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Summary

Image resampling is the process of geometrically transforming digital images. This dissertation
considers several aspects of the process.

We begin by decomposing the resampling process into three simpler sub-processes: reconstruction
of a continuous intensity surface from a discrete image, transformation of that continuous surface,
and sampling of the transformed surface to produce a new discrete image. We then consider
the sampling process, and the subsidiary problem of intensity quantisation. Both these are well
understood, and we present a summary of existing work, laying a foundation for the central body
of the dissertation where the sub-process of reconstruction is studied.

The work on reconstruction divides into four parts, two general and two specific:

1. Piecewise local polynomials: the most studied group of reconstructors. We examine these,
and the criteria used in their design. One new derivation is of two piecewise local quadratic
reconstructors.

2. Infinite extent reconstructors: we consider these and their local approximations, the problem
of finite image size, the resulting edge effects, and the solutions to these problems. Amongst
the reconstructors discussed are the interpolating cubic B-spline and the interpolating Bezier
cubic. We derive the filter kernels for both of these, and prove that they are the same. Given
this kernel we demonstrate how the interpolating cubic B-spline can be extended from a one-
dimensional to a two-dimensional reconstructor, providing a considerable speed improvement
over the existing method of extension.

3. Fast Fourier transform reconstruction: it has long been known that the fast Fourier transform
(FFT) can be used to generate an approximation to perfect scaling of a sample set. Donald
Fraser (in 1987) took this result and generated a hybrid FFT reconstructor which can be
used for general transformations, not just scaling. We modify Fraser’s method to tackle two
major problems: its large time and storage requirements, and the edge effects it causes in
the reconstructed intensity surface.

4. A priori knowledge reconstruction: first considering what can be done if we know how the
original image was sampled, and then considering what can be done with one particular class
of image coupled with one particular type of sampling. In this latter case we find that exact
reconstruction of the image is possible. This is a surprising result as this class of images
cannot be exactly reconstructed using classical sampling theory.

The final section of the dissertation draws all of the strands together to discuss transformations
and the resampling process as a whole. Of particular note here is work on how the quality of
different reconstruction and resampling methods can be assessed.
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Notation

There is little specialised notation in this thesis. We draw your attention to the following notational
conventions:

Spatial domain functions tend to be represented by lowercase letters, for example: g and f(x), or
by lowercase words, for example: sinc(x). Frequency domain functions tend to be represented by
the equivalent uppercase letters, for example: G and F (ν), or by capitalised words, for example:
Box(ν).

Domains are represented by calligraphic uppercase letters, for example: Z (the integers) and R
(the real numbers). This non-standard notation is due to the inability of our typesetter to generate
the correct notation.

We use three functions which generate an integer from a real number: ceiling(x) gives the nearest
integer greater than, or equal to, x; floor(x) gives the nearest integer less than, or equal to, x;
round(x) gives the nearest integer to x. These are represented in equations as shown below:

ceiling(x) = �x�
floor(x) = �x�

round(x) = 〈x〉

Some of the derivations required the use of a book of tables. We used Dwight [1934]. References to
Dwight are written thus: [Dwight, 850.1], giving the number of the appropriate entry in Dwight’s
book.

The term continuous is used in this dissertation in a non-standard way: a continuous function is one
that is defined at all points in the real plane, but is not necessarily continuous in the mathematical
sense. A more rigourous description for this use of continuous would be everywhere defined. The
concept of mathematical continuity is represented in this dissertation by the term C0-continuous.

There is a glossary of terms at the back of the dissertation, just before the bibliography.
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Preface

Digital image resampling is a field that has been in existence for over two decades. However, when
we began this research in 1989, all work on image resampling existed in conference proceedings,
journals, and technical reports. Since that time, the subject has come more into the public eye.
Heckbert’s Masters thesis, “Fundamentals of Texture Mapping and Image Warping” [Heckbert,
1989], brought many of the ideas together, concentrating on two-dimensional geometric mappings
(specifically affine, bilinear and projective) and on the necessary anti-aliasing filters.

Wolberg’s “Digital Image Warping” [Wolberg, 1990], is the first book on the subject. Its strength
is that it draws most of the published work together in one place. Indeed, it grew out of a survey
paper [Wolberg, 1988] on geometric transformation techniques for digital images. The book has
a computational slant to it, being aimed at people who need to implement image resampling
algorithms.

The same year saw the publication of the long awaited successor to Foley and van Dam’s “Fun-
damentals of Interactive Computer Graphics”, [1982]. Foley, van Dam, Feiner and Hughes [1990]
contains a good summary of several image resampling concepts and techniques [ibid. pp.611, 614,
617–646, 741–745, 758–761, 815–834, 851, 910, 976–979] in contrast with its predecessor which
does not mention resampling at all.

In the face of this flurry of publicity what can we say of image resampling. Certainly it has been
in use for over twenty years, and is now used regularly in many fields. Many of the problems have
been overcome and the theory behind resampling has been more to the fore in recent years.

What place, then, is there for research in the field? Much: image resampling is a complicated
process. Many factors must be taken into account when designing a resampling algorithm. A
framework is required which can be used to classify and analyse resampling methods. Further,
there are holes in the coverage of the subject. Certain topics have not been studied because they
are not perceived as important, because the obvious or naive answer has always been used, or
because no-one has yet thought to study them.

In this dissertation we produce a framework which is useful for analysing and classifying resam-
pling methods, and we fit the existing methods into it. We continue by studying the parts of the
framework in detail, concentrating on the reconstruction sub-process. Thus we look at piecewise
quadratic reconstructors, edge effects, the interpolating Bezier cubic, the kernel of the interpo-
lating cubic B-spline, Fraser’s [1987, 1989a, 1989b] FFT method and its extensions, and a priori
knowledge reconstructors; whilst not ignoring the well-trod ground of, for example, piecewise cubic
reconstructors and classical sampling theory.

The dissertation is divided into eight chapters, arranged as follows:

1. Resampling — we introduce the concepts of a digital image, a continuous image, and the
resampling process. Resampling is decomposed into three sub-processes: reconstruction of a
continuous intensity surface from a discrete image, transformation of that continuous surface,
and sampling of the transformed surface to produce a new discrete image. This decomposition
underpins the rest of the dissertation.

9
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2. Sampling — the concepts of sampling are introduced, laying a foundation for the work on
reconstruction and resampling as a whole. As a side issue we discuss the problem of intensity
quantisation as it relates to image resampling.

3. Reconstruction — an introduction to reconstruction. Most of the chapter is given over to
a discussion of piecewise local polynomial reconstructors, and the factors involved in their
design.

4. Infinite Extent Reconstruction — sinc, Gaussian, interpolating cubic B-spline, and interpo-
lating Bezier cubic are all theoretically infinite. We discuss these, their local approximations,
and the problem of a finite image. The latter problem applies to local reconstructors, as well
as infinite extent ones.

5. Fast Fourier Transform Reconstruction — a method of implementing an approximation to
sinc reconstruction, developed by Donald Fraser [1987]. We describe his method, and then
present improvements which solve two of its major problems.

6. A priori knowledge reconstruction — in the preceding three chapters we assumed that we
had no a priori knowledge about how the image was sampled, or about its contents. In this
chapter we briefly consider what can be achieved given a priori knowledge about how the
image was sampled. The bulk of this chapter, however, is an analysis of what can be achieved
given a particular set of intensity surfaces (those with areas of constant intensity separated
by sharp edges) and one particular type of sampling (exact area sampling).

7. Transforms and Resamplers — where we consider transforms, and the resampling process as
a whole. An important section in this chapter is the discussion of how to measure the quality
of a reconstructor and of a resampler.

8. Summary and Conclusions — where all our results are drawn into one place.



Chapter 1

Resampling

1.1 Introduction

Digital image resampling occupies a small but important place in the fields of image processing and
computer graphics. In the most basic terms, resampling is the process of geometrically transforming
digital images.

Resampling finds uses in many fields. It is usually a step in a larger process, seldom an end in
itself and is most often viewed as a means to an end. In computer graphics resampling allows
texture to be applied to surfaces in computer generated imagery, without the need to explicitly
model the texture. In medical and remotely sensed imagery it allows an image to be registered
with some standard co-ordinate system, be it another image, a map, or some other reference. This
is primarily done to prepare for further processing.

1.2 Images

There are two basic types of image: continuous and discrete. Continuous images have a real
intensity at every point in the real plane. The image that is presented to a human eye or to a
video camera, before any processing is done to it, is a continuous image. Discrete images only have
intensity values at a set of discrete points and these intensities are drawn from a set of discrete
values. The image stored in a computer display’s frame buffer is a discrete image. The discrete
values are often called ‘pels’ or ‘pixels’ (contractions of ‘picture elements’).

There are intermediate types of image, which are continuous in some dimensions but discrete in
others. Wolberg [1990, p.12] gives two examples of these: where the image is continuous in space but
discrete in intensity, or where it is continuous in intensity but discrete in space. A television signal
is an interesting third case: it is continuous in intensity and in one spatial dimension (horizontally)
but it is discrete in the other spatial dimension (vertically).

A digital computer, being a discrete device, can deal only with discrete images. What we perceive
in the real world are invariably continuous images (which our eyes discretise for processing). For
a human to perceive a discrete image it must be displayed as a continuous image, thus always
putting us one step away from the data on which the computer operates. We must accept (and
compensate for) this limitation if we wish to use the power of digital computers to process images.

Binkley [1990] discusses some of the philosophical problems of digital imagery. He states that
‘digital image’ is an oxymoron: “If a digital image is something one can see (by experiencing
it with one’s eyes), one cannot compute it; but if one can apply mathematical operations to it,
then it has no intrinsic visual manifestation.” Resampling is essentially a mathematical operation

11



12 CHAPTER 1. RESAMPLING

Figure 1.1: The same image represented in three different ways: (1) displayed on a monitor.

Figure 1.2: The same image represented in three different ways: (2) rendered in halftone by a laser
printer.

mapping one collection of numbers into another. The important point here is that what is seen by
a human to be the input to and output from the resampling process are continuous representations
of the underlying discrete images. There are many different ways of reconstructing a continuous
image from a discrete one. We must be careful about the conclusions we draw from the continuous
representations of discrete images. Binkley’s figures 2 and 3 show how different two continuous
representations of the same discrete image can be. Figure 1.1 and figure 1.2 are based on Binkley’s
figures, and show that the same image can give rise to very different continuous representations.
Figure 1.3 shows the discrete representation that is stored in the computer’s memory.

The images we deal with are thus discrete. In general any practical discrete image that we meet
will be a rectangular array of intensity values. Experimental and theoretical work is being done
on hexagonal arrays [Mersereau, 1979; Wüthrich, Stucki and Ghezal, 1989; Wüthrich and Stucki,
1991] but, at present, all practical image resampling is performed on rectangular arrays.



1.3. SOURCES OF DISCRETE IMAGES 13

148 151 153 151 150 151 151 · · · 6 1 0 0 0 0
149 148 151 152 151 149 147 · · · 0 0 0 3 7 5
145 146 152 152 150 150 147 · · · 0 0 1 9 19 11
145 144 148 149 149 149 148 · · · 4 0 1 14 26 15
143 144 145 147 147 146 147 · · · 7 0 3 13 15 6
144 146 144 147 146 147 146 · · · 0 0 4 13 13 5
145 143 146 146 148 148 149 · · · 0 0 4 11 10 5
139 141 144 143 149 148 144 · · · 0 0 2 18 14 5
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
57 66 59 56 58 67 71 · · · 136 137 137 133 129 127
31 38 42 36 37 53 60 · · · 138 138 136 134 128 128
23 46 49 37 35 47 49 · · · 133 134 134 132 130 127
40 64 53 38 45 54 70 · · · 131 127 129 126 125 126

Figure 1.3: The same image represented in three different ways: (3) the array of numbers held in
the computers memory.
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Figure 1.4: The three ways of producing an image: (a) capturing a real world scene; (b) rendering
a scene description; and (c) processing an existing image.

1.3 Sources of discrete images

There are three distinct ways of producing such a rectangular array of numbers for storage in a
computer. These can be succinctly described as capturing, rendering, or processing the discrete
image (figure 1.4):

Image capture is where some real-world device (for example: a video camera, digital x-ray
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Image
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�Pattern
Recognition

�

[Computer]
Graphics

�� �
Image Processing

Figure 1.5: Pavlidis [1982] figure 1.1, showing the relationship between image processing, pattern
recognition (image analysis), and computer graphics.

Image
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�

Image
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� �

� �
�

Image
Processing

�

�

Real-World
Image

�Image Capture

Continuous World
(real world)

Discrete World
(in the computer)

Figure 1.6: The three sources of discrete imagery shown as processes.

scanner, or fax machine) is used to capture and discretise some real-world (continuous)
image.

Image rendering is where some description of a scene is stored within the computer and this
description is converted into an image by a rendering process (for example: ray-tracing).
The field of computer graphics is generally considered as encompassing all the aspects of this
rendering process.

Image processing is where a previously generated discrete image is processed in some way to
produce a new discrete image (for example: thresholding, smoothing, or resampling).

Pavlidis [1982] produced a simple diagram, reproduced in figure 1.5, showing the links between
discrete images and scene descriptions. Based on his diagram, we produce figure 1.6 which shows
the three sources of discrete imagery:

In order for us to evaluate digital imagery we must add ourselves into the picture (figure 1.7). Here
we see that, to perceive a discrete image, we need to display that image in some continuous form
(be it on a cathode ray tube (CRT), on photographic film, on paper, or wherever) and then use
our visual system on that continuous image.
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Figure 1.7: The complete diagram, showing the connection between images in the discrete, con-
tinuous, and perceptual worlds.

To complete the diagram, consider the scene description. Such a description could be generated
from an image by an image analysis process [see, for example, Rosenfeld, 1988]; or it could be
generated from another scene description (for example: by converting a list of solid objects into a
set of polygons in preparation for rendering, as in the Silicon Graphics pipeline machines; or Bley’s
[1980] cleaning of a ‘picture graph’ to give a more compact description of the image from which
the graph was created). Mantas [1987] suggests that pattern recognition is partially image analysis
and partially scene description processing. A third way of generating a scene description is for a
human being to physically enter it into the computer, basing the description on some imagined
scene (which could itself be related to some perceived scene, a process not shown in the figures).
Adding these processes to figure 1.6 gives us figure 1.7 which illustrates the relationships between
these processes and the various image representations.

To avoid confusion between continuous and discrete images in this dissertation, we have chosen
to call a continuous image an intensity surface. It is a function mapping each point in the real
plane to an intensity value, and can be thought of as a surface in three dimensions, with intensity
being the third dimension. We can thus take it that, when the word ‘image’ appears with no
qualification, it means ‘discrete image’.
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Image
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Figure 1.8: The relationship between the resampled and the original images. The two continuous
versions must be perceived as transformed versions of one another.

1.4 Resampling: the geometric transformation of discrete
images

In image resampling we are given a discrete image and a transformation. The aim is to produce a
second discrete image which looks as if it was formed by applying the transformation to the original
discrete image. What is meant by ‘looks as if’ is that the continuous image generated from the
second discrete image, to all intents and purposes, appears to be identical to a transformed version
of the continuous image generated from the first discrete image, as is illustrated in figure 1.8. What
makes resampling difficult is that, in practice, it is impossible to generate the second image by
directly applying the mathematical transformation to the first (except for a tiny set of special case
transformations).

The similarity between the two images can be based on visual (perceptual) criteria or mathematical
criteria, as we shall see in section 3.5. If based on perceptual criteria then we should consider the
perceptual images, which are closely related to the continuous images. If based on mathematical
criteria the perceptual images are irrelevant and we concentrate on the similarities between the
continuous images and/or between the discrete images.

Whatever the ins and outs of how we think about image resampling, it reduces to a single problem:
determining a suitable intensity value for each pixel in the final image, given an initial image and
a transformation1.

1.5 The practical uses of resampling

Resampling initially appears to be a redundant process. It seems to beg the question: “why not
re-capture or re-render the image in the desired format rather than resampling an already existing
image to produce a (probably) inferior image?”

Resampling is used in preference to re-capturing or re-rendering when it is either:

• the only available option; or

• the preferential option.

1c.f. Fiume’s definition of rendering, 1989, p.2.
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The first case occurs where it is impossible to capture or render the image that we require. In this
situation we must ‘make do’ with the image that we have got and thus use resampling to transform
the image that we have got into the image that we want to have.

The second case occurs where it is possible to capture or render the required image but it is easier,
cheaper or faster to resample from a different representation to get the required image.

Various practical uses of image resampling are2:

• distortion compensation of optical systems. Fraser, Schowengerdt and Briggs [1985] give an
example of compensating for barrel distortion in a scanning electron microscope. Gardner
and Washer [1948] give an example of how difficult it is to compensate for distortion using an
optical process rather than a digital one (this example is covered in more detail in section 1.6).

• registration to some standard projection.

• registration of images from different sources with one another; for example registering the
different bands of a satellite image with one another for further processing.

• registering images for time-evolution analysis. A good example of this is recorded by Herbin
et al [1989] and Venot et al [1988] where time-evolution analysis is used to track the healing
of lesions over periods of weeks or months.

• geographical mapping; changing from one projection to another.

• photomosaicing; producing one image from many smaller images. This is often used to build
up a picture of the surface of a planet from many photographs of parts of the planet’s surface.
A simpler example can be found in Heckbert [1989] figures 2.9 and 2.10.

• geometrical normalisation for image analysis.

• television and movie special effects. Warping effects are commonplace in certain types of
television production; often being used to enhance the transition between scenes. They are
also used by the movie industry to generate special effects. Wolberg [1990, sec. 7.5] discusses
the technique used by Industrial Light and Magic, the special effects division of Lucasfilm Ltd.
This technique has been used to good effect, for example, in the movies: Willow3, Indiana
Jones and the Last Crusade4, and The Abyss5. Smith [1986, ch. 10] gives an overview of
Industrial Light and Magic’s various digital image processing techniques.

• texture mapping; a technique much used in computer graphics. It involves taking an image
and applying it to a surface to control the shading of that surface in some way. Heckbert
[1990b] explains that it can be applied so as to modify the surface’s colour (the more narrow
meaning of texture mapping), its normal vector (‘bump mapping’), or in a myriad of other
ways. Wolberg [1990, p.3] describes the narrower sense of texture mapping as mapping a
two-dimensional image onto a three-dimensional surface which is then projected back on to a
two-dimensional viewing screen. Texture mapping provides a way of producing visually rich
and complicated imagery without the overhead of having to explicitly model every tiny feature

2Based on a list by Braccini and Marino, [1980, p.27].

3One character (Raziel) changes shape from a tortoise, to an ostrich, to a tiger, to a woman. Rather than simply
cross-dissolve two sequences of images, which would have looked unconvincing, two sequences of resampled images
were cross-dissolved to make the character appear to change shape as the transformation was made from one animal
to another.

4The script called for a character (Donovan) to undergo rapid decomposition in a close-up of his head. In practice,
three model heads were used, in various stages of decomposition. A sequence for each head was recorded and then
resampled so that, in a cross-dissolve, the decomposition appeared smooth and continuous.

5At one point in the movie, a creature composed of seawater appears. Image resampling was used in the generation
of the effect of a semi-transparent, animated object: warping what could be seen through the object so that there
appeared to be a transparent object present.
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in the scene [Smith, 1986, p.208]. Image resampling, as described in this dissertation, can be
taken to refer to texture mapping in its narrow sense (that of mapping images onto surfaces).
The other forms of texture mapping described by Heckbert [1990b] produce different visual
effects and so the discussion will have little relevance to them.

1.6 Optical image warping

Image warping need not be performed digitally. The field of optical image warping has not been
completely superseded by digital image warping [Wolberg, 1990, p.1]. However optical systems are
limited in control and flexibility. A major advantage of optical systems is that they work at the
speed of light. For example Chiou and Yeh [1990] describe an optical system which will produce
multiple scaled or rotated copies of a source image in less than a millionth of a second. These
images can be used as input to an optical pattern recognition system. There is no way that such
images could be digitally transformed this quickly, but there is a limited use for the output of this
optical process.

The problems of using an optical system for correction of distortion in imagery are well illustrated
by Gardner and Washer [1948]. In the early 1940s, Zeiss, in Germany, developed a lens with a
large amount of negative distortion, specifically for aerial photography. The negative distortion
was designed into the lens in order that a wide field of view (130◦) could be photographed without
the extreme loss of illumination which would occur near the edges of the field if no distortion were
present in the lens.

A photograph taken with this lens will appear extremely distorted. To compensate, Zeiss developed
(in parallel with the lens) a copying or rectifying system by which an undistorted copy of the
photograph could be obtained from the distorted negative.

For the rectification to be accurate the negative has to be precisely centred in the rectifying system.
Further, and more importantly, the particular rectifying system tested did not totally correct the
distortion. Gardner and Washer suggest the possibility that camera lens and rectifier were designed
to be selectively paired for use (that is: each lens must have its own rectifier, rather than being
able to use a general purpose rectifier) and that the lens and rectifier they tested may not have
been such a pair. However, they also suggest that it would be difficult to actually make such a
lens/rectifier pair so that they accurately compensate for one another.

The advent of digital image processing has made such an image rectification process far simpler
to achieve. Further, digital image processing allows a broader range of operations to be performed
on images. One example of such processing power is in the Geosphere project, where satellite
photographs of the Earth, taken over a ten month period, were photomosaiced to produce a
cloudless satellite photograph of the entire surface of the Earth [van Sant, 1992]6.

1.7 Decomposition

Image resampling is a complex process. Many factors come into play in a resampling algorithm.
Decomposing the process into simpler parts provides a framework for analysing, classifying, and
evaluating resampling methods, gives a better understanding of the process, and facilitates the
design and modification of resampling algorithms. One of the most important features of any
useful decomposition is that the sub-processes are independent of one another. Independence
of the sub-processes allows us to study each in isolation and to analyse the impact of changing
one sub-process whilst holding the others constant. In chapter 7 we will discuss the equivalence

6An interesting artifact is visible in the Antarctic section of this photomosaic: the Antarctic continent is so
stretched by the projection used that resampling artifacts are visible there. However, the rest of the mosaic looks
just like a single photograph — no artifacts are visible.
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Figure 1.9: A two part decomposition of resampling into reconstruction and sampling.
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Figure 1.10: An example of a two-part decomposition (figure 1.9). The squares are the original
image’s sample points which are reconstructed to make the intensity surface. The open circles are
the resampled images sample points which are not evenly spaced in the reconstructed intensity
surface, but are evenly spaced in the resampled image.

of resamplers; that is, how two dissimilar decompositions of a resampling method can produce
identical results.

The simplest decomposition is into two processes: reconstruction, where a continuous intensity
surface is reconstructed from the discrete image data; and sampling, where a new discrete im-
age is generated by taking samples off this continuous intensity surface. Figure 1.9 shows this
decomposition.

Mitchell and Netravali [1988] follow this view as a part of the cycle of sampling and reconstruc-
tion that occurs in the creation of an image. Take, for example, a table in a ray-traced image,
texture-mapped with a real wooden texture. First, some wooden texture is sampled by an image
capture device to produce a digital texture image. During the course of the ray-tracing this image
is reconstructed and sampled to produce the ray-traced pixel values. The ray-traced image is sub-
sequently reconstructed by the display device to produce a continuous image which is then sampled
by the retinal cells in the eye. Finally, the brain processes these samples to give us the perceived
image, which may or may not be continuous depending on quite what the brain does. These many
processes may be followed in figure 1.7, except that image resampling is a single process there,
rather than being decomposed into two separate ones.

This decomposition into reconstruction and sampling has also been proposed by Wolberg [1990,
p.10], Ward and Cok [1989, p.260], Parker, Kenyon and Troxel [1983, pp.31–32], and Hou and
Andrews [1978, pp.508–509]. It has been alluded to in many places, for example: by Schreiber and
Troxel [1985].

It is important to note that all of these people (with the exception of Wolberg) used only single
point sampling in their resampling algorithms. This decomposition becomes complicated when
more complex methods of sampling are introduced and Wolberg introduces other decompositions
in order to handle these cases, as explained below. Figure 1.10 gives an example of a resampling
decomposed into these two sub-processes.

