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Abstract

In this paper we consider the problem of deriving a term assignment system for
Girard’s Intuitionistic Linear Logic for both the sequent calculus and natural deduction
proof systems. Our system differs from previous calculi (e.g. that of Abramsky) and
has two important properties which they lack. These are the substitution property (the
set of valid deductions is closed under substitution) and subject reduction (reduction
on terms is well-typed).

We define a simple (but more general than previous proposals) categorical model
for Intuitionistic Linear Logic and show how this can be used to derive the term
assignment system,

We also consider term reduction arising from cut-elimination in the sequent cal-
culus and normalisation in natural deduction. We explore the relationship between
these, as well as with the equations which follow from our categorical model.
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1 Introduction

This paper represents an effort to establish a satisfactory term assignment system for
Girard’s Intuitionistic Linear Logic [10]. Previous approaches have simply annotated the
sequent calculus formulation with terms and have given little or no justification for their
choice. A poor choice can have serious consequences. An example discovered by Phil
Wadler [29] is that the substitution lemma does not hold for the term assignment system
corresponding to an intuitive natural deduction formulation of Intuitionistic Linear Logic:
a consequence is that such a system is too weak to provide a proof theory for linear logic.
We have approached the formulation of a term calculus in two ways.

1. By considering the sequent calculus formulation of the logic and using the underlying
categorical constructions to suggest a term assignment system.

2. By considering a linear natural deduction system. Using this system we can con-
struct the rules for the linear logic connectives. We can then apply the so-called
Curry-Howard Correspondence {15] to derive a term assignment system.

These two approaches produce equivalent term assignment systems. However, when we
come to consider equality (reduction) of terms, matters are more subtle. As ever the
natural equalities for category theory are stronger than those suggested by proof theoretic
or computational considerations; but also there are significant differences between natu-
ral deduction and sequent calculus at the computational level. Even when commutative
conversions (for natural deduction) are taken into account the equalities (reductions) sug-
gested by cut elimination for the sequent calculus extend those suggested by normalization
for natural deduction. Also permutation theorems for the sequent calculus suggest further
equalities, but we do not consider these in detail.

This paper is organised as follows. In Section 2 we give a brief introduction to Girard’s
Intuitionistic Linear Logic. In Section 3 we show how to use the form of a simple categorical
model of Intuitionistic Linear Logic to derive a term assignment system (for the sequent
calculus version). In Section 4 we consider a linear system of natural deduction and
use this (via the Curry-Howard Correspondence) to derive a term assignment system.
Readers who are less used to category theory may find it easier to read this section before
Section 3. In Section 5 we show how our two systems of Intuitionistic Linear Logic are
related, and give procedures for mapping proofs from one to the other. We show that these
mappings respect our term assignment systems. In Section 7 we consider the process of
proof normalisation within the linear natural deduction system. In Section 8 we consider
in detail our model for Intuitionistic Linear Logic. Again, the less categorically motivated
reader may wish to skim or skip this section. In Section 9 we consider the process of
cut-elimination in the sequent calculus formulation of Intuitionistic Linear Logic. We
conclude and outline future work in Section 10. In Appendix A we recall the definition of
a monoidal comonad.

2 Introduction to Intuitionistic Linear Logic

Throughout this paper we shall consider only the multiplicative fragment of Intuitionistic
Linear Logic, i.e. the (®,—o,!)-fragment. Intuitionistic Linear Logic is a refinement
of intuitionistic logic, where formulae must be used exactly once. In other words, the
familar Weakening and Contraction rules are removed. To regain the expresive power of

3




intuitionistic logic, these rules are returned, but in a controlled manner. A logical operator
!, is introduced which allows a formula to be used as many times as required (including
zero). This operator is, in some ways, similar to the modal necessity operator O from
Modal Logic [16].

We shall follow Girard’s original presentation [11], and give the rules for Intuitionistic
Linear Logic in a sequent calculus system. The logic is given in Figure 1.

— I dentity
AFA

T,A,B,AFC

———— Fachange
T,B,A,AFC

TFB  B,AFC
I,AFC

Cut

THA
T,[+-A

(Ig) ;—I (I'R)

I‘,A,BI—C’(@) A  AFB
T, ARBFC " °© T,A+ A®B

(®r)

T4 ABFC I,AF B

-0 PR
raaepro 9 Trans R

T+B T,I4,!AF B
— — 2
T,AF B T,IAF B

I, AFB
T,1arB °°
ITF A

T F14

(=)

Figure 1: (Multiplicative) Intuitionistic Linear Logic

We use capital Greek letters I'y A for sequences of formulae and A, B for single formulae.
The system has multiplicative conjunction or tensor, ®, linear implication, —o, and a
logical operator, !. The Ezchange rule simply allows the permutation of assumptions. In
what follows we shall consider this rule to be implicit, whence the convention that I', A
denote multisets (and not sequences).

The ‘! rules’ have been given names by other authors. !z_1 is called Weakening, !z_,
Contraction, !z_3 Dereliction and (1g) Promotion'. We shall use these terms throughout
this paper.

!Girard, Scedrov and Scott [13] prefer to call this rule Storage.




In the Promotion rule, !I' means that every formula in the set I’ is modal, in other
words, if ' is the set {4y, Ag,...An}, then IT' denotes the set {!4,!4,,...14,}.

3 Categorical considerations and term assignment

The sequent calculus is best thought of as providing not proofs themselves, but a meta-
theory concerning proofs. Hence a formulation in these terms does not always provide
clear clues as to how it should be enriched to a term assignment system. Fortunately we
can use the general form of a categorical model (of the proof theory) of the logic to derive
an appropriate term assignment system for the sequent calculus formulation of this logic.

The fundamental idea of the categorical treatment of proof theory is that propositions
should be interpreted as the objects of a category (or multicategory, or polycategory) and
proofs should be interpreted as maps; operations transforming proofs into proofs then
correspond (if possible) to natural transformations (between appropriate hom-functors)
in the categorical sense. The maps modelling proofs are built up using these categorical
operations and so the problem of a term assignment is essentially the problem of providing
a syntax expressing these operations. (Of course the language of category theory itself gives
one possible syntax. We however are concerned to give a traditional functional language
with variables.) Here we carry out this programme for Intuitionistic Linear Logic. The
reader may wish to compare our discussion with the treatment of the A-calculus in Lambek
and Scott [19].

Since we are dealing with sequents I' F A, in principle we should deal with multicate-
gories. However it simplifies things to assume at once that the multicategorical structure
is represented by a tensor product e, so that we are dealing with a monoidal category.
We shall write () for the unit of this tensor product. To simplify the presentation we use
the same symbols both for propositions of linear logic and for their denotations in our
monoidal category. The idea then is that a sequent of form

ClaCZ"'an'—A
will be interpreted as a map
010020...00n-—>A

from the tensor product of the C; to A. (Thus a coherence result is assumed.) When T is
the sequence C4,C5,...,C,, we write

I'— A

for this map. We seek to enrich the sequent judgement to a term assignment judgement

of the form
21:C0,22:C9,...,2, : Cpbe A

where the @; are (distinct) variables and e is a term; usually we suppress (irrelevent)
variables and write
'te:A

for this term assignment.

The whole process is based upon some simple assumptions about the interpretation of
the basic structural rules, and a simple procedure for dealing with the logical rules. The
sequent representing the Identity rule is interpreted as the (canonical) identity arrow

A4 4
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from A to A. The corresponding rule of term formation is
z: A2 A

The rule of Ezchange we interpret by assuming that we have a symmetry for the tensor
product ¢ (making our model a symmetric monoidal category). We henceforth suppress
Ezchange and the corresponding symmetry; thus we really consider multisets of formulae,
and as a result no term forming operations result from this rule. The Cut rule

TFA  AAFB
I,AFB

Cut

is then interpreted as a generalized form of composition: if the maps T L 4 and
Ao A L5 B are the interpretations of hypotheses of the rule, then the composite

o1
AL S

is the interpretation of the conclusion. We take as the corresponding rule of term formation

a textual substitution:
THf:A v: A, Alg:B

At yg[f/z]: B

We shall make the assumption that any logical rule corresponds to an operation on maps
of the category which is natural in (the interpretations of) the components of the sequents
which remain unchanged during the application of a rule. We make this assumption
explicit in a simple case. Suppose that ¢ is an operation which takes a map of form
f:I o' = Cto ¢(f) : eI — C. Then naturality in I' and C amounts to the following
assumption: Given maps h: A — I' and g : C ¢ A — B, the operation ¢ applied to the
composite

Cut

g, ehela fela g
IMieAeA IJyeTe A ——CeA—— B
is the composite
1y, ehelp o(f)ela
MyeAeA 2 HyeTe A /) con—Y . p

Composition corresponds to Cut so clearly the logical significance is that we are assuming
that our operations commute (where appropriate) with Cut. Since composition is inter-
preted by textual substitution, this assumption provides a strong guide to the syntactic
form of the rules; the free variables have to reflect the possibility for substitution. Fur-
thermore in a number of cases we find that our naturality assumption gives rise (in view
of a Yoneda Lemma argument) to a considerable simplification of the syntax. (Where this
is not the case naturality also gives rise to some equalities on terms, which highlight a
problem with our traditional linear syntax; our syntax involves pattern matching which we
would like to commute with substitution. The equations with this force will be considered
in more detail later.)
The (Iz) rule
THA

——
I‘,II—A(C)
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gives an operation taking maps I' — A to maps I' e I — A. An appropriate syntax is

The:A
T,a:It+letzbe *ine: A

(Ic)

so that in effect we simply introduce a dummy free variable for the assumption I. Natu-
rality in T is clear since we may substitute for the corresponding (free) variables. However
naturality in A gives rise to an equation

fllet z be % ine/y] = letx be * in fle/y] (1)

which will be of concern to us later,
The (Ir) rule

; (Ir)

gives simply a map () — I. An appropriate syntax is

T
Bl (Iz)
and there are no issues of naturality.
The (®¢) rule
LABEC
— (®r)
I AQB\+ C

gives an operation taking maps I'e A ¢ B — C to maps I' e (A® B) — C. An appropriate
syntax is

e:A,y:BF f:C
T,2: AQBF let zbe z2®yin f: C

(®c)

where we understand that the variables @ and y are bound in the term let 2z be 2@y in f.
Again naturality in I' is clear since we may substitute for the corresponding variables,
whilst naturality in C gives rise to an equation

fllet zbe e®y in g/w] = let z be 2Ry in flg/w] (2)

The (®r) rule
I'HA A+ B

T,AF AQB

gives an operation taking arrows I' — A and A — B to an arrow I' e A — A®B. This
would suggest a quite complex syntax, but fortunately our naturality assumptions imply
that this operation is completely determined by a map A ¢ B — A®B. It follows that an
appropriate syntax is

(®r)

T'ke: A A+ f:B
I''AFe®f: AQB

(®r)

and there are no outstanding issues of naturality.
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Our treatment of the (—oz) rule

I'HA ABFC
I'A—-B,AFC

follows traditional treatments of the left implication rule in sequent systems (which all
involve a Yoneda Lemma argument). If we stuck to the general pattern, we would
expect to have an operation taking a pair of arrows I' - A, A e B — C to an ar-
row I'e (A—oB)e A — C. (The reader may wish to compare this possibility with the
Schroeder-Heister form of implication elimination in natural deduction [26].) However
it follows from our naturality assumptions by a straightforward application of a Yoneda
Lemma that such an operation is determined by its action on a pair of identity arrows.
Thus it is enough to give an operation of application:

app:Ae(A—oB)—— B

Then given arrows e:I' — A, f: Be A — C the required arrow I' e (A—oB) e A — C is the
composite

celel appel f

IF'e(A—oB)oe A ——————— A¢(A—oB)¢ A —————— s BeA—— (C

and an appropriate syntax is
T'ke: A Ayz:BFf:C
I'g: A—oB,AF fl(ge)/z]: C

(—o¢)

All the naturality assumptions are now dealt with by substitution.
The (—or) rule

I‘,AFB( |
— (—0
rFAoB" . ¥

gives an operation taking an arrow I' e A — B to an arrow I' — A—oB. This is a form of
abstraction and an appropriate syntax is

I'e:At+e: B
_o
T'kAz.e: A—B

R)

There are no problematic naturality issues.
Next we consider the ‘I’ connective. The left rules are reasonably straightforward.

