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Abstract

This paper describes a text file format for recording HOL proofs. It is
intended to become an interface between HOL and proof checkers. Modi-

fication to

HOLS88 has been carried out to incorporate a proof recorder to

generate a proof file in this format. The usage of this new feature is ex-

plained by

a simple example. A more substantial proof has been recorded,

and benchmark data is presented here.
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1 DMotivation

Formal methods have been used in the development of many safety-critical sys-
tems in the form of formal specification and formal proof of correctness. Formal
proofs are usually carried out by theorem provers or proof assistants. These
systems are based on well-founded formal logic, and provide a programming en-
vironment for the user to discover, construct and perform a proof. The result
of this process is usually a theorem which can be stored and used in subsequent
proofs. HOL is one of the most popular theorem proving environments. The user
interacts with the system by writing and evaluating ML programs which instruct
the system to carry out proofs. A proof is a sequence of inferences. In the HOL
system, it is transient in the sense that there is no object that exists as a proof
once a theorem has been derived.

In some applications, it is desirable to check the sequence of inferences by an
independent checker to assure its consistency!. The ML programs that a user de-
velops while doing the proof are not adequate, and very often are too complicated
for this purpose. The necessary condition for allowing the independent checking
of a HOL proof is to record it in a form which is readable by the checker and
consists of sufficient information to re-derive the theorem. Currently, research is
being carried out to formalise the notion of higher-order logic proofs in HOL[5].
This will provide a theoretical foundation for a proof checker.

This report describes a proof file format prf, which acts as an interface be-
tween HOL and a proof checker, and an enhancement to HOL88 to record proofs
and to generate proof files in this format. Section 2 reviews briefly the notion
of a proof in HOL and the ways a proof is carried out. Section 3 gives a precise
definition of the proof file format and an explanation of its semantics. The inter-
face for recording and generating proof is explained in Section 5 and 6. Section 7
describes the modification to HOL88 for recording proofs and generating proof
files. Section 8 shows a non-trivial example proof as a benchmark.

2 Proofs in HOL

A detailed description of the HOL logic and several tutorial examples of using the
HOL system can be found in [3]. For the benefit of readers who are not familiar
with HOL, an overview of the HOL deductive system and the theorem-proofing
infrastructure is given in this section.

A proof is a finite sequence of inferences in a deductive system. Each inference
is a pair (L, (T',t)) where (I, %) is known as a sequent and L is a (possibly empty)

1 «“The highest degree of assurance in the design can be obtained by providing all supporting
proofs and checking them with a proof checker. A proof checker can be a relatively simple
program and thus can itself be verified by Formal Proof”, quoted from Part 2, 32.1.3 of [4].
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1. Tht =t [Hypothesis]
2. Ft1i=t [Reflexivity]
3. Thta=ty [Substitution of 1 into 2]

Figure 1: Derivation of the derived rule SYM

list of sequents (I'1,%1)...(Cn,%,). In practice, a particular deductive system is
usually specified by a number of schematic rules of inference written in the form

Tibty ... Dokt
TFt (1)

The sequents above the line are called the hypotheses of the rule and the sequent
below the line is called its conclusion. Each inference step in the sequence of
inferences forming a proof must be satisfied by one of the inference rules of the
deductive system. There are eight primitive rules of inference in HOL. They are
described in detail in Section 4.1 on Page 15.

In HOL, rules of inference are represented by ML functions. More complex
inference can be derived by combining the primitive inference rules. For example,
the rule of symmetry of equality([SYM]) can be specified as

Fl"t1=t2
I'Fiy =t

This can be derived using the primitive rules as shown in Figure 1.

Derived rules are also represented by ML functions. Many of them are imple-
mented in terms of the primitive rules, i.e., calling the ML functions representing
the primitive rules. A theorem prover in which all proofs are fully expanded into
primitive inferences is known as fully-ezpansive[l]. The advantage of this type
of theorem prover is that the soundness of the proof is guaranteed since every
primitive inference step is actually performed. However, this is very expensive in
terms of both time and space for any sizable proof. To improve the efficiency of
HOL, some of the simple derived rules, such as SYM, are not fully expanded, but
are implemented directly in ML.

The primitive rules and the derived rules that are implemented directly in
ML will be collectively referred to as basic inference rules or simply basic rules
below. When recording a proof, all inference steps in which a basic inference
rule is applied should be included so that any error resulting from bugs in the
implementation of the inference rules can be caught.

Simple proofs can be carried out in HOL by calling the inference rules in
sequence. However, these inference steps are too small for any sizable proof.
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Another more powerful way of carrying out proof, known as goal-directed or
tactical proof is often used. In this proof style, a term in the same form as
the required theorem is set up as a goal, tactics are used to reduce the goal to
simpler subgoals recursively until all the subgoal are resolved. In such a proof,
the user does not call the inference rules directly. However, a correct sequence of
inferences is calculated and performed by the system automatically behind the
scenes to derive the theorem. The proof can be checked using this sequence of
inferences.

A proof in HOL as described above is carried out within an environment. It
consists of a type structure 2 and a signature under the type structure Yq. The
type structure (2 is a set of type constants, each of which is a pair (v,n) where v
is the name and n is known as the arity. Type constants include both the atomic
types and the type operators. For example, the name of the atomic type : bool is
the string bool and its arity is 0, and the name of the type operator list is list
and its arity is 1. The signature ¥ is a set of constants, each of which is a pair
(c,0) where c is the name and o is its type and all the type constants occurring
in the os must be in 2. This provides a context against which the well-typedness
of terms can be checked.

The style of presenting a proof in Figure 1 is known as Hilbert style. Each line
is a single step in the sequence of inferences. The first column is the line number.
The middle column is the resulting theorem(s) of the inference. The right-hand
column is known as the justification which tells which rule of inference is applied
in each step. This Hilbert style of proof is used as the model of the proof file
format described in the next section.

3 The Proof File Format: prf

The proof files written in the format described here are intended primarily for use
by an automatic checker. Therefore, the following two considerations influence
the design of the proof file format:

e the file should contain only ASCII text characters thus facilitating the trans-
fer of the file between machines across networks, and ensuring that machines
with different internal data representation will have less of a problem read-
ing it;

e the format should be simple so that it can be parsed easily, and so that the

parser is simple and it may be verified itself.

The prf proof file format follows the Hilbert style of proofs as described in the
previous section. It is a linear model which simplifies both the generation and
the checking of proofs.
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The proof file format prf is in two levels: the core level allows proofs using
only primitive inference rules to be written into the file, and the extended level
allows all directly implemented inference rules.

A checker accepting a core level file will be very simple, so it may possibly be
verified formally. Another program can be developed to expand each inference
step involving derived rules into a sequence of primitive steps before being sent
to the core checker.

The remainder of this section is divided into two parts giving the syntax
and the semantics of the prf format, respectively. The syntax part defines the
concrete syntax of files conforming to the prf format. The semantics part explains
how the files are interpreted.

3.1 The Syntax

The syntax of the proof file format for HOL is similar to LISP S-expression.
Objects, such as lines, theorems, terms and so on, are enclosed in a pair of
matching parentheses. The first atom in an object is a tag specifying what kind
of object it is. A file in this format may consist of one or more proofs. This
section specifies the concrete syntax of the format, i.e., the sequence of characters
which appears in the file. The meanings of the expressions will be explained in
Section 3.2.

The syntax of the proof format is specified in an augmented BNF. The con-
ventions used in this augmented BNF are:

e The terminal symbols are in upper case. The actual text strings of the
terminals which appear in the proof file are given in Figure 2.

o The token NUMBER is a string of one or more digits (0...9) and optionally
prefixed by a minus sign(-).

o The token STRING is a string of characters which denotes names of variables,
constants, and so on. The characters allowed in different expressions will
be detailed in Section 3.2 when the expressions are explained.

e The non-terminal symbols are in lower case.

¢ A non-terminal symbol whose name ends with the suffix ‘_list’ stands for
a list of similar elements. A list is enclosed by a pair of matching delimiters
LB and RB. The default delimiters are the square brackets, e.g., ‘[...]".
A list may be empty, in which case, there will be nothing in between the
square brackets. The production rule for xxx then specifies the syntax of
each element of the list xxx_list. Since each element is enclosed in a
matching pair of parentheses, no element separator is needed.
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[ TERMINAL | STRING || TERMINAL, | STRING |

PROOF PROOF LINE LINE
THM THM VERSION VERSION
VAR \ CONST C

APP A ABS L
TYVAR v TYOP 0
TYCONST c

LP ( RP )

LC { RC }

LB [ RB ]

Figure 2: Input strings for terminals

e In the rules for prim_justification and ext_justification, the first
terminal of each justification is its name. The input string for this is the
same as the name but the case of the characters is ignored.

o The start symbol is prf_file.

The syntax of the HOL proof file format is as below:

prf_file ::= version environment proofs ;;

version ::= LP VERSION STRING RP ;;

environment ::= LP ENV STRING typeconst_list const_list RP ;;
typeconst ::= LC STRING NUMBER RC ;;

const ::= LC STRING type RC ;;

proofs ::= proof | proofs proof ;;

proof ::= LP PROOF STRING thm_list line_list RP ;;

line ::= LP LINE NUMBER LP justification RP thm RP ;;

thm ::= LP THM term_list term RP ;;

term ::= LP VAR STRING type RP




REcorDING HOL PROOFS

type

| LP CONST STRING type RP
| LP APP term term RP
| LP ABS term term RP ;;

::= LP TYVAR STRING RP

| LP TYCONST STRING RP :
[ LP TYOP STRING type_list RP ;;

justification ::= core_justification

| ext_justification ;;

core_justification ::= HYPOTHESIS

ASSUME term

REFL term

SUBST number_term_list term NUMBER
BETACONV term

ABS term NUMBER

INSTTYPE type_type_list NUMBER
DISCH term NUMBER

MP NUMBER NUMBER
STOREDEFINITION STRING term
DEFINITION STRING STRING
DEFEXISTSRULE term

NEWAXIOM STRING term

AXIOM STRING STRING

THEOREM STRING STRING
NEWCONSTANT STRING type
NEWTYPE NUMBER STRING

NUMCONV term ;;

ext_justification ::= MKCOMB NUMBER NUMBER

MKABS NUMBER
ALPHA term term
ADDASSUM term NUMBER
SYM NUMBER

TRANS NUMBER NUMBER
IMPTRANS NUMBER NUMBER
APTERM term NUMBER
APTHM NUMBER term

EQMP NUMBER NUMBER
EQIMPRULER NUMBER
EQIMPRULEL NUMBER
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SPEC term NUMBER

EQTINTROC NUMBER

GEN term NUMBER

ETACONV term

EXT NUMBER

EXISTS term term NUMBER

CHOOSE term NUMBER NUMBER
IMPANTISYMRULE NUMBER NUMBER
MKEXISTS NUMBER

SUBS NUMBER_list NUMBER
SUBSOCCS number_list_number_list NUMBER
SUBSTCONV number_term_list term term
CONJ NUMBER NUMBER

CONJUNCT1 NUMBER

CONJUNCT2 NUMBER

DISJ1 NUMBER term

DISJ2 term NUMBER

DISJCASES NUMBER NUMBER NUMBER
NOTINTRO NUMBER

NOTELIM NUMBER

CONTR term NUMBER

CCONTR term NUMBER

INST term_term_list NUMBER ;;

number_term ::= LC NUMBER term RC ;;
type_type ::= LC type type RC ;;
number_list_number ::= LC NUMBER_list NUMBER RC ;;

term_term ::= LC term term RC ;;

Space between tokens is optional except where its absence will result in am-
biguity. For example, a space is required between the tag C and the string T and
between the tag ¢ and the string bool in the constant expression below:

(C T(c bool))

The space character(ASCII code 32), tab(9), carriage return(13) and line feed(10)
are considered to be space. Consecutive spaces are treated as a single space.
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3.2 The Semantics

The semantics of the proof file is described informally in this section in a bottom-
up fashion starting with the rule for types.

