By Lemma 19 we have

π = Q(π) ◦ Q([ν, idUX ])
= Q(π ◦ [ν, idUX ])
= Q([π ◦ ν, π ◦ idUX ])
= Q([π ◦ ν, π])

Putting f̂ = π and f = π ◦ ν yields the desired functions. As for uniqueness, if
f = f̂ ◦ ν and f̂ = Q([f, f̂ ]) then f̂ = π by finality of U . ut

In this proof, note that Q([ν, idUX ]) substitutes using ν but only to depth
one. The following lemma justifies the f̂ notation for substitution by f . The
idea is to convert f : X → U into a trivial system of equations, then solve them.

Lemma 25 (Substitution). Let f : X → U be a function. There exists a
unique function f̂ : UX → U such that f̂ = Q([f, f̂ ]).

Proof. Consider the composed map σX ◦ f : X → UX . Apply the Solution
Lemma with ν = σX ◦ f , obtaining maps g : X → U and ĝ : UX → U such that
g = ĝ ◦ ν and ĝ = Q([g, ĝ]). Now

g = ĝ ◦ σX ◦ f = f

by Lemma 23. Putting f̂ = ĝ we obtain f̂ = Q([f, f̂ ]). Uniqueness follows by the
uniqueness property of the Solution Lemma. ut

I should prefer to prove the Substitution Lemma earlier, but the simplest
proof seems to rely on the Solution Lemma. Turi has pointed out (by electronic
mail) that the Substitution Lemma has a trivial proof if UX is defined to be
an initial algebra rather than a final coalgebra. But then UX would contain
only finite constructions; the embedding σX : U → UX would not exist; non-
well-founded objects obtained via the Solution Lemma could not participate in
further set equations.
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4.6 Special Final Coalgebra Theorem

The main theorem applies to functors that are uniform on maps. This notion is
due to Aczel [2], but I follow Rutten and Turi’s [12] formulation.

We shall no longer work in the category Set of sets but rather in the full
subcategory SetU whose objects are the subsets of U . Recall that U , in turn,
depends upon the choice of index set I; we can make U as large as necessary.

Definition 26. A functor F : SetU → SetU is uniform on maps if for all A ⊆ U
there exists a mapping φA : F (A)→ UA such that

F (h) = ĥ ◦ φA for all h : A→ U.

The mapping φA is called the UA translation.

Let us only consider functors that preserve inclusion maps. This is a natural
restriction since all functors preserve identity maps, and inclusion maps are
identity maps when regarded as sets. All such functors on SetU have fixedpoints.

Lemma 27. If the functor F : SetU → SetU preserves inclusions then there
exists an object JF : SetU such that JF is the greatest fixedpoint and greatest
post-fixedpoint of F .

Proof. Apply the Knaster-Tarski fixedpoint theorem to the lattice of subsets
of U . The functor F is necessarily monotone because it preserves inclusions; if
ι : A→ B then F (ι) : F (A)→ F (B); thus if A ⊆ B then F (A) ⊆ F (B). ut

Theorem 28 (Special Final Coalgebra). If the functor F : SetU → SetU
preserves inclusions and is uniform on maps then JF is a final F -coalgebra.

Proof. Let (A, f) be an F -coalgebra. We must exhibit a unique map h : A→ JF
such that h = F (h) ◦ f :

A
h - JF

‖
‖
‖f

?
‖
‖

F (A)
F (h)
- F (JF )

Since F is uniform on maps, h = F (h) ◦ f is equivalent to h = ĥ ◦ φA ◦ f .
Such a map h is precisely a solution of the system of equations a = φA(f(a)) for
a ∈ A. Applying the Solution Lemma with ν = φA ◦ f , we obtain a unique map
h : A→ U such that h = F (h) ◦ f .
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A standard coinduction argument proves h : A → JF . Writing h“A for the
image of A under h, we have

h“A = (F (h) ◦ f)“A
= F (h)“(f“A)
⊆ F (h)“F (A)
⊆ F (h“A)

since h : A→ h“A and F (h) : F (A)→ F (h“A).
The range of h is thus a post-fixedpoint of F and is contained in the greatest

post-fixedpoint, namely JF . ut

5 Functors Uniform on Maps

If F is uniform on maps then, in essence, its effect upon a map h : A→ U can be
expressed as the substitution of h over a pattern derived from the argument; if
b ∈ F (A) then F (h)(b) = ĥ(φA(b)). Most natural functors are uniform on maps
but there is at least one glaring exception. Let us examine some typical cases,
starting with a very easy one.