First we consider the Dereliction rule
IA+B
- Dereliction
I/ AF B

Since it gives an operation taking an arrow I' e A — B to an arrow ['e!lA — B, an
appropriate syntax is

T,e:AbFe: B
I'yz:!AFlet zbelzine: B

Dereliction




and indeed this is the syntax given by Abramsky [1]. With this formulation naturality in
B gives rise to an equation

fllet zbelzine/y] = let zbe !z in fle/y]

However it is a consequence of naturality that our operation is determined by its effect on
identity arrows: thus it is enough to give a map:

edAd— A

Then given an arrow e : I' ¢ A — B, the required arrow I'e!4A — B is the composite

leg e
TelA ———— s TeA—— B
so an appropriate syntax is
P,e:Are: B

Dereliction
T,z 1A & e[derelict(z)/2] : B

We shall use this syntax in what follows. (There are no further naturality issues).
The Weakening rule

'-nB

- Weakening
TIA+B

gives an operation taking an arrow I' — B to an arrow I'e!A — B. An appropriate syntax

is
T'te: B
T,2:!AF discard zine : B

where we have simply introduced a fresh dummy variable of type !A. Naturality in T' is
as before clear since we may substitute for the corresponding variables. Naturality in B
gives rise to an equation

Weakening

fldiscard z in e/y] = discard z in fle/y] (3)

which we shall consider later.

The Contraction rule
T,IAJIA+ B

I'''A+ B

gives an operation taking an arrow I'e!Ae!A — B to an arrow I'e!A — B. An appropriate
syntax is

Contraction

T,e:!lA,y!Ate: B
I,z:l1AF copy zasa,yine: B

Contraction

where we understand that the variables @ and y are bound in the term copy zasz,yine.
Naturality in I' is clear since we may substitute for the corresponding variables, while
naturality in B gives rise to an equation




flcopy zas @,y in e/w] = copy zas z,yin fle/w] (4)

which we shall consider later.
Finally we consider the problematic Promotion rule

THA
T HA

Promotion

This gives an operation (of Promotion) taking an arrow !I' — A to an arrow !I' —!A.
Now it is not a priori clear what form of naturality should be assumed for this rule. If we
assume that the operation should be natural in IT', then Abramsky’s rule [1, Section 3],

T ke a
T AT Fle :la

would give an appropriate syntax?. However nothing in the idea of a categorical model sug-
gests this assumption, and as we shall see later proof-theoretic considerations tell against
it. (Note in passing that the categorically appealing assumption would be that ! is a
functor and that we have naturality in I'; we return to this idea in Section 8.) The im-
portant point to realize is that if the operation is not natural in !T', then the operation
should not preserve substitution for the free variables implicitly declared in !T'. Hence we
are restricted to giving an operation on ‘higher-order’ terms, where the variables which
appear initially must be bound and fresh variables introduced. These considerations lead
to the term assignment rule

z:lke: A
7'+ promoteyforTine:!A

Promotion

By analogy with earlier considerations one might expect to find an equation expressing the
naturality in A of the operation of Promotion ; but again we would need the assumption
that ! is functorial, so we leave this also until Section 8.

We do not claim that there is a clear reason in terms of the category theory given
so far to prefer one rule to the other, but we choose our rule simply so as to avoid any
premature assumptions. Later we shall give a clear reason in favour of our syntax in terms
of a natural deduction formulation.

This concludes our derivation of a term assignment system for Intuitionistic Linear
Logic from general considerations of the form of a categorical model. We display this
system of term assignment in Figure 2. We stress that rather elementary assumptions
and unsophisticated categorical observations have been used in this analysis. However,
our analysis has not only led us to a term assignment system, but has also uncovered a
series of naturality equations, which are listed in Figure 3. We shall find that our proof
theoretic work suggests certain equalities. All these turn out (as one might expect) to be
special cases of the naturality equations. More interestingly we find that certain forms of
the naturality equations have some significant computational content. One might consider
refining the naturality equations into those special cases which a programmer might use
to reason about a program (but which a compiler makes little or no use of) and those
other cases which are used extensively in the compilation process. Further discussions of
this point will appear in [4].
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2:AFa: A

TFe: A Az AFf:B
I'AF fle/z]: B

Cut

T'he: A Az BFEfC T,z:Ate: B

I,g: A—B,AF fl(ge)/z]: C (=o2) ' Az.e: A—B (=or)

TrFe:A
T,e:ITkletaebe xine: A

(c) Fxod (Ir)

Az A,y:BE f: C T'kFe: A A+ f:B

® ®
A,z:A@Bl—Ietzbew@yinf:C( £) T,AFe®f: ARB (@)

T'te:B I'ye:lA,y!lAt+e: B )
- - Weakening - Contraction
I,z :Atr discard zine : B I,z !AF copyzasz,yine: B

T,e:Ale: B
T,z 1A & e[derelict(z)/z} : B

Dereliction

z:'ke: A
7'k promoteGforTine !4

Promotion

Figure 2: Term Assignment System for sequent calculus

We close this section by briefly indicating:
¢ What we mean by a term logic (for Intuitionistic Linear Logic) and

¢ How such a logic is to be interpreted in a category C (with the structure discussed
above).

We assume that we have a signature ¥ given by a collection of ground types and of typed
function symbols. From this data, types and terms in context are defined inductively,
giving rise to what we call a term logic for Intuitionistic Linear Logic.

Now suppose that C is a (multi)category equipped with the operations described above.
Then for any interpretation of a signature X in C there is a standard inductive definition
of the interpretation of types and of terms in context of the term logic given by X in C.
The steps in the inductive definition have each been outlined is this section and for the
convenience of the reader we present an indication of the steps in Figure 4.

Note that strictly speaking the induction is on the derivation (in the sequent calculus)
of I' I e: A. Hence one has to show that the interpretation in C is independent of the
derivation. It is laborious but not essentially difficult to prove this directly; however the

“This assumption has the effect that in the categorical model, which we shall consider later, the comonad
is idempotent: a point noted by Wadler [29].
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fllet z be % ine/y] = let zbe x in fle/y]
f[let.z be 2®y in g/w] = let z be 2Qy in flg/w]
fldiscard zin e/y] = discard zin fle/y]

flcopy zasz,yine/w)] = copy zas &,y in fle/w]

Figure 3: Naturality Equations

result also follows easily from a consideration of the natural deduction formulation of
Intuitionistic Linear Logic, see Section 4.

A— A
I'—A AeA - B
Cut
T'eA— B
I'— A
Ir)
—_—(T (e
reroa e (=1
TeAeB —-C (®c) T—= A A — B
®
Te(A®B)—C "~ Tea s ans  OR)
T'— A AeB —=(C 'eAd— B
—o¢) ——(—or)
IF'e(A—oB)e A—C I' -~ A—-oB
I'—-B TeldelA— B
—— Weakening Contraction
TelA - B Teld — B
TeA-— B T — A
——— Dereliction Promotion
Teld—> B ' — 14

Figure 4: (Outline of the) interpretation of Term Logic

In Section 8 we shall consider in more detail the categorically attractive assumptions
about the nature of our categorical model for Intuitionistic Linear Logic.

4 Linear Natural Deduction

In the natural deduction system, originally due to Gentzen [28], but expounded by Prawitz [25],
a deduction is a derivation of a proposition from a finite set of assumption packets, using
some predefined set of inference rules. More specifically, these packets consist of a multiset
of propositions, which may be empty. This flexibility is the equivalent of the Weakening
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and Contraction rules in the sequent calculus. Within a deduction, we may “discharge”
any number of assumption packets. Assumption packets can be given natural number
labels and applications of inference rules can be annotated with the labels of those packets
which it discharges.

We might then ask what restrictions need we make to natural deduction to make it
linear? Clearly, we need to withdraw the concept of packets of assumptions. A packet
must contain exactly one proposition, i.e. a packet is now equivalent to a proposition.
A rule which used to be able to discharge many packets of the same proposition, can
now only discharge the one. Thus we can label every proposition with a unique natural
number.

We derive the inference rules given in Figure 5.

[A7]
: A—B A
2 (—1)s 5 (—o¢)
A—oB
;(I:r) i
I,
1 (Ie)
[4*][BY]
47 (®1) A®B  C
A®B C (®5)a},y
['B®]['BY]
B C _ ; :
Weakening Contractiong y
[tAT . 1AS"]
! : . . :
£ Dereliction ‘A1 ... 14 B .
B 'B Promomona:l,...,mn

Figure 5: Inference Rules in linear natural deduction

The (—o7) rule says that we can discharge exactly one assumption from a deduction
to form a linear implication.

The (—og) rule looks similar to the (Dg) rule of Intuitionistic Logic. However it is
implicit that the assumptions of the two upper deductions are disjoint, i.e. their set of
labels are disjoint. This upholds the fundamental feature of linear natural deduction; that
all assumptions must have unique labels.

The (®1) rule is similar to the (A7) rule of Intuitionistic Logic. It has the same
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restriction of disjointness of upper deduction assumptions as (—og). In Linear Logic this
makes ® a multiplicative connective.

The (®¢) rule is slightly surprising. Traditionally in Intuitionistic Logic we provide
two projection rules for (Ag), namely

AANB AAB

A B

But Intuitionistic Linear Logic decrees that a multiplicative conjunction can not be pro-
jected over; but rather both components must be used®. In the (®¢) rule, both components
of the pair A® B are used in the deduction of C.

