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1 Introduction

In this report we describe in detail the formal verification of the Fairisle 4 by 4 switching
element. This verification was performed using the HOL90 theorem proving system so is fully
machine-checked.

This report should be read in conjunction with the companion report [1]. It gives an overview
of the project and briefly describes the switching element. It also provides a tutorial for the
specification and verification techniques used.

In Section 2 we give general definitions upon which the formal specifications of the hardware
are based. We give all the underlying HOL definitions used other than those pre-defined in the
HOL90 system. We then describe the verification of each module including the full switching fabric
in Section 3. For each module in the design we give structural and behavioural specifications and
give the correctness theorem proved about it. For comparison, we also give the original HDL
descriptions from which the HOL structural description was derived. For all but the simplest
modules we give a circuit diagram of the implementation. In the circuit diagrams, we use the
notation w[i] to refer to bit i of word w; w[[i]] to refer to the word consisting of the i'* bits of
each of the sub-words of word w; w[i,3] to refer to word with bits the i** and j** bits of word w;
and w[-i] to refer to the word w with the i** bit omitted.

The top-level description of the switching element can be found in Section 3.43. The behavioural
specification depends on the general purpose functions in Section 2.9. Its structural specification
relies on those of all the other modules and the specifications of the basic constructs (such as logic
gates) used. The latter are described in Section 2.8.

A detailed account of the HOL system and the higher order logic notation is given by Gordon
and Melham [2]. A description of the word library is given by Wong [3]. We do not give type
information in the definitions. This can normally be determined from context. Normally, the most
general types possible are used.

2 General Definitions

In this section we give the general definitions upon which the specifications of the modules are
based. For example, we give the specifications for the logic gates upon which the descriptions of
the implementations depend. We also give definitions about round-robin arbitration, upon which
the behavioural specifications are based. Many of the definitions given here would be of direct use
in other formal verification projects.

2.1 Words

In this section we describe additional definitions about words that extend those given in the word
library. Most concern multi-level words.

2.1.1 REMBIT

The arguments to REMBIT are a bit position, k, indexing from the left and from zero and a word, w.
It returns the word with the indexed bit removed, ie. a word one bit shorter. This is achieved by
concatenating the initial and final segments, excluding the chosen bit, together. The bit position
specified must be less than the size of the word w.




FVoan.
V w ::(PWORDLEN n).
VY k.
k<nD
(REMBIT k w = WCAT (WSEG (PRE (n - k)) (SUC k) w,WSEG k 0 w))

2.1.2 BITS

BITS extracts the n*? bit from each subword ! of a given word, producing a new word with the same
length as the original, but one level shallower. It is equivalent to applying BIT to each element of
the word. In the definition we do not explicitly give the word argument, since it is the same on
both sides of the definition. Both (BITS n) and (WMAP (BIT n)) are functions which when given a
word, return a word. WMAP is a word map function. It applies the given function (here (BIT n)) to
each element of a word. '

F V n. BITS n = WMAP (BIT n)

2.1.3 WSEGS

WSEGS extracts the specified segment from each subword of a given word, producing a new word
with the same length as the original, but with the inner words shorter. It is equivalent to applying
WSEG to each element of the word.

FVnm. WSEGS n m = WMAP (WSEG n m)

2.1.4 BWORDLEN

BWORDLEN returns the length of the sub-words of a word. Since we constrain all bits of a word of
words to be the same length, the use of (BIT 0) in the definition is arbitrary.

F V w. BWORDLEN w = WORDLEN (BIT O w)

2.1.5 PBITLEN

PBITLEN tests that the subwords of a word are of a given length. The bits at all positions k up to
the word length should be of the given length. PBITLEN is used to constrain the bits of words of
words to all be the same length.

FV nw, PBITLEN n w = (VY k. k < WORDLEN w D PWORDLEN n (BIT k W)

2.1.6 PWORD2LEN

PWORD2LEN tests for the size of a word and its subwords for given lengths.

FVnmuw. PHORD2LEN n m w = PHORDLEN n w A PBITLEN m w

1A subword is a bit of a two level word




2.1.7 MKW

MKW creates a word from a function from bit positions (counting from zero) to values. It takes as
argument the size of word to be created and the generating function. The result of applying the
function to each bit position is concatenated on to the result generated by applying MKW to the
remainder of the positions.

F (Y £. MKW O £ = WORD [1) A (V n £. MKW (SUC n) f = WCAT (WORD [f n] ,MKW n £))

2.1.8 MKCW

MKCW creates a word of a given size with each element identical to the given value. The generating
function (Mi. v) passed to MKW maps all bit positions i to the value v.

FVYnv.MCWnv=MWD (\ i. v)

2.1.9 MKW2

MKW2 creates a shuffled word from that produced by a given generating function. The generating
function creates a word of words. This is converted into a new word where each bit position holds
a word of the values at that bit position in each of the original subwords.

FYomf. MKW2nmf=MWmn (\i. BITS i (MKW m £))

2.1.10 WRFOLD_DEF

WRFOLD does a fold operation over words. It can be used with operations that do not have an
identity, as it is not defined for an empty list. For lists of length 1, the single element results.
For other lengths, the result is equivalent to applying the operation cumulatively to each of the
elements and the previous result. For example, if applied to a word WORD[b; ;bs ;bs] With operator
op, it is equivalent to by op (b; op bs).

FY£fbw.
WRFOLD £ (WCAT (WORD [b]l,w)) = ((PWORDLEN 0 w) = b I (f b (WRFOLD £ w)))

2.1.11 ZEROW

ZEROW returns a word of a given size where each bit has value F. Such a word is the binary equivalent
of 0. It is therefore defined in terms of the function NBWORD which converts a number to a binary
encoded word.

F ¥V n. ZEROW n = NBWORD n O

2.2 Position Vectors

In this section we define position vectors: natural numbers encoded as unary boolean words.
Exactly one bit is true in a position vector and its position indicates the number represented.

3



2.2,1 NPVEC

NPVEC converts a natural number, n, to a position vector: a boolean word which has value T in the
position indicated by the natural number, with all other positions holding value F. The generating
function ($= n) passed to MKW tests if each bit is equal to n. A $ before an infix operator such as =
suppresses its infix status, allowing it to be curried.

F V wordsize n. NPVEC wordsize n = MKW wordsize ($= n)

2.2,.2 PVECN

PVECN converts a position vector to a natural number. The position of the first true bit in the word
is returned. It is not defined for words of length zero. Each bit is tested in turn. If it is true, the
result is the length of the remainder of the word.

F V b w. PVECN (WCAT (WORD [b],w)) = (b = (WORDLEN w) | (PVECN w))

2.2.3 WPVEC

WPVEC converts a word to a position vector. The word is taken as representing a position. A word of
the given size is produced with value F at all positions except that indicated by the word argument
where it is true. It is equivalent to converting a word to a number and then converting that to a

position vector.

I V wordsize w. WPVEC wordsize w = NPVEC wordsize (BNVAL w)

2.3 Signals

In this section we describe operators on signals from time to words. They are lifted versions of
word operators.

2.3.1 SLIFT

SLIFT converts operators on words to operators on signals: functions from time to words. Given a
function £ and signal sig, for any time t, it applies the signal to the time to give a word and then
applies £ to the result.

F V £ sig. SLIFT £ sig = (A t. £ (sig t))

2.3.2 SWORD

SWORD converts a word of signals to a signal of a word. At a time t the result is a word with each
bit the same as the corresponding bit in the original word at time t.

FV 1. SWORD 1 = (XA t. WORD (MAP (\ £. £ t) 1))




2.3.3 SBIT

SBIT accesses the n'” bit of the word at a given time on the signal. It is a lifted version of BIT.

F V n. SBIT n = SLIFT (BIT n)

2.3.4 SWSEG

SWSEG accesses a segment of the word at a given time on the signal. It is a lifted version of WSEG.

FVnm. SWSEG n m = SLIFT (WSEG n m)

2.3.5 SWSEGS

SWSEGS accesses the n®® bits of each of the subwords within the word at a given time on the signal.
It is a lifted version of WSEGS.

F V n. SBITS n = SLIFT (BITS n)

2.3.6 SBITS

SBITS accesses the n*® bits of each of the subwords within the word at a given time on the signal.
It is a lifted version of BITS.

F V n. SBITS n = SLIFT (BITS n)

2.3.7 SREMBIT

SREMBIT applied to a signal at a given time gives the word value of the signal at that time with the
specified bit omitted. It is a lifted version of REMBIT.

F V i. SREMBIT i = SLIFT (REMBIT i)

2.3.8 SEXISTSABIT

SEXISTSABIT returns a boolean signal. It is true at a given time if the predicate P holds of any bit
at that time. It is a lifted version of EXISTSABIT.

F V P. SEXISTSABIT P = SLIFT (EXISTSABIT P)

2.3.9 SIGLEN

SIGLEN gives the length of the words of a signal. At all times, the signal should return a word of
the same length. It is therefore arbitrarily defined in terms of the word at time 0.

b V sig. SIGLEN sig = WORDLEN (sig 0)




2.3.10 BSIGLEN

BSIGLEN gives the length of the subwords of a 2 level signal. At all times, the signal should return
a word of the same length. It is therefore arbitrarily defined in terms of the word at time 0. Also
all bits should be of the same length, so bit 0 is arbitrarily chosen.

F V sig. BSIGLEN sig = WORDLEN (BIT 0 (sig 0))

2.3.11 PSIGLEN

PSIGLEN tests for the length of the words of a signal. A signal is a given length if at all times its
constituent words are that length.

F V n. PSIGLEN n = (X sig. V t. PWORDLEN n (sig t))

2.3.12 PSIG2LEN

PSIG2LEN tests for the length of the words and their subwords of a signal. A signal is a given size
if at all times its constituent words are that size.

F VY nm PSIG2LEN n m = (X sig. V t. PHORD2LEN n m (sig t))

2.4 General Definitions

In this section we define some general functions concerning ranges of natural numbers, and error
results.

2.4.1 BETWEEN

BETWEEN states that the value i lies in the range between m and n, inclusive of m but not of n.

FVmin. BETWEENmin=m<=iAi<n

2.4.2 TO

TO is a curried version of ”greater than”. It is used in structural hardware descriptions to indicate
the number of occurrences of a replicated piece of hardware.

FTO = $

2.4.3 DUP

DUP states that for value i in the range between m and n, inclusive of m but not of n, the predicate
P holds, It is used in structural hardware specifications to duplicate occurrences of a piece of
hardware specified by the predicate and parameterised by an instance number. It is also used in
temporal specifications to specify that a predicate holds over some time range.
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FVYVmnP.DUPmnP=(V3i. BETWEENmin DP i)

2.4.4 Results

A type for indicating good results and error results is defined. The type is polymorphic so can be
used to return results of any type.

Result = NO_RESULT | RESULT of ‘a

Result0f returns the value of a non-error result.

F V a. ResultDf (RESULT a) = a

2.5 Signal values over intervals

In this section we define some general functions concerning the values of signals (functions from
time to values of some type) over time intervals.

2.5.1 DURING

DURING specifies the values on a signal sig during some interval, inclusive of the initial time ts, but
not of the end time te. The values are specified by a function £. At any time t in the interval, the
value of the signal should equal the value of the function at that time. Nothing is specified outside
the interval.

F V ts te sig £f. DURING ts te sig £ = DUP ts te (A t. sig t = f t)

2.5.2 STABLE

STABLE specifies that the value value on a signal sig is stable during some interval, inclusive of the
initial time ts, but not of the end time te.

F V ts te sig value. STABLE ts te sig value = DURING ts te sig (A t. value)

2.5.3 NEXT

NEXT specifies that £2 is the next time after t1 that boolean signal sig is true. 2 should be greater
than t1. The signal should be true at t2 and false from then until the end of the interval.

F V t1 t2 sig.
NEXT t1 t2 sig = t1 < t2 A sig t2 A DUP (t1 + 1) t2 (A t. ~ (sig t))




2.6 Frames

In this section we give definitions of time frames of various kinds. In its simplest form a frame
is just a period of time bounded by consecutive times a signal is true. For the switching element
they are used to define the period over which a cell is processed. More complex definitions are
used to include information about when the cells arrive within the frame. Different definitions are
required to define the behaviour of different modules because the signals involved are delayed by
different amounts before they arrive at the boundary of the module.

2.6.1 FRAME

FRAME defines a simple frame. It specifies a period of time over which adjacent occurrences of a
given signal are true. Start and end times, ts and te mark the boundaries of a frame on a given
boolean signal sig if the signal is true at time ts, and the next time it is true is at time te.

F V ts te sig. FRAME ts te sig = sig ts A NEXT ts te sig

2.6.2 Inactive Frames

IFRAME and IFRAME1 define inactive frames; that is, frames in which no active signals arrive within the
frame. Start and end times, ts and te mark the boundaries of a frame on a signal sig. Throughout
this period the active signal remains low. IFRAME and IFRAME1 give two different flavours of this
basic definition. For both, the frame start signal into the fabric defines the boundaries of the frame.

IFRAME is used to specify the behaviour of the whole switching element. Here the active signal
contains boolean words with one bit corresponding to the active bits of cells from each input port.
All bits in this word must remain low throughout the cycle including at-time ts but not te. This is
expressed using STABLE. The expression (SEXISTSABIT I active) represents a signal which is high
whenever a bit of signal active is set high.

IFRAME1 is used to specify the behaviour of the arbiter. Here the active signal is a single boolean
signal corresponding to the active bit of the cell from a single input port. This signal is delayed by
one cycle more than the frame start signal in the path from the outside of the element. Therefore,
the active signal must be low from time ts+1 to te+1.

F VYV ts te sig active.
IFRAME ts te sig active =
FRAME ts te sig A STABLE ts te (SEXISTSABIT I active) F

F V ts te sig active.
IFRAMEL ts te sig active =
FRAME ts te sig A STABLE (ts + 1) (te + 1) active F

2.6.3 Active Frames

AFRAME, AFRAME1 and AFRAME2 define active frames. An active frame is one in which an active signal
does arrive; that is a given boolean word signal remains low throughout the frame.

Start and end times, ts and te mark the boundaries of a frame on a signal sig. A further
time ta indicates the first time within the frame that the active signal is high. AFRAME, AFRAME1
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and AFRAME2 give different flavours of this basic definition. For each, the frame start signal into the
fabric defines the boundaries of the frame.

AFRAME is used to specify the behaviour of the whole switching element. Here the active signal
contains boolean words with one bit corresponding to the active bits of cells from each input port.
All bits in this word must remain low within the frame until the active time. At least one must
go high at the active time. The active time must be greater than or equal to the start time, and
must be at least two cycles prior to the end of the frame.

AFRAME1 is used to specify the behaviour of the arbiter. Here the active signal is a single boolean
signal corresponding to the active bit of the cell from a single input port. Time ta must be the
next time after the start time at which the active signal goes high. It must be at least two cycles
prior to the end of the frame. The difference in timing is due to the different delays experienced
by the active and frame start signals before reaching the arbiter.

AFRAME2 is used to specify the behaviour of the fabric element less its output buffers and latches.
The difference between it and AFRAME is just in the range of times that the active signal can occur,
due to the delay caused by the latch on the data signal.

F V ts ta te sig active.
AFRAME ts ta te sig active =
FRAME ts te sig A
STABLE ts ta (SEXISTSABIT I active) F A
ts <= ta A
SEXISTSABIT I active ta A
ta + 1 < te

F V ts ta te sig active.
AFRAME1 ts ta te sig active =
FRAME ts te sig A NEXT ts ta active A ta < te

F V ts ta te sig active.
AFRAME2 ts ta te sig active =
FRAME ts te sig A
STABLE ts ta (SEXISTSABIT I active) F A
ts < ta A
SEXISTSABIT I active ta A
ta < te

2.7 Logical Connectives

In this section we define some logical connectives. They are used later to describe the behaviour
of the Xilinx logic gates and latches.

2.7.1 Jx

Jk describes the action of a JK flip-flop. If the value stored in the flip-fop old is true then the
next state is the negated k input. Otherwise it is the value on the j input.

FVjkold. Jk j k old = (old = (~ k) | j)




2.7.2 JkE

JKE describes the action of a JK flip-flop with an enable input. If the enable bit is set it behaves
as a normal JK flip-flop. Otherwise, it retains its state.

F V j k old enable. JKE j k old enable = (enable = (Jk j k old) | old)

2.7.3 XOR

XOR is the boolean exclusive-OR function.

FYab.aX0Rb=aA~bVDbA~a

2.7.4 XNOR

XNOR is the boolean exclusive-NOR function

FVYab. aXNORb=a=>»

2.7.5 LGATE

LGATE specifies a logic gate for a simple given binary logic operation. It only works for words of size
greater than 2 if the operation is applied pair wise (e.g., AND and OR but not NAND or NOR).
The value on the output at any time should be the folded value on the input at that time.

F V £ xI x0. LGATE £ (xI,x0) = x0 = (\ t. WRFOLD £ (xI t))

2.7.6 NLGATE

NLGATE specifies a logic gate for a binary logic operation, which first performs the operation over
the word and then negates the result (e.g., for NAND or NOR).

F V £ xI x0. NLGATE £ (xI,x0) = x0 = (A t. ~ (WRFOLD £ (xI t)))

2.77 DEL1

DEL1 delays a signal for one time unit.

F V ins outs. DEL1 (ims,outs) = (V t. outs (t + 1) = ins t)

2.7.8 WIRE

WIRE is a delayless wire. It has no effect.

FV xI x0. WIRE (xI,x0) = (V t. x0 t = xI t)
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2.8 Xilinx Logic Gates and Latches

In this section we define the behaviour of the Xilinx logic gates and basic macros used in the HDL
description of the switching fabric. They are primitive objects of structural specifications. Only
a behavioural specification is given, not an implementation. We do not verify these primitives.
We assume that these descriptions capture their behaviour sufficiently accurately. Logic gates are
specified to have zero delay. Thus problems due to delays on the gates will not be highlighted in
proofs based on these definitions. For our purposes this was considered satisfactory.

We give both the HDL and HOL definitions for the primitives. For most primitives the HDL
version consists of only a stub with no body. This is because they are also primitives of the
simulator. Their definitions are defined by the simulator. ,

In the HDL, a separate definition is given for a logic gate for each possible number of inputs.
We use words which allows us to give a generic definition of each family.

Xilinx latches power up in a reset state. We have not included this in the specifications of
the latches. Nothing is stated (so nothing can be proved) about the initial values in the latches.
The behaviour of the switching element is not dependent on the initial values of these registers
so the information was not needed in the proofs. By omitting the information, the specifications
and proofs are also applicable to implementations using technology that does not reset latches on
power-up.

2.8.1 LOCAL

LOCAL is used in structural hardware descriptions to declare local variables. It is just existential
quantification re-named to make it more readable. Local variables contain values that are hidden
from the outside world. Existential quantification expresses this by saying that all we know about
the value is that it exists.

HOL

F $LOCAL = (A P. $3 P)

2.8.2 FOR

FOR is used in structural hardware descriptions to declare local variables. It is just existential
quantification re-named to make it more readable. Local variables contain values that are hidden
from the outside world. existential quantification expresses this by saying that all we know about
the value is that it exists.

HOL

F $FOR = (A P. $V P)

2.8.3 XiINV

XiINV describes the Xilinx inverter.
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HOL

FV xI x0. XiINV (xI,x0) = (V t. x0 t = ~ (xI t))

HDL

DEF XiINV (xI: IN; x0: I0);
BEGIN
END;

2.8.4 XiAND

XiAND describes the family of Xilinx AND gates having various numbers of inputs.

HOL

F V xI x0. XiAND (xI,x0) = LGATE $A (xI,x0)

HDL

DEF XiAND2 (x1, x2: IN; x0: ID);
BEGIN
END;

DEF XiAND3 (x1, x2, x3: IN; x0: ID);

BEGIN

END;

DEF XiAND4 (x1, x2, x3, x4: IN; x0: ID);
BEGIN

END;

DEF XiAND5 (x1, x2, x3, x4, x56: IN; x0: I0);

BEGIN
END;

2.8.5 XiNAND

XiNAND describes the family of Xilinx NAND gates having various numbers of inputs.

HOL

F V xI x0. XiNAND (xI,x0) = NLGATE $A (xI,x0)

HDL

DEF XiNAND2 (x1, x2: IN; x0: ID);
BEGIN
END;

DEF XiNAND3 (x1, x2, x3: IN; x0: I0);

BEGIN
END;
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DEF XiNAND4 (x1, x2, x3, x4: IN; x0: I0);
BEGIN

END;

DEF XiNAND5 (x1, x2, x3, x4, x5: IN; x0: I0);

BEGIN
END;

2.8.6 XiOR

Xi0R describes the family of Xilinx OR gates having various numbers of inputs.

HOL

F V xI x0. XiOR (xI,x0) = LGATE $V (xI,xD)

HDL

DEF XiOR2 (x1, x2: IN; x0: I0);
BEGIN
END;

DEF XiOR3 (x1, x2, x3: IN; x0: I0);
BEGIN
END;

DEF XiOR4 (x1, x2, x3, x4: IN; x0: I0);

BEGIN

END;

DEF XiOR5 (x1, x2, x3, x4, x5: IN; x0: ID);
BEGIN

END;

DEF XiOR6 (x1, x2, x3, x4, x5, x6: IN; x0: I0);

BEGIN
END;

2.8.7 XiNOR

XiNOR describes the family of Xilinx NOR gates having various numbers of inputs.

HOL

F V xI x0. XiNOR (xI,x0) = NLGATE $V (xI,x0)

HDL

DEF XiNOR2 (x1, x2: IN; x0: I0);
BEGIN
END;

DEF XiNOR3 (x1, x2, x3: IN; x0: I0);

BEGIN
END;
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DEF XiNOR4 (x1, x2, x3, x4: IN; x0: I0);
BEGIN
END;

DEF XiNOR56 (x1, x2, x3, x4, x5: IN; x0: ID);

BEGIN
END;

2.8.8 XiXOR2

XiX0R2 describes a Xilinx XOR gate having 2 inputs. If there are more than 2 inputs it performs
a cumulative pairwise XOR, rather than a true XOR.

HOL

F V xI x0. XiXOR2 (xI,x0) = LGATE $XOR (xI,x0)

HDL

DEF XiXOR2 (x1, x2: IN; x0: I0);
BEGIN
END;

2.8.9 XiXNOR2

XiXNOR2 describes a Xilinx XNOR gate having 2 inputs. If there are more than 2 inputs it performs
a cumulative pairwise XNOR, rather than a true XNOR.

HOL

F V xI x0. XiXNOR2 (xI,x0) = LGATE $XNOR (xI,x0)

HDL

DEF XiXNOR2 (x1, x2: IN; x0: I0);
BEGIN
END;

2.8.10 XiIBUF

XiIBUF joins an external wire to an internal one with no delay.