3.2.1 Types

HOL types are represented in the proof file by type expressions. There are three
kinds of types: type variables, type constants and type operators. A type variable
is represented by a TYVAR expression. The string in this expression is the name
of the variable. In HOLS88, all type variable names begin with the character ‘*’.
This should be checked when the proof is parsed. For example, the expression
(v **) represents the HOL type : *x.

An atomic type is represented by a TYCONST expression. The string in this
expression is the name of the type. For example, the HOL built-in type : bool is
represented as (¢ bool).

The TYOP expression represents HOL type operators. The string in this expres-
sion is the name of the type operator and the type_list is the list of arguments
of the type operator. The names of the HOL built-in infix type operators —, #
and + are respectively fun, prod and sum. The examples below show some HOL
types in the proof format:

(o fun [(v *)(v %)]) Dk = %
(o prod [(c num)(c bool)]) :numitbool
(o sum [(c num)(c bool)]) :num + bool

The string denoting the name of a type operator must be alphanumeric as de-
scribed in next subsection.

3.2.2 Terms

There are four kinds of terms: variables, constants, applications and abstractions.
They are represented respectively by the four kinds of expressions: VAR, CONST,
~ APP and ABS.

The string in a VAR expression is the name of the variable. In HOL88, the
variable name can be either alphanumeric or symbolic. An alphanumeric name is
a sequence of one or more characters consisting of letters, digits, underscores(_),
primes(’) and percent signs(%) and begins with a letter. A symbolic name is a
sequence of one or more characters which is an initial subsequence of one of the
following character sequences:

¥k ++ K== <=> ==> ——= > >>
= == =D === ==> \/ // /\

7 11\ 71 72?77\ = <O K- K-> =
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The type field in a VAR expression specifies the type of the variable. Some
examples of VAR expressions are:

(V foo (v %)) foo: %
(V GEN%VAR%123 (c bool)) GENZ%VAR%123: bool
(V —- (v %)) — 1%

The string in a CONST expression is the name of the constant. It has the same
form as the name of the variables. In addition, a sequence of one or more digits
is also allowed, and it denotes a numeric constant. The type field of a constant
expression gives the type of the specific instance of the constant. For instance,
the HOL constant CONS has the polymorphic type : * — (x)list — (*)list, but
the type of the occurrence of CONS in the term CONS T is : bool — (bool)list —
(bool)list which is more specific. This is the type given in the CONST expression
representing the above occurrence of CONS. Below are some examples of constant
expressions:

(C T (c bool)) T:bool
(C 2 (¢ num)) 2:num

The expression representing function application has two sub-terms: the first
is the function and the second is its argument. No explicit type information is
included since this can be deduced from the types of the sub-terms. For example,
the term SUC 2 is represented by the expression

(A(C SUC(o fun[(c num)(c num)]))(C 2(c num)))

The abstraction expression represents A-abstraction in HOL. The two sub-
terms are the bound variable and the abstraction body, respectively. Like the
function application expression, no explicit type information is included in an
abstraction. For example, the expression

(L (V x(c num))
(A (A (C = (o fun[(c num) (o fun[(c num)(c bool)])]1))
(V x(c num)))(C 0(c num))))

represents the abstraction (Az.z = 0).

3.2.3 Theorems

A HOL theorem consists of a list of hypotheses and a conclusion. This is repre-
sented by the THM expression. The term_list field is the list of hypotheses and
the term field is the conclusion.
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3.2.4 Lines

Each line in a proof represents a single inference. The NUMBER in a line acts as a
label of the line. It can be either a positive or a negative integer, but not zero.
The lines in a proof occur in ascending order of the line numbers. No two lines
have the same line number. The justification field indicates which inference
rule is used in this step. Many justifications refer to the resulting theorems of
other lines using their line numbers. It is illegal to refer to a line whose number
is larger than the current line. The thm field contains the result of applying the
inference rule.

3.2.5 Justifications

The justification expression in a proof line represents the inference rule to be ap-
plied. The justifications are divided into two categories: the core level justifica-
tions which are those in the production rule core_justification, and extended
level rules which are in the production rule ext_justification. The first group
consists of the eight HOL primitive inference rules and miscellaneous functions for
declaring new types, constants and for retrieving definitions and theorems from
existing theories. The extended group contains other basic inference rules. These
can only appear in a file conforming to the extended level.

Since the HOL deduction system is based entirely on the eight primitive rules
and five axioms. Any valid theorem can be derived using only these primitive rules
and axioms however tedious the process may be. By dividing the justifications
into two levels, a simple checker accepting only the core level justifications can
be developed. It may then be verified to ensure its correctness. A translator can
be added as a front end of the core checker. It expands the derived rules into
primitives.

In a justification expression, the first field is the name of the inference rule.
The name is a sequence of letters, and their case is ignored. For example, Subst
and SUBST indicate the same inference rule, namely substitution. The remaining
fields are the arguments to the inference rule. If an argument is a theorem, it is
not explicitly written, instead a number is given. This refers to the theorem in
a line having the given number. Arguments of other types are written explicitly.
For example, the inference rule REFL takes a term, it is explicitly written in
the justification expression. The expression below represents the justification in
Line 2 of the proof shown in Figure 4.

(Refl (A (C SUC(o fun[(c num)(c num)]))
(A (A (C + (o fun[(c num) (o fun[(c num)(c num)])]))
(V m(c num))) (V n(c num)))))

Details of individual justifications are explained in the next section.
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3.2.6 Proofs

A PROOF .expression consists of
¢ a name which is an alphanumeric string;
e 2 list of theorems; and
e a sequence of lines.

The theorems in the thm_list field are the goals of the proof, i.e., the theorems
it aims to derive. A proof checker may ignore all subsequent lines as soon as all
theorems in this list have been found in the theorem list field of the proof lines. A
null list may be interpreted as to check all the lines in the proof. The line_list
field contains the list of proof lines. If a proof is checked and no error is found,
the theorems in all lines are valid theorems.

3.2.7 Environment

The environment expression ENV specifies a context for the proof(s) in the proof
file. It consists of three sub-expressions: the STRING is the name of the environ-
ment; the typeconst_list is a type structure whose elements are type constants
as described in Section 3.2.8; and the const_list is a signature under the type
structure. There are three built-in environments: MIN, LOG and HOL. The ex-
act contents of these environments can be found in Appendix D. The following
expression indicates that the built-in environment HOL is selected:

(ENV HOL [1 [1)

Anything appearing in the lists will be ignored.

3.2.8 Type Structure

A type constant is a pair whose first field is a string and whose second field is a
number. The string is the name of the type constant. The number is its arity
which must not be negative. For example, the expression representing the type
constant bool and list are

{bool 0}
{list 1}

The type structure of the current environment contains all properly defined
type constants. The well-formedness of a type appearing in a term is checked
against this type structure when required. The type expression below is correct
in syntax but is not well-formed under the built-in environment HOL:

(o list [(v *) (v **)])
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This is because the type operator list has arity of 1. It is assumed that all type
constants have unique name, i.e., the same name cannot appear more than once
in the type structure of an environment.

3.2.9 Signature

A signature is a list of pairs. Each pair represents a constant. The first field
is a string denoting the name of the constant. The second field is its generic
type, i.e., if a constant is polymorphic, the type field is its most general type.
For example, the constant representing equality(=) has the name = and the type
:a = a — bool. The expression representing this constant is

{= (o fun [(v *) (o fun [(v *)(c bool)])1)}

The well-typedness of an occurrence of a constant is checked against the sig-
nature of the current environment when required. It is well-typed if the particular
occurrence is an instance of the generic constant in the signature.

3.2.10 Version

The string in the VERSION expression specifies the version and level of the format
to which the file conforms. This string can be divided into three parts:

1. format name — the standard name of the format is PRF FORMAT;
2. version — the current version of the format is 1.0;
3. level — the levels must be either CORE or EXTENDED.

Parts are separated by a single space. The proof checker reading a file may
perform different action according to the version and level indicated in the file.
These provides a means for backward compatibility in case the format changes
in future.

3.2.11 Proof File

A proof file starts with an expression indicating the version and level it conforms
to. This is followed by an environment expression, and then, one or more proofs.
An example of a complete proof file of the proof in Figure 4 can be found in
Appendix A.




ReEcorDING HOL PROOFS 15

4 Basic inference rules

This section describes all the justifications in more detail. They are arranged in
three groups: primitive rules, miscellaneous functions and derived rules. Each
groups is presented in a subsection. Justifications in each group are arranged
in alphabetical order of their names. Each justification begins with the syntax
rule enclosing in a box. This is followed by the inference rule in conventional
form as in Equation (1) on page 4. Then, the ML function implementing this
rule with its type is given, and it is followed by a more detailed description.
For derived inference rules, a proof will be presented as well. This description
of the justifications aims to provide all necessary information to proof checker
developers. ‘

4.1 Primitive rules

e Abstraction
|ABS term NUMBER

Pt =14
'+ (/\(B.tl) = (/\mtg)

ABS : term -> thm -> thm

The term argument must be a variable, and it is not free in the assumptions
of the hypothesis I'. The NUMBER refers to the theorem in a line having the
given line number. This theorem must be an equation.

e Assumption introduction
|ASSUME term

o~
o~

ASSUME : term -> thm
The term ¢t must be of type : bool.

e (-conversion
BETACONV term

+ ()\iE.tl)tz = tl[tg/m]

BETA_CONV : term -> thm

The term argument must be a f-redex in the form (Az.t1)ts. The right-
hand side of the resulting theorem is obtained by substitute ¢ for z in #;
with suitable renaming of free variables in ¢ to avoid variable capture.
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e Discharging an assumption
IDISCH term NUMBER |

't
F_{tl}l—tlDtQ

DISCH : term -> thm -> thm

The term t; must be of type : bool. The NUMBER refers to the theorem in
the line having the given number. The expression I' — {t;} denotes the set

subtraction of {t;} from I'. If ¢; is not in I', the result of the subtraction is
T itself.

