Technical Report A

Number 323

Computer Laboratory

Representing higher-order
logic proofs in HOL

J. von Wright

January 1994

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1994 J. von Wright

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Representing higher-order logic proofs in HOL

J. von Wright*
January 18, 1994

1 Introduction

When using a theorem prover based on classical logic, such as HOL [2], we are generally

interested in the facts that are proved (the theorems) than in the way in which they were

proved (the proofs). However, we may not trust the prover completely, and so be interested

in checking the correctness of the proof. Since machine-generated proofs are generally
very long, checking by hand is out of the question; we need a computer program, a proof

checker. However, we also need to trust the proof checker. Preferrably, we would want the

correctness of proof checker to be verified formally. One way of doing this is by specifying

it in a mechanised logic (such as that of the HOL system) and then doing a correctness

proof in this logic. This process may seem circular, but it is acceptable, provided that we

have a theory of proofs embedded in the logic.

This paper describes an attempt to formalise the notion of HOL proofs within HOL.
The aim is to be able to verify (inside HOL) that what is claimed to be a proof is really a
proof.

We have defined two new types, Type and Pterm, which represent HOL types and HOL
terms (in fact, HOL-terms are only represented by those terms of type Pterm for which the
predicate Pwell_typed holds). Furthermore, we have formalised a number of proof-theoretic
concepts that are needed in the discussion of proofs, such as the concept of a variable being
free in a term, a term having a certain type, two terms being alpha-equivalent etc.

We have also defined a type of sequents and a type of inferences. Proofs are defined as
lists of correct inferences. The results are stored in a number of theories:

proofaux Auxiliary results about lists and sets

Type Formalisation of HOL types

Pterm Formalisation of HOL terms

inference Formalisation of sequents and inferences
proof Proofs and provability

derived Derived rules of inference

The aim of our formalisation is to be able to check proofs, not to generate them. This
means that we do not necessarily have to copy the HOL inference rules, as functions which

*Abo Akademi University, Turku, Finland, E-mail: jwright@aton,abo.fi

return theorems, inside HOL. Instead, it is enough that we are able to recognise a correct in-
ference, once the result is given. This means that we do not have to capture HOL’s intricate
(and ill documented) procedures for variable renaming used in the two primitive inference
rules INST_TYPE and SUBST. Our formalisation permits arbitrary renaming schemes, and
the one used by HOL as a special instance.

A theory in HOL is characterised by a type structure, a set of defined constants and a
set of axioms. In our formalisation, a type structure is represented by a list of pairs (op,n)
of type string#num, where n is the arity of the type operator op.

The constants of a theory are represented by a list of pairs (const,ty) where ty is the
generic type (which can be polymorphic) of the constant const.

Finally, the axioms of a theory are represented by a list of sequents. Sequents, in turn,
are pairs (as,tm), where as is a set of terms (the assumptions) and tm is a term (the
conclusion). The equations that define constants are also considered to be axioms.

For every concept we have formalised, we have also written a proof function. For
example, if we have defined a new constant foo, e.g., by a defining theorem

 foox y = E

then there is also an ML function Rfoo which can be called in the following way:

#Rfoo [Mel";"e2"];;
F foo el e2 = ...

where the right hand side is canonical (i.e., it cannot be further simplified using definitional
theorems). Essentially, these proof functions do rewriting, but in an efficient way, compared
to the REWRITE RULE function.

Notation We assume that the reader is familiar with the HOL theorem prover and its
syntax. We mainly use the syntax of HOL, nut we use ordinary logical symbols, rather
than the ASCII character combinations used by HOL., When referring to HOL objects, we
use typewriter font. Similarly, we show examples of interaction with the HOL system in
typewriter font.

2 Types

The HOL logic has four different kinds of types: type constants, type variables, function
types and n-ary type operators. To make the definition simple, we consider type constants
and the function type to be special cases of type operators. The definitions are stored in
the theory Type. Parts of this theory are documented in Appendix B.

2.1 Defining types

We define types as a recursive type with the following syntax:

Type = Tyvar string
| Tyop string (Type)list

The HOL define-type package for automatic definitions of recursive types does not permit
this syntax, so we have made this definition “by hand”. To distinguish these “HOL-as-
object-logic-types” from the HOL types we will from now on call them Types.

The proof function RType_eq takes a two-Type list and checks whether the Types are
equal. For example, the following dialogue proves that bool—bool and bool are distinct

types.

#RType_eq ["Tyop ‘fun‘[Tyop ‘bool‘[];Tyop ‘bool‘[11";"Tyop ‘bool‘[1"];;
F (Tyop ‘funf[Tyop ‘bool[];Tyop ‘bool‘[]1] = Tyop ‘bool‘[]) = F '

The type structure of the current theory is represented by a list of pairs of type
:string#num. For example, the simplest possible theory (referring only to booleans) has
the following type structure list:

[(‘bool¢,0);(‘fun,2)]

The type structure list is used when we check whether a Pterm is well-typed.

2.2 Destructor functions for types

In order to facilitate function definitions over Type, we have developed some infrastructure
for making recursive function definitions over Type. Using this, we have defined “destructor
functions” which look into Types. Thus Is.Tyvar ty holds if ty is of the form Tyvar s,
while Is_Tyop ty holds if ty is of the form Tyop s ts.

We also often want to extract the components of a Type, given that its structure is
known. For example, we define Tyvar_nam by

Faef (Vs. Tyvar_nam(Tyvar) = s) A
(Vs ts. Tyvar_nan(Tyop s ts) = (ey. T))

i.e., Tyvar_nam ty returns the name of a type variable ty, and an arbitrary string if ty
is not a type variable. In fact, the second conjunct in the definition of Tyvar_ nam is not
needed, we could just specify Tyvar nam to satisfy

F Vs, Tyvar_nam (Tyvar s) = s

However, the definition we have makes our proof functions (in this case RTyvar nam) more
uniform. Similarly, we define Tyop.nam and Tyop_-tyl which return the name and argument
list of a type operator type, respectively.

2.3 Other functions over Types

When reasoning about inferences and proofs we need functions that check for occurrences
of type variables in types and for type instantiation. The function Type_OK is defined
recursively over Types using the infrastructure for function definitions mentioned above.
Evaluating ‘

#let Type_ OK_DEF = new_Type_rec_definition(‘Type OK_DEF*,

"(Type_OK Typl (Tyvar s) = T) A

(Type_OK Typl (Tyop s ts) =

meml s Typl A (LENGTH ts = corr s Typl) A EVERY(Type_OK Typl)ts)");;

yields the definitional theorem Type_ 0K DEF:

b (Vtyl s. Type_OK Typl (Tyvar s) = T) A
(Vtyl s ts. Type_ 0K Typl (Tyop s ts) =
meml 8 Typl A (LENGTH ts = corrl s Typl) A EVERY(Type_OK Typl)ts)

Here mem1 s 1 holds if s is the first component in some pair in the list 1 and corrl s 1
is the corresponding second component (these are all defined in the proofaux theory, see
Appendix A). Essentially, the theorem says that a Type is OK if it is a type variable or it
is composed from OK types by a permitted type operator.

Similarly, we can define other functions on Types. Type_occurs a ty is defined to hold
if the type variable occurs anywhere in the type ty.

The function Type_replace is defined so that Type_replace tyl ty is the result of
replacing type variables in the Type ty according to tyl, where each element of tyl is a
pair (ty,s) of type Type#string.

The constant Type_compat is defined so that Type_compat ty ty’ holds when ty is
compatible with ty’, in the sense that the structure of ty is can be mapped onto the
structure of ty’.

The function Type_compat does not allow us to tell whether a type instantiation is
correct. For example, we must be able to detect that bool—numis not a correct instantiation
of the polymorphic type *—%*, even though these two types are compatible. For this, we
have defined Type_instl so that Type_instl ty ty’ returns the list of type instantiations
used in going from ty from ty’. This list can then be checked for consistency, using the
function nocontr from the proofaux theory (see Appendix A).

3 Terms

We formalise terms using the same syntax as HOL uses. Thus a term can be a constant, a
variable, an application or an abstraction. Variable names are represented by strings. The
type Pterm permits terms that are not well-typed. Well-typing is enforced by a predicate
Pwell_typed. Definitions and theorems from the Pterm theory can be found in Appendix

C.