5.1 The Constant Functor

If C ⊆ U then let KC be the constant functor such that KC(A) = C for all
A : SetU and such that KC(f) = idC for all maps f : A→ A′.

Proposition 29. If C : SetU then the constant functor KC : SetU → SetU is
uniform on maps.

Proof. Let A be a set such that A : SetU . Define φA : C → UA by φA(c) = σA(c)
for all c ∈ C. Now

KC(h)(c) = c = (ĥ ◦ σA)(c) = (ĥ ◦ φA)(c)

for all c ∈ C by Lemma 23. ut

5.2 Binary Product

The set U satisfies the inclusion U ×̃ U ⊆ U . So it is easy to see that ×̃ :
SetU × SetU → SetU is a functor when extended to maps in the standard way.
If f : A → A′ and g : B → B′ are maps then f ×̃ g : A ×̃ B → A′ ×̃ B′ is the
map that takes 〈a; b〉 to 〈f(a); g(b)〉.

Proposition 30. If F , G : SetU → SetU are uniform on maps, then the functor

F (−) ×̃G(−) : SetU → SetU

is uniform on maps.
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Proof. Let A be a set such that A : SetU , or equivalently A ⊆ U . Clearly we
have F (A) ×̃ G(A) : SetU . Since F and G are uniform on maps there exist UA
translations

φA : F (A)→ UA such that F (h) = ĥ ◦ φA, and

ψA : G(A)→ UA such that G(h) = ĥ ◦ ψA

for all h : A→ U . We must define a UA translation for F (−) ×̃G(−).
Let θA = φA ×̃ ψA. Thus θA(〈b; c〉) = 〈φA(b);ψ(b)〉 for all b ∈ F (A) and c ∈

G(A). Now

(F (−) ×̃G(−))(h) = F (h) ×̃G(h)

= (ĥ ◦ φA) ×̃ (ĥ ◦ ψA)

= (ĥ ×̃ ĥ) ◦ (φA ×̃ ψA)

= ĥ ◦ (φA ×̃ ψA)

= ĥ ◦ θA

and θA is the desired UA translation. Replacing ĥ×̃ ĥ by ĥ above is valid because
ĥ ×̃ ĥ is applied only to variant pairs in that context. ut

5.3 Binary Sum

The proposition about +̃ resembles the one about ×̃ presented above, but first
we have to show that U is closed under +̃.

Lemma 31. U +̃ U ⊆ U .

Proof. Since U +̃U = ({0}×̃U)∪({1}×̃U) and U is closed under ×̃, it suffices to
show {0, 1} ⊆ U . By coinduction (Prop. 15) it suffices to show {0, 1} ⊆ Q({0, 1}).
This holds because

Q({0, 1}) = {1} ∪ (I →̃ {0, 1})

and 0 = λ̃i∈I 0 ∈ I →̃ {0, 1}. ut

Recall that +̃ is a functor on Set whose effect on maps was described in Sect. 4.1.
Now we know that +̃ is also a functor in the full subcategory SetU .

Proposition 32. If F , G : SetU → SetU are uniform on maps, then the functor

F (−) +̃G(−) : SetU → SetU

is uniform on maps.

17



Proof. Let A be a set such that A : SetU . Then F (A) +̃G(A) : SetU and there
exist UA translations

φA : F (A)→ UA such that F (h) = ĥ ◦ φA, and

ψA : G(A)→ UA such that G(h) = ĥ ◦ ψA
for all h : A→ U .

Let θA = φA +̃ ψA. Then

(F (−) +̃G(−))(h) = F (h) +̃G(h)

= (ĥ ◦ φA) +̃ (ĥ ◦ ψA)

= (ĥ +̃ ĥ) ◦ (φA +̃ ψA)

= ĥ ◦ (φA +̃ ψA)

= ĥ ◦ θA
and θA is the desired UA translation. ut

5.4 Sum of a Family of Sets

Let {Bx}x∈C be a C-indexed family of sets. If C ⊆ U and Bx ⊆ U for all x ∈ C
then we have

∑̃
x∈C

Bx ⊆ U . Note that
∑̃
x∈C

Bx is the usual generalisation of C ×̃B
to allow B to depend upon x ∈ C; the two functors have the same effect upon
maps. But the proposition about

∑̃
differs in one key respect from that about ×̃:

the index set is not given by a functor but is constant.

Proposition 33. If C : SetU and {Fx : SetU → SetU}x∈C is a C-indexed
family of functors that are uniform on maps, then the functor∑̃

x∈C
Fx(−) : SetU → SetU

is uniform on maps.