o Type instantiation
| INSTTYPE type_type_list NUMBER

FHt
L'Ftlor,...,0n/a1,. .., 0]

INST_TYPE : (type # type)list -> thm -> thm

The first argument is a list of type pairs [(01, @1);. . . ; (0n, an)] Which speci-
fies the simultaneous type substitutions to be made in the theorem referred
to by NUMBER. The second fields «; of the pairs must be type variables, and
none of any «; occurs in any assumption in I'. All occurrences of a; in ¢
are replaced by the corresponding ¢;. Furthermore, if distinct variables in
t become identified after the instantiation, they will be renamed.

e Modus Ponens
IMP NUMBER NUMBER

F1|_t1:)t2 Fgf—tl
I'iuTs iy

MP : thm -> thm -> thm

The theorem referred to by the first NUMBER must be an implication. The
theorem referred to by the second NUMBER must match the antecedent of
the first theorem exactly.

o Reflexivity
|REFL term

Ft=t

REFL : term -> thm
The term ¢ must be of type : bool.
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e Substitution

4.2

[SUBST NUMBER term_list term NUMBER |

Tybty=t - Tobt,=t, Tkitfty,...,t]
T U UT,UTFtfth, ...t [t1, ..., tn]

SUBST : (thm # term)list -> term -> thm -> thm

The first argument is a list of pairs whose first fields are equational theo-
rems t; = t;, and whose second fields are simple variables z;. The second
argument is a term of the form t[z, ..., z,]. It should match the conclusion
of the theorem referred to by NUMBER. The variables z; in the term mark the
places where substitutions using the theorems I ¢; = ¢. are to be done. The
type of z; must be the same as of ¢;. Free variables in t; may be renamed
to avoid capture.

Miscellaneous functions

Retrieving an axiom
[AXIOM STRING STRING |

axiom : string -> string -> thm

This justification indicates that the theorem in this inference step is an
axiom whose name is the second string and which is stored in the theory
specified as the first string. The well-typedness of the axiom should be
checked.

Retrieving a definition
|DEFINITION STRING STRING |

definition : string -> string -> thm

This justification indicates that the theorem in this inference step is a pre-
viously defined definition whose name is the second string and which is
stored in the theory specified as the first string. The well-typedness of the
theorem should be checked.

Create a definitional theorem
|DEFEXISTSRULE term |

DEF_EXISTS_RULE : term -> thm

This justification introduces a new definitional theorem. The input term
must be an equation and both sides must be of the same type.




RECORDING HOL PROOFS 18

¢ Hypothesis
|HYPOTHESIS |

This justification indicates that the theorem is one of the initial theorems
of the proof. It should have been proved in a previous proof.

¢ Introducing a new axiom
[NEWAXIOM STRING term

FVZy. ..oz, [z, .., 3
new_axiom : term -> thm

This justification introduces a new axiom. It is in the form given as the
term. The STRING is the name of the axiom. All free variables in the input
term are automatically generalized.

¢ Introducing a new constant
NEWCONSTANT STRING type

new_constant : string -> type -> void

This justification declares a new constant whose name is the given STRING
and whose type is the given type. The name should be unique, i.e., not
already the name of an existing constant, and the type should be well-
formed. The current signature should be updated. The theorem in this
inference step is not used. To satisfy the type checker, the theorem TRUTH
is used as a dummy.

¢ Introducing a new type ,
[NEWTYPE NUMBER STRING ]

new_type : int -> string -> void

This justification declares a new type construtor whose name is the given
STRING and whose arity is the given NUMBER. The name should be unique,
i.e., not already the name of an existing type constructor. The current type
structure should be updated. The theorem in this inference step is not
used. To satisfy the type checker, the theorem TRUTH is used as a dummy.

¢ Definition of non-zero numbers
|NUMCONV term |

Fn=SUCm

num_CONV : term -> thm

The input term must be a constant denoting a non-zero natural number.
™ is a numeric constant denoting the predecessor of n.
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¢ Storing a definitiion
|STOREDEFINITION STRING term I

store_definition : term -> thm
This justification introduces a new definition. In fact, making a new defi-
nition is a three-step process:
1. a theorem asserting the existence of the definition is derived with the
justification DEFEXISTSRULE;
2. a new constant is declared with the justification NEWCONSTANT;
3. the definition is saved in the current theory with the justification
STOREDEFINITION.

Since this file format allows only the four kinds of primitive terms, special
syntactic status of constants, i.e., infix or binder, are not recognized. The
input term must be an equation and both sides are of the same type.

¢ Retrieving a theorem
[THEOREM STRING STRING ' ]

theorem : string -> string -> thm

This justification indicates the theorem in this inference step has been de-
rived previously. It has been stored in the theory, whose name is the first

string, under the name specified as the second string. The well-typedness
of the theorem should be checked.

4.3 Derived rules

There are 35 derived inference rules. The derivations of 14 of them use only the
primitive rules. They are:

ADDASSUM EQIMPRULEL NOTELIM

ALPHA EQIMPRULER NOTINTRO

APTERM EQMP SPEC

APTHM IMPTRANS SYM
MKCOMB TRANS

The three derived substitution rules SUBS, SUBSOCCS and SUBSTCONV are sim-
ple variants of the primitive substitution rule SUBST. The difference is only in
the argument which indicates which occurrence of a variable is to substituted.
Therefore, no derivation is shown for them. Since the HOL logic considers terms
are equal up to a-conversion. No derivation is shown for the rule ALPHA repre-
senting this conversion. The derivations of the remaining 17 rules use the derived
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rules listed above in addition to the primitive rules, thus, they are less tedious.
Some of these derivations can be found in Section 22.3 of [3].

¢ Adding an assumption
| ADDASSUM term NUMBER

'kt
T, t'Ht

ADD_ASSUM : term -> thm -> thm

The term is the new assumption ¢’ to be added to the theorem.

1. ¢+ [ASSUME]
2. Tkt [Hypothesis]
3. TH# Dt [DISCH 2]
4 T, tFt P 3,1]

e a-conversion
|ALPHA term term |

Ft1 =t

ALPHA : term -> term -> thm

The input terms ¢; and t; must be a-equivalent, otherwise, it fails.

e Application of a term to a theorem
|APTERM term NUMBER ]

i =1
Tttty =ttty

AP_TERM : term -> thm -> thm The input term must have a function type
whose domain is the type of the left-hand side (or right-hand side)? of the
input theorem.

1. Tt =1 [Hypothesis]
2. kit =tt [REFL]
3. ThHtty=tt, [SUBST 1,2]

2The type of both sides must be the same.
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¢ Application of a theorem to a term
[APTHM NUMBER term ]

F}"tlztz
Ff‘tlt=t2t

AP_THM : thm -> term -> thm The input term must have the same type
as the domain of the left-hand side (or the right-hand side)® of the input

theorem.
1. Thti=t * [Hypothesis]
2. Ftit=t1t [REFL]

3. Dhiyt=tyt [SUBST 1,2]
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e Classical contradiction rule

|[CCONTR term NUMBER

CCONTR :

term -> thm -> thm

The theorem referred to by the NUMBER must have F as its conclusion. The
input term t should be of type : bool, and the negation of it should occur

in the assumption of the input theorem.

N DO N = b e e e e e
DHO©®OND TR WD - O©

e N o

F-a=X.0DF

k-t = (A\b.b D F)t
F(Ab.bDF)t=tDF
F-t=tDF

I, -t+-F

'-=t>F
'F{EDF)DF
t=FFt=F
It=FF(FDF)DF
FFF

FEDF

I,t=FFF
FF=Vb.b

T, t=FFVbb
[,t=FFt
FVb.(b=T)V(b=F)
Ft=T)V(t=F)

t=Trt=T
t=TrFT=t
FT
t=Tkt
Tt

[Definition of -
[AP_THM 1]
[BETA_CONV]
[TRANS 2,3]
[Hypothesis]
[DISCH 5]
[SUBST 4,6]
[ASSUME]
[SUBST 8,7]
[ASSUME]
[DISCH 10]

[MP 9,11]
[Definition of F]
[SUBST 13,12]

[SPEC 14]

[Axiom EXCLUDED_MIDDLE]
[SPEC 16]

[ASSUME]
]

]

[Theorem TRUTH
[EQ_MP 19,20]
[DISJ_CASES 17,21,15]
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¢ J-elimination

|CHOOSE term NUMBER NUMBER

Ty E 3z tfz] Ty, to] H¢
F]_ U Fz + tl'

CHOOSE : (term # thm) -> thm -> thm

The input term must be a variable v and its type must be the same as
the existentially quantified variable z in the first theorem. ¢[v] is a term
occurring in the assumptions of the second theorem. It is the same as t[z],
the body of the first theorem, up to a-conversion. The variable v must not
occur free in the conclusion of the first theorem, i.e., 3z.t[z], and neither
can it occur free in I'; or ¢'.

PN O

©

10.
11.
12.
13.
14.

F3=AP.P(e P) [Definition of 33
F 3(Az. t[z]) = (AP. P(e P))(Az.t[z]) [AP_THM 1]
I'1 F 3. tz]) [Hypothesis]
1 = (AP. P(e P))(Az.t[z]) [EQMP 2,3]
F (AP. P(e P))(Az.t[z]) = (Az. t[z])(e(\z. t[z])) [BETA_CONV]
I F (Az. t[z]) (e(Az. t[z]) [EQMP 5,4]
F (Az. t[z])v = t[v] [BETA_CONV]
Ftlv] = (Az. t[z])v [SYM 7]
Ly, tlv] ¢ [Hypothesis]
Ty t[v] D¢ - [DISCH 9]
Lo Az t[z])v D ¢ [SUBST 8,10]
(Az.t[z])v F (Az. t[z])v [ASSUME]
Ly, (Az. tfz])v F ¢ [MP 11,12]
I UT, k¢ [SELECT_ELIM 6,13]

3with suitable type instantiation.
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¢ A-introduction

[CONJ NUMBER NUMBER

CONJ :

I‘lf_t]_ Pgl“tz
T, U, Ft Aty

thm -> thm -> thm

The two NUMBERSs refer to two theorems which are to be combined by the A
operator.

1.
2.

w

No o

10.
11.
12.
13.
14.
15.
16.
17.
18.