Rules that are of a similar form to (®¢) have been considered in detail by Schroeder-
Heister [26]. The astute reader will have noticed the similarity between our (®¢) rule and
the (Vg) rule of Intuitionistic Logic. This is interesting as we know that (V¢) is not very
well behaved as a logical rule [12, Chapter 10].

Since we have defined a linear system, non-linear inference must be given explicitly.
Weakening allows a deduction to play no part in the derivation of another deduction.

Contraction allows the result of a deduction to be used twice as an assumption. This
rule is realized in Intuitionistic Logic by the implicit ability to give two assumptions
the same label. We can then substitute a deduction for this duplicated assumption by
duplicating the deduction. Duplicating a deduction is illegal in our linear system because
we can’t have duplicated labels. We must formulate the rule so that the deduction appears
once and its conclusion appears twice with different labels.

Dereliction appears to offer two alternatives for formulation. We have given one in
Figure 5, but following the style advocated by Schroeder-Heister, we could give the alter-
native

[5°]

B
Dereliction’,

Most presentations we are aware of use this alternative rule (e.g. [29, 22, 21]); only
O’Hearn [23] gives the same rule as ours (although for a variant of linear logic).
Promotion insists that all of the undischarged assumptions at the time of application
are modal, i.e. they are all of the form !4;. However, an additional fundamental feature
of natural deduction is that it is closed under substitution*
If we had implemented Promotion as

14, 1A,
— Promotion
\B

(as in all other formulations we know of), then clearly this rule is not closed under sub-
stitution. For example, substituting for !4, the deduction

3Projections are only defined for the additive connectives.

*The fundamental importance of closure under substitution for a given logical system is well known;
see Avron [2] and Gabbay [9] for example.
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C—ol4, C

_.o
" (—o¢)

we get the following deduction

C-—O!Al C

A (—oe)

L4,

— Promotion
'B

which is no longer a valid deduction (the assumptions are not all modal.) We conclude
that Promotion must be formulated as in Figure 5, where the substitutions are given
explicitly.

It is possible to present natural deduction rules in a ‘sequent-style’, where given a
sequent I' - A, T represents all the undischarged propositions so far in the deduction, and
A represents conclusion of the deduction. We can still label the undischarged assumptions
with a unique natural number, but we refrain from doing so. This formulation should
not be confused with the sequent calculus formulation, which differs by having operations
which act on the left and right of the turnstile, rather than rules for the introduction and
elimination of logical constants. The ‘sequent-style’ formulation of natural deduction is
given in Figure 6.

AFA

T,AFB THA-oB Ak A

— -0
I ass %) T.AFB (o)

'-A AFT

FI I
T,AF A (Ze)

TFA AFB I'- AQB AVA,BFEC

® ®
N R T,AFC (®e)

Ay HA o AR FIA, '44,...,!4, F B
Aqg,..., Ay FIB

Promotion

THA A+ B THA AVIAIAF B
Weakening Contraction
I,A+ B A+ B

T'HA
T'HA

Dereliction

Figure 6: Sequent formulation of linear natural deduction
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We now apply the Curry-Howard Correspondence to derive a term assignment system
for this natural deduction formulation of Intuitionistic Linear Logic. The Curry-Howard
Correspondence essentially annotates each stage of the deduction with a “term”, which is
an encoding of the construction of the deduction so far. This means that a logic can be
viewed as a type system for a term assignment system. The Correspondence also links
proof normalisation to term reduction. We shall use this feature in Section 6.

The term assignment system obtained is given in Figure 7. We should point out that
the unique natural number labels used above, are replaced by (the more familiar) unique
variable names.

2: A2 A
I'z:AFe: B I'te:A—oB AFf: A
(—o1) (—o¢)
I'FAze: A—oB I,Aref:B

T'Fe: A Al f:I
Bk T - (Ig)
T,AlFlet fbe x ine: A

I'te: A A+ f:B I'kte: AQB Ae:A,y:BF f:C
®1) ; (®¢)
IAlFe®f: ARB I,AFletebeaz®yin f:C
Ay ke Ay -0 Apbe, A, @y A, e A E fO B )
Promotion
A1,...,A, F promoteey,...,e, foray,...,z,in f:!B
Tke:ld A+ f:B Thke:ld Az lA,y A f: B
- - Weakening - Contraction
I'AF discardein f: B I,AlFcopyeasa,yinf: B
T'ke:lA
Dereliction

I' F derelict(e) : A

Figure 7: Term Assignment System for linear natural deduction

We note at once a significant property of the term assignment system for linear nat-
ural deduction. Essentially the terms code the derivation trees so that any valid term
assignment has a unique derivation.

Theorem 1 (Unique Derivation) For any term t and proposition A, if there is a valid
derivation of the form T &t : A, then (T is uniquely determined by t and A) and there is
a unique derivation of T F1: A.

Proof. By induction on the structure of ¢. o

We are now in a position to consider the question of substitution. In previous work [29],
it was shown that substitution does not hold for the term assignment systems considered
hitherto. Some thought that this represented a mismatch between the semantics and
syntax of linear logic. We can now see that this is not the case. Rather we shall see
that the term assignment system we derived in Section 3 from semantical considerations
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is equivalent to the term assignment system based on our analysis of natural deduction.
For our system, the substitution property holds.

Theorem 2 (Substitution) IfT'Fa: A and A,z: AFb: B thenT',A}F bla/2]: B
Proof. By induction on the derivation A,x : A+b: B a

Before we continue, a quick word concerning the Promotion rule. At first sight this
seems to imply an ordering of the e; and @; subterms. However, the Ezchange rule (which
does not introduce any additional syntax) tells us that any such order is really just the
effect of writing terms in a sequential manner on the page. (As we shall see, the naturality
equations derived from the categorical model have similar consequences.) This paper is
not really the place to discuss such syntactical questions. Perhaps proof nets (or a variant
of them) are the answer.

Type Reconstruction

Mackie has already given a type reconstruction algorithm in the spirit of Milner’s W for
a linear term calculus [22]. However, his language has the same term construction for the
Promotion rule as Abramsky. It is a simple exercise to extend Mackie’s algorithm and
proofs of soundness and completeness to our term assignment system.

An interesting problem (which will be addressed in [4]) is that of adding a polymorphic
let construct to our calculus. Some discussion of this can be found in Mackie’s thesis [22,
pages 34-35].

5 Relating the Term Assignment Systems

We would expect there to be a close relationship between the linear natural deduction
system and the sequent calculus formulation of Intuitionistic Linear Logic. Indeed we can
define procedures to map proofs in the sequent calculus to deductions in natural deduction
and vice-versa. Our work can thus be seen as an analogue to that of Zucker [31]. We shall
define each procedure in turn. First we shall introduce some notation. A proof tree 7 in
the sequent calculus whose root node is I' - A is denoted by

T
THA

and similarly a deduction D in the natural deduction system whose root node is T' - 4 is
given by

D
'-A

5.1 From Sequent Calculus to Natural Deduction

We shall define a procedure A/ by induction on the sequent proof tree, which we shall
denote by .

¢ The axiom A F A is mapped to the deduction A+ A
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o A proof w of the form

T T
A A,AF B
Cut
T,A+B
is mapped to the deduction
N (1) N(rq)
A AAF B
Subs

T,A+ B

One should note that the rule Subs denotes substitution, which is a derived rule in

natural deduction by Theorem 1 of Section 4.

¢ A proof 7 of the form

™1 e
THA ABFC
(—oc)
' A—-B,A+FC
is mapped to the deduction
A—BF A~oB N(m)
TFA (=og) M)
—0g T
A-oB,T'+ B ABLC
Subs
I'yA—-B,AFC
¢ A proof 7 of the form
™
T,AFB ( )
B —_ ()
TFAoB  ©
is mapped to the deduction
N(m)
T,A+B (=o7)
———————— ....o
TFAoB °
o A proof 7 of the form
T
T'HA
T
PJFA(d
is mapped to the deduction
Nm) 707
THA (Ie)
T, IFA - °
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¢ A sequent

FI
is mapped to the deduction
— (I
7 )
e A proof 7 of the form
T
AJA,BEC (®c)
AARBFC * ©
is mapped to the deduction
oL Aon N (1)
ARB | A®B AABFC
(®¢)
ARB, A+ C
¢ A proof 7w of the form
m iy
THA AFB (@)
T,At AQB *
is mapped to the deduction
N(m1) N(m2)
THA Al B
(®1)
T,AFA®B
¢ A proof 7w of the form
T
T'+B
———  Weakening
T,JA+ B
is mapped to the deduction
/\/(71'1)
! !
IAHIA I'L B .
Weakening
I,/1A+ B
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¢ A proof 7 of the form

m1
TIAIAF B
—— — Contraction
I''/A+B
is mapped to the deduction
N(m1)
1A kA I'J'A,!A+ B
> Contraction
VAR B
¢ A proof 7 of the form
T
T,A+B
—2——— Dereliction
I'N'A+B
is mapped to the deduction
AHA
Ar A Dereliction N ()
' T,A+B
4 Subs
I'J'1A+ B
¢ Finally, a proof n of the form
™
'A1,...,14, + B
SLARRE Ak Promotion
'44,...,14, F'B
is mapped to the deduction
g FlA, - 1A, FIA, MJMQFB
LA Rl Promotion
44,...,!14, F'B

5.2 From Natural Deduction to Sequent Calculus

We shall define a procedure S by induction on the deduction tree, which we shall denote
by D.

e The deduction A F A is mapped to the sequent A - 4

o The deduction D of the form

Dy
RAFB( )
L — ....O
TFAoB  *
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is mapped to the proof

S(D1)
I'yA+B (=o)
— (=0
TFAoB  ©
¢ A deduction D of the form
Dy D,
T A—oB AFA
(—o¢)
T,A+B
is mapped to the proof
S(D,) I
. AL A BFB (o)
S(Dy —oc
I'E A—oB A—oB,A+ B
Cut
IAFB
¢ A deduction D of the form
I
is mapped to the sequent
FI
¢ A deduction D of the form
Dy D,
T'FA AFIT (Ie)
I,AFA °
is mapped to the proof
S8(Dy)
A
S('Dg) (IC)
AbT I, JFA
Cut
I,AFA
¢ A deduction D of the form
Dy D,
THA A+B (®2)
T,AF AQB z
is mapped to the proof
S(Dy) S(D2)
'FA AFB (&)
T,AF AQB *
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o A deduction D of the form

Dl DZ
' A®B AABEC
®
T,AFC (®e)
is mapped to the proof
S(Da2)
s(0y) AABEC (®c)
Dy o~ &
I'- A®B AARB +C
Cut
ILAFC
e A deduction D of the form
Dy D,
T'HA A+B .
Weakening
I,A+B
is mapped to the proof
S8(Dy)
A+B
S(Dl) m Weakening
T'HA T
Cut
I'A+B
o A deduction D of the form
Dy Dy
'HA AJAJIAFB ,
Contraction
A+ B
is mapped to the proof
8(D3)
AIAJIAR B .
S(D4) Contraction
AVIAF B
THA
Cut
T,A+B
¢ A deduction D of the form
Dy
THA
Dereliction
THA
is mapped to the proof
AFA Derelicts
S(Dy) AF 4 ereliction
IF'HA
Cut
'FA
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¢ A deduction P of the form

D1 s Dn Dn+1
Ay HA,y A, FHA, 1A4,...,14, + B Promotion
Ay,..., A, F'B
is mapped to the proof
S(Dnt1)
Mo tn B B Promotion
S(P1) ... S(Dn) 1Ay 1A, FIB
Aq HlA, A, FlA, TR e Cut*
Ay, ..., A, FIB

Note in this last mapping we use a multi-cut rule, Cut*, although this could be
replaced by multiple applications of the Cut rule.