3.1 Basic definitions
We represent terms by a recursive type with the following syntax:

Pterm = Const string Type
| Var string#Type
| App Pterm Pterm
| Lam string#Type Pterm

We will call these objects Pterms, to distinguish them from HOL terms.

The constants of the current theory are represented by a list. A constant always has a
generic type which is given in this list. When the constant occurs in a term, it has an actual
type which must be an instance of the generic type (this requirement is enforced by the
rules of well-typedness). For example, the equality constant on the booleans is represented
as the Pterm

Conat ‘=‘(Tyop ‘fun‘[Tyop ‘boolf[];Tyop ‘fun‘[Tyop ‘bool® [1;Tyop ‘bool‘ [111)

and this term is well-typed if the list of constants contains the pair
(‘=¢, Tyop ‘fun‘[Tyvar ‘*‘;Tyop ‘fun‘[Tyvar ‘*‘;Tyop ‘bool‘[]]])

as a member,
A simple logic might have the following the list of constants:

[‘T¢,Tyop ‘bool‘[] ;

‘F¢,Tyop ‘bool‘[] ;

‘=‘,Tyop ‘fun‘ [Tyvar ‘*‘;Tyop ‘fun‘ [Tyvar ‘*‘;Tyop ‘bool® [1]1]

‘=, Tyop ‘fun‘ [Tyop ‘bool‘ [1;Tyop ‘fun‘[Tyop ‘bool® [];Tyop ‘bool’
{1131

i.e., truth, falsity, equality and implication.
The function RPterm_eq takes a two-Pterm list and checks whether the Pterms are equal.

3.2 Destructor functions on Pterms

Exactly as for Types, we have defined a number of destructors functions for Pterms. For
example, Is_Const t holds if the Pterm t is a Const and App-ty t gives the type argument
of the Pterm t, provided that it is an App. For details, see Appendix C.

3.3 Well-typedness

Every Pterm has a unique Type. The function Ptype_of is defined to compute the Type of
a Pterm. The corresponding proof function is RPtype_of:

#RPtype_of ["App (Var(‘f¢,Tyop ‘fun‘[Tyop ‘bool‘[];Tyop ‘bool‘[]11))
(Var(‘x‘,Tyop ‘bool‘[1))"];;
I Ptype_of (App (Var(‘f‘,Tyop ‘fun‘[Tyop ‘bool‘[];Tyop ‘bool‘[1]))
(Var(‘x‘,Tyop ‘bool‘[1)))
= Tyop ‘bool‘[]

Our syntax permits terms which are ill-typed, in the sense that they do not correspond to
the any terms of a current HOL theory. A term is well-typed if it satisfies two requirements.
First, the types of the subterms of applications and abstractions must match. Second,
the constants occuring in the term must have types which are correct instantiations of
their generic types. The function Pwell_typed checks these conditions. Well-typedness
restrictions will not be considered further until we formalise the notion of a correct inference.

3.4 A simple pretty-printer

Our Pterms quickly become very large and ugly. Even a simple HOL-term like
Ax. x = (x = y)

becomes the massive Pterm

Lam(‘x‘,Tyop ‘bool‘[])
(App(App(Const ‘= ¢
(Tyop‘fun‘ [Tyop‘bool[];Tyop‘fun‘[Tyop‘bool‘[1;Tyop‘bool‘[111))
(Var(‘x*,Tyop ‘bool‘[1)))
(App (App(Const ‘=*
(Tyop ‘fun‘ [Tyop ‘bool‘[]1;Tyop‘fun‘ [Tyop ‘bool‘[];Tyop ‘bool‘[111))
(Var(‘x‘,Tyop ‘bool‘[])))
(Var(‘y*,Tyop ‘bool‘[1)))))

which is difficult both to write and read. To simplify things, we have an ML function
tm_trans which translates a HOL-term to the corresponding Pterm:

#tm_trans "A(x:bool).x";;
Lam (‘x¢,Tyop ‘bool‘[])
(Var(‘x*,Tyop ‘bool‘[1))"

and a function tm_back which makes the opposite translation

#tm_back "Lam (‘x‘,Tyop ‘bool‘[l)
(Var(‘x‘,Tyop ‘bool‘[1))";;
"Ax. x" : term

These functions will be used for entering and pretty-printing terms later on.

3.5 Free and bound variables

The notion of free and bound variables are defined in the obvious way. For example, we
define Pfree so that Pfree x t holds if the variable x occurs free in the Pterm t. Similarly,
we define the functions Pbound and Poccurs.

The proof functions for these constants are RPfree, RPbound and RPoccurs. For exam-
ple, we have

#RPoccurs["(‘x¢,Tyop ‘boolf[1)";tm_trans "A(x:bool).x"];;
F Poccurs (‘x¢,Tyop ‘bool‘[])
(Lam (‘x¢,Tyop ‘bool‘[])
(Var(‘x¢,Tyop ‘bool‘[1))) =T

which says that the boolean variable x occurs free in the term Ax.x. We also have versions of
these constants that work on collections of variables and Pterms, for example the following:

Plnotfree x1 t holds if no variable in the list x1 is Pfree in t
Pallnotfree x ts holds if the variable x is Pfree in none of the Pterms
in the set ts
Plallnotfree x1 ts holds if no variable in the list x1 is Pfree in any of the
. Pterms in the set ts

For sets, we use the HOL Finite-sets library.
We also define Plnotbound and Plnotoccurs similarly. As usual, each proof function
has the name of the corresponding constant, prefixed with R.

3.6 Occurrences of type variables in terms

Pty_snotoccurs a ts holds if the type variable a occurs in none of the Pterms in the set
ts. Similarly, P1ty_snotoccurs al tl holds if no type variable in the list al occurs in any
of the Pterms in the set ts. For each of these constants, we also have a corresponding proof
function.

3.7 Alpha-renaming

Alpha-renaming and substitution of a term for a variable are closely bound together. We
have defined a function Palreplace so that Palreplace t’ tvl t holds if t’ is the result
of substituting according to the list tvl and alpha-renaming. The list tvl consists of pairs
(t,a) of type Pterm# (string#Type),indicating what terms should be substituted for what
variables.

The corresponding proof function is RPalreplace:

#RPalreplace ["Var(‘y¢,Tyop ‘bool‘[]1)";
"[Var(‘y‘,Tyop‘bool¢[]),‘x,Tyop ‘bool‘[1]";
"Var(‘x‘,Tyop ‘bool[1)"];;
b Palreplace
(Var(‘y‘,Tyop ‘bool‘[]))
[Var(‘y*,Tyop ‘bool‘[l), ‘x¢,Tyop ‘bool‘[l]
(Var(‘x*,Tyop ‘bool‘[1)) =T

which tells us that substituting the variable y for x in the term x yields the term y.

In order to appreciate larger examples and tests, we have a pretty-printer for printing
theorems, similar to tm_back described earlier. This prettyprinter is a function th_back. It
prints Pterms using tm_back and functions using dummy-functions that we have added. For
example, we have defined a dummy constant Xalreplace which corresponds to Palreplace.

Evaluating

#RPalreplace [tm_trans "Az.z = x';

"[Var(‘x‘,Tyop‘bool‘[1),‘y*,Tyop ‘bool‘[]1";
tm_trans "Ax.x = y"];;

yields a massive theorem, stating that this substitution is in fact correct. However, if we
apply th.-back to this theorem, we get it in a form which is easier to read:

#th_back it;;
F Xalreplace(lz. z = x)[x,‘y¢,Tyop ‘bool‘[I1(Ax. x = y) = T

Now we can define alpha-equivalence using an empty substitution; Palpha t’ t holds
if £ and t are alpha-equivalent.

Fdef Vt’' t. Palpha t' t = Palreplace t'[] t

The following example shows that our corresponding proof function RPalpha also detects
incorrect alpha-renamings:

#th_back(RPalphaltm_trans "Ay y.y = y" ; tn_trans "Ax y.y = x"1);;
b Xalpha(Qldy y. vy = yOxy. y = x) =F

i.e., the terms Ay y. y=y and Ax y.y=>x are not alpha-equivalent.

3.8 Multiple substitutions and beta-reduction

We can now also formalise HOL’s notion of a substitution, as it occurs in the inference
rule SUBST. Assume that ttvl is a list of triples of type Pterm#Pterm# (string#Type). For
each triple (tm’,tm,d) in this list, tm’ is a Pterm that is to replace tm and d is a dummy
variable used to indicate the positions where this substitution is to be made. Then Psubst
t? ttvl td t holds if t is the result of substituting some tm-terms for d-dummies in the
term t and if t° is the result of substituting tm’-terms for d-dummies. Both substitutions
are done according to ttvl, and they may involve alpha-renaming.