HOL

F V inpEXT inp. XiIBUF (inpEXT,inp) = WIRE (inpEXT,inp)

HDL

DEF XiIBUF (xI: IN; x0: I0);
BEGIN
END;
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2.8.11 XiOBUF

Xi0BUF joins an external wire to an internal one with no delay.

HOL

b V outEXT out. XiOBUF (outEXT,out) = WIRE (outEXT,out)

HDL

. DEF XiOBUF (xI: IN; x0: IO0);
BEGIN
END;

2.8.12 XiOUTFFd

XiOUTFFd describes the Xilinx output latch. It gives a single cycle delay.

HOL

F V xI x0. XiOUTFFd (xI,x0) = DEL1 (xI,x0)

HDL

DEF XiOUTFFd (xD, xC: IN; xQ: IO0);
BEGIN
END;

2.8.13 XiINFFd

XiINFFd describes the Xilinx input latch. It gives a single cycle delay.

HOL

F V xI x0. XiINFFd (xI,x0) = DEL1 (xI,x0)

HDL

DEF XiINFFd (xD, xC: IN; xQ: I0);
BEGIN
END;

2.8.14 XiDFFd

XiDFFd describes the Xilinx latch. It gives a single cycle delay.

HOL

F V xI x0. XiDFFd (xI,x0) = DEL1 (xI,x0)
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HDL

DEF XiDFFd (xD, xC: IN; xQ: I0);
BEGIN
END;

2.8.15 XiDFFrd

XiDFFrd describes the Xilinx latch with reset data line. It glves a single cycle delay if the rd input
is low and otherwise it outputs low.

HOL

bV %I rd x0. XiDFFrd ((xI,rd),x0) = (V t. x0 (t + 1) = ((xd t) = F | &I #))

HDL

(¥ Constrained version of XiDFF with reset data *)
DEF XiDFFrd (xD, xC, xRD: IN; xQ: I0);

BEGIN

END;

2.8.16 JKFF

JKFF describes the JK flip-flop. We have taken it as a basic component, though it is given an
implementation in the HDL.

HOL

FV jkq gBar.
JKFF ((j,k),q,qBar) =
Ve, (@(t+1)=Jk (jt) (kt) (Qt)) A (qBar t = q t))

HDL

DEF JKFF (j, k, c: IN; q, gBar: I0);
d, dOne, okOmne, dZeroBar, jBar, kBar : IO;
BEGIN

Jkff := XiDFFd (d, c, q);
OrD := XiOR2 (dOne, okOne, d);
AndOKOne := XiAND2 (dZeroBar, q, okOne);
AODDOne := A0 (j, kBar, j, qBar, dOne);
AOIZeroBar := AOI (k, jBar, k, q, dZeroBar);
InvQ := XiINV (q, gBar);
InvK := XiINV (k, kBar);
Inv] := XiINV (j, jBar);

END;

1
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2.8.17 JKFFce

JKFFce describes the JK flip-flop with enable input. If the enable bit is set it behaves as a normal
JK flip-flop. Otherwise, it retains its state. We have taken it as a basic component, though it is
given an implementation in the HDL.

HOL
FV3jkeeq.
JKFFce ((j,k,ce),q) = (V t. q (t + 1) = JkE (j t) (k t) (q t) (ce t))
HDL

DEF JKFFce (j, k, c, ce: IN; q: I0);
d, dOne, okOne, dZeroBar, gBar, jBar, kBar : I0;

BEGIN
Jkffce := XiDFFce (d, c, ce, q);
0rD := XiOR2 (dOne, okOne, d);
ANDOkOne := XiAND2 (dZeroBar, q, okOne);
AODOne := AD (j, kBar, j, qBar, dOne);
AOIZeroBar := AOI (k, jBar, k, q, dZeroBar);
InvQ := XiINV (q, qBar);

InvK := XiINV (k, kBar);
Inv] := XiINV (j, jBar);
END;
2.8.18 40

A0 ANDs its two pairs of inputs and ORs the results. We have taken it as a basic component,
though it is given an implementation in the HDL.

HOL

FVYabecd=x0. A0 ((a,b,c,d),x0) = (Y t. x0t =at AbtVctAdrt)

HDL

DEF A0 (a, b, ¢, d: IN; x: I0);

s, t: ID

BEGIN
And1l := XiAND2 (a, b, s);
And2 := XiAND2 (c, d, t);
Or := XiOR2 (s, t, x);

END;

2.9 Round Robin Arbitration and Priority Filtering

In this section we give the underlying definitions for round robin switching with priority and
acknowledgement. These form the basis of the behavioural specifications of the switching element
and of many of its constituent modules. We define: round robin arbitration; the process of filtering
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out the highest priority requests; a function which picks the successful input for a given output;
and functions which specify the new round robin last successful value, the new data to be output
and the acknowledgement signal to be sent. We are not concerned in this section with when these
processes occur within a frame, only of their function.

2.9.1 DecoderRequests

DecoderRequests is called once for each input port. It returns a position vector with one element
for each output port, indicating whether this input port was making a request (of any priority) for
that output port. If the input port is not making a request, all positions will be F. The request
req is encoded as a binary word. If no request is being made, the active signal act is false.

F V act req. DecoderRequests act req = (act = (WPVEC 4 req) | (ZEROW 4))

2.9.2 DecoderPriorities

DecoderPriorities is called once for each input port. It returns a position vector with one element
for each output port, indicating whether this input port was making a high priority request for
that output port. If the input port is not making a priority request, all positions will be F. A high
priority request is indicated by both the active, act, and priority, pri bits being high.

F V act pri req.
DecoderPriorities act pri req =
((act A pri) = (WPVEC 4 req) | (ZEROW 4))

2.9.3 SUC_MODN

This function defines the wrap around for Round Robin arbitration. It is the successor function
modulo n, where n is one greater than the highest possible arbitration result.

F V n last. SUC_MODN n last = ((last = n) = 0 | (SUC last))

2.9.4 RoundRobinArbiter

Given an indication of the last value selected, round robin arbitration returns the next highest
value requested, with suitable wrap around from the highest possible request to the lowest.

The round robin arbiter takes a set of natural number requests and a natural number indicating
the last successful request. It returns the new successful request or an error if no requests were
made (i.e., the request set is empty). RoundRobin is called. It tries successively higher values above
the last successful request until it finds a request that is in the set of requests. It is defined in
terms of a counter that ensures that the function does terminate. Provided the counter is initially
the value of the highest request possible and the request set is not empty, it will not terminate

before a result is obtained.

We arbitrarily return 0 if n is 0. This should never arise, but makes part of the proof simpler.
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F (V request_set last. RoundRobin 0 request_set last = 0) A
(V n request_set last.
RoundRobin (SUC n) request_set last =
(let trynext = SUC_MODN 3 last
in
((trynext IN request_set)
= trynext
| (RoundRobin n request_set trynext))))

F V n request_set last.
RoundRobinArbiter n request_set last =
((request_set = {})
= NO_RESULT
| (RESULT (RoundRobin n request_set last)))

2.9.5 PriorityRequests

The function PriorityRequests filters out low priority requests for an output if there is a high
priority request for it. It also filters out the request signals from non-active inputs. It takes three
boolean words and returns a boolean word result. Each word contains one bit for each input
channel. Each bit is a flag indicating whether the property described by the word is true for
that input. The first word indicates whether the input is actively making a request. The second
indicates which inputs are high priority ones. The third indicates which are making requests for
the output under consideration. If there are any active, high priority requests for the output, then
the result indicates which they were. Otherwise the result indicates the low priority active requests
for the output.

I V actives priorities requests.
PriorityRequests actives priorities requests =
(1et high_priority_requests = priorities WAND actives WAND requests
in :
(let general_requests = actives WAND requests
in
((EXISTSABIT I high_priority_requests)
= high_priority_requests
| general_requests)))

2.9.6 RequestsToArbitrate

RequestsToArbitrate returns a set of requests given a boolean word with each bit indicating whether
the corresponding input is making a request. It scans each bit in turn. If it holds the value T, then
its position is added to the request set.

F (V requests. RequestsToArbitrate O requests = {}) A
(¥ n requests.
RequestsToArbitrate (SUC n) requests =
((BIT n requests)
= (n INSERT RequestsToArbitrate n requests)
| (RequestsToArbitrate n requests)))
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2.9.7 Successfullnput

Successfullnput chooses on a Round Robin basis the successful input, if any, for a single output
port. It takes as arguments a boolean word req, which indicates which input ports are making
requests for which output ports. It has one bit per input port. A value T in a bit position indicates
that the input port corresponding to that position is requesting the output of interest. It also takes
a natural number indicating the last successful input for this output. If there are no requests for
this output then a NO_RESULT value is returned. Otherwise the result is that given by performing
Round Robin arbitration on the set of requests.

F V last req.
Successfullnput last req =
(let request_set = RequestsToArbitrate (WORDLEN req) req
in
(RoundRobinArbiter (WORDLEN req) request_set last))

2.9.8 PickSuccessfullnput

PickSuccessfulInput chooses on a Round Robin basis the successful input, if any, for a given output
port. It takes as arguments a boolean word indicating which inputs are active, one which indicates
which inputs are currently high priority, and one indicating which inputs are requesting the output.
It also takes a natural number indicating the last successful input for the output. It first creates a
set of the highest priority active requests for the output. If there are no requests then a NO_RESULT
value is returned. Otherwise the result is that given by performing Round Robin arbitration on
the set of requests.

F V actives priorities requests last.
PickSuccessfullnput actives priorities requests last =
Successfullnput last (PriorityRequests actives priorities requests)

2.9.9 RequestsForPort

RequestsForPort converts a word of requested outputs (natural numbers) to a word indicating for

each position whether it was a request for a given output.

F V port requests. RequestsForPort port requests = WMAP ($= port) requests

2.9.10 ChooseSuccessfullnput

ChooseSuccessfulInput chooses on a Round Robin basis the successful input, if any, for a given
output port.

It takes boolean words giving the active and priority status of each input port, actives and
priorities respectively; a natural number word indicating which output port each input port is
requesting, requests; a natural number word giving the last successful input ports for the requested
output port, last; and the number of the output port of interest outportno.

The inputs requesting this output are determined using RequestsForPort. These values are used
to choose a successful input, with PickSuccessfulInput. If no input was requesting the output port
a "no result” is returned.
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F V actives priorities requests last outportmo.
ChooseSuccessfullnput actives priorities requests last outportno =
(let requests_for_port = RequestsForPort outportno requests
in
(PickSuccessfulInput actives priorities requests_for_port last))

2.9.11 NACK

NACK is the negative acknowledgement signal. It is low.

F NACK = F

2.9.12 FabricLast

FabricLast returns the new successful input after round robin arbitration for a given output port. It
takes boolean words giving the active and priority status of each input port, actives and priorities
respectively; a natural number word indicating which output port each input port is requesting,
requests; a natural number word giving the last successful input ports for the output port, 1ast;
and the number of the output port outportno. If no input was requesting this output port, the last
successful input port is unchanged, otherwise, it is the one chosen by round robin arbitration.

F V actives priorities requests last outportno.
FabricLast actives priorities requests last outportno =
(let successful_input =
ChooseSuccessfullnput actives priorities requests last outportno
in
((successful_input = NO_RESULT) = last | (ResultOf sticcessful_input)))

2.9.13 FabricDataOut

FabricDataOut returns the data to be output on a given output port. This will be the data input
on the chosen input port. If no input is requesting the output-port, then a default value is output.

FabricDataOut takes boolean words giving the active and priority status of each input port,
actives and priorities respectively; a natural number word indicating which output port each
input port is requesting, requests; a word of data — one data value for each input; a natural number
word giving the last successful input port for this output port, last; the value of the default data,
default.data and the number of the output port outportno.

A successful input port is chosen. If no input was requesting this output port, the default value
is output. Otherwise, the data value input from the chosen input port is output.

F V actives priorities requests data_ins last default_data outportno.
FabricDataOut actives priorities requests data_ins last default_data
outportno =
(let successful_input =
ChooseSuccessfullnput actives priorities requests last outportno
in
((successful_input = NO_RESULT)
= default_data
| (BIT (ResultOf successful_input) data_ins)))
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2.9.14 Fabrichck

FabricAck returns the acknowledgement result for a given input port. If the input ports request was
successful, then the result will be the acknowledgement from the requested output port. Otherwise,
it will be a NACK signal. ,

FabricAck takes boolean words giving the active and priority status of each input port, actives
and priorities respectively; a natural number word indicating which output port each input port is
requesting, requests; a natural number word giving the last successful input port for each output
port, lasts; a word of acknowledgements input — one acknowledgement for each output port —
ack-in; and the number of the input port of interest inportno.

The output port requested by the input port under consideration is determined as is the last
input granted for that output. The successful input port for the output port is then chosen. If
the chosen input port is the one of interest, the acknowledgement from the requested output port
results. If either a different input port or no input port was successful (indicating that the input
port under consideration was not active), then a negative acknowledgement results.

F V actives priorities requests lasts ack_ins inportno.
FabricAck actives priorities requests lasts ack_ins inportno =
(let out_requested = BIT inportmo requests
in
(let last = BIT out_requested lasts
in
(let successful_input =
ChooseSuccessfullnput actives priorities requests last
out_requested
in
(let ack_in = BIT out_requested ack_ins
in
((successful_input = RESULT inportno) = ack_in | NACK)))))

2.9.15 Accessing the fields of a header

ActiveOfHeader accesses the active bit (bit 0) of a header byte. PriorityOfHeader accesses the
priority bit (bit 1) of a header byte. RequestOfHeader accesses the 2 route bits (bits 2 and 3) of a
header byte.

F V header. ActiveOfHeader header = BIT 0 header

F V header. PriorityOfHeader header = BIT 1 header

F V header. RequestOfHeader header = BNVAL (WSEG 2 2 header)

2.9.16 Accessing the fields of a word of headers

Actives returns a word consisting of the active bits (bit 0) of each of the bytes in the given word
of headers. Priorities returns a word consisting of the priority bits (bit 1) of each of the bytes in
the given word of headers. Requests returns a word consisting of the route bits (bits 2 and 3) of
each of the bytes in the given word of headers.
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F Actives = WMAP ActiveOfHeader

b Priorities = WMAP PriorityOfHeader

F Requests = WMAP RequestOfHeader

2.9.17 Fabric4xilck

Fabric4x1Ack specifies the acknowledgement to be sent to the port with port number inportno. It is
given the header bytes headers, the previous grants made, lasts, and the acknowledgements from
each output port, ack-ins. Round robin arbitration is performed for each output. If the output
port that the input’s header is requesting chooses the input port, then the acknowledgement from
that output port is sent to the input port. Otherwise a negative acknowledgement is sent.

F V headers lasts ack_ins inportmo.
Fabric4xiAck headers lasts ack_ins inportno =
FabricAck (Actives headers) (Priorities headers) (Requests headers) lasts
ack_ins
inportno

2.9.18 Fabricéxilast

Fabric4xiLast specifies the new most recent successful input port for the output port outportno.
It is given the header bytes headers and the previous grant made last. Round robin arbitration is
performed for each output to determine the new successful input ports.

F V headers last outportno.
Fabric4xlLast headers last outportno =

FabricLast (Actives headers) (Priorities headers) (Requests headers) last
outportno

2.9.19 Fabric4xiDataOut

Fabric4xiDataOut specifies the data to be output for the output port outportno, given the default
data to be output if it is not requested default_data out. It is given the header bytes headers, the
previous grant made last. Round robin arbitration is performed for each output to determine the
new successful input ports.

F V default_data_out headers data_ins last outportno.
Fabric4xiDatalut default_data_out headers data_ins last outportno =
FabricDataOut (Actives headers) (Priorities headers) (Requests headers)
data_ins
last
default_data_out
outportno
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3 The Modules

In this section we describe each of the modules used in the design of the switching element. We
give an informal behavioural specification, followed by a formal HOL version. We then give the
original HDL description of the implementation followed by the corresponding HOL definition.
Where the module is additional to that used in the HDL, we give the extract of HDL to which it
corresponds. We highlight any major differences (other than surface syntax) in the descriptions.
For example we highlight where multi-level words are used instead of a flat list of signal names.
Finally we give the correctness theorems. For correctness theorems with complex proofs we give
an informal overview. HOL definitions and theorems are enclosed in boxes.

3.1 INBUF
3.1.1 The Behavioural Specification

INBUF is a generic input buffer. It joins an external wire to an internal one with no delay.

V¥ inpEXT inp. IN_BUF_SPEC (inpEXT,inp) = WIRE (inpEXT,inp)

3.1.2 The Structural Specification

The HDL and HOL descriptions are basically the same, though the size is not fixed in the HOL
definition. It is used for the frameStart and ackIn inputs.

F V inpEXT inp.
IN_BUF (inpEXT,inp) =
(FOR i ::(TO (SIGLEN inpEXT)). XiIBUF (SBIT i inpEXT,SBIT i inp))

Qudos HDL

FS := XiIBUF (frameStartEXT, frameStart);

Ai[0~-3] := XiIBUF (ackInEXT[0-3], ackIn[0-3]);

3.1.3 The Correctness Statement

The correctness statement is generic. It states that input buffers of any given size n are correct. The
proof is straightforward as are those for all the latches, and buffers. Most are done automatically
by a tactic written to prove correctness theorems about hardware consisting of duplicated elements.

FVn.
FOR inpEXT ::(PSIGLEN n).
FOR inp ::(PSIGLEN n). IN_BUF (inpEXT,inp) D IN_BUF_SPEC (inpEXT,inp)

3.2 OUT_BUF
3.2.1 The Behavioural Specification

OUT_BUF is a generic output buffer. It joins an internal wire to an external one with no delay.
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F V out outEXT. OUT_BUF_SPEC (out,outEXT) = WIRE (out,outEXT)

3.2.2 The Structural Specification

The HDL and HOL descriptions are basically the same, though the size is not fixed in the HOL
definition. It is used for the ackout output.

F V out outEXT.
OUT_BUF (out,outEXT) =
(FOR i ::(TO (SIGLEN out)). XiOBUF (SBIT i out,SBIT i outEXT))

Qudos HDL

Ao[0-3] := XiOBUF (ackOut[0-3], ackOutEXT[0-3]);

3.2.3 The Correctness Statement

The correctness statement is generic. It states that output buffers of any given size n are correct.

F V n.
FOR out ::(PSIGLEN n).
FOR outEXT ::(PSIGLEN n).
OUT_BUF (out,outEXT) DO OUT_BUF_SPEC (out,outEXT)

3.3 ILATCH
3.3.1 The Behavioural Specification

ILATCH is a generic input latch. It joins an external wire to an internal one with a single cycle
delay.

t V inpEXT inp. ILATCH_SPEC (inpEXT,inp) = DEL1 (inpEXT,inp)

3.3.2 The Structural Specification

The main difference between the HDL and HOL descriptions is that the clock input is omitted as it
is abstracted away from in the semantics. The size of the latter is not fixed in the HOL definition.
It is given by the size of the arguments. It is used for each byte of the d input of the fabric.

F V inpEXT inp.
ILATCH (inpEXT,inp) =
(FOR i ::(TO (SIGLEN inpEXT)). XiINFFd (SBIT i inpEXT,SBIT i inp))

Qudos HDL

I[0-31] := XiINFFd (dEXT[0-31], clock, d[0-311);
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3.3.3 The Correctness Statement

The correctness statement is generic. It states that input latches of any given size n are correct.

FVn.
FOR inpEXT ::(PSIGLEN n).
FOR inp :: (PSIGLEN n). ILATCH (ianXT,inp) D ILATCH_SPEC (ianXT,inp)

3.4 INLATCH
3.4.1 The Behavioural Specification

IN_LATCH is a generic input latch for structured two level words. It joins an external wire to an
internal one with a single cycle delay.

t V inpEXT inp. IN_LATCH_SPEC (inpEXT,inp) = DEL1 (inpEXT,inp)

3.4.2 The Structural Specification

The clock is omitted as it is abstracted away from in the semantics. The input and output are
structured into two level words. Their size is not fixed in the definition. It is used for the d input
of the switching element.

F V inpEXT inp.
IN_LATCH (inpEXT,imp) =
(FOR i ::(TO (SIGLEN inpEXT)). ILATCH (SBIT i inpEXT,SBIT i inp))

F YV inpEXT inp.
IN_LATCH_SIMPL (inpEXT,inp) =
(FOR i ::(TO (SIGLEN inpEXT)). ILATCH_SPEC (SBIT i inpEXT,SBIT i inp))

Qudos HDL

I[0-31] := XiINFFd (dEXT[0-31], clock, d[0-31]);

3.4.3 The Correctness Statement

The correctness statement is generic. It states that input latches of any given size n are correct.
The proof is straightforward. The implementation is built from non-primitive modules, so first a
correctness theorem which refers to the behaviour of these components is proved. This is done
automatically by a tactic written to prove correctness theorems about hardware consisting of
duplicated elements.

FV ao.
FOR inpEXT ::(PSIGLEN n).
FOR inp ::(PSIGLEN n).
IN_LATCH_SIMPL (inpEXT,inp) D IN_LATCH_SPEC (inpEXT,inp)
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It is then proved that a structural description based on the behaviour of the sub-modules implies
one based on their structure. This is fairly simple to do using the correctness theorems about the
sub-modules.

F V n.
FOR inpEXT ::(PSIG2LEN n m).
FOR inp ::(PSIG2LEN n m).
IN_LATCH (inpEXT,inp) D IN_LATCH_SIMPL (inpEXT,inp)

It is trivial to prove the final correctness theorem from the above theorems.

F Vn.
FOR inpEXT ::(PSIG2LEN n m).
FOR inp :: (PSIG2LEN n m).
IN_LATCH (ianXT,inp) D IN_LATCH_SPEC (ianXT,inp)

3.5 OLATCH
3.5.1 The Behavioural Specification

OLATCH is a generic output latch. It joins an internal wire to an external one with a single cycle
delay.

I V out outEXT. OLATCH_SPEC (out,outEXT) = DEL1 (out,outEXT)

3.5.2 The Structural Specification

The HDL and HOL descriptions are basically the same. The size is not fixed in the HOL definition
and the clock argument is omitted. 0LATCH is used for the dout output.

F V out outEXT.
OLATCH (out,outEXT) =
(FOR i ::(TD (SIGLEN out)). XiOUTFFd (SBIT i out,SBIT i outEXT))

Qudos HDL

0[0-31] := XiOUTFFd (dOut[0-31], clock, dOutEXT[0~31]);

3.5.3 The Correctness Statement

The correctness statement is generic. It states that output latches of any given size n are correct.

F Vn.
FOR out ::(PSIGLEN n).
FOR outEXT ::(PSIGLEN n).
OLATCH (out,outEXT) O OLATCH_SPEC (out,outEXT)
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3.6 OUT_LATCH
3.6.1 The Behavioural Specification

OUT_LATCH is a generic output latch for structured two level words. It joins an internal wire to an
external one with a single cycle delay. The words involved are structured.