A second simple decomposition into two parts is that espoused by Fraser, Schowengerdt and Briggs
[1985, pp.23–24] and Braccini and Marino [1980, p.130]; it is also mentioned by Foley, van Dam,
Feiner and Hughes [1990, pp.823–829] and Wolberg [1990]. The first part is to transform the
source or destination pixels into their locations in the destination or source image (respectively).
The second part is to interpolate between the values of the source pixels near each destination
pixel to provide a value for each destination pixel. This decomposition is shown in figure 1.11.
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Figure 1.11: A two part decomposition into transformation and interpolation.

The interpolation step could be thought of as a reconstruction followed by a point sample at the
(transformed) destination pixel, but this further decomposition is not explicit in this model of
resampling7. Note that point sampling is assumed in the model of the resampling process and thus
any more complicated sampling method cannot easily be represented.

Both of these two part models are valid and useful decompositions of resampling. However, both
contain the implicit assumption that only single point sampling will be used. Many resampling
processes do exclusively use single point sampling. However, those which do not will not fit into
these models. A more general model of resampling is required if we are to use it to classify and
analyse all resampling methods.

It may not be immediately apparent why these models cannot embrace other sampling methods.
In the case of the second decomposition, there is no place for any other sampling method. Single
point sampling is built into the model. The sampling is performed as part of the interpolation
step, and the assumption is that interpolation is done at a single point from each sample value. It
is possible to simulate other forms of sampling by modifying the interpolation method, but such
modification is transform-specific and thus destroys the independence of the two sub-processes in
the model.

The first decomposition can be expanded to include other sampling methods, but there are difficul-
ties. To illustrate this let us look at exact-area sampling using a square kernel the size of one pixel.
This resampling model (figure 1.9) has the transform implicitly built into the sampling stage. This
works well with point sampling. A transformed point is still a point. With area sampling we have
two choices: either we transform the centre of the pixel and apply the area sampler’s kernel ‘as
is’ (as in figure 1.12(a)) or we transform the whole area and apply the transformed kernel (as in
figure 1.12(b)).

The former method is equivalent to changing the reconstructor8 in a transformation-independent
way and then using point sampling. This is not what is desired. We would get the same results
by retaining point sampling and using a different reconstructor.

The latter method is what is wanted, the whole area is warped by the transformation. Unfortu-
nately, the sampler is now transform-dependent (remember that transforming a point produces a
point, so a point sampler is transform-independent: although the positions of the point samples
change, the shape of the sampling kernel (a point) does not; in area sampling, the position and
shape of the kernel change and thus the area sampler is transform-dependent). Therefore, neither
method of expanding the reconstruct/sample decomposition is particularly helpful.

To produce an all-encompassing decomposition we need to split resampling into three parts.

1.7.1 A three-part decomposition

Fiume [1989, pp.36-38; 1986, pp.28-30] discusses texture mapping using a continuous texture func-
tion defined over a texture space [see p.37 of Fiume, 1989]. He comments: “In practice, texture
mapping consists of two distinct (but often interleaved) parts: the geometric texture mapping
technique itself. . . and rendering”. Rendering is a sampling process (Fiume discusses rendering in

7The ‘interpolation’ need not be a true interpolation but may be an ‘approximation’, that is a function which
does not interpolate the data points but still produces an intensity surface which reflects the shape implied by the
data points.

8A reconstructor is a reconstruction method.
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(a) (b)

Figure 1.12: Two ways of extending two-part decomposition to cope with area sampling. The
squares are the original image’s pixels on a regular grid. The open circles are the resampled
image’s pixels at the locations they would be if they were generated by taking point samples off
the intensity surface (figure 1.10). As an example, we have taken a square area sampler centred at
this point. This can be implemented in two ways: (a) transform-independent sampling, the sample
filter shape does not change; (b) transform-dependent sampling, the sample filter shape changes.
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Figure 1.13: Fiume’s [1989] decomposition of resampling. He does not, however, start with an
image, but with an intensity surface. Some extra process is required to produce the intensity
surface from an image.

great detail in his chapter 3 [Fiume, 1989, pp.67-121]). Figure 1.13 shows Fiume’s decomposition.
Compare this with Mitchell and Netravali’s ‘reconstruct/sample’ decomposition (figure 1.9).

These two decompositions do not have the same starting point. Fiume is interested in the gen-
eration of digital images from scene specifications (the rendering process in figure 1.13(b)), thus
he starts with some continuous intensity surface. He states that this continuous intensity surface
could itself be generated procedurally from some scene specification or it could be generated from
a digital image but gives no further comment on the process required to generate a continuous
intensity surface from a digital image. The required process is reconstruction, as found in Mitchell
and Netravali’s decomposition. Fiume, however, splits Mitchell and Netravali’s sampling step into
two parts: the geometric transformation and the sampling, where ‘sampling’ can be any type of
sampling, not just single point sampling. He comments: “The failure to distinguish between these
[two] parts can obscure the unique problems that are a consequence of each.”

The three part decomposition thus developed from these two-part decompositions is shown in
figure 1.14.

1.7.2 Description of the parts

A discrete image, consisting of discrete samples, is reconstructed in some way to produce a contin-
uous intensity surface. The actual intensity surface that is produced depends solely on the image
being reconstructed and on the reconstruction method. There are many different reconstruction
methods so a given image can give rise to many different intensity surfaces.

This intensity surface is then transformed to produce another intensity surface. This is a well-
understood and simple idea, but it is the heart of resampling. Resampling itself, the geometric
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Figure 1.14: The three part decomposition of resampling into reconstruction, transformation, and
sampling.
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Figure 1.15: Smith’s [1982] four part decomposition of resampling.

transformation of one digital image into another (or, rather the illusion of such a transformation,
as described in section 1.4) is a complex process. The transformation stage in this decomposition
is applying that geometric transform to a continuous intensity surface, and is a much simpler idea.

Mathematically an intensity surface can be thought of as a function, I(x, y), defined over the
real plane. The function value I(x, y) is the intensity at the point (x, y). When we say that the
intensity surface is transformed we mean that every point, (x, y), in the real plane is transformed
and that the intensity values move with the points. Thus a transform τ will move the point (x, y)
to τ(x, y) and the transformed intensity surface, Iτ (x, y) will bear the following relation to the
original intensity surface:

Iτ (τ(x, y)) = I(x, y)

This holds for one-to-many and one-to-one transforms. For many-to-one transforms some arbiter
is needed to decide which of the many points mapping to a single point should donate its intensity
value to that point (or whether there should be some sort of mixing of values). Catmull and Smith
[1980] call this the ‘foldover’ problem because it often manifests itself in an image folding over
on top of itself, perhaps several times. An example of such a transform is mapping a rectangular
image of a flag into a picture of a flag flapping in the breeze.

Whatever the transform, the end result is a new intensity surface, Iτ (x, y). The final stage in this
decomposition is to sample off this new surface to produce a new, resampled image. Any sampling
method can be used, whether it is single point, multiple point, or area (filtered) sampling.

This decomposition is general. All three parts are essential to a resampling method. It is our
hypothesis that virtually any resampling method can be decomposed into these three stages. Ap-
pendix A lists the resamplers discussed in around fifty of the resampling research papers, and
decomposes them into these three parts.

It is, however, possible to decompose resampling further. The two four-part decompositions which
have been proposed are described in the following section.

1.7.3 Further decomposition

The two decompositions discussed here have more parts than those discussed above and are not
as general as the three-part decomposition. They can each be used to classify only a subset of all
resamplers, although in the first case this subset is large.

Smith and Heckbert’s four part decomposition

Smith [1982] proposed this decomposition in the early eighties and Heckbert [1989, pp.42–45]
subsequently used it with great effect in his development of the idea of a ‘resampling filter’.



1.7. DECOMPOSITION 23

Image Intensity
Surface

Intensity
Surface

Image Image� � � �Reconstruct Transform
Point

Sample Postfilter

Figure 1.16: The super-sampling, or postfiltering decomposition.

Smith’s decomposition is shown in figure 1.15. It arose out of sampling theory where it is considered
desirable to prefilter an intensity surface before point sampling to remove any high frequencies
which would alias in the sampling process.

The two stages of prefilter and single point sample replace the single sample stage in the three-part
decomposition. Not all samplers can be split up easily into a prefilter followed by single point
sampling. Such a split is appropriate for area samplers, which Heckbert [1989] uses exclusively
[ibid., sec. 3.5.1]. For multiple point samplers this split is inappropriate, especially for such as
jittered sampling [Cook, 1986] and the adaptive super-sampling method.

Heckbert [1989 pp.43–44] slightly alters Smith’s model by assuming that the reconstruction is one
that can be represented by a filter. The majority of reconstructors can be represented as recon-
struction filters, but a few cannot and so are excluded from Heckbert’s model. Two examples of
these exceptions are the sharp edge reconstruction method described in section 6.4, and Olsen’s
[1990] method for smoothing enlarged monochrome images. However, the idea of a reconstruc-
tion filter and a prefilter are important ones in the development of the concept of a resampling
filter. This decomposition is useful for those resamplers where the filter idea is appropriate. See
section 1.8.2 for a discussion of resampling filters.

The super-sampling or postfiltering decomposition

This decomposition is only appropriate for resamplers which use point sampling. It consists of the
same reconstruction and transformation stages as the three-part decomposition with the sampling
stage replaced by point sampling at a high resolution and then postfiltering the high resolution
signal to produce a lower resolution output [Heckbert, 1989, pp.46–47]. This is illustrated in
figure 1.16.

This can be considered to be a decomposition in two separate resampling processes. In the first, the
transformed intensity surface is sampled at high resolution, while in the second (the postfiltering)
this high resolution image is resampled to a low resolution image.

Area sampling does not fit into this model, although high resolution single point sampling and
postfiltering is used as an approximation to area sampling. As the number of points tends to
infinity, point sampling plus postfiltering tends towards area sampling, but using an infinite number
of point samples is not a practicable proposition. Certain types of multi-point sampling do not
fit into this model either, notably adaptive super-sampling. Therefore this decomposition, while
useful for a subset of resampling methods, is not useful as a general decomposition.

1.7.4 Advantages of the three-part decomposition

Our view is that the three-part decomposition is the most useful general decomposition for the
study of resampling. This is justified below. Accordingly this thesis is divided in much the same
way with chapters associated with each of the three parts.

This decomposition is fairly intuitive to a person taking an overview of all resampling methods,
but is not explicitly stated elsewhere. Wolberg [1990, p.6] mentions “the three components that
comprise all geometric transformations in image warping: spatial transformations, resampling and
antialiasing”; but these are not the three parts we have described, and it is odd that ‘resampling’
(the whole process) is considered to be a part of the whole by Wolberg. Foley et al [1990, p.820],
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on the other hand, describe a decomposition as follows: “we wish to reconstruct the abstract
image, to translate it, and to sample this translated version.” This is our three-part decomposition
(figure 1.14), but for translation rather than general transformation. Other transforms naturally
follow, Foley et al discuss these without explicitly generalising the decomposition.

The three-part decomposition into reconstruct, transform and sample has several advantages over
other decompositions:

Independence of parts. Most resamplers can be split into these three independent parts so
that changing any one part does not affect the other two. This means that neither the
reconstructor nor the sampler is dependent on the transform, and that the reconstructor is
the same for all parts of the original image and the sampler the same for all parts of the
resampled image.

In any resampling method, some constituents of the method will depend on position in
relation to the original sampling grid and some in relation to the resampled sampling grid.
Placing the former in the reconstructor and the latter in the sampler makes them independent
of whatever transform is applied. The transform itself is left in splendid isolation as a simple
mathematical process.

There exist resampling methods where the sampler or reconstructor cannot be made inde-
pendent of the transform because some part of one or the other depends on both the original
and the resampled images’ sampling grids. One such method is Williams’ [1983] pyramidal
resampling scheme where the level in the pyramid is selected based on how an area in the
resampled image plane maps into the original image plane. The choice of level for any given
point (whether in the original or resampled image’s plane) is transform-dependent and thus
either the reconstructor or the sampler (or perhaps both) must be transform-dependent. The
transform itself still remains a simple mathematical process of mapping one plane into the
other (for further discussion of Williams’ method see section 7.1.1.)

It is helpful for analysis of reconstruction and sampling methods that they be transform-
independent. It is also necessary that, having discussed and analysed these sub-processes,
the resampling process as a whole is considered to see the overall effect produced by all
three sub-processes. It is useful to be able to alter one sub-process without affecting or
being affected by either of the other sub-processes. This aids immensely in analysing the
sub-processes and various resampling methods.

Equivalence of sampling grids. By extracting the transformation as a separate step between
reconstruction and sampling we allow the original and resampled images’ sampling grids
to be identical. The main problem with the two-part reconstruct/sample decomposition
(figure 1.9) is that the sampling takes place on a non-uniform grid. As pointed out in the
discussion of this decomposition, this non-uniform sampling makes area sampling (and some
point sampling) a complex business. Further, virtually all sampling theory and practice is
directed at sampling on a regular grid (even the stochastic sampling methods are based on
regular sampling grids). Keeping the transform separate from the sampler allows the sampler
to be based on a regular sampling grid. The fact that the sampling grids which produce the
original and resampled images are identical, simplifies and unifies the discussion and analysis
of the sampling process.

It also alleviates us of needing to consider transform-dependent sampling methods. These
change as one moves around the (non-uniform) sampling grid and are tricky things to deal
with. By allowing us to always use a uniform sampling grid the three-part decomposition
frees us from this difficult area and makes for clear, simple theory.

A resampler will be spatially-variant, except in the case of very simple transformations (affine
transforms and scaling transforms). This decomposition removes the spatial variance from
the reconstruction and sampling stages so that we need only consider their spatially invariant
cases, greatly simplifying the analysis of resampling techniques.
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Figure 1.17: The original image (at top) is reconstructed to give an intensity surface. This is then
transformed to produce the transformed intensity surface, which is sampled, giving the resampled
image. In a digital computer the entire process is performed in the discrete world, shown by the
dotted arrow in this figure.

Separation of format conversion. Reconstruction and sampling are opposites. Reconstruction
converts a discrete image into a continuous intensity surface. Sampling converts a continuous
intensity surface into a discrete image.

Resampling is the complex process of geometrically transforming one digital image to pro-
duce another (see figure 1.8). This decomposition replaces that transformation with the
conceptually much simpler transformation from one continuous intensity surface to another,
and it adds processes to convert from the discrete image to the continuous intensity surface
(reconstruction) and back again (sampling). Thus the decomposition separates the format
conversion (discrete to continuous, and continuous to discrete) from the transform (the core
of the process). This whole process is illustrated in figure 1.17.

Generality of the decomposition. Almost all resamplers can be split into these three parts,
but decomposing resampling into more parts limits the types of resamplers that can be
represented, as illustrated in section 1.7.3. Appendix A lists many of the resamplers that
have been discussed in the literature and decomposes them into these three parts.

1.7.5 One-dimensional and multi-pass resampling

Multi-pass resampling can mean a sequence of two-dimensional resampling stages to produce the
desired result. An example of this is the decomposition in figure 1.16 which can be thought of as
one resampling followed by another. Such methods fit easily into our framework by considering
them to be a sequence of resamplings with each resampling being decomposed individually into its
three component stages.

Multi-pass resampling, however, usually refers to a sequence of two or more one-dimensional re-
samplings. For example, each horizontal scan-line in the image may be resampled in the first
pass and each vertical scan-line in the second. The overall effect is that of a two-dimensional
resampling. Catmull and Smith [1980] deal with this type of resampling; other researchers have
suggested three- [Paeth, 1986, 1990] and four- [Weiman, 1980] pass one-dimensional resampling.
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Figure 1.18: The decomposition of resampling for a two-pass one-dimensional resampler. The
whole resampling decomposes into two sets of resamplings, one resampling per scan line. These
then decompose into the three parts, as before.

To include such resampling methods in our framework we note that the overall resampling consists
of two or more resampling stages. In each of these stages each one of a set of scan-lines undergoes
a one-dimensional resampling which can be decomposed into reconstruction, transformation and
sampling. An example of this decomposition for a two-pass resampling is given in figure 1.18. Thus
the decomposition is quite valid for multi-pass one-dimensional resampling methods. Indeed, many
two-dimensional reconstructors are simple extrapolations of one-dimensional ones (for example: see
section 3.4.2).

Multi-pass, one-dimensional resampling tends to be faster to implement than the same two-
dimensional resampling. In general, though, the one-dimensional version produces a more degraded
resampled image than the two-dimensional one. Fraser [1989b] and Maisel and Morden [1981] are
amongst those who have examined the difference in quality between one-pass, two-dimensional and
multi-pass, one-dimensional resampling.

1.7.6 Three dimensions and mixed dimensional cases

Resampling theory can be simply extended to three or more dimensions (where an intensity vol-
ume or hyper-volume is reconstructed). There are still the same three sub-processes. Multi-pass
resampling also generalises: three dimensional resampling, for example, can be performed as a
multi-pass one-dimensional process [Hanrahan, 1990].

Finally, some resamplers involve the reconstruction of an intensity surface (or volume) of higher di-
mension than the image. One example is the 11

2 -dimensional reconstruction of a one-dimensional
image, discussed in section 7.2. Another is Williams’ [1983] resampler: reconstructing a three
dimensional intensity volume from a two dimensional image. This is discussed in detail in sec-
tion 7.1.1.
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Figure 1.19: How resampling is implemented when it involves point sampling. For each point
sample required in the process, the point is inverse transformed into the original image’s space
and a reconstruction calculation performed for the point from the original image’s samples in the
region of the inverse transformed point.

1.8 How it really works

The theory is that a digital image is reconstructed to a continuous intensity surface, which is
transformed, and then sampled on a regular grid to produce a new digital image (figure 1.14).
In practice resampling cannot be done this way because a digital computer cannot contain a
continuous function. Thus practical resampling methods avoid the need to contain a continuous
function, instead calculating values from the original image’s data values only at the relevant
points.

Conceptually, the usual method of implementation is to push the sampling method back through
the transformation so that no continuous surface need be created. Whilst this process is conceptu-
ally the same for an area sampler as for a point sampler, the former is practically more complicated
and so we will discuss the two cases separately.

1.8.1 The usual implementation of a point sampler

Each point sample that must be taken is taken at a single point on the transformed intensity
surface. This point usually corresponds to exactly one point on the original intensity surface.
Remember that for many-to-one transformations some arbiter must be included to decide which
one of the many takes priority, or to decide how to mix the many reconstructed intensities to
produce a single intensity9.

The value of the intensity surface at this point (or points) in the original image can then be
computed from the original image’s data values. This process is illustrated in figure 1.19.

For a single point sampler this value is assigned to the appropriate pixel in the final image. For a
multi-point sampler, several such samples are combined in some way to produce a pixel value.

Thus to get the value of a point sample the following process is used:

1. Inverse transform the location of the point from the final image’s space to the original image’s
space.

2. Calculate the value of the intensity surface at this point in the original image’s space.

9The situation where a final intensity surface point has no corresponding original intensity surface point is
discussed in the section on edge effects (section 4.2).
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Figure 1.20: How resampling is implemented when it involves area sampling. For each area sample
required in the process, the area is inverse transformed into the original image’s space and a
reconstruction calculation performed for the whole area from the original image’s samples in the
region of the inverse transformed area.
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Figure 1.21: An equivalent decomposition of an area sampler. Rather than use a transform-
invariant area sampler, here we use an inverse transformed prefilter, followed by inverse transformed
single point sampling. These two steps combine to produce the same effect as a transform followed
by area sampling.

1.8.2 The usual implementation of an area sampler

Analogous to the point sampling case, the area of the sample is inverse transformed (taking with
it, of course, the weighting information for every point in the area). This inverse transformed area
will now be spatially-variant as it is now transformation-dependent. The same shaped area in
different parts of the final image’s space will inverse transform to differently shaped areas in the
original image’s space.

Somehow this spatially-variant area sampler is combined with the spatially-invariant reconstructor
to produce a calculation which will give a single value for each final image pixel. The process is
illustrated in figure 1.20.

Heckbert [1989] explains how this combination can be achieved in the case where the reconstructor
can be represented as a filter:

Heckbert’s resampling filter

An area sampler can be thought of as a filter (called a ‘prefilter’) followed by single point sampling.
Thus the three-part decomposition becomes four part (see figure 1.15). If both sampling stages are
pushed back through the transform we get the situation shown in figure 1.21. The space-invariant
reconstruction filter can now be convolved with the generally space-variant inverse transformed
prefilter to produce what Heckbert calls the resampling filter, shown in figure 1.22. The right
hand process is a point sampler and so the intensity surface values need only be generated at those
points — in a similar way to the point sampling case. Thus the area sampling resampler can be
implemented as a point sampling resampler.
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Figure 1.22: Heckbert’s [1989] resampling filter. The whole resampling is decomposed into two
stages for implementation: a resampling filter composed of the convolution of the reconstruction
filter and the inverse transformed prefilter, and inverse transformed single point sampling.

1.8.3 Comparison

The major difference between a point and an area sampling process is that the calculation to
produce a value is space-invariant in the former case and generally space-variant in the latter. Only
in the case of an affine transform will the area-sampling case produce a space-invariant calculation
[Heckbert, 1989, p.46, sec. 3.4.4]. The added complexity of space-variance makes area sampling
much more difficult to implement than point sampling. This disadvantage must be weighed against
the advantages of area sampling.

1.8.4 Other implementations

Whilst those shown here are the most common implementations, it is possible to generate others.
For those, relatively rare, reconstructors which cannot be represented as filters, Heckbert’s ‘resam-
pling filter’ is not a viable implementation. Some other way of combining the reconstructor and
area sampler would need to be found if such a reconstructor were to be used with an area sampler
(the alternative is that this reconstructor could only ever be used with point sampling methods).

On a different tack, resamplers could be found for which the following implementation would prove
possible:

The original digital image is analysed to produce a digital ‘image description’ which de-
scribes an intensity surface. This image description is transformed, producing another
image description which describes the transformed intensity surface. This image de-
scription can then be rendered, potentially by any sampler, to produce the final image
(see figure 1.23).

Such reconstruction methods are discussed in chapter 6.

1.8.5 Comments

However we think of a particular resampling process: whether as a single process; as a resampling
filter that is point sampled; as reconstruction followed by sampling; or as reconstruct, transform,
sample; it is the same resampler producing the same results. The implementation may appear
totally different to the theoretical description, but the results are the same.

1.9 The literature

Digital image resampling is useful in many fields and so the literature relating to it is in many dis-
parate places. Medical imaging, remote sensing, computer vision, image processing and computer
graphics all make use of resampling. The practitioners in the various fields all have their own views
on the subject, driven by the uses to which they put resampling. Thus we find, for example, that
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Figure 1.23: An alternative method of resampling. The image is analysed to give a scene de-
scription, which is transformed, and the transformed version rendered to produce the resampled
image.

in one field (computer graphics), where distortion can be very high in resampled imagery, greater
emphasis is placed on sampling methods than in another field (registering medical images) where
distortion is mild [Heckbert, 1989; Wolberg, 1990].

Digital image resampling has its beginnings in the early ’70s. Catmull [1974] was the first in the field
of computer graphics to work on texture mapping, when he discovered a way to map images onto
curved surfaces. Rifman, McKinnon, and Bernstein [Keys, 1981; Park and Schowengerdt, 1983]
did some of the first work on resampling for correction of remotely sensed image data (satellite
imagery) around the same time.

However none of this work made its way into the standard textbooks on image processing [Pratt,
1978; Gonzalez and Wintz, 1977; Rosenfeld and Kak, 1982] or computer graphics [Foley and van
Dam, 1982] which were all produced around 1980. The exception to this is Newman and Sproull’s
[1979] “Principles of Interactive Computer Graphics”, but even they only mention the subject in
passing [ibid., p.265]. The image processing texts do spend time on image restoration, which is
related to a priori knowledge reconstruction (chapter 6), but none on resampling.

It was in the eighties that far more interest was paid to digital image resampling (only three of
the 54 references listed in appendix A were published before 1980). The rush of publications
was probably due to increased computer power and increased interest in raster displays; both for
geometrical correction of digital images and for generation of realistic synthetic images.

Heckbert [1986a] presented a good survey of texture mapping as it was to date. He built on this
foundation in his masters thesis [Heckbert, 1989], which is a valuable reference for those working
in texture mapping.

The work on image resampling reached a milestone in 1990. In that year the first book [Wolberg,
1990] was published on the subject and the new standard texts [Foley et al 1990; Pratt, 1991]
included sections on image resampling and its related topics.

“Digital Image Warping” by George Wolberg [1990] is the only existing book on digital image
resampling. Prior to its publication the only source of information on image resampling was a
myriad of articles scattered through technical journals and conference proceedings across half a
dozen fields. Wolberg’s book draws much of this material into one place providing a “conceptually
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unified, interdisciplinary survey of the field” [Heckbert, 1991a].