= A = Aby by. Vb. (b1 D) (b2 D) b)) Db

(o $/\t1 — $/\t1

+ ()‘bl by. Vb. (b1 D (bz D b)) D b)tl =
Aby. Vb. (tl ) (bz D) b)) Db

(o $/\t1 = (}\bl bq. Vb. (bl D (bz D b)) D b)tl
F $At; = Aba.Vb. (81 D (b2 D b)) Db
*‘t]_/\t2=t1/\t2

= ()\bng (tl D) (bz D b)) D b)tz
=Vb.(t1 D (t2 D b)) D b)

F i1 Ate = (Aba. Vb. (81 D (bp D b)) D b)ty
FtiAta=Vb.(t1 D (.2 D b)) Db

t1 D (2 Db)Ft1 D (82 D)

I’y F t1

T, t1 D Db)FtaDb

s 1y

IMUT,, t1D(t2Db)Fb

Lulx F (tl D) ('tz Db)) Db

MU, }_Vb(tl ) (tz D b)) Db

l‘Vb.(tl D) (tz D b)) Db=t1 Aty
Ihul, iy Aty

[Definition of A]

[REFL]

[BETA_CONV]
[SUBST 1,2]
[SUBST 3,4]

[REFL]

[BETA_CONV]
[SUBST 5,6]
[SUBST 7,8]
[ASSUME]
[Hypothesis]
[MP 10,11]
[Hypothesis]
[MP 12,13]
[DISCH 14]
[GEN 15]
[SUBST 9,6]

[SUBST 17,16]
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¢ A-elimination(left)
[CONJUNCT1 NUMBER |

C'EHt At
't
CONJUNCT1 : thm -> thm

Extract the left conjunct from the theorem referred to by NUMBER. The
conclusion of the input theorem must be a conjunction.

1. FA=Ab1ba.Vb. (b1 D (b2Db)) Db [Definition of A]

2. F8At =81t [REFL]
3. F (Aby by. Vb, (by D (b2 D b)) D b)ty
= Ab2.Vb. (t1 D (b D b)) Db [BETA_CONV]
4. F $At; = (Aby b2.Vb. (b1 D (b2 D b)) D b)ty [SUBST 1,2]
5. F$At; = Aba.Vb.(t1 D (b2 D b)) Db [SUBST 3,4]
6. FiiAta=1t1 At [REFL]
7. F (Ab2.Vb. (t1 D (by D b)) D b)t
=Vb.(t1 D (t2 D b)) D b) [BETA_CONV]
8. F ity Ate = (Ab2.Vb.(t1 D (ba D b)) D b)iy [SUBST 5,6]
9. FtiAta=Vb.(t1 D (t2Db) Db [SUBST 7,8]
10. THEti AL [Hypothesis]|
11. TFVb.(21D(t2Db)) Db [SUBST 9,10]
12. T+ (tl D) (tz D) tl)) Dt [SPEC 11]
13. t1Ft [ASSUME]
4. t1btDt [DISCH 13]
15. Fi¢;D (tz D) tl) [DISCH 14]
16. TFt [MP 12,15]
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¢ A-elimination(right)

| CONJUNCT2 NUMBER

't Aty
'kt

CONJUNCT2 : thm -> thm
Extract the left conjunct from the theorem referred to by NUMBER. The

conclusion of the input theorem must be a conjunction.

1.
2.

R

N OO

8.

9.
10.
11.
12.
13.
14.
15.
16.

FA=Abpbe.Vb. (b1 D (b2 Db)) Db

F $At; = $AL ,

- (Aby by, ¥b. (b D (b D b)) D b}ty

= Ab2.Vb.(t1 D (b2 D b)) D b

F$At = ()\bl bo. V0. (bl D) (b2 D) b)) D) b)tl
F $AL; = Aby. V0. (tl D) (bz D) b)) Db

Fti Aty =1t Aty

(= ()\bng (tl D) (b2 D) b)) D b)tg

=Vb.(t1 D (t2 D b)) D b)

Fti Aty = (Abng (t]_ D (b2 o b)) D b)tz
I"tl/\t2=Vb.(t13(t23b)) Db

I'Fit At

TEVYbL.(t1D(t2Db) Db

'+ (t].l D) (tg 2 tg)) Dty -

ta 1y

Fity Dts

Ft1 D (tz D) tg)

'ty

e Intuitionistic contradiction rule

[Definition of A]

[REFL]

[BETA_CONV]
[SUBST 1,2]
[SUBST 3,4]

[REFL]

[BETA_CONV]
[SUBST 5,6]
[SUBST 7,8]

[Hypothesis]

[SUBST 9,10]

[SPEC 11]
[ASSUME]
[DISCH 13]
[DISCH 14]
[MP 12,15]

|CONTR term NUMBER

=
-
-n

CONTR : term -> thm -> thm

The theorem referred to by NUMBER should have falsity (F) as its conclusion.

1. FVYt.FDt [Theorem FALSITY]
2. TFHF [Hypothesis]
3. FFOt [SPEC 1]
4. Tkt [MP 3,2]
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¢ Right V-introduction
|DISJ1 NUMBER term ]

't
't Vi
DISJ1 : thm -> term -> thm

The result of this inference rule is a disjunctive theorem whose second
disjunct is the input term. This term must be of type :bool.

L. FV=Xb b Vb.(by DB)D(byDb) Db [Definition of V]
2. F 8Vt =8$Vviy [REFL]
3. (Aby by.Vb. (b1 D b) D (by D b) D)ty
=Aby.Vb. (21 Db) D(ba Db) Db [BETA_CONV]
4. F $Vty = (Aby ba. Vb. (by D b) D (b D b) D )iy [SUBST 1,2]
5 F $Vt1 = Aby. Vb. (tl D) b) D) (bz D b) Db [SUBST 3,4]
6. Ft1Vig=1t1Vt [REFL]
7. (Abng (tl D) b) D (bz 2 b) D) b)tg
=Vb.(t12b0) D (t2 Db) Db [BETA_CONV]
8. Ft1Vip= ()\bng (tl D) b) D) (b2 D) b) D b)tg [SUBST 5,6]
9. Ft1Via=Vb.(t1Db)D(t2Db) Db [SUBST 7,8]
10. T'H# [Hypothesis]
11. ¢ Dbkt Db [ASSUME]
12. T, DbFb [MP 11,10]
13. T, t1 Dbk (.aDb) Db [DISCH 12]
14. TH({#1Db)D(t2Db) Db [DISCH 13]
15. THEVbL.(t1Db)D(t2Db) Db [GEN 14]
16. FVb.(t1Db0)D(t2Db)Db=t Vi [SUBST 9,6]
17. THt Vi, [SUBST 16,15]
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e Left vV-introduction

IDISJ2 term NUMBER

't
TFt Vi

DISJ2 : term -> thm -> thm

The result of this inference rule is a disjunctive theorem whose first disjunct

is the input term. This term must be of type :bool.

1. FV=MAbbe.Vb. (b1 Db)D(b2Db) Db
2. F 8§Vt =8vty

3. (Aby ba.Vb. (by D b) D (be D b) D b)ty
= Aba.Vb.(t1 Db) D (b2 Db) Db
4. F $Viy = (Aby ba. Vb. (b1 D b) D (b2 D b) D b)ty
5. F8$Vty = Aba.Vb.(t1 Db) D (b2 D) Db
6. FtyVia=1t; Vi
7. (Aba.Vb.(t; D b) D (by D b) D b)iy

=Vb.(t2b) D (.2 Db) Db
8. Ft1Viy= (Aszb (tl :)b) D) (bz D) b) Db)tz
9. |‘t1Vt2=Vb.(t13b)D(tsz)Db
10. Tkt
11. 2 Dbkt Db
12. T, t,Dbkb
13. T, t2DbF(t2Db) Db
14. TH{#:1Db)D(taDb)Db
15, TEVb.(t1Db0)D(t2Db) Db
16. FVb.(t1Db)D(t2Db)Db=t Vty
17. Tkt Vi

e V-elimination

[Definition of V|
[REFL]

[BETA_CONV]
[SUBST 1,2]
[SUBST 3,4]

[REFL]

[BETA_CONV]
[SUBST 5,6]
[SUBST 7,8]

[Hypothesis]

[ASSUME]

[MP 11,10]
[DISCH 12]
[DISCH 13]
[GEN 14]
[SUBST 9,6]
[SUBST 16,15]

|[DISJCASES NUMBER NUMBER NUMBER

Tht;Vt, Ty, t1Ft Ty tobt

ruriurak-t

. DISJ_CASES : thm -> thm -> thm -> thm

The theorem referred to by the first NUMBER must be a disjunction. The
assumptions of the second and the third theorems must include the first

and second disjunct of the first theorem, respectively.
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w N

NSO

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

FV =MAbybg.Vb.(by Db) D (b2 Db) Db
F $vity = $viy

(}\bl by. V0. (bl D) b) D) (b2 D) b) D b)tl =
Aba.Vb.(t1 Db) D (b D) Db

F $ViEr = (Aby ba. Vb. (b1 D b) D (b2 D b) D b)ty

F$Vt; = Aba. Vb. (21 D b) D (b2 D) Db
Ft1Via=1t Vi

(Abg.Vb. (t; D b) D (by D b) D b)ty
=Vb.(t13b)3(t23b)3b

Ft1 Vi = (Abg. Vb. (t1 D b) D (by D b) D b)iy
FtyVia=Vb.(t1Db) D (t2Db) Db
C'Ft Vi,
TFEVYb.(t10b6)D(t2Db) Db
I'F(@1Dt)D(t2Dt) Dt

Ty, t1Ft

It Dt

TU'tk(t;Dt) Dt

Ty ta bt

FokFty Dt

FTuryulg k-t

e Implication from equality

[Definition of V]
[REFL)]

[BETA_CONV]
[SUBST 1,2]
[SUBST 3,4]

[REFL)|

[BETA_CONV]
[SUBST 5,6]
[SUBST 7,8]

[Hypothesis]

[SUBST 9,10]

[SPEC 11]

[Hypothesis]

[DISCH 13]
MP 12,14]

[Hypothesis]

[DISCH 16]
[P 15,17]

IEQ IMPRULEL NUMBER

't =1,
Fl“tz:)tl

EQ_IMP_RULE : thm -> (thm # thm)

The theorem referred to by NUMBER must be an equation, and both sides
of it must be of type :bool. The resulting theorem of this justification
is the second theorem returned by the function EQ_IMP_RULE. It is an
implication whose antecedent is the right-hand side of the hypothesis and

whose conclusion is the left-hand side of the hypothesis.

1. Tt =t [Hypothesis]
2.ty bt [ASSUME]
4. T, ta bty [SUBST 3,2]
5. ThtyDt; [DISCH 4]
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e Implication from equality(right)
[EQIMPRULER NUMBER |

'kt =t
F‘_t]_:)t2

EQ_IMP_RULE : thm -> (thm # thm)

The theorem referred to by NUMBER must be an equation, and both sides of it
must be of type :bool. The resulting theorem of this justification is the first
theorem returned by the function EQ_IMP_RULE. It is an implication whose
antecedent is the left-hand side of the hypothesis and whose conclusion is
the right-hand side of the hypothesis .

1. THt =1 [Hypothesis]
2. t1Ft [ASSUME]
3. T, t ki [SUBST 1,2]
4, Tt Dty [DISCH 3]

e Modus Ponens for equality
|[EQMP NUMBER NUMBER |

Fll_tlztz le_tl
'yuUls -t

EQ_MP : thm -> thm -> thm

The first theorem should be an equation. The second theorem should be
identical to the left-hand side of the first. The resulting theorem is the
right-hand side of the first theorem.