5.3 Properties of the translations

In traditional treatments of proof theory we expect translations as above to give an equiva-
lence between sequent calculus and natural deduction formulations of a logic. We certainly
have that in the following theorems (where we suppress for the moment the term assign-
ments).

Theorem 3 (Logic Equivalence)

o If m is a derivation of I' F A in the sequent calculus then N(m) is a derivation of
T'F A in natural deduction.

o If D is a derivation of ' F A in the natural deduction then S(D) is a derivation of
'k A in sequent calculus.

Hence in particular, T + A is provable in the sequent calculus iff the deduction I' + A is
provable in the linear natural deduction system.

Proof. By straightforward induction. a

We stress, however, that with the system of term assignment (in particular the rule for
Promotion) which we have given, this equivalence extends to the term assignment ystem.

Theorem 4 (Term Equivalence)

o Ifm is a derivation of '\t : A in the sequent calculus then N (r) is a derivation of
T'k1it: A in naturael deduction.

o If D is a derivation of ' -t : A in the natural deduction then S(D) is a derivation
of T+t A in sequent calculus.

Hence in particular, T &t : A is provable in the sequent calculus iff the deductionT' 1 : A
s provable in the linear natural deduction system.

23




Proof. Again by straightforward induction. a

To get a result of this kind for the other presentations of term assignment systems, one
would have to add a rule of explicit substitution to natural deduction (see, for example,
the translation given by Lincoln and Mitchell [21]).

Next we recall that the natural deduction formulation is highly non redundant. So the
next proposition is unsurprising.

Proposition 1 For any derivation D in natural deduction, NS(D) is identical to D (mod-
ulo some a-conversions).

Proof. By straightforward induction. O

Note that this result can also be seen as a corollary to Theorem 1 of Section 4 in view
of Theorem 4. The same thought also provides us with a simple approach to the proof
of the fact that the interpretation of I' I #: A in a multicategory C (as in Section 3) is
independent of the derivation in the sequent calculus. It is straightforward to provide an
interpretation of I' - #: A by induction on proofs in natural deduction; this is unproblematic
as the proofs are essentially unique (Theorem 1 of Section 4). Then one simply proves
inductively that if 7 is a derivation of I' F ¢: A in sequent calculus then the interpretation
of I' - t: A associated with 7 coincides with that associated with A'(7). (As usual one
needs a substitution lemmal!)

6 Reduction Rules

Within the context of this work we have three approaches available to us for investigating
reduction.

¢ In natural deduction we have the standard reduction rules resulting from “detours”
in the proof, namely an introduction followed by a corresponding elimination. This
is the normalization procedure for natural deduction.

¢ The analogue of normalisation for natural deduction is Cut Elimination in the se-
quent calculus. We have different kinds of cuts: principal cuts, where the cut formula
is the subject of both the left and the right rule immediately proceeding the cut;
and other cuts where this is not the case. Principal cuts give rise to essentialy the
same system of reductions as does the normalization procedure. Other cuts add
reductions of interest.

o Our categorical semantics gives rise both to § and 7 equalities, as well as to some
other miscellaneous equalities. We can not of course read off from the categorical
semantics a direction for the equations so as to turn them into reductions; and if we
give them a plausible computational orientation, we obtain a system which is not
Church-Rosser (as it stands). Typically we do not intend to implement the full set
of equations coming from a categorical model, so we do not consider completions of
this system here.

In the following sections we shall consider the three approaches in the following order.
First we shall describe the proof normalisation in the natural deduction system. This will
imply via the Curry-Howard Correspondence, the basic 8-reduction rules for the linear
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terms; we also consider reductions corresponding to commuting conversions. We then
explain in some detail our notion of a categorical model, which we derive by making
plausible simplifications to the structure suggested by the g-reduction rules. We give the
complete set of equalities corresponding to our categorical semantics; in other words we
provide a soundness and completeness theorem for our notion. Finally we shall consider
the reduction steps suggested by the cut elimination process for the sequent calculus, and
further reductions corresponding to commutative and (briefly) permutative cuts.

7 Proof Normalisation

With natural deduction we can produce so-called “detours” in a deduction, which arise
where we introduce a logical constant and then eliminate it immediately afterwards. We
can define a procedure called normalisation which can systematically eliminate such de-
tours from a deduction. A deduction which has no such detours is said to be in normal
form.

7.1 The Normalisation Procedure

We can define the normalisation procedure by considering each pair of introduction and
elimination rules in turn.

¢ (—oz) followed by (—og)

(4]
& (—o1)
4B Y 4
5 (—o¢)
normalises to
[4]
B
o (I7) followed by (Ig)
(I
i I( 1)
" (Ie)
normalises to
A
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¢ (®7) followed by (®¢)

o [A][B]
A B :
108 &0 6

(®e)

normalises to

[4] [B]

e Promotion followed by Dereliction

[141]...[14,]

g ... 4, B
Promotion
!B
Dereliction
B
normalises to
(A .. [14,]
B
¢ Promotion with Weakening
[144]...[!4n]
Ay ... 14, B
Promotion
!B
Weakening
C
normalises to
A ... 14

- “ Weakening*

C
¢ Promotion with Contraction
: : : ['B][!B]
!Al e 'An B .
Prom,
\B
Cont,




normalises to

[!Al] T [!An] [!Al] T [!An]

[lA41]...[14,] B [Ad]...[14,] B
Prom. Prom,
!B 'B

C 4, ... 1A
c

As mentioned earlier, the Curry-Howard Correspondence tells us that we can relate proof
normalisation to term reduction. Rather than display the proof trees annotated with
terms, we give the (one-step) term reduction rules in Figure 8. The astute reader will

~ Cont.*

(Az.t)e - tle/z]
let ¥+ be % ine - e
let e®t be 2@y in u —  ulefz,t/y]
derelict(promote e; for @; in t) —  tle;/x]
discard (promote e; for z; int) in u — discard e; inu
copy (promotee; forz;int)asy,zinu — copy e; as &}, 2! in
u[promote &} for ; in t/y, promote &¥ for z; in t/ 2]

Figure 8: One-step B-reduction rules

have noticed our use of shorthand in the last two rules. Hopefully, our notation is clear;
for example, the term

discard e; in u
represents the term

discard ey in .. .discard e, in u

Given the one-step reduction rules in Figure 8, we can define §-reduction® using the
inference rules given in Figure 9.

Now we have a notion of normality of proofs, we can state a further property of the
N procedure from Section 5.1, which maps proofs in the sequent calculus to deductions
in natural deduction.

Theorem 5 (Normality) For all cut-free proofs, w, in the sequent calulus, N(r) is a
deduction in the natural deduction which is in normal form.

Proof. By induction on the structure of the proof . O

®Note our slightly non-standard use of the phrase f-reduction.
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M —g N M —g N
MP —g NP PM —g PN

M —g N
Az M —g Ae.N

M —g N
derelict(M) —p derelict(N)

M —g N M —g N
let M be 2®yin P —glet Nbea®yin P let Pbea®yin M —pglet P bex®yin N

M —g N M —g N

copy M asx,yin P —g copy N asaz,yin P copy Pasa,yin M —g copy Pasa,yin N

M —g N

promote M, ... for z,...in P —g promote N,... for z,... in P

M —g N

promote P,... forz,...in M —g promote P,... forz,...in N

Figure 9: Reduction inference rules

7.2 Commuting Conversions
We follow a similar presentation to that of Girard [12, Chapter 10]. We use the shorthand
notation

C:

—
D
to denote an elimination of the premise C', where the conclusion is D and the ellipses
represent possible other premises. This notation covers the five elimination rules: (—og),
(Ie), (®e), Contraction, and Weakening. We shall follow Girard and commute the 7
rule upwards, although it should be noted that it would be perfectly admissable (where
applicable) to direct these commutations in the other direction.

¢ Commutation of (®¢)

(][]
y
®BC C(@s)s
,
D

which commutes to
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[4][8]

. C i
. r
A®RB D (®s)
D £
e Commutation of (I)
A j(I |
4
r
D
which commutes to
A :
— .
Lty
5 £
o Commutation of Weakening
B C
Weakening
D
which commutes to
. O
. —7
B D
Weakening
¢ Commutation of Contraction
['B]['B]
B
Contraction |
D

which commutes to
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['B]['B]

.

r

Contraction

Again, rather than presenting the above deductions with terms attached, we give (all) the
term conversions in Figure 10. We use the symbol —, to denote a commuting conversion.

We should note that these commuting conversions are simply special cases of the
naturality equations given in Figure 3. However, they do seem to have more computational
significance than the others. They appear to reveal further S-redexes which exist in a term.
Let us consider an example; the term

(copy eas z,yin Az.discard zin 2®y)g

is in normal form. We can apply a commuting conversion to get the term

copy eas &,y in (Az.discard z in z®y)g

which has an (inner) f-redex. From an implementation perspective, such conversions
would ideally be performed at compile-time (although almost certainly not at run-time).
Again, as mentioned earlier, a better (i.e. less sequential) syntax might make such con-
versions unnecessary.

We can now prove subject reduction; namely that (8 and commuting) reduction (—g )
is well-typed. Again this property was thought not to hold [21, 23].

Theorem 6 (Subject Reduction) IfT'Fe: A ande —g, f thenT F f: A.
Proof. By induction on the derivation of e — g, f. O

It is evident that the above theorem also holds for "";?,c the reflexive and transitive
closure of — 4.

8 The Categorical Model

We now define a precise notion of a categorical model for the proof theory of Intuition-
istic Linear Logic. Much work has been done on providing such (categorical) models of
Intuitionistic Linear Logic. Here we shall just mention the work of Seely [27] and de
Paiva [5, 6]. This section is self-contained and the reader need not be familiar with the
above.