Wolberg’s book is not, however, the final word on image resampling. His specific aim was to
emphasise the computational techniques involved rather than any theoretical framework [Wolberg,
1991]. “Digital Image Warping” has its good points [McDonnell, 1991] and its bad [Heckbert,
1991b] but as the only available text it is a useful resource for the study of resampling (for a review
of the book see Heckbert [1991a]; the discussion sparked by this review may be found in Wolberg
[1991], McDonnell [1991] and Heckbert [1991b]).

The most recent standard text, Foley, van Dam, Feiner and Hughes [1990] “Computer Graphics:
Principles and Practice”, devotes some considerable space to image resampling and its related
topics. Its predecessor [Foley and van Dam, 1982] made no mention at all of the subject. This
reflects the change in emphasis in computer graphics from vector to raster graphics over the
past decade. The raster display is now the most common ‘soft-copy’ output device [Sproull,
1986; Fournier and Fussell,1988], cheap raster displays having been developed in the mid nineteen-
seventies as an offshoot of the contemporary television technology [Foley and van Dam, 1982].
Today it is true to say that “with only a few specialised exceptions, line [vector] graphics has been
subsumed by... raster graphics” [Fiume, 1986, p.2].

A number of the myriad articles on resampling are analysed in appendix A. The resamplers in
each article have been decomposed into their three constituent parts, which are listed in the table
there. This produces some insights into research in resampling. Over half the articles consider
only single point sampling, concentrating instead on different reconstructors or transforms. Many
articles examine only one of the three parts of the decomposition, keeping the other two constant.
There are a significant number which consider only a scaling transform and single point sampling.
There are others which concentrate on the transforms. It is only a minority that consider the
interaction between all parts of the resampler, and these are mostly in the computer graphics field
where distortions tend to be highest and hence the resampler has to be better (the higher the
distortion the harder it is to resample well).

Most of the resamplers surveyed fit neatly into our three part decomposition, having three inde-
pendent parts. A few fit less neatly, in that the three parts cannot be made independent. This
latter set of resamplers are those in which area sampling is approximated. They depend on an
approximation in original image space to an area in resampled image space transformed back into
original image space. Because of the approximation either the reconstructor or the sampler must
be transformation-dependent. Only one of the resamplers in appendix A does not fit well into the
decomposition. This is Namane and Sid-Ahmed’s [1990] method of binary image scaling. Their
method cannot be said to produce any kind of continuous intensity surface and has thus proven
difficult to fit into the three-part decomposition.

One ‘resampler’ not listed in the table is Kornfeld’s [1985, 1987] image prism. This device only per-
forms a limited set of orthogonal transformations which exactly map pixels onto pixels. Therefore
no resampling is required.

In the following chapters many of these articles will be referred to in the discussion of the three
parts of resampling. At the end we will draw the strands together and consider resampling as a
whole.

1.10 Summary

The concept of digital image resampling has been introduced. It is a process which find uses in
many fields. We have seen how it fits into the larger framework of operations on images, and how
the continuous image we view differs from the discrete image that the computer operates on.

Several decompositions of resampling have been considered. We favour the three-part decompo-
sition into reconstruction, transformation, and sampling. The remainder of this dissertation is
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organised around this decomposition.

We concluded the chapter by considering how a resampler can be implemented, and by briefly
looking at the history and literature of digital image resampling.

We now go on to consider the third of the sub-processes: sampling.



Chapter 2

Sampling

Sampling is the process of converting a continuous intensity surface into a discrete representation.
As well as being the third sub-process of resampling, it is the process by which the original image is
generated. Thus sampling is important in its own right as a sub-process, and also in how it it affects
the original image and subsequent reconstruction from that image. Conventional sampling theory
deals with a regular grid of point samples, with each sample in the image being generated by a
single one of these point samples. In this dissertation ‘sampling’ refers to many sampling methods
besides this single point sample method. In this chapter we discuss these sampling methods and
their applicability to various sampling tasks.

2.1 Converting the continuous into the discrete

Sampling takes a continuous signal, one defined over all space, and produces a discrete signal, one
defined over only a discrete set of points. In practice the two signals are only defined within a
region of interest. Discussion of what lies outside this region is left until chapter 4. In our case,
the continuous signal is an intensity surface; that is: a three-dimensional function with two spatial
dimensions and one intensity dimension where each point in the spatial plane has a single intensity.
When dealing with colour, the number of dimensions increases, typically to three colour dimensions
(but still only two spatial dimensions). When dealing with one or three spatial dimensions the
situation also changes but the underlying principle is the same: for every spatial point there is a
single intensity or colour. An intensity surface is a many-to-one mapping from a spatial domain
into an intensity (or colour) domain.

The discrete signal in our case is an image. It has the same number of spatial and intensity (colour)
dimensions as the intensity surface but is discrete in the spatial domain. A digital computer cannot
represent a continuous quantity and so the image will be discrete in intensity as well. In practice
we find that spatial discreteness is central to the resampling problem, whilst intensity discreteness
is a peripheral problem which can, for the most part, be safely ignored. Why this is so is discussed
in the next section.

2.2 The problem of discrete intensities

Ideally, infinite precision in recorded intensity is desirable, no errors would then arise from slightly
imprecise intensity values. In practice, intensities are recorded to finite precision which leads to
errors in the reconstructed intensity surface, whether on the screen or in the resampling process.

These errors are most noticeable when only a few discrete intensity levels are available, and most

33
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Pratt [1991]
fig. 2.3–1(a)

Figure 2.1: The minimum noticeable intensity difference (∆I/I) as a function of intensity (I)
[Pratt, 1991, fig. 2.3–1(a)]. It is 2% for much of the range, rising to higher values for very dark or
very light intensities.

image processing texts include an example showing the effect on a displayed image of allowing a
larger or smaller number of intensity levels [see, for example, Rosenfeld and Kak, 1982, pp.107–8
figs. 14 and 15; Gonzalez and Wintz, 1977, fig. 2.8]. The extreme case is where there are only two
levels: black and white. Such an image takes comparatively little storage (one bit per pixel) but
has a limited usefulness. With digital half-toning techniques it can be made to simulate a wide
range of grey shades, but, for resampling, it is preferable to have true shades of grey rather than
simulated ones.

The general case, then, is one where a significant number of discrete intensity levels are used to
represent a continuous range of intensities. But how many intensity levels are sufficient?

The minium necessary number of intensity levels

The human visual system is limited in how small an intensity change it can detect. Research
suggests that, for two large areas of constant intensity, a two percent difference can be just detected
[Crow, 1978, p.4]. The minimum difference that can be detected rises to a higher value for very
dark or very bright areas [Pratt, 1978, pp.17–18] (see figure 2.1). It also rises when comparing
small areas of constant intensity [ibid., pp.18–19, fig. 2.5]. When dealing with colour images the
minimum noticeable differences for pure colour information (that is with no intensity component)
are much larger than those for intensity information, hence broadcast television has an intensity
channel with high spatial resolution and two channels carrying the colour information at low spatial
resolution [NMFPT, 1992]. Here, we shall consider only intensity. The number of intensity levels
required to produce a faithful representation of an original intensity surface depends on the image
itself [Gonzalez and Wintz, pp.27-28] and on the type of reconstruction.

If we wish to display any image on a ‘reasonable’ display device then how many levels are required?
Many researchers have answered this question and their results are given below. We are working
with binary digital computers and so, sensibly, most of the answers are powers of two.

Crow [1978, p.4] says that between six and eight bits (64 to 256 intensity levels) are required,
depending on the quality of the display. He also calculates that the typical display would need
about 162 intensity levels. This calculation is reproduced and explained later.

Gonzalez and Wintz [1977, pp.19 and 26] suggest that 64 levels (six bits) may be sufficient in some
cases but say that “to obtain displays that will appear reasonably smooth to the eye for a large
class of image types, a range of over 100 intensity levels is generally required.”

Rosenfeld and Kak [1982, p.106] also suggest that more than 100 levels may be needed for some
applications.

Finally, Foley and van Dan [1982, p.594] and Pavlidis [1982, p.39] both agree that 64 levels are
generally adequate but that 256 levels may be needed for some images (Pavlidis hints that 256
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Pratt [1991]
fig. 2.3–1(a)

altered to include region A

Figure 2.2: The minimum noticable intensity difference (∆I/I) as a function of intensity (I); in
region A ∆I/I is higher that 2.35%. So long as the darkest possible intensity falls in this region,
1024 linearly spaced intensity levels will be sufficient for all images (after [Pratt, 1991, fig. 2.3–
1(a)]).

levels may not be enough for a small number of images).

The consensus appears to be that many images require only 64 intensity levels and virtually none
need more than 256.

If we wish all images that we could possibly display to exhibit no artifacts due to intensity quan-
tisation then we must take into account those images with large areas of slowly changing intensity
at the dark ¡end of the intensity range. Crow [1978, p.4] performs a ‘back of the envelope’ calcu-
lation to see how many intensity levels are required, given the two percent minimum perceivable
intensity difference mentioned earlier. He notes that the most intense spot that a typical cathode
ray tube (CRT) can produce is 25 times more intense than the dimmest. If the intensity levels are
exponentially distributed (that is, each is two percent brighter than the previous level) then about
log 25

log 1.02 = 163 intensity levels are required.

However, for work in image resampling it is important that the intensities are distributed linearly.
This means that the average of two intensities is a third intensity that is perceptually halfway
between the two. Thus a checkerboard of squares in any two intensities, viewed from sufficient
distance that the individual checks are imperceptible, will appear like a plane of constant intensity
of the average of the two intensities. This property is important because virtually all resampling
work involves taking the weighted average of a number of intensities and this must produce the
perceptually correct result. (An exponential distribution could be used if it were transformed to
the linear domain before any calculations and transformed back afterwards. This is a tremendous
overhead for a resampling operation and should thus be avoided.)

With linearly distributed intensity levels all adjacent levels are the same distance apart, say ∆I, in
intensity space. If, as above, the brightest level is 25 times as bright as the darkest and the total
number of levels is n then ∆I will be:

∆I =
25 − 1
n − 1

∆I must be such that the second darkest level is two percent brighter than the darkest, therefore,
in the above formula, ∆I = 0.02. This means that the number of levels, n, is around n = 1201.
1200 is considerably more than the 256 quoted earlier, and is slightly more than 210 (1024). Ten
bits should however be sufficient, because the minimum perceivable intensity difference for the
darkest levels is known to be higher than two percent. With 1024 levels the difference between the
darkest and second darkest levels is 2.35%. This should be small enough provided that the darkest
intensity on the screen is dark enough to be in the area of the response curve which rises above
the two percent level (region A in figure 2.2). With 256 levels (eight bits) the difference is 9.41%,
which may be too large. Observations on an eight bit, linearly distributed display show that it is
too large: false contouring can be seen in areas of slowly varying dark intensity.
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Blinn [1990, p.85] notes the same effect in digital video. In his discussion of digital video format
D1 he says: “Digital video sounds like the world of the future, but I understand there’s still a bit
of a problem: 8 bits don’t really give enough resolution in the darker areas to prevent contouring
or banding.”

Murch and Weiman [1991] have performed experiments which show that ten is the maximum
number of bits required to make intensity differences between adjacent levels imperceptible, with
the possible exceptions of CRTs with an extremely high maximum intensity.

For any image without large areas of slowly varying dark intensities, ten bits of intensity information
is too much, and so, for many images, if the intensity values are stored to a precision of eight bits,
few visible errors will result from the quantisation of intensity. If they are stored to a precision of
ten bits or more, practically no visible errors will arise.

2.2.1 Extra precision

Resampling involves the manipulation of intensity values. As these values are used in calculations,
a little extra precision may be desirable to absorb any numerical inaccuracies which arise. This is
illustrated in the following diagram:

For human visual consumption︷ ︸︸ ︷
To absorb

numerical errors︷ ︸︸ ︷
︸ ︷︷ ︸

Stored Precision

In calculations it is also possible for intensities to be produced that are ‘whiter than white’. Such
supra-white intensities have values brighter than the brightest that can be represented. Extra
bits should be provided at the top of the intensity value to catch such overflow, otherwise the
calculation can wrap around and produce spurious wrong intensities.

Underflow will produce negative intensities which, while physically unrealisable, are a possible
outcome of resampling calculations. Thus the intensities need to be stored as a signed quantity to
catch such sub-black intensities, for the same reasons we needed to catch supra-white values. A
sign bit must be included. This amends our diagram to:

Overflow
&

sign bit︷ ︸︸ ︷
Human visual consumption

(displayed)︷ ︸︸ ︷Absorption︷ ︸︸ ︷

Such a representation cannot catch all overflows, underflows, or numerical inaccuracies, but it will
help immensely in catching most of them.

As a practical example, our experimental image processing system has a generous bit allocation
scheme. It uses 32 bit integers and an 8 bit display: overflow is allocated seven bits plus the sign
bit, absorption is given fourteen and the lowest two of the ten bits required for correct display
cannot be displayed:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Sign bit Overflow

︸ ︷︷ ︸
Required for human visual

consumption
Absorption

Displayed︷ ︸︸ ︷
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Figure 2.3: The three image creation processes subdivided. On the right is the image that is
created. In each case it is generated from an intensity surface by a sampling sub-process. This
intensity surface is generated in a different way for each creation process.

To conclude: with these precautions it can be seen that little, if any, visible errors or artifacts
will arise from intensity quantisation. Thus the fact that the intensity values are quantised can be
largely ignored in our discussion. We may now proceed to discuss the more important problem of
spatial discreteness.

2.3 Producing a discrete image

Sampling occurs in three distinct processes: image capture, image rendering and image resampling.
These are the three image creation processes described in section 1.3. In each of these a continuous
intensity surface is sampled to produce a discrete image. The continuous intensity surface is
generated in a different way in each process but the sampling is fundamentally the same in all
three cases, as illustrated in figure 2.3.

In image capture some physical device is used to sample a real world scene. Such devices include
video cameras, scanners and fax machines. Figure 2.3 divides the image capture process into two
parts. This subdivision can be thought of in two ways:

(a) the theoretical two-dimensional intensity surface is generated by the optics of the capture
device and occurs immediately in front of the light sensors (figure 2.4(a));

(b) the theoretical two-dimensional intensity surface exists just in front of the entire capture device
and the entire device, optics and light sensors included, form part of the sampling process
(figure 2.4(b)).

Some capture devices have no optics, in which case (a) and (b) are identical.

(b) has the disadvantage that depth effects caused by the optics of the system cannot be modelled
as pointing the capture device at a two-dimensional intensity surface because depth effects (for
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Figure 2.4: The two ways of subdividing the image capture process: (a) a theoretical two-
dimensional intensity surface is generated by the optics of the capture device, just before it is
captured by the light sensors; (b) a theoretical two-dimensional intensity surface is assumed to
occur just before the entire capture device, and this intensity surface is sampled by the whole
device.

example, depth of field) depend on the three-dimensional layout of the real-world scene. On the
other hand (a) models all effects because the intensity surface is placed after the optics which
process the scene into a two-dimensional function. In (b) the intensity surface could be reasonably
thought of as a two-dimensional window into the three-dimensional scene.

The big disadvantage of (a) is that part of the capture device is included in the sampling process
and part is not. It is far preferable for the entire device to be included in the sampling process as
all parts of the device can affect the samples that are produced. For this reason (b) is the preferred
way of thinking of this theoretical division of capture into two parts. Note that atmospheric effects
are here part of the scene, not of the sampling process.

Wolberg and Boult [1992] discuss image creation, subdividing the process into five parts: warping
before entering the capture device, blurring by the optics of the capture device, warping by the
optics of the capture device, blurring by the light sensors and single point sampling. This subdivi-
sion can be placed in our diagram as follows: the warping before entering the device is considered
part of the real world scene, the blurring and warping by the optics, blurring by the light sensors,
and single point sampling are all part of the sampling sub-process. Alternatively, if we were to use
(a) rather than (b); the blurring and warping caused by the optics would be part of the process of
generating the two-dimensional intensity surface and only the blurring by the image sensors and
the single point sampling would be included in the sampling process. This latter assumption is
used by Boult and Wolberg in their generation of a reconstructor which corrects for the capture
device’s sampling method (see section 6.1).

Image rendering takes a digital scene description and generates a continuous, usually three-
dimensional, scene from this description. As in image capture, this three-dimensional scene is
projected to a theoretical two-dimensional intensity surface which is then sampled. Again, if the
sampling method generates depth effects then this model is not totally accurate. However, it is a
useful approximation.

In image resampling there are no problems with depth effects, the entire process takes place in two
dimensions. In cases where resampling is used to generate part of a scene in a rendering process
(the dashed arrow in figure 2.3) then depth effects may come into play.

These three processes cover the three ways of generating an image. Image processing in general
(with the exception of image resampling) does not involve the creation of an intermediate intensity
surface. Virtually all image processing operations carry a direct correspondence between input and
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output pixels and can work by a discrete convolution process [see for example, Fang, Li and Ni,
1989, for a discussion of discrete and continuous convolution]. Image resampling, by comparison,
does not have this direct correspondence and some process is required so that output pixels can
be positioned anywhere, in relation to the input pixels. In our three-part model this process is
provided by reconstructing an intensity surface, transforming this, and sampling the transformed
version to produce a new image.

We have seen that sampling is a very similar process for the three distinct operations of image cap-
ture, image rendering, and image resampling. It is thus important for its part in image resampling
and for its part in creating the images that are resampled. We now go on to discuss this sampling
process.

2.4 The sampling process

The aim of sampling is to generate pixel values so that they “best represent” the two-dimensional
intensity surface. [Foley et al, 1990, p.619]. This is a good concept but what is meant by ‘best
represent’? To some it may mean that the samples obey classical sampling theory. To others it
may mean that the resulting image, when displayed on a certain device, is visually as similar as
possible to the two-dimensional intensity surface. These two ideas are not necessarily the same
thing. In the subsequent sections we discuss both of these ideas and the tension between them.

2.4.1 Classical sampling theory

The roots of sampling theory go back to 1915, with Whittaker’s work on interpolation of a set
of equispaced samples. However, most people attribute the sampling theorem to Shannon [1949],
who acknowledges a debt to many others in its development. Attribution of the theorem has been
jointly given to Whittaker and Shannon [Gonzalez and Wintz, 1977, p.72] Shannon and Nyquist
[Turkowski, 1986], and to Shannon, Kotel’nikof and Whittaker [Petersen and Middleton, 1962,
p.279]. Shannon’s statement of the sampling theorem is1:

If a function f(t) contains no frequencies higher that W cps it is completely deter-
mined by giving its ordinates at a series of points spaced 1

2W seconds apart.
[Shannon, 1949, Theorem 1] 2.

Mathematically, the sampling process is described as the product of f(t) with the comb function:

comb(t) =
∞∑

n=−∞
δ(t − nT )

where δ(t) is the Dirac delta-function3. This gives the sampled function:

f̂(t) =

( ∞∑
n=−∞

δ(t − nT )

)
f(t)

1The theory laid out by Shannon [1949] and others is for one dimensional sampling only. Petersen and Middleton
[1962] extended Shannon’s work to many dimensions.

2cps = cycles per seconds ≡ Hertz

3The Dirac delta function is zero everywhere except at t = 0. The area under the function is unity, that is∫ ∞
−∞ δ(t) dt = 1. One definition of the Dirac delta function is:

δ(t) = lim
a→∞

√
a e−aπx2
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Figure 2.5: The sampling process: (a) the continuous spatial domain function, f(x), has a Fourier
transform, F (ν), bandlimited to below half the sampling frequency, 1

2T ; (b) when it is sampled
(f(x)×comb(x)) its Fourier transform is convolved with Comb(ν) producing replicas of the original
Fourier transform at a spacing of 1

T .

=
∞∑

n=−∞
(δ(t − nT )f(t − nT )) (2.1)

This is not the same as:
f̂n = f(nT ) (2.2)

Equation 2.1 is a continuous function which consists of an infinite sum of weighted, shifted Dirac
delta functions and is zero everywhere except at t = nT, n ∈ Z. Equation 2.2 is a discrete function
which is defined on the set n ∈ Z. The values of the discrete function are the weights on the delta
functions that make up the continuous function, that is:

f̂(t) =
∞∑

n=−∞
f̂n δ(t − nT )

In a computer we, of course, store the discrete version; but mathematically and theoretically we
deal with the continuous one. The sampling theorem can be justified by considering the function
in the frequency domain.

The continuous spatial domain function, f(t), is bandlimited. That is it contains no frequencies
higher than νb (W in the statement of Shannon’s theorem above). Its Fourier transform, F (ν) is
thus zero outside the range (−νb, νb). Sampling involves multiplying f(t) by comb(t). The equiva-
lent operation in the frequency domain is to convolve F (ν) by Comb(ν), the Fourier transform of
comb(t). Comb(ν) is composed of Dirac delta-functions at a spacing of 1

T (for a proof of this see
Marion [1991, pp.31–32]). Convolving this with F (ν) produces replicas of F (ν) at a spacing of 1

T .
Figure 2.5 illustrates this process.

If T < 1
2νb

then the copies of F (ν) will not overlap and the original F (ν) can be retrieved by
multiplying F̂ (ν) by a box function:

Box(ν) =
{

1, |ν| < νb

0, otherwise

This removes all the copies of the original except for the copy centred at ν = 0. As this is
the original frequency domain function, F (ν), the spatial domain function will also be perfectly
reconstructed.
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Figure 2.6: An example of sampling at too low a frequency. Here we see the frequency domain
representations of the functions. The original function, (a), is not bandlimited to within half the
sampling frequency and so when it is sampled, (b), the copies overlap and add up producing the
function shown by the dark line. It is impossible to recover the original function from this aliased
version.

Multiplying by a box function in the frequency domain is equivalent to convolving in the spatial
domain by the box’s inverse Fourier transform, s(x). This can be shown to be s(x) = 2νbsinc(2νbx),
where sinc(x) = sin(πx)

πx (a proof of this can be found in appendix B.1). The sinc function is
discussed in sections 3.3 and 4.3.

If T ≥ 1
2νb

then the copies of F (ν) will overlap (figure 2.6). The overlapping parts sum to produce
F̂ (ν). There is no way that this process can be reversed to retrieve F (ν) and so f(t) cannot
be perfectly reconstructed. If F̂ (ν) is multiplied by the box function (the perfect reconstructor)
then the resulting function is as if F (ν) had been folded about the frequency 1

2T and summed
(figure 2.7). For this reason ν = 1

2T is known as the folding frequency. The effect of this
folding is that the high frequencies in F (ν) alias into low frequencies. This causes artifacts in
the reconstructed image which are collectively known as ‘aliasing’. In computer graphics the term
aliasing is usually incorrectly used to refer to both aliasing and rastering artifacts [Pavlidis, 1990].
This point is picked up in section 2.7. Figure 2.8 gives an example of aliasing. It normally manifests
as unsightly ripples, especially near sharp changes in intensity.

To avoid aliasing we must ensure that the sampled intensity surface is bandlimited to below the
folding frequency. If it is not then it can be prefiltered to remove all information above this
frequency. The procedure here is to multiply the intensity surface’s Fourier transform by a box
function, a process known as bandlimiting the intensity surface. Foley et al [1990, fig. 14.29] give
an example of this procedure. This prefiltering followed by point sampling is equivalent to an area
sampling process, as is explained later.

These procedures are mathematically correct and produce an image free of aliasing. However they
have their drawbacks. Firstly, if an intensity surface has to be prefiltered then the image does not
represent the original intensity surface but rather the filtered one. For certain applications this
may be undesirable. To represent a flat or linearly sloped intensity surface, infinite frequencies are
required. Bandlimiting prevents such surfaces from being perfectly represented, and so any ‘flat’
part of a bandlimited image will be ripply. An example of this effect is that any discontinuity
in a band-unlimited intensity surface will have a 9% overshoot either side if it is bandlimited, no
matter what the bandlimit is [Lynn and Fuerst, 1989, p.145]; ripples will also propagate out from
the discontinuity, reducing in magnitude as they get farther away. Thus a bandlimited intensity
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Figure 2.7: An example of aliasing. (a) is the frequency spectrum of the original image. If the
original image is sampled and then reconstructed by multiplying its frequency spectrum by a box
function then (b) is the result. The copies of the spectrum overlap and add up, as if F (ν) in (a)
had been folded back about 1

2T and summed.