Proof. Let A be a set such that A : SetU . Then
∑̃
x∈C

Fx(A) : SetU . There exists

a UA translation φx,A : Fx(A) → UA such that Fx(h) = ĥ ◦ φx,A for all x ∈ A
and h : A→ U .

The UA translation for
∑̃
x∈C

Fx(−), called θA, is defined by

θA(〈x; y〉) = 〈σA(x), φx,A(y)〉
for all x ∈ C and c ∈ Fx(A). Recall that σA is the inclusion map from U into UA.
Now by Lemma 23 we have

ĥ(θA(〈x; y〉)) = ĥ(〈σA(x), φx,A(y)〉)
= 〈ĥ(σA(x)), ĥ(φx,A(y))〉
= 〈x, Fx(h)〉

= (
∑̃
x∈C

Fx(h))(〈x; y〉)
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which proves ĥ ◦ θA = (
∑̃
x∈C

Fx(−))(h). ut

5.5 Product of a Family of Sets

Again let {Bx}x∈C be a C-indexed family of sets. If C ⊆ I (not C ⊆ U as above!)
and Bx ⊆ U for all x ∈ C then

∏̃
x∈C

Bx ⊆ I →̃ U ⊆ U .

Thus
∏̃

: SetIU → SetU is a functor whose effect on maps is as follows. If
{fx : Bx → B′x}x∈C is a C-indexed family of maps then

∏̃
x∈C

fx :
∏̃
x∈C

Bx →
∏̃
x∈C

B′x

is the usual pointwise map that takes λ̃x∈Cbx to λ̃x∈Cfx(bx).

Proposition 34. If C ⊆ I and {Fx : SetU → SetU}x∈C is a C-indexed family
of functors that are uniform on maps, then the functor

∏̃
x∈C

Fx(−) : SetU → SetU

is uniform on maps.

Proof. Let A be a set such that A : SetU . Then
∏̃
x∈C

Fx(A) : SetU . There exists

a UA translation φx,A : Fx(A) → UA such that Fx(h) = ĥ ◦ φx,A for all x ∈ A
and h : A→ U .

Let θA =
∏̃
x∈C

φx,A. Now

(
∏̃
x∈C

Fx(−))(h) =
∏̃
x∈C

Fx(h)

=
∏̃
x∈C

ĥ ◦ φx,A

= (
∏̃
x∈C

ĥ) ◦ (
∏̃
x∈C

φx,A)

= ĥ ◦ (
∏̃
x∈C

φx,A)

= ĥ ◦ θA

and θA is the desired UA translation. ut
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5.6 The Identity Functor

These results suggest that any functor that operates on ‘constructions’ in a point-
wise fashion is probably uniform on maps. But there is one glaring exception.

Proposition 35. The identity functor Id : SetU → SetU is not uniform on
maps.

Proof. Suppose Id : SetU → SetU is uniform on maps. Then if A ⊆ U then
there is a mapping φA : A→ UA such that h = ĥ ◦ φA for all h : A→ U .

Let A = {1} and define h1, h2 : {1} → U by h1(1) = 1 and h2(1) = 〈1; 1〉.
Then 1 = ĥ1(φA(1)); by the definition of substitution, this implies φA(1) = 1.
Also 〈1; 1〉 = ĥ2(φA(1)); by the definition of substitution, this implies φA(1) =
〈a; b〉 for some a, b ∈ A +̃ UA. But then 1 = 〈a; b〉, which is absurd. ut

An alternative proof uses the Special Final Coalgebra Theorem. If Id is uni-
form on maps then JId is a final Id-coalgebra. But a final Id-coalgebra must be
a singleton set, while JId = U and U contains 0 and 1 as elements.

This circumstance is awkward. The natural way of constructing suitable func-
tors is to combine constant and identity functors by products, sums, etc. Since
the identity functor is not uniform on maps, this approach fails. Various simi-
lar functors are uniform on maps, such as − ×̃ K{0} and − ×̃ −; both have the
singleton set {0} as their greatest fixedpoint. Assuming AFA does not help; the
identity functor is not uniform on maps in Aczel’s system either.

6 Conclusions

In semantics it is not customary to worry about the construction of a particular
object provided it has the desired abstract properties. From this point of view,
the general theorems of Aczel and Mendler [3] and Barr [4] yield final coalgebras
for a great many functors.