F V out outEXT. OUT_LATCH_SPEC (out,outEXT) = DEL1 (out,outEXT)

3.6.2 The Structural Specification

The clock is omitted as it is abstracted away from in the semantics. The input and output are
structured into two level words. Their size is not fixed in the definition. DUT_LATCH is used for the
dOut output.

F V out outEXT.
OUT_LATCH (out,outEXT) =
(FOR i ::(TO (SIGLEN out)). OLATCH (SBIT i out,SBIT i outEXT))

F V out outEXT.
OUT_LATCH_SIMPL (out,outEXT) = .
(FOR i ::(TO (SIGLEN out)). OLATCH_SPEC (SBIT i out,SBIT i outEXT))

Qudos HDL

0[0-31] := XiOUTFFd (dOut[0-31], clock, dOutEXT[0-31]);

3.6.3 The Correctness Statement

The correctness statement is generic. It states that 2-level structured output latches are correct
whatever their size.

FVon
FOR outpEXT ::(PSIG2LEN n m).
FOR outp ::(PSIG2LEN n m).
OUT_LATCH (outpEXT,outp) D OUT_LATCH_SPEC (outpEXT,outp)

3.7 LATCH
3.7.1 The Behavioural Specification

LATCH is a generic delay latch. It delays a signal for one time unit.

F V inp out. LATCH_SPEC (inp,out) = DEL1 (inp,out)
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3.7.2 The Structural Specification

LATCH is an extra level of hierarchy over the HDL version. It is used several times in the design.
For example, in the top level fabric design, it is used with size 8 for each byte in the delay on the
input to the dataswitch and with size 4 for the delay on the input to the arbiter.

t V inp out.
LATCH (inp,out) = .
(FOR i ::(TO (SIGLEN inp)). XiDFFd (SBIT i inp,SBIT i out))

Qudos HDL

Pause[0-31] XiDFFd(d[0~31], clock, dPause[0-31]);

FFReq[0-15] XiDFFd(req[0-15], clock, ltReq[0-15]);

3.7.3 The Correctness Statement

The correctness statement is generic. It states that input latches of any given size n are correct.

F V n.
FOR inp ::(PSIGLEN n).
FOR out ::(PSIGLEN n). LATCH (inp,out) D LATCH_SPEC (inp,out)

3.8 RLATCH
3.8.1 The Behavioural Specification

RLATCH is a generic delay latch with reset. It delays a signal for one time unit. However, if the
signal disable is set, it outputs a zero word on the next cycle.

F V inp disable out.
RLATCH_SPEC ((inp,disable),out) =
(V t. out (t + 1) = ((disable t) => (ZEROW (SIGLEN out)) | (imp t)))

3.8.2 The Structural Specification

RLATCH is an extra level of hierarchy over the HDL version. It is used in the multiplexor element
of the dataswitch. Its size is not specified in the HOL definition. The clock signal is omitted from
the HOL definition.

F V inp disable out.
RLATCH ((inp,disable),out) =
(FOR i ::(TD (SIGLEN inp)). XiDFFrd ((SBIT i inp,disable),SBIT i out))

Qudos HDL

BFF[0-1] := XiDFFrd (mux[0-1], clock, outputDisable, q[0-1]);

29




3.8.3 ' The Correctness Statement

The correctness statement is generic. It states that latches of any given size n are correct. The

proof is straightforwa.rd. It is done largely automatically by the tactic written to prove correctness
 theorems about hardware consisting of duplicated eléments.- A small amount of additional work
was needed to deal with the reset. This was trivial.

F V n disable.
FOR inp ::(PSIGLEN n).
FOR out ::(PSIGLEN n). N
RLATCH ((inp,disable),out) D RLATCH_SPEC ((inp,disable),out)

3.9 PAUSE
3.9.1 The Behavioural Specification

PAUSE is a generic delay latch for structured 2-level words; that is words consisting of words of bits.
It delays a signal for one time unit.

- V d dPause. PAUSE_SPEC (d,dPause) = DEL1 (d,dPause)

3.9.2 The Structural Specification

PAUSE gives an extra level of hierarchy over the HDL version. It is used several times in the design.
For example, in the top level fabric design, it is used once of size 4 by 8 for the delay on the input
to the dataswitch and once of size 4 by 4 for the delay on the input to the arbiter. In HDL, the
size must be fixed in the definition so each occurrence was given separately. In HOL the size does
not need to be fixed, so a generic module can be defined. The clock signal is omitted from the
HOL version.

F V d dPause.
PAUSE (d,dPause) =
(FOR i ::(TD (SIGLEN d)). LATCH (SBIT i d,SBIT i dPause))

F V d dPause. -
PAUSE_SIMPL (d,dPause) =
(FOR i ::(TO (SIGLEN d)). LATCH_SPEC (SBIT i d,SBIT i dPause))

Qudos HDL

Pause[0-31]

XiDFFd(d[0~31], clock, dPause[0-31]);

FFReq[0~-15] XiDFFd(req[0-15], clock, 1tReq[0-15]);

3.9.3 The Correctness Statement

The correctness statement is generic. It states that 2-level structured latches are correct whatever
their size. The proof is straightforward. The implementation is built from non-primitive modules,
so as with IN_LATCH the proof is split into three simple parts. '
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FVn.
FOR 4 ::(PSIG2LEN n m).
FOR dPause ::(PSIG2LEN n m). PAUSE (d,dPause) D PAUSE_SPEC (d,dPause)

3.10 ACKOR
3.10.1 The Behavioural Specification

ACKOR combines the acknowledgements for a single input port into a single bit. If any output
acknowledges the input port, then an acknowledgement signal results.

F V ackTerm ackOut. :
ACKOR_SPEC (ackTerm,ackOut) = (V t. ackOut t = EXISTSABIT I (ackTerm t))

3.10.2 The Structural Specification

ACKOR corresponds almost directly to the HDL of the same name. XiOR is used as an OR gate with
a word input rather than 4 single bit inputs.

F V ackTerm ackDut. ACKOR (ackTerm,ackOut) = XiOR (ackTerm,ackOut)

Qudos HDL

DEF ACKOR (ackTerm[0..3]: IN; ackOut: I0);

BEGIN
OrAcks := XiOR4(ackTerm[0..3], ackOut);
END; .

3.10.3 The Correctness Statement

The correctness statement is trivial to prove. It uses a basic fact about words that folding
disjunction over a word (the definition of an OR gate) is equivalent to there existing a true bit in
the word (the specification). '

I V ackOut.
FOR ackTerm ::(PSIGLEN (SUC n)).
ACKOR (ackTerm,ackOut) D ACKOR_SPEC (ackTerm,ackOut)

3.11 ACKGEN
3.11.1 The Behavioural Specification

ACKGEN generates the acknowledgement signals for a single output port. If outputs are disabled
for this port or the external port is sending a negative acknowledgement, then all inputs are sent
a negative acknowledgement. Otherwise the granted input is sent an acknowledgement and the
others negative acknowledgements.
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F V n ackIn grant disabled.
AckGen n ackIn grant disabled =
((disabled V ~ ackIn) = (ZEROW n) | (WPVEC n grant))

F V ackIn grant disabled ackTerm.
ACKGEN_SPEC ((ackIn,grant,disabled),ackTerm) =
(V t. ackTerm t = AckGen (SIGLEN ackTerm) (ackIn t) (grant t) (disabled t))

3.11.2 The Structural Specification

ACKGEN corresponds to the HDL of the same name. The x and y signals are combined as a single
2-bit word grant. Additional wires are used to namethe two bits x and y. Otherwise the definitions
are effectively the same. -

i V ackIn grant disabled ackTerm.
ACKGEN ((ackIn,grant,disabled),ackTerm) =
(LOCAL x y xBar yBar.
LOCAL ackTermPre ::(PSIGLEN 4).
WIRE (SBIT 1 grant,x) A
WIRE (SBIT O grant,y) A
XiINV (x,xBar) A
XiINV (y,yBar) A
XiNAND (SWORD [xBar; yBar; ackInl,SBIT O ackTermPre) A
XiNAND (SWORD [xBar; y; ackIn],SBIT 1 ackTermPre) A
XiNAND (SWORD [x; yBar; ackIn],SBIT 2 ackTermPre) A
XiNAND (SWORD [x; y; ackIn],SBIT 3 ackTermPre) A
(FOR i ::(TO (SIGLEN ackTerm)).
XiNOR (SWORD [SBIT i ackTermPre; disabled],SBIT i ackTerm)))

Qudos HDL

DEF ACKGEN (ackIn, x, y, disabled: IN; ackTerm[0..3] : I0);

xBar, yBar, ackTermPre[0..3]: I0;

BEGIN
InvX := XiINV (x, xBar);
InvY := XiINV (y, yBar);

NandAckTermPre[0] := XiNAND3 (xBar, yBar, ackIn, ackTermPre[0]);

NandAckTermPre[1] := XiNAND3 (xBar, y, ackIn, ackTermPre[1]);
NandAckTermPre[2] := XiNAND3 (x, yBar, ackIn, ackTermPre[2]);
NandAckTermPre[3] := XiNAND3 (x, y, ackIn, ackTermPre[3]);

NorDis[0-3] := XiNOR2 (ackTermPre[0-3], disabled, ackTerm[0-3]);
END;

3.11.3 The Correctness Statement

Because the structural definition was not generic, the correctness theorem cannot be generic. The
size of grant is thus fixed to be 2, and that of ackTerm is fixed to be 4 in the correctness statement.
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Figure 1: The Implementation of ACKGEN
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Figure 2: The Implementation of ACKOR_N

F V ackIn disabled.
FOR grant +: (PSIGLEN 2).
FOR ackTerm ::(PSIGLEN 4).
ACKGEN ((ackIn,grant,disabled),ackTerm) DO
ACKGEN_SPEC ((ackIn,grant,disabled),ackTerm)

3.12 ACKOR_N
3.12.1 The Behavioural Specification

ACKORN combines the acknowledgements for all the input ports giving one bit per input port. If
any output acknowledges an input, then an acknowledgement signal is sent to that input.

F V ackTerm ackOut.
ACKOR_N_SPEC (ackTerm,ackOut) =
(V t. ackOut t = WMAP (EXISTSABIT I) (ackTerm t))

3.12.2 The Structural Specification

ACKOR.N gives an extra level of hierarchy over the HDL version. It describes the 4 different
occurrences of ACKOR. The input ackTerm is a word of 4 4-bit words. Each occurrence takes one
of these words as argument. Due to the extra flexibility of HOL a loop construct can be used to
describe this. This makes the structural description generic: the number of occurrences of ACKOR
does not need to be fixed. It must just be the size of the argument word.
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F V ackTerm ackOut.
ACKOR_N (ackTerm,ackOut) =
(FOR i ::(T0 (SIGLEN ackOut)). ACKOR (SBIT i ackTerm,SBIT i ackOut))

I V ackTerm ackOut.
ACKOR_N_SIMPL (ackTerm,ackOut) =
(FOR i ::(TD (SIGLEN ackOut)). ACKOR_SPEC (SBIT i ackTerm,SBIT i ackOut))

Qudos HDL

AckOr[0] := ACKOR (ackTerm[0..3], ackOut[0]);
AckOr[1] := ACKOR (ackTerm[4..7], ackOut[1]);
AckOr[2] := ACKOR (ackTerm[8..11], ackOut[2]);
AckOr[3] := ACKOR (ackTerm[12..15], ackOut[3]);

3.12.3 The Correctness Statement

As the structural description is generic with respect to word sizes, the correctness theorem can also
be generic. Two restrictions are placed on the sizes. First, ackOut must be the same size as the top
level of ackTerm—n. Second, the number of bits in each word of ackTerm must not be zero. This
is specified by giving the size as SUC m—the successor of m. This is sufficient because a successor
cannot be zero.

FVnnmn.
FOR ackTerm ::(PSIG2LEN n (SUC m)).
FOR ackOut ::(PSIGLEN n).
ACKOR_N (ackTerm,ackOut) D ACKOR_N_SPEC (ackTerm,ackOut)

3.13 ACKGEN_N
3.13.1 The Behavioural Specification

ACKGEN.N generates the acknowledgement signals for the output ports. If outputs are disabled for
a port or the corresponding external port is sending a negative acknowledgement, then all inputs
are sent a negative acknowledgement from that port. Otherwise the granted input is sent an
acknowledgement and the others negative acknowledgements from that port. The separate signals
for an input port are combined to give a single acknowledgement by a separate module—ACKOR_N.

F V ackIn grant outputDisable ackTerm.
ACKGEN_N_SPEC ((ackIn,grant,outputDisable),ackTerm) =
vV t.
ackTerm t =
MKW2 (SIGLEN ackTerm) (BSIGLEN ackTerm)
(A i
AckGen (SIGLEN ackTerm) (SBIT i ackIn t) (SBIT i grant t)
(SBIT i outputDisable t)))

35



ackIn[0]
4
grant{0]
4x2

outputDisable[0]
—_—D

4

ackln[1]
4
grant[1]
4x2

outputDisable[1]
—_—D

4

ackIn]2]
4
grant[2]
4x2

outputDisable[2]
—_——D

4

ackIn[3]
4
grant[3]
4x2

outputDisable[3]
—_—

4

ACKGEN

ACKGEN

ACKGEN

ACKGEN

ackTerm[0]
—

4x4

ackTerm([1]
4x4

ackTerm[2]
——————

4x4

ackTerm[3]
4x4

Figure 3: The Implementation of ACKGEN_N

3.13.2 The Structural Speciﬁcation/
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ACKGEN.N gives an extra level of hierarchy over the HDL version. It describes the 4 different
occurrences of ACKOR. The input ackIn is a 4-bit word. Each occurrence uses one bit. The xGrant
and yGrant inputs are combined into a single input grant which is a word of 4 2-bit words. The
output ackTerm consists of 4 4-bit words. The sizes are not explicitly fixed in the HOL definition
of ACKGEN.N. However, the definition of ACKGEN does fix the size of its arguments, so this implicitly
fixes the sizes of the inner words. For example, grant is fixed to be an n by 2 word for some n.



b V ackIn grant outputDisable ackTerm.
ACKGEN_N ((ackIn,grant,outputDisable),ackTerm) =
(FOR i ::(T0 (SIGLEN ackTerm)).
ACKGEN
((SBIT i ackIn,SBIT i grant,SBIT i outputDisable),SBITS i ackTerm))

F V ackIn grant outputDisable ackTerm.
ACKGEN_N_SIMPL ((ackIn,grant,outputDisable),ackTerm) =
(FOR i ::(TD (SIGLEN ackTerm)).
ACKGEN_SPEC
((SBIT i ackln,SBIT i grant,SBIT i outputDisable),SBITS i ackTerm))

Qudos HDL

AckGen[0-3] := ACKGEN (ackIn[0-3], xGrant[0-3], yGrant[0-3],
outputDisable[0-3],
ackTerm[0-3], ackTerm[4-7], ackTerm[8-11], ackTerm[12-15]);

3.13.3 The Correctness Statement

The correctness theorem proved is specifically for a 4 by 4 switching element as the word sizes are
fixed. It is assumed there are four input acknowledgement lines, four output disable lines, four
grant signals each of two bits, specifying one of four input ports, and the output consists of four
lines of four bits each.

F FOR ackIn outputDisable ::(PSIGLEN 4).
FOR grant :: (PSIG2LEN 4 2).
FOR ackTerm ::(PSIG2LEN 4 4).
ACKGEN_N ((ackIn,grant,outputDisable),ackTerm) DO
ACKGEN_N_SPEC ((ackIn,grant,outputDisable),ackTerm)

3.14 ACK
3.14.1 The Behavioural Specification

ACK is the top-level specification of the Acknowledgement unit of the fabric. It produces the
acknowledgement signals from the results of arbitration. It takes as input a word holding the
acknowledgement signals from the output ports ackIn, a word indicating which request was granted
for each output port grant, and a word of disable signals outputDisable, with one bit for each output
port. It outputs a word of acknowledgement signals, ackOut, with one bit for each input port.
The bit of ackOut corresponding to each input port is specified separately using Ackn. It gives
the acknowledgement signal for a single input port on a single clock cycle. The input port receives
a positive acknowledgement provided it has been selected by some output port, i; the disable signal
is not asserted indicating that the grant is valid at that time and provided the acknowledgement
signal from the granted output port is positive. Otherwise a negative acknowledgement is seen.
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Figure 4: The Implementation of ACK

F V num_of_outs inportno ackIn grant disabled.
Ackn num_of _outs inportno ackIn grant disabled =
(LOCAL i.
i < num_of _outs A
~ (BIT i disabled) A
BIT i ackIn A
(BNVAL (BIT i grant) = inportno))

F V ackIn grant outputDisable ackOut.
ACK_SPEC ((ackIn,grant,outputDisable),ackOut) =
vV t.
ackOut t =

MKW (SIGLEN ackOut)
(A i. Ackn (SIGLEN ackOut) i (ackIn t) (grant t) (outputDisable t)))

3.14.2 The Structural Specification

ACK gives an extra level of hierarchy over the HDL version. It combines all the acknowledgement
hardware. The word sizes are fixed to be those of the 4x4 switching element.

F V ackIn grant outputDisable ackOut.
ACK ((ackIn,grant,outputDisable),acklut) =
(LOCAL ackTerm ::(PSIG2LEN 4 4).
ACKGEN_N ((ackIn,grant,outputDisable),ackTerm) A
ACKOR_N (ackTerm,ackOut))

F V ackIn grant outputDisable ackOut.
ACK_SIMPL ((ackIn,grant,outputDisable),ackOut) =
(LOCAL ackTerm ::(PSIG2LEN 4 4).
ACKGEN_N_SPEC ((ackIn,grant,outputDisable),ackTerm) A
ACKOR_N_SPEC (ackTerm,ackOut))

Qudos HDL
AckGen[0-3] := ACKGEN (ackIn[0-3], xGrant[0-3], yGrant [0-3],
outputDisable[0-3],
ackTerm[0-3], ackTerm[4~7], ackTerm[8-11], ackTerm[12-15]);
AckOr[0] := ACKOR (ackTerm[0..3], ackOut[0]);
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* AckOr[1]
Ack0r[2]
Ack0r[3]

ACKOR (ackTerm[4..7], ackOut[1]);
ACKOR (ackTerm[8..11], ackOut[2]1);
ACKOR (ackTerm[12..15], ackOut[3]);

3.14.3 The Correctness Statement

F FOR ackIn ackOut outputDisable ::(PSIGLEN 4).
FOR grant ::(PSIG2LEN 4 2).
ACK ((ackIn,grant,outputDisable),ackOut) D
ACK_SPEC ((ackIn,grant,outputDisable),ackOut)

3.15 DMUX4T2FFC
3.15.1 The Behavioural Specification

DMUX4T2FFC selects 2 bits from a 4-bit word d. If outputDisable is set then a zero word is output.
Otherwise, if signal y is false, it returns the 0** and 27¢ bits. If signal y is true, it returns the 1%
and 37¢ bits. There is a single cycle delay.

F V d y outputDisable gq.
DMUX4T2FFC_SPEC ((d,y,outputDisable),q) =
vV t.
q (t+1) =
((outputDisable t)
= (ZEROW 2)
| (WORD [BIT (BV (y t) + 2) (d t); BIT (BV (y t)) (d t)1)))

3.15.2 The Structural Specification

DMUX4T2FFC corresponds directly to the HDL version. The CLB statement is omitted since it is just
a layout command. RLATCH is used for the flip-flops.

F V d y outputDisable q.
DMUX4T2FFC ((d,y,outputDisable),q) =
(LOCAL yBar.
LOCAL mux ::(PSIGLEN 2).

XiINV (y,yBar) A
A0 ((SBIT 0 d,yBar,SBIT 1 d,y),SBIT 0 mux) A
AD ((SBIT 2 d,yBar,SBIT 3 d,y),SBIT 1 mux) A
RLATCH ((mux,outputDisable),q))

F V d y outputDisable q.
DMUX4T2FFC_SIMPL ((d,y,outputDisable),q) =
(LOCAL yBar.
LOCAL mux ::(PSIGLEN 2).

XiINV (y,yBar) A
A0 ((SBIT O d,yBar,SBIT 1 d,y),SBIT O mux) A
A0 ((SBIT 2 d,yBar,SBIT 3 d,y),SBIT 1 mux) A
RLATCH_SPEC ((mux,outputDisable),q))
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Figure 5: The Implementation of DMUX4T2FFC

Qudos HDL

DEF DMUX4T2FFC (d[0..3], clock, y, outputDisable: IN; q[0..1]: I0);
yBar, mux[0..1] : IO;

BEGIN
Clb := XiCLBMAP5i2okr (d[0..1], y, d[2..3], clock,
outputDisable, q[0..1]);
InvY := XiINV(y, yBar);

B[0] := A0 (d[0], yBar, d[1]l, y, mux[0]);
B[1] := AD (d[2], yBar, d[3], y, mux[1]);
BFF[0-1] := XiDFFrd (mux[0-1], clock,
outputDisable, q[0-1]);
END;

3.15.3 The Correctness Statement

t FOR q ::(PSIGLEN 2).
DMUX4T2FFC ((d,y,outputDisable),q) D
DMUX4T2FFC_SPEC ((d,y,outputDisable),q)

3.16 DMUX4T2
3.16.1 The Behavioural Specification

DMUX4T2 is a 1-bit multiplexor, selecting either bit 0 or bit 1 of each of the words within a structured
word. Which is selected depends on the value of the boolean signal x. It does not have a disable
mode. It is not clocked and so causes no delay at this level of timing abstraction. It is defined
using an auxiliary function Mux.
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Figure 6: The Implementation of DMUX4T2

FVzxd. Mux x d = BITS (BV x) d

F V d x d0ut. DMUX4T2_SPEC ((d,x),d0ut) = (V t. d0ut t = Mux (x t) (d t))

3.16.2 The Structural Specification

DMUX4T2 corresponds to the HDL version. The CLB statement is omitted. The argument d is now
a structured word holding 2 words of 2 bits each. This allows the two occurrences of A0 to be

combined using loop construct.

FV d x dOut.
DMUX4T2 ((d,x),d0ut) =
(LOCAL xBar.
XiINV (x,xBar) A
(FOR i ::(TO 2).
A0 ((SBIT O (SBIT i d),xBar,SBIT 1 (SBIT i d),x),SBIT i dOut)))

Qudos HDL

DEF DMUX4T2 (d[0..3], x: IN; dOut[0..1]: I0);
xBar : I0;

BEGIN
Clb := XiCLBMAP5i20 (d[0..1], x, d[2..3], dOut[0..1]);

InvX := XiINV(x, xBar);
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A0 (af0], xBar, d[1], x, dOut[0]);
A0 (d[2], xBar, d[3], x, dOut[1l);

B[O] :
B[1] :
END;

3.16.3 The Correctness Statement

FV x.
FOR 4 ::(PSIG2LEN 2 2).
FOR dOut ::(PSIGLEN 2).
DMUX4T2 ((d,x),d0ut) D DMUX4T2_SPEC ((d,x),d0Out)

3.17 DMUX2B4CAll
3.17.1 The Behavioural Specification

DMUX2B4CA11 chooses the grant®” bit of each of the 2 words of which d consists. The two bits making
up grant are sampled at different times. If outputDisable is set then a zero word is output. There
is a single cycle delay.