The corresponding proof function is RPalpha and it can recognise both correct and
incorrect substitutions.

Beta-reduction is much easier to formalise. Qur definition states that Pbeta t’ x t1
t2 holds when t’ is the result of beta reducing (Ax. t1)t2. For details, see Appendix B.

3.9 Type instantiation

Type instantiation is quite tricky to check. There are two reasons for this, First, it is
necessary to check that the type instantiation has not identified two variables that were
previously distinct. Second, the type instantiation rule permits free variables to be renamed.

Checking a renaming of a free variable is more complicated that checking a renaming of
a bound variable, because bound variables are always “announced” (in the left subtree of
the abstraction), but a free variables can occur in two widely separated subtrees, without
" being announced in the same way.

Thus, we have been forced to define a number of auxiliary functions before defining the
Ptyinst function. Assume that tyl is a list of pairs of type Type#string, indicating what
types are to be substituted for what type variables. Furthermore assume that as is a set
of Pterms (they represent the assumption of the theorem that is to be type-instantiated).
Then Ptyinst as t’ tyl t holds if t’ is the result (after renaming) of replacing type
variables in t according to tyl and if no variables that are type instantiated occur free in
as.

4 Inferences

The theory of inferences has the Pterm theory as its ancestor. A number of definitions and
theorems from this theory can be found in Appendix D.

4.1 Sequents

We represent sequents by a new concrete type with a very simple syntax:

Pseq (Pterm)set Pterm

where the first argument to Pseq is the set of assumptions and the second argument is the
conclusion. The corresponding destructor functions are Pseq_assum and Pseq_concl.

4.2 Basic inferences

An inference step consists of a conclusion (result sequent) that is “below the line” and a
list of hypotheses (argument sequents) that are “above the line”.

HOL inference rules are functions which in addition to the hypotheses may require some
information in the form of a term in order to compute the conclusion. For example, the
rule of abstraction (ABS) in the logic is

r + t = ¢

r v (Ae.t) = (Aa.t)

(with the side condition that 2 must not be free in I')., As an inference rule in the HOL
system, ABS is a function which takes a term (representing the variable) and a theorem
(the hypothesis) as arguments and returns a theorem (the conclusion). Inferences are also
dependent on the type structure Typl, the list of constants Conl and the list of axioms
Axil of the current theory.

In our framework, inferences need only be checked. This means that our formalisation
of an inference rule always has an additional (first) argument, which is the conclusion of
the inference. For each inference rule, we define a function which returns a boolean value:
T for a correct inference and F for an incorrect one.

4.2.1 The ASSUME rule
The ASSUME rule is modelled by the function PASSUME:

Fdef YTypl Conl as t tm. PASSUME Typl Conl (Pseq as t) tm =
Pwell_typed Typl Conl tm A Pboolean tm A (t = tm) A (as = {tm})

where Pboolean tm is defined to mean that the Pterm tm has boolean Type.

Notice that this is the point where we require well-typedness; the way we build up the
inference rule checks ensures that only well-typed sequents can occur in a result sequent.
Notice that well-typedness is not enough, we must also require that the term is boolean,
i.e., that its Type is Tyop ‘bool‘[]. Because we must check for well-typedness, we must
have the type structure Typl and the constant list Conl as explicit arguments to ASSUME.

The proof function RPASSUME is now used to prove the correctness of an ASSUME inference:

#RPASSUME[Typl;Conl;
"Pseq {Var(‘x‘,Tyop ‘bool‘[1)} (Var(‘x‘,Tyop ‘bool‘[I))";
"Var(‘x*,Tyop ‘bool‘[1)"];;
F PASSUME (...) (...)
(Pseq {Var(‘x‘,Tyop ‘bool‘[1)} (Var(‘x‘,Tyop ‘beol‘[1)))
(Var(‘x‘,Tyop‘bool‘[1)) = T

where Typl and Conl stand for a suitable type structure and a suitable list of constants
(we have replaced them by dots in the printout). Our pretty-printing function removes the
Typl and Conl arguments to make the theorem more readable (we assume that the theory
in question is known to the user).

#th_back RPASSUME[Typl;Conl;

“Pseq {Var(‘x‘¢,Tyop ‘bool‘[1)} (Var(‘x‘,Tyop ‘bool‘[1))";
"Var(‘x¢,Tyop ‘bool‘[1)"];;

F XASSUME (Pseq {x} x) x = T

The resulting theorem states that the sequent {2} - @ is the correct result of the inference
ASSUME x.

4.2.2 The REFL rule

The REFL inference is modelled by PREFL. Thus

PREFL Typl Conl (Pseq as t) tm

holds if the assumption set as is empty and t represents the term tm=tm. In addition to
this tm must be well-typed.

4.2.3 The BETA_CONV rule

For the BETA_CONV inference, we have defined PBETA_CONV so that

PBETA_CONV Typl Conl (Pseq as t) tm

holds if the assumption set as is empty and tm is a beta-redex which reduces to t. Fur-
thermore, we require that t is well-typed and boolean.

4.2.4 The SUBST rule
The SUBST rule is modelled by PSUBST. It is defined so that

PSUBST Typl Conl (Pseq as t) thdl td th

holds if the sequent Pseq as t is the result of performing a multiple substitution in theorem
th according to the list thdl of pairs (theorem,dummy), where td is a term with dummies
indicating the places where substitutions are to be made.

PSUBST also checks the dummy term td for well-typedness. No other checks are neces-
sary. This is because th and all the theorems in thdl must be well-typed, since they are
the conclusions of previous inferences.

4,2.5 The ABS rule
The function PABS models the ABS inference. Thus

PABS Typl Conl (Pseq as t) tm th

holds if t is the result of doing an abstraction of the term tm (which must be a variable
with a permitted type) on both sides of the conclusion of th which must be an equality).
Furthermore, the variable tm must not occur free in the assumption set as.

10

4,2,6 The INST.TYPE rule
For the INST_TYPE inference, we have defined PINST_TYPE so that

PINST.TYPE Typl (Pseq as t) tyl th

holds if t is the result of instantiating types in the conclusion of th according to tyl and if
as is the same set as the assumptions in th. Furthermore, we require that the type variables
that are being substituted for do not occur in as.

4,2,7 The DISCH rule
The function PDISCH models the DISCH inference. Thus

PDISCH Typl Conl (Pseq as t) tm th

holds if Pseq as t is the result of discharging the term tm in the theorem th. The term
argument tm must be well-typed and boolean. \

4.2.8 The MP rule
Finally, The function PMP models the MP inference. Thus

PMP (Pseq as t) thl th2

holds if Pseq as t is the result of a Modus Ponens inference on thi and th2.

4.8 Inferences

The arguments of the basic inference rules are not uniform. For example, the MP rule takes
two theorems as arguments, while the REFL rule takes a single term. To be able to reason
about inferences in a uniform way, we define a new type :Inference with the following
syntax:

Inference = AX_inf Psequent
| AS_inf Psequent Pterm
| RE_inf Psequent Pterm
| BE.inf Psequent Pterm
| sU_inf Psequent (Psequent#string#Type)list Pterm Psequent
| AB_inf Psequent Pterm Psequent
| IN.inf Psequent (Type#string)list Psequent
| DI.inf Psequent Pterm Psequent
| MP_inf Psequent Psequent Psequent

The first production rule corresponds to an inference by axiom, each of the other rules
corresponds to a basic inference rule.

The first argument of an inference constructor is always the conclusion of the inference.
The remaining arguments represent the hypotheses and other arguments. The destructor
function Inf_concl picks out the conclusion from an object of type inference while the
destructor Inf hyps picks out the list of hypotheses (for definitions, see Appendix D). Note

11

that in some cases (e.g., AX_inf) the list of assumptionsis empty, but for SU_inf it can be
of arbitrary length.

An inference is correct if it satisfies the defining properties of the inference rule. For
example, an object built with DI_inf is a correct inference if its arguments satisfy the
predicate PDISCH, i.e. if it represents an application of the HOL inference rule DISCH. The
function 0K_inf is defined to represent this notion of correct inference. Thus 0K_inf i
holds if and only if ¢ represents a correct inference, according to the basic inference rules of
the HOL logic.