With a view to understanding what is involved here, let us consider the traditional
analysis of the proof theory of some basic intuitionistic logic via the notion of a cartesian
closed category. (Lambek and Scott [19] is a good source for this material.) In that
case, the basic normalization process gives rise to S-equality on the terms of the typed
A-calculus. The fB-equality rule is valid in a cartesian closed category, but the attractive
categorical assumption of being cartesian closed amounts to requiring 87-equality, that is,
to a further ‘extensionality’ assumption. (A justification for this is that we think of our
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(let e be 2®yin f)g —, letebez®yin(fg)

let (let ebe a®yin f)bep®ging —. letebea®yin(let fbep®qing)
discard (let e be @y in f)ing —¢ letebe a®y in (discard fin g)
copy (let ebe 2@y in f)asp,qing —. letebea®yin (copy fasp,qing)
let (let e be 2@y in f) be x ing —. letebea®yin (let fbe % ing)
(let e be * in f)g —. letebe * in(fg)

let (let e be * in f) be p@qing —, letebe x in(let f be p®qin g)
discard (let ebe * in f)ing —¢ letebe * in(discard fin g)

copy (let ebe * in f)asp,qing —, letebe * in(copy fasp,qing)
let (let ebe * in f)be % ing —. letebe x in(let f be * ing)
(discard e in f)g —, discard ein (fg)

let (discard e in f) be pRqin g —, discard e in (let f be pRging)
discard (discard ein f)ing — discard e in (discard fin g)

copy (discard e in f)asp,qing —, discard e in (copy fasp,qing)

let (discard eiin fbe % ing —, discard ein (let f be % ing)

(copy easz,yin f)g — copyeasz,yin(fg)

let (copy easz,yin f)be p®ging —, copyeasa,yin(let fbepRqing)
discard (copy easz,yin f)ing —¢ copyeasa,yin (discard fin g)
copy (copy eas @, yin f)asp,qging —, copyeasz,yin (copy fasp,ging)
let (copy easa,yin f)be * ing —. copyeasa,yin(let fbe % ing)

Figure 10: Commuting Conversions

functions ‘extensionally’ and so may wish to use the 5 rule in arguing about them even if
we never implement this rule.) Thus one way to understand what we do is that we make a
minimal number of attractive simplifying assumptions about the basic categorical set up
introduced in Section 3 which at least entail the (desired) equalities between proofs which
have been obtained (say) from the natural deduction formulation of the proof theory. (Of
course we would like the equalities to make some kind of sense!) In this section we simply
discuss the categorical assumptions we make and give the resulting equations. In a later
section we consider the import of the equations more closely.

8.1 Categorical interpretation of the multiplicatives

We start by considering the connective ®. The categorical significance of the S-rule for @
is that any map of the form I' e A e B — C factors canonically (in the generalised sense of

Section 3) through the map A ¢ B 9, A®B which results from the instance of the (®x)

rule
AR A B+B

A,BF AQB

(®r)

Hence any map

I‘voB—f—~>0
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is a composite

lpe® f
I‘OAOB—-_————)I‘.(A®B)—>C

The simplifying ‘extensionality’ assumption is then that this factorization is unigque. This
can be expressed by saying that (generalized) composition with A ¢ B — A®DB induces a
natural isomorphism between maps

T'e(A®B) —» C
TeAeB—C

In other words that the operation of composing with A ¢ B — A® B provides an inverse
to the (®.)-operation taking maps I'e A e B — C to maps I' ¢ (A® B) — C. Thus we
may as well assume that the logical ® coincides with e. (Henceforth we shall assume this
property of the category and use ® both as a logical operator and to interpret the comma
on the left hand side of a sequent.) We get two equations expressing that composing the
two operations on maps just mentioned in either order gives the identity. One of these
equations is, of course, the f-rule for tensor:

let u®v be 2@y in f = flu/z,v/y] (5)
The other can be regarded as an n-equality:
let u be 2®y in fla®y/2] = flu/7] (6)

Note that a consequence of our assumption is that ® is functorial. Hence in particular
the naturality equation

g[let zbe @y in f/w] = let z be 2Qy in g[f/w]

of Section 3 follows. We see how this works out computationally later,
The case of I is like that for ®. The categorical import of the S-rule for I is that any

map of the form () — C factors canonically through the map () ~L, I which results from
the (Ig) rule

(I

— (=)

Again this should be taken in the generalised sense of Section 3, thus every map
re()-Lc

factors as a composite B
re)xrertic
The simplifying ‘extensionality’ assumption is then that this factorization is unique. This

can be expressed by saying that (generalized) composition with () — I induces a natural

isomorphism between maps
Tel—C

Te() = C

and this has a similar interpretation to that just given in the case of ®. We thus identify
() and I, and use I both as a logical operator and to interpret the empty sequence on
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the left hand side of a sequent. As before we get two equations expressing the natural
isomorphism. One is the S-rule

let *x be x inf=f ()
and the other can again be regarded as an n-equality:
let wbe * in f[x/2] = flu/z] (8)
The naturality equation of Section 3
fllet zbe % ine/w] = let zbe * in flg/w]

is, as before, a consequence of our assumption.

The B-rule for —o has a slightly more complicated interpretation, though now that we
have identified e with ®, we do not need to carry assumptions I' around. In effect the rule
means that any map f: AQB — C factors as

1®cur(f a
AR B D, gg(ac) ¢

where app: AQ(A—oC') — C is the map that results from an instance of the (—o.) rule

AFA  CtHC
A A—CFC

—or)

In these circumstances again, the natural simplifying assumption is that the factoriza-
tion is unique. This means that (generalized) composition with app induces a natural

isomorphism between maps
A®B —es

A—— B—o(C

In other words composing with app provides an inverse to the (—og)-operation which in
effect takes maps A®B — C to maps A — B—oC. Thus —o provides us with a closed
structure on our category corresponding to the tensor ®. Again we have two equations to
express our natural isomorphism. One is the G-rule

(Az.fle= fle/x] (9)
and the other is the (linear form of the) traditional 7-rule
Ae.fe = f (10)

(It is a consequence of our assumption that —o is functorial in the usual way, contravari-
antly in the first argument and covariantly in the second.)

8.2 Categorical interpretation of Dereliction and Promotion

Now we consider the meaning of the f-rule for ! involving Dereliction. The categorical
import of this rule is that any map !I' — A factors in a canonical way as a composite

€
T 4—2 4
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where !4 =4, A is the canonical map obtained by Dereliction from the identity as described
in Section 3. By analogy with what we have done so far we should like to ask that this
factorization be unique; but it is not clear how to do this. After all we do not expect all
maps II' —!A to arise as instances of Promotion. (Otherwise we would be in danger of
collapsing the logic.) Hence we need to exhibit some familiar looking structure to motivate
our simplifying assumptions. ‘

Given any proof I' F B there is obviously a canonical two-step process that transforms it
into a proof IT' F!B by applying the Dereliction rule (several times) followed by Promotion.

'-nB
T+ B
T H'B

Dereliction*

Promotion

¥r-L. B interprets the original proof, we write the resulting arrow as

\f

T— B

As a preliminary simplification, we assume that this definition gives the extension of !
to a multicategorical functor. In the light of the assumptions above, this amounts to
the assumption that ! is a monoidal functor; that is, ! comes equipped with a natural

transformation
my,B: !A®!B —!(A® B)

(natural in A and B) and a morphism
mp: I =T

(note that this morphism is the nullary form of the natural transformation) and mak-
ing a standard collection of diagrams commute. (The definition is given in Eilenberg
and Kelly [7]. For the convenience of the reader we display the relevent diagrams in
Appendix A.) We have appropriate candidates for the maps m4 p and my in the inter-
pretations of the proofs:

AL A B+B

Dereliction

1IA-A B+ B
1A,'BFAQ®B
1A,!BF(A® B)

IAQ!B (A ® B)

Dereliction

(®r)

Promotion

(®c)

and
T

T Promotion
— (Ic)

IHII
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Note that the fB-rule for Dereliction certainly implies that for any f:T' — A, the
diagram

\f

T ——— 14

er €A

' —— A

f

commutes. Either composite gives the effect of Dereliction on f. This shows that e:! — 1
will be a multicategorical natural transformation and so a monoidal natural transforma-
tion.

We need one further piece of structure. We apply the Promotion rule to the axiom
1A |- 1A to obtain the derivation

IAHIA
IAH!IA

In other words, from an identity arrow !A —!A we can get a canonical arrow §4: 14 —!A.
With the equations to hand we know rather little about §. One can easily check that the
composite

Promotion

A4 gy

is the identity on !A, and that is one of the triangle identities for a comonad, but that is
about it. However it is tempting to add to our preliminary assumption that !is a monoidal
functor, the assumption that § (as well as €) is a monoidal natural transformation and
that (!, ¢, §) forms a comonad on our category. These assumptions are quite natural in the
context of the 2-category of monoidal categories, monoidal functors and monoidal natural
transformations. (The basic notions are again due to Eilenberg and Kelly [7], and are spelt
out in detail at the end of the paper. The reader may wish to consult Kelly [20] for further
information on category theory in the enriched setting.) The equations corresponding to
the standard presentation of the notion of a monoidal comonad are quite messy to write
down in terms of the syntax we have given and it is best to reformulate things. First
note for completeness that given a monoidal comonad (!,¢, §), the Promotion rule can be
interpreted as follows: given a map

!C’1®...®!C'n——f—>A

we obtain the ‘promoted’ map as the composite

i !
€18 .. 810, —— 1018 .81, — (G 8...610,) —— 14

Conversely, it is well-known at least in the dual case of monads that there is an alternative
formulation of the notion of a comonad in terms of a functor !, a natural transformation
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¢ and a natural operation vy (sometimes called the Kleisli operation) which takes maps
fi1A — B to maps v(f):!A —!B. The definition of Promotion just given is the (mul-
ticategorical or) monoidal form of this Kleisli operation 4. Thus we can formulate the
conditions that (!,&,6) be a monoidal comonad directly in terms of the basic operations
given by linear logic. In addition to the f-equality

derelict(promote ¢; for z; in f) = flei/2i), (11)
we obtain the equations
promote z for a in (derelict(z)) = 2 (12)
and

promote (promote z; for &; in f),w; fory,y;ing =
promote z;, w; for 2}, y; in (g[promote z; for z; in f/y]). (13)

Equation (12) can be thought of as an 7-rule, as it provides a kind of uniqueness of the
factorization mentioned above; equation (13) expresses an appropriate form of naturality
of the operation of Promotion. Note that while the categorical appealing assumption that
(!,€,6) is a monoidal comonad may seem unmotivated from the computational point of
view, it results in equations which seem to have some proof-theoretical/computational
content.