It is defined in terms of the auxiliary function DisableMux2. If a disable signal outputDisable
is set then the given default word is returned. Otherwise the result is a word composed of one
bit from each of the words. The bit chosen is the same for each word and is given by the select
signal. The select signal is converted to a number using the given conversion function, to-num (here
BNVAL).

F V to_num default d select outputDisable.
) DisableMux2 to_num default d select outputDisable =
(outputDisable => default | (BITS (to_num select) d))

F V d grant outputDisable dOut.
DMUX2B4CA11_SPEC ((d,grant,outputDisable),dOut) =
v t.
dOut (t + 1) =
DisableMux2 BNVAL (ZEROW 2) (d t)
(WORD [BIT 1 (grant (t + 1)); BIT 0 (grant t)])
(outputDisable t))

3.17.2 The Structural Specification

DMUX2B4CA1l corresponds to the HDL version. The signals d0 and d1 have been combined into a
word of 2 4-bit words, d. This allows the two occurrences of DMUXAT2FFC to be combined. Similarly,
x and y have been combined into a 2-bit word, grant. This makes the semantics cleaner as it can
be given in terms of the number represented by grant. Finally, the signals q0 and q1 have been
combined into a word of 2 2-bit words, q.
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Figure 7: The Implemenﬁa,tion of DMUX2B4CA1l

I V d grant outputDisable dOut.
DMUX2B4CA11 ((d,grant,outputDisable),dOut) =
(LOCAL x y.
LOCAL q ::(PSIG2LEN 2 2).

WIRE (SBIT 1 gramt,x) A
WIRE (SBIT O grant,y) A
(FOR i ::(TO 2). DMUX4T2FFC ((SBIT i d,y,outputDisable),SBIT i q)) A
DMUX4T2 ((q,x),d0ut))

F V d grant outputDisable dOut.
DMUX2B4CA11_SIMPL ((d,grant,outputDisable),dOut) =
(LOCAL x y.
LOCAL q ::(PSIG2LEN 2 2).
WIRE (SBIT 1 grant,x) A
WIRE (SBIT O grant,y) A
(FOR i ::(TO 2).
DMUX4T2FFC_SPEC ((SBIT i d,y,outputDisable),SBIT i Q) A

DMUX4T2_SPEC ((q,x),d0ut))

Qudos HDL

DEF DMUX2B4CAll (do[0..3], d1[0..3], clock, x, y, outputDisable: IN;
dout[0..1]: I0);

qofo0..1], qi[0..1]: ID;

BEGIN
PO] := DMUX4T2FFC (d0[0..8], clock, y, outputDisable, q0[0..1]);
P[1] := DMUX4T2FFC (d1[0..3], clock, vy, outputDisable, q1[0..1]);
FB := DMUX4T2 (q0[0..1], q1[0..1], x, dOut[0..11);

END;
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3.17.3 The Correctness Statement

b V outputDisable.
FOR d ::(PSIG2LEN 2 4).
FOR q y ::(PSIGLEN 2).
DMUX2B4CA1l ((d,y,outputDisable),q) D
DMUX2B4CAl11_SPEC ((d,y,outputDisable),q)

3.18 DATASWITCHC
3.18.1 The Behavioural Specification

DATASWITCHC chooses the grant® word from the 4 words of which d consists. The two bits of which
grant consists are sampled at different times. If outputDisable is set then a zero word is output.
There is a single cycle delay.

It is defined in terms of DisableMux. If a disable signal outputDisable is set then the given
default word is returned. Otherwise the word or signal in the bit position of data 4 indicated by
the select signal is returned. The select signal is converted to a number using the given conversion
function to.num, here BNVAL. )

b V to_num default d select outputDisable.
DisableMux to_num default d select outputDisable =
(outputDisable => default | (BIT (to_num select) d))

F V d grant outputDisable q.
DATASWITCHC_SPEC ((d,grant ,outputDisable) ,q) =
vV t.
q (t +1) =
DisableMux BNVAL (ZEROW (SIGLEN q)) (d t)
(WORD [BIT i (grant (t + 1)); BIT 0 (grant t)])
(outputDisable t))

3.18.2 The Structural Specification

DATASWITCHC differs in several ways from the HDL. The data input is structured into 8-bit bytes
instead of 32 bits. Thus the bit positions are the same modulo 8. For example, the HDL (d[o],
d[e], dl[1e], d[241,...) becomes SBITS 0 d (though see below), since each of those bits is the
zeroth bit of its byte. The individual bits are combined into a single 4-bit word. The x and y
signals are passed as a single 2-bit word grant.

The 4 occurrences of d are combined into a single parameterised call. For example, the HDL
(afol, al8l, 4al16], d[241,...) actually becomes SBITS (2 * i) d where i is 0 and similarly for
(d[2], df10], d[18], da[26],...) where i is 1. These are combined into a single word of 2 4-bit
words. Note the order they are written is reversed. This is because the HOL word library numbers
words from the right hand side.
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Figure 8: The Implementation of DATASWITCHC
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F V d grant outputDisable q.
DATASWITCHC ((d,grant,outputDisable),q) =
(FOR i ::(TO (SIGLEN d)).
DMUX2B4CAl1l
((SWORD [SBITS (2 * i + 1) d; SBITS (2 * i} d],grant,outputDisable),
SWSEG 2 (2 * i) q))

F V 4 grant outputDisable q.
DATASWITCHC_SIMPL ((d,grant,outputDisable),q) =
(FOR i ::(TO (SIGLEN d)).
DMUX2B4CAl11_SPEC
((SWORD [SBITS (2 * i + 1) d; SBITS (2 * i) d],grant,outputDisable),
SWSEG 2 (2 * i) q))

Qudos HDL

(* Version that allows all bits to be cleared )
DEF DATASWITCHC (d4[0..31], clock, x, y, outputDisable: IN; q[0..7]: I0);
BEGIN
Pr[0] := DMUX2B4CA1l (d[0], d[8], da[16], d[24],
da[1], a[el, dl171, d[25],
clock, x, y, outputDisable, q[0l, q[1]);

Pr[1] DMUX2B4CAll (d[2], d[10], d[i8], d[26],
d[3]1, dl11], d[19], d[27],

clock, x, y, outputDisable, q[21, qf31);

Pr[2]

DMUX2B4CAll (d[4], da[12], d[20], d[2s],
d[s], d[13], d[21], d[29],
clock, x, y, outputDisable, q[4], q[5]);

Pr[3]

DMUX2B4CA1l (d[lel, dali4], d4[22], d[30],

d[71, dalis], d[23], d[31],

clock, x, y, outputDisable, q[6], q[7]);
END;

3.18.3 The Correctness Statement

F FOR d ::(PSIG2LEN 4 8).
FOR q ::(PSIGLEN 8).
FOR grant ::(PSIGLEN 2).
DATASWITCHC ((d,grant,outputDisable),q) D
DATASWITCHC_SPEC ((d,grant,outputDisable),q)

3.19 DATASWITCH.N
3.19.1 The Behavioural Specification

DATASWITCH.N chooses a word to be output to each of the output ports. For each output there is
a separate grant and disable word within grant and outputDisable, respectively. For each output
the grant®® word from d is selected. If outputDisable is set then a zero word is output. There is a
single cycle delay.

46



d
4 x8
grant[0] dOut[0]
— 3 | DATASWITCHC g
outputDisable[0]
1

d
: 4x8 _
grant[1] dOut[1]
— 5 | DATASWITCHC 8
outputDisable[1]
1

d
4 x8
grant[2] dOut[2]
% DATASWITCHC )
outputDisable[2]
1

d
4 x8

grant[3] dOut[3]
T> DATASWITCHC ‘8—>

outputDisable[3]
1

Figure 9: The Implementation of DATASWITCH._N

F V d grant outputDisable dOut.
DATASWITCH_N_SPEC ((d,grant,outputDisable),dOut) =
v t.
d0ut (¢t + 1) =
MKW (SIGLEN dOut)
(A i
DisableMux BNVAL (ZEROW (BSIGLEN dOut)) (d t)
(WORD [BIT 1 (BIT i (grant (t + 1))); BIT 0 (BIT i (grant )1
(BIT i (outputDisable t))))

3.19.2 The Structural Specification

DATASWITCH.N gives an extra level of hierarchy over the HDL version. It describes the 4 different
occurrences of the DATASWITCH. The clock signal is omitted as it is abstracted away from in the
semantics. The signals xGrant and yGrant are combined into a word of 4 2-bit words, grant. The
dPause and dOut signals are grouped into words of bytes.
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F V d grant outputDisable dOut.
DATASWITCH_N ((d,grant,outputDisable),d0ut) =
(FOR i ::(TD (SIGLEN dOut)).
DATASWITCHC ((d,SBIT i grant,SBIT i outputDisable),SBIT i dOut))

F V d grant outputDisable dOut.
DATASWITCH_N_SIMPL ((d,grant,outputDisable),dOut) =
(FOR i ::(TO0 (SIGLEN dOut)).
DATASWITCHC_SPEC ((d,SBIT i grant,SBIT i outputDisable),SBIT i dOut))

Qudos HDL

DSw[0] DATASWITCH (dPause[0..31], clock, xGrant[0], yGrant[0],
outputDisable[0], dOut[0..7]);
DSw[1] := DATASWITCH (dPause[0..31], clock, xGrant[1], yGrant[1],

outputDisable[1], dOut[8..15]);

DSw[2] := DATASWITCH (dPause[0..31], clock, xGramt[2], yGrant [2],
outputDisable[2], dOut[16..23]);
DSw[3] := DATASWITCH (dPause[0..31], clock, xGrant[3], yGrant[3],

outputDisable[3], dOut[24..31]);

3.19.3 The Correctness Statement

F FOR grant ::(PSIG2LEN 4 2).
FOR dOut 4 ::(PSIG2LEN 4 8).
DATASWITCH_N ((d,grant,outputDisable),d0ut) D
DATASWITCH_N_SPEC ((d,grant,outputDisable),dOut)

3.20 PAUSE_DATASWITCH
3.20.1 The Behavioural Specification

PAUSE DATASWITCH chooses a word to be output to each of the output ports. It delays the data
long enough for an arbitration decision to be made. For each output there is a separate grant and
disable word within grant and outputDisable, respectively. For each output the grant® word from
d is selected. If outputDisable is set then a zero word is output. There is a two cycle delay on the
data line, though the control lines affect the output with only a single cycle delay.

F V d grant outputDisable dOut.
PAUSE_DATASWITCH_SPEC ((d,grant,outputDisable),dOut) =
v t.
dOut (t + 2) =
MKW (SIGLEN dOut)
i,
DisableMux BNVAL (ZEROW (BSIGLEN dOut)) (d t)
(WORD
[BIT 1 (BIT i (grant (t + 2))); BIT 0 (BIT i (gramt (t + 1)))])
(BIT i (outputDisable (t + 1)))))
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Figure 10: The Implementation of PAUSE_DATASWITCH

3.20.2 The Structural Specification

PAUSE_DATASWITCH gives an extra level of hierarchy over the HDL version. It groups the Dataswitch
and Pause register together into a single unit.

F V d grant outputDisable dOut.
PAUSE_DATASWITCH ((d,grant,outputDisable),d0ut) =
(LOCAL dPause ::(PSIG2LEN 4 8).
PAUSE (d,dPause) A DATASWITCH_N ((dPause,grant,outputDisable),dOut))

F V d grant outputDisable dOut.
PAUSE_DATASWITCH_SIMPL ((d,grant,outputDisable),dOut) =
(LOCAL dPause ::(PSIG2LEN 4 8).
PAUSE_SPEC (d,dPause) A
DATASWITCH_N_SPEC ((dPause,grant,outputDisable),d0ut))

Qudos HDL

Pause[0-31] := XiDFFd(d[0-31], clock, dPause[0-31]1);

DSw[0] := DATASWITCH (dPause[0..31], clock, xGrant[0], yGrant[0],
outputDisable[0], dOut[0..7]);
DSw[1] := DATASWITCH (dPause[0..31], clock, xGrant[1l, yGrant[1],
outputDisable[1], dOut[8..15]);
DSw[2] := DATASWITCH (dPause[0..31], clock, xGrant[2], yGrant [2],
outputDisable[2], dOut[16..23]);
DSw[3] := DATASWITCH (dPause[0..31], clock, xGrant[3], yGrant [3],

outputDisable[3], dOut[24..31]);

3.20.3 The Correctness Statement

F FOR grant :: (PSIG2LEN 4 2).
FOR dDut 4 ::(PSIG2LEN 4 8).
PAUSE_DATASWITCH ((d,grant,outputDisable),dOut) D
PAUSE_DATASWITCH_SPEC ((d,grant,outputDisable),d0ut)

3.21 TIMING
3.21.1 The Behavioural Specification

TIMING determines when the arbitration unit is triggered. The routeEnable signal is normally low.
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After a frameStart signal it waits until any of the active bits go high, indicating the start of a
packet. On the next cycle routeEnable goes high for one cycle, returning to low until the next
frame. This is described by the abstract specification TIMING_SPEC. This specification is at the
frame time level. It defines the output values over the period of a frame.

F V frameStart active routeEnable.

TIMING_SPEC ((frameStart,active),routeEnable) =

(V ts ta te.
~ (frameStart 0) A
(V t. ~ (frameStart (t + 1)) V ~ (EXISTSABIT I (active t))) D
(V t. ~ (frameStart t A routeEnable t)) A
(AFRAME2 ts ta te frameStart active D
STABLE (s + 1) (ta + 1) routeEnable F A
(routeEnable (ta + 1) = T) A
STABLE (ta + 2) (te + 1) routeEnable F) A
(IFRAME ts te frameStart active D
STABLE (ts + 1) (te + 1) routeEnable F))

The routeEnable signal must not occur at the same time as the frameStart signal if the arbiter
is to function correctly. If it were to occur, TIMING would act as though it had received a cell in the
previous frame, but the arbiter would act as though the cell was in the next frame. We include
this condition in the specification. It can be ensured if an active bit does not arrive in the cycle
prior to a frame start. An explicit assumption in the specification states that it does not occur.

Vt. ~(frameStart (t+1)) V ~(EXISTSABIT I (active t))

We also assume that the frame start does not occur at the initial time, as if so, the internal state
on power up could be such that routeEnable and framestart do occur together.

~(frameStart 0)

Furthermore, the frame start signal should not arrive at the same time as the active signal. If
this occurs the active signal will just be ignored. This is because at the time ta+1 the route enable
signal should go high for one cycle. However, at time ts+1 the frame start forces it low. Thus if
ts=ta the active signal is ignored. This is reflected in the way an active frame is defined. AFRAME2
includes the clause ts < ta.

A more concrete specification, closer to the implementation is given by TIMING_SPEC2. This
specification is at the clock cycle level. It gives a simple logical expression relating the values of
the outputs on a cycle to the values on the inputs and outputs on the previous cycle. It describes
the unit in terms of 2 bits of state xy. It is normally in a RUN state (xy = 00). On a frameStart
signal it moves to a WAIT state (xy = 01). On an active signal it moves to a ROUTE state (xy
= 11). One cycle later it returns to the RUN state. routeEnable corresponds to the x signal so is
high only when in the ROUTE state. This specification allows the correctness proof to be split
into two much simpler parts.

F V y frameStart active x.
TIMING_SPEC2 y ((frameStart,active),x). =
(¥ t.
(x (t +1) =
~ (x t) Ay t A EXISTSABIT I (active t) A ~ (frameStart t)) A
(y (6 +1) =~ (xt) Ayt V frameStart t))
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Figure 11: The Implementation of TIMING

3.21.2 The Structural Specification

TIMING corresponds almost directly to the HDL macro.

F V frameStart active x.

TIMING ((frameStart,active),x) =

(LOCAL xBar y dx dy yterm anyActive frameStartBar.
XiOR (active,anyActive) A
XiINV (frameStart,frameStartBar) A
XiAND (SWORD [xBar; yl,yterm) A
XiOR (SWORD [yterm; frameStart],dy) A
XiAND (SWORD [xBar; y; anyActive; frameStartBar],dx) A
XiDFF4d (dx,x) A
XiINV (x,xBar) A
XiDFFd (dy,y))

Qudos HDL

DEF TIMING (frameStart, clock, active [0..3]: IN;
x (* = routeEnable *) : I0);

xBar, y, dx, dy, yterm,
anyActive, frameStartBar : I0;

BEGIN
OrAnyActive := XiOR4 (activel[0..3], anyActive);
InvFS := XiINV (frameStart, frameStartBar);

AndyTerm := XiAND2 (xBar, y, yterm);
0rDy := XiDR2 (yterm, frameStart, dy);

AndDx := XiAND4 (xBar, vy, anyActive, frameStartBar, dx);
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FFx := XiDFFd (dx, clock, x);
InvX := XiINV (x, xBar);

FFy := XiDFFd (dy, clock, y);
END;

3.21.3 The Correctness Statement

The correctness of the timing module is proved in several parts. First, it is proved that the
implementation implements the second specification given above for some value of the internal
state y. This is trivial.

b V frameStart x.
FOR active ::(PSIGLEN (SUC n)).
TIMING ((frameStart,active),x) D
(3 y. TIMING_SPEC2 y ((frameStart,active),x))

We then prove that the assumptions made in the first specification, together with the
specification of the routeEnable signal from the second lower level specification (where it is named
x) imply that the frameStart and routeEnable signals never occur together. This is again very
simple.

F V frameStart routeEnable active.
(v t.
routeEnable (t + 1) =
~ (routeEnable t) A
ytA
EXISTSABIT I (active t) A
~ (frameStart t)) A
~ (frameStart 0) A
(V t. ~ (frameStart (t + 1)) V ~ (EXISTSABIT I (active t))) D
(V t. ~ (frameStart t A routeEnable t))

We then prove that the second specification implies the first, for some value of the internal
state.

F V frameStart x.
FOR active ::(PSIGLEN (SUC n)).
(3 y. TIMING_SPEC2 y ((frameStart,active),x)) O
TIMING_SPEC ((frameStart,active),x)

The proof splits into several cases corresponding to the separate clauses in the high level
specification. The first corresponds to the requirement that the frameStart and routeEnable signals
never occur together and so follows from the above theorem. The remaining cases are concerned
with the behaviour over a frame. One case corresponds to the behaviour over an inactive cycle.
The remaining three correspond to active cycles: up to the active time, on the cycle just after the
active time and from this point to the end of the frame. We give an informal overview of why
these cases hold below.

In an inactive frame, or active frame up to the active time, the routeEnable signal is forced
low because the active signal is low on the previous cycle throughout the period. At time ta the
routeEnable signal is low, the active signal is high in at least one bit, and the frameStart signal is
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low. Therefore from the definition TIMING_SPEC2, for the routeEnable signal to be high at ta+1, we
need (y ta) to be high. This will be so because it is set by the frameStart signal, and once it is
high remains so whilst routeEnable is low. Thus the routeEnable signal will be high at time ta+1.
Because routeEnable is high at time ta+1, it will be low at time ta+2. It will then remain low for
the remainder of the cycle because y is low.

Finally the above lemmas are trivially combined to give the final correctness theorem that the
structural specification implies the behavioural specification in terms of frames.

F V frameStart x. '
FOR active ::(PSIGLEN (SUC n)).
TIMING ((frameStart,active),x) O TIMING_SPEC ((frameStart,active),x)

3.22 PRIFILUNIT
3.22.1 The Behavioural Specification

PRIFILUNIT performs priority filtering on the request of a single input port for a single output port.
It takes as input two booleans, hiR and genR. The first indicates whether the input port in question
is making a high priority request for this output port. The second indicates whether it is making
a general requesf. The status of the requests from each of the other ports hibtherk is also input.
If there are any high priority requests for this output port, then the high priority value for this
input port is output on the boolean signal req, otherwise the general request value is output.

I V hiR genR hiOtherR req.
PRIFILUNIT_SPEC ((hiR,genR,hiOtherR),req) =
(VY t. req t = ((hiR t V EXISTSABIT I (hiOtherR t)) = (hiR t) | (genR t)))

3.22.2 The Structural Specification

PRIFILUNIT corresponds directly to the HDL macro.

F V hiR genR hiOtherR req.
PRIFILUNIT ((hiR,genR,hi0therR),req) =
(LOCAL notAnyHi lowOK.
XiNOR (hiOtherR,notAnyHi) A
XiAND (SWORD [notAnyHi; genR],lowOK) A
XiOR (SWORD [lowOK; hiR],req))

Qudos HDL

DEF PRIFILUNIT (hiR, genR, hiOtherR[0..2]: IN; req: I0);
notAnyHi, lowOK: IO;

BEGIN
NorAnyHi := XiNOR3 (hiOtherR[0..2], notAnyHi);
AndLowOK := XiAND2 (notAnyHi, genR, lowOK);
OrReq := XiOR2 (lowOK, hiR, req);

END;

53



hiOtherR notAnyHi
_—

XiNOR T
3
genR . lowOK
1 XiAND 1
hiR req
XiOR [—>
1 1

Figure 12: The Implementation of PRIFILUNIT

3.22.3 The Correctness Statement

The correctness theorem is generic with respect to the size of word hiGtherR. It holds provided
there is at least one other port competing for resources.

F V hiR genR req n.
FOR hiOtherR ::(PSIGLEN (SUC n)).
PRIFILUNIT ((hiR,genR,hiltherR),req) O
PRIFILUNIT_SPEC ((hiR,genR,hiOtherR),req)

3.23 PRIFIL4ACLB_SPEC
3.23.1 The Behavioural Specification

PRIFIL4CLB performs priority filtering for a single output port. It takes as input two words, hiR
and genR. Each contains one bit for each input port. hiR indicates which input ports are making
high priority requests for this output port. genR indicates which are making general requests. If
there are any high priority requests for this output port, then the high priority requests are output
to req, otherwise the general requests are output. Each bit position of req indicates the request
from one input port.

PriFilt gives the function of a single slice (that is for one output port) of the priority filter for
a single clock cycle.

F V hiR genR. PriFilt hiR genR = ((EXISTSABIT I hiR) = hiR | genR)

F V hiR genR req.
PRIFILACLB_SPEC ((hiR,genR),req) = (V t. req t = PriFilt (hiR t) (genR t))
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Figure 13: The Implementation of PRIFIL4CLB

3.23.2 The Structural Specification

PRIFILACLB corresponds to the HDL macro of the same name. The 4 instances of PRIFILUNIT are
replaced by a single higher-order call. To allow this, the function SREMBIT is used. It returns a
word of size one smaller than its argument, with the given bit removed.