The proof function for 0K_inf is ROK_inf, and it identifies both correct and incorrect
inferences. Using the pretty-printing facilities, we check a simple inference:

#th_back (ROK_Inf[Typl;Conl;Axil;

"BE_inf (Pseq {} ~(tm_trans "(A(x:bool).x)y = y"))
“(tm_trans "(A(x:bool) .x)y")"1);;

F XOK_Inf (BE_Xinf (Xseq {} ((x. x)y = y)) ((Ax. x)y))

This tells us that the theorem F (Az. z)y = y is the result of the following application of
the BETA_CONV inference rule;

#BETA.CONV "(Ax. x)y"

Or, to put it another way, it shows that the following inference is correct:

{} F Qea)y=y

5 Proofs and provability

In this section, we consider the notions of provability and proofs. These two concepts
are closely related, but we define them independently of each other. Both depend on
the underlying notions of inference, i.e., on the predicate 0K_Inf defined over the type of
inferences. Selected parts of the proof theory are listed in Appendix E.

5.1 Provability

Provability is an inductive concept. A sequent is provable (within a given theory) if it is an
axiom or if it can be inferred from provable sequents by a correct application of an inference
rule,

We have defined the predicate Provable on sequents using the basic ideas from the
HOL package for inductive definitions. However, our inductive relation is too complex to
be handled by this package. This is because the SUBST rule infers a new sequent from a list
of old sequents, rather than from a fixed number of old sequents. Thus the definitions and
related proofs have been done “by hand”,

The inductive nature of provability is captured in the following theorem, which describes
the predicate Provable;

12

F VTypl Conl Axil i s.
(0K_Inf Typl Conl Axil i A (s = Inf_concl i)) A
EVERY (Provable Typl Conl Axil) (Inf_hyps i)
=> Provable Typl Conl Axil s

Note that we have a base case and an inductive case together here. The base case occurs
when the list Inf hyps i is empty. Note also that the determinants of the current theory
(the type structure Typl, the constant list Conl and the axiom list Axil) are present as
arguments to Provable.

We have also proved an induction theorem (rule induction) for the Provable predicate.
This can be found in Appendix E.

5.2 Proofs

By a proof we mean a sequence of correct inferences where each inference has the following
property: all the hypotheses of the inference must appear as conclusions of some inference
appearing earlier on in the proof.

This is captured in the predicate Is_proof:

F (VTypl Conl Axil. Is_proof Typl Conl Axil[] = T) A
(VTypl Conl Axil i P. Is_proof Typl Conl Axil (CONS i P) =
OK_Inf Typl Conl Axil i A
Imem (Inf_hyps i) (MAP Inf_concl P) A
Is_proof Typl Conl Axil P)

The corresponding proof function is called RIs_proof. This proof function is in fact a
program that proves the correctness (or incorrectness) of a proposed HOL proof, i.e., a proof
checker. The following simple example shows how it works together with the pretty-printing
facility:

#th_back(RIs_proof [Typl;Conl;Axil;
U[MP_inf (Pseq {"(tm_trans "(y:bool)=y")} "(tm_trans "(x:bool)=x"))

(Pseq {} ~(tm_trans "((y:bool)=y) = ((x:bool)=x)"))
(Pseq {~(tm_trans "(y:bool)=y")} ~(tm_trans "(y:bool)=y"))
;AS_inf (Pseq {"(tm_trans "(y:bool)=y"™)} ~(tm_trans "(y:bool)=y"))
i “(tm_trans "(y:bool)=y")
;DI_inf (Pseq {} ~(tm_trans "((y:bool)=y) = ((x:bool)=x)'"))
" (tm_trans "(y:bool)=y")
(Pseq {} ~(tm_trans "(x:bool)=x"))
RE_inf (Pseq {} ~(tm_trans "(x:bool)=x"))
(Var(‘x‘,Tyop‘bool[1))
#01"1)5,
F Is_xproof
[MP_Xinf (Xseq {y = y} (x = x))
(Xseq {} Wy =v) = (x = x)))
(Xseq {y = y} (v = ¥));
AS_Xinf (Xseq {y =y} (s = y)) (y = y);
DI_Xinf (Xseq {} ((y = y) = (x = x))) (y = y) (Xseq {} (x = x));
RE_Xinf (Xseq {} (x = x)) x] =

T

13

This took 1 minute to prove on a Sparcstation ELC with plenty of memory. It encodes
to the following proof:

Fae=2 by REFL

t y=y=(z=2) byDISCH,1
{y=y} F y=y by ASSUME,
{y=y} F z2=2 DbyMp, 23

W=

i.e., an example of adding an assumption to a theorem.

5.3 Relating proofs and provability

Proofs and provability are obviously related: a sequent should be provable if and only if
there is a proof of it. We have proved that this in fact the case (this can be seen as a check
that our definitions are reasonable):

b Provable Typl Conl Axil s =
(3i P. Is_proof Typl Conl Axil(CONS i P) A (s = Inf_concl i))

The proof of this theorem rests on the fact that appending two proofs yields a new
proofs. Given proofs of all the hypotheses of an inference, this fact allows us to construct
a proof of the conclusion by appending all the given proofs and adding the given inference.

5.4 Reasoning about proofs

There is, of course, no way to prove that our definition of a proof actually captures the
HOL notion of a proof. However, we can reason about proofs and check that they satisfy
some minimal requirements. As.an example of this, we have proved that proofs can only
yield sequents where the hypotheses and the conclusions are well-typed and boolean:

F VP. Is_proof Typl Conl Axil P A Is_standard(Typl,Conl,Axil) =
EVERY Pseq_boolean(MAP Inf_concl P) A
EVERY (Pseq_well_typed Typl Conl) (MAP Inf_concl P)

where Is_standard holds for the triple (Typl,Conl,Axil) if the type structure contains
booleans and function types, the constant list contains polymorphic equality and implication
and the axiom list contains only well-typed boolean sequents.

The main result needed to prove the above theorem is that the functions Palpha, Psubst
and Ptyinst function on Pterms preserve well-typedness (see Appendix C).

6 Derived inferences

In real proofs, we often use derived inference rules, rather than the primitive inference rules
of a logic. These do not extend the logic, but they are convenient, as they make proofs
shorter, The HOL system has a number of derived inference rules hard-wired into the
system. This means that every HOL-proof consists of inferences belonging to a set of some
thirty inference rules, rather than the eight primitive rules of the logic. In this section we
show how derived inference rules can be defined within our framework.

14

6.1 Definition of derived inference

In order to make derived inference rules uniform, we let them have three arguments. The
first argument is the name of the rule, the second argument is the conclusion and the third
argument is a list of hypotheses. We can now define the notion of a derived inference rule
using the Provable predicate: we have a derived inference of a (conclusion) sequent s from
a list of (hypothesis) sequents sl if s can be proved when s1 is added to the list of axioms,
under the assumption that all terms occurring in sl are boolean and well-typed:

Fdef VTypl Conl Axil name s sl. Dinf Typl Conl Axil name s sl =
(EVERY Pseq_boolean sl A EVERY (Pseq_well typed Typl Conl) sl
= Provable Typl Conl (APPEND sl Axil) s)

Using this definition, we can for example formalise the ADD_ASSUM rule

I + ¢
¢ F t

This rule is encoded in the following theorem, which we have proved:

F VTypl Conl Axil G t' t. Pwell_typed Typl Conl t' A Pboolean t'
= Dinf Typl Conl Axil ‘ADD_ASSUM‘ (Pseq (t' INSERT G) t) [Pseq G t]

Note that the derived rules added in this fashion correspond to the traditional notion
of an inference rule: they relate hypotheses and conclusion without additional arguments.
However, this means that they do not have the same structure as the corresponding rules
that the HOL system uses.

We can define a new notion of proof Is _Dproof, where derived inferences are permitted.
It is then possible (but not trivial) to show that Is_proof and Is_Dproof are equally strong,
in the sense that whenever there is a Dproof of a sequent, there is also a proof of it. For
details, see Appendix F. This is quite reasonable, since both notions of proof are directly
related to the notion of provability.

7 Conclusion

We have defined in the logic of HOL a theory which captures the notions of types, terms
and inferences that is used in the HOL logic. Within this theory we defined the notions of
provability and of proof and proved them to be related in the desired way: a boolean term
is provable if and only if there exists a proof of it.