We discuss further below, the categorical significance of the assumption that (!,¢, §) is
a monoidal comonad. Essentially it has the consequence that ® gives rise to a (symmetric)
monoidal structure on the (Eilenberg-Moore) category of coalgebras for (!, ¢,§), see The-
orem 8. For the moment simply note that maps of the form y(f) (that is, maps obtained
by Promotion on maps of the form f:!A — B) correspond exactly to maps between free
coalgebras.

8.3 Categorical interpretation of Weakening and Contraction

We finally consider the categorical significance of the [-rules involving Weakening and
Contraction. To do so let us first introduce a further canonical pair of maps. Using
Weakening (and the right rule for I') we have a deduction

FI
IAFT

Weakening

which gives a canonical map
1A 24 T

(where e is used to remind the reader that this map corresponds to ‘erasing’ the assump-
tion). From the rules (®%) and Contraction we obtain

IAHIA  1AFIA
14,14 FIARIA
1A FIA®IA

(®r)

Contraction
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which gives a canonical map (again d is used to hint at ‘duplication’ of assumptions)
14 2414014

It follows from the 8 and 7 rules for ® and I as well as from the naturality assumptions on
Contraction and Weakening described in Section 3 that the effect of the rule of Weakening
is that any map arising from it

T'®!A L)B

is the composite

1®ey
I'eld ——— IQI 2T — B

Similarly the effect of the rule of Contraction is that any map arising from the use of it

14T -———f———> B

is the composite

i1
IAQT — 22T\ AglA@T —~ - B

Under the assumptions already made, the categorical import of the f-rules corresponding
to Weakening and Contraction can be understood purely in terms of the operations given
by the maps e4 and d4. Since Promotion is interpreted by the Kleisli operation v, the
B-rules have the force that maps of the form +(f) preserve the structure (on objects of
the form !A) given by e and d. Diagramatically

1A —7@_-% 'B 1A ) 'B
eA} }CB dA! dB
J e T 1AQ!A 'B®!B
Y(£)®v(f)

Of course the § equations for Contraction and Weakening namely,
discard (promote e; for z; int)inu = discard e;inu (14)
and

copy (promote ¢; for z; int)asy, zin u =
copy e; as x}, T/ in u[promote @} for ; in t/y, promote & for ; in 1/ 2] (15)

correspond exactly to the commuting of diagrams more complex than the ones above;
but by naturality considerations the simple diagrams do give the full force of the equa-
tions. It follows at once from the commutativity of the diagrams above that the canonical
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morphisms (e and d) are natural transformations as this means that the diagrams

! !
1A -—-f——> !B 14 f 'B
I =—— T IARQIA _W-) '\BR!B
!

commute for any given map A 4 B c.

One might also expect that e and d give structure on the coalgebras, or (what amounts
to the same thing) that they are themselves maps of coalgebras. If the morphisms e and
d are maps of coalgebras we have commutativity of the diagrams

A—4 g 1A o4 A

eAj J!eA da

I — I ARIA ————— NAQUA ———— [(1AR!A)
mr 6A®5A TANA

da

This leads to the equations
promote e, e; for z, x; in discard z in ¢ = discard e in promote ¢; for z; in ¢ (16)
and

promotee,e; for 2, z;incopy zas 2,y int =
copy eas a',y' in promote a’, ¢/, e; for &, y, z; in t (17)

where, as before, the equations correspond exactly to more complex diagrams but the
appropriate naturality considerations imply the full force of the equations.

We believe that there is some computational sense to this interplay between Promotion
on the one hand, and Weakening and Contraction on the other. Furthermore our intu-
itions about the processes of discarding and copying suggest strongly that the natural
transformations e and d give rise to the structure of a (commutative) comonoid on the
free l-coalgebras. (As a consequence all coalgebras have (and all maps of coalgebras pre-
serve) the structure of a (commutative) comonoid.) These assumptions induce further
obvious equalities on terms

copy e as &,y in discard z in t = t[e/y], (18)
copy e as &,y in discard y int = t[e/a] (19)
copyeasa,yint = copyeasy,aint (20)
copy eas &, w in copy was y,zint = copy e as w, zin copy was x,y in t (21)

Again these equations seem to have proof-theoretic/computational content,
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8.4 The categorical model of Intuitionistic Linear Logic

Much of the categorical analysis that we have just given is quite familiar, though the
corresponding equational calculus seems new (if only because our syntax is new). We
note however that (following Seely [27]) it has become standard to analyze the categorical
meaning of Weakening and Contraction in terms of the relationship between the additives
and the multiplicatives. Our analysis dispenses with additives and hence gives a more
general account of the force of the exponentials. Even in the presence of the additives our
formulation is not equivalent to Seely’s and it certainly covers cases of interest not covered
by his. We try to make the relation between the two approaches clear in the next section.
To sum up the analysis in this section we give the following definition.

Definition 1 A categorical model for multiplicative Intuitionistic Linear Logic consists

of:

1. a symmetric monoidal closed (multi)category (modelling tensor and linear implica-
tion);

2. together with a comonad (!,€,8) with the following properties:

(a) the functor part ‘I’ of the comonad is a monoidal functor and € and § are
monoidal natural transformations,

(b) every (free) !-coalgebra carries naturally the structure of a commutative comonoid®
in such a way that coalgebra maps are comonoid maps.

This definition makes no attempt to model the additives. To do so we would add a clause
to the effect that the symmetric monoidal closed (multi)category was equipped with finite
products and coproducts 7.

Note that we have indicated in the text above what are the equations in our term
assignment system corresponding to this notion of categorical model. We display these
equations (as well as the naturality equations of Section 3) in Figure 11, These rules are
sound and complete for our notion of a model, in a sense which we make precise as follows.

In Section 3 we explained what is the general form of an interpretation of the types
and terms (in context) of our term logic system with given signature in a (multi)category
equipped with the appropriate structure. (The structure amounts to the operations given
in Figure 4.)

Suppose now we are given a categorical model for (multiplicative) Intuitionistic Linear
Logic as just defined; we show that the corresponding (multi)category has the required
structure. As explained in Section 8.1 we now use the same tensor to represent the mul-
ticategorical structure and to model the logical tensor. Hence the operations for I and
tensor are given by standard operations in a (symmetric) monoidal closed category. Fur-
thermore the closed structure takes care of the operation for —o. We considered Dereliction
and Promotion in 8.2. The map e:!4 — A introduced in Section 3 is of course just the
co-unit £4: !4 — A of the comonad. As we mentioned in 8.2 the operation corresponding

8This means not only that each !-coalgebra (A, hat A —!A) comes equipped with morphisms e: A — [
and d: A — AQ®A but also that e and d are coalgebra maps. Moreover, since the coalgebra maps are
comonoid morphisms we have four commutative diagrams that we have seen (instances of) before.

"These might be weak products and coproducts.
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let % be x ine = e

let w be * in f[*/z%] = flu/z]

let e®t be 2@y inu = ule/z,t/y]

let uw be 2@y in fla®y/ 7] = f

(Az.t)e = tle/a]

Ax.te =t

derelict(promote e; for z; in t) = tlei/w]

promote z for 2 in derelict(z) = z

promote (promote z; for x; in f), w; fory,y;ing = promote 2z, w; for 2, y; in

discard (promote e; for z; in t) in u
promote e, e; for z, z; in discard z in ¢
copy (promotee; for z; int) as y, zinu

promote e, e; for z, z; in copy zas @,y int

copy eas &,y indiscard z in t
copy easa,yindiscard yint
copyeasz,yint

copyeasa,wincopywasy,zint

fllet zbe * ine/w]
fllet z be 2@y in e/w]
fldiscard z in e/w]

flcopy zasa,yin e/w]

(g[promote z} for z; in f/y])
discard e; in u
discard e in promote e; for z; in t
copy e; as &}, &/ in
u[promote ! for 2; in t/y, promote 2/ for z; in t/z]
copy eas @',y in
promote 2’, y', e; for ¢, vy, z;in t
tle/y]
tle/z]

copyeasy,xint

copy eas w, zincopy wasz,yint

let zbe * in fle/w]
let z be 2®y in fle/w]
discard z in fle/w]

copy zas z,yin fle/w]

Figure 11: Categorical equalities




to Promotion takes a map

!C1®.--®!C'n—-——i——>A

to the composite

§ tf
1C1 ® ... ®1Cp ———— 11 ® . ONC — e [ICL ® . .. ®ICn) ——— 14

Finally we considered Weakening and Contraction in 8.3. The operation corresponding to
Weakening take a map

to the composite

1®ey f

4 ———sTRIYT —— A

The operation corresponding to Contraction takes a map
f
I'o!lAQIA —— B

to the composite

1®d
TRIA — — 2 TolAelA _f g

Thus we can interpret our system in any categorical model.

Theorem 7

1. (Soundness) For any signature and interpretation of the corresponding system in a
categorical model for Intuitionistic Linear Logic (all the equational consequences of)
the equations in Figure 11 hold in the sense that the interpretations of either term
gives the same map in the category.

2. (Completeness) For any signature there is a categorical model for Intuitionistic Lin-
ear Logic and an interpretation of the system in it with the following property:

o IfTHt:AandT I s: A are derivable in the system thent and s are interpreted
as the same map I' — A just when t = s: A is provable from the equations in
Figure 11 (in typed equational logic).
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Proof. The proof of soundness involves labouriously checking for each rule that a
relevant diagram commutes in the category. We give a selection of cases.

e To justify the categorical equation
derelict(promote z; for z; in f) = flz: /=]

suppose that T’ = {Cy,...,Cy} and that f:!I' — B is the interpretation of IT' - f : B.
Then the left hand side of the above equation is interpreted by the upper path from
T' = ®;!C; to !B in the diagram

- !
0i1C; ——— ., @NC; — s (@C;) —— B

NI

®l; — ®C; —— B

while the right hand side is interpreted by the lower path. But the diagram clearly
commutes. (The triangle commutes by a standard triangle identity, the left hand
square as ¢ is a monoidal transformation, and the right hand square as € is natural.)