F V hiR genR req.
PRIFIL4CLB ((hiR,genR),req) =
(FOR i ::(TO (SIGLEN req)).
PRIFILUNIT ((SBIT i hiR,SBIT i genR,SREMBIT i hiR),SBIT i req))

F V hiR genR regq.
PRIFIL4CLB_SIMPL ((hiR,genR),req) =
(FOR i ::(TO (SIGLEN req)).
PRIFILUNIT_SPEC ((SBIT i hiR,SBIT i genR,SREMBIT i hiR),SBIT i req))

Qudos HDL

DEF PRIFILACLB (hiR[0..3], genR[0..3]: IN; req[0..3]: I0);

55




BEGIN

PriUnit[0] := PRIFILUNIT (hiR[0], genR[0], hiR[1..3], req[0l);
PriUnit[1] := PRIFILUNIT (hiR[1], genR[l], hiR[0], hiR[2..3], req[i]);
PriUnit[2] := PRIFILUNIT (hiRr[2], genR[2], hiR[o0..1], hiR[3], req[2]);
PriUnit[3] := PRIFILUNIT (hiR[3], genR[3], hiR[0..2], reql3]);

END;

3.23.3 The Correctness Statement

The correctness theorem is proved in three stages. First we prove a generic theorem that the
structural specification given in terms of the specification of its parts implements the behavioural
specification. This is a generic theorem in which the word sizes of the inputs and outputs is not
specified. All that is important is that they have the same non-zero size.

F V n.
FOR hiR ::(PSIGLEN (SUC n)).
FOR genR ::(PSIGLEN (SUC n)).
FOR req ::(PSIGLEN (SUC n)).
PRIFILACLB_SIMPL ((hiR,genR),req) D
PRIFILACLB_SPEC ((hiR,genR),req)

We then prove that the structural specification written in terms of the specification of its parts is
implemented by that given in terms of the implementation of the parts. This uses the correctness
statements of the parts which state that the implementations of the parts do implement their
behavioural specifications, so can be used interchangeably. Since we are now dealing with a fixed
implementation, the words lengths are rigidly defined to be 4.

F FOR hiR genR req ::(PSIGLEN 4).
PRIFIL4CLB ((hiR,genR),req) D PRIFIL4CLB_SPEC ((hiR,genR),req)

Finally, we trivially combine these two theorems to give the required correctness theorem,
stating that the implementation does implement the specification.

F FOR hiR req ::(PSIGLEN 4).
PRIFIL4CLB ((hiR,genR),req) DO PRIFIL4CLB_SIMPL ((hiR,genR) ,req)

3.24 PRIORITY
3.24.1 The Behavioural Specification

PRIORITY is the top-level specification of the Priority Filter block of the fabric. It takes as input
two words of words, hiR and genR. Each contains one word for each input port, with that inner
word containing one bit for each output port. hiR indicates which input ports are making high
priority requests for which output ports. genR indicates which are making general requests.

It outputs a word of words, req. This contains one word for each input port. Each inner word
has a position for each output port. It indicates which output port, if any, this input port is making
a request for. The request must be of as high a priority as any other request for that output port.
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Figure 14: The Implementation of PRIORITY

I V hiReq genReq req.
PRIORITY_SPEC ((hiReq,genReq),req) =
v t.
req t =
MKW2 (SIGLEN req) (BSIGLEN req)
(A n. PriFilt (BITS n (hiReq t)) (BITS n (genReq t))))

3.24.2 The Structural Specification

PRIORITY gives an extra level of hierarchy over the HDL version. It describes the 4 different
occurrences of the PRIFILACLB. All the signals involved are grouped into words consisting of 4 4-bit
words.

I V hiReq genReq req.
PRIORITY ((hiReq,genReq),req) =
(FOR i ::(TD (BSIGLEN req)).
PRIFIL4CLB ((SBITS i hiReq,SBITS i genReq) ,SBITS i req))
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F V hiReq genReq req.
PRIORITY_SIMPL ((hiReq,genReq),req) =
(FOR i ::(T0 (BSIGLEN req)).
PRIFILACLB_SPEC ((SBITS i hiReq,SBITS i genReq),SBITS i req))

Qudos HDL

PriFilter[0-3] := PRIFIL4CLB (
hiReq[0-3], hiReq[4-7], hiReq[8-11], hiReq[12-151,
genReq[0-3], genReq[4-7], genReq [8-11], genReq[12-15],
req[0-3], req[4-7], req[8-111, req[12-151);

3.24.3 The Correctness Statement

I FOR hiReq genReq req ::(PSIG2LEN 4 4).
PRIORITY ((hiReq,genReq),req) D PRIORITY_SPEC ((hiReq,genReq),req)

3.25 HIREQ
3.25.1 The Behavioural Specification

HIREQ outputs a 4-bit position vector hiReq indicating which output port, if any, the input port
under consideration is making an active high priority request for. The behavioural specification
takes as arguments an active bit act and a priority bit pri. If either are false, then the output
port requested is ignored. The request is given in the form of two bits r1 and r2, giving the binary
encoding for one of four output ports. Two further signals, riBar and r2Bar, are intended to hold
the negation of these bits. It has no delay. It is defined in terms of the function HiRegq.

F V act pri rl r2 riBar r2Bar.
HiReq act pri ri1 r2 riBar r2Bar =
WORD
[act A pri A r1 A r2; act A pri A r1 A r2Bar;
act A pri A riBar A r2; act A pri A riBar A r2Bar]

F V act pri rl r2 riBar r2Bar hiReq.
HIREQ_SPEC ((act,pri,r1,r2,riBar,r2Bar),hiReq) =
(V¥ t. hiReq t = HiReq (act t) (pri t) (r1 t) (r2 t) (riBar t) (r2Bar t))

3.25.2 The Structural Specification

HIREQ gives an extra level of hierarchy over the HDL version.

F V act pri ri r2 riBar r2Bar hiReq. 4
HIREQ ((act,pri,rl,r2,riBar,r2Bar),hiReq) =
XiAND (SWORD [act; pri; riBar; r2Bar],SBIT O hiReq) A
XiAND (SWORD [act; pri; riBar; r2],SBIT 1 hiReq) A
XiAND (SWORD [act; pri; ril; r2Bar],SBIT 2 hiReq) A
XiAND (SWORD [act; pri; rl; r2],SBIT 3 hiReq)
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Figure 15: The Implementation of HIREQ
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Qudos HDL

AndHiReq[0] := XiAND4 (act, pri, riBar, r2Bar, hiReq[0]);
AndHiReq[1] := XiAND4 (act, pri, riBar, r2, hiReq[1]);
AndHiReq[2] := XiAND4 (act, pri, rl, r2Bar, hiReq[2]);
AndHiReq[3] := XiAND4 (act, pri, rl, r2, hiReq[3]);

3.25.3 The Correctness Statement

F V act pri rl r2 riBar r2Bar.
FOR hiReq ::(PSIGLEN 4).
HIREQ ((act,pri,ri,r2,riBar,r2Bar),hiReq) D
HIREQ._SPEC ((act,pri,ri,r2,riBar,r2Bar),hiReq)

3.26 GENREQ
3.26.1 The Bebavioural Specification

GENREQ outputs a 4-bit position vector, genReq indicating which output port, if any, the input port
under consideration is making an active request for. It takes as arguments an active bit act and a
priority bit pri. If either are false, then the output port requested is ignored. The request is given
in the form of two bits r1 and r2 giving the binary encoding for one of four output ports. Two
further signals, riBar and r2Bar, are intended to hold the negation of these bits. It has no delay.
It is defined in terms of the function GenReq.

F V act r1 r2 riBar r2Bar.
GenReq act r1 r2 riBar r2Bar =
WORD
[act A r1 A r2; act A r1 A r2Bar; act A riBar A r2;
act A riBar A r2Bar]

F V act r1 r2 riBar r2Bar genReq.
GENREQ_SPEC ((act,r1,r2,riBar,r2Bar),genReq) =
(V t. genReq t = GenReq (act t) (r1 t) (r2 t) (riBar t) (r2Bar t))

3.26.2 The Structural Specification

GENREQ gives an extra level of hierarchy over the HDL version.

F V act ri r2 riBar r2Bar genReq.
GENREQ ((act,rl,r2,riBar,r2Bar),genReq) =
XiAND (SWORD [act; riBar; r2Bar],SBIT 0 genReq) A
XiAND (SWORD [act; riBar; r2],SBIT 1 genReq) A
XiAND (SWORD [act; ril; r2Bar],SBIT 2 genReq) A
XiAND (SWORD [act; rl; r2],SBIT 3 genReq)

Qudos HDL

AndGenReq[0] := XiAND3 (act, riBar, r2Bar, genReq[0]);

AndGenReq[1] := XiAND3 (act, riBar, r2, genReq[1]);
AndGenReq[2] := XiAND3 (act, ri, r2Bar, genReq[2]);
AndGenReq[3] := XiAND3 (act, r1, r2, genReq[3]);
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Figure 16: The Implementation of GENREQ
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3.26.3 The Correctness Statement

F V act rl r2 riBar r2Bar.
FOR genReq ::(PSIGLEN 4).
GENREQ ((act,rl,r2,riBar,r2Bar),genReq) O
GENREQ_SPEC ((act,rl,r2,riBar,r2Bar),genReq)

3.27 DECODE
3.27.1 The Behavioural Specification

DECODE converts the active, act, priority, pri, and route route signals of an input port into 4-bit
position vectors genReq and hiReq. They indicate the output port requested, if any, and the output
port requested at high priority, if any, respectively. ‘

act and pri are boolean signals which indicate whether the input port under consideration is
making an active request, and if so, whether it is of high priority, respectively. The 2-bit word
route indicates in binary the number of the output port it is requesting.

genReq gives the general requests. It has one position for each output port. A T in the position
of an output port indicates that it is being requested by the input port.

hiReq gives the high priority requests. It also has one position for each output port. A T in the
position of an output port indicates that it is being requested at high priority by the input port.

The behavioural specification is defined in terms of the functions DecoderPriorities and

DecoderRequests given earlier.

I V act pri route hiReq genReq.
DECODE_SPEC ((act,pri,route),hiReq,genReq) =
(V¥ t. hiReq t = DecoderPriorities (act t) (pri t) (route t)) A
(V t. genReq t = DecoderRequests (act t) (route t))

3.27.2 The Structural Specification

DECODE corresponds to the HDL module of the same name. The hardware for calculating the hiReq
and genReq signals are placed in separate modules. The route information is given as a 2-bit word
rather than as two booleans. The bits are first extracted from this word.

F V act pri route hiReq genReq.
DECODE ((act,pri,route),hiReq,genReq) =
(LOCAL r1 r2 riBar r2Bar.
(r1 = SBIT 1 route) A
(r2 = SBIT 0 route) A
XiINV (ri,ri1Bar) A
XiINV (xr2,r2Bar) A
HIREQ ((act,pri,rl,r2,riBar,r2Bar),hiReq) A
GENREQ ((act,r1,r2,riBar,r2Bar),genReq))
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Figure 17: The Implementation of DECODE

(r1

(r2 =
XiINV
XiINV

F V act pri route hiReq genReq.
DECODE_SIMPL ((act,pri,route),hiReq,genReq) =
(LOCAL r1 r2 riBar r2Bar.

SBIT 1 route) A

SBIT O route) A

(ri,riBar) A

(r2,r2Bar) A

HIREQ_SPEC ((act,pri,ri,r2,riBar,r2Bar),hiReq) A

GENREQ_SPEC ((act,r1,r2,riBar,r2Bar),genReq))

Qudos HDL

DEF DECODE (act, pri, rl, r2: IN; hiReq[0..3], genReq[0..3]: I0);

riBar, r2Bar:
BEGIN
InvR1 :
InvR2 :

I10;

AndHiReq[0]
AndHiReq[1]
AndHiReq[2]
AndHiReq[3]

AndGenReq[0]
AndGenReq[1]
AndGenReq[2]

XiINV
XiINV

(r1, riBar);
(r2, r2Bar);

XiAND4 (act, pri, riBar, r2Bar, hiReq[0]);
XiAND4 (act, pri, riBar, r2, hiReq[1]);
rl, r2Bar, hiReq[2]);
ri, r2, hiReq[3]);

XiAND4 (act, pri,
XiAND4 (act, pri,

XiAND3 (act, riBar, r2Bar, genReq[0]);

XiAND3 (act, riBar, r2, genReq[1]);
XiAND3 (act, rl, r2Bar, genReq[2]);
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AndGenReq[3] := XiAND3 (act, rl, r2, genReq[3]);
END;

3.27.3 The Correctness Statement

F FOR route ::(PSIGLEN 2).
FOR hiReq genReq ::(PSIGLEN 4).
DECODE ((act,pri,route),hiReq,genReq) D
DECODE_SPEC ((act,pri,route),hiReq,genReq)

3.28 DECODE_N
3.28.1 The Behavioural Specification

DECODE_N is theltop level specification of the Decoder block in the fabric. It converts active, priority
and request signals from each input port into two position vectors for each input port, genReq and
hiReq. They indicate respectively the output port requested, if any, and the output port requested
at high priority, if any, for each input.

The active and priority input words contain one signal for each input port. They indicate
whether it was making an active request, and whether it is of high priority, respectively. route
consists of a word for each input port indicating the number of the output port it is requesting,.
genReq contains one word for each input port giving the general requests. Each word has one bit
per output port. A T in the position of an output port indicates that it is being requested by
that input port. Similarly, the output hiReq contains one word for each input port giving the high
priority requests. Each input port is considered in isolation. The specification is defined in terms

of the functions DecoderPriorities and DecoderRequests given earlier.

F V active priority route hiReq genRegq.
DECODE_N_SPEC ((active,priority,route),hiReq,genReq) =
vV t.
hiReq t = /
MKW (SIGLEN hiReq)
(A n.
DecoderPriorities (BIT n (active t)) (BIT n (priority t))
(BIT n (route t)))) A
vV t.
genReq t =
MKW (SIGLEN genReq)
(X n. DecoderRequests (BIT n (active t)) (BIT n (route t))))

3.28.2 The Structural Specification

DECODEN gives an extra level of hierarchy over the HDL version. It describes the 4 different
occurrences of DECODE. The arguments are all structured as words of 4 elements. The active, priority
and route information has been split into separate word arguments, rathér than just corresponding
to positions within d. '
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Figure 18: The Implementation of DECODE_N
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F V active priority route hiReq genReq.
DECODE_N ((active,priority,route),hiReq,genReq) =
(FOR i ::(TO (SIGLEN hiReq)).
DECODE
((SBIT i active,SBIT i priority,SBIT i route),
SBIT i hiRegq,
SBIT i genReq))

b V active priority route hiReq genReq.
DECODE_N_SIMPL ((active,priority,route),hiReq,genReq) =
(FOR 1 ::(TD (SIGLEN hiReq)).
DECODE_SPEC
((SBIT i active,SBIT i priority,SBIT i route),
SBIT i hiReq,
SBIT i genReq))

Qudos HDL

Decode[0] := DECODE (d[0..3], hiReq[0..3], genReq[0..3]);
Decode[1] := DECODE (d[8..11], hiReq[4..7], genReq[4..7]);
Decode[2] := DECODE (d[16..19], hiReq[8..11], genReq[8..11]);
Decode[3] := DECODE (d[24..27], hiReq[12..15], genReq[12..15]);

3.28.3 The Correctness Statement

I FOR active priority ::(PSIGLEN 4).
FOR route ::(PSIG2LEN 4 2).
FOR hiReq genReq ::(PSIG2LEN 4 4).
DECODE_N ((active,priority,route),hiReq,genReq) D
DECODE_N_SPEC ((active,priority,route),hiReq,genReq)

3.29 ARB_YEL
3.29.1 The Behavioural Specification

ARB_YEL determines the inputs to the JK flip-flop for the low bit of the grant signal from the arbiter.
It is defined using the function ArbYel.

F V x xBar reqA reqB reqC reqD.
ArbYel x xBar reqA reqB reqC reqD =
(x V ~ reqB) A reqC V (xBar V ~ regA) A reqD

F V x xBar reqA reqB reqC reqD yjk.
ARB_YEL_SPEC ((x,xBar,reqA,regB,reqC,reqD),yjk) =
(V t. yjk t = ArbYel (x t) (xBar t) (reqA t) (reqB t) (reqC t) (regD %))

3.29.2 The Structural Specification

ARB_YEL gives an extra level of hierarchy over the HDL version. The Jy and Ky CLB’s of the arbiter
are essentially the same. The only differences are that they operate on different bits, and that one
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Figure 19: The Implementation of ARB_YEL

uses an inverted x signal. The difference is thus only in the arguments supplied rather than the
structure of the hardware. ARB_YEL gives a single description for them.

F V x xBar reqA reqB reqC reqD yjk.
ARB_YEL ((x,xBar,reqd,reqB,reqC,reqD),yjk) =
(LOCAL regABar regBBar term0 termi.
XiINV (reqd,reqABar) A
XiINV (reqB,reqBBar) A
A0 ((term0,reqC,termi,reqD),yjk) A
XiOR (SWORD [x; regqBBar],term0) A
XiOR (SWORD [xBar; reqABar],terml))

Qudos HDL

(* Jy *)

InvReqOJyCLB := XiINV (req[0], reqBarJyCLBO);
InvReq2JyCLB := XiINV (req[2], reqBarJyCLB2);

AoJy := AD (jyTerm[0], req[3], jyTerm[1l, req[il, jy);

0rTermJy[0] := XiOR2(x, regBarJyCLB2, jyTerm[0]);
OrTermJy[1] := XiOR2(xBarJyCLB, reqBarJyCLBO, jyTerm[1]);
(x Ky *)

InvReqiKyCLB := XiINV (req[1], reqBarKyCLB1);
InvReq3KyCLB := XiINV (req[3], reqBarKyCLB3);

AoKy := A0 (kyTerm[0], req[2], kyTerm[1], req[0], ky);
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OrTermKy[0]
OrTermKy[1]

XiOR2(xBarKyCLB, reqBarKyCLB1, kyTerm[0]);
Xi0R2(x, reqBarKyCLB3, kyTerm[1]);

3.29.3 The Correctness Statemeﬁt

F V x xBar reqA regB reqC reqD yjk.
ARB_YEL ((x,xBar,reqd,reqB,reqC,reqD),yjk) D
ARB_YEL_SPEC ((x,xBar,reqf,reqB,reqC,reqD),yjk)

3.30 ARB_XEL
3.30.1 The Behavioural Specification

ARB_XEL determines the inputs to the JK flip-flop for the high bit of the grant signal from the
arbiter.

F V reqA y reqB reqC. ArbXel reqA y reqB reqC = (y V ~ reqd) A (reqB V reqC)

F V reqd y reqB reqC xjk.
ARB_XEL_SPEC ((reqA,y,reqB,reqC),xjk) =
(¥ t. xjk t = ArbXel (reqh t) (y t) (reqB t) (reqC t))

3.30.2 The Structural Specification

ARBXEL gives an extra level of hierarchy over the HDL version. The Jx and Kx part of the arbiter
are essentially the same. The only difference is that they operate on different bits. ARBX_EL describes
the common hardware.
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F V reqA y reqB reqC xjk.
ARB_XEL ((reqA,y,reqB,reqC),xjk) =
(LOCAL reqBarJxKx factO factl.
XiINV (reqd,reqBarJzKx) A
XiAND (SWORD [factO; factl],xjk) A
XiOR (SWORD [y; reqBarJxKx],fact0) A
XiOR (SWORD [reqB; reqC],facti))

Qudos HDL

(x Jx %)

InvReqJxKxCLB1 := XiINV (req[1], reqBarJxKxCLB1);
AndJx := XiAND2(jxFact[0..1], jx);

OrFactJx[0] := XiDR2(y, reqBarJxKxCLB1, jxFact[0]);
OrFactJx[1] := XiOR2(req[3], reql[2], jxFact[1]);

(x Kx %)

InvReqJxKxCLB3 := XiINV (req[3], reqBarJxKxCLB3);
AndKx := XiAND2(kxFact[0..1], kx);

OrFactKx[0] Xi0R2(y, reqBarJxKxCLB3, kxFact[0]);
OrJactKx[1] Xi0R2(req[0], req[1], kxFact[1]);

3.30.3 The Correctness Statement

F V y reqA reqB reqC xjk.
ARB_XEL ((reqA,y,reqB,reqC),xjk) O ARB_XEL_SPEC ((regA,y,reqB,reqC),xjk)

3.31 K_ARBY
3.31.1 The Behavioural Specification

K_ARBY determines the K input to the JK flip-flop for the low bit of the grant signal from the arbiter.

F V x req ky.
K_ARBY_SPEC ((x,req),ky) =
(V t.
ky t =
ArbYel (~ (x %)) (x t) (BIT 3 (req t)) (BIT 1 (req t)) (BIT 2 (req t))
(BIT 0 (req t)))

3.31.2 The Structural Specification

K_ARBY gives an extra level of hierarchy over the HDL version. It combines the inverter with a Y
element, passing to it the appropriate bits for a K Y element. Note that xBar and x are inverted.
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F V x req ky.
K_ARBY ((x,req),ky) =
(LOCAL xBar.
XiINV (x,xBar) A
ARB_YEL ((xBar,x,SBIT 3 req,SBIT 1 req,SBIT 2 req,SBIT O req),ky))

F V x req ky.
K_ARBY_SIMPL ((x,req),ky) =
(LOCAL xBar.
XiINV (x,xBar) A
ARB_YEL_SPEC ((xBar,x,SBIT 3 req,SBIT 1 req,SBIT 2 req,SBIT O req),ky))

Qudos HDL
(x Ky *)

ClbKy := XiCLBMAP6ilo (x, req[0..3], ky);
InvXKyCLB := XiINV (x, xBarKyCLB);
InvReqlKyCLB := XiINV (req[1], reqBarKyCLB1);
InvReq3KyCLB := XiINV (req[3], reqBarKyCLB3);

AoKy := A0 (kyTerm[0], req[2], kyTerm[1], req[0], ky);

0rTermKy[0] := XiDR2(xBarKyCLB, reqBarKyCLBi, kyTerm[0]);
OrTermKy[1] := XiOR2(x, reqBarKyCLB3, kyTerm[1]);

3.31.3 The Correctness Statement

F K_ARBY ((x,req),ky) DO K_ARBY_SPEC ((x,req) ,ky)
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3.32 J_ARBY
3.32.1 The Behavioural Specification

J_ARBY determines the J input to the JK flip-flop for the low bit of the grant signal from the arbiter.

F VY x req jy.
J_ARBY_SPEC ((x,req),jy) =
vV t.
jy t =
ArbYel (x t) (~ (x t)) (BIT 0 (req t)) (BIT 2 (req t)) (BIT 3 (req t))
(BIT 1 (req t)))

3.32.2 The Structural Specification

J-ARBY gives an extra level of hierarchy over the HDL version. It combines the inverter with a Y
element, passing the appropriate bits for a J Y element.