Together with the HOL theory, we have developed ML functions for proving each prop-
erty introduced. These function are in fact a proof checker, i.e., a program which takes a
purported proof as input and determines whether it is a proof or not. This proof checker
is extremely slow, since it computes the result by performing a proof inside HOL. It is our
hope that the theory of proofs can also be used as a basis for verifying more efficient proof
checkers for higher order logic. Work on such a proof checker is under way.

HOL is a fully expansive theorem prover, which means that when proving theorems, it
reduces derived rules of inference to sequences of basic inferences. This makes proofs longer

15

and more time-consuming. Since our theory of proofs includes a method for proving the
correctness of derived rules of inference, we have provided a formal basis for a faster HOL,
where derived rules of inference can be added to the core of the system, once they have
been proved correct. This idea was suggested for the HOL system by Slind [3].

The theory reported in this paper is for the HOL88 version of HOL. However, we have
also ported the theory (but not the proof functions) to the Standard ML version HOL90.

Related work, but in a completely different framework, is reported in [1], where the
type-checker of the Calculus of Constructions is implemented in the logic of Nqthm (the
Boyer-Moore system).

References

[1] Robert S. Boyer and Gilles Dowek. Towards checking proof-checkers. In Herman Geu-
vers, editor, Workshop on types for Proofs and Programs, pages 51-70, 1993.

[2] M.J.C. Gordon. Mechanizing programming logics in higher-order logic. In G. Birtwistle
and P.A. Subrahmanyam (ed.), Current Trends in Hardware Verification and Theorem
Proving. Springer-Verlag, 1989.

[3] K. Slind. Adding new rules to an LCF-style logic implementation. In Proc. 1992
International Workshop on Higher Order Logic Theorem Proving and its Applications,
Leuwen, Belgium, September 1992.

16

Appendix A: the proofaux theory

This appendix shows selected definitions from the proofaux theory. This theory defined a
number of functions for handling lists and sets, needed in the handling of proofs.

Definitions --
EVERY2_DEF
|- (‘P y1. EVERY2 P[Jyl = T) /\
('P x x1 yl.

EVERY2 P(CONS x x1)yl = P x(HD yl) /\ EVERY2 P x1(TL y1))
LAPPEND_DEF
- (LAPPENDI] = [1) /\
(th t. LAPPEND(CONS h t) = APPEND h(LAPPEND %))
LUNION_DEF
- (LUNION[] = {}) /\ ('h t. LUNION(CONS h t) = h UNION (LUNION t))
lor DEF |~ (lor[] = F) /\ (!h t. Lor(CONS h t) = h \/ lor t)
corrl_DEF
[- (Ix. corrl x[1 = (@y. T)) /\
('x h t. corrl x(CONS h t) = ((x
corr2_DEF
[- (Ix. corr2 x[1 = (@y. T)) /\
('x ht. corr2 x(CONS h t) = ((x
lmem_DEF
[- (1. 1mem[]1 = T) /\
('x x1 1. 1mem(CONS x x1)1 = mem x 1 /\ 1lmem x1 1)
mem_DEF
I- (Ix. mem x[] = F) /\
(!x h t. mem x(CONS h t) = (x = h) \/ mem x t)
meml_DEF
I- ('x, memi x[J = F) /\

]

FST h) => SND h | corrl x t))

SND h) => FST h | corr2 x t))

(!x h t. memi x(CONS h t) = (x = FST h) \/ meml x t)
mem?2_ DEF
I- (‘x. mem2 x[1 = F) /\
(!'x h t. mem2 x(CONS h t) = (x = SND h) \/ mem2 x t)

nocontr DEF
|~ (nocontr[] = T) /\
(!xy xyl. nocontr(CONS xy xyl) =
("mem2(SND xy)xyl \/ (corr2(SND xy)xyl = FST xy)) /\ nocontr xyl)

Theorems —-—
SEVERY_DEF
|- (!P. SEVERY P{} = T) /\
('P x s. SEVERY P(x INSERT s) = P x /\ SEVERY P s)

17

Appendix B: the Type theory

This appendix shows selected theorems from the Type theory. These theorems characterise
a number of functions defined over Types.

Types -~ ":Type"
Theorems -~
Type_Axiom

j- 1£1 £2. 7! £n. (!s. fn(Tyvar s) = f1 s) /\
(!s ts. In(Tyop & ts) = £2 s(MAP fn ts)ts)
% destructor functions Y%
Is_Tyvar_DEF
|- (s, Is_Tyvar(Tyvar s) = T) /\ (Is ts. Is_Tyvar(Tyop s ts) = F)
Is_Tyop.DEF
[= (ts. Is_Tyop(Tyvar s) = F) /\ (!s ts. Is_Tyop(Tyop s ts) = T)
Tyvar_nam_DEF
|- (e, Tyvar_nam(Tyvar s8) = s8) /\
(!s ts. Tyvar_nam(Tyop s ts) = (Qy. T))
Tyop_nam_DEF
|- (!s. Tyop_nam(Tyvar s) = (Q@y. T)) /\
(!'s ts. Tyop_nam(Tyop s ts) = s)
Tyop_tyl_DEF
[- (!s. Tyop_tyl(Tyvar s) = (Qy. T)) /\
('s ts, Tyop_tyl(Tyop s ts) = ts)
% other functions %
Type_OK_DEF
|- ('tyl s. Type_OK tyl(Tyvar s) = T) /\
(ttyl s ts. Type_OK tyl(Tyop & ts) =
meni s tyl /\ (LENGTH ts = corrl s tyl) /\ EVERY(Type_OK tyl)ts)
Type_compat_DEF
|- (ts ty. Type_compat ty(Tyvar s) = T) /\
(!s ts ty. Type_compat ty(Tyop s ts) =
Is_Tyop ty /\
(Tyop_nam ty = s) /\
(LENGTH(Tyop_tyl ty) = LENGTH ts) /\
EVERY2 Type_compat(Tyop_tyl ty)ts)
Type_occurs_DEF
I- (s’ s. Type_occurs s’ (Tyvar 8) = (s = 8’)) /\
(18’ s ts. Type_occurs s’(Tyop s ts) = lor(MAP(Type_occurs s’)ts))
Type_replace_DEF
|- (11 s. Type_replace 1(Tyvar s) = (mem2 s 1 => corr2 s 1 | Tyvar s)) /\
(!l s ts. Type_replace 1(Tyop s ts) = Tyop s(MAP(Type_replace 1)ts))

Theorems --
Type._instl_thm
|- !'s ts ty. Type_compat ty(Tyop s tg) ==
(Type_instl ty(Tyop s ts) = LAPPEND(MAP2 Type_instl(Tyop_tyl ty)ts))

18

Appendix C: the Pterm theory
This appendix shows selected definitions and theorems from the Pterm theory.

Types -- ":Pterm"