1. THkt; =1t [Hypothesis]
2. Tkt [Hypothesis]
3. ThUTlykt, : [SUBST 1,2]
¢ Equality-with-T introduction
|EQTINTRO NUMBER |
FkHt
FHt=T

EQT_INTRO : thm -> thm
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1. by by (by D bg) D (b2 D bl) D (b1 = by) [IMP_ANTISYM_AX]
2. FEVby(tDb2) D(byDt) D (t=bo) [SPEC 1]
3. FEoT)o(Tot)o(t=T) [SPEC 2]
4. +T [TRUTH]
5. FtDT [DISCH 4]
6. F(TO>t)D(t=T) [MP 3,5]
7. Tkt [Hypothesis]
8. THTDOt [DISCH 7]
9. Tkt=T [MP 6,8]

e 7-conversion
|ETACONV term

F(\'.tz) =t
ETA_CONV : term -> thm

The variable &’ does not occur free in t. The input term is the same as the
left-hand side of the resulting theorem.

1. FVYf(dz.fz)=f [ETA_AXY]
2. FQa.tz)=t [SPEC 1]
3. F(AZ.tz') = (Az.tz) [@-conversion®

4. F(\tz)=t [TRANS 3,2]

e J-introduction
|[EXISTS term term NUMBER |

'k t[tz/(l:]
I' + 3z. t[z]

EXISTS :(term # term) -> thm -> thm

The first term is an existentially quantified term which matches exactly the
conclusion of the resulting theorem. The second term ¢, must be of the
same type as the bound variable z. When substituting it into ¢ for the
bound variable z, it results in a theorem which is the same as the input
theorem referred to by NUMBER.

“with appropriate type instantiation.
STwo terms are considered equal up to a-conversion.
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- ()\:L' tl[m])tg = tl[tg]

(o tl[tz] = (>\$ tl[ﬂ?])iz

Tk ti[ts)]

'k ()\CB 1}1[ ])tz

I'F (Az. t1]z])(e(Az. t1]z]))
+3=VP.P( P)

F 3z t1[z]) =

HOOPNS TR W

-

T'F 3(Az. t1]z])

¢ extensionality

(AP. P(e P))(\z.t1[z]
F (AP. P(e P))(Az.t1[z]) = (Az. t1[z]
F 3. t1[z]) = (Az. t1[z]) (e(Az. t1 [z
F (Az. t1[z])(e(Az. t1]z])) = F(z. 4]

e(Az. 1 [z]))

[BETA_CONV]
[SYM 1]
[Hypothesis]
[EQMP 2,3]
[SELECT_INTRO 4]
[Definition of J]
[AP_THM 6]
[BETA_CONV]
[TRANS 7,8
[SYM 9]
[EQ_MP 10,5]

|[EXT NUMBER

FI‘VCL‘.tliBItz.’L'

].-‘I_tl ztz

EXT : thm -> thm

The variable 2’ in the proof below is a new variable which does not occur

free anywhere in the input theorem.

1. THYz.tvz=t [Hypothesis]
2. Thtya' =ty 2 [SPEC 1]
3. TH(\ .t 2")= (A . tp &) [ABS 2]
4. F( )=t [ETA_CONV]
5. F tl = (/\.’II’ tl .’L‘,) [SYM 4]
6. THt =\ tya) [TRANS 5,3]
7. F ()\xl.tz ZB,) = tz [ETA_CUNV]
8. Tkt = [TRANS 6,7]
¢ Generalization(V-introduction)
|GEN term NUMBER ]

T'H¢
I'HVz.t

GEN : term -> thm -> thm

The input term ¢ is a variable which does not occur free in the assumption

I.

Swith appropriate type instantiation.
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1. T'kt [Hypothesis]
9. Tht=T [EQT_INTRO 1]
3. TF(Az.t)=(Az.T) [ABS 2]
4. FVY(a.t) = Y(z.1) [REFL]
5. FVY=(AP.P=()\z.T)) [Definition of V9]
6. FV(Az.t) = (AP.P = (Az.T))(Az.1) [SUBST 5,4]
7. F(AP.P=(Az.T))(Az.t) = ((Az.t) = (Az.T)) [BETA_CONV]
8. FV(Az.t) =((Az.t) = (A\z.T)) [TRANS 6,7]
9. F((Az.t) =(Az.T)) =V(Az.T) [SYM §]
10. TFV(iz.t) [EQ_MP 9,3]

e Deducing equality from implications
[IMPANTISYMRULE NUMBER NUMBER |

IiFt1 Dty Tkt Dty
1"1UI‘2|—t1=t2

IMP_ANTISYM_RULE : thm -> thm -> thm

The two theorems referred to by the numbers should be a pair of implica-
tions. The antecedent of one is the same as the conclusion of the other, and

vice versa.
1. Vb bs. (b1 D) bz) D) (b2 D) bl) D (bl = bg) [IMP_ANTISYM_AX]
2. T1Ft1 Dt [Hypothesis]
3. TokbtyDty [Hypothesis]
4, I Vbs. (tl D) b2) D (bz D) tl) D) (tl = bz) [SPEC]
5. F(t1 Dta) D(t2Dt1) D (b1 =1ta) [SPEC]
6. I'1F (t2 D) D (t1 =t2) [MP 5,2]
7. TZHuUulbhFt =1ty 4 [MP 6,3]

e Transitivity of implications
IIMPTRANS NUMBER NUMBER ]

I'i1kFti Dty TobtyDitg
P1UP2|—t13t3

IMP_TRANS : thm -> thm -> thm

Both theorems referred to by the numbers must be implicationé. The con-
clusion of the first theorem must be the same as the antecedent of the
second theorem.

Swith appropriate type instantiation.
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1. Tyt Dty [Hypothesis]
2. Tokt3Dt [Hypothesis]
3. it [ASSUME]
4. ThUu{ti} k¢t [MP 1,3]
5. ThWUTU{t1}Ft3 [MP 2,4]
6. TWUT ¢t Dts [DISCH 5]

o Instantiation of free variables
[INST term_term_list NUMBER |

-t
r I—t[tl,...,tn/:z:l,...,:cn]

INST :(term # term) list -> thm -> thm

The term_term_list is a list of pairs. Their second fields are variables
which do not occur free in the assumption I'. Their first fields are terms
having the same type as the corresponding variables. They are substituted
for the variables in the theorem referred to by the NUMBER.

1. Tkt [Hypothesis]
2. T'FVzy.. .z, t[zy,...,2,) [GENLT1]
3. THity,...,ta/21y- .., Ts] [SPECL32]

e Abstraction introduction on equality
[MKABS NUMBER |

'+ V(L‘tl = tg
'k (A.’L’.tl) = ()\mtg)

MK_ABS : thm -> thm

The theorem referred to by the NUMBER must be an equality inside a single
universal quantification.

1. THVz.ty =1t [Hypothesis]
2. F(QAz.ty)z’ = t1[2' /] [BETA_CONV]
3. Tk t[z'/z] = tofz' /2] [SPEC 1]
4. F (Az.to)r’ =to[z[z] - [BETA_CONV]
5. Fig[z'/z] = (Az. 1)z’ [SYM 4]
6. T'F (Az.t1)z = ty[z'/z] [TRANS 2,3]
7. TFE ()\:L‘ tl).’l:' = (}\:I}.tg)d:’ [TRANS 5,6]
8. THVZ. (Az.t1)r' = (Az.tp)a’ [GEN 7]

TGENL is an iterative version of GEN that applies GEN repeatedly to a list of variables.
8SPECL is an iterative version of SPEC that applies SPEC repeatedly to a list of terms.




REcorDING HOL PROOFS 35

¢ Equality of combinations
[MKCOMB NUMBER NUMBER |

Fl}‘f=g le“.’l::y
MulyF fz=gy

MK_COMB : (thm # thm) -> thm

Both theorems referred to by the NUMBERs must be equations. Both sides
of the first theorem are functions whose domains are the type of z in the
second theorem.

1. Tk f=g [Hypothesis]
2. Thtz=y [Hypothesis]
3. Ffz=f=z [REFL]
4. ThWF fz=gzx [SUBST 1,3]
5, Tk fz=gy [SUBST 2,4]

e Converting V to 3
[MKEXISTS NUMBER. |

't V. t]_ = tz
'k (3z.t1) = (Fz.t2)

MK_EXISTS : thm -> thm

The theorem referred to by the NUMBER must be an equality inside a single
universal quantification.

1. Tk V. tz] = toz] [Hypothesis]
2. Tkl /z] =to]z' /2] [SPEC 1]
3a. TFt1[z'/xz] D tafa' /2] [EQ_IMP_RULE(right) 2]
3b. T'F oz’ /2] D ty[z' /] [EQ_IMP_RULE (left) 2]
4. t[z'/z] F t1[2' [z [ASSUME|
5. T'U {t1[z'/z]} F t3]2 /] [MP 3a,4]
6. I'U{t1[z'/z]} F 3z.t,[z] [EXISTS 5]
7. Jz.ty]z] F 3z t[x] [ASSUME]
8. T U{3z.t1[z]} F Tz ta]x] [CHOOSE 7,6]
9. TI'F 3z.t1]z] D Jz. to[z] [DISCH 8]
9. to[a//z] F tofz' /] [ASSUME]
10. T U {tz[z'/z]} F t1[2’ /2] [MP 3b,9]
11. T U {to[z'/z]} F Fz. t1[z] [EXISTS 10]
12.  Jz.tafz] F Jz. to[z] [ASSUME]
13. T U {3z.to[z]} F Fz. t;1[z] [CHOOSE 12,11}
14. T+ 3z.to[z] D Fz. ty[z] [DISCH 13]
15. 'k Jz.¢4[z] = Jz. tyz] [IMP_ANTISYM_RULE 9,14]
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e —-elimination

INOTELIM NUMBER

' -t
I'FtDOF

NOT_ELIM : thm -> thm The theorem refered to by NUMBER must be of the

form of the hypothesis.