Figure 2.8: An example of a reconstructed intensity surface which contains aliases. These manifest
themselves as ripples around the sharp edges in the image. The small image of the letter ‘P’
is the original. The large is an intensity surface reconstructed from this small original using an
approximation to sinc reconstruction.
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surface is, by its very nature, ripply. This can be seen in figure 2.12(a); there is no aliasing in
this figure, the intensity surface is inherently ripply due to being bandlimited. The human visual
system abhors ripples, they seriously degrade an image. If however, the ripples in the reconstructed
intensity surface are undetectable by the human eye then the surface looks very good. These points
are picked up in chapter 7.

More importantly, it is practically impossible to achieve perfect prefiltering and so some aliasing
will creep in. In an image capture device, some (imperfect) prefiltering will occur; that is: the image
capture device does not perform perfect prefiltering. Fraser [1987] asserts that most people depend
on this prefiltering to bandlimit the intensity surface enough that little aliasing occurs. In the
digital operations of rendering and resampling, perfect prefiltering is simply impossible, ensuring
that some aliasing always occurs. This is because perfect prefiltering involves either continuous
convolution by an infinite sinc function or multiplication of the continuous Fourier transform by a
bandlimiting function. Both of these operations are impossible in a discrete computer.

Finally, perfect reconstruction is also practically impossible because it requires an infinite image.
Thus, whilst it would be theoretically possible to exactly recreate a bandlimited intensity surface
from its samples, in practice it is impossible. In fact, most display devices reconstruct so badly
that correct sampling can be a liability. Sampling which takes into account the reconstruction
method is the topic of section 2.8.

Before discussing this, however, we need to examine the various types of sampling. These fall into
two broad categories: area samplers and point samplers.

2.5 Area vs point sampling

Any sampling method will fall into one of these two categories. Area sampling produces a sample
value by taking into account the values of the intensity surface over an area. These values are
weighted somehow to produce a single sample value. Point sampling takes into account the values
of the intensity surface only at a finite set of distinct points4. If the set contains more than one
point then these values must be combined in some way to produce a single sample value. This is
not the usual description of point sampling, because ‘point sampling’ is usually used in its narrow
sense: to refer to single point sampling. Fiume [1989, section 3.2.4] studied the various sampling
techniques, the following sections draw partly on his work.

2.5.1 Area sampling

Exact-area sampling

The assumptions behind exact-area sampling are that each pixel has a certain area, that every
part of the intensity surface within that area should contribute equally to the pixel’s sample value,
and that any part of the intensity surface outside that area should contribute nothing. Hence,
if we make the common assumption that pixels are abutting squares then for a given pixel the
sample value produced by the exact area sampler will be the average intensity of the intensity
surface within that pixel’s square (figure 2.9(a)) Alternately, we could assume that pixels are
abutting circles [Durand, 1989] or overlapping circles [Crow, 1978] and produce the average value
of the intensity surface over the relevant circular area (figure 2.9(b) and (c)). Obviously other
assumptions about pixel shape are possible.

Exact-area sampling is very common, and is discussed again when we look at sampling methods
which take into account how the image will be reconstructed (section 2.8).

4Fiume [1989, p.82] states that the set of point samples should be countable, or more generally, a set of measure
zero.
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(a) (b) (c)

Figure 2.9: Three common assumptions about pixel shape: (a) abutting squares, (b) abutting
circles, and (c) overlapping circles.

General area sampling

The general case for area sampling is that some area is chosen, inside which intensity surface values
will contribute to the pixel’s sample value. This area is usually centred on the pixel’s centre. Some
weighting function is applied to this area and the pixel’s value is the weighted average over the
area. Exact-area sampling is obviously a special case of this.

Equivalence to prefiltering

Area sampling is equivalent to prefiltering followed by single point sampling. In area sampling, a
weighted average is taken over an area of the intensity surface. With prefiltering a filter is convolved
with the intensity surface and a single point sample is taken for each pixel off this filtered intensity
surface. To be equivalent the prefilter will be the same function as the area sample weighting
function. The two concepts are different ways of thinking about the same process. Looking back to
chapter 1, Heckbert [1989] proposed that the sampling sub-process be decomposed into prefiltering
and single point sampling. Whilst this is entirely appropriate for all area samplers, not all point
samplers can be represented in this way, because some point samplers cannot be represented by
filters. Specific examples are adaptive super-samplers and stochastic point samplers, discussed
below.

2.5.2 Point sampling

Unlike an area-sampling process, a point-sampler ignores all but a countable set of discrete points
to define the intensity value of a pixel. Point sampling comes in two flavours: regular and irregular
(or stochastic) point sampling. Wolberg [1990, sections 6.2 and 6.3] summarises the various types
of point sampling; here we only outline them.

Single point sampling

In single point sampling, the samples are regularly spaced and each pixel’s sample value is produced
by a single point. In fact this is exactly the method of sampling described in classical sampling
theory (section 2.4.1). All other point sampling methods are attempts to approximate area sam-
pling methods or attempts to reduce artifacts in the reconstructed intensity surface (often they
attempt to be both).

Super-sampling

As in single point sampling, the samples are arranged in a regular fashion, but more that one
sample is used per pixel. The pixel’s intensity value is produced by taking a weighted average of
the sample values taken for that pixel. This can be seen as a direct approximation to area sampling.
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Fiume [1989, p.96, theorem 6] proves that, given a weighting function, a super-sampling method
using this weighting function for its samples converges, as the number of samples increases, toward
an area sampling method using the same weighting function.

Such a super-sampling technique can be represented as a prefilter followed by single point sampling;
on the other hand, the adaptive super-sampling method cannot.

Adaptive super-sampling

Adaptive super-sampling is an attempt to reduce the amount of work required to produce the
samples. In order to produce a good quality image, many super-samples need to be taken in
areas of high intensity variance but a few samples would give good results in areas of low intensity
variance. Ordinary super-sampling would need to take many samples in all areas to produce a
good quality image, because it applies the same sampling process for every pixel. Adaptive super-
sampling takes a small number of point samples for a pixel and, from these sample values, ascertains
whether more samples need to be taken to produce a good intensity value for that pixel. In this
way fewer samples need to be taken in areas of lower intensity variance and so less work needs to
be done.

Stochastic sampling

Stochastic, or irregular, sampling produces a sample value for each pixel based on one or more
randomly placed samples. There are obviously some bounds within which each randomly placed
sample can lie. For example it may be constrained to lie somewhere within the pixel’s area,
or within a third of a pixel width from the pixel’s centre. The possible locations may also be
constrained by some probability distribution so that, say, a sample point has a greater chance of
lying near the pixel centre than near its edge. Stochastic methods cannot be represented as a
prefilter followed by single point sampling, because of this random nature of the sample location.

Stochastic sampling is in favour amongst the rendering community because it replaces the regular
artifacts which result from regular sampling with irregular artifacts. The human visual system
finds these irregular artifacts far less objectionable than the regular ones and so an image of equal
quality can be achieved with fewer stochastic samples than with regularly spaced samples (see
Cook [1986] but also see Pavlidis’ [1990] comments on Cook’s work).

Fiume [1989, p.98, theorem 7] proves that the choice of point-samples stochastically distributed
according to a given probability distribution will converge to the analagous area-sampling process
as the number of points taken increases, a result similar to that for super-sampling.

2.5.3 Summary

Area sampling yields mathematically precise results, if we are attempting to implement some
prefilter (section 2.4.1). However, in digital computations it may be impossible, or difficult to
perform area sampling because it involves continuous convolution. In resampling it is possible to
implement some area samplers, at least approximately, but a general area sampler is practically
impossible. The point sampling techniques have been shown to be capable of approximating
the area sampling methods. Such approximations are necessary in cases where area sampling is
impracticable [Fiume, 1989, p.102].
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Figure 2.10: Two very similar images: (a) on the left, was generated by summing the first twenty-
nine terms of the Fourier series representation of the appropriate square wave; (b) on the right,
was generated by super-sampling a perfect representation of the stripes.

Figure 2.11: The Fourier transforms of the images in figure 2.10. (a) on the left and (b) on the
right. The Fourier transforms are shown on a logarithmic scale. Note that the background is black
(zero) in (a) but has non-zero, but small, magnitude in (b).

2.6 Practical considerations

An image capture device always implements some area sampling process. There is usually some
small change that can be made in the area sampler by, for example, changing the focus of the
lenses or inserting a mask. Major changes involve the expensive process of designing a new device.

Rendering and resampling occur in a digital computer and, for rendering, most area sampling
techniques are analytically impossible and/or computationally intractable [Fiume, 1989, p.102].
Thus they cannot be implemented. The complexity of scenes in image rendering means that area
sampling, where possible, can be extremely expensive to compute. Image rendering therefore makes
almost exclusive use of point-sampling techniques.
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Figure 2.12: The two images of figure 2.10 reconstructed using as near perfect reconstruction as
possible. (a) on the left and (b) on the right. This figure shows part of the reconstructed intensity
surface. Aliasing artifacts occur in (b) only

Figure 2.13: The two images of figure 2.10 reconstructed using as nearest-neighbour reconstruction.
(a) on the left and (b) on the right. This figure shows part of the reconstructed intensity surface.
(a) contains only rastering atifacts, while (b) contains a combination of rastering and aliasing
artifacts.
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Image resampling involves a simpler ‘scene’ and so both the computationally possible area samplers
and the point samplers can be used. Heckbert [1989, sec. 3.5.1] dismisses point sampling techniques
on the grounds that they do not eliminate aliasing. A super-sampling method shifts the folding
frequency higher, but band-unlimited signals are common in texture mapping [ibid., p.47], and so,
while super-sampling will reduce aliasing, it will not eliminate all aliases, no matter how many
super-samples are taken. Heckbert thus considers only area sampling techniques.

This argument is certainly valid for the surface texture mapping application discussed by Heck-
bert. However stochastic point sampling methods have done much to eliminate aliasing artifacts
(by replacing them with less-objectionable noise artifacts) and many people do use point sampling
methods in preference to area sampling methods simply because they are easier to implement.
Further, in rendering work, it is often expedient to treat all samples identically and so, if texture
mapping (a form of resampling) occurs in the scene, the samples will be taken in the same way as
samples are taken in the rest of the scene: almost invariably by some point sampling technique.
Wolberg [1990] covers the stochastic sampling methods, drawing on the rendering literature. How-
ever, Heckbert [1991a] found this material out of place in Wolberg’s book. We think that it is
necessary because such methods are used for resampling work.

Finally it is useful to realise that many practitioners in resampling use single point sampling.
It appears to be the default method. We believe that this is because single point sampling is
(a) simple to implement; (b) the obvious sampling method; and (c) all that is required if the image
need only undergo a mild transformation.

This latter point draws on the fact that the aliasing (and other) artifacts, which more sophisticated
sampling methods suppress, do not manifest themselves very much under a mild transformation
(that is, scale changes of ±20% at most). Some applications of resampling only require such mild
transformations, (for example the medical image registration system developed by Venot et al
[1988] and Herbin et al [1989]) while others require more violent transforms (for example texture
mapping) and thus require more advanced sampling, especially in cases of image shrinking where
the sampling method dominates the resampler (see chapter 7).

2.7 Anti-aliasing

The purpose of all sampling, other than single-point sampling, is ostensibly to prevent any artifacts
from occuring in the image. In fact it is usually used to prevent any artifacts from occuring in the
intensity surface reconstructed from the image by the display device. This prevention is generally
known in computer graphics as anti-aliasing. This is something of a misnomer as many of the
artifacts do not arise from aliases. The perpetuation of the incorrect terminology is possibly due
to the fact that the common solution to cure aliasing also alleviates rastering, the other main
source of artifacts in images [Pavlidis, 1990, p.234].

Crow [1977] was the first to show that aliasing (sampling a signal at too low a rate) was the cause
of some of the artifacts in digital imagery. He also notes [ibid., p.800] that some artifacts are due
to failing to reconstruct the signal properly. This latter problem he termed ‘rastering’. ‘Aliasing’,
however, became the common term for both of these effects, with some subsequent confusion, and
it is only recently that the term ‘rastering’ has reappeared [Foley et al, 1990, p.641]. Mitchell
and Netravali [1988] do discuss the two types of artifact as distinct effects but perpetuate the
terminology by naming aliasing and rastering, pre-aliasing and post-aliasing respectively.

Sampling has thus been used to alleviate both types of artifact. This has an inbuilt problem that,
to correct for reconstruction artifacts (rastering), one needs to know the type of reconstruction
that will be performed on the image. Most images are displayed on a CRT, and all CRTs have
a similar reconstruction method, so this is not too big a problem. However, when displayed on a
different device (for example a film recorder) artifacts may appear which were not visible on the
CRT because the reconstruction method is different. Further, an image used for resampling which
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has been ‘anti-aliased’ for use on a CRT may not be particularly amenable to the reconstruction
method used in the resampling algorithm.

Figures 2.10 through 2.13 illustrate the distinction between aliasing artifacts and reconstruction
artifacts. Two images are shown of alternate dark and bright stripes. These images were specially
designed so that no spurious information due to edge effects would appear in their discrete Fourier
transforms (that is: the Fourier transforms shown here are those of these simple patterns copied
off to infinity so as to fill the whole plane).

Figure 2.10(a) was generated by summing the first twenty-nine terms of the Fourier series repre-
sentation of the appropriate square wave as can be seen by its Fourier transform (figure 2.11(a)).
Figure 2.10(b) was generated by one of the common anti-aliasing techniques. It was rendered
using a 16 × 16 super-sampling grid on each pixel with the average value of all 256 super-samples
being assigned to the pixel. Figure 2.11(b) shows its Fourier transform. It is similar in form to
figure 2.11(a) but the aliasing can be clearly seen in the wrap around effect of the line of major
components, and also in that the other components are not zero, as they are in the unaliased case.

When these are reconstructed using as near-perfect reconstruction as possible we get the intensity
surfaces shown in figure 2.12. The ripples in figure 2.12(a) are not an aliasing artifact but the
correct reconstruction of the function; it is, after all, a sum of sine waves. The ripply effect in
figure 2.12(b)is due to aliasing. The intensity surface that was sampled had constant shaded stripes
with infinitely sharp transitions between the dark and light stripes. The perfectly reconstructed
intensity surface shown here perfectly reconstructs all of the aliases caused by sampling the original
intensity surface.

By contrast, figure 2.13 shows the intensity surfaces which result from an imperfect reconstructor:
the nearest-neighbour interpolant. The artifacts in figure 2.13(a) are entirely due to rastering (the
image contains no aliasing). This is the familiar blocky artifact so often attributed, incorrectly, to
aliasing. The artifacts in figure 2.13(b) are due to a combination of aliasing and rastering. Oddly,
it is this latter intensity surface which we tend to find intuitively preferable. This is probably
due to the areas perceived as having constant intensity in figure 2.10(b) retaining this constant
intensity in figure 2.13(b).

How these intensity surfaces are perceived does depend on the scale to which they are reconstructed.
The ‘images’ in figure 2.10 are of course intensity surfaces but are reconstructed to one eighth the
scale of those in figure 2.12 and figure 2.13. If one stands far enough back from these larger-scale
figures then they all look identical.

It is fascinating that the intensity surface with both types of artifact in it appears to be the prefered
one. This is possibly due to the facts that (a) the human visual system is good at detecting
intensity changes, hence rippling is extremely obvious; and (b) most scenes consist of areas of
constant intensity or slowly varying intensity separated by fairly sharp edges, hence representing
them as a bandlimited sum of sinusoids will produce what we perceive as an incorrect result: most
visual scenes simply do not contain areas of sinsoidally varying intensity.

Thus there is a tension between the sampling theory and the visual effect of the physical reconstruc-
tion on the display device. Indeed many researchers, instead of turning to the perfect sampling
theory method of sampling, turn instead to methods which take the reconstruction process into
account.

2.8 Sampling which considers the reconstruction method

In such sampling the reconstruction is usually onto a display device, rather than to any theoretical
intensity surface. Several models of the display device have been used in the design of sampling
methods.

The common assumption is that each pixel represents a finite area on the screen and therefore
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should be area sampled from that area. This leads to the exact area sampling method given
in section 2.5.1. Such an assumption can be found in many papers on resampling, for example
Weiman [1980], Paeth [1986], Fant [1986], and Durand and Faguy [1990] all assume square (or
rectangular) abutting pixels. Paeth [1990, pp.194-5] later revised his earlier work to allow for more
sophisticated sampling methods. Durand [1989] used abutting circular pixels, which seems a less
obvious choice, particularly as parts of the sampled intensity surface are not included in the sum
for any pixel. His reasoning was to reduce the number of calculations in his resampling method
(compared with abutting rectangular pixels). This assumption can also be found in Kiryati and
Bruckstein [1991] but they are modelling a physical sampling device, not a physical reconstruction.

Foley et al [1990, pp.621-3] show that this exact area sampling method is inadequate for sequences
of images. They suggest weighted area sampling functions which cover a larger area than the pixel
(for example: a circularly symmetric tent function centred at the pixel centre).

Finally, it is well known that a CRT display reconstructs an image by first convolving it with
a nearest-neighbour function (the effect of the digital to analogue converter) and then with a
Gaussian (the effect of the spot in the CRT tube) [Blinn, 1989b]. Crow [1978] used this type of
model in his sampling method. He says that: “A properly adjusted digital raster display consists
of regularly spaced dots which overlap by about one-half.” His conclusion was that a pixel sampled
over such an area with a weighting function that peaked in the centre and fell off to the edges gave
reasonable results.

We thus find that these methods are motivated by the reconstruction method rather than any
sampling theory. Fortunately, they fit neatly into the sampling theory concept of prefiltering (that
is: area sampling). A final important class of samplers are those which take into account the very
limited range of intensity levels of a particular image format or display device. Examples of such
samplers are those which perform half-toning (for example: the PostScript half-toning algorithm,
illustrated in figure 1.2) and those which use dithering to reduce quantisation error effects. These
methods are catering for devices with a small number of intensity levels and so do not produce
images for which the assumption made in section 2.2 will hold. Reconstructing an intensity surface
from such an image can produce bizarre results unless intelligence is built into the reconstruction
algorithm, but they are useful where the target of the resampling is a device with a limited range
of intensity levels. The PostScript image command [Adobe, 1985a, p.170, pp.72-83] essentially
implements an image resampling process which uses a nearest-neighbour reconstruction technique
and a half-toning sampling technique to decide which pixels are white and which are black in the
image in the printer’s memory. This resampled image is then reconstructed by the printer when it
produces the picture on paper.

2.9 Summary

Sampling is the process of converting a continuous intensity surface into a discrete image. Sampling
is used in all three processes (capturing, rendering, and resampling) which generate a discrete
image, and is fundamentally the same in all three cases. Quantisation of intensity does not pose a
problem, provided enough quantisation levels are available.

There are two basic types of sampling: area, where a sample’s value is determined from the intensity
surface’s values over some non-zero area; and point, where a sample’s value is determined from the
intensity surface’s values at only a finite set of points.

The main artifact caused by sampling is aliasing, not to be confused with the rastering artifact
caused by reconstruction.
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Chapter 3

Reconstruction

Reconstruction is the process of producing a continuous intensity surface from a discrete image.
The produced intensity surface should follow the implied shape of the discrete data.

In this chapter we first present several ways of classifying reconstructors, introducing several con-
cepts which are used in later work. From there we look at skeleton, super-skeleton and Dirac delta
function reconstruction methods before turning our attention to more conventional reconstructors.
The first of these is the ‘perfect’ interpolant: the sinc function. A brief glimpse at the theory of
perfect interpolation is given here as a precursor to the discussion on piecewise local polynomials
which takes up the remainder of this chapter. We return to perfect interpolation in chapter 4.

The piecewise local polynomial reconstructors are widely used, simple, and easy to implement.
The sections in this chapter cover the first four orders of piecewise local polynomial (up to cubic)
and briefly consider the extension to higher orders. There is also a substantial discussion of the
criteria involved in designing a particular piecewise local polynomial, which has application to all
reconstructors.

Beyond this chapter lie three more on reconstruction. The first considers edge effects, infinite
extent reconstructors, and local approximations to these; the second examines the fast Fourier
transform reconstructors; and the third develops some issues in a priori knowledge reconstruction.

We begin by presenting some classifications for reconstructors and introduce much of the termi-
nology which is used throughout these four chapters.

3.1 Classification

There are several ways of classifying reconstructors. The following are some of the main distinctions
which can be drawn between reconstruction methods.

3.1.1 A priori knowledge

The reconstruction process is influenced by the sampling method which generated the discrete
image. How we assume the samples were created affects how we create our reconstruction method.
How the samples were actually created, in collusion with our reconstruction method, affects the
result. If these two sampling methods are not the same then the reconstructed intensity surface
may not be what we intended.

In many cases the sampling method is unknown, or we may choose to ignore what we do know
about it. In such a situation, where all that is known about the image are the image sample
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values (and their relative positions), we must use a reconstructor which only takes those values
into consideration. We call such a reconstructor a ‘no a priori knowledge’ (NAPK) reconstructor.
That is, no knowledge is utilised except for the image sample values. Such a reconstructor can
thus be applied to any image.

If we have some a priori knowledge about the image (that is knowledge that is separate from the
image data itself) then we can potentially produce a better reconstructed intensity surface than a
NAPK reconstructor could. Such a priori knowledge could be about the sampling method used,
the content of the image, or both. A reconstructor which uses such knowledge we call an ‘a priori
knowledge’ (APK) reconstructor. APK reconstruction is discussed in chapter 6.

3.1.2 Reconstruction filters

Reconstruction methods can be classified as to whether or not they can be represented by a filter.
Many reconstruction methods can be expressed as filters. A filter is some continuous function
which is convolved with the sample values to produce the continuous intensity surface.

In dealing with images it is important to remember that there are two ways of thinking about
them. The first is to think of an image as it is stored in the computer: as a finite array of intensity
values, fi,j , where (i, j) is the co-ordinate of the pixel with value fi,j . The second way is to consider
the image to be a continuous function consisting of an infinite sum of equispaced, weighted Dirac
delta functions. For a square pixel array, for example:

ι(x, y) =
∞∑

i=−∞

∞∑
j=−∞

fi,j δ(x − i, y − j)

ι(x, y) is a continuous function which is non-zero only at integer locations1. It is this latter,
continuous, function with which the reconstruction filter, h(x, y), is convolved to produce the
continuous intensity surface:

f(x, y) = h(x, y) ∗ ι(x, y)

h(x, y) is referred to as the filter’s impulse response, the filter’s kernel, or sometimes simply as the
filter itself.

A problem with this is that the mathematical image function, ι(x, y), is infinite in extent whilst
the discrete function, fi,j , is finite in extent. This means that all of the weights in ι(x, y) which
lie beyond the edges of the discrete image have an indeterminate value. The solutions to this edge
effect problem, how to determine these unknown values, are discussed in chapter 4.

Throughout the following chapters two different functions will be used in analysing reconstruction
filters: the filter itself, h(x, y), and the intensity surface produced by that filter, f(x, y). In the
case of a reconstruction method that cannot be represented by a filter, only the intensity surface,
f(x, y), can be used.

3.1.3 Skeleton vs continuous reconstruction

The skeleton reconstructors do not generate a continuous intensity surface, instead they generate
a surface which only has a defined value at certain points and is elsewhere undefined. Such a
surface cannot be represented by a filter. However, a similar idea can be, that is: a surface which
is non-zero and finite at certain points and is elsewhere zero. A related idea to this is the Dirac

1It is a simplification to assume that the samples occur at integer locations in the real plane. But here we can
make this simplification without loss of generality, because any rectangular sampling grid can be converted to one
where the samples occur at integer locations. For example, if the samples are at (x, y) = (x0 + i∆x, y0 + j∆y), then

they can be put at integer locations by changing the coordinate system: x′ = x−x0
∆x

and y′ = y−y0
∆y
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delta function surface, described above, which consists of an infinite sum of weighted, shifted Dirac
delta functions.

Both the skeleton and Dirac delta function reconstructors are discussed under the general heading
of ‘skeleton reconstruction’ (section 3.2) although a Dirac delta function surface can be considered
continuous for area sampling processes. All other reconstructors produce a continuous intensity
surface. As this is the norm, no special section is required to discuss continuous reconstruction.

3.1.4 Interpolating or approximating

There are two broad categories of reconstructor: the interpolants and the approximants. The
interpolants (interpolating reconstructors) generate intensity surfaces which pass through all of
the sample data points; the approximants (approximating reconstructors) generate surfaces which
do not have to do this, but an approximant may generate an intensity surface which may pass
through any number of the points.