Definitions —-
% destructor functions: a few examples Y
Is_App_DEF
|- (!s ty. Is_App(Const s ty) = F) /\
(!x. Is_App(Var x) = F) /\
(tt1 t2. Is_App(App t1 t2) = T) /\
('x t, Is_App(Lam x t) = F)
Const_ty_DEF
[~ (!s ty. Const_ty(Const s ty) = ty) /\
(Ix. Comst_ty(Var x) = (Qy. T)) /\
('t1 t2, Const_ty(App t1 t2) = (@y. T)) /\
(Ix t. Const_ty(Lam x t) = (Q@y. T))
Var_var_DEF
|- (!s ty. Var_var(Const s ty) = (@y. T)) /\
(!x, Var_var(Var x) = x) /\
(1t1 t2. Var_var(App t1 t2) = (@y. T)) /\
(!x t. Var_var(Lam x t) = (Qy. T))
Lam_bod_DEF
|- (!s ty. Lam_bod(Const s ty) = (Qy. T)) /\
(!'x. Lam_bod(Var x) = (Qy. T)) /\
('t1 t2. Lam_bod(App t1 t2) = (Q@y. T)) /\
(!x t. Lam_bod(Lam x t) = t)
% well-typedness %
Ptype_of_DEF
|- (!s ty. Ptype_of(Const s ty) = ty) /\
(!x. Ptype_of(Var x) = SND x) /\
('t1 t2. Ptype_of(App t1 t2) = HD(TL(Tyop_tyl(Ptype_of t1)))) /\
(!x t. Ptype_of(Lam x t) = Tyop ‘fun‘ [SND x;Ptype_of tl)
Pboolean_DEF |- !t. Pboolean t = (Ptype_of t = Tyop ‘bool‘[])
Pwell_typed_DEF
|- (1Typl Conl s ty. Pwell_typed Typl Conl(Const s ty) =
meml 8 Conl /\
Type_0K Typl ty /\
Type_compat ty(corrl s Conl) /\
nocontr (Type_instl ty(corrl s Conl))) /\
({Typl Conl x. Pwell_typed Typl Conl(Var x) = Type_OK Typl(SND x)) /\
(!Typl Conl t1 t2. Pwell_typed Typl Conl(App t1 t2) =
Pwell_typed Typl Conl t1 /\ Pwell_typed Typl Conl t2 /\
Is_Tyop(Ptype_of t1) /\ (Tyop_nam(Ptype_of t1) = ‘fun‘) /\
(LENGTH(Tyop_tyl(Ptype_of t1)) = 2) /\
(HD(Tyop_tyl(Ptype_of t1)) = Ptype_of t2)) /\
(!Typl Conl x t. Pwell_typed Typl Conl(Lam x t) =
Pwell_typed Typl Conl t /\ Type_OK Typl(SND x))
% Free and bound variables in a term %
Pfree_DEF
|- (!x s ty. Pfree x(Const s ty) = F) /\
(!x y. Pfree x(Var y) = (y = x)) /\
('x t1 t2. Pfree x(App t1 t2) = Pfree x t1 \/ Pfree x t2) /\
(!x y t. Pfree x(Lam y t) = "(y = x) /\ Pfree x t)

19

Pbound_DEF
[- (!x s ty. Pbound x(Const s ty) = F) /\
('x y. Pbound x(Var y) = F) /\
(tx t1 t2. Pbound x(App t1 t2) = Pbound x ti \/ Pbound x t2) /\
(tx y t. Pbound x(Lam y t) = (y = x) \/ Pbound x t)
Poccurs_DEF |- !x t. Poccurs x t = Pfree x t \/ Pbound x t
Plnotfree DEF
|- (1t. Plnotfree[lt = T) /\
(1x x1 t. Plnotfree(CONS x x1)t = “Pfree x t /\ Plnotfree x1 t)
PIlnotbound_DEF
|- (1%, Plnotbound[]t = T) /\
(Ix x1 ¢,
Plnotbound (CONS x x1)t = “Pbound x t /\ Plnotbound x1 t)
Plnotoccurs_DEF
]- ix1 t. Plnotoccurs x1 t = Plnotfree x1 t /\ Plnotbound x1 t
Pallnotfree_SPEC
|- 'x tms. Pallnotfree x tms = (!t. t IN tms ==> “Pfree x t)
Plallnotfree_ SPEC
|~ !x1 tms. Plallnotfree x1 tms = (!t. t IN tms ==> Plnotfree x1 t)
substituting and renaming variables %
Palreplacel DEF
|- (1t wvl tvl s ty.
Palreplacel t’ vvl tvl(Const s ty) = (t’ = Comnst s ty)) /\
(1t vvl tvl x. Palreplacel t’ vvl tvl(Var x) =
((Is_Var t’ /\ meml(Var_var t’)vvl) =>
(x = corr1(Var_var t’)vvl) |
("mem1 x vvl /\ (mem2 x tvl => (t’ = corr2 x tvl) | (t’ = Var x))))) /\
(1t’ vyl tvl t1 t2. Palreplacel t’ vvl tvl(App t1 t2) =
Is_App t’ /\ Palreplacel(App_fun t’)vvl tvl t1 /\
Palreplacei(App_arg t’)vvl tvl t2) /\
(1t? vvl tvl x tl. Palreplacel t’ vvl tvl(Lam x t1) =
Is_Lam t’ /\ (SND(Lam_var t’) = SND x) /\
Palreplacel(Lam_bod t’)(CONS(Lam_var t’,x)vvl)tvl t1)
Palreplace_DEF
{-= 1%’ tvl t. Palreplace t’ tvl t = Palreplacel t’[1tvl t
Palpha DEF |- !t’ t. Palpha t’ t = Palreplace t’[]t
Pgubst_triples_DEF
|- (Psubst_triples[] = T) /\
('ttv ttvl. Psubst_triples(CONS ttv ttvl) =
(Ptype_of (FST ttv) = Ptype_of (FST(SND ttv))) /\
(Ptype_of (FST ttv) = SND(SND(SND ttv))) /\
Psubst_triples ttvl)
1list13_DEF
[- (ist18[] = [1) /\
(!xyz xyzl. 1list13(CONS xyz xyzl) = CONS(FST xyz,SND(SND xyz)) (1ist13 xyzl))
Psubst_DEF
|- £’ ttvl td t. Psubst Typl Conl t’ ttvl td t =
Psubst_triples ttvl /\ Pwell_typed Typl Conl td /\
Plnotoccurs (MAP(SND o SND)ttvl)t /\
Palreplace t(MAP SND ttvl)td /\
Palreplace t’(1ist13 ttvl)td
Pbeta DEF |~ {t’ x t1 t2. Pbeta t’ x t1 t2 = Palreplace t’[t2,x]t1

%

It

% types in terms, type instantiation Y%

20

Pty_occurs_DEF
|- (ta s ty. Pty_occurs a(Const s ty) = Type_occurs a ty) /\

('a x. Pty_occurs a(Var x) = Type_occurs a(SND x)) /\

(la t1 t2.

Pty_occurs a(App t1 t2) = Pty_occurs a t1 \/ Pty_occurs a t2) /\

(ta x t1.

Pty_occurs a(Lam x t1) =
Type_occurs a(SND x) \/ Pty_occurs a t1)
Pty_snotoccurs_SPEC
|- !a tms. Pty_snotoccurs a tms = (!t, t IN tms ==> "Pty_occurs a t)
Plty_snotoccurs _DEF
|- ('tms. Plty_snotoccurs[Jtms = T) /\

(th t tml. Plty_snotoccurs(CONS h t)tml =

Pty_snotoccurs h tml /\ Plty_snotoccurs t tml)
Pnewfreel DEF
|- ('t bl s ty. Pnewfreel t bl(Const s ty) = [1) /\

('t bl x. Pnewfreel t bl(Var x) =
((mem x bl \/ (FST(Var_var t) = FST x)) => []1 | [Var_var t,x1)) /\

('t bl t1 t2. Pnewfreel t bl(App t1 t2) =
APPEND (Pnewfreel(App_fun t)bl t1) (Pnewfreel(App_arg t)bl t2)) /\

('t bl x t1. Pnewfreel t bl(Lam x t1) = Pnewfreel(Lam_bod t) (CONS x bl)t1)

Pnewfree DEF |- !t’ t. Pnewfree t' t = Pnewfreel t’[]t
Ptyinst1_DEF
J- (1t bvl £fvl tyl & ty. Ptyinsti t bvl £fvl tyl(Const s ty) =
(t = Const s(Type_replace tyl ty))) /\

(1t bvl fvl tyl x. Ptyinstil t bvl fvl tyl(Var x) = '

(meml(Var_var t)bvl =>

(Is_Var t /\ (x = corri(Var_var t)bvl) /\
(SND(Var_var t) = Type_replace tyl(SND x))) |

(men2 x fvl =>
(t = Var(FST(corr2 x fvl),Type_replace tyl(SND x))) |
(t = Var(FST x,Type_replace tyl1(SND x)))))) /\

(tt bvl £vl tyl t1 t2. Ptyinstl t bvl fvl tyl(App t1 $2) =
Is_App t /\ Ptyinsti(App_fun t)bvl £vl tyl 1 /\
Ptyinst1(App._arg t)bvl fvl tyl t2) /\

('t bvl fvl tyl x t1. Ptyinsti t bvl fvl tyl(Lam x t1) =
Is_Lam t /\ “memi(Lam_var t)fvl /\

(SND(Lam_var t) = Type_replace tyl (SND x)) /\

Ptyinst1(Lam_bod t) (CONS(Lam_var t,x)bv1)fvl tyl t1)
Ptyinst_DEF
|- tas t’ tyl t. Ptyinst as t’ tyl t =
Ptyinstl t’[](Pnewfree t’ t)tyl t /\
Plallnotfree(MAP SND(Pnewfree t’ t))as