F V x req jy.
J_ARBY ((x,req),jy) =
(LOCAL xBar.
XiINV (x,xBar) A
ARB_YEL ((x,xBar,SBIT O req,SBIT 2 req,SBIT 3 req,SBIT 1 req),jy))

-V x req jy.
J_ARBY_SIMPL ((x,req),jy) =
(LOCAL xBar.
XiINV (x,xBar) A
ARB_YEL_SPEC ((x,xBar,SBIT 0 req,SBIT 2 req,SBIT 3 req,SBIT 1 req),jy))

Qudos HDL

(x Jy *)
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ClbJy := XiCLBMAPb5ilo (x, req[0..3], jy);
InvXJyCLB := XiINV (x, xBarJyCLB);
InvReq0JyCLB := XiINV (req[0], reqBarJyCLBO);
InvReq2JyCLB := XiINV (req[2], reqBarJyCLB2);

AoJy := AD (jyTerm[0]l, req[3], jyTerm[1], req[1l, jy);

OrTermJy[0] := XiOR2(x, reqBarJyCLB2, jyTerm[0]);
OrTermJy[1] := XiOR2(xBarJyCLB, reqBarJyCLBO, jyTerm[1]);

3.32.3 The Correctness Statement

F J_ARBY ((x,req),ky) D J_ARBY_SPEC ((x,req),ky)

3.33 ARBY
3.33.1 The Behavioural Specification

ARBY determines the J and K inputs to the JK flip-flop for the low bit of the grant signal from the
arbiter.

F V x req jy ky.
ARBY_SPEC ((x,req),jy,ky) =
v t.
vyt =
ArbYel (x t) (~ (x %)) (BIT O (req t)) (BIT 2 (req t)) (BIT 3 (req t))
(BIT 1 (req t))) A
vV t.
ky t =
ArbYel (~ (x t)) (x t) (BIT 3 (req t)) (BIT i (req t)) (BIT 2 (req t))
(BIT 0 (req t)))

3.33.2 The Structural Specification

ARBY gives an extra level of hierarchy over the HDL version. It combines the J Y and K Y elements.

-V x req jy ky.
ARBY ((x,req),jy,ky) = J_ARBY ((x,req),jy) A K_ARBY ((x,req) ,ky)

F V x req jy ky.
ARBY_SIMPL ((x,req),jy,ky) =
J_ARBY_SPEC ((x,req),jy) A K_ARBY_SPEC ((x,req),ky)

Qudos HDL

(* Jy %)

ClbJy := XiCLBMAP5ilo (x, req[0..3], jy);
InvXJyCLB := XiINV (x, xBarJyCLB);
InvReqOJyCLB := XiINV (req[0], reqBarJyCLBO);
InvReq2JyCLB := XiINV (req[2], reqBarJyCLB2);
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AoJy := A0 (jyTerm[0], req[3], jyTerm[1l, req[1l, jy);

OrTermJy[0] := XiOR2(x, reqBarJyCLB2, jyTerm[0]);
OrTermJy[1] := XiOR2(xBarJyCLB, reqBarJyCLBO, jyTerm[1]);
(* Ky *)

ClbKy := XiCLBMAP5ilo (x, req[0..3], ky);
InvKKyCLB := XiINV (x, xBarKyCLB);
InvReqlKyCLB := XiINV (req[1], reqBarKyCLB1);
InvReq3KyCLB := XiINV (req[3], reqBarKyCLB3);

AoKy := A0 (kyTerm[0], req[2], kyTerm[1], req[0], ky);

OrTermKy [0]
OrTermKy[1]

Xi0R2(xBarKyCLB, reqBarKyCLB1, kyTerm[0]);
XiOR2(x, reqBarKyCLB3, kyTerm[1]);

ClbJxKx := XiCLBMAP5i20(req[0], req[1], req[2], y, req[3], jx, kx);

InvReqJxKxCLB1 :
InvReqJxKxCLB3 :

XiINV (req[i], reqBarJxKxCLB1);
XiINV (req[3], reqBarJxKxCLB3);

3.33.3 The Correctness Statement

F ARBY ((x,req),jy,ky) D ARBY_SPEC ((x,req),jy,ky)

3.34 ARBX
3.34.1 The Behavioural Specification

ARBX determines the J and K inputs to the JK flip-flop for the high bit of the grant signal from the
arbiter.
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FVyreq jx kx.
ARBX_SPEC ((y,req),jx,kx) =
vV t.
jx t = ArbXel (BIT 1 (req t)) (y t) (BIT 3 (req t)) (BIT 2 (req t))) A
(Y t. kx t = ArbXel (BIT 3 (req t)) (y t) (BIT 0 (req t)) (BIT 1 (req t)))

3.34.2 The Structural Specification

ARBX gives an extra level of hierarchy over the HDL version. It combines the J X and K X elements
passing the appropriate bits in each case.

FVyreq jx kx.
ARBX ((y,req),jx,kx) =
ARB_XEL ((SBIT 1 req,y,SBIT 3 req,SBIT 2 req),jx) A
ARB_XEL ((SBIT 3 req,y,SBIT O req,SBIT 1 req),kx)

FVyreq jx kx.
ARBX_SIMPL ((y,req),jx,kx) =
ARB_XEL_SPEC ((SBIT 1 req,y,SBIT 3 req,SBIT 2 req),jx) A
ARB_XEL_SPEC ((SBIT 3 req,y,SBIT O req,SBIT 1 req),kx)

Qudos HDL

ClbJxKx := XiCLBMAP5i20(xreq[0], reql[1l, reql[2], y, req[3], jx, kx);

InvReqJxKxCLB1 := XiINV (req[1], reqBarJxKxCLB1);
InvReqJxKxCLB3 := XiINV (req[3], reqBarJxKxCLB3);
(x Jx %)

AndJx := XiAND2(jxFact[0..1], jx);
OrFactJx[0] := XiOR2(y, reqBarJxKxCLB1, jxFact[0]);
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OrFactJx[1] := XiOR2(req[3], req[2], jxFact[1l);
(* Kx %)
AndKx := XiAND2(kxFact[0..1], kx);

OrFactKx[0] := XiOR2(y, reqBarJxKxCLB3, kxFact[0]);
OrJactKx[1] := XiOR2(reql[0], reql[i1], kxFact[1]);

3.34.3 The Correctness Statement

F ARBX ((y,req),jx,kx) D ARBX_SPEC ((y,req),jx,kx)

3.35 ARBITER_FF
3.35.1 The Behavioural Specification

ARBITER_FF consists of 2 independent JK flip-flops, each enabled by the routeEnable signal.

F V jx kx jy ky routeEnable x y.
ARBITER_FF_SPEC ((jx,kx,jy,ky,routeEnable),x,y) =

vV t.
(x (¢ +1) = JKE (§x t) (kx t) (x t) (routeEnable t)) A
(y (¢ + 1) = JkE (jy t) (ky t) (y t) (routeEnable t)))

3.35.2 The Structural Specification

ARBITER.FF gives an extra level of hierarchy over the HDL version. It describes the 2-flip flop CLB.
The clock signals are not included.

F V jx kx jy ky routeEnable x y.
ARBITER_FF ((jx,kx,jy,ky,routeEnable),x,y) =
JKFFce ((jx,kx,routeEnable),x) A JKFFce ((jy,ky,routeEnable),y)

Qudos HDL

C1bFF := XiCLBMAPSi2oke (jx, kx, jx, jy, ky, clock, routeEnable, x, )

FFx := JKFFce (jx, kx, clock, routeEnable, x);
FFy := JKFFce (jy, ky, clock, routeEnable, y);

3.35.3 The Correctness Statement

F V. jx kx jy ky routeEnable x y.
ARBITER_FF ((jx,kx,jy,ky,routeEnable),x,y) D
ARBITER_FF_SPEC ((jx,kx,jy,ky,routeEnable),x,y)

3.36 QUTDIS
3.36.1 The Behavioural Specification

OUTDIS describes the timing diagram for the OutputDisable signal for a single output port. At
the start of a frame it is set to high, disabling the outputs. If during the frame an active packet
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Figure 25: The Implementation of ARBITER_FF

arrives for the output, it is set to low for the remainder of the cycle. The frame boundaries are
determined by the frameStart signal. QOutputs are disabled if there are requests from any input
when the routeEnable signal is activated. The circuit does not operate correctly if a routeEnable
and frameStart signal arrive at the same time. If it were to occur, TIMING would act as though
it had received a cell in the previous frame, but 0UTDIS would act as though the cell was in the
next frame. The environment must ensure this does not happen. This condition is part of the
specification of the TIMING module.

As with the TIMING module, two specifications are given—one at the frame level and one at
the clock level. In the frame level description the “active signal” being high corresponds to there
being at least one request and the routeEnable signal being high: (At. (EXISTSABIT I (req t) A
routeEnable t))

F V fs routeEnable req outputDisable.
OUTDIS_SPEC1 ((fs,routeEnable,req),outputDisable) =
v t.
outputDisable (t + 1) =
((outputDisable t)
= (~ (EXISTSABIT I (req t) A routeEnable t))
| (£s £)))
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F V fs routeEnable req outputDisable.
OUTDIS_SPEC2 ((fs,routeEnable,req),outputDisable) =
(VY t_start t_active t_end.
(VY t. ~ (fs t A routeEmable t)) D
(AFRAME1 t_start t_active t_end fs
(X t. EXISTSABIT I (req t) A routeEnable t) D
STABLE (t_start + 1) (t_active + 1) outputDisable T A
STABLE (t_active + 1) (t_end + 1) outputDisable F) A
(IFRAME1 t_start t_end fs
(X t. EXISTSABIT I (req t) A routeEnable t) D
STABLE (t_start + 1) (t_end + 1) outputDisable T))

3.36.2 The Structural Specification

OUTDIS gives an extra level of hierarchy over the HDL version. It contains the output disable

hardware.

F V £s routeEnable req outputDisable.
OUTDIS ((fs,routeEnable,req),outputDisable) =
(LOCAL anyReq kOut outputEnable.
XiOR (req,anyReq) A
XiAND (SWORD [anyReq; routeEnable],kDut) A
JKFF ((fs,kﬂut),outputDisable,outputEnable))

Qudos HDL

AnyOr := XiOR4(req[0..3], anyReq);
AndKout := XiAND2 (anyReq, routeEnable, kOut);
FFOutDis := JKFF (fs, kDut, clock, outputDisable, outputEnable);
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3.36.3 The Correctness Statement

As with TIMING, OUTDIS is verified in three stages. Firstly, the implementation is verified against
the clock level specification. The clock level specification is then verified against the frame level
one. Finally the first two theorems are combined to give a theorem relating the implementation
to the frame level specification.

F V fs routeEnable outputDisable.
FOR req ::(PSIGLEN (SUC n)).
OUTDIS ((fs,routeEnable,req),outputDisable) D
OUTDIS_SPEC1 ((fs,routeEnable,req),outputDisable)

I VY fs routeEnable outputDisable.
FOR req ::(PSIGLEN (SUC n)).
OUTDIS_SPEC! ((fs,routeEnable,req),outputDisable) D
OUTDIS_SPEC2 ((fs,routeEnable,req),outputDisable)

- V £s routeEnable outputDisable.
FOR req :: (PSIGLEN (SUC n)).
OUTDIS ((fs,routeEnable,req),outputDisable) O
OUTDIS_SPEC2 ((fs,routeEnable,req),outputDisable)

Of these proofs, only the second is at all difficult. It is split into three cases: one for an inactive
frame, one for an active frame prior to the active signal and one for an active frame after the active
signal.

The first two cases are essentially the same. We must prove that through some initial period
in which there is no active signal, outputDisable remains true. We know that frameStart is high
and therefore that routeEnable is low at the start of the frame. From 0UTDIS_SPEC1 we can see that
at the subsequent time outputDisable must be high. Once it is high we can disregard the value
of frameStart. It will remain high while there is no request at the same time as a routeEnable
signal. However this is the same as saying no active signal occurs. Thus for an inactive frame,
outputDisable will remain high until the end of the frame. For an inactive frame it will remain
high until the active time.

The third case requires similar reasoning. We know from the above that outputDisable will be
high at the active time. At this time, there is an active signal, so it will go low on the following
cycle. Throughout the remainder of the frame, only the frameStart signal is therefore relevant.
Consequently outputDisable will remain low. _

The assumption that a routeEnable signal does not arrive at the same time as the frameStart
signal is required to ensure that the routeEnable is not ignored. After generating such a routeEnable
signal, the TIMING unit remains in the state where it is waiting for a cell. It thus treats the header
that generated the routeEnable as if it had been part of a cell on the previous cycle. OUTDIS treats
header as if it was part of a cell in the frame which has just started and consequently will enable
outputs.

The timing circuitry ensures that the assumption holds provided header bytes do not arrive
too close to the frameStart signal at the outside of the element.
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3.37 ARBITER.XY
3.37.1 The Behavioural Specification

ARBITER XY computes the values of the two bits, x and y, of the grant signal. If routeEnable was
not set, they are left unchanged. Otherwise they depend on the previous x and y values and the
requests made. The specification is given in terms of the functions ArbX and Arby.

ArbX specifies the value of the most significant bit of the grant signal in terms of the values on
the previous cycle. If routeEnable was not set, it is left unchanged. If it was previously set its
value depends on the negated y value of the previous cycle and the requests made. Otherwise it
depends on the un-negated y value and the requests made.

ArbY specifies the value of the least significant bit of the grant signal in terms of the values on
the previous cycle. If routeEnable was not set, it is left unchanged. Otherwise it depends on the

previous x and y values and the requests made.

F V 1tReq routeEnable y x.
ArbX 1tReq routeEnable y x =
(routeEnable
= (x
= (~ y A BIT 3 1tReq V ~ (BIT O 1tReq) A ~ (BIT 1 1tReq))
| ((y V ~ (BIT 1 1tReq)) A (BIT 3 ltReq V BIT 2 ltReq)))
| =

l V 1tReq routeEnable y x.
ArbY 1tReq routeEnable y x =
(routeEnable
=> (v
= ((x A BIT 1 1ltReq V ~ (BIT 2 1tReq)) A
(~ x A BIT 3 1tReq V ~ (BIT O 1ltReq)))
| ((x V ~ (BIT 2 1tReq)) A BIT 3 ItReq V
(~ x V ~ (BIT O 1tReq)) A BIT 1 1tReq))

[ v

F V 1ltReq routeEnable x y.
ARBITER_XY_SPEC ((ltReq,routeEnable),x,y) =

vV t.
(x (t + 1) = ArbX (I1tReq t) (routeEnable t) (y t) (x t)) A
(y (t + 1) = ArbY (1ltReq t) (routeEnable t) (y t) (x t)))

3.37.2 The Structural Specification

ARBITER.XY gives an additional level of hierarchy over the HDL. It is the part of the arbiter that
produces the two signals x and y that make up the grant signal for a single output. It has been
structured into separate parts. One definition gives the flip-flop CLB, one the Y hardware and one
the X hardware. The clock signal is omitted.
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Y

F V 1tReq routeEnable x y.
ARBITER_XY ((1tReq,routeEnable),x,y) =
(LOCAL jx kx jy ky.
ARBITER_FF ((jx,kx,jy,ky,routeEnable),x,y) A
ARBY ((x,1tReq),jy,.ky) A
ARBX ((y,ltReq),jx,kx))

F V 1tReq routeEnable x y.
ARBITER_XY_SIMPL ((1tReq,routeEnable),x,y) =
(LOCAL jx kx jy ky.
ARBITER_FF_SPEC ((jx,kx,jy,ky,routeEnable),x,y) A
ARBY_SPEC ((x,1tReq),jy.ky) A
ARBX_SPEC ((y,1tReq),jx,kx))

Qudos HDL

(* The State Flip Flops --- XY is last Grant made *)

C1bFF := XiCLBMAPS5i2oke (jx, kx, jx, jy, ky, clock, routeEnable, x, ¥);

FFx := JKFFce (jx, kx, clock, routeEnable, x);
FFy := JKFFce (jy, ky, clock, routeEnable, y);
(x Jy %)

ClbJy := XiCLBMAP5ilo (x, reql0..31, jy);
InvXJyCLB := XiINV (x, xBarJyCLB);
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InvReqOJyCLB :
InvReq2JyCLB :

XiINV (req[0], reqBarJyCLBO);
XiINV (reql[2], reqBarJyCLB2);

AoJy := AD (jyTerm[0], req[3], jyTerm[1], req[1l, jy);

O0rTermJy[0] := XiOR2(x, reqBarJyCLB2, jyTerm[0]);
OrTermJy[1] := XiOR2(xBarJyCLB, reqBarJyCLBO, jyTerm[1]);
(* Ky *)

ClbKy := XiCLBMAPSilo (x, req[0..31, ky);
InvXKyCLB := XiINV (x, xBarKyCLB);
InvReq1KyCLB := XiINV (req[i1], reqBarKyCLB1);
InvReq3KyCLB := XiINV (req[3], reqBarKyCLB3);

AoKy := AOD (kyTerm[0], req[2], kyTerm[1], req[0], ky);

OrTermKy [0]
OrTermKy[1]

XiDR2(xBarKyCLB, reqBarKyCLB1, kyTerm[0]);
XiOR2(x, reqBarKyCLB3, kyTerm[1]);

ClbJxKx := XiCLBMAP5i2o(req[0], req[1l, req[2], y, req[3], jx, kx);

InvReqJxKxCLB1 := XiINV (req[1], reqBarJxKxCLB1);
InvReqJxKxCLB3 := XiINV (req[3], reqBarJxKxCLB3);
(x Jx %)

AndJx := XiAND2(jxFact[0..1], jx);
OrFactJx[0] := XiOR2(y, reqBarJxKxCLB1, jxFact[0]);
OrFactJx[1] := XiOR2(req[3], req[2], jxFactl[1]l);

(* Kx %)
AndKx := XiAND2(kxFact[0..1], kx); .

OrFactKx[0] := XiOR2(y, reqBarJxKxCLB3, kxFact[0]);
OrJactkx[1] XiOR2(req[0], req[1], kxFact[1]);

3.37.3 The Correctness Statement

F ARBITER_XY ((1tReq,routeEnable),x,y) O
ARBITER_XY _SPEC ((ltReq,routeEnable),x,y)

3.38 ARBITER

3.38.1 The Behavioural Specification

ARBITER performs round-robin arbitration for a single output port. It takes as input a position
vector, 1tReq, indicating which inputs are making requests for the output, an enable signal
routeEnable which indicates when within a frame an arbitration decision should be made, and
the framing signal frameStart. It outputs a grant signal which indicates the input whose request
is currently accepted and an outputDisable signal which indicates whether the grant signal is
currently valid. If it is not it should be ignored and the outputs disabled. This occurs if no input

port requests the output port during a frame.
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The circuit does not operate correctly if a routeEnable and frameStart signal arrive at the
same time. The environment must ensure this does not happen. This condition is part of the
specification of the TIMING module. It is an explicit assumption in the behavioural specification
of the ARBITER. It is required so that the circuitry resets itself correctly at the start of a frame.
Further details are given in the description of 0UTDIS.

The behaviour can be split into two parts: that for an active frame and that for an inactive
frame. For the arbiter the active signal is the combination of the routeEnable signal and there
being a high on at least one bit of 1tReq (ie this output port is being requested). This definition
of the active signal means that the output port for each separate arbiter will have an active cycle
only if it is being requested. Thus some arbiters can be active whilst others are inactive.

The inactive frame behaviour is the simplest. For frame start and end times ts and te
respectively, outputDisable should remain true from ts+1 to te+1, and the value on grant should
remain unchanged from ts+2 to te+2.

For an active frame with active time ta, up until ta+1 the behaviour is as for an inactive frame.
In the remainder of the frame however, outputDisable becomes and remains false, and grant takes
on the value of the newly selected input port for this output port. One will be selected because at
least one must be making a request for the cycle to be considered an active cycle for this output
port.

F V 1ltReq routeFnable frameStart grant outputDisable.
ARBITER_SPEC ((1tReq,routeEnable,frameStart),grant,outputDisable) =
(V t_start t_active t_end.
(Y t. ~ (frameStart t A routeEnable t)) DO
(STABLE (t_active + 1) (t_end + 1) routeEnable F D
AFRAME1 t_start t_active t_end frameStart
(A t. EXISTSABIT I (1tReq t) A routeEnable t) D
STABLE (t_start + 2) (t_active + 1) grant (grant (t_start + 1)) A
STABLE (t_active + 1) (t_end + 2) grant
(GrantForOut (1tReq t_active) (gramt t_active)) A
STABLE (t_start + 1) (t_active + 1) outputDisable T A
STABLE (t_active + 1) (t_end + 1) outputDisable F) A
(IFRAME1 t_start t_end frameStart
(A t. EXISTSABIT I (1tReq t) A routeEnable t) D
STABLE (t_start + 2) (t.end + 2) grant (grant (t_start + 1)) A
STABLE (t_start + 1) (t_end + 1) outputDisable T))

The round robin arbitration decision making process for a single output port is described by
GrantForOut. The requests are in the form of a position vector req, with one boolean bit for each
input port, indicating whether it is making a request or not. The last input port granted a request
is given as a binary-encoded word last. It is converted to a number, used to compute the successful
input, and the result converted back to a binary-encoded word.

F V req last.
GrantForOut req last =
(let suc_inp = Successfullnput (BNVAL last) req
in
((suc_inp = NO_RESULT)
= last
| (NBWORD (WORDLEN last) (ResultOf suc_inp))))
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Figure 28: The Implementation of ARBITER

3.38.2 The Structural Specification

ARBITER corresponds to the HDL of the same name. It has been structured into separate parts.
One definition gives the X and Y hardware and one for the output-disable hardware. The x and y
inputs are grouped into a single 2-bit word, grant. The clock signal is omitted.