But there is an undoubted interest in Aczel’s weaker final coalgebra theorem,
proved using the Anti-Foundation Axiom (AFA) [2]. Its appeal is its concrete-
ness. The set of streams over A is simply the greatest fixedpoint of the func-
tor A × −, which is also that functor’s final coalgebra. Its elements are easily
visualised objects of the form 〈a0, a1, a2, . . .〉.

The original motivation for my work was to treat streams and other infi-
nite data structures. I wished to use the standard ZF axiom system as it was
automated using Isabelle. Thomas Forster suggested that Quine’s treatment of
ordered pairs might help. Generalizing this treatment led to the new defini-
tion of functions (and thus infinite streams), in order to compare the approach
with AFA. This part of the work closely follows Aczel, and Rutten and Turi [12],
from the Substitution Lemma onwards.

My Special Final Coalgebra Theorem is less general than Aczel’s, especially
as regards concurrency. Here is a typical example. Let Pf be the finite powerset
operator, which returns the set of all finite subsets of its argument. Consider the
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set P of processes defined as the final coalgebra of Pf (A × −). With AFA the
final coalgebra is the greatest solution of P = Pf (A× P ), and if p ∈ P then

p = {〈a1, p1〉, . . . , 〈an, pn〉}

with n < ω, a1, . . . , an ∈ A and p1, . . . , pn ∈ P . My approach does not handle
general set constructions, only variant tuples and functions; I do not know how
to model Pf respecting set equalities such as {x, y} = {y, x} = {x, y, x}.

My approach works best in its original application, infinite data structures.
We can model the main constructions in Uω. Since Uω ⊆ Vω+1, each infinite data
structure is a subset of Vω and thus is a set of hereditarily finite sets.3 Section 2.1
discussed infinite streams. The set S of streams over A is the greatest solution
of S = A ×̃ S, and is the final coalgebra of the functor A ×̃ −.

Thus we have an account of non-well-founded phenomena that is concrete
enough to be understood directly. One can argue about the constructive validity
of the cumulative hierarchy, but Vω is uncontroversial even from an intuitionistic
viewpoint. In contrast the general final coalgebra theorems [3, 4], with their
quotient-of-sum constructions, are anything but concrete.

Aczel has shown that by adopting AFA we can obtain final coalgebras as
greatest fixedpoints, dualising a standard result about initial algebras. My ap-
proach is another way of doing the same thing, though for fewer functors.
Whether or not one choose to adopt AFA hinges on a number of issues: philosoph-
ical, theoretical, practical. Variant tuples and functions are a simple alternative.
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A Proof of Prop. 21

Abbreviate the functor Q(X +̃ −) as QX . This simplifies the statement of the
Proposition:

Proposition. Let UX =
⋃
Z⊆Vµ+1

Z ⊆ QX(Z). Then

(a) UX = QX(UX).
(b) If Z ⊆ QX(Z) then Z ⊆ UX .
(c) UX is the final QX-coalgebra.

Proof of (a). Apply the Knaster-Tarski theorem. Clearly QX is monotone; by
Lemma 6, QX(Vµ+1) ⊆ Vµ+1. ut

Before continuing, we need some more elementary facts about the cumulative
hierarchy.

Lemma 36. If α is an ordinal then

A×B ⊆ Vα implies A,B ⊆ Vα
A+B ⊆ Vα implies A,B ⊆ Vα

A ×̃B ⊆ Vα+1 implies A,B ⊆ Vα+1

A +̃B ⊆ Vα+1 implies A,B ⊆ Vα+1

Proof. The first part holds by Lemma 10 and the transitivity of Vα. The other
parts hold by similar tedious reasoning from the definitions. ut

We now tackle the next part of Prop. 21.

Proof of (b). Use the definition of UX after first establishing Z ⊆ Vµ+1. By the
previous Lemma, it suffices to prove X +̃ Z ⊆ Vµ+1. By Lemma 7, it suffices to
prove

∀w∈X+̃Z w ∩ Vα ⊆ Vµ
for all α. Proceed by transfinite induction on the ordinal α.

Let w ∈ X +̃ Z. There are two cases. The first case is w = 〈0;x〉 = 0 + x for
x ∈ X. Since X ⊆ Vµ, clearly 0 + x ⊆ Vµ. The second case is w = 〈1; z〉 = 1 + z
for z ∈ Z. We must show 1 + z ⊆ Vµ; by Lemma 4 it suffices to show z ⊆ Vµ.