I. F==XbbDF [Definition of -
2. TH~t [Hypothesis]
3. TF(Xb.bDF)t [SUBST 1,2]
4. F(A.bDF)t=t>F [BETA_CONV]
5. THtDOF [SUBST 4,3]

¢ —-introduction

INOTINTRO NUMBER

I'FtDOF
' -t

NOT_INTRO : thm -> thm The theorem refered to by NUMBER must be an

implication whose conlusion is the constant F.

e Specialization (V-elimination)

1. Fa=X0bDF [Definition of -]
2. THtDF [Hypothesis|
3. Fat=-t [REFL]
4. F-t=(Ab.bDF)t [SUBST 1,3]
5. F(Ab.bDF)t=tDF [BETA_CONV]
6. F-t=tDF [SUBST 5,4]
7. FtDOF=+t [SUBST 6,3]
8. T'hH~=t [SUBST 7,2]

[SPEC term NUMBER

I'-Vez.t
'kt /2]

SPEC : term -> thm -> thm

The theorem referred to by the NUMBER must be universally quantified. The

term has the same type as the bound variable = of the theorem.
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1. FV=(AP.P=(z.T)) [Definition of ¥°]
2. TFV(z.t) [Hypothesis]
3. TH(MAP.P=(Xz.T))(Az.?) [SUBST 1,2]
4. F(AP.P=(Az.T))(Az.t) = ((Az.t) = (Az.T)) [BETA_CONV]
5. TF(Az.t)=(z.T) [SUBST 4,3]
6. F(Az.t)t' =(Az.t) t [REFL]
7. THQAz.t) ' =z T) ¢ [SUBST 5,6]
8. F(Az.t)t' =t[t'/z] [BETA_CONV]
9. F(Az.t)t =(Aa.t) ¢/ [REFL]

10. Ft[t'/z] = (Az.t) ¢ [SUBST 8,9]
11. TRt /z]= Az T) ¥ [SUBST 10,7]
12 F(QeT)t'=T [BETA_CONV]
13. TrHtft'/z]=T [SUBST 12,11]
14. F [t [z] = t[t' /=] [REFL]
15. TFT=t[t'/z] [SUBST 13,14]
16. T [Theorem TRUTH]
17. T kit /=] [SUBST 15,16]

e Substitution (for all instances)
|SUBS NUMBER.list NUMBER |

Fll-:cl:tl...I‘ﬂl—:cn:tn 'Ht¢
1"1U...UI‘nU1"}—t[tl,...,tn/:cl,...:vn]

SUBS : thm list -> thm -> thm

This is a generalized version of the primitive rule SUBST. It replaces all
occurrences of the variables z; in ¢ by the corresponding term t;.

Substitution (for some instances)
ISUBSUCCS NUMBER_1ist _NUMBER_list NUMBER

Fll—:clztl...I‘nl—:z:n:tn 'kt
I‘1U...UFnUI‘}—t[tl,...,tn/ml,...wn]

SUBS_0CCS : ((num)list # thm)list -> thm -> thm

This is another version of the primitive rule SUBST. It is more seletive than
SUBS. The first argument to this rule is a list of pairs whose general form is

([hil; ey h.,;m], I‘, [ T; = ti)

It replaces only the occurrences of z; in ¢ specified by the numbers z;;. The
occurrences are numbered from left to right starting from 1. In addition to
the similar checks as SUBS, checking of whether only the specific occurrences
are replaced needs to be carried out.

%with appropriate type instantiation.
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e Substitution (conversion)
|SUBSTCONV NUMBER_term_list term term -

TyFty=t, - TpFt,=t,
I‘1U-~-UI‘nI—t[tl,...,tn/xl,...,xn]=t[t’1,...,t;/x1,...,mn]

SUBST_CONV : (thm # term)list -> term -> term -> thm

This is a conversion performing substitution in a term similar to the primi-
tive rule SUBST. The elements of the first argument to this conversion have

the following form:
(1—‘1 F t,' = t;-, ? :Bi”)

The first term argument, t[z,, ..., z,], contains the variables z; marking the
places where substitution is required. The second term argument should
match the first term with occurrences of z; replaced by corresponding ¢;
which is the left-hand side of the corresponding theorem in the list. This
term is the left-hand side of the resulting theorem. The right-hand side is
obtained by replacing the occurrences of z; in ¢ by corresponding t.. The
checking of this justification can be done in two stages: the first ensures
that the left-hand side of the resulting theorem is a substitution as specified
by the input terms; the second checks for the correct substituion on the
right-hand side of the resulting theorem.

. Symmétry of equality
|SYM NUMBER

'Ft; =t
I'Hit, =1

SYM : thm -> thm The theorem referred to by NUMBER must be an equation.

1. Tt =1 [Hypothesis]
2 bhon T e
3. Thty=t [SUBST 1,2]

e Transitivity of equality
|TRANS NUMBER NUMBER |

IMEti=t, Tobto=1t3
F1UI‘2l—t1 =13

TRANS : thm -> thm -> thm

Both theorems referred to by the NUMBERs must be equations. The right-
hand side of the first theorem is the same as the left-hand side of the second.
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1. T1hty =t [Hypothesis]
2. Tobta=t3 [Hypothesis]
3. TiUToht =t [SUBST 2,1]

5 The User Interface

To a user, recording proof is a feature which can be enabled or disabled. Whatever
the state the system is in, it performs proofs in the same way except that the extra
step of recording the proofs in a file is carried out only if the feature is enabled.
This user interface is implemented as a system library. It provides a uniform
way of working with the system whether or not the proof is being recorded. The
typical use of the proof recording feature will be that

1. the user carries out a proof in the usual manner;

2. when he/she is satisfied with the proof, the proof recording feature is en-
abled by loading the library record_proof, the proof is re-run once more
and is saved in a proof file.

To help explain the user interface, a simple interactive session with HOL in which
proof recording is enabled is shown in Figure 3.

After loading the library, a new theory named THY is first created for saving
the theorem. A new proof file with the name myproof.prf is opened using
the library function new_proof_file. This file becomes the current proof file.
The name of the current proof file can be returned by calling the ML function
current_proof_file. A theorem with the name ADD_O is proved and saved
in the current theory using the system function prove_thm, and the proof is
saved automatically in the current proof file. In fact, every call to the tactical
proof functions TAC_PROOF, PROVE, prove and prove_thm will save a proof into
the current proof file. When all the proofs are completed, the library function
close_proof _file is called to close the proof file. Since the proof file is usually
very large, it will be automatically compressed. The name of the compressed file is
obtained by adding the suffix .gz to the name string passed to new_proof_file.

To record forward proofs, one needs to use the library functions begin_proof
and end_proof to enclose the proof procedures. Figure 4 shows how to record a
simple forward proof. Any inferences performed between the calls of begin_proof
and end_proof will be saved in the current proof file. The string passed to the
function begin_proof is the name of the proof. The function current_proof
returns the name of the current proof if it is called within a forward proof. The
return of a null string indicates that no proof is in progress.

When mixing forward and tactical proof techniquess, care should be taken to
make the direct calls to inference rules local to the call to the tactical functions.
For exmple, in Figure 5, the simple forward proof to derive lemma is local to the
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#load_library ‘record_proof‘;;

Loading library record_proof ...

Updating search path

........................................ Updating help search path

Library record_proof loaded.
() : void

#new_theory‘THY';;
() : void

#new_proof_file ‘myproof.prf‘;;
() : void

#prove_thm(‘ADD_O°,

# "!m.m+ 0=m",

# INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);;
[~ 'm. m+0=m

#close_proof_file();;
() : void

#close_theory();;
O : void

Figure 3: Recoding a simple tactical proof

call to prove_thm. If the proof of lemma is placed outside the call to prove_thm,
it will not be recorded.

While one is developing the proof, it is not necessary for the system to record
and save the proof in a disk file. To disable the proof recording feature, the
partial library disable is loaded instead of the whole library. This is done using
the command:

load_library‘record_proof:disable‘;;

Usually, the input to the system is saved in a script file. It can then be loaded
into the system to perform the proof in a batch processing fashion. By loading
different part of the library as required, the same script file can be used to perform
normal proofs and to generate proof files without any modification.
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#new_proof_file‘ap_term.prf‘;;
() : void

#let th = SPEC_ALL ADD_SYM;;
Theorem ADD_SYM autoloading from theory ‘arithmetic®
ADD_SYM = |- Imn. m+ n=n +m

th=|-m+n=n+nmn

#let v = genvar ":num";;
"GEN%VARY%422" : term

#begin_proof ‘proofi‘;;
() : void

#let thl = (REFL "SUC(m + n)");;
thi = |- SUC(m + n) = SUC(m + n)

#let th2 = SUBST [th,v] "SUC(m + n) = SUC “v" thi;;
th2 = |- SUC(m + n) = SUC(n + m)

#end_proof();;
() : void

#close_proof_file();;
() : void

Figure 4: Recoding a simple forward proof

prove_thm(‘SIMPLE_THM‘, "<goal here>",
let lemma = <applying some inference rules here>
in
<tactic here>

)i

Figure 5: Mixinf forward and tactical proof techniques
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6 The Developer’s Interface

Below the user interface described in the previous section, there are a small set of
ML functions forming a lower level interface to the proof recorder for developers.
These lower level functions provide a finer control to the proof recorder. They
are useful for developing alternative user interfaces.

The process of recording proof and generating proof files can be divided into
three stages:

1. recording inference steps;
2. generating a proof;
3. outputting to a text file.

In Stage 1, once the proof recorder is enabled by calling an ML function, ev-
ery application of a basic inference rule is recorded in an internal buffer. Each
inference is represented by an ML object of type step. The recording can be
temporarily suspended and resumed later. The current state of the recorder and
the internal buffer can be accessed by calling ML functions. The ML functions
available to the developer for managing the proof recorder are:

e record_proof :bool -> void
When called with true, this function clears the internal buffer for storing
proof steps and enables the recording of proof. When called with false, it
just disables the feature without clearing the internal buffer.

e is_recording_proof :void -> bool
This function returns the current state of the proof recorder. If it is enabled,
true is returned.

e get_steps :void -> step list
This function returns the proof in the internal buffer as a list of inference
steps since the last time the proof recorder is enabled.

e suspend_recording :void -> void
Disable the recorder temporarily without clearing the internal buffer. It
should be re-enable using resume_recording.

e resume_recording :void -> void
Re-enable the proof recorder without clearing the internal buffer.

In the second stage, the raw records of the inference steps are processed to
reduce the duplicated information. The result is a list of proof lines which is
represented by the ML type 1ine. The only ML function available for this stage
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is MakeProof which has type step list -> line list. It converts a list of
inference steps to a list of proof lines.

The last stage is to convert the list of proof lines into text in the prf format
and to output to a disc file. The ML functions available to the developer for this
stage are:

7

write_proof_to

: string -> string -> thm list -> line list -> void

This function outputs a proof into a proof file. The first string argument
is the name of the output file, and the second is the name of the proof.
If a file of the given name exists, it will be overwritten. The theorem list
contains the theorem this proof is supposed to derive. It may be null. If so,
a checker reading the proof should check all the lines. The last argument
is a list of proof lines.

write_proof_add_to ’

: string -> string -> thm list -> line list -> void

This function appends a proof into a proof file. The first string argument is
the name of the output file. If no file of the given name exists, one will be
created. If the named file exists and the version expression in it is not the
same as the version the system is using, this function fails. The remaining
arguments are interpreted in the same way as write_proof_to.

write_env :string -> void
This function outputs the current proof environment to the output port
given as the argument.

write_line :string -> line -> void
This function converts a proof line from its internal representation to a text
string and outputs it to the port given as the first argument.

write_thm_list :string -> thm list -> void

This function converts a list of theorems from its internal representation
in to text in the prf format and outputs it to the port given as the first
argument.