F V 1tReq routeEnable frameStart grant outputDisable.
ARBITER ((1tReq,routeEnable,frameStart),grant,outputDisable) =
ARBITER_XY ((1tReq,routeEnable),SBIT 1 grant,SBIT O grant) A
0UTDIS ((frameStart,routeEnable,ltReq),outputDisable)

F V 1ltReq routeEnable frameStart grant outputDisable.
ARBITER_SIMPL ((1tReq,routeEnable,frameStart),grant,outputDisable) =
ARBITER_XY_SPEC ((1tReq,routeEnable),SBIT 1 grant,SBIT 0 grant) A
OUTDIS_SPEC2 ((frameStart,routeEnable,ltReq),outputDisable)

Qudos HDL

DEF ARBITER(req[0..3], clock, routeEnable, fs: IN; x, y, outputDisable: IO);

jx,kx, jy,ky, jyTerm[0..1], kyTerm[0..1],
jxFact[0..1], kxFact[0..1],

xBarJyCLB, reqBarJyCLBO, reqBarJyCLB2,
xBarKyCLB, reqBarKyCLB1, reqBarKyCLB3,
reqBarJxKxCLB1, reqBarJxKxCLB3,

anyReq, kOut, outputEnable : IO

BEGIN

(* The State Flip Flops --- XY is last Grant made *)
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C1bFF := XiCLBMAP5i2oke (jx, kx, jx, jy, ky, clock, routeEnable, x, y);

FFx := JKFFce (jx, kx, clock, routeEnable, x);
FFy := JKFFce (jy, ky, clock, routeEnable, y);
(x Jy %)

ClbJy := XiCLBMAPSilo (x, req[0..3], jy);
InvXJyCLB := XiINV (x, xBarJyCLB);
InvReqOJyCLB := XiINV (req[0], reqBarJyCLBO);
InvReq2JyCLB := XiINV (req[2], reqBarJyCLB2);

AoJy := A0 (jyTerm[0l, req[3], jyTerm[1l, req[1l, jy);

OrTermJy[0] := XiOR2(x, reqBarJyCLB2, jyTerm[0]);
OrTermJy[1] := XiOR2(xBarJyCLB, reqBarJyCLBO, jyTerm[1]);
(* Ky *)

ClbKy := XiCLBMAP5ilo (x, req[0..3], ky);
InvXKyCLB := XiINV (x, xBarKyCLB);
InvReq1KyCLB := XiINV (req[1], reqBarKyCLB1);
InvReq3KyCLB := XiINV (req[3], reqBarKyCLB3);

AoKy := A0 (kyTerm[0], req[2], kyTerm[1], req[0], ky);

OrTermKy [0]
OrTermKy[1]

XiOR2(xBarKyCLB, reqBarKyCLB1, kyTerm[0]);
XiOR2(x, reqBarKyCLB3, kyTerm[1]);

ClbJxKx := XiCLBMAP5i20(req[0], req[i1], reql[2], y, req[3], jx, kx);

InvReqJxKxCLB1 := XiINV (req[1], reqBarJxKxCLB1);
InvReqJxKxCLB3 := XiINV (req[3], reqBarJxKxCLB3);
(x Jx *)

AndJx := XiAND2(jxFact[0..1], jx);
OrFactJx[0] := XiOR2(y, reqBarJxKxCLB1, jxFact[0]);
OrFactJx[1] := XiOR2(req[3], req[2], jxFact[1]);

(* Kx *)

AndKx := XiAND2(kxFact[0..1], kx);
OrFactKx[0] := XiOR2(y, reqBarJxKxCLB3, kxFact[0]);
OrJactKx[1] := XiOR2(req[0], req[1], kxFact[1]);

AnyOr := XiOR4(req[0..3], anyReq);

AndKout := XiAND2 (anyReq, routeEnable, kOut);

FFOutDis := JKFF (fs, kOut, clock, outputDisable, outputEnable);
END;
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3.38.3 The Correctness Statement

The proofs for the grant and outputDisable signals are treated separately. For both, active and
inactive frames are then treated separately, and for an active frame the periods before and after
the active time are considered separately. The correctness of the outputDisable signal follows

immediately from the specifications for 0UTDIs.

The grant cases for an inactive frame and active frame prior to the active time are the same.
The grant signal should remain unchanged under the absence of an active signal: that is while
routeEnable is low and there is no request on 1tReq. It follows immediately from the specification
of ARBITER.XY that if routeEnable is low, both bits of the grant signal are unchanged. If none of the
bits of 1tReq are high grant is also unchanged. The values of its two bits depend on the definitions
ArbX and ArbY respectively. When all the bits of 1tReq are low the definition ArbX becomes:

ArbX 1tReq routeEnable y x =
(routeEnable
=2 xE=>(yAFATATD
[ (G VvDAFYV )
(Y

This is equivalent to:

ArbX 1tReq routeEnable y x =
(routeEnable
> @E=>T| F)
| x

or

ArbX ltReq routeEnable y x =
(routeEnable => x | x)

Thus, ArbX has the value x and the corresponding bit of grant is unchanged. A similar argument
follows with the definition of ArbY and the other bit of grant.

For the grant signal in the last part of an active frame, we must show that the correct arbitration
decision is made causing grant to have the appropriate value. We must also show that this value is
held stable until the end of the frame. The second part follows from the fact that routeEnable is low
until the end of the cycle. The first part involves showing that GrantForOut returns the same result
as ArbX and ArbY when routeEnable is true. This involves fiddly, but otherwise straightforward
reasoning about the definition of round robin arbitration.

F FOR 1tReq :: (PSIGLEN 4).
FOR grant ::(PSIGLEN 2).
ARBITER ((1tReq,routeEnable,frameStart),grant,outputDisable) O
ARBITER_SPEC ((1ltReq,routeEnable,frameStart),grant,outputDisable)

3.39 ARBITERS
3.39.1 The Behavioural Specification

ARBITERS performs round-robin arbitration for all the output ports. It is equivalent to a series
of individual arbiters, one per output port. Each input and output (other than routeEnable and

frameStart which are single bits) consists of a word holding values of the type required for a single
arbiter.
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Figure 29: The Implementation of ARBITERS

- V 1tReq routeEnable frameStart grant outputDisable.

(FOR i ::(TD (SIGLEN gramnt)).
ARBITER_SPEC
((SBITS i 1tReq,routeEnable,frameStart),
SBIT i grant,
SBIT i outputDisable))

ARBITERS_SPEC ((ltReq,routeEnable,frameStart),grant,outputDisable) =

3.39.2 The Structural Specification

ARBITERS provides an extra layer of hierarchy. It combines the separate arbiters into a single

arbitration unit.

F V 1tReq routeEnable frameStart grant outputDisable.

(FOR i ::(TO0 (SIGLEN grant)).
ARBITER
((SBITS i ltReq,routeEnable,frameStart),
SBIT i grant,
SBIT i outputDisable))

ARBITERS ((ltReq,routeEnable,frameStart),grant,outputDisable) =
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i V 1ltReq routeEnable frameStart grant outputDisable.
ARBITERS_SIMPL ((1tReq,routeEnable,frameStart),grant,outputDisable) =
(FOR i ::(TD (SIGLEN grant)).
ARBITER_SPEC
((SBITS i ltReq,routeEnable,frameStart),
SBIT i grant,
SBIT i outputDisable))

<

Qudos HDL

Arb[0-3] := ARBITER (1tReq[0-3], 1tReq[4-7], 1tReq[8-11], 1tReq[12-15],
clock,
routeEnable, frameStart, xGrant[0-3], yGrant[0-3],
outputDisable[0-3]);

3.39.3 The Correctness Statement

The correctness theorem follows immediately from the behavioural and structural definitions and
the correctness theorem for ARBITERS.

I FOR 1tReq ::(PSIG2LEN 4 4).
FOR grant ::(PSIG2LEN 4 2).
ARBITERS ((ltReq,routeEnable,frameStart),grant,outputDisable) D
ARBITERS_SPEC ((1ltReq,routeEnable,frameStart),grant,outputDisable)

3.40 PRIORITY_DECODE
3.40.1 The Behavioural Specification

PRIORITY:DECODE decodes the headers for all the output ports. It takes as inputs a word of active
bits, active, a word of priority bits, priority, and a word of 2-bit requests route, all from the
headers. Its output, 1tReq, is a word of position vectors indicating which inputs are making
successful requests for each output (after priority decoding but before arbitration). 1tReq has one
position vector for each input port. Each position vector has one bit corresponding to each output
port. If it is true then the input port is making a request for the output port.

Each bit in 1tReq corresponding to an input port—output port pair is set as follows. If there is
a high priority request from any input port for the output port and there is a high priority request
from the input port for it then the bit is set. If there is no high priority request for the output
port then the bit is set if there is any request from the input port for it. IsHiReq and IsGenReq
indicate if a high or general request are being made, respectively.

A general priority request is being made if the active bit is set for the input port, and its route
field when converted to a number is the number of the output port under consideration. A high
priority request is being made if in addition the priority bit is set.

Priority decoding occurs on all bytes arriving from the input ports. However, the results will

be ignored by the arbiter except when they correspond to headers. The timing circuitry controls
this.
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Figure 30: The Implementation of PRIORITY_DECODE

F V inport outport active priority route.
'~ IsHiReq inport outport active priority route =
BIT inport active A
BIT inport priority A
(BNVAL (BIT inport route) = outport) .

F V inport outport active route.
IsGenReq inport outport active route =
BIT inport active A (BNVAL (BIT inport route) = outport)

F V active priority route ltReq.
PRIORITY_DECODE_SPEC ((active,priority,route),ltReq) =
v t.
1tReq (¢t + 1) =
MKW 4
(A i,
MKW 4

(A n.
(3 k. k < 4 A IsHiReq k n (active t) (priority ¢) (route t))

= (IsHiReq i n (active t) (priority t) (route t))
| (IsGenmReq i n (active t) (route t)))))

3.40.2 The Structural Specification

PRIORITY_DECODE gives an extra level of hierarchy over the HDL version. It contains the hardware

that is used to decode the headers. PAUSE is used for the latch.

F V active priority route ltReq.
PRIORITY_DECODE ((active,priority,route),ltReq) =
(LOCAL hiReq genReq req ::(PSIG2LEN 4 4).

DECODE_N ((active,priority,route),hiReq,genReq) A
PRIORITY ((hiReq,genReq),req) A
PAUSE (req,ltReq))
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F V active priority route ltReq.
PRIORITY_DECODE_SIMPL ((active,priority,route),ltReq) =
(LOCAL hiReq genReq req ::(PSIG2LEN 4 4).
DECODE_N_SPEC ((active,priority,route),hiReq,genReq) A
PRIORITY_SPEC ((hiReq,genReq),req) A
PAUSE_SPEC (req,ltReq))

Qudos HDL

Decode[0] := DECODE (d[0..3], hiReq[0..3], genReq[0..31);
Decode[1] := DECODE (d[8..11], hiReq[4..7], genReql[4..71);
Decode[2] := DECODE (d[16..19], hiReq[8..11], genReq[8..11]);

Decode[3] ;= DECODE (d[24..27], hiReq[12..15], genReq[12..15]);

PriFilter[0-3] := PRIFILACLB (
hiReq[0-3], hiReq[4-7], hiReq[8-11], hiReq[12-15],
genReq[0-3], genReq[4-7], genReq [8-11], genReq[12-15],
req[0-3], req[4-7], req[8-11], req[12-15]1);

FFReq[0-15] := XiDFFd(req[0-15], clock, 1tReq[0-15]);

3.40.3 The Correctness Statement

b FOR active priority ::(PSIGLEN 4).
FOR route ::(PSIG2LEN 4 2).
FOR 1tReq ::(PSIG2LEN 4 4).
PRIORITY_DECODE ((active,priority,route),ltReq) O
PRIORITY_DECODE_SPEC ((active,priority,route),ltReq)

3.41 ARBITRATION

3.41.1 The Behavioural Specification

ARBITRATION is the top-level specification of the full decoding, prioritising arbitration unit of the
fabric. Two signals are output: grant which indicates which input port is being granted access to
the input port at a given time, and outputDisable which indicates whether that value is currently
valid or should be ignored. grant only changes once per frame, just after the new cells arrive.
outputDisable is held high from the start of the cycle until a new decision has been made just after

the cells arrive.
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b V act pri req frameStart grant outputDisable.
ARBITRATION_SPEC ((act,pri,req,frameStart),grant,outputDisable) =
(V ts ta te.’
(AFRAME2 ts ta te frameStart act D
GRANT ts ta te act pri req grant A
STABLE (ts + 1) (ta + 2) outputDisable
(MKW (SIGLEN outputDisable) (A i. T)) A
STABLE (ta + 2) (te .+ 1) outputDisable
(MKW (SIGLEN outputDisable)
i
Disable (act ta) (pri ta) (WMAP ($= i o BNVAL) (req ta))
(BIT i (grant (ta + 1)))))) A
(IFRAME ts te frameStart act D
STABLE (ts + 2) (te + 2) grant (grant (ts + 1)) A
STABLE (ts + 1) (te + 1) outputDisable
(MKW (SIGLEN outputDisable) (A i. T))))

GRANT defines the values of the grant word of the arbitration unit over the period of a frame.
Each output port grants some input port access at each point in time, and it is only changed (on
a round robin basis) at a fixed time after the headers arrive. ‘

F V ts ta te act pri req grant.
GRANT ts ta te act pri req gramt =
STABLE (ts + 2) (ta + 2) grant (grant (ts + 1)) A
STABLE (ta + 2) (te + 2) grant
(MKW (SIGLEN grant)
A i
Grant (act ta) (pri ta) (WMAP ($= i o BNVAL) (req ta))
(BIT i (grant (ta + 1)))))

Grant defines the value of the grant signal for a single output port given the active statuses,
priority statuses and requests made by each of the inport ports and the grant made by this output
port previously.

If no input port is requesting the output port, then the input port last granted access to this

output port continues to be granted it. Otherwise the new round robin arbitrated port is granted
access to it.

F ¥V act pri req last.
Grant act pri req last =
(let suc_inport = PickSuccessfulInput act pri req (BNVAL last)
in
((suc_inport = NO_RESULT) => last | (NBWORD 2 (ResultOf suc_inport))))

DISABLE defines the values of the outputDisable word of the arbitration unit over the period of
a frame. Outputs are disabled until a given point after the cells arrive, after which it takes on a
new value dependent on the input values at the cell arrival time. OQutputs are then disabled if no
request for this output port was made in the current frame. Otherwise they are enabled.
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Figure 31: The Implementation of ARBITRATION

F V ts ta te act pri req grant outputDisable.
DISABLE ts ta te act pri req grant outputDisable =
((ta < te)
= (STABLE (ts + 1) (ta + 2) outputDisable
(MKW (SIGLEN outputDisable) (M i. T)))
| (STABLE (ts + 1) (ta + 1) outputDisable
(MKW (SIGLEN outputDisable) (X i. T)))) A
STABLE (ta + 2) (te + 1) outputDisable
(MKW (SIGLEN outputDisable)
i, '
Disable (act ta) (pri ta) (WMAP ($= i o BNVAL) (req ta))
(BIT i (grants (ta + 1)))))

Disable defines the value of the outputDisable signal for a single output port given the active
statuses, priority statuses and requests made by each of the inport ports and the grant made by
this output port previously.

Outputs are disabled if no request for this output port was made in the current frame.

F V act pri req last.
Disable act pri req last =
(let suc_inport = PickSuccessfullnput act pri req (BNVAL last)
in
(suc_inport = NO_RESULT))

3.41.2 The Structural Specification

ARBITRATION gives an extra level of hierarchy over the HDL version. It contains all the hardware
that is used to decode the headers. PAUSE is used for the latch.
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F V active priority route frameStart grant outputDisable.
ARBITRATION ((active,priority,route,frameStart),grant,outputDisable) =
(LOCAL routeEnable.
LOCAL ItReq ::(PSIG2LEN 4 4).
PRIORITY_DECODE ((active,priority,route),ltReq) A
TIMING ((frameStart,active),routeEnable) A
ARBITERS ((1tReq,routeEnable,frameStart),grant,outputDisable))

F V active priority route frameStart grant outputDisable.
ARBITRATION_SIMPL
((active,priority,route,frameStart),grant,outputDisable) =
(LOCAL routeEnable.
LOCAL 1tReq ::(PSIG2LEN 4 4).
PRIORITY_DECODE_SPEC ((active,priority,route),ltReq) A
TIMING_SPEC ((frameStart,active),routeEnable) A
ARBITERS_SPEC ((1tReq,routeEnable,frameStart),grant,outputDisable))

Qudos HDL

Timing := TIMING (frameStart, clock, d[0], d[8], da[16], d[24],
routeEnable) ;

Decode[0] := DECODE (d[0..3], hiReq[0..3], genReq[0..3]);

Decode[1] := DECODE (d[8..11], hiReq[4..7], genReq[4..7]);
Decode[2] := DECODE (d[16..19], hiReq[8..11], genReq[8..11]);
Decode[3] := DECODE (d[24..27], hiReq[12..15], genReq[12..15]);

PriFilter[0-3] := PRIFILACLB (
hiReq[0-3], hiReq[4-7], hiReq[8-11], hiReq[12-15],
genReq[0-3], genReq[4-7], genReq [8-11], genReq[12-15],
req[0-31, req[4-7]1, req[8-11], req[12-15]);

FFReq[0-15] := XiDFFd(req[0-15], clock, 1tReq[0-15]);

Arb[0-3] := ARBITER (ltReq[0-3]1, 1tReq[4-7], 1tReq[8-11], 1tReq[12-151,
clock,
routeEnable, frameStart, xGrant[0-3], yGrant[0-3],
outputDisable[0-3]);

3.41.3 The Correctness Statement

As with the earlier modules, the proof is split into cases on the frame type and the intervals within
the frame. We must show that the grant and outputDisable signals have the values as specified by
ARBITRATION_SPEC.

ARBITERS uses a different notion of active and inactive frames to that used by ARBITRATION.
In the former, the active signal depends on the 1tReq and routeEnable signals, whereas in the
latter it depends on the active bit of the data line. Also the conditions on the bounds differ. We
prove that if ts and te are the bounds of an inactive frame as used by ARBITRATION then they are
also the bounds of an inactive frame as used by ARBITERS, assuming that 1tReq is as specified by
PRIORITY_DECODE.SPEC. Thus when ARBITRATION sees an inactive frame, so does ARBITERS. Similarly, if
ARBITRATION sees an active frame, then each individual arbiter within ARBITERS sees either an active
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frame or an inactive frame, assuming that routeEnable is as specified by TIMING. An arbiter within
ARBITERS can see an inactive frame even though ARBITRATION sees an active frame when there are
requests within the frame for outputs other than that which the individual arbiter is responsible.

When proving the cases of the correctness theorem for ARBITRATION, we have the assumption
that either an active or inactive ARBITRATION frame occurs. We can therefore deduce that an ARBITER
active or inactive frame occurs and combine this with the definition ARBITER_SPEC to give values
on the grant and outputDisable lines over the various intervals. These are in terms of the values
of 1tReq and routeEnable. We use the specification of PRIORITY_DECODE to convert them to being
in terms of the active bit of the data line. The resulting expressions can then be simplified to the
form specified by ARBITRATION_SPEC. This is done using lemmas about the underlying definitions of
round robin arbitration and priority decoding.

F FOR active priority outputDisable ::(PSIGLEN 4).
FOR grant route ::(PSIG2LEN 4 2).
~ (frameStart 0) A
(Y t. ~ (frameStart (t + 1)) V ~ (EXISTSABIT I (active t))) D
ARBITRATION ((active,priority,route,frameStart),grant,outputDisable) D
ARBITRATION_SPEC
((active,priority,route,frameStart),grant,outputDisable)

3.42 FAB4B4
3.42.1 The Behavioural Specification

FAB4B4 provides the functionality of a switching element but has no input or output latches or
buffers, thus its timing is slightly different to that of the full element. The behavioural specification
is defined in terms of some auxiliary functions that we describe first.

DEFAULT DATA specifies the data that is output to a port when it has not been requested by an
input.

I DEFAULT_DATA = ZERDW 8

FABRIC4x4ACK2 specifies the acknowledgement signal to be sent to each input port between
times ts and te, with the headers arriving at time ta. It is given the data bytes input from each
port data.in, the previous grants made grant and the acknowledgements from each output port
ack_ins. It specifies the value of ack_out within the frame. Round robin arbitration is performed
for each output. From the start of the cycle until a new decision is made, all inputs are sent
negative acknowledgements. If the output port that an inputs header is requesting chooses that
input, then the acknowledgement from the requested output port is sent to the input port for the
remainder of the frame. Otherwise a negative acknowledgement is sent.
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l V data_in fs last ack_in ack_out.
FABRIC4x4_ACK2 (data_in,fs,last,ack_in,ack_out) =
(V ts te ta.
(IFRAME ts te fs (Actives o data_in) D
STABLE (ts + 1) (te + 1) ack_out (ZEROW (SIGLEN ack_out))) A
(AFRAME2 ts ta te fs (Actives o data_in) O
STABLE (ts + 1) (ta + 2) ack_out (ZEROW (SIGLEN ack_out)) A
DURING (ta + 2) (te + 1) ack_out
(A t. ‘
MKW (SIGLEN ack_out)
(i
Fabric4xiAck (data_in ta) (WMAP BNVAL (last (ta + 1)))
(ack_in t)
i)

FABRIC4x4.DATAOUT2 specifies the data to be output to each output port between times ts and
te, with the headers arriving at time ta. It is given the data bytes input from each port data_in
and the previous grants made, last. It specifies the value of data_out within the frame. Round
robin arbitration is performed for each output. From the start of the cycle until a new decision is
made, all inputs are sent the default data default_data. After a delay, whilst a decision is made,
the data from the successful inputs is sent to the appropriate output ports. The header bytes are
not sent. Outputs for which there are no requests continue to receive default data.

b V default_data_out data_in fs last data_out.
FABRIC4x4_DATA_OUT2 default_data_out (data_in,fs,last,data_out) =
(V ts te ta.
(IFRAME ts te fs (Actives o data_in) D
STABLE (ts + 2) (te + 2) data_out
(MKCW (SIGLEN data_out) default_data_out)) A
(AFRAME2 ts ta te fs (Actives o data_in) O
STABLE (ts + 2) (ta + 3) data_out
(MKCW (SIGLEN -data_out) default_data_out) A
DURING (ta + 3) (te + 2) data_out

A\ t.
MKW (SIGLEN data_out)
i

Fabric4xiDataOut default_data_out (data_in ta)
(data_in (t - 2))
(BIT i (WMAP BNVAL (last (ta + 1))))
N

FABRIC4x4 LAST2 specifies the input ports most recently granted access to output ports between
times ts and te, with the headers arriving at time ta. It is given the data bytes input from each’
port data_in. It specifies the value of 1ast within the frame. Round robin arbitration is performed
for each output. Except at a single point within the interval when a new decision is made, the
value remains constant. At the time when a new decision is made, the value for each output port
is updated.
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FV d fs last.
FABRIC4x4_LAST2 (d,fs,lasé) =
(¥ ts te ta.
(IFRAME ts te fs (Actives o d) D
STABLE (ts + 2) (te + 2) last (last (ts + 1))) A
(AFRAME2 ts ta te fs (Actives o d) D
STABLE (ts + 2) (ta + 2) last (last (ts + 1)) A
STABLE (ta + 2) (te + 2) last
(MKW (SIGLEN last)
i,
Grant (Actives (d ta)) (Priorities (d ta))
(WMAP ($= i) (Requests (d ta)))
(BIT i (last (ta + 1)))))))

FAB4B4_SPEC gives the specification of the internals of the fabric element. That is without any
of the external latches and gates. FAB4B4 has periodic behaviour over a frame, determined by the
frameStart signal. At a time ta within the frame, the headers arrive. This occurs at the first time
after ts that any active bit in the data is high. Round robin arbitration is then performed using
the information in the headers at that time. Until a decision is made, negative acknowledgements
are sent to all inputs, and the default data is sent to all outputs. Thereafter the successful inputs
are sent positive acknowledgements and their data (less the header) is sent to the outputs. The
state recording the last grants made for each output port is updated.