If we have no a priori knowledge, then we are best advised to use an interpolant. This is be-
cause we know nothing about how the image was captured, so we must make an assumption. The
simplest, and generally accepted, assumption is that the samples are single point samples of an
original intensity surface and thus the original surface interpolates the sample points. Lacking any
further information we assume that it is this intensity surface that we ideally wish to reconstruct,
and thus the reconstructed intensity surface should interpolate the points. The concept of interpo-
lating rather than the more general reconstruction is so strong that many authors assume that a
reconstructor is an interpolant (Mitchell and Netravali [1988], for example, discuss approximants
but use the word ‘interpolation’ to describe all reconstructors).

If, however, we have some a priori knowledge, or some such knowledge can be extracted from the
image then we will probably find that our reconstructor is an approximant, as it is well known
that no captured images are produced by single point sampling owing to limited resolution and
bandwidth in the sampling process. Few rendered images are produced by single point sampling
either, because more sophisticated sampling methods are used to prevent artifacts occurring in
the images. Thus the samples do not necessarily lie on the original intensity surface, and so
interpolating through them will not produce the original intensity surface.

3.1.5 Finite or infinite; local or non-local

Some reconstructors are formally infinite; they depend on an infinite number of sample points.
Put another way, they have reconstruction filters of infinite support (assuming they have filters).
Other reconstructors are finite; they depend on only a finite number of sample points to produce
the value at any given point on the intensity surface.

A finite reconstructor may be local or non-local. This is a less sharp division. Local reconstructors
base the value of the intensity surface at any point on only local data points. Typically this
means data points no more than a few pixel widths away from the point being calculated. Non-
local reconstructors depend on data farther away (as well as the local data). An infinite-extent
reconstructor could be considered the limiting case of non-local reconstructors.

Most practical reconstructors are finite. Some infinite reconstructors can be implemented so that
the calculation take finite time, but the vast majority cannot. Infinite-extent reconstructors and
the finite-extent approximations to them are discussed in chapter 4.

Localness is an important consideration when implementing a reconstructor. In general, the more
local a reconstructor, the faster the value of the intensity surface can be calculated at an arbitrary
point. Localness is also an important consideration in stream processing: the fewer points needed
at any one time, the better. It is discussed in more detail in section 3.5.5.
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Figure 3.1: Each grid (solid lines) represents part of an infinite array of square pixels. On the left
are the reflection lines (dashed lines) for those reflections which exactly map pixel centres into pixel
centres. On the right are the rotation centres (dotted circles) for the 180n◦ and 90n◦ rotations
which map pixel centres to pixel centres.

3.1.6 Other classifications

There are other ways of classifying reconstructors:

• is it a polynomial or not?

• does it have a strictly positive kernel or not? (see section 3.5.7)

• does it approximate some other function? If so, which? For example, approximations to the
sinc function or to a Gaussian function are common.

In this dissertation several families of reconstructors are discussed. They are certainly not mutually
exclusive. The family of piecewise local polynomials are examined later in this chapter. There,
many of the criteria used in the design of reconstructors are evaluated. These criteria can also be
used to classify reconstructors. Whilst the discussion there is focussed on piecewise local polyno-
mials, it is applicable to all reconstructors. Thus, we leave discussion of these other classifications
until then (section 3.5).

We now turn to the slightly odd families of skeleton and Dirac delta function reconstructors.

3.2 Skeleton reconstruction

The question arises as to whether a continuous intensity surface is actually required. In some
circumstances it is only necessary to have the value of the intensity surface at the sample points
themselves. Elsewhere the intensity surface is undefined (some may prefer to say that it is zero,
which is not the same thing). Such a bare bones reconstruction is called skeleton reconstruction.

Skeleton reconstruction is only useful with a limited set of transformations and samplers. For
example, with single point sampling, the set of transformations is that where the transformations
exactly map pixel centres to pixel centres. This set includes (for a square pixel grid) rotation by
90n◦ (n ∈ Z); mirroring about certain horizontal, vertical and 45◦ diagonal lines; and translations
by an integral number of pixels in the horizontal and vertical directions (see figure 3.1 and also
Kornfeld [1985, 1987]). For one bit per pixel images, Fiume [1989, section 4.6] proves that these
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Figure 3.2: Shear distortion — the image on the left is sheared to produce that on the right. The
pixel centres in the right hand image are still in the same square grid orientation. However the
pixels themselves are distorted. This leads to distortions in the output image if only pixel centres
are considered in the resampling from one image to the other.

transformations are the only ones which can be performed on a square pixel grid without degrading
the image. For many bit per pixel images the questions of whether there are other transformations
that lose no information is an open one.

As well as these, there are lossy transformations which map pixel centres to pixel centres. These
include scaling by a factor of 1

N , N ∈ Z, N �= 0, about certain points (generally pixel centres).
This maps some pixel centres to pixel centres and is a digital sub-sampling operation. Guibas
and Stolfi [1982] propose this form of image shrinking in their bitmap calculus. It gives the least
pleasing result of all shrinking methods and is only applicable to shrinking by integral factors
( 1

N , N ∈ Z, N �= 0)2.

A further set of transformations which map pixel centres to pixel centres is the set of shears, by
an integral number of pixels. However, these transformations produce distortions if done in this
simplistic way. These distortions occur because, while pixel centres do map to pixel centres, the
pixel areas do not map onto pixel areas. Figure 3.2 shows the distortion for square pixels sheared
by one pixel distance 3.

Skeleton reconstruction does not produce a continuous intensity surface because the value of the
‘intensity surface’ is undefined except at the sample points. But a surface can be designed which
produces similar results to those described. The method described above has an intensity surface
which takes the sample values at the sample points and is undefined at all other points. ‘Undefined’
is a difficult concept to express mathematically, so to generate a filter kernel which describes this
skeleton reconstruction we replace ‘undefined’ with ‘zero’ and get the kernel:

h(x, y) =
{

1, x = 0 and y = 0
0, otherwise

The properties of an intensity surface reconstructed by this kernel are:

• it has non-zero values only at the sample points;

• it will produce a sensible result only if it is point sampled at only these points;

2For shrinking by a factor of 1
R

, R ∈ R, |R| ≥ 1, you need at least some form of reconstruction or a more
sophisticated sampling method. Heckbert [1989] says that for R � 1 it is only necessary to reconstruct using a
Dirac delta function reconstructor, but that a good area sampler is required.

3Interestingly enough, many other reconstruction methods will produce as bad a result in this case unless a
more sophisticated sampling method is employed. This is because the value of the intensity surface at the pixel
centres under interpolation methods is exactly the sample value at that pixel centre before interpolation and so
point sampling at these points produces exactly the same value as if we had used skeleton reconstruction.
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• a point sample anywhere else will produce the value zero;

• an area sampling method will not work at all.

This last point is due to the fact that any area sampler’s prefilter applied to this surface will
produce the filtered surface g(x, y) = 0, ∀x, y ∈ R. Thus all the sample values from the area
sampler will be zero.

This reconstructor is different to the Dirac delta function reconstructor discussed by Heckbert
[1989, p.51], and it produces different results. The Dirac delta function produces a very different
kind of intensity surface. Its filter is defined as:

h(x, y) = δ(x, y)

and it has the following properties:

• it is the identity function, that is: it has the following effect on the continuous image function:

f(x, y) = δ(x, y) ∗ ι(x, y)
= ι(x, y)

• it is zero everywhere except at pixel centres where it tends to infinity;

• for some small ε, less than the distance between pixels:∫ i+ε

i−ε

∫ j+ε

j−ε

f(x, y) dy dx = fi,j

• it only works with area sampling methods because using a point sampling method could
result in the product of two Dirac delta functions, the value of such a product is undefined;

• not all area samplers produce a good result, only those for which a large number of delta
functions fall within the area of the sampler for each sample taken.

The notable difference is that the Dirac delta function works with area samplers, but not point
samplers, whilst the skeleton reconstructor works with point samplers but not area ones.

There are other reconstructors which produce a similar effect to skeleton reconstruction, the dif-
ference being that their set of defined points is not limited to the sample points. They are able to
produce a finite number of new points between the existing data points. However they cannot be
practically used to find the value of the surface at an arbitrary point. Such a reconstructor can be
dubbed ‘super-skeleton’ by analogy to ‘sampling’ and ‘super-sampling’.

The best example of a super-skeleton method is the fast Fourier transform (FFT) scaling method
[Fraser, 1987, 1989a, 1989b; Watson, 1986] (section 5.1). This method produces a finite number of
equispaced samples between existing samples but cannot be used to produce samples at arbitrary
points. Fraser’s implementation allows for x × 2n, n ∈ Z points from x original sample points.
Watson’s method allows us to produce an arbitrary number of points in place of our original x
(these figures are quoted for one-dimensional signals, they need to be squared for two dimensions).
To produce a continuous surface would require an infinite number of points and hence infinite time;
so whilst theoretically possible it is hardly practicable. In this method, all the points have to be
generated before you can use them for further processing, they cannot be generated one at a time.

This FFT method reconstructs a surface, which, as before, has non-zero values only at a set of
points and is elsewhere undefined (alternatively, zero). There is no way of stating the method
as a reconstruction filter. It is however, a perfectly valid reconstruction method. Again, on its
own, it is only useful for a limited number of applications, most notably for scaling the image.
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However, as part of a more powerful reconstruction method it has great utility, as we shall see
later (section 5.3).

A super-skeletal intensity surface, like a skeletal surface, has defined values only at certain points,
and is undefined elsewhere. The values at these points are finite. An analagous procedure could
be followed to produce a ‘super-delta function’ reconstructor with extra delta functions occurring
between the ones at the pixel centres. Which is chosen depends on the use that is being made of
the intensity surface. The former is useful for point sampling; the latter for area sampling. Again
only a limited set of transformations and samplers can be used with these reconstruction methods.

We now turn our attention to those reconstruction processes which do produce a continuous inten-
sity surface in the more usual sense. We begin by looking at the theory of perfect interpolation.

3.3 Perfect interpolation

For any set of finitely spaced sample points there exist an infinite number of interpolating func-
tions. Which of these functions is the one that we want? Whittaker posed this question in 1915
and produced the possibly unexpected result that through any set of finite-value, finite-spaced
points there exists a single interpolating function which is everywhere finite valued and has no
spatial frequencies greater than one half the sample frequency4. This function Whittaker called
the cardinal function of the infinite set of functions through these sample points.

This result was also discovered empirically in signal processing work. Shannon [1949] states that
both Nyquist (in 1928) and Gabor (in 1946) had pointed out that “approximately 2TW numbers
are sufficient” to represent a one-dimensional function limited to the bandwidth W and the time
interval T . Mitchell and Netravali [1988] note that Mertz and Gray (in 1934) had established the
same principle as a rule of thumb for processing images (two-dimensional signals).

However, it was in 1949 that Shannon first formalised what we now call ‘the sampling theorem’
described in section 2.4.1. His contribution was to prove it as an exact relation, not just an
approximate one. Shannon’s theorem can be seen as a restatement of Whittaker’s result, in different
language. Given a set of samples of some function, one can reconstruct this cardinal function by
convolving the samples with a sinc function (see section 2.4.1). The theory behind this can be found
in both Whittaker [1915] and Shannon [1949] but perhaps more understandably in Wolberg [1990]
or Foley et al [1990, section 14.10]. The sinc function has also been called the ‘cardinal function’,
[Petersen and Middleton, 1962, p.292], the ‘cardinal sine’ [Marion, 1991, p.24], and some call it
the ‘cardinal spline’ [Maeland, 1988 p.213]. However the term ‘cardinal spline interpolation’ is
often used in a wider sense to mean any interpolation. Schoenberg [1973] uses the term to describe
interpolants which fall between the sinc interpolant and linear interpolation in complexity.

Other perfect interpolation reconstructors exist for other classes of signal, but, for a square pixel
grid, a two-dimensional sinc function perfectly reconstructs all signals band-limited to |νx|, |νy| < 1

2T .

To use this ‘perfect interpolation’ one of the following two methods must be used: either (a)
convolve the original image samples with the appropriate sinc function, or (b) do the appropriate
processing in the continuous frequency domain. The latter method, being continuous, is impossible
in a digital computer; the FFT method discussed in chapter 5 is, however, a digital approximation
to it. The former method has drawbacks which will be discussed in more detail in section 4.3.
At this point all we need know is that the ‘perfect’ interpolation method does have drawbacks;
notably it is painfully slow, and for non-bandlimited images it reconstructs aliases (manifesting
mainly as ripples in the intensity surface).

Because of these drawbacks other interpolating and approximating reconstruction methods have
been used over the years. We begin our discussion of these with one very important family of
reconstruction methods: the piecewise local polynomials.

4Equivalently “no periodic constituents of period less than twice the sampling period” [Whittaker, 1915, p.187].
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3.4 Piecewise local polynomials

The piecewise local polynomials are a very useful and commonly used family of reconstructors.
Before looking at them in detail we discuss the general form in one dimension and its extension
to two or more dimensions. This is followed by a section on each order from the first to the third;
the third being used as a case study of the design of such reconstructors. The case study leads
us into a discussion of the factors involved in the design of piecewise local polynomial (and, more
generally, all) reconstructors. In the final major part of this section we discuss the fourth order,
finishing with a brief look at higher orders. At this juncture we need to point out that the order
of a polynomial is one more than its highest degree term. Thus a quadratic is a second degree
polynomial, but a third order one.

3.4.1 The general case in one dimension

The piecewise local polynomial curve consists of polynomial pieces, each one sample width wide.
Every piece of the curve depends on the m nearest sample points. Thus, if m is even, each piece
starts and ends at adjacent sample points; if m is odd, each piece starts and ends halfway between
adjacent data points. This is important and is elaborated on in section 3.4.6.

The general form of the piecewise local polynomial is:

f(x) =
b∑

i=−a

ci(x) fα+i

a and b depend on m:

a =
⌊

m − 1
2

⌋
b =

⌊m

2

⌋
They can be shown to obey the property a + b = m − 1. Thus there are m terms in the sum.

α is an integer dependent on x:

α =




⌊
x − x0

∆x

⌋
, m even〈

x − x0

∆x

〉
, m odd

The samples are assumed to be equispaced at a spacing of ∆x. Sample zero has value f0 and is at
location x0 (figure 3.3).

ci(x) is a polynomial function of order n. Its general form is:

ci(x) =
n−1∑
j=0

ki,j tj

where: t =
x − xα

∆x

For m even: 0 ≤ t < 1. For m odd: − 1
2 ≤ t < 1

2 .

x is thus split into two parameters: an integer part, α, and a fractional part, t. The relationship
between them is:

x = x0 + (α + t)∆x

= xα + t ∆x
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Figure 3.3: The relationship between xi, fi and ∆x. The xi are equispaced along the x-axis with
a spacing of ∆x. The value of the sample at xi is fi.

The whole general form can be represented as the single equation:

f(x) =
b∑

i=−a


n−1∑

j=0

ki,jt
j


 fα+i (3.1)

where:

a =
⌊

m − 1
2

⌋
α =




⌊
x − x0

∆x

⌋
, m even〈

x − x0

∆x

〉
, m odd

b =
⌊m

2

⌋
t =

x − xα

∆x

Note that the formula has m × n degrees of freedom (ki,j values). The larger m × n, the more
computation is required. The smaller m × n, the less the reconstructor can achieve. A balance
must be found, choosing m and n to give the best result. In normal use m = n; the reasons
for this are given in section 3.5.5. Figure 3.4 gives some examples of piecewise local polynomial
reconstructors.

3.4.2 Extending to two dimensions

The standard way of extending this to more than one dimension is to use the same one-dimensional
polynomial along each axis of the co-ordinate system (assuming the usual rectangular co-ordinate
system). In two dimensions this thus gives:

f(x, y) =
b∑

i=−a


n−1∑

j=0

ki,jt
j


 b∑

p=−a

(
n−1∑
q=0

kp,qs
q

)
fα+i,β+p

=
b∑

i=−a

b∑
p=−a

n−1∑
j=0

n−1∑
q=0

Ki,j,p,qt
jsqfα+i,β+p (3.2)

where:

Ki,j,p,q = ki,j × kp,q
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n = 4
m = 4(f)

n = 4
m = 4(g)

n = 3
m = 3(d)

n = 3
m = 3(e)

n = 4
m = 2(c)

n = 2
m = 2(b)

n = 1
m = 1(a)

Figure 3.4: Some piecewise local polynomial reconstructed curves, showing the number of points
each segment is based on (m) and the order of the piecewise curve (n). (a) Nearest-neighbour; (b)
linear; (c) two point cubic; (d) interpolating quadratic; (e) approximating quadratic; (f) Catmull-
Rom cubic; and (g) approximating cubic B-spline.
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a =
⌊

m−1
2

⌋
b =

⌊
m
2

⌋

α =

{ ⌊
x−x0
∆x

⌋
, m even〈

x−x0
∆x

〉
, m odd

β =




⌊
y−y0
∆y

⌋
, m even〈

y−y0
∆y

〉
, m odd

t = x−xα

∆x s = y−yβ

∆y

Whilst this is only the product of two functions of the form of equation 3.1 it appears considerably
more complex. Because the two-dimensional form is unwieldy we use the one-dimensional form in
our work. We keep in mind that, in real image resampling, the equivalent two-dimensional form is
used. The extension is similar for three or more dimensions.

It is possible to extend from one to many dimensions in a different way. This is very seldom done
but one such extension method is discussed in section 3.4.5.

It is also possible to use different m and n values in each dimension, although it is difficult to
conceive of a situation that would warrant it. Perhaps a spatio-temporal resampling would require
a different reconstructor in the temporal dimension to that used in the spatial dimensions.

3.4.3 Why are they so useful?

The piecewise local polynomials are easy to understand, simple to implement, and quick to evaluate.
The localness is especially useful in stream processing applications. The family contains many
reconstructors which have been studied over the years: some in their own right and some as
approximations to more complex functions.

Having examined the general form of the family we now move on to discuss the first, second, and
third order sub-families.

3.4.4 Nearest-neighbour

The simplest reconstruction method of all is the nearest-neighbour method which assigns to each
point the intensity of the sample at the sample point nearest to that point. It is the first order
piecewise linear polynomial. The parameters, m and n, are set to m = n = 1. The single degree of
freedom is given the value 1 so that the function interpolates the sample points. The function is:

f(x) = fα

where:

α =
〈

x − x0

∆x

〉
and its kernel is the box function:

h(s) =
{

1, |s| < 1
2

0, otherwise (3.3)

Thus the value of f(x) at any point is based on just a single sample value. An example of nearest-
neighbour reconstruction is shown in figure 3.4(a).

This reconstructor produces an intensity surface which is, in general, discontinuous. It is the worst
of the common methods, but it has been widely used because of the speed with which it can be
implemented and its sheer simplicity. Improvements in computer power have meant that it has
been replaced in many applications although it is still the dominant method in one area: frame
buffer hardware zoom functions [Wolberg, 1990, p.127]. It is only recently that hardware has
become available for real-time hardware magnification using more sophisticated algorithms [TRW,
1988, chip TMC2301].
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This reconstructor is the first order member of the family of B-splines. Each member of this family
is generated by convolving a number of box functions to produce the filter kernel [Andrews and
Patterson, 1976]. The first order member’s filter (equation 3.3) is a single box function. Convolving
two of these together produces the second order member: linear interpolation.

3.4.5 Linear interpolation

This is, perhaps, the most used reconstruction method. In one dimension it involves the two closest
sample points to each point. The general form of a second-order piecewise linear polynomial with
m = n = 2 is (from equation 3.1):

f(x) = (at + b)fα

+ (ct + d)fα+1

where:

α =
⌊

x − x0

∆x

⌋
t =

x − xα

∆x

If we wish this to be an interpolating method then the four degrees of freedom are completely
specified to give:

f(x) = (1 − t)fα + tfα+1

It is basically a ‘join the dots with straight lines’ method and it is hard to think of any other useful
values for the degrees of freedom. The filter kernel for this function is the convolution of two box
functions (equation 3.3), producing a ‘tent’ function:

h(s) =




1 + s, −1 < s < 0
1 − s, 0 ≤ s < 1
0, otherwise

An example of this type of reconstruction is shown in figure 3.4(b).

There are two ways of extending this to two dimensions. The first is as described in section 3.4.2
and produces possibly non-planar, bilinear patches bounded by four sample points. The other
divides each square bound by four adjacent sample points into two triangles and produces a planar
patch in each triangle (figure 3.5) [Pratt, 1978, pp.114–116]. The two methods generally do not
produce the same result and the latter method can produce different results depending on how the
square is split into triangles. We will consider only the former as it is better, is more amenable to
mathematical analysis, and is by far the most used.

Linear interpolation produces an intensity surface which is guaranteed continuous; however, it is
discontinuous in its first derivative. It is one of the most widely used reconstruction algorithm
and is recommended by Andrews and Patterson [1976] in their study of interpolating B-splines,
of which it is the second order member. It produces reasonable, but blurry, results at a moderate
cost [Wolberg 1990, p.128]. However, often a higher fidelity is required and so we go on to higher
orders of polynomials.

3.4.6 Quadratic functions

The quadratic functions have m = n = 3; each section is thus a quadratic curve based on three
points. This family of reconstructors does not appear to have been studied. Hence we make the
quadratics a case study in the design of reconstructors. We begin with the general case, adding
more and more criteria to the function until we have used all of the degrees of freedom to produce
the best possible quadratic reconstructor.
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(a) (b) (c)

Figure 3.5: Two ways of extending linear interpolation to two dimensions. (a) shows the bilin-
ear approach, which we recommend. (b) and (c) show the subdivision into two planar triangles
approach. Notice that this can lead to different results depending on how the square is split into
triangles (after Pratt [1978] fig. 4.3–6).

Before doing so, however, we must clear up a misunderstanding in the literature. Wolberg [1990]
says that third order polynomials are inappropriate because it has been shown that their filters are
space-variant with phase-distortions and, further, that these problems are shared by all polynomial
reconstructors of odd order. This result is attributed to the fact that the number of sampling points
on each side of the reconstructed point always differs by one. Wolberg thus does not consider any
polynomials of odd order.

He bases his conclusion on the work of Schafer and Rabiner [1973] who show this result given certain
assumptions (perhaps their work explains why no-one has considered quadratic reconstruction).
However, as will be shown, if we replace one of Schafer and Rabiner’s initial assumptions with
another we can produce quadratic polynomials whose filters are space-invariant and which produce
no phase-distortion.

It should also be noted that nearest-neighbour (first order) reconstruction is an odd order method
and that Wolberg (and many others) do consider this without considering the fact that the number
of sampling points on each side of the reconstructed point always differs by one (zero on one side
and one on the other). This lack of consistency seems to be because nearest-neighbour is so simple
that it has linear phase anyway, and so produces no phase distortions.

Parker et al [1983], who also consider the nearest-neighbour interpolant, say that using three points
for reconstruction (that is: quadratic reconstruction) would result in two points on one side of the
reconstructed point and only one point on the other side. They believe that this is a bad thing
and therefore conclude that the next logical reconstruction function (after linear reconstruction)
would use the two nearest points in each direction, that is: cubic reconstruction.

It is true that quadratic reconstruction requires that there be two points on one side of the recon-
structed point and only one on the other but our assertion is that if these three points are the three
points closest to the reconstructed point then a space-invariant, non-phase-distorted, perhaps even
useful, reconstruction method can be created.

It is this assumption that the three points used for quadratic reconstruction are the three closest
to the reconstructed point that distinguishes our work from that of Schafer and Rabiner [1973].
They assume that each piecewise segment of the curve must start and end at sample points.
This leads to an unbalanced situation (figure 3.6). In half of each piecewise segment there is a
fourth sample point that is closer to the reconstructed point than one of the sample points that is
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P

Q
R

S

α

γ

Figure 3.6: An unbalanced situation with a quadratic piece starting and ending at sample locations.
The piece depends on three points: Q, R, and S. It is defined over the range α, to start and end
at points Q and R. Thus for half the range, that is for range γ, point P is closer to the points on
the reconstructed curve than point S, although it is point S which is used to calculate values.

s
-1 0 1 2

h(s)

0.5

1

Figure 3.7: The kernel of one of Schafer and Rabiner’s quadratic interpolants. This kernel does
not have linear phase, as can be readily seen from the fact that the kernel has no vertical line of
symmetry.

used to calculate the reconstructed value. Schafer and Rabiner prove that a quadratic Lagrange
interpolating function based on this assumption does not have linear phase (that is: it produces
phase distortion in the reconstructed intensity surface) and, hence, is useless as a reconstructor.
It can be shown that any quadratic reconstructor based on this assumption will not have linear
phase (see section 3.5.1 for a discussion of linear phase).
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∆ x

2
∆ x

Figure 3.8: Each piece of a quadratic local polynomial starts and ends halfway between sample
points.