The Implementation

HOLS88 has been modified to incorporate the proof recording feature. This feature
will be available from version 2.02. The implementation can be divided into two
parts: the primitive functions and the record_proof library.

The primitive functions are the kernel of the proof recorder. They carry
out the first stage of the process of recording proofs. They should be very effi-
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cient since the raw records are generated as every basic inference rule is applied.
Therefore, they are incorporated into the system itself.
The record_proof library consists of functions for the tasks in Stage 2 and 3
described in Section 6 and the user interface functions described in Section 5.
The user functions can be divided into two groups: management functions
and proof functions. The management functions are

new_proof_file, close_proof_file, current_proof_file, begin_proof,
end_proof and current_proof.

The library has two definitions for each of these functions. One of the definitions
is a dummy which is used when the disable part of the library is loaded. These
dummy definitions only declare the names of the function, so the system will
recognise them. Therefore the same source file without any change can be used
whether or not the proofs are being recorded. The proper definition is used when
the whole library is loaded. In this case, the proof recorder is enabled. These
functions manage the proof file.
The proof functions in the library are

TAC_PROOF, PROVE, prove and prove_thm.

They perform the same tactical proof as their counterpart in the system and with
the extra function of automatically recording the proof. The new definitions take
effect when the whole library is loaded. When the disable part of the library is
loaded, the original version of these functions in the system is in scope.

The remainder of this section describes the internal data structures and the
process of each stage of recording proof and generating a proof file in more detail.

7.1 Data Structures

The internal buffer steplist for storing the raw records of inference steps is a list
whose elements are of type step. Each step represents an application of a basic
inference rule. After the proof recorder is enabled, information is cumulated in
this buffer. It can only be accessed by the user indirectly by calling the function
get_steps.

Information contained in each step consists of the actual arguments passed to
the inference rule. For example, the primitive inference rule ASSUME requires a
term t, so the step corresponding to the application of this rule is (AssumeStep
t). The complete definition of the type step can be found in Appendix B.

In the second stage, the step list is processed and a list of lines, i.e., a list whose
elements are of type line, is created. Each step in the step list will generate a
line in the line list. Each line represents a single inference. The definition of the
type line is:
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type line = Line of (int # thm # justification);;

The int field is the line number. The second field is a theorem resulting from
applying the inference rule. The last field is the justification of the inference. It
contains the name of the inference rule and its actual arguments. If an argument
is a theorem, it is replaced by a line number. This refers to the line in which the
theorem appears as the result of the inference. Theorems appearing as actual
arguments to the inference rule may not be found in any previous lines. They
are treated as the hypotheses of the proof. A line with a negative line number is
generated for each of these theorems. The definition of the type justification
can be found in Appendix B.

7.2 Internal States

Two internal variables, record_proof_flag and suspended, govern the recording
of proof. They can only be accessed indirectly by the user using the following
functions:

e record_proof This function sets/clears the record_proof_flag to en-
able/disable the recording.

e is_recording_proof This function returns the current setting of the in-
ternal variable record_proof_flag.

e suspend_recording This function suspends the proof recording temporar-
ily. It clears record_proof_flag and sets suspended.

e resume_recording This function resumes the proof recording. It sets .
record_proof_flag and clears suspended.

The temporary suspension of recording allows an auxiliary proof to be performed
in the midst of a main proof without being recorded. The internal states of the
proof recording mechanism are illustrated in Figure 6. The states are labelled by
the triple (record_proof_flag, suspended, steplist). Three dots (...) in
the square brackets indicate that steplist is not null. The transaction between
states is caused by calling one of the functions above. The transaction labelled

‘Record’ is made by performing an inference step after the proof recording is
enabled.

7.3 Recording Inference Steps

The actual recording of basic inference steps is done by the function RecordStep.
This function takes a single argument of type step. It checks the value of the
internal variable record_proof_flag. If it is true, the step is added to the
internal buffer steplist.
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FF,[
record proof T record proof F
resume_recording
TF[ ETL[
suspend recording
Record record_proof T
resume_recording
T,F,[...] F,T,[...]
suspend_recording

record proof F

EF]I.]

record proof T

Figure 6: State diagram of proof recorder
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As mentioned above, every application of a basic inference rule is recorded.
A call to the function RecordStep with the appropriate argument is added in
every function implementing the basic inference rules. There are in total fifty-
one such functions in the HOL system. In this way, all the information about
the application of inference rules is recorded dynamically. A list of all functions
implementing basic inference rules can be found in Appendix C. Below is the
step list of the proof shown in Figure 4. It is in reverse order, i.e., the head of
the list is the last step of the proof. There are two steps in this proof: the first
is a Ref1Step which is an application of the primitive rule REFL, and the second
is the primitive rule SUBST.

[SubstStep([(]- m + n = n + m, "GEN}VAR}422")],
"SUC(m + n) = SUC GEN%VAR}422",
[- SUC(m + n) = SUC(m + n));
ReflStep"SUC(m + n)"]

The primitive rule REFL takes a term as its argument and returns an equa-
tional theorem. The primitive rule SUBST performs a substitution on the theorem
|- SUC(m + n) = SUC(m + n).

7.4 Generating a List of Lines

When a proof is complete, the list of steps is processed and a list of lines is
generated. This is done by the function MakeProof. It converts each step into
a line. The justification field of the lines contains the same information as in
the steps. However, the theorems appearing in the steps are replaced by their
line numbers. All line numbers are generated automatically by the function
MakeProof.

Some of the theorems are not the result of any previous lines. These are
the initial theorems of the current proof, i.e., the hypotheses. They should have
been proved in other proofs. These are added to the line list as hypotheses. The
hypothesis lines are given negative line numbers.

Below is the list of lines for the proof shown in Figure 4. Notice that the initial
theorem is added as the hypothesis, and in Line 2, the last field of the justification
is the line number 1 which refers to the theorem in Line 1. The corresponding
step shown in the previous subsection contains the theorem explicitly.

[Line(-1, |- m + n = n + m, Hypothesis);
Line(1, |- SUC(m + n) SUC(m + n), Refl"SUC(m + n)");
Line(2, |- SUC(m + n) = SUC(n + m),
Subst([(-1, "GEN%VAR%422")1,
"SUC(m + n) = SUC GEN%VAR%422", 1))]
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Table 1: Benchmark of recording the multiplier proof

FILE No. of | DISABLED | ENABLED SIZE
THMS | RUN ] GC | RUN I GC Raw | Compr’d
mk_NEXT 2972 - - | 116.0 | 12.8 | 2693853 62202
MULT_FUN_CURRY 670 - - 83.3 7.1 | 1553642 29103
MULT_FUN 6943 - - | 488.1 | 120.0 | 8101358 188201
HOL_MULT 3946 - — | 1675.5 | 250.1 | 31200001 447036
TOTAL 14531 | 65.3 11.8 | 2412.9 | 390.0 | 43627841 726542

7.5 Outputting to Proof File

The top level functions for outputting proofs are write_proof_to which creates
a new proof file and write_proof_add_to which appends to an existing proof
file. They write a proof given as a list of proof lines into an output file. They
are implemented using the output functions write_env, write_thm_list and
write_line. :

The function write_env takes a single argument, an output port. It works
output the current proof environment, and outputs it to the port. The func-
tions write_thm_list and write_line both take an output port as their first
argument. Their second arguments are a list of theorems and a proof line, re-
spectively. All these three functions call lower level functions to convert abstract
representation of proof objects, such as proof lines, theorems, terms, and so on,
into text string. These lower level output functions are organised in recursive
descend fashion.

8 Benchmarking

A proof of correctness of a simple multiplier described in [2] is often used as a
HOL benchmark. This is a small to medium size proof which generates 14500
intermediate theorems. We recorded and saved this proof in proof files. The HOL
source of this proof is divided into four files, each contains a number of sub-proofs.
Six proof files are generated. Each contains the sub-proofs of a separate theory
file. The complete proof was performed twice: the first time without recording,
the second time with recording enabled. The tests were run on a SUN Sparc 10
Server. The results including the run time, garbage connection and proof file
sizes are listed in Table 1. The time is measured in seconds, and the file sizes are
in bytes.

As the figures in the table show, the time (2412.9 seconds ~ 40 minutes)
required to record and generate the proof files is considerable longer than just
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to perform the proof, but it is not excessive. Most of the extra time is spent in
converting the internal presentation to the textual format and actually writing
the disk file. This extra time is acceptable since the proof files will only be
generated after the proof is completed satisfactorily (probably once).

The sizes of the proof files are also listed in Table 1. They are very large
(43 Mbytes in total) because every intermediate theorem has to be saved. The
size per theorem is comparable to the theory files. However, the proof files are
intended for automatic tools not for human readers, and they can be stored in
compressed form. The size of the compressed files is much smaller. It amounts
to less than 2% of the raw size. The compress program used is gzip, a public
domain program which implements the well-known Lempel-Ziv coding (LZ77)
algorithm [6]. As the compression is done automatically, this does not pose too
much burden to the user.

It should also be emphasized that the user is not restricted to use only basic
inference rules described above. In fact, all higherer level derived inference rules,
tactics and tacticals can be used in a proof. The proof will be recorded properly
as long as the user adheres to the simple rules described in Section 5.
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A Listing of a proof file
This appendix lists the proof file generated for the example proof in Figure 4.

(VERSION PRF FORMAT 1.0 EXTENDED)
(ENV HOL[I[1)

(PROOF proofl

]

L

(LINE -1(Hypothesis)

(THM [JCA (A (C = (o fun[(c num) (o fun[{c num) (c bool)]1)1))
(A (A (C + (o fun[(c num) (o fun[(c num) (c num)])]1))

(V m(c num))) (V n(c num))))

(A (4 (C+ (o fun[(c num) (o fun[(c num) (¢ num)])]))

(V n(c num))) (V m(c num)))))

)

(LINE 1(Refl (A (C SUC(o fun[(c num)(c num)]))

(A (A (C + (o fun[(c num) (o fun[(c num) (c num)])]1))

(V m(c num))) (V n(c num)))))

(THM [J(A (A (C = (o fun[(c num) (o fun[(c num) (c bool)])1))

(A (C SUC(o fun[(c num) (c num)l))

(4 (A (C + (o fun[(c num) (o fun[(c num) (c num)])1)) (V m(c num)))
(V n(c num))))) (A (C SUC(o fun[(c num) (¢ num)]))

(A (A (C + (o fun[(c num) (o fun[(c num) (¢ num)])1)) (V m(c num)))
(V n(c num))))))

)

(LINE 2(Subst [{-1(V GEN%VAR%422(c num))}]

(A (A (C = (o fun[(c num) (o fun[(c num)(c bool)])]))

(A (C sUC(o fun[(c num) (c num)]))

(A (A (C+ (o fun[(c num) (o fun[(c num) (c num)]1)1))

(V m(c num))) (V n(c num))))) (A (C SUC(o fun[(c num)(c num)]))
(V GEN%VAR%422(c num))))1)