¢ To justify the equation

promote (promote 2; for @; in f), w; fory,y;ing =
promote z;, w; for 2, y; in (g[promote 2, for z; in f/y]).

we need a very simple categorical proposition. The left-hand side corresponds to
a morphism (8¢;!f);(84;'g) and the right-hand side corresponds to a morphism
6;1(6;!f; g); thus saying that they are equal corresponds to the commutativity of the
following diagram:

|
o - e My
1o, l dic l J b4
e; me A B
15 nf lg

The right square commutes because § is a natural transformation and the left square
commutes because (!, §,¢) is a comonad.

e The categorical property required for the equation

promote e, e; for 2, 2; in discard @ in ¢ = discard e in promote e; for 2; in ¢
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is that the following diagram

h
IC® D ———1AQ D

60®Dl leA@D

I®D ———>1 I®D

commutes irrespective of the function h.
¢ For the equation

promote e, e; for z, z; incopy zas z,y int =
copy eas 2,7’ in promote 2, ', e; for x,y, z; in t

the property used is the naturality of the natural transformation d, which means the
commutativity of the diagram

f
. 7(1f) A
do dA
g
1Ce\C IARQIA ——— B
(1) @ y(1f)
In detail:
'
’Zc —— W — 14
dC dA
g
1CRIC IAQ'A ———— B
6 'f
)

New!C —T IAQ®!C _T—-) IAR!IC

The proof of completeness is by the usual categorical term model construction and is
omitted. 0

8.5 Generalizing the Girard translation

Now we try to make clear the force of our definition in terms of a discussion of (the back-
ground to) Girard’s translation of intuitionistic propositional logic into linear logic. We
start by recalling some folklore results about the Eilenberg-Moore category of coalgebras.
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Theorem 8

1. If a symmetric monoidal category C is equipped with a monoidal comonad (!,¢,0),
then the tensor product of C induces a symmetric monoidal structure on the category
of coalgebras Ci.

2. e If, furthermore, C is symmetric monoidal closed, then all free coalgebras are
‘exponentiable’ in Cy (in the sense appropriate to the monoidal structure); what
is more any power of a free coalgebra is a free coalgebra. So the full subcategory
of finite tensor products of free coalgebras forms a symmetric monoidal closed
category containing the category of free coalgebras.

o If, in addition, the (Kleisli) category of free coalgebras is closed under the tensor
product in Cy, then the category of free coalgebras is symmetric monoidal closed.

8. If on the other hand C is symmetric monoidal closed and Cy has equalizers of core-
flezive pairs of arrows then Cy is symmetric monoidal closed.

We make clear what is the force of our stipulation in Definition 1 part 2(b) that every
(free) !-coalgebra carries naturally the structure of a commutative comonoid in such a way
that coalgebra maps are comonoid maps.

Theorem 9

1. If a symmetric monoidal category C is equipped with a comonad (!,¢,6) satisfying
part 2(b) of Definition 1, then the tensor product induced on the category Cy of
coalgebras is a categorical product.

2. If, furthermore, C is symmetric monoidal closed, then all free coalgebras are expo-
nentiable in Cy (in the standard sense); and so the full subcategory of exponentiable
objects forms a cartesian closed category (containing the category of free coalgebras).

3. If, in addition, the (Kleisli) category of free coalgebras is closed under the product in
C., then the category of free coalgebras is cartesian closed. In particular this follows
when C has finite products (1, &) and we have the natural isomorphisms

I
'A®!B

7
(A% B)

R IR

4. If, on the other hand, Cy has equalizers of coreflexive pairs of arrows then Cy is
cartesian closed.

This theorem, which in essence goes back to Fox (8], is the basis for the Girard trans-
lation of intuitionistic logic into Intuitionistic Linear Logic. In the usual formulation this
translation is based on 4, that is on the natural isomorphisms introduced by Seely [27], and
so essentially takes place in the category of free coalgebras. (This option is still available
in cases where the relevent natural isomorphisms do not hold.) However, the general theo-
rem demonstrates that at the proof theoretic (computational) level a more subtle analysis
(which involves the full category of coalgebras) is possible.
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9 Cut Elimination for Sequent Calculus

In this section we consider cut elimination for the sequent calculus formulation of In-
tuitionistic Linear Logic. Suppose that a derivation in the term assignment system of
Figure 2 contains a cut:

D,

—_ D
TkFe: A Ax:AFf:B
Cut

I' At fle/z]: B
Tl e: Ais the direct result of a rule Dy and A,z : A+ f: B the result of a rule D,
we say that the cut is a (Dq, D2)-cut. A step in the process of eliminating cuts in the

derivation tree will replace the subtree with root I'y A + fle/z] : B with a tree with root
of the form

IArt:B

The terms in the remainder of the tree may be affected as a result.

Thus to ensure that the cut elimination process extends to derivations in the term
assignment system, we must insist on an equality fle/z] = ¢, which we can read from left
to right as a term reduction. In fact we must insist on arbitrary substitution instances
of the equality, as the formulae in T’ and A may be subject to cuts in the derivation tree
below the cut in question. In the presence of the rules of Figure 9 of Section 7, this suffices
to ensure that corresponding terms in the trees before and after the cut is eliminated are
equal.

In this section we are mainly concerned to describe the equalities/reductions which
result from the considerations just described. Note however that we cannot be entirely
blithe about the process of eliminating cuts at the level of the propositional logic. As we
shall see, not every apparent possibility for eliminating cuts should be realized in practice.
This is already implicit in our discussion of natural deduction, and of the categorical
semantics.

As things stand there are 11 rules of the sequent calculus aside from Cut (and Ea-
change) and hence 121 a priori possibilities for (Dy, D3)-cuts. Fortunately most of these
possibilities are not computationally meaningful in the sense that they have no effect on
the terms. We say that a cut is insignificant if the equality f[e/z] = t we derive from it as
above is actually an identity (up to a-equivalence) on terms (so in executing the cut the
term at the root of the tree does not change). Let us begin by considering the insignificant
cuts.

First note that any cut involving an axiom rule

—————— Identity
z:AFa: A
is insignificant; and the cut just disappears (hence instead of 121 we must now account
for 100 cases). These 100 cases of cuts we will consider as follows: 40 cases of cuts the
form (R, D) as we have 4 right rules and 10 others; 24 cases of cuts of the form (L, R) as
we have 6 left-rules and 4 right ones and finally 36 cases of cuts of the form (L, L). Let
us consider these three groups in turn.

Firstly we observe that there is a large class of insignificant cuts of the form (R, D)
where R is a right rule: (®r), (Ir), (—or), Promotion. Indeed all such cuts are insignifi-
cant with the following exceptions:
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e Principal cuts. These are the cuts of the form ((®r ), (®2)), (Ir), (I£)), ((—or), (o)),
(Promotion, Dereliction), (Promotion, Weakening), (Promotion, Contraction) where
the cut formula is introduced on the right and left of the two rules.

o Cases of the form (R, Promotion) where R is a right rule. Here we note that cuts
of the form ((®g)), Promotion), ((Ir)), Promotion) and ((—or ), Promotion) cannot
occur; so the only possibility is (Promotion, Promotion).

Next any cut of the form (L, R) where L is one of the left rules (®¢), (I¢), (—o¢), Weak-
ening, Contraction, Dereliction and R is one of the simple right rules (®%), (Ir), (—oRr) is

insignificant (18 cases). Also cuts of the form ((—o), Promotion) and ( Dereliction, Promotion)

are insignificant(2 cases). This is one of the things we gain by having actual substitutions
in the (—og) and Dereliction rules. Thus there remains four further cases of cuts of the
form (L, Promotion) where L is a left rule.

Lastly the 36 cuts of the form (L1, L), where the L; are both left rules. Again we
derive some benefit from our rules for (—oz) and Dereliction: cuts of the form ((—or), L)
and (Dereliction, L) are insignificant. There are hence 24 remaining cuts of interest.

We now summarize the cuts of which we need to take some note. They are:

o Principal cuts. There are six of these.

e Secondary Cuts. The single (strange) form of cut: (Promotion, Promotion) and the
four remaining cuts of form (L, Promotion) where L is a left rule other than (—oy)
or (Dereliction).

e Commutative Cuts. The twenty-four remaining cuts of the form (Ly, Ly) just de-
scribed.

We consider the equalities that result from these in turn and comment on their cate-
gorical significance and their relation with natural deduction.

9.1 Principal Cuts

We start by looking at the cases of cut involving tensor, the constant I and linear impli-
cation, as they are standard.

¢ ((®r),(®c))-cut
I kA rzr—B(® ) A,B,AFC
— e ®
Ty, ToF AQB = ° A®B,AI—C’( £)

', T, ARC

Cut

This derivation reduces to either
' +B A,B,AlC
A Iy, A,AFC
I, I, ARC

ut

Cut

or to the symmetric one where we cut against A first. We might like to have a ‘simulta-
neous’ cut rule, which would allows us to reduce the derivation above to

kA T,FB  ABAFC
Iy, AFC

Cut*
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As far as terms are concerned these reductions give us the following f§-rule for tensor:

let fQgbeaz®yinh b h[f/z,9/y] (22)
¢ (Ir),(Ir))-cut
I AFC I
"™ Tarc™
Cut
AFC

This derivation reduces to
ArFC

As far as terms are concerned this reduction gives us the following S-rule for I:

let % be % inh > A (23)
¢ ((—or),(—oz))-cut.
I'NA+FB A FA Ay, BHC
———(—or) (—oc)
T'HA-oB A—oB,A1, A0 C
Cut
AL, AR C

This derivation reduces to either
T,AFB Ay, BFC
Ay A TA, AR C
A, T, A C

Cut

Cut

or to the symmetric one where we cut A first. Again we might like to have a ‘simultaneous’

cut rule, which would allows us to reduce the derivation above to
T,AFB A FA B, A C
T'yA,, A C

Cut*

As far as terms are concerned this reduction gives us the g-rule:

hl(Az.f)g/y] & hlflg/2]/y] (24)

Now we turn to the principal cuts involving Promotion.
e (Promotion, Dereliction)-cut. The derivation

T+DRB B,AFC
Promotion — Dereliction
T B IB,AFC

T,AFC

Cut

In this case we can eliminate the use of both rules and replace them with a single (simpler)
cut.
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T+B B,AFC

Cut
IT,ARC
This reduction yields the following term reduction.
(flderelict(q)/p])[promote y; for z;; ine/q] > fle/p] (25)
e ( Promotion, Weakening)-cut. The derivation
T'+HB ArFC
Promotion ————— Weakening
T HB 'B,A+C
Cut
T,AFC
is reduced to
AFC
—————— Weakening*
T,AFC

where Weakening* corresponds to many applications of the Weakening rule.
This gives the term reduction

discard (promote e; for 2; in f)in g I discard e; in g (26)

¢ (Promotion, Contraction)-cut. The derivation

THB ) 'B,!B,A+C )
Promotion ——— Contraction
ITHB 'B,A+C
Cut
T,AFC
is reduced to
TFB _
Promotion
T+B ) THB 'B,\B,AFC
Promotion Cut
T !B I,'B,AFC
Cut
I,I0LARC )
e Clomitraction ®
IT,ARC

or to the symmetric one where we cut against the other B first. Again we would like to
have a ‘simultaneous’ cut rule, which would allows us to reduce the derivation above to

T+DB ) T'FB )
Promotion Promotion
T +'B T +!B !B,!B,A+FC
Cut*
IT,IT,AFC ,
——— Contraction*
IT,ARC

This gives the term reduction

copy (promotee; for z; in flasy,y’ ing b
copy €; as z;, 2; in g[promote z; for @; in f/y, promote z; for z; in f/y'] (27)
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Note that the three cases of cut elimination above involving Promotion are only considered
by Girard, Scedrov and Scott [14] when the context (!T') is empty. If the context is non-
empty these are called irreducible cuts.