The filter kernel for the continuous version of one of Schafer and Rabiner’s quadratic Lagrange
interpolants is shown in figure 3.7. It is defined as:

h(s) =




1
2s2 + 3

2s + 1, −1 < s ≤ 0
−s2 + 1, 0 < s ≤ 1
1
2s2 − 3

2s + 1, 1 < s ≤ 2
0, otherwise

(3.4)

The other possible Lagrange interpolant’s kernel is this mirrored in the line s = 0.

It is obvious from this that the interpolant does not have linear phase. A reconstructor with linear
phase obeys the rule that h(s− s′) = h(−(s− s′)) for some constant s′. That is to say the function
is symmetric about the line s = s′. For zero phase s′ = 0 and h(s) = h(−s).

The effect of linear phase is to translate the zero phase intensity surface in the spatial domain.
Thus we can, without loss of generality, concentrate on the zero phase situation. The idea of linear,
rather than zero phase comes from work in the time domain where a reconstructed point can only
be output after all of the sample points which affect its value have been input. In a real-time
system there must thus be some delay between points going into and points coming out of the
system when data occurring after the time of the required output point affects that output point’s
value. Linear phase is necessary in such cases. In our case we have all of the data points available
at once and so need only concern ourselves with the zero phase case. Should we need to shift the
spatial domain filter later then we can be assured that it will have linear phase if we simply let
h′(s) = h(s − s′) for some constant s′.

We will start by looking at the general quadratic reconstructor in the spatial domain. Its intensity
surface will be made up of a piecewise quadratic curve. Every point on the curve will depend on
the three sample points closest to that point. Thus each quadratic piece will start and end halfway
between samples (figure 3.8). The equation is

f(x) = (at2 + bt + c)fα−1

+ (dt2 + et + f)fα

+ (gt2 + ht + i)fα+1

(3.5)

where α =
〈

x − x0

∆x

〉
and t =

x − xα

∆x

We want this function to have zero phase. This applies the restriction that the function’s filter
kernel, h(s), is real and even. For f(x) above, the kernel is:

h(s) =




gs2 + (h + 2g)s + (i + h + g), − 3
2 ≤ s ≤ − 1

2

ds2 + es + f, − 1
2 ≤ s ≤ 1

2

as2 + (b − 2a)s + (c − b + a), 1
2 ≤ s ≤ 3

2

0, otherwise
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For this to be real and even, we require h(s) = h(−s). This gives us the values of four parameters,
say e, g, h, and i, in terms of the other five:

e = 0, g = a, h = −b, i = c

Thus reducing equation 3.5 to:

f(x) = (at2 + bt + c)fα−1

+ (dt2 + f)fα

+ (at2 − bt + c)fα+1

(3.6)

We now have a system with five degrees of freedom, compared to the original nine. What we use
these degrees of freedom for depends on what features we would like our function to have.

Looking back we can see that nearest-neighbour interpolation does not produce a continuous curve,
whilst linear interpolation does. So the first ‘desirable feature’ (after zero phase) is to constrain
the curve to be continuous (this is called C0-continuity: continuity of the function itself). We
do this by making sure that all the pieces join up at the ‘knots’. If f(x) = f(α, t) (that is:
f(x) = f(xα + t∆x)), then we want f(α, 1

2 ) = f(α + 1,− 1
2 ):

( 1
4a + 1

2b + c)fα−1 + (1
4d + f)fα + (1

4a − 1
2b + c)fα+1

= (1
4a − 1

2b + c)fα + (1
4d + f)fα+1 + (1

4a + 1
2b + c)fα+2

Which gives us two parameters in terms of the other three (say, c = − 1
2b− 1

4a and d = −4(b+ f)).
This reduces equation 3.6 to:

f(x) = (at2 + bt + (− 1
2b − 1

4a))fα−1

+ (−4(b + f)t2 + f)fα

+ (at2 − bt + (− 1
2b − 1

4a))fα+1

(3.7)

Leaving us with the three degrees of freedom: a, b and f .

We can use these in an attempt to make the piecewise quadratic interpolate the points. This
requires that f(xα) = fα:

fα = f(xα) = (− 1
2b − 1

4a))fα−1

+ (f)fα

+ (− 1
2b − 1

4a))fα+1

Giving us a and f , say, in terms of the one remaining parameter: a = −2b and f = 1.

We are thus left with one degree of freedom: b. Equation 3.7 can now be rewritten as:

f(x) = (−2bt2 + bt)fα−1

+ (−4(b + 1)t2 + 1)fα

+ (−2bt2 − bt)fα+1

(3.8)

Thus far our function is doing no more than linear interpolation; it is: zero phase, C0-continuous
and interpolating.

Let us add to this list: continuous in the first derivative (that is C1-continuous). This requires:

f ′ (α, 1
2

)
= f ′ (α + 1,− 1

2

)
(3.9)

Substituting this into equation 3.8 we get:

(−b)fα−1 + (−4b − 4)fα + (−3b)fα+1

= (3b)fα + (4b + 4)fα+1 + (b)fα+2
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Giving us the two conditions that:
b = 0 and b = − 4

7

This is an inconsistency and so we cannot have a zero-phase, C1-continuous, interpolating, piece-
wise quadratic reconstructed surface.

If we now remove the criterion that the curve be interpolating and enforce the criterion that it be
C1-continuous we can apply equation 3.9 to equation 3.7 giving, say, b and f in terms of the one
remaining parameter: b = −a and f = 3

2a. Again we can rewrite equation 3.7:

f(x) = (at2 − at + 1
4a)fα−1

+ (−2at2 + 3
2a)fα

+ (at2 + at + 1
4a)fα+1

Factoring a out of this we get:

f(x) = a[ (t2 − t + 1
4 )fα−1

+ (−2t2 + 3
2 )fα

+ (t2 + t + 1
4 )fα+1]

(3.10)

So we now have two families of curves: zero-phase, C0-continuous and interpolating, as given in
equation 3.8; and: zero-phase, C1-continuous and approximating as given in equation 3.10. These
two families are plotted in figures 3.9 and 3.10, respectively, acting on a sample data set designed
to illustrates some of their properties.

Given these families, what criterion can we use to pick the best reconstructor? Chu [1990], in a
paper on the use of splines in CAD, uses the criteria that, if several of the points lie in a straight
line then the interpolating function should give a straight line. This makes sense in an image, in
as much as if several adjacent sample points have the same intensity then the intensity surface
between those points should be that constant intensity (except possibly near the end of the run
of constant intensity sample points). Look at it this way: we are producing a quadratic segment
based on the nearest three sample points. If these three points lie in a straight line then the only
sensible shape for that quadratic segment is to lie on that straight line. The only information
available for the segment is those three points: if they lie in a straight line then the segment must
too; there is no more available information for it to do anything else.

Applying this criteria to our two families, we find that, for the C0-continuous interpolant: b = − 1
2 .

For the C1-continuous approximant: a = 1
2 . Examining figures 3.9 and 3.10, we see that these two

curves are the ones which appear to most nearly match the implied shape of the data. These final
two curves are shown in figure 3.11. Their equations are:

C0-continuous, interpolating quadratic:

f(x) = (t2 − 1
2 t)fα−1

+ (−2t2 + 1)fα

+ (t2 + 1
2 t)fα+1

(3.11)

C1-continuous, approximating quadratic

f(x) = (1
2 t2 − 1

2 t + 1
8 )fα−1

+ (−t2 + 3
4 )fα

+ (1
2 t2 + 1

2 t + 1
8 )fα+1

(3.12)

Perhaps the most important thing to notice about both functions is that they are constrained to
pass through the midpoints of the segments joining each pair of adjacent data points; that is they
must pass through the points : (

xα + xα+1

2
,
fα + fα+1

2

)
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b = -1.25

b = -1.00

b = -0.75

b = -0.50

b = -0.25

b =  0.00

b = +0.25

Figure 3.9: The one parameter family of C0-continuous interpolating quadratics (equation 3.8)
acting on a one-dimensional image.

Formally this constraint is a direct result of imposing the C0-continuity and straightness criteria
on f(x). Intuitively the reasoning is that any two adjacent parabolic segments must meet at a
point midway between the two sample points (that is: at x = xα+xα+1

2 ) and that, at this point,
the value of f(x) can only depend on the two sample points common to both segment definitions.
Thus, the only sensible value of f(x) lies on the line segment connecting those two points; and
therefore f(x) is constrained to pass through the midpoint of this line segment.

This problem will occur, in some form, for all odd order, piecewise polynomials, because, in each
case, the segments meet midway between sample points rather than at sample points (which is
where they meet in even order, piecewise polynomials).

The C0-continuous interpolant (equation 3.11) does no more than the linear interpolant (sec-
tion 3.4.5). They have the same features (zero-phase, C0-continuity, interpolating and straight-
ness); they achieve the same thing in different ways. With linear interpolation each segment is
the single straight line segment between two adjacent data points; while with the quadratic inter-
polant each segment is the single parabolic segment through a data point and the two adjacent
midpoints. In both cases the piecewise curve is exactly defined by the only possible pieces that
can pass through the controlling points.

The C0-continuous interpolant can be shown to be a linear blend of two linear functions, as
illustrated in figure 3.12. This is analagous to Brewer and Anderson’s [1977] Overhauser cubic
function which they derived as a linear blend of two interpolating parabolas. This fourth order
function is better known as the Catmull-Rom cubic [Catmull and Rom, 1974]. Our third order
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a = -0.50

a = -0.25

a =  0.00

a = +0.25

a = +0.50

a = +0.75

a = +1.00

a = +1.25

Figure 3.10: The one parameter family of C1-continuous approximating quadratics (equation 3.10)
acting on a one-dimensional image.
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(a)

(b)

Figure 3.11: The two piecewise local quadratic reconstructors acting on a one-dimensional im-
age: (a) the C0-continuous interpolant (equation 3.11), (b) the C1-continuous approximant (equa-
tion 3.12).
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Figure 3.12: The C0-continuous quadratic interpolant as a linear blend of two linear functions. p(r)
and q(s) are straight lines passing through the data points as shown. c(t) is a linear blend of these,
producing a quadratic function which passes through the central data point, and the midpoints of
the two lines. c(t) is calculated from p(r) and q(s) as: c(t) = (1 − t)p(t + 1

2 ) + (t)q(t − 1
2 )
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function is one of the general set of Catmull-Rom curves described in section 3.6.2.

The C1-continuous approximant (equation 3.12) is also constrained to pass through the midpoints
but not through the sample points. It seems counter-intuitive to have a function which is con-
strained to pass through non-sample points and yet does not, in general, pass through the sample
points themselves. However, this function is of good lineage, being the third order B-spline. It can
be generated by convolving three box functions (equation 3.3).

Having looked at these two quadratic reconstruction methods, we can see that both have detrac-
tions. The C0-continuous interpolant can be said to do little more than linear interpolation (in
fact, it can be viewed as adding a small ‘correction’ to linear interpolation, [Press et al, 1988,
chapter 3]), whilst the C1-continuous approximant is constrained to interpolate a set of points
that are not the sample points (but are derived from them).

3.4.7 Visual evaluation

While the above comments are valid from an inspection of the equations, an important test of the
quality of any reconstructor is a visual inspection of the intensity surface that it produces. We said
in section 3.4.5 that the linear interpolant produces a blurry intensity surface. Comparing the two
quadratic reconstructors to linear interpolation we find that the approximant generates a blurrier
surface than linear, and the interpolant generates a less blurry surface.

If we now compare these quadratics to similar cubic reconstructors, we find that the quadratic
approximant is almost as blurry as the approximating cubic B-spline. The surprising result is that
the intensity surface reconstructed by the quadratic interpolant is practically indistinguishable from
that generated by the Catmull-Rom cubic interpolant, which is the best of the cubic interpolants
(section 3.6.2).

As the quadratic can be evaluated in approximately 60% of the time of the cubic, this quadratic
would appear to offer a faster way of achieving similar visual quality to the Catmull-Rom cubic.

3.4.8 Summary

We have shown that third order, zero-phase reconstructors exist. We have not disproved Schafer
and Rabiner’s [1973] proof that such a reconstructor does not exist, given certain initial assump-
tions; rather we have changed one of the initial assumptions and thus been able to consider a
different family of functions.

From the family of third order, zero-phase reconstructors we have found two interesting members
by progressively applying fruitful criteria to the general third order, zero-phase reconstructor.
Both of these bear the straightness and C0-continuity criteria. One is also C1-continuous and can
be shown to be the third order B-spline. The other is interpolating and only C0-continuous. It
can be shown to be a linear blend of two linear functions, and gives similar visual quality to the
Catmull-Rom cubic discussed in section 3.6.

The derivation of these third order reconstructors has brought out the important issue of what
criteria a reconstruction method should include. The next section considers the various criteria
which could be incorporated in a reconstructor.

3.5 What should we look for in a NAPK reconstructor?

There are many factors which could be taken into consideration when designing a ‘no a priori
knowledge’ reconstructor. In this section we will discuss these factors, with specific reference to
piecewise local polynomials.
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(b)

(a)

(c)

Figure 3.13: The effects of a non-linear phase reconstructor. (a) and (b) are the same data set,
one the reverse of the other. They have both been reconstructed by the same non-linear phase
reconstructor (equation 3.4 was used). (c) is (a) reversed so as to allow easy comparison with (b).
The two curves are obviously different.

3.5.1 No phase distortion

The first need is for linear phase. This idea was introduced in section 3.4.6. It basically ensures
that the signal will not be distorted by its frequency components having their phases shifted by
non-linear amounts (shifting them by linear amounts is equivalent to moving the entire signal in
the spatial domain [see page 66]; shifting them by non-linear amounts produces distortion in the
spatial domain). Practically, linear phase implies that the reconstruction filter’s kernel is real and
evenly symmetric about some point. In filter design we can, without loss of generality, use the
zero phase situation. With zero-phase the kernel is real and even (symmetric about the origin).
In general, it would seem that a spatial filter can always have zero phase, while a temporal filter
needs linear phase in the cases where a zero phase filter would be non-causal.

A very basic reason behind the need for zero or, at most, linear phase is for the intensity surface
to be the same whether the data is presented forward or backward. With a non-linear phase
reconstructor the orientation of the data affects the shape of the intensity surface, while with a
linear phase reconstructor the orientation of the data has no bearing on the shape of the intensity
surface. An example of this is given in figure 3.13.

The practical outworking of having linear phase is that, if there are an odd number of points
controlling each section then the sections will start and end midway between sample points. If
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there are an even number of points then the sections will start and end at sample points.

Other factors

While a linear phase reconstructor ensures that we will get no spatial distortion due to phase shifts
in the frequency domain, our reconstructor still needs many more constraints in order that the
spatial domain intensity surface is a good approximation to the original intensity surface. What
is meant by ‘good approximation’ tends to depend on who you ask: are we trying to approximate
the cardinal function through the sample points?, a Gaussian reconstructed surface?, or the real
original function? Are we trying to make the intensity surface mathematically nice? (that is: obey
some predefined mathematical criteria of goodness) or visually nice? (that is: look right). In this
entire section we consider both mathematical and visual criteria for correctness.

Whatever the effect we are trying to achieve, from now on we can only affect magnitudes in the
frequency domain, because we have already constrained our reconstructor to have zero (or at most
linear) phase. Thus, if ever we need to look at the frequency response of a linear phase filter we
know that we need only consider the magnitude of the frequency response.

3.5.2 Continuity

Continuity is arguably the most important criterion for our intensity surfaces, after linear phase.
There are several grades of continuity. We met the first two in section 3.4.6. C0-continuity is
simply continuity of the intensity surface. C1-continuity is C0-continuity plus continuity of the
first derivative of the intensity surface. In general, Cn-continuity is C0-continuity plus continuity
of all derivatives of the intensity surface up to and including the nth.

The degree of continuity required depends on the application. In Computer-Aided Design (CAD),
where design curves are being ‘reconstructed’ from control points, a minimum of C2-continuity is
generally desirable [Chu, 1990, p.283].

For our application (reconstructing intensity surfaces) we have seen that a reconstructor with
no continuity (the nearest-neighbour interpolant) is in frequent use and that the most common
reconstructor (linear) has only C0-continuity. Thus the stringent requirements of CAD are not
essential here.

How much continuity is required for intensity surface reconstruction? Nearest-neighbour interpola-
tion is not good enough for many purposes and has been replaced by linear and other methods. The
human eye is very sensitive to intensity differences [Pratt, 1977] and so C0-continuity is desirable.

It is true that the original intensity surface may have had C0-discontinuities (that is: edges5),
but it is extremely unlikely that the nearest-neighbour reconstructed intensity surface has C0-
discontinuities in the same place. The human eye is so sensitive to discontinuities that adding
incorrect ones produces very visible rastering artifacts (for example: the familiar blocky effect due
to nearest-neighbour interpolation; see figure 2.13).

C0-continuity is thus highly desirable because of the human eye’s ease of picking out C0-discontinuities.
Can we stop at C0-continuity? In the design of our quadratic reconstructors we attempted to en-
force C1-continuity. How much continuity is required?

Keys [1981] in his development of a cubic interpolant constrains it to be zero-phase, interpolating,
and C1-continuous, but gives no reason for doing so [Keys, 1981, p.1154] except to say that C1-
discontinuities are not normally desirable [ibid., p.1159]. Mitchell and Netravali [1988, p.223], in
their study of cubic filters, insist that the filter should be smooth in the sense that its value and first
derivative are continuous everywhere (that is: C1-continuous). Their reason is that discontinuities

5‘C0-discontinuity’ is not a term defined in the literature. We define ‘Cn-discontinuity’ to mean “discontinuous
in the nth derivative but continuous in all derivatives from 0 . . . n − 1”.
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in the function lead to high-frequency leakage in the frequency response of the filter which can allow
aliasing. Chu [1990, p.283] states that, for CAD applications, the curves should have C2-continuity
(that is: continuity of curvature). Foley, van Dam, Feiner and Hughes [1990, p.479] say that there
are applications, such as the aerodynamic design of cars and aeroplanes, where it is important to
control higher-derivatives than the second; so we can assume that C3- or even C4-continuity is
required here. However, we are dealing with an intensity surface rather than with a curve that
will be seen as a wiggly line. A gradient, or a discontinuity in intensity is perceived differently to
a gradient or a discontinuity in a line, for example in a CAD curve. For this reason the criteria
used for continuity in CAD applications are probably irrelevant.

The visual evidence favours C0-continuity — even though this intensity surface will never be seen
(it must go through at least one sample-and-reconstruct cycle before it is consumed visually); lack
of C0-continuity can cause visual problems which propagate through this cycle.

Unfortunately, it is not true that C0-continuity is desirable in all cases. If a C0-discontinuity in
the intensity surface matches a C0-discontinuity in the original surface then the result is what we
want (assuming that the sampling method is chosen intelligently). A good example of this is using
nearest-neighbour interpolation to reconstruct a certain type of checkerboard image. The edges
in the original image fell along pixel edges and so the nearest-neighbour interpolated image is an
exact reconstruction of the original (figure 7.9). Such cases are, however, rare. All we can say
from visual evidence is that introducing C0-discontinuities in the reconstructed intensity surface
in places where they did not exist in the original intensity surface is a bad idea. With no a priori
knowledge we cannot know where any C0-discontinuities could have been in the original image and
so C0-continuity is a good criterion to use if there is no a priori knowledge about the placement
of C0-discontinuities.

The visual evidence favouring C1-continuity is much weaker than that for C0-continuity because
the visual response to a C1-discontinuity is much weaker than the response to a C0-discontinuity.
There is evidence that the human visual system cannot detect C2-, or higher, discontinuities
in intensity, and there exists little contrary evidence in favour of human ability to detect these
higher order discontinuities. Mach [1865] does suggest that the Mach band effect is related to
the value of the second derivative of intensity and hence the visual system is slightly sensitive to
C2-discontinuities. It seems unlikely that we are affected by C2-discontinuities in the reconstructed
intensity surface, especially as there is at least one cycle of sampling and reconstruction between
this intensity surface and the intensity surface that is displayed and, hence, viewed by a human. On
the other hand, if humans could be slightly sensitive to it, we should take this into consideration.

Turning to the mathematical evidence for requiring continuity we find much stronger arguments.
Any discontinuity in a spatial function requires high, up to infinite, frequencies in the frequency
domain. To minimise aliasing artifacts, high frequencies must be minimised, thus discontinuities
should be avoided.

The biggest problems in reconstructed intensity surfaces arise from C0-discontinuities; however,
C1-discontinuities are enough of a problem that Mitchell and Netravali [1988, p.223] cite this
as the reason for requiring C1-continuity. C2-discontinuities seem to cause few problems and
C2-continuity can be considered an optional extra: it is nice to have but not at the expense of
other, more important criteria. Above C2-continuity, other problems start to creep in because of
the number of degrees of freedom required to produce higher orders of continuity. The intensity
surface may oscillate wildly to allow for Cn-continuity (n > 2) and this is a visually undesirable
effect.

The recommendations for continuity are:

• C0-continuity is a very high priority;

• C1-continuity is a medium priority (it makes for smooth changes and there is evidence that
humans detect C1-discontinuities);

• C2-continuity is a low priority, it need only be pursued when more important criteria have
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been met;

• any higher continuity is a very low priority, it may actually be counter-productive to insist
on higher continuity in a piecewise local polynomial as a lot of degrees of freedom, and
hence a high order, are required to allow for it. Forcing a higher order of continuity may
cause undesirable rippling artifacts in the reconstructed intensity surface. However, from a
frequency domain point of view, the higher n in the Cn-continuity, the better the frequency
response should be, all other things being equal.

Having decided, for a given reconstructor, that Cn-continuity is desired, it is enforced by ensuring
that the piecewise function is Cn-continuous across the joins, or knots, between the pieces. Each
piece is infinitely differentiable along its length by its very nature; it is only the ends that need to
be matched up.

3.5.3 Straightness

This property can be interpreted in two ways, one of which includes the other. The first is that,
for a piecewise function where each piece depends on the m nearest points; if, for a given piece,
the sample value at all m points is the same, then the piece should have that value along its
entire length. In other words, if the samples controlling a piece have a constant value then the
reconstruction for that piece is a flat constant signal, producing a visually correct result.

Mitchell and Netravali [1988, p.223] explain the need for this criterion in a different way: it
removes any sample frequency ripple. If you look back to figure 3.9 you will see that, for every
reconstructed function except the one which meets this criterion (b = − 1

2 ) there is a periodic ripple
at the sample frequency. By insisting on this straightness criterion, this ripple is designed out of the
reconstruction. Mitchell and Netravali [1988] illustrate this in their figure 8 using an unnormalised
Gaussian filter. They say that sample frequency ripple can be shown to be aliasing of the image’s
DC (‘direct current’ or ‘zero frequency’) component in the frequency domain. Designing sample
frequency ripple out of the filter ensures that its frequency response will be zero at all integer
multiples of the sampling frequency (except zero), thus eliminating all extraneous replicas of the
DC component. Parker, Kenyon and Troxel [1983, p.36] say that the straightness criterion also
forces the reconstructor to have a DC amplification of one. This means that the average intensity
of the intensity surface is the same as that of the image.

The mathematical expression of this constraint is that:

∞∑
m=−∞

h(s − m) = 1, ∀s ∈ R

Looking at it another way, for any order of reconstructor as given in equation 3.1, for the case
where all the points affecting the piece have the same value (fi = fα, i ∈ [α − a, α + b]) we have:

f(x) = fα

b∑
i=−a

n−1∑
j=0

ki,jt
j

We would like:

fα = fα

b∑
i=−a

n−1∑
j=0

ki,jt
j , ∀t ∈ T

T =
{

[0, 1), m even
[− 1

2 , 1
2 ), m odd
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which implies that:
b∑

i=−a

ki,j = 0, ∀j ∈ {1, 2, . . . , n − 1}

b∑
i=−a

ki,0 = 1

(3.13)

These two conditions enforce the straightness criterion.