(THM [J(Ca (A (C = (o fun[(c num) (o fun[(c num) (c bool)])1))
(A (C suC(o funl(c num)(c num)]))

(A (A (C + (o fun[(c num) (o fun[(c num) (c num)J)]1))
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(V m(c num)))(V n(c num))))) (4 (C SUC(o fun[{c num)(c num)]))
(A (A (C + (o fun[(c num) (o fun[(c num) (c num)J)]))

(V n(c num))) (V m(c num))))))

)

D

B Types defined for recording proofs

type step = AssumeStep of term
| ReflStep of term
| SubstStep of (thm#term)list # term # thm
| BetaConvStep of term
| AbsStep of term # thm
| InstTypeStep of (type#type)list # thm
| DischStep of term # thm
| MpStep of thm # thm
| MkCombStep of thm # thm
| MkAbsStep of thm
| AlphaStep of term # term
| AddAssumStep of term # thm
| SymStep of thm
| TransStep of thm # thm
| ImpTransStep of thm # thm
| ApTermStep of term # thm
| ApThmStep of thm # term
| EqMpStep of thm # thm
| EqImpRuleStep of thm
| SpecStep of term # thm
| EqtIntroStep of thm

| GenStep of term # thm

| EtaConvStep of term

| ExtStep of thm

| ExistsStep of (term # term) # thm

| ChooseStep of (term # thm) # thm

| ImpAntisymRuleStep of thm # thm

| MkExistsStep of thm

| SubsStep of thm list # thm

| SubsOccsStep of (int list # thm) list # thm

| SubstConvStep of (thm # term) list # term # term

| ConjStep of thm # thm

| ConjunctiStep of thm
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Conjunct2Step of thm

DisjiStep of thm # term

Disj2Step of term # thm
DisjCasesStep of thm # thm # thm
NotIntroStep of thm

NotElimStep of thm

ContrStep of term # thm

CcontrStep of term # thm

InstStep of (term # term) list # thm
StoreDefinitionStep of string # term
DefinitionStep of string # string
DefExistsRuleStep of term
NewAxiomStep of string # term
AxiomStep of string # string
TheoremStep of string # string
NewConstantStep of string # type
NewTypeStep of int # string
NumConvStep of term;;

type justification =

Hypothesis

Assume of term

Refl of term

Subst of (int#term)list # term # int
BetaConv of term

Abs of term # int
InstType of (type#type)list # int
Disch of term # int

Mp of int # int

MkComb of int # int
MkAbs of int

Alpha of term # term
AddAssum of term # int
Sym of int

Trans of int # int
ImpTrans of int # int
ApTerm of term # int
ApThm of int # term
EqMp of int # int
EqImpRuleR of int
EqImpRuleL of int

Spec of term # int
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EqtIntro of int

Gen of term # int

EtaConv of term

Ext of int

Exists of (term # term) # int
Choose of (term # int) # int
ImpAntisymRule of int # int
MkExists of int

Subs of int list # int

SubsOccs of (int list # int) list # int
SubstConv of (int # term) list # term # term
Conj of int # int

Conjunctl of int

Conjunct2 of int

Disji of int # term

Disj2 of term # int

DisjCases of int # int # int
NotIntro of int

NotElim of int

Contr of term # int

Ccontr of term # int

Inst of (term # term) list # int
StoreDefinition of string # term
Definition of string # string
DefExistsRule of term

NewAxiom of string # term

Axiom of string # string
Theorem of string # string
NewConstant of string # type
NewType of int # string

NumConv of term;;

type line = Line of (int # thm # justification);;

C Basic inference rules

This section lists all basic inference rules in the HOL system. The functions
implementing these rules are modified to incorporate the feature of recording
proof. They are grouped by the file where they are defined.
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hol-rule.ml

ASSUME REFL SUBST BETA_CONV
ABS INST_TYPE DISCH MP
drul.ml

MK_COMB MK_ABS ALPHA

hol-drule.ml

ADD_ASSUM SYM TRANS IMP_TRANS

AP_TERM AP_THM EQ_MP EQ_IMP_RULE

SPEC EQT_INTRO GEN ETA_CONV

EXT EXISTS . CHOOSE IMP_ANTISYM_RULE
MK_EXISTS SUBS SUBS_0CCS SUBST_CONV

CONJ CONJUNCT1 CONJUNCT2 DISJ1

DISJ2 DISJ_CASES NOT_INTRO NOT_ELIM

CONTR CCONTR INST

hol-syn.ml

new_axiom axiom definition store_definition

new_type theorem new_constant DEF_EXISTS_RULE

numconv.ml

num_CONV

D Standard environments

This appendix lists the three standard envirnments. The MIN environment is the
smallest. Every environment is a superset of all those listed before it.

D.1 MIN

(ENV MIN [{0 bool} {0 ind}]

[{==> (":bool -> (bool -> bool)")}
{= (":*x => (* => bool)")}

{@ (":(* -> bool) -> *")}]
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D.2 LOoG

(ENV LoG [J
[{t ":(* -> bool) -> bool"}
{? ":(* -> bool) -> bool"}
{T ":bool"}
{F ":bool"}
{® ":bool -> bool"}
{/\ ":bool -> (bool -> bool)"}
{\/ ":bool -> (bool -> bool)"}
{ONE_ONE ":(* => *x*) -> bool"}
{ONTO ":(* -> **x) -> bool"}
{TYPE_DEFINITION ":(* -> bool) -> ((*¥* -> %) -> bool)"}
]

D.3 HOL

(ENV HOL [{2 fun} {2 prod} {0 num} {1 list}
{0 tree} {1 ltree} {2 sum} {0 onel}]
[{* ":num -> (num -> num)"}
{+ ":num -> (num -> num)"}
{ "k => (k% => % # xk)"}
{- ":num -> (num -> num)"}
{0 ":num"}
{<= ":num -> (num -> bool)"}
{< ":num -> (num -> bool)"}
{>= ":num -> (num -> bool)"}
{> ":num -> (aum -> bool)"}
{?! ":(* -> bool) -> bool"}
{ABS_list ":(num -> *) # num -> (*)list"}
{ABS_ltree ":tree # (¥)list -> (*)ltree"}
{ABS_num ":ind -> num"}
{ABS_sum ":(bool -> (* -> (*¥* -> bool))) -> * + *x"}
{ABS_tree ":num -> tree"}
{APPEND ":(%*)1list -> ((*)list -> (*)list)"}
{AP ":(* => *x)list -> ((*#)1list -> (**)list)"}
{ARB ":x"}
{BINDERS ":* -> bool"}
{COND ":bool =-> (* -> (* -> *))"}
{CONS ":¥ -> ((¥)list -> (*)list)"}
{CURRY ":(* # %% -> *xxx) -> (*k => (k% => xxx))"}
{DIV ":num -> (num -> num)"}
{EL ":num -> ((*)1list -> *)"}
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{EVEN ":num -> bool"}

{EVERY ":(* -> bool) -> ((*)1list -> bool)"}

{EXP ":num -> (num -> num)"}

{FACT ":num -> num"}

{FLAT ":((*)1list)list -> (¥)1list"}

{FST ":* # *x -> %"}

{HD ":(*)1list -> %"}

{HOL_DEFINITION ":bool -> bool"}

{HT ":tree -> num"}

{INL ":* -> % + *%x"}

{INR ":%x -> % + %x"}

{ISL ":* + *x -> bool"}

{ISR ":* + %% -> bool"}

{IS_ASSUMPTION_OF ":bool -> (bool -> bool)"}
{IS_NUM_REP ":ind -> bool"}

{IS_PAIR ":(*¥ -> (¥* -> bool)) -> bool"}
{IS_SUM_REP ":(bool -> (* -> (** -> bool))) -> bool"}
{IS_list_REP ":(num -> *) # num -> bool"}

{I ":* _> *ll}

{Is_ltree ":tree # (*)1list -> bool"}
{Is_tree_REP ":num -> bool"}

{K ":% => (%% -=> *x)"}

{LENGTH ":(*)1list -> num"}

{LET ":(* => %x) -> (% -> *x)"}

{MAP2 ":(* => (k% -> #x*x)) -> ((*)1list ->((#*)1list->(***)1list))"}
{MAP ":(* -> *x) -> ((*)1list -> (**)1list)"}
{MK_PAIR ":* -> (¥* -> (¥ -> (** -> bool)))"}
{MOD ":num -> (num -> num)"}

{NIL ":(*)1list"}

{NULL ":(*)1list -> bool"}

{Node ":* -> (((*)1ltree)list -> (*)1tree)"}

{0DD ":num -> bool"}

{0UTL ":% + %% -> %"}

{0UTR ":% + %% —> *x"}

{PART ":(num)list -> ((*)1list -> ((*)list)list)"}
{PRE ":num -> num"}

{PRIM_REC_FUN ":% -> ((* -> (num -> *)) -> (num -> (num -> *)))"}
{PRIM_REC ":* -> ((* -> (aum -> *)) -> (num -> *))"}
{REP_list ":(*)1list -> (num -> *) # num"}
{REP_ltree ":(*)ltree -> tree # (*)1list"}
{REP_num ":num -> ind"}

{REP_prod ":* # *x -> (x -> (** -> bool))"}
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{REP_sum ":* + x% -> (bool -> (¥ -> (** -> bool)))"}
{REP_tree ":tree -> num"}

{RES_ABSTRACT ":(* -> bool) -> ((* -> #*) -> {x -> #%x%))"}
{RES_EXISTS ":(* -> bool) =-> ((* -> bool) -> bool)"}
{RES_FORALL ":(* -> bool) -> ((* -> bool) -> bool)"}
{RES_SELECT ":(* -> bool) -> ((* -> bool) -> *)"}
{SIMP_REC_FUN ":* -> ((*¥ -> %) -> (num -> (num -> *)))"}
{SIMP_REC_REL ":(num -> *) -> (* -> ((* -> #)->(num ~-> bool)))"}
{SIMP_REC ":* —-> ((* -> %) -> (num -> ¥))"}

{SND ":* # ** -> *xx"} '

{SPLIT ":num -> ((*)1list -> (*)list # (*)list)"}

{SUC_REP ":ind -> ind"}

{SUC ":num -> num"}

{SUM ":(num)list -> num"}

{8 ":(% => (%% => *xxx%x)) => ((* => *%) -> (% => x*%))"}
{Size ":tree -> num"}

{TL ":(*)1list -> (*)list"}

{TRP ":(* -> (((*)1ltree)list -> bool)) -> ((*)1tree -> bool)"}
{UNCURRY ":(* => (%% => *%%x)) => (% # ** -> ***)"}
{ZERO_REP ":ind"}

{bht ":num -> (tree -> bool)"}

{dest_node ":tree -> (tree)list"}

{node_REP ":(num)list -> num"}

{node ":(tree)list -> tree"}

{o ":o(Hk => k%) => {(% -> *%) -> (¥ => *xx%x))"}

{one ":one"}

{trf ":num -> (((**)1list -> **) -> (tree -> **))"}