F V default_data_out last data_in frame_start ack_in data_out ack_out.
FAB4B4_SPEC default_data_out last
((data_in,frame_start,ack_in),data_out,ack_out) =
FABRIC4x4 _DATA_OUT2 default_data_out
(data_in,frame_start,last,data_out) A
FABRIC4x4_ACK2 (data_in,frame_start,last,ack_in,ack_out) A
FABRIC4x4_LAST2 (data_in,frame_start,last)

3.42.2 The Structural Specification

FAB4B4 is the definition of the implementation of the 4 by 4 switching element less the external
input and output buffers and latches. It is constructed from three units: the acknowledgement
unit, the dataswitch (which includes delay circuitry), and the arbitration unit.

On each frame, as indicated by the frameStart signal the cells from each input port are read
in. Within each frame, 0s are read in from each port until the header bytes. The start of packet
bit in each header ensures that an active header does contain a 1. The header bytes are read
by the arbitration unit, where clashes are arbitrated. It outputs a grant signal for each output
port indicating which input if any it is accepting and a corresponding set of disable signals which
indicate when the grant signal is valid. These signals are read by the dataswitch which routes the
data from the selected input ports to the appropriate output ports for the remainder of the cell.
They are also read by the acknowledgement unit which sends negative acknowledgements to the
inputs which were not selected, and routes the acknowledgement signal from the selected output
port to the corresponding successful input port. This allows the output port to refuse to accept
packets, even when there are no clashes within the element.
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Figure 32: The Implementation of FAB4B4

F V d frameStart ackIn d0ut ackOut.
FAB4B4 ((d,frameStart,ackIn),dOut,ackOut) =
(LOCAL grant ::(PSIG2LEN 4 2).
LOCAL outputDisable ::(PSIGLEN 4).
ARBITRATION
((SBITS 0 d,SBITS 1 d,SWSEGS 2- 2 d,frameStart),
grant, ‘
outputDisable) A
PAUSE_DATASWITCH ((d,grant,outputDisable),dOut) A
ACK ((ackIn,grant,outputDisable),ackOut))

F V d frameStart ackIn dOut ackOut.
FAB4B4_SIMPL ((d,frameStart,ackIn),dOut,ackOut) =
(LOCAL grant ::(PSIG2LEN 4 2).
LOCAL outputDisable ::(PSIGLEN 4).
ARBITRATION_SPEC
((SBITS 0 d,SBITS 1 d,SWSEGS 2 2 d,frameStart),
grant, )
outputDisable) A
PAUSE_DATASWITCH_SPEC ((d,grant,outputDisable),dUut) A
ACK_SPEC ((ackIn,grant,outputDisable),ackOut))

Qudos HDL

Timing := TIMING (frameStart, clock, d[0], d[8], d[16], d[24],
routeEnable) ;
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Decode[0]
Decode[1]
Decode[2]
Decode[3] :

o
n

DECODE (d[0..3], hiReq[0..3], genReq[0..3]);
DECODE (d[8..11], hiReq[4..7], genReq[4..7]);
DECODE (d[16..19], hiReq[8..11], genReq[8..11]);
DECODE (d[24..271, hiReq[12..15], genReq[12..15]);

1]

PriFilter[0-3] := PRIFILACLB (
hiReq[0-3]1, hiReq[4-71, hiReq[8-111, hiReq[12-15],
genReq[0-3], genReq[4-7], genReq [8-11], genReq[12-15],
reql0-3], req[4-7], reql8-11], req[12-151);

FFReq[0-15] := XiDFFd(req[0-15], clock, 1tReq[0-15]);

Arb[0-3] := ARBITER (1tReq[0-3], 1tReq[4-7], ltReq[8-111, 1tReq[12-15],
clock,
routeEnable, frameStart, xGrant[0-3], yGrant[0-3],
outputDisable[0-3]);

Pause[0-31] := XiDFFd(d[0-31], clock, dPause[0-31]);

DPSw[0] := DATASWITCH (dPause[0..31], clock, xGrant[0], yGrant[0],
outputDisable[0], dOut[0..7]);

DSw[1] := DATASWITCH (dPause[0..31], clock, xGrant[1], yGrant[1],
outputDisable[1], dOut[8..15]);

DSw[2] := DATASWITCH (dPause[0..31], clock, xGrant[2], yGrant[2],
outputDisable[2], dOut[16..23]);

DSw[3] := DATASWITCH (dPause[0..31], clock, xGrant[3], yGrant[3],

outputDisable[3], dOut[24..31]);

AckGen[0-3] := ACKGEN (ackIn[0-3], xGrant[0-3], yGrant[0-3],
outputDisable[0-3],
ackTerm[0-3], ackTerm[4-7], ackTerm[8-11], ackTerm[12-15]);

AckOr[0]

AckOr[1] :

AckOr[2] :

AckOr[3] :
END;

ACKOR (ackTerm[0..3], ackOut[0]);
ACKOR (ackTerm[4..7], ackOut[1]);
ACKOR (ackTerm[8..11], ackOut[2]);
ACKOR (ackTerm[12..15], ackOut[3]);

i

1]

3.42.3 The Correctness Statement

We have proved that for all input and output signals for which the structural specification holds,
there exists a signal last of the appropriate size for which the behavioural specification holds.
That is, any behaviour exhibited by the structural specification is permitted by the behavioural
specification. It is assumed that the frame start signal does not go high in the first clock cycle and
that thereafter the headers do not arrive in a cycle prior to the next frame start signal going high.
If this condition does not hold, the outputDisable signal may not reset itself correctly.
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F FOR ackIn ackOut ::(PSIGLEN 4).
FOR dOut d ::(PSIG2LEN 4 8).
~ (frameStart 0) A
(Y t. ~ (frameStart (t + 1)) V ~ (EXISTSABIT I (SBITS 0 d t))) D
FAB4B4 ((d,frameStart,ackIn),d0ut,ackOut) O
(LOCAL last ::(PSIG2LEN 4 2).
FAB4B4_SPEC DEFAULT_DATA last ((d,frameStart,ackIn),dOut,ackUut))

Each of the signals ackOut, d0ut and last are considered separately. For each the proof is split
into cases on the type of frame and the intervals within a frame. The specification of ARBITRATION
gives the values of grant and outputDisable in terms of the input signals to FAB4B4. There is no
frame structure in the specifications of ACK and PAUSE.DATASWITCH. They just give the values of
the outputs in terms of the values of their inputs on the previous cycles. These inputs include
grant and outputDisable. They can be eliminated using the specification of ARBITRATION over the
intervals it specifies. For example, for the signal ackOut we prove the theorem:

 (SIGLEN outputDisable = SIGLEN ackOut) A
ACK_SPEC ((ackIn,grant,outputDisable),ackOut) A
STABLE (ts + 1) (ta + 2) outputDisable
(MKW (SIGLEN outputDisable) (A i. T)) O
STABLE (ts + 1) (ta + 2) ackOut (ZEROW (SIGLEN acklOut))

This gives the value of ackOut in the interval up to the active signal arriving using the information
that outputDisable is high throughout this period.

3.43 The Switching Fabric—FABRIC4x4

In this section we describe the top level of the switching fabric design. We give behavioural and
structural specifications. We then give the main correctness theorem we have proved which states
that the implementation of the switching element satisfies the specified behaviour, under certain
assumptions about the input signals. It should be noted that the correctness theorem talks about a
description of the implementation rather than the implementation itself. The correctness theorem
will say nothirig about the implementation as actually fabricated, if this does not correspond to
the description used.

3.43.1 The Behavioural Specification

The predicate FABRIC4B4_SPEC describes the behaviour of the 4 by 4 switching element. It takes
three inputs. The first, dataIn is a word of 4 data bytes: one from each input port. Cells are
injected into the fabric a byte at a time on this input. The second frameStart is the frame start
signal which is used to synchronise the injection of cells from the different input ports. It controls
the timing of when new routeing decisions are made. Finally, the ackIn signal carries one bit
of acknowledgement information back from each output port, to indicate whether it is willing to
accept a cell. The fabric has two outputs. The first, databut is a word of 4 data bytes: one for each
output port. The cells are sent to the appropriate output port on datatut. The second output,
ackIn, carries one bit of acknowledgement information back to each input port. This indicates
whether the cell clashed with other cells or was rejected by the requested output port. The fabric
retains one word of state, 1ast. This word consists of one entry for each output port indicating
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the last input port from which it received data. This information is used to arbitrate between cell
clashes. The definition is also parameterised by the byte value sent to output ports, when they
are not being sent a cell. The current implementation of the port controllers requires such bytes
to have a zero in the active bit.

FABRIC4B4 has periodic behaviour over a frame, determined by the frameStart signal. At a
synchronised time within each frame, the headers arrive. The fabric recognises this time by
watching the active bits in the data. When one or more go high the cells have arrived. Round
robin arbitration is then performed using the information in the headers at that time. Until a
decision is made, negative acknowledgements are sent to all inputs, and the default data is sent
to all outputs. Thereafter the successful inputs are sent positive acknowledgements and their data
(less the header) is sent to the outputs. The state recording the last grants made for each output
port is updated.

The specification is split into three independent parts. FABRIC4x4.DATA OUT specifies the
behaviour of the dataOut signal. FABRIC4x4_ACK specifies the behaviour of the ackOut signal.
FABRIC4x4 LAST specifies the state on each cycle (represented by the signal 1last).

F V defaultDatalut last dataln frameStart ackIn datalut ackOut.
FABRIC4B4_SPEC defaultDatalOut last
((datalIn,frameStart,ackIn),datalut,ackOut) =
FABRIC4x4_DATA_OUT defaultDataOut (dataIn,frameStart,last,datalut) A
FABRIC4x4_ACK (dataln,frameStart,last,ackIn,ackOut) A
FABRIC4x4_LAST (dataln,frameStart,last)

FABRIC4x4 ACK specifies the acknowledgement signals to be sent to each input port. It takes
as arguments the data signal from the input ports port, dataIn, the frame start signal, fs, the
previous grants made, last, the acknowledgement signals from each output port, ackIn, and the
acknowledgement signals to the input ports ackout.

The specification is given with respect to frames. Given a pair of times ts and te which define
the bounds of an inactive frame, from time ts+1 to te+1 negative acknowledgements will be output
on all ackOut lines.

Given atriple of times ts, ta and te which define an active frame, from time ts+1 to ta+3 zeroes
will be output on all ackOut lines. From then to time te+1 the value output to an input port will
depend on whether that input ports cell was successful and whether the successful output port is
receiving cells. The value for each input port (ie each bit of ackoOut) is specified independently by
the function Fabric4xiAck. It is passed the values of the headers from all input ports (the value of
dataln at time ta; the last chosen values for each output port identified; the acknowledgements from
all the output ports and the number of the input port under consideration. Arbitration is performed
on the requests given in the headers. If the request from the input port under consideration is
successful it sees the acknowledgement signal from its chosen output port. Otherwise it continues
to see a negative acknowledge.
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F V dataln fs last ackIn ackOut.
FABRIC4x4_ACK (dataln,fs,last,ackIn,ackOut) =
(V ts te ta.
(IFRAME ts te fs (Actives o dataln) D
STABLE (ts + 1) (te + 1) ackOut (ZEROW (SIGLEN ackOut))) A
(AFRAME ts ta te fs (Actives o dataIn) D
STABLE (ts + 1) (ta + 3) ackOut (ZEROW (SIGLEN ackOut)) A
DURING (ta + 3) (te + 1) ackOut
(A t.
MKW (SIGLEN ackOut)
(A i.
Fabric4xiAck (dataIn ta) (WMAP BNVAL (last (ta + 2))) (ackIn t)
i))))

FABRIC4x4 DATA.OUT specifies the data to be output to each output port over the period of a
frame. It takes as arguments the data signal from the input ports port dataln, the frame start
signal s, the previous grants made last and the outgoing data signal to the output ports, datalut. .

The specification is given with respect to frames. Given a pair of times ts and te which define
the bounds of an inactive frame, from time ts+3 to te+3 the default data value will be output' on
dataOut to all output ports.

Given a triple of times ts, ta and te which define an active frame, from time ts+3 to ta+5 the
default data value will be output on datout to all output ports. From then to time te + 3 the value
output to an output port will depend on which input port, if any, successfully requests the output
port. The value for each output port is specified independently by the function Fabric4xiDatalut.
If no input port requested the output port on this cycle, the default value is sent to the output port.
Otherwise the data from the successful input port is output delayed by 4 cycles (dataIn (t-4)).
Since this behaviour starts 5 cycles after the header arrived from the input port, the header is
not forwarded. Arbitration between different input ports requesting the same output port is on a
round robin basis. The most recent successful input for output i is held in bit i of the state signal
last. It is accessed using BIT i (last (ta+2)) which specifies that the arbitration takes place 2
cycles after the header arrives. This is a binary representation of the port number. It is converted
to a natural number using BNVAL.

I V defaultDataOut dataln fs last dataOut.
FABRIC4x4_DATA_OUT defaultDataOut (dataIn,fs,last,datalut) = :
(V ts te ta.
(IFRAME ts te fs (Actives o dataln) D
STABLE (ts + 3) (te + 3) datalut
(MKCW (SIGLEN dataOut) defaultDataQut)) A
(AFRAME ts ta te fs (Actives o dataln) D
STABLE (ts + 3) (ta + 5) datalut
(MKCW (SIGLEN dataOut) defaultDataOut) A
DURING (ta + 5) (te + 3) dataOut

A\ t.
MKW (SIGLEN dataOut)
(i

Fabric4x1DataOut defaultDataOut (dataIn ta) (dataln (t - 4))
(BIT i (WMAP BNVAL (last (ta + 2))))
inNn

FABRIC4x4_LAST specifies the input ports most recently granted access to each output ports.
This information is held in the signal 1ast. Each bit of last holds the information for one output
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port. It is dependent on the data signal from the input ports dataIn and the frame start signal fs
which determines the timing.

The specification is given with respect to frames. Given a pair of times ts and te which define
the bounds of an inactive frame, from time ts+2 to te+2 the value of last is unchanged from that
at the end of the previous cycle. :

On an active frame round robin arbitration is performed indep'end!ently for each output. Except
at a single point within the interval when a new decision is made, the value remains constant. At
the time when a new decision is made, the value for each output:port is updated. Given a triple of
times ts, ta and te which define an active frame, from time ts+2 to ta+3, last does not change. By
time ta+3 a new decision has been made and so from this time to te+2 last holds the new value.
The arbitration result is specified by Grant. It depends on the active and priority bits of each of
the headers, an indication of which of the headers are making requests for the output port under
consideration, (for output port i we need to know if the request fields of each of the headers is
equal to i), and the last successful input for this output (bit i of last at time ta+2).

F V dataln fs last.
FABRIC4x4_LAST (dataIn,fs,last) =
(V ts te ta.
(IFRAME ts te fs (Actives o dataln) D
STABLE (ts + 2) (te + 2) last (last (ts + 1))) A
(AFRAME ts ta te fs (Actives o dataIn) O
STABLE (ts + 2) (ta + 3) last (last (ts + 1)) A
STABLE (ta + 3) (te + 2) last
(MKW (SIGLEN last)
(A i
Grant (Actives (dataln ta)) (Priorities (dataln ta))
(WMAP ($= i) (Requests (dataIn ta)))
(BIT i (last (ta + 2)))))))

3.43.2 The Structural Specification

FABRIC4B4 is the definition of the implementation of the 4 by 4 switching element. The original
HDL specification had little structure. For the HOL version we added extra layers of hierarchy to
make the proof more tractable. This did not change the underlying design, only the description
of it. The fabric consists of a main unit FAB4B4 whose inputs and outputs are connected to input
and output buffers or latches. Two versions of the HOL specification are provided: one in terms
of the implementations of the components and one in terms of their specifications.

F V dEXT frameStartEXT ackInEXT dOutEXT ackOutEXT.
FABRIC4B4 ((dEXT,frameStartEXT,ackInEXT),dDutEXT,ackUutEXT) =
(LOCAL frameStart.

LOCAL ackIn ackOut ::(PSIGLEN 4).

LOCAL 4 dOut ::(PSIG2LEN 4 8).

XiIBUF (frameStartEXT,frameStart) A
IN_BUF (ackInEXT,ackIn) A
IN_LATCH (dEXT,d) A
OUT_LATCH (dOut,dOutEXT) A
OUT_BUF (ackOut,ackDutEXT) A
FAB4B4 ((d,frameStart,ackIn),dOut,ackOut))
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Figure 33: The Implementation of FABRIC4B4

(LoCAL

frameStart.

LOCAL ackIn ackOut ::(PSIGLEN 4).
LOCAL d dOut ::(PSIG2LEN 4 8).

XiIBUF (frameStartEXT,frameStart) A
IN_BUF_SPEC (ackInEXT,ackIn) A
IN_LATCH_SPEC (dEXT,d) A
OUT_LATCH_SPEC (dOut,dOutEXT) A
OUT_BUF_SPEC (ackOut,ackOutEXT) A
FAB4B4_SPEC default_data last ((d,frameStart,ackIn),dOut,ackOut))

F V default_data last dEXT frameStartEXT ackInEXT dOutEXT ackOutEXT.
FABRIC4B4_SIMPL default_data last
((dEXT, frameStartEXT,ackInEXT) ,dOutEXT,ackOutEXT) =

Qudos HDL

DEF FABRIC4B4 (dEXT[O..31], clockEXT, frameStartEXT, ackInEXT[0..3]: IN;
dOutEXT[0..31], ackOutEXT[0..3]: I0);

df0..31], clock, frameStart, ackIn[0..3], ackOut[0..3],

dout[0..31],

dPause[0..31],

routeEnable, outputDisable[0..3],

hiReq[0..15], genReq[0..15], req[0..15],

1tReq[0..15],
xGrant[0..3],

yGrant[0..3],

ackTerm[0..15]: ID;

BEGIN

Tclk := XiGCLX (clockEXT, clock);
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END;

FS := XiIBUF (frameStartEXT, frameStart);
Ai[0-3] := XiIBUF (ackInEXT[0-3], ackIn[0-3]);

I[0-31] := XiINFFd (dEXT[0-31], clock, d[0-31]1);
0[0-31] := XiOUTFFd (d0ut[0-31], clock, dO0utEXT[0-31]);
Ao[0-3] := XiOBUF (ackOut[0-3], ackOutEXT[0-3]);

Timing := TIMING (frameStart, clock, d[0], d[8], a[16], d[24],
routeEnable) ;

DECODE (d[0..3], hiReq[0..3], genReq[0..3]);

Decode[0] :=

Decode[1] := DECODE (d[8..11], hiReq[4..7], genReq[4..7]);
Decode[2] := DECODE (d[16..19], hiReq[8..11], genReq[8..11]);
Decode[3] := DECODE (d[24..27], hiReq[12..15], genReq[12..15]);

PriFilter[0-3] := PRIFIL4CLB (
hiReq[0-3], hiReq[4-7], hiReq[8-11], hiReq[12-15],
genReq[0-3], genReq[4-7], genReq [8-11], genReq[12-15],
req[0-3], req[4-7], req[8-111, req[12-15]);

FFReq[0-15] := XiDFFd(req[0-15], clock, 1tReq[0-15]1);

Arb[0-3] := ARBITER (1tReq[O-3], 1tReq[4-7], ltReq[8-11], 1tReq[12-15],
clock,
routeEnable, frameStart, xGrant[0-3], yGrant[0-3],
outputDisable[0-3]);

Pause[0-31] := XiDFFd(d[0-31], clock, dPause[0-31]);

DSw[0] := DATASWITCH (dPause[0..31], clock, xGrant[0], yGrant[0],
outputDisable[0], dOut[0..7]);

DSw[1] := DATASWITCH (dPause[0..31], clock, xGrant[1], yGrant[1],
outputDisable[1], dOut[8..15]);

DSw[2] := DATASWITCH (dPause[0..31], clock, xGrant[2], yGrant[2],
outputDisable[2], dOut[16..23]);

DSw{3] := DATASWITCH (dPause[0..31], clock, xGrant[3], yGrant[3],

outputDisable[3], dOut[24..31]);

AckGen[0-3] := ACKGEN (ackIn[0-3], xGrant[0-3], yGrant[0-3],
outputDisable[0-3],
ackTerm[0-3], ackTerm[4-7], ackTerm[8-11], ackTerm[12-15]);

AckOr[0] := ACKOR (ackTerm[0..3], ackOut[0]);
Ack0r[1] := ACKOR (ackTerm[4..7], ackOut[1]);
AckOr[2] := ACKOR (ackTerm[8..11], ackOut[2]);
AckOr[3] := ACKOR (ackTerm[12..15], ackOut[3]);

3.43.3 The Correctness Statement

We have proved that for all input and output signals for which the structural specification holds,
there exists a signal last of the appropriate size for which the behavioural specification holds.
That is, any behaviour exhibited by the structural specification is permitted by the behavioural
specification. It is assumed that the frame start signal does not go high in the first 2 clock cycles
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and that thereafter the headers do not arrive within 2 cycles prior to the next frame start signal.
These conditions are sufficient for the implementation to have the correct behaviour. They ensure
that the logic resets itself properly at the start of a cycle. The frame start signal should not be
high just after headers arrive because if so the TIMING unit will ignore the headers. It should not go
high two cycles after the headers arrive, because then the outputDisable signal may not reset itself
correctly. The latter condition corresponds to the explicit assumption in the correctness statement
for FAB4B4. The former is implicit in the definition of a frame used for FAB4B4. We have only proved
that the conditions are sufficient, not that they are necessary. Other less restrictive conditions may
also be sufficient to ensure correct behaviour. Indeed the assumption that we use states that the
active bit should not be set in the last two cycles of any frame even if it was not set as part of a
header. We believe that only the first set active bit of the frame must not occur in the last two
cycles. Once a header arrives the value of the active bit does not matter for the remainder of the
frame. We have not formally proven this however. Our more restrictive assumption was simpler
to state and verify. The way the element is currently used ensures that it is not invalidated.

The theorem follows relatively easily from the correctness statement for FAB4B4. FAB4B4 use
slightly different notions of frames. This situation is similar to that encountered in the proof of
ARBITRATION. The signals ackOutEXT, d0utEXT and last are considered separately. For each the proof
is split into cases on the type of frame and the intervals within a frame.

F FOR ackInEXT ackOutEXT ::(PSIGLEN 4).
FOR dOutEXT dEXT ::(PSIG2LEN 4 8).
~ (frameStartEXT 0) A
~ (frameStartEXT 1) A
vV t.
~ (frameStartEXT (t + 2)) A ~ (frameStartEXT (t + 1)) V
~ (EXISTSABIT I (Actives (dEXT t)))) D
FABRIC4B4 ((dEXT,frameStartEXT,ackInEXT),dUutEXT,ackUutEXT) D
(LOCAL last ::(PSIG2LEN 4 2).
FABRIC4B4_SPEC DEFAULT_DATA last
((dEXT,frameStartEXT,ackInEXT) ,dOutEXT, ackOutEXT))
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