The second interpretation of straightness goes farther than this and insists that, for any set of m
sample points in a straight line, the reconstructor produces that straight line for the appropriate
polynomial piece. It is easy to show that, to ensure this, two constraints must be added to the two
in equation 3.13 (the derivation of these equations is given in appendix B.4):

b∑
i=−a

iki,j = 0, ∀j ∈ {0, 2, 3, . . . , n − 1}

b∑
i=−a

iki,1 = 1

(3.14)

The first two constraints (equation 3.13) ensure that, for sample points lying on a first order curve
(that is: a horizontal straight line) the reconstructed function also lies on that first order curve.
The second pair of constraints (equation 3.14) ensure that, for sample points, lying on a second
order curve (that is: on an arbitrary straight line) the reconstructed function also lies on that
second order curve. It is also possible to extend this criterion to third order curves, in which case
the points lie not on a straight line but on a parabola.

The first order constraint allows us to select functions with no sample frequency ripple (as in
figure 3.9) and also with the correct multiplicative constant (as in figure 3.10) because it constrains
the function to be both flat (no sample frequency ripple [Mitchell and Netravali, 1988, p.223]) and
interpolative (correct multiplicative constant [Parker et al, 1983, p.36]) when the m points all have
the same sample value.

For both interpolants and approximants this constraint ensures that, given m sample points with
the same sample value, the piece controlled by those points will be flat, constant and interpolating.
This is obviously desirable for an interpolant. A few moments thought and a glance at figure 3.10
will show that it is also the only sensible choice for an approximant; basically the m data points
reduce to a single piece of information (the common sample value) and so the approximant can do
no better than be flat, constant and interpolating.

Obviously, the criterion can be extended to higher orders but it is the first order that is important.
Only the first order constraints (equation 3.13) are required to enforce the straightness criterion
as it is needed for reconstructing intensity surfaces.

3.5.4 Interpolating or approximating

If we assume that our sample points are perfect point samples then we should use an interpolating
function, because the sample points are constrained to lie on the original intensity surface.

In an ideal world that would be the end of the matter, however, it is well known that the intensity
samples in captured imagery cannot be perfect point samples and often do not approximate point
samples at all well. In rendered imagery, perfect point samples are possible, but they are not
common in good quality rendered images. Given this, an approximant is a valid reconstructor.

In order to produce a useful approximant, however, some a priori knowledge is required about
how the samples are produced and/or about the type of image sampled. In the discussion in
this section we are restricting ourselves to the case where we have no a priori knowledge. In this
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case we assume, as mentioned earlier (section 3.1.4), that the samples are perfect point samples,
and reconstruct the surface represented by those samples as best we can. It can be argued that,
because we know that we have not got perfect point samples, it is better to make some assumption
of non-perfection. The problem is that we do not know what assumption to make. It would be
possible to make a guess as to how the samples were formed, or it may be possible to derive
such information from the image. Here we make the guess that they are single point samples,
which is the commonest assumption. Other assumptions could throw us into the world of APK
reconstructors, considered in chapter 6, where reconstruction is done on the basis of knowledge
about the sampling process.

Given the assumption of single point sampling, is there a use for any approximant? The answer
is yes. In order to make a piecewise curve of a certain order interpolate, we have to use some of
its degrees of freedom. If we remove the interpolation constraint then we release these degrees of
freedom. They can then be used to constrain the piecewise polynomial to meet other criteria. This
is exactly what was done in the case of the quadratic in section 3.4.6; the interpolation criterion
was dropped, releasing two degrees of freedom which were used to meet the C1-continuity criterion.
Thus an approximant is useful where criteria other than interpolation are considered more desirable
than interpolation.

3.5.5 Localisation

This is not a criterion applied to our general form (equation 3.1) but is more fundamental, relating
to how that formula was derived. The question is: which sample points are used to calculate the
intensity at any given point? In our examples so far we have used the rule that, for a piecewise
reconstructor of order n, the function value at any point is based solely on the n nearest sample
points to that point.

This leads to several questions:

• Why use the sample points directly?

• Why n points?

• Why the nearest points?

The first question is profound. Our general formula for a piecewise polynomial reconstructor is
given in equation 3.1. This is, however, a specific form of the more general:

f(x) =
b∑

i=−a


n−1∑

j=0

ki,jt
j


 gα+i (3.15)

where:

a =
⌊

m − 1
2

⌋
α =

{ ⌊
x−x0
∆x

⌋
, m even〈

x−x0
∆x

〉
, m odd

b =
⌊m

2

⌋
t =

x − xα

∆x

The difference here is that gα+i is used in place of fα+i The gα are coefficients calculated from the
fα plus, in some cases, other fixed conditions. Equation 3.1 is a special case of equation 3.15 with
gα = fα.

A well known example of equation 3.15 is the interpolating cubic B-spline. Wolberg [1990, pp.136-
137] gives an example of this showing that one method of calculating the gα from the fα is by the
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following matrix equation (assuming N sample points):


f0

f1

f2

...
fN−2

fN−1




=




4 1
1 4 1 0

1 4 1

1
. . . 1
1 4 1

0 1 4



×




g0

g1

g2

...
gN−2

gN−1




That is, F = KG.

Inverting the tridiagonal matrix, K, gives its inverse, K−1, giving us G = K−1F . We thus get a
function for each gα:

gα =
N−1∑
l=0

K−1
α,lfl

where K−1
i,j is the element in the ith row and jth column of the matrix K−1. The nature of K−1

(it contains no zeros) means that every gα depends on every fα. Thus every point, f(x), on the
intensity surface depends on all the fα sample values. In general, for almost all such methods, each
gα value is a function of all of the fα values, and so the conclusions from this specific interpolating
B-spline example can be generalised.

Thus, from equation 3.15:

f(x) =
b∑

i=−a


n−1∑

j=0

ki,j tj


N−1∑

l=0

K−1
α+i,l fl

=
N−1∑
l=0


 b∑

i=−a

n−1∑
j=0

ki,j K−1
α+i,l tj


 fl

=
N−1∑
l=0


n−1∑

j=0

κα,j,l t
j


 fl (3.16)

where:

κα,j,l =
b∑

i=−a

ki,jK
−1
α+i,l

The κα,j,l values can be precalculated in the same way that the ki,j values are for equation 3.1.
Indeed equation 3.16 is almost equation 3.1 with m = N , but note that here κ depends on α while,
in equation 3.16, the equivalent k is independent of α.

By using such a method every point on the intensity surface will, in general, depend on all the
sample points. Finding the intensity value, f(x), for any point will thus involve a lot of calculation.
The great advantage of using only the local sample points (the n nearest) is that the calculation
is fast. If, as in many resampling situations, there is a need for quick computation or for fast
arbitrary sampling off the intensity surface, localisation is a good idea and therefore equation 3.1
is preferable to equation 3.16.

It is feasible to precalculate all of the gα coefficients for use in equation 3.15; and this is generally
what is done in any real system. This gives the same speed advantage in the actual resampling
as using equation 3.1. Instead of calculating intensity values from local sample values they are
calculated from local, pre-computed, gα coefficients.

The disadvantage here is that the precomputation still has to be done and is different for each
image6. If we want a quick reconstructor we may not be willing to pay the price of the precompu-

6whilst the ki,j values are the same for all images, and the κα,j,l for all images of the same size.
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tation. Further, if the data is being processed as a stream, as in scan-line algorithms, it may be
impractical to read and store a whole scanline, calculate the coefficients and produce the output
samples. In this case an algorithm requiring this precomputation of coefficients will be impractical.

The advantage of using precomputed coefficients is that they allow all of the data to be taken into
account at each sample point rather than just the local data. This should, arguably, make possible
a more accurate reconstructor.

In chapter 4 we look at such non-local reconstructors and their advantages. For now we will
concentrate on the simplicity of local reconstructors. That is reconstructors where gα = fα. It
is possible to conceive a way of calculating the gα values which makes f(x) dependent only on
local fα values. For example, gα = 1

4fα−1 + 1
2fα + 1

4fα+1. Such a reconstructor can, however, be
easily recast in the terms of equation 3.1 by changing the ki,j values. Another local possibility is
a non-linear manipulation of the fα values, for example gα = log(fα). We do not consider such
functions here because non-linear manipulations of the intensity values are not useful in resampling
work, section 2.2 points out the necessity of the intensity surface being a linear function of the
input image data.

This still leaves two questions:

• Why n points?

• Why the nearest points?

Why do we use n points when reconstructing with an nth order piecewise polynomial?

A polynomial of order n can be expressed as

f(x) =
n−1∑
i=0

cix
i

That is, it has n coefficients. These n coefficients can be uniquely determined from n data values.
For example, in a piecewise polynomial function each piece is a function of the form:

f(t) =
n−1∑
j=0

cjt
j

where cj =
b∑

i=−a

ki,jfα+i (this is simply a reformulation of equation 3.1).

Note that a + b = n − 1, thus there are n fα+i values involved in calculating the ci co-efficients.

But why use exactly n data points when wanting an order n function? Approaching the problem
from the other end: given m data points why limit ourselves to a function of order m? There are
two alternatives: either use a function with order less than m or use a function with order greater
than m.

A function of order less than m has fewer than m coefficients and thus cannot take all the available
data into account. With an order n function (n < m) the effective result will be that m − n
data points will be irrelevant in calculating the function values, that is: m independent variables
are used to calculate n values therefore the potential of m − n values are ‘lost’. Given that m
points have the expressive power to produce m independent coefficients [Foley et al, pp.478–479]
it seems ludicrous to limit the function to any order less than m. The counter to this observation
is that a good reconstructor, the interpolating cubic B-spline, has m � n. The m data values are
combined to give n coefficients for each segment of the curve, producing a better result than can
be obtained from just n data values. Another example of m > n is given by Keys [1981, pp.1159-
60]. He presents a cubic function based on six data points which has an O(h4) convergence rate
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to the Taylor series expansion of the function being interpolated, as compared to O(h3) for the
Catmull-Rom spline.

The use of a function of order n greater than m, is very tempting. While the data can only
determine m independent coefficients the extra n − m coefficients give more degrees of freedom
with which to satisfy more criteria (note that with a function of order n, and m data points you
get m × n degrees of freedom).

Unfortunately, the problem here is that the coefficients are underconstrained and have to create
data items to define themselves on. There is simply not enough data available to fully define
the function and so the extra criteria that are imposed (using the extra degrees of freedom) force
‘default data values’ to be accepted — for example a quintic function (n = 6) based on m = 4
data points has a potential for two extra data values. As these are not supplied the criteria force
these extra data values to some value, which may be constant for all pieces. For example, in this
case, it may be that the value of the second derivative at each end of the segment is zero. Thus we
now have six data values to base the six coefficients on, the m = 4 real data points plus the two
constant data values that f ′′(α, 0) = 0 and f ′′(α, 0) = 0.

The following example will help to clarify this.

Previously we produced the standard linear interpolant (m = n = 2) when deriving a reconstructor
for the two point case. Now let m = 2 and n = 4. Thus we will produce a piecewise cubic function
where each piece depends on two data points:

f(x) = (at3 + bt2 + ct + d)fα + (et3 + ft2 + gt + h)fα+1

If we now impose the criteria met by the piecewise linear function in section 3.4.5 and use the
extra freedom given by the cubic function to also enforce C1-continuity we get:

f(x) = f(α, t) = (2t3 − 3t2 + 1)fα + (−2t3 + 3t2)fα+1 (3.17)

Thus function’s kernel is:

h(s) =




−2s3 − 3s2 + 1, −1 ≤ s ≤ 0
2s3 − 3s2 + 1, 0 ≤ s ≤ 1
0, otherwise

This is a member of the one parameter family of cubics described by Wolberg [1990, pp.129-131]
and many others (equation 3.20). To produce this particular member the parameter, a, is set to
zero.

Analysis of this function in the spatial domain shows that, for any α: f ′(α, 0) = 0 and f ′(α, 1) = 07.
Thus the two extra data points required by the cubic are provided by these two ‘default data points’;
the first derivatives of the function at xα and xα+1 default to zero. This gives the interpolated
function the form shown in figure 3.14.

The extra C1-continuity provided by the cubic function means that its frequency response is
smoother; it does, however, produce a rather odd looking interpolant.

Maeland [1988] claims, from frequency domain evidence, that this piecewise cubic interpolant
produces a much better quality of interpolation than the simple linear interpolation. In contrast,
Fraser [1989b, p.272–3] claims that it produces much the same quality. Our visual evaluation shows
that it is less blurry than linear interpolation but has a blocky (anisotropic) artifact, similar to
nearest-neighbour, but not as obvious8.

7f ′(α, t) = f ′(xα + t∆x)

8Mitchell and Netravali’s [1988] subjective evaluation also shows that the dominant artifact in this reconstructor
is anisotropy.
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Figure 3.14: The two point cubic operating on an image. Notice that the slope of the curve at
each data point is zero.

Using a function of order higher than m allows more constraints to be met by the reconstructor at
the expense of every piece being partly controlled by these ‘default data values’.

Given that a piecewise function of order n can be used to meet up to n independent data items
the most sensible course of action is to take those n items to be n real data points from the set
of data available, rather than force n − m (m < n) of these items to be default data values, most
likely the same value for every piece. We conclude that m = n is the ideal case but that both
m < n and m > n are useful.

Why the nearest points?

The simple answer is that, to find the value of the function at a given point, the data points which
are most relevant are those nearest to the point. The farther apart two points are, the weaker the
relation between their function values. Thus if you are going to use m data points to calculate the
value at some point, then it is logical to use the m nearest data points.

Thus we should use the nearest sample points to define the pieces of a local polynomial piecewise
function. This gives us simplicity and localisation of data references in implementations. No data
point beyond the local neighbourhood of the point we are interested in is used in the calculation of
the function value at that point; unlike methods with precalculation where every data point tends
to be involved in calculating the function value at every point.

3.5.6 Approximating sinc, approximating Gaussian, or neither

One measure of the quality of a reconstructor is how closely it approximates some other, more
desirable, reconstructor. The reasons for not implementing this more desirable reconstructor could
be many; most often we are looking for a good local approximation to a non-local reconstructor.

Mathematically the sinc reconstructor is the most desirable. Much effort can be expended in
designing a local filter to match the sinc function as closely as possible [Schafer and Rabiner
1973]. This work is usually undertaken in the frequency domain where the frequency response is
designed to be as close to a box function as possible. For example, Reichenbach and Park [1989]
analyse the two parameter family of cubics (equation 3.19) in the frequency domain to find the
best approximation to sinc reconstruction. Another example is Wolberg’s [1990, sec.5.4.7] tanh
filter which has an approximate box function frequency response composed of the product of two
tanh functions.

Visually, the sinc function may not necessarily be the best function to use (figures 2.10–2.13). The
Catmull-Rom function is considered to be a local approximation to the sinc function [Wolberg 1990,
sec.5.4.3] yet both Mitchell and Netravali [1988], and Ward and Cok [1989] claim that visually the
Catmull-Rom cubic produces a better reconstructed intensity surface than the sinc function. What
reasons can be put forward to explain this apparent inconsistency?

Ward and Cok [1989] suggest that this is due to the original signal not being bandlimited and
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thus sinc reconstruction causing ripples near edges because of the aliased high spatial frequencies.
However, we saw in section 2.7 that even a perfectly bandlimited image can display objectionable
ripples in its sinc reconstructed intensity surface. The sinc reconstructed intensity surface of any
image will contain ripples, although, if the image is bandlimited to well below the Nyquist limit,
then the ripples will almost certainly be visually acceptable.

Ward and Cok’s theory is that the sharp cutoff in the frequency domain of the sinc reconstruction
(infinitely sharp, it is a box function) causes the rippling and that passing some frequency informa-
tion above the Nyquist limit is beneficial, producing visually nicer results, especially near edges.
They believe that linear interpolation makes the picture too blurry (and thus must pass too much
information above Nyquist and too little below) whilst the Catmull-Rom cubic interpolant gives
about the right balance.

Taking their argument and developing it further we postulate the following frequency domain
explanation for the perceived differences in intensity surface quality arising from sinc and Catmull-
Rom reconstructions:

Almost any image of interest will have a frequency spectrum which is not bandlimited; this spec-
trum will usually peak near zero and fall off rapidly at higher intensities, as shown in figure 3.15(a).
When sampled without perfect prefiltering, as is usual, the resulting spectrum contains aliases, as
illustrated in figure 3.15(b). Reconstructing this using sinc perfectly reproduces these aliases
(figure 3.15(c)). Comparing figure 3.15(c) with figure 3.15(a) shows what is wrong with the re-
constructed intensity surface: the frequencies just below the Nyquist frequency have too large a
magnitude, whilst those just above have too small. Catmull-Rom cubic reconstruction, on the
other hand, produces a reconstructed surface closer to the original. Figure 3.15(d) shows that
the frequency domain representations of the original and the reconstructed surfaces match much
better than with sinc reconstruction. Those extra high frequencies prevent the offensive rippling
artifacts.

These diagrams, look quite convincing but how realistic are they? Firstly, many images do exhibit
this distribution of frequencies: a high peak near zero and a long tail off to infinity. Certainly
the images we looked at had frequency responses that dropped as they approached the Nyquist
frequency, but they did not fall all the way to zero, which indicates the presence of aliases. The
effect of sampling such a signal will be as illustrated in figure 3.15(b): the frequencies near zero
undergoing little change whilst the frequencies near Nyquist exhibit large changes.

However, these diagrams show only the effect on magnitudes. The effect of phase in all this has not
been mentioned. The phases of the frequency components of the reconstructed intensity surfaces
near and above Nyquist will bear little relationship to those in the original intensity surface, because
the phases of the correct component and the aliased component will be added together, producing
an incorrect result. The aliased component has a large magnitude relative to the correct component
around the Nyquist frequency, so causing the largest errors in phase around this frequency. This
may turn out to be unimportant, but it throws doubt on this explanation of why we observe that
the Catmull-Rom cubic is better that the sinc function at image reconstruction.

The ripples caused by sinc reconstruction are certainly caused by the limited frequency domain
spectrum; that is there are no spatial frequencies greater than the Nyquist frequency. The out-
working of this is that no change can occur in the intensity surface faster than a distance of 1

2νN

(the sampling spacing) and that any change is accompanied by subsidiary ripples on either side.

To explain the good results from Catmull-Rom interpolation we can consider the results in the
spatial domain. Here we note several features of this reconstruction:

• like sinc, no changes can occur faster than 1
2νN

(the sample spacing);

• the side lobe sharpening effect (one ripple either side of an edge) is used to make edges appear
sharper, and is thus not perceived as a ripple but as a sharper edge;

• unlike sinc, no distracting extra ripples are produced;
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Figure 3.15: The effects, in the frequency domain, of sampling and subsequent reconstruction
by sinc and Catmull-Rom reconstructors: (a) the original intensity surface’s Fourier transform,
note that it has frequencies higher than the sampling frequency νN ; (b) the sampled image’s
Fourier transform after sampling at frequency νN , the dotted line is the curve from (a), aliasing
has occurred (c) the Fourier transform of the sinc reconstructed image; the Fourier transform of
the sinc reconstructor is shown by the dotted line; (d) the Fourier transform of the Catmull-Rom
reconstructed image; the Fourier transform of the Catmull-Rom reconstructor is shown by the
dotted line.
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• large, near constant, areas can be reproduced with no visible internal rippling.

Basically the Catmull-Rom cubic panders to our visual system’s predilections, whilst the sinc
function panders to our desire for mathematical correctness. We are good at recognising sharp
edges; the Catmull-Rom cubic sharpens edges. We object to extra ripples in ‘flat shaded’ areas,
which sinc reconstruction produces in abundance; the Catmull-Rom cubic produces none.

Other approximations

The other function to which a good local approximation is frequently sought is the Gaussian. The
Gaussian is infinite in extent, like sinc, and it falls off to zero as it goes to infinity, also like sinc.
There the similarities stop. Sinc is an oscillatory function whilst a Gaussian is strictly positive.
The Gaussian is the limit of the B-spline family. It can be generated by convolving an infinite
number of boxes together. All members of the B-spline family are approximations to the Gaussian.

The Gaussian tends to produce a blurry intensity surface (as do most B-splines) but is prized
because it is strictly positive and has other nice analytical properties [Turkowski, 1990, p.150].
These other properties are irrelevant when designing an approximation as they will not be present
in the approximation. The strict positiveness is an important property which is discussed in the
next section.

The sinc and Gaussian are by far the most approximated functions. There appears to be no work
on approximating other functions. Keys [1981] chooses his cubic function by finding the member of
the family of cubics which produces an intensity surface which matches the Taylor series expansion
for the original intensity surface to as many terms as possible . This criterion is not making
the reconstruction filter approximate some other filter, but is making the reconstructed intensity
surface approximate the original intensity surface in a well defined mathematical way.

The final option is to approximate no particular function at all. This means that the reconstructor
is designed based on the other criteria discussed in this chapter and judged on its own merits, not
on its closeness to some more ‘desirable’ reconstructor. Any resulting resemblance to some other
reconstructor is thus purely coincidental.

3.5.7 Negative lobes vs strictly positive

These terms refer to the shape of the reconstruction filter. All reconstruction filters are mostly
positive (to ensure that the average intensity of the intensity surface is the same as that of the
image from which it is reconstructed, the integrated area under the whole reconstruction filter
must be unity). The debate is over whether the filter should be all positive or whether negative
lobes are permissable. The problem with negative lobes is that they introduce the possibility that
some parts of the intensity surface may have intensity values brighter than the brightest white
in the image, or, worse still, darker than black. The former can be dealt with, as it is always
(theoretically) possible to produce a brighter white. The latter is a major problem, there is no
such thing as negative light, there is no intensity ‘blacker than black’ and so such intensities cannot
be displayed9. Blinn [1989b] says that clamping these values to zero (black) is about the best you
can do, but is not ideal. This issue is taken up in section 4.5.2.

Because of this problem of negative light some have advocated using only a strictly positive kernel.
Unfortunately, such reconstructors tend to produce blurry intensity surfaces. Further this makes
it difficult to produce a good interpolating reconstruction. Blinn [1989b, p.87] asserts that any
decent approximation to a low-pass filter, for either sampling or reconstruction, has negative lobes.

9Negative light is an interesting concept. A negative light bulb, for example, would be very useful: if you are
working nights and have to sleep during the day, just turn on your negative light bulb, flooding the room with
negative light and there you have it, a darkened room. It can’t do anything about traffic noise though.



86 CHAPTER 3. RECONSTRUCTION

It is the negative lobes in the Catmull-Rom cubic, for example, that generate the desirable edge
sharpening effect.

Thus we are faced with a simple choice: either allow negative lobes and cope with any negative
intensities which arise; or reject negative lobes and accept a certain amount of blurriness in the
intensity surfaces.

3.5.8 Computational considerations

In all this we have given little consideration to the length of time required to generate actual values
of the intensity at arbitrary points. Keys [1981, p.1153] remarks “Because of the [large] amount
of data associated with digital images, an efficient interpolation algorithm is essential.” Obviously
some housekeeping calculations are common to all piecewise local polynomials (for example, finding
α and t) but there is part of the calculation which depends on m and n. To calculate a single value
using equation 3.1 (the one-dimensional version) requires m(n + 1) multiplications (plus (n − 2)
to find all the tj values for t ∈ {2, 3, . . . , n − 1}) and (mn − 1) additions. Thus it is an O(mn)
process. For computational efficiency we therefore need to keep m × n as small as possible.

Small m also means that there need to be less of the image in memory at once, an important point
for stream processing: the fewer input points that need to be operated on for each output point,
the better. Speed of computation, which is a function of m×n, not just m, is also very important
in stream processing.

So we find a tension here: on the one hand the larger m × n the more criteria the reconstruction
can meet; on the other hand the smaller m × n, the faster the resampling can be performed.

This generalises to other reconstructors; computational cost is related to ‘M ’, the number of input
points used to produce one output point, and ‘N ’, the amount of processing required for each of
the ‘M ’ input points.

In general, the more criteria a reconstructor has, and the more input points required to generate
one output point, the longer it takes to evaluate.

3.5.9 No extra knowledge

Finally it should be noted that there is no knowledge about the image besides the data points and
thus any reconstruction method must be based solely on information in the data points. Indeed,
this is what is meant by ‘no a priori knowledge’.

Later we will look at what can be achieved when more knowledge is available. For example,
Mitchell and Netravali [1988] show that a much better cubic reconstruction can be produced if
both intensity and first derivative of intensity values are available at each sample point.

3.5.10 Summary

Chu [1990] gives a list of the five features which a good interactive interpolation procedure for
CAD should possess. While providing a good starting point for investigating features which a
good reconstructor should possess, the use of the resulting curve dictates different priorities.