The principal cuts correspond to the f-reductions in natural deduction. Hence the
reductions that we have just given are almost the same as those given in Figure 8. The
differences arise because in the sequent calculus some ‘reductions in context’ (handled in
natural deduction by the reduction inference rules) are effected directly by the process of
moving cuts upwards. Hence some of the rules just given appear more general.

9.2 Secondary Cuts

We now consider the cases where the Promotion rule is on the right of a cut rule. The
first case is the strange case of cutting Promotion against Promotion, then we have the
four cases (®¢), (Iz), Weakening and Contraction against the rule Promotion.

o ( Promotion, Promotion)-cut. The derivation

T+B . IB,!1AF+C
Promotion — Promotion
T'+!B IB,!AFIC

IT,1A FIC

Cut

reduces to
T+ B
Promotion
TH'B 'B,IAFC
IT,IARC
T, IAHIC

Cut

Promotion

Note that it is always possible to permute the cut upwards, as all the formulae in the
antecedent are modal.
This gives the term reduction

promote (promote zfor z in f)forying b
promote w for z in (g[promote z for z in f/y]) (28)

¢ ((®c), Promotion)-cut. The derivation

A,E,THB IA,IBEC
— (®¢) ~—————— Promotion
AQE,T'H'B !B,IAFIC
Cut
AQE,T,IAFIC
reduces to
'B,IAFC
— Promotion
A,E,T+B IB,IA FIC
Cut
A E,TIAFIC

®
AQE,T,IAFIC )

This gives the term reduction
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promote (let z be 2,y in f)forwin g b let 2 be ,y in (promote f for win g)

¢ ((Iz), Promotion)-cut. The derivation

I'HB IAIB-C
(Ig) e Promotion
I,THB B,!AFHIC

I,T,\AFIC

Cut

reduces to
!B,!IA+C
THB !B,!IAFIC
TIAFIC (L)
I,T,IAFIC

Promotion

Clut

This gives the term reduction

promote (let zbe * in f)forwing I let zbe * in (promote f for win g)

o ( Weakening, Promotion)-cut. The derivation

T'HB ) IAJIBEC
—— Weakening ———————— Promotion
1A, THB IB,!IA FIC

IA,T,!A FIC

Cut

reduces to
'B,IAFC
T HB \B,IA FIC
LA HIC
1A, T IAFIC

Promotion

Cut

Weakening

This gives the term reduction

promote (discard 2 in f) for y in g > discard @ in (promote f for y in g)

o (Contraction, Promotion)-cut. The derivation

1A,!A,T+H'B IA'BFC
—— (Contraction ———— Promotion
1A, T+B IB,IAFIC

14,T,IAFIC

Cut

reduces to
'B,IA+FC
1A,1A, T HIB !B,1A FIC
1ATA, T IAHIC
1A, T, IAHIC

Promotion

Cut

Contraction
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This gives the term reduction

promote (discard @ in f) for yin g > discard 2 in (promote f for yin g) (32)

One is tempted to suggest that perhaps the reason why the rule Promotion gives us
reductions with some sort of computational meaning is because this rule is not clearly
either a left or a right rule. It introduces the connective on the right (so it is mainly
a right rule), but it imposes conditions on the context on the left. Indeed there does
not appear to be any analogous reductions in natural deduction. We repeat the term
reductions given by the secondary cuts in Figure 12. For the (less categorically-inclined)
reader we observe that the last four equations are particular instances of the naturality
equations described in Section 3, while the first encapsulates the naturality of the Kleisli
operation of Promotion as discussed in Section 8.

promote (promote z for & in f) for yin g 1> promote w for z in (g[promote z for z in f/y])
promote (discard @ in f) for y in g b discard @ in (promote f for y in g)
promote (copy & as y, zin f) for y in g > copy @ as y, zin (promote f for y in g)

promote (let z be @y in f) forwin g > let 2 be 2®y in (promote f for w in g)

promote (let 2 be * in f)forwing > let zbe * in (promote f for w in g)

Figure 12: Secondary reduction rules

9.3 Commutative cuts

Next we consider briefly the 24 significant cuts of the form (L1, L) where the I; are
both left rules. These correspond case by case to the commutative conversions for natural
deduction considered in Section 7.2. For the most part the reduction rules we obtain from
cut elimination are identical with those in Figure 10. The exceptions are the cases where
(—o¢) is the (second) rule above the cut. In these cases we obtain in place of the first rules
in the four groups of six in Figure 10, the following stronger rules:

v[(let zbe 2@y int)u/w] — let zbe 2®y in v[tu/w]
v[(let zbe % int)u/w] — letzbe * inv[tu/w)
v[(discard z int)u/w] — discard z in v[tu/2]
v[(copy zas @, yint)u/w] — copyzasz,yin v[tu/w]

9.4 An ‘insignificant’ cut

Let us consider the case of a (Dereliction, Promotion)-cut. The derivation
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A,THB IAIBFC

e Dereliction ———— Promotion
IA,TH'B !B,!IAHIC
Cut
1A, T, IAFIC
can be reduced to
IB,IAFC )
—— Promotion
A, THB !B,IA FIC
Cut
AT IAFIC .
————— Dereliction
1A, T IAHIC

In our simplified version of term assignment this transformation on the level of terms gives
the following term transformation.

(promote g for pin f)[(e[derelict(z)/])/q] > (promote g for pin f)[e/qg][derelict(z)/x]

But both these terms are equivalent to promote e[derelict(z)/z]for pin f, so the transfor-
mation is actually an identity (and the cut is insignificant). However, if we had used the
syntax for Dereliction discussed earlier, namely:

z:AT'Fe: B
z1A,TFHletzbelazine: B

Dereliction

the transformation on proofs given above would give the term reduction

promote (let z be !z in f)foryin g b let z be la in (promote f for y in g)

which would appear to be a secondary cut.
Let us consider (categorically) this reduction where the contexts contain exactly one
formula. The derivation
AHB 'B+C

Dereliction
1AHB 'B FIC

AFC

Promotion

Cut

reduces to

'BFC
AFHB 'B FIC
AFIC
IAHIC

There is nothing to prove categorically as the map in the first derivation (e; f); §;lg is the
same as the map in the second derivation ¢;(f;d;!g).
This case is important because given the derivation
IAHA o IAFIA
Dereliction
HAHIA IAFIA
HAFNA
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one could be misled into thinking that there were two ways of eliminating the cut, either
pushing it upwards to do Promotion first or to do Dereliction first. But clearly only the
latter works in general and is a correct cut-elimination.

This example shows the problem with the term assignment which does not change the
free variable in the Promotion rule, hinted at by Wadler [29]. Given that term assignment
the derivation above and the derivation (given by the incorrect cut-elimination)

1AHA
HAHA
HA A

Dereliction

Promotion

which are unrelated (and distinct maps from the categorical viewpoint), end up being
encoded by the same term

!(let w be 'z in @)

a situation which is clearly unacceptable.

9.5 Permutative conversions

As is well known, a sequent calculus formulation of logic makes it very clear that the order
of application of certain pairs of rules in a proof is irrelevant. (The same phenomenon can
be considered in the context of natural deduction.) Permuting pairs of rules of this kind
gives rise to permutative conversionsin sequent calculus derivations: these conversions play
an important role in approaches to proof search [30] (On the other hand, proof nets [10]
provide a notation for proofs in which the order of application of such rules has been
factored out.) Here we simply note that permutative conversions give rise to yet further
equalities between the terms of our term assignment system.

9.6 Summary

In this section we reviewed the process of cut elimination in the sequent calculus, classifying
cuts as principal cuts, secondary cuts and insignificant cuts, according to the way they
affected the term assignment system as well as their categorical significance.

Summing up the results we can state the following:

Theorem 10 The equations which appear in the process of cut elimination in the sequent
calculus formulation of Intuitionistic Linear Logic are satisfied in any categorical model of

Intuitionistic Linear Logic, as described in Section 8.

Corollary 1 The equations derived from this process are all consequences of the categor-
ical equations of Figure 11 of Section 8.

10 Future Work

We can identify a number of areas which need to be covered in the future.

¢ Clearly we need to consider the additive connectives. We should also like to consider
quantifiers within this framework.
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o The links between the process of cut elimination and proof normalisation still appear
to require further study. Certainly the work of Zucker [31] and Pottinger [24] need
to be considered in this new linear framework.

¢ Many variants of Intuitionistic Linear Logic have been proposed [18, 3, 17, 14].
Clearly these need to be considered in the light of this work. Details of term calculi
and various resource logics will be discussed in [4].

¢ It has been postulated that computation of Intuitionistic Linear Logic terms should
give insight into possible optimisations of lambda calculus. This looks promising.
Indeed, we have seen that certain naturality equalities appear to have computational
significance. Again, further details will appear in [4].
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A Appendix

For the reader unfamiliar with the notions of monoidal functor and monoidal natural trans-
formation, we briefly indicate their significance. If C is a symmetric monoidal category
and (!,6,¢) a comonad in C, that the functor part of the comonad ! is a monoidal functor
means that we have a (canonical) natural transformation

my,B:'A®'B —-!(A® B)
for any A and B in C, and a morphism
mp I =T
(the morphism is the natural transformation in its nullary form) satisfying the following

collection of commutative diagrams:

mr.aA
QA —— 5 (I ® A)

m1®id[ [!l

IA —— 14

where [ is the natural isomorphim I®A LA Similarly for the natural isomoprhism 7
given by A®I = A the diagram

mA, I
AR ——— . \( A1)

id®m1‘ } Ir

'AQI E— 1A
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commutes and for a the associativity isomorphism (A® B)®C = A®(B®C) the diagram

d
(48!B)8lc — 22 (4@ B)RIC — " 1(A® B) 8 C)

o lo

IA® (1BRIC) ————— 4@ B ® C) ——— (A® (B® ()
1d®m m

commutes. Also, since m is a natural transformation (between the functors ! and !®!), for

any pairs of maps A 4, ¢ and B D the following squares commute:

MA,B
1AQIB —— " {(A® B)

!f®!gl }!(f@@g)
ICRD —— (C® D)
me,p
That € and 6 are monoidal natural transformations, involves a further collection of

commuting diagrams. For the natural transformation ¢ we have that the following extra
diagrams

m mr
IA®!B —— (A ® B) I —
€4A® 83} lff’A@B lé‘z

commute,.
For the natural transformation § we have that the following extra diagrams

m mr

IAQ!B (A® B) 1 g
5A®5B{ {5,4@3 mI} }51
NARNB —— I(1A®!B) —— II(A®B) N7
m I'm Imy
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