Since z ∈ Z, we have z ∈ QX(Z) = {1} ∪ (I →̃ X +̃ Z). The case z = 1 is
trivial. So we may assume z = λ̃i∈I wi, with wi ∈ X +̃ Z for all i ∈ I. In this
case we have

(λ̃i∈I wi) ∩ Vα ⊆
⋃
β<α

λ̃i∈I (wi ∩ Vβ)

⊆
⋃
β<α

λ̃i∈I Vµ

⊆ Vµ
by Lemma 11, the induction hypothesis for wi and Lemma 5. Since w∩Vα ⊆ Vµ
for all α we have w ⊆ Vµ for all w ∈ X +̃ Z. This establishes X +̃ Z ⊆ Vµ+1 as
required. ut
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The final part of Prop. 21 is that UX is the final QX -coalgebra. This requires
showing that for every map f : A→ QX(A) there exists a unique map π : A→
UX such that π = QX(π) ◦ f :

A
π - UX

‖
‖
‖f

?
‖
‖

QX(A)
QX(π)

- QX(UX)

Let the set A and the map f : A→ QX(A) be fixed, and consider each property
separately. Note that the functor QX operates on maps as follows:

QX(π)(λ̃i∈I ai) = λ̃i∈I (idX +̃ π)(ai)

Lemma 37. There exists π : A → UX such that π(a) = QX(π)(f(a)) for all
a ∈ A.

Proof. The function π is defined by π(a) ≡
⋃
n<ω πn(a), where {πn}n<ω is as

follows:

π0(a) ≡ 0
πn+1(a) ≡ QX(πn)(f(a))

Suppose a ∈ A and prove π(a) = Q(π)(f(a)) by cases. If f(a) = 1 then
the equation reduces to 1 = 1. The other possibility is f(a) = λ̃i∈I bi where
bi ∈ X +̃A if i ∈ I. Continuity reasoning, using the previous lemma, establishes
the equation:

π(a) =
⋃
n<ω

πn(a)

=
⋃
n<ω

πn+1(a)

=
⋃
n<ω

QX(πn)(λ̃i∈I bi)

=
⋃
n<ω

λ̃i∈I (idX +̃ πn)(bi)

= λ̃i∈I
⋃
n<ω

(idX +̃ πn)(bi)

= λ̃i∈I (idX +̃ π)(bi)
= QX(π)(λ̃i∈I bi)
= QX(π)(f(a))

24



Note that
⋃
n<ω(idX +̃ πn)(bi) = (idX +̃ π)(bi) above holds by case analysis on

bi ∈ X +̃A and continuity of the variant injections.
To show π : A → UX , use coinduction. Let Z = {π(a) | a ∈ A} and prove

Z ⊆ QX(Z). If z ∈ Z then z = π(a) for some a ∈ A. There are two cases, as
usual. If f(a) = 1 then z = 1 ∈ QX(Z). If f(a) = λ̃i∈I bi (where bi ∈ X +̃ A)
then

z = π(a) = QX(π)(λ̃i∈I bi) = λ̃i∈I (idX +̃ π)(bi) ∈ Q(X +̃ Z) = QX(Z).

Since UX is the greatest post-fixedpoint of QX , this establishes Z ⊆ UX . And
since Z is the range of π, this establishes π : A→ UX . ut

Lemma 38. If π = QX(π) ◦ f and π′ = QX(π′) ◦ f then π = π′.

Proof. Using Lemma 7, let us use transfinite induction on the ordinal ξ to prove

∀a∈A π(a) ∩ Vξ ⊆ π′(a).

Let a ∈ A. If f(a) = 1 then π(a) = π′(a) = 1. If f(a) = λ̃i∈I bi (where bi ∈ X+̃A)
then

π(a) ∩ Vξ = (λ̃i∈I (idX +̃ π)(bi)) ∩ Vξ
⊆
⋃
η<ξ

λ̃i∈I ((idX +̃ π)(bi) ∩ Vη)

⊆ λ̃i∈I (idX +̃ π′)(bi)
= π′(a)

using the hypothesis, Lemma 11 and monotonicity of λ̃. The reasoning also uses

(idX +̃ π)(bi) ∩ Vη ⊆ (idX +̃ π′)(bi),

which holds by case analysis on bi ∈ X +̃A, a further application of Lemma 11,
and the induction hypothesis for η′ where η′ < η < ξ.

Since π(a) ∩ Vξ ⊆ π′(a) for every ordinal ξ, we have π(a) ⊆ π′(a). By sym-
metry we have π′(a) ⊆ π(a) and therefore π(a) = π′(a) for all a ∈ A. ut

Theorem 39. UX is a final QX-coalgebra.

Proof. Immediate by the previous two lemmas. ut
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