Theorems -=-
% the type characterisation theorem %
Pterm
|- 1£0 £1 £2 £3, ?! £n,

('s T?, £n(Const s T’) = £0 s T’) /\
(tp. fn(Var p) = £1 p) /\
(tP1 P2. fn(App P1 P2) = £2(fn P1)(fn P2)P1 P2) /\
(!p P. fn(Lam p P) = £3(fn P)p P)

% characterisations of functions defined over sets ¥
Pallnotfree DEF

21

|- (1x. Pallnotfree x{} = T) /\
('x tm tms. Pallnotfree x(tm INSERT tms) = “Pfree x tm /\ Pallnotfree x tms)
Plallnotfree_DEF
[- (!x1. Plallnotfree x1{} = T) /\
(!x1 tm tms. Plallnotfree x1(tm INSERT tms)
Plnotfree x1 tm /\ Plallnotfree x1 tms)
Pty_snotoccurs _DEF
|- (!s. Pty_snotoccurs s{} = T) /\
(!s tm tms. Pty_snotoccurs s(tm INSERT tms)
“Pty_occurs s tm /\ Pty_snotoccurs s tms)
theorems which show how well-typedness is preserved %
Palrep_wty
f= 1t £ tvl.
Pwell_typed Typl Conl t /\
Palreplace t’ tvl t /\
EVERY (Pwell_typed Typl Conl) (MAP FST tvl) /\
EVERY(\(t,v). Ptype_of t = SND v)tvl ==
Pwell_typed Typl Conl t’ /\ (Ptype_of t’ = Ptype_of t)
Palpha_wty
[- 1t 6.
Pwell_typed Typl Conl t /\ Palpha t’ t ==
Pwell_typed Typl Conl t’ /\ (Ptype_of t’ = Ptype_of t)
Pbeta_wty
|- 152 x t1 %2,
Pwell_typed Typl Conl t1 /\
Pwell_typed Typl Conl t2 /\
(Ptype_of £2 = SND x) /\
Pbeta t’ x t1 t2 ==>
Pwell_typed Typl Conl t’ /\ (Ptype_of t’ = Ptype_of t1)
Psubst_wty
I- 142 ttvl td t.
Pwell_typed Typl Conl td /\
EVERY (Pwell_typed Typl Conl) (MAP FST ttvl) /\
EVERY (Pwell_typed Typl Conl) (MAP(FST o SND)ttvl) /\
Psubst Typl Conl t’ ttvl td t ==
Pwell_typed Typl Conl t’ /\ (Ptype_of t’ = Ptype_of t)
Ptyinst_wty
|- tas t t’ tyl.
Ptyinst as t’ tyl t /\ Pwell_typed Typl Conl t /\
EVERY(Type_OK Typl) (MAP FST tyl) ==
Pwell_typed Typl Conl t’ /\ (Ptype_of t’ = Type_replace tyl(Ptype_of %))

i

22

Appendix D: the inference theory

This appendix shows selected parts from the inference theory.

Types -—
'":Psequent" ":Inference"

Definitions --
Pseq_assum_DEF |- l!as t. Pseq_assum(Pseq as t) = as
Pseq_concl _DEF |- las t. Pseq_concl(Pseq as t) =t

Pseq_boolean DEF
|~ las t. Pseq_boolean(Pseq as t) = SEVERY Pboolean as /\ Pboolean t
Pseq_well_typed_DEF
[~ ITypl Conl as t. Pseq_well_typed Typl Conl(Pseq as t) =
SEVERY (Pwell_typed Typl Conl)as /\ Pwell_typed Typl Conl t
abbreviations for certain terms %

%

PEQ_DEF
[- tt1 t2, PEQ t1 t2 =
App (App (Const ‘=‘ (Tyop ‘fun‘ [Ptype_of ti;
Tyop ‘fun‘[Ptype_of t1;Tyop ‘bool‘[111))
t1)
t2
PIMP_DEF

|- tt1 t2. PIMP t1 t2 =
App (App (Const ‘==>‘ (Tyop ‘fun‘[Tyop ‘bool‘[l;
Tyop ‘fun‘[Tyop ‘bool[];Tyop ‘bool‘[111))
t1)
t2
Is_EQtm_DEF
|- 1t. Is_EQtm t =
Is_App t /\ Is_App(App_fun t) /\
(App_fun(App_fun t) =
Const ‘=‘ (Tyop ‘fun‘[Ptype_of (App_arg t);
Tyop ‘fun‘[Ptype_of (App_arg t);Tyop ‘bool‘[]111))
% requirements for the eight primitive inferences %
PASSUME_DEF
|- !Typl Conl as t tm. PASSUME Typl Conl(Pseq as t)tm =
Pwell_typed Typl Conl tm /\
Pboolean tm /\ (t = tm) /\ (as = {tm})
PREFL_DEF
[- !Typl Conl as t tm. PREFL Typl Conl(Pseq as t)tm =
Pwell_typed Typl Conl tm /\ (as = {}) /\ (t = PEQ tm tm)
PBETA_CONV_DEF
|- !Typl Conl as t tm. PBETA_CONV Typl Conl(Pseq as t)tm =
Pwell_typed Typl Conl tm /\ (as = {}) /\
Is_App tm /\ Is_Lam(App_fun tm) /\
(t = PEQ tm(App_arg t)) /\
Pbeta (App_arg t) (Lam_var (App_fun tm))
(Lam_bod (App_fun tm)) (App_arg tm)
Psubst_newlist_DEF
|~ (Psubst_newlist[] = [1) /\
('h t, Psubst_newlist(CONS h t) =
CONS (App_arg(Pseq_concl(FST h)),
App_arg(App_fun(Pseq_concl(FST h))),SND h)
(Psubst_newlist t))

23

PSUBST_DEF

[- {Typl Conl as t thdl td th. PSUBST Typl Conl (Pseq as t)thdl td th =

Pwell_typed td /\

EVERY Is_EQtm(MAP Pseq_concl(MAP FST thdl)) /\

Psubst Typl Conl t(Psubst_new
(as
PABS_DEF

list thdl)td(Pseq_concl th) /\

(Pseq_assum th) UNION (LUNION(MAP Pseq_assum(MAP FST thdl))))

|- !Typl Conl ag t tm th. PABS Typl Conl(Pseq as t)tm th =
Prell_typed Typl Conl tm /\ Is_EQtm(Pseq_concl th) /\

Is_Var tm /\ Type_OK Typl(SND

(Var_var tm)) /\

(t = PEQ (Lam (Var_var tm) (App_arg(App_fun(Pseq_concl th))))
(Lam (Var_var tm) (App_arg(Pseq_concl th))) /\

(as = Pseqg_assum th) /\ Palln
PINST_TYPE_DEF

otfree(Var_var tm)as

[- ITypl as t tyl th. PINST_TYPE Typl(Pseq as t)tyl th =

EVERY(Type_O0K Typl) (MAP FST tyl) /\
Ptyinst as t tyl(Pseq_concl th) /\
P1lty_snotoccurs(MAP SND tyl)as /\

(as = Pseq_assum th)
PDISCH_DEF

|- !Typl Conl as t tm th. PDISCH Typl Conl (Pseq as t) tm th =
Pwell_typed Typl Conl tm /\ Pboolean tm /\

(t = PIMP tm(Pseq_concl th))
PMP_DEF

/\ (as = (Pseq_assum th) DELETE tm)

|~ tas t thl th2. PMP(Pseq as t)thi th2 =

(Pseq_concl thl = PIMP(Pseq_c
(as = (Pseq_assum thl) UNION
% functions over inferences Y%
Inf_concl_DEF

|- (Y8, Inf_concl(AX_inf 8) = 8)
(s t. Inf_concl(AS_inf s t)

(!s t. Inf_concl(RE_inf s t)

(!s t. Inf_concl(BE_inf s t)
('s tdl t s1. Inf_concl(SU_inf

(s t s1. Inf_concl(AB_inf s t
(!s tyl s1, Inf_concl(IN_inf s

(s t sl. Inf_concl(DI_inf s t

(!s s1 82, Inf_concl(MP_inf s

Inf_hyps_DEF

|- ('s. Inf_hyps(AX_inf s) = [1)
(!s t. Inf_hyps(AS_inf s t)
(!s t. Inf_hyps(RE_inf s t)
(s t. Inf_hyps(BE_inf s t)

(!s sdl t s1. Inf_hyps(SU_inf

(!s t s1. Inf_hyps(AB_inf s t

(!s tyl s1. Inf_hyps(IN_inf s

(!s t s1, Inf_hyps(DI_inf s t
('s 81 2. Inf_hyps(MP_inf s s

n

oncl th2)t) /\
(Pgeq_assum th2))

/\

s) /\

g8) /\

s) /\

s tdl t si)
s1) = 8) /\
tyl s1) = 8) /\
s1) = 8) /\
sl 82) = 8)

s} /\

/\

1 /\

[HDRVAN

[/A

g sdl t s1) = CONS s1(MAP FST sdl)) /\
s1) = [s1]) /\

tyl s1) = [=1]) /\

s1) = [s11) /\

1 82) = [81;82])

24

0K_Inf DEF

|- (!Typl Conl Axil s.

(!Typl Conl Axil s
OK_Inf Typl Conl
(!Typl Conl Axil s
OK_Inf Typl Conl
(!Typl Conl Axil s
OK_Inf Typl Conl
(!Typl Conl Axil s
O0K_Inf Typl Conl
({Typl Conl Axil s
0K_Inf Typl Conl
(1Typl Conl Axil s
0K_Inf Typl Conl
(!Typl Conl Axil s
OK_Inf Typl Conl
(!Typl Conl Axil s
OK_Inf Typl Conl

Theorems --
Psequent
Inference

|- 1£0 £1
7! fn.
(1P,
(1PO
(PO
(1PO
(tPO
('PO
(1PO
(PO
(PO

|- t£. 7} £n,

£2 £3 £4 £5

fn(AX_inf P) = f0 P)
P1. fn(AS_inf PO P1)
P1. fn(RE_inf PO P1)
P1. fn(BE_inf PO P1)
1 P1 P2. fn(SU_inf PO 1 P1
P1 P2. fn(AB_inf PO P1 P2)
1 P1. fn(IN_inf PO 1 P1) =
P1 P2, fn(DI_inf PO P1 P2) =
P1 P2. fn(MP_inf PO P1 P2)

0K_Inf Typl Conl Axil(AX_inf s) =
t.
Axil(AS_inf s t) =
t.
Axil(RE_inf s

mem 8 Axil) /\

PASSUME Typl Conl s t) /\

t) = PREFL Typl Conl s t) /\
t.
Axil(BE_inf s t) = PBETA_CONV Typl Conl s t) /\

tdl t si1.
Axil(SU_inf s
t sl.
Axil(AB_inf s
tyl si.
Axil(IN_inf s
t sl.
Axil(DI_inf s
sl 82,
Axil(MP_inf s

tdl t s1) = PSUBST Typl Conl s tdl t s1) /\
t s1) = PABS Typl Conl s t s1) /\

tyl s1) = PINST_TYPE Typl s tyl s1) /\

t s1) = PDISCH Typl Conl s t s1) /\

s1 s2)

il

PMP s s1 82)

!s P, fn(Pseq s P) = £ s P
f6 £7 £8.

AN

£1 PO P1)
£2 PO P1)
£3 PO P1)

/\

/\

/\

P2) = £4 PO 1 P1 P2) /\
= £5 PO P1 P2) /\

£6 PO 1 P1) /\

£7 PO P1 P2) /\

£8 PO P1 P2)

il

It

25

Appendix E: the proof theory

This appendix shows selected parts from the proof theory.

Definitions --
Is_proof_ DEF
j- (!Typl Conl Axil. Is_proof Typl Conl Axil[] = T) /\
(!Typl Conl Axil i P.
Is_proof Typl Conl Axil(CONS i P) =
OK_Inf Typl Conl Axil i /\ lmem(Inf_hyps i) (MAP Inf_concl P) /\
Is_proof Typl Conl Axil P)
Is_standard_DEF
|- 1Typl Conl Axil.
Is_standard(Typl,Conl,Axil) =
EVERY (Pseq_well_typed Typl Conl)Axil /\ EVERY Pseq_boolean Axil /\
memi ‘fun‘ Typl /\ (corrl ‘fun‘ Typl = 2) /\
meni ‘bool® Typl /\ (corrl ‘bool Typl = 0) /\
meml ‘==>‘ Conl /\
(corrl ¢==>¢ Conl = Tyop‘fun‘[Tyop ‘bool‘[];Tyop‘fun’[Tyop‘bool‘[];Tyop‘bool‘[11])

/\
meml ‘=¢ Comnl /\
(corrl ‘= Conl = Tyop ‘fun‘[Tyvar ‘*‘;Tyop ‘fun‘[Tyvar ‘*‘;Tyop ‘bool‘[I111) /\
meml ‘Q@° Conl /\
(corrl ‘@‘ Conl = Tyop ‘fun‘[Tyop ‘fun‘[Tyvar ‘*‘;Tyop ‘bool‘[]1];Tyvar ‘*‘])
Theorems -—

Provable_rules
|- (!Typl Conl Axil i s.
(OK_Inf Typl Conl Axil i /\ (8 = Inf_concl i)) /\
EVERY (Provable Typl Conl Axil) (Inf_hyps i) ==
Provable Typl Conl Axil s)
Provable_induct
|- 'R?. (!Typl Conl Axil i s. (OK_Inf Typl Conl Axil i /\
(s = Inf_concl 1)) /\ EVERY(R’ Typl Conl Axil)(Inf_hyps i) ==
R’ Typl Conl Axil s) ==>
(!Typl Conl Axil s.
Provable Typl Conl Axil s ==> R’ Typl Conl Axil s)
Provable_cases
|- Provable Typl Conl Axil s =
(71, OK_Inf Typl Conl Axil i /\ (8 = Inf_concl i) /\
EVERY (Provable Typl Conl Axil) (Inf_hyps 1))
Proof_ APPEND
|- 'P1 P2. Is_proof Typl Conl Axil P1 /\ Is_proof Typl Conl Axil P2
==> Is_proof Typl Conl Axil(APPEND P1 P2)
Provable_thm
|~ Provable Typl Conl Axil s =
(7i P. Is_proof Typl Conl Axil(CONS i P) /\ (s = Inf_concl i))
Int_wty
|- 'i, Is_standard(Typl,Conl,Axil) /\ OK_Inf Typl Conl Axil i /\
EVERY Pseq_boolean(Inf_hyps i) /\
EVERY (Pseq_well_typed Typl Conl)(Inf_hyps i) ==
Pseq_boolean(Inf_concl i) /\ Pseq_well_typed Typl Conl(Inf_concl i)
Proof_wty
|~ 'P. Is_proof Typl Conl Axil P /\ Is_standard(Typl,Conl,Axil) ==>
EVERY Pseq_boolean(MAP Inf_concl P) /\

26

EVERY (Pseq_well_typed Typl Conl) (MAP Inf_concl P)

27

Appendix F: the derived theory
This appendix shows selected parts from the derived theory.

Definitions --
Dinf_DEF
|- 1Typl Conl Axil name s sl.
Dinf Typl Conl Axil name s sl =
EVERY Pseq_boolean sl /\
EVERY (Pwell_typed Typl Conl) sl ==
Provable Typl Conl(APPEND sl Axil)s

Theorems -=~
Is_Dproof DEF
|- (Is_Dproof Typl Conl Axil[] = T) /\
(Is_Dproof Typl Conl Axil(CONS(n,s,sl)P) =
Is_Dproof Typl Conl Axil P /\
lmem s1(MAP(FST o SND)P) /\
Dinf Typl Conl Axil n 8 sl)
Dproof_Provable
|- 1P,
Is_Dproof Typl Conl Axil P ==
EVERY(Provable Typl Conl Axil) (MAP(FST o SND)P)
DADD_ASSUM
|- !Typl Conl Axil G t’ t.
Pwell_typed Typl Conl t’ /\ Pboolean t’ ==>
Dinf Typl Conl Axil ‘ADD_ASSUM‘(Pseq(t’ INSERT G)t)[Pseq G t]
DUNDISCH
|- !Typl Conl Axil G t1 t2.
Dinf Typl Conl Axil ‘UNDISCH‘ (Pseq(ti INSERT G)+2)
[Pseq G (App (App (Const ‘==>¢(Tyop ‘fun‘[Tyop ‘bool‘[];
Tyop ‘fun‘[Tyop ‘bool‘[];
Tyop ‘bool‘[111))
t1)
t2)]

28