The features which a good NAPK reconstructor should possess are:

• Linear phase.

• C0-continuity, C1-continuity if possible, higher orders of continuity if desirable (a general
rule is that the higher the order the better the frequency response, all other things being
equal).
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• First order straightness, so that the intensity surface does not exhibit sample frequency ripple.

• Maximum use of the available information — a practical outworking of this is if we restrict
ourselves to an order n function then we should use the same number of data points (n) and
the most relevant ones (the closest).

• Reasonable computational effort.

3.6 Cubic functions

We now turn back to considering specific functions. The cubic piecewise functions are amongst
the most studied group of reconstructors. The general form is:

f(x) = (k−1,3t
3 + k−1,2t

2 + k−1,1t + k−1,0)fα−1

+ (k0,3t
3 + k0,2t

2 + k0,1t + k0,0)fα

+ (k1,3t
3 + k1,2t

2 + k1,1t + k1,0)fα+1

+ (k2,3t
3 + k2,2t

2 + k2,1t + k2,0)fα+2

or, more compactly:

f(x) =
2∑

i=−1


 3∑

j=0

ki,jt
j


 fα+i (3.18)

where

α =
⌊

x − x0

∆x

⌋
, t =

x − xα

∆x

Given these 16 degrees of freedom (ki,j) we agree with Mitchell and Netravali [1988] in imposing
the following criteria:

• Linear phase (Mitchell and Netravali do not explicitly state this but it is implicit in their
formulations of the function as a symmetric cubic filter with only eight degrees of freedom,
the other eight are required to ensure linear phase).

• C0-continuity

• C1-continuity

• Straightness (which they call designing “the problem of sample-frequency ripple” out of the
filter).

With these constraints, which, from our discussion in section 3.5, are not contentious, the degrees
of freedom in equation 3.18 are reduced from sixteen to two10.

The function is now as follows:

f(x) = ( (− 1
6B − C)t3 + (1

2B + 2C)t2 + (− 1
2B − C)t + (1

6B) )fα−1

+ ( (2 − 3
2B − C)t3 + (−3 + 2B + C)t2 + (1 − 1

3B) )fα

+ ( (−2 + 3
2B + C)t3 + (3 − 5

2B − 2C)t2 + (1
2B + C)t + (1

6B) )fα+1

+ ( (1
6B + C)t3 + (−C)t2 )fα+2

(3.19)
where B and C are the two remaining degrees of freedom as used by Mitchell and Netravali [1988,
p.223].

10The only bone of contention here could be whether the C1-continuity is necessary. As we decided in section 3.5.2
that C1-continuity is desirable, if possible, and as there are quite enough degrees of freedom to allow C1-continuity
then it is sensible to include it as a criterion here.
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If we add the C2-continuity criterion then the equation above reduces to the case where B = 1 and
C = 0. This C2-continuous cubic is the approximating cubic B-spline (which is not interpolating).

If we impose the interpolating criterion (and do not impose the C2-continuity criterion) then
we get: B = 0 with C still a free parameter. This one-parameter family of interpolating cubic
functions have been extensively studied [Keys, 1981; Park and Schowengerdt, 1983; to a lesser
extent: Maeland, 1988 and Parker et al., 1983].

Keys [1981] uses the parameter a (a = −C) while Park and Schowengerdt [1983] use the parameter
α (α = a). Whatever the name of the parameter, it is the same family of cubics. Its general form
is:

f(x) = ( (a)t3 + (−2a)t2 + (a)t )fα−1

+ ( (2 + a)t3 + (−3 − a)t2 + 1 )fα

+ ( (−2 − a)t3 + (3 + 2a)t2 + (−a)t )fα+1

+ ( (−a)t3 + (a)t2 )fα+2

(3.20)

Various members of this family have been advanced as useful:

−3 ≤ a ≤ 0 because between these limits the parametric cubic is a local approximation to the
sinc interpolant [Wolberg, 1990, p.130].

a = −1 because the slope of the kernel, h(s) at s = ±1 is then equal to the slope of the sinc
function kernel at s = ±1 [Parker et al, p.36].

a = − 3
4 to make the function C2-continuous at s = ±1; it is still C2-discontinuous at s = ±2 [see

Maeland, 1988].

a = − 1
2 to make the interpolation function agree with the Taylor series expansion of the function

being interpolated to as many terms as possible [Keys, 1981]. In this case this means that
the interpolation function can exactly reproduce a quadratic (second-order) function. Park
and Schowengerdt [1983] propose this value also, their argument being that a = − 1

2 gives
the best frequency response in that it provides the best low frequency approximation to the
ideal reconstruction filter (sinc) and is also particularly effective at suppressing aliasing [ibid.,
p.265]. Therefore, they state that it is the optimal value of a in the image-independent case.

a = 0 is recommended by Maeland [1988] as a strictly-positive two-point cubic reconstructor and
is, in fact, the two-point cubic that we derived in section 3.5.5.

“a dependent on the image energy spectrum”. This idea, from Park and Schowengerdt [1983], is
that the value of a is tailored to the energy spectrum of the image that is to be resampled.
They show that, in typical cases, this value should lie in the range − 3

4 ≤ a ≤ − 1
2 .

3.6.1 Other criteria

Mitchell and Netravali [1988] performed an experiment to find the combination of values for B
and C which gave the best subjective results. They concluded that the reconstructor defined by
B = 1

3 , C = 1
3 in equation 3.19 is subjectively the best (based on nine experts’ opinions). This is

neither interpolating nor C2-continuous but a curious blend of two-thirds Catmull-Rom spline (see
below) plus one-third approximating cubic B-spline. This reconstructor will exactly reproduce a
first-order function as will any reconstructor for which 2C + B = 1 [Mitchell and Netravali, 1988,
p.244], reconstructors for which 2C + B �= 1 can only exactly reproduce zeroth-order functions
and the reconstructor C = 1

2 , B = 0 (Catmull-Rom spline) can (as mentioned already) exactly
reproduce a quadratic function.

Mitchell and Netravali [1988] propose a further reconstructor, B = 3
2 , C = − 1

4 which very strongly
suppresses rastering artifacts but also blurs the image.
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3.6.2 The Catmull-Rom spline

The reconstructor for which B = 0, C = 1
2 is commonly known as the Catmull-Rom spline. The

name derives from a 1974 paper by Catmull and Rom in which they propose a large family of
functions defined by the weighted blending of other (usually simpler) functions. Their general
form, translated into our notation, is:

f(x) =
∑

i gi(x)wi(x)∑
i wi(x)

(3.21)

where the gi(x) are the original functions, the wi(x)∑
i
wi(x)

are the weighting or blending functions,

and f(x) is the resulting function. Note that in this model functions are blended together, rather
than sample values as in our model (equation 3.1).

While there are many reconstructors that can be defined using Catmull and Rom’s method, one
specific example in their paper has become widely known as the Catmull-Rom spline. It is generated
as follows:

The gi(x) are defined to be the set of straight lines passing through adjoining points:

gi(x) = fi

(
1 − x − xi

∆x

)
+ fi+1

(
x − xi

∆x

)

The wi(x) are defined to be offset third order B-splines:

wi(x) = B3

(
x − xi

∆x
− 1

2

)
where:

B3(s) =




1
2s2 − 3

2s + 9
8 , 1

2 ≤ s ≤ 3
2

−s2 + 3
4 , − 1

2 ≤ s ≤ 1
2

1
2s2 + 3

2s + 9
8 , − 3

2 ≤ s ≤ − 1
2

(Note that B3(s) is also the kernel of one of our quadratic reconstructors — see equation 3.12.)

This produces the Catmull-Rom spline, which was also chosen by Keys [1981] and Park and
Schowengerdt [1983] as the best member of the family of parametric cubics which they were study-
ing.

There is yet another way of deriving the Catmull-Rom reconstructor. It can be generated by taking
a linear blend of two parabolic functions. This process is explained by Brewer and Anderson [1977]
who base their derivation on earlier work by Overhauser [1968]. It is illustrated in figure 3.16.

The unique quadratic through the three points (xα−1, fα−1), (xα, fα) and (xα+1, fα+1) can be
shown to be:

qα(s) = (1
2s2 − 1

2s)fα−1

+ (−s2 + 1)fα

+ (1
2s2 + 1

2s)fα+1

where s = x−xα

∆x . In figure 3.16, p(r) = q2(r) and q(s) = q3(s).

From this we can easily derive the cubic, cα(t):

cα(t) = (1 − t)qα(t) + tqα+1(t − 1)

Which is the Catmull-Rom spline yet again (in figure 3.16, c(t) = cα(t)).

Brewer and Anderson [1977] call this spline the ‘Overhauser Curve’ after the original inventor of
the parabolic blending method. However Overhauser’s [1968] statement of the method (and Rogers
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Figure 3.16: Brewer and Anderson’s [1977] Overhauser cubic, defined as the linear blend, c(t) of
two interpolating parabolas, p(r) and q(s): c(t) = (1-t)p(r)+tq(s) = (1-t)p(t)+tq(t-1) .
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Figure 3.17: How Overhauser [1968] defined the Overhauser cubic (after Overhauser [1968] figure 1,
p.1).
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and Adams’ [1975, pp.133–138] subsequent restatement) uses a slightly different derivation. His
derivation uses a local coordinate system for each of the two parabolas, as illustrated in figure 3.17.
c(t) is then linearly blended from the two functions, as before, by:

c(t) =
(

1 − t

t0

)
p(r) +

(
t

t0

)
q(s)

To make sense of this it is necessary to have r and s as functions of t. Overhauser chose to define
these two functions by dropping a perpendicular from the point t, on the t-axis, to the r- or s-axis,
as illustrated by the points t1, s1 and r1 in figure 3.17. Unfortunately, this makes the resulting
algebra extremely complex. So much so that it is not worth following for our use11.

Thus, while Brewer and Anderson [1977] do produce a curve in the spirit of Overhauser, it is not
the same curve as that developed by Overhauser [1968].

Brewer and Anderson’s ‘Overhauser Curve’ can be fitted into Catmull and Rom’s formalism by
defining:

gi(t) = qi(t)
wi(x) = B2(x − i)

where B2(s) =




1 + s, −1 ≤ s ≤ 0
1 − s, 0 ≤ s ≤ 1
0, otherwise

B2(s) is a linear blending function. It is the same function as the linear interpolation kernel and
the second order B-spline.

We have now seen that the same spline has been derived independently in four different ways. To
Catmull and Rom [1974] it was the quadratic B-spline blend of three linear functions; to Brewer and
Anderson [1977] it was the linear blend of two quadratics; to Keys [1981] it was the C1-continuous
interpolating cubic which matched a Taylor’s series expansion to the highest order and to Park
and Schowengerdt [1983] it was the C1-continuous interpolating cubic with the best frequency
response. As if this were not enough, there is a fifth derivation of the same cubic, which can
be found in the next section. The fact that the same cubic has been independently put forward
as somehow ‘the best’ cubic by two separate methods, and is also the end result of three other
derivations would seem to be heavy evidence in favour of adopting the Catmull-Rom spline as the
best all-round cubic interpolant. Mitchell and Netravali’s [1988] subjective analysis backs this up;
the Catmull-Rom spline falls near the middle of the region of ‘satisfactory’ subjective behaviour.

Whether the Catmull-Rom spline is the best all-round cubic reconstructor is another question.
Mitchell and Netravali would say no, the reconstructor defined by B = 1

3 , C = 1
3 in equation 3.19 is

subjectively better, while Reichenbach and Park [1989] in their critique of Mitchell and Netravali’s
[1988] paper claim that, from a frequency domain analysis, yes, the Catmull-Rom spline is the
best. Their criterion for ‘best’ is closeness of the reconstructor’s frequency response to that of the
perfect reconstructor: sinc. Wolberg [1990, p.132] points out that this disagreement brings into
question whether Reichenbach and Parks’ criterion for ‘best’ is useful, as it does not equate to the
subjective ‘best’ and, for pictures for human consumption, it is subjective quality that is important.
On the other hand Mitchell and Netravali’s experiment involved scaling and sampling as part of
the resampling process; so their results judge the subjective quality of the whole resampling, not
just the reconstruction. This theme is picked up in chapter 7.

For a given application, it may be desirable to use a different interpolant. In particular, if a
strictly positive interpolating kernel is required, then the cubic interpolant with parameter a = 0
can be used [Maeland, 1988, pp.215-216]. If an interpolant is required that perceptually sharpens
the picture then the cubic interpolant with a = −1 can be used [Parker et al., 1983, pp.36, 39].

11However, it should be noted that Overhauser’s use (CAD) is very different in its requirements to ours.
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However, Mitchell and Netravali [1988] claim that this interpolant introduces too much ringing
into the reconstructed intensity surface. An interpolant with properties midway between this
sharpening interpolant and the Catmull-Rom interpolant can be obtained by using a = − 3

4 [Parker
et al., 1983, p.36].

3.6.3 Other cubic methods

There are many methods for generating cubic reconstructors in the literature. Some fit into our
formalism and some do not. Cubic polynomials are the most often used polynomials because lower
order polynomials give too little flexibility and higher order polynomials can introduce unwanted
wiggles (and require more computation) [Foley et al., 1990, p.478, sec. 11.2]. Their usefulness
has lead to a large body of knowledge about them — mostly about their usefulness for describing
surfaces in computer aided design (CAD) and its related fields.

It is useful to briefly scan through these methods to see if they shed any more light on useful
methods for intensity surface reconstruction. Foley et al. [1990] give a summary of the most
common of these. We will consider the utility of each one.

Hermite

The Hermite form of a cubic is determined from two endpoints and tangents (first derivatives) at
those endpoints. The formula for a piecewise Hermite is: [Foley and van Dam, 1982, p.516]:

f(x) = [ t3 t2 t 1 ]




2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0






fα

fα+1

f ′
α

f ′
α+1




= (2t3 − 3t2 + 1)fα

+ (−2t3 + 3t2)fα+1

+ (t3 − 2t2 + t)f ′
α

+ (t3 − t2)f ′
α+1

where α =
⌊

x − x0

∆x

⌋
and t =

x − xα

∆x
as usual.

Here fi are the sample values, as before, and f ′
i are the tangents of the sampled function at the

sample points12.

We will not, in general, have these tangent values as we are dealing with NAPK reconstructors.
However, Mitchell and Netravali [1988] show that, if these tangent values are available (as, for
example, is possible with some artificially generated images), then the Hermite form produces a
better result than the best cubic reconstruction based only on the sample values.

In the absence of explicit tangent information, it is common to approximate the tangent by the
difference between adjacent sample values. That is:

f ′
i ≈ (∆x)

∆fi

∆x
= ∆fi = fi+1 − fi

12N.B. f ′
i = df

dt

∣∣
x=xi

because the equation is in terms of t rather than x:

f ′
i =

df

dt

∣∣∣
x=xi

=
df

dx

dx

dt

∣∣∣
x=xi

= (∆x)
dx

dt

∣∣∣
x=xi
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Figure 3.18: How the Bezier and Hermite cubics are related: the Hermite form of the curve is
controlled by the two data points, Pα and Pα+1 and by the two derivative vectors P′

α and P′
α+1;

the Bezier form is controlled by the two data points, Pα and Pα+1 and by two other control points,
P̂α,1 and P̂α+1,−1. The relationship between these is given in equations 3.22 and 3.23.

The approximation f ′
i ≈ fi−fi−1 is equally valid and it is the average of these two approximations

that is generally taken:

f ′
i ≈

∆fi + ∆fi−1

2
where ∆fj = fj+1 − fj .

If this approximation is used in the Hermite cubic then resulting function is the Catmull-Rom
spline. This is the fifth derivation of the Catmull-Rom spline (mentioned in section 3.6.2). Re-
ichenbach and Park [1989] independently discovered this derivation of the spline.

Bezier

The Bezier form of the cubic is related to the Hermite. It uses four control points for each piece:
two endpoints plus two other points to control the shape of the curve. If we take the two endpoints
to be (xα, fα) and (xα+1, fα+1) and the two control points to be (x̂α,1, f̂α,1) and (x̂α+1,−1, f̂α+1,−1).
The location of these two control points is linked to the Hermite form by the formula: [see Foley
and van Dam, 1982, p.519].

P̂α,1 = Pα +
1
3
P′

α (3.22)

P̂α+1,−1 = Pα+1 −
1
3
P′

α+1 (3.23)

This relationship is illustrated in figure 3.18.

The Bezier form can be used in two ways: either by defining the control points in some way, or by
using the existing data points as control points. The former method presents us with a situation
similar to that with the Hermite: how do we define these extra points? If we have the derivative
values then we can use equations 3.22 and 3.23 to calculate the positions of the control points and
thus produce a Hermite cubic as before.

Rasala [1990] shows how the positions of the control points can be computed from all the available
data13, this is discussed in section 4.5.1. However, his first approximations to this globally con-

13Theoretically all of the available data should be used. In practice it is only necessary to use the 12 to 16 nearest
points, still rather more than the four nearest points we are using here.
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trolled piecewise cubic, which require four defining points are, in one case the Catmull-Rom spline
(again!) and in the other case, the one-parameter cubic (equation 3.20) with a = − 3

8 .

The second way of using a Bezier is either to allow every third sample point be an endpoint (of
two adjoining sections) with the intermediate points being the other control points, or to use the
four nearest points as the control points. The former produces a curve which, in general is only
C0-continuous and interpolates only one third of the points. The latter produces a curve which in
general is discontinuous and not interpolating. For these reasons, neither is useful.

B-splines

The uniform non-rational cubic B-spline [Foley et al, 1990, pp.491-495] is the reconstructor defined
by setting B = 1 and C = 0 in equation 3.19, otherwise known as the approximating cubic B-spline.

Non-uniform, non-rational B-splines [Foley et al., 1990, pp.495-500] have advantages over the
uniform rational B-spline, in that the knots do not have to be uniformly spaced in parameter
space and knots can have a multiplicity which creates a Cn-discontinuity at the knot. Neither of
these properties is useful for intensity surface reconstruction because the samples are uniformly
spaced in parameter space (α = x−x0

∆x ) and there is no need for multiple knots. Thus non-uniform,
non-rational B-splines offer features that we do not need. They could be useful if we had an image
that was not sampled uniformly.

Non-uniform rational B-splines (NURBS) [Foley et al., 1990, pp.501- 504; Piegl, 1991], have many
features which make them extremely useful in CAD/CAM and other graphics applications. How-
ever, for image reconstruction they are ‘over the top’ because, again, the extra features that they
provide are unnecessary for reconstruction. These features are similar to those for non-uniform,
non-rational B-splines, plus the fact that they can precisely define any conic section.

β-splines

β-splines [Foley et al., 1990, pp.505-507] have two extra parameters: β1, the bias parameter, and
β2, the tension parameter. These are used to further adjust the shape of the B-spline curve. They
can be either local to each control point (‘continuously shaped β-splines’ or ‘discretely shaped
β-splines’) in which case we are again faced with the problem of how to derive these two extra
data for each point, or are global (‘uniformly shaped β-splines’) in which case we need to find
acceptable values for β1 and β2. β1 biases each segment more towards either its left-hand control
points (1 < β1 ≤ ∞) or its right-hand control points (0 ≤ β1 < 1). This is undesirable in our case
as there should be no global bias in either direction. Thus we must constrain β1 = 1.

This makes the β-spline C1-continuous:

f(x) =
1

12 + β2

[
(−2t3 + 6t2 − 6t + 2)fα−1

((2β2 + 6)t3 + (−3β2 − 12)t2 + (β2 + 8))fα

((−2β2 − 6)t3 + (3β2 + 6)t2 + 6t + 2)fα+1

(2t3)fα+2

]
where α =

⌊
x − x0

∆x

⌋
and t =

x − xα

∆x
.

If β2 = 0 then this is the ordinary cubic B-spline, which can be represented by the Mitchell and
Netravali cubic (equation 3.19) with B = 1 and C = 0. However, if β2 �= 0 then this function
cannot be represented by equation 3.19 and so it cannot be meeting all of the criteria met by
equation 3.19. A little analysis shows that it does not have linear phase for β2 �= 0 and so we must
reject it for this reason (see section 3.5.1).

The final cubic in Foley et al’s [1990, p.507] list is the Kochanek-Bartels function; a variant of
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the Hermite cubic where each segment depends on the four nearest control points and three extra
parameters specific to that segment. As with the Hermite curve the problem with using this
function is that we have no way of generating these extra parameters.

This completes the list of cubics given by Foley et al [1990]. Others do exist and some families have
been given names which have not been mentioned here, for example the Mitchell and Netravali
cubics with C = 0 are Duff’s tensioned B-splines [see Mitchell and Netravali, 1988, p.223]. Most of
these functions have been primarily designed for CAD; few of them are applicable to reconstruction.
The aims of the two fields are different, there tends to be more data available for describing the curve
in CAD than in resampling (for example: derivative values), thus allowing these more complex
forms, and CAD has greater need of weird and wonderful properties in its curves than resampling
(for example: discontinuities at some sample points, and not at others). However, this section has,
at least, considered the utility of these functions. The approximating cubic B-spline has already
been met as a case of equation 3.19. The interpolating cubic B-spline and interpolating Bezier
cubic are discussed in chapter 4.

3.6.4 Summary

It would appear that the all-round best cubic interpolant is the Catmull-Rom spline. There is less
consensus on the all-round best cubic reconstructor, but Mitchell and Netravali’s results would
indicate that it is some linear blend of the Catmull-Rom spline and the cubic B-spline:

f(x) = (1 − ζ)CatRom(x) + ζBSpline(x)

with ζ closer to zero than one. Mitchell and Netravali [1988] recommend ζ = 1
3 , while Reichenbach

and Park [1989] recommend ζ = 0.

3.7 Higher orders

In section 3.5.10 we saw the multitude of conditions which it would be useful to get a reconstructor
to obey. It would be almost impossible to meet all these conditions. If we look at the Catmull-Rom
spline, it does meet most of the conditions but fails in that it is not C2-continuous and its frequency
response, while the closest to the perfect frequency response of any cubic [Reichenbach and Park,
1989], is still not particularly close to it (Note that the approximating cubic B-spline is the only
C2-continuous cubic, and it is not an interpolant. It produces a rather blurry intensity surface.)
The solution to this problem could be to go to a higher-order.

Parker et al [1989, p.39] state that “although the length [cubic function, 4 data points] for inter-
polating functions is adequate for many tasks, additional improvement in performance could be
made by including more points in the calculation. The same criteria used for selecting interpolating
functions used in this paper — frequency responses, phase shift and gain — would also be useful
in selecting between functions with a longer extent.”

Keys [1981, pp.1159-60] six point cubic function has an O(h4) convergence rate to the Taylor
series expansion of the function being interpolated. As cubics can give at most O(h4) accuracy, it
immediately follows that higher order convergence rates require higher order piecewise polynomials.

However, Mitchell and Netravali [1988, p.225] believe that no simple filter (such as a piecewise local
polynomial) will be found that will improve much on the cubic filters they have derived. They thus
suggest that other avenues of research would be more fruitful. Further, Foley and van Dam [1982]
note that higher order polynomials can introduce unwanted wiggles in the reconstructed function.

Quadratics and cubics allow a single lobe, or ripple, either side of an edge, which perceptually
sharpens the edge (section 4.5.2). Quartics, and higher orders, allow more ripples either side,
which can perceptually degrade the image. Hence it may be counter-productive to go to higher
orders than cubic.
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We have done little work on fifth, and higher, order piecewise polynomials and so cannot give
evidence as to the validity of these arguments. It should be fairly simple, though, to extend our
analysis to higher orders. We leave this for future work. However, there seems to be little room
for significant improvement, and so, perhaps, the subject of piecewise local polynomials should be
closed.

3.8 Summary

We have seen several ways of classifying reconstructors, including local vs non-local, and skeleton
vs continuous. Skeleton reconstruction describes a situation where the intensity surface is defined
only at specific points, and is undefined elsewhere. Delta function reconstruction is a similar idea.

The bulk of this chapter was devoted to piecewise local polynomials. There are, by far, the most
studied group of local reconstructors. They are easily understood, quickly implemented, and fast
to evaluate. We proved that zero-phase piecewise local quadratics do exist, and derived two new
quadratic reconstructors. One of these provides similar visual quality to the Catmull-Rom cubic,
with faster evaluation.

The study of quadratics led into an examination of the factors involved in the design of recon-
structors. This in turn brought us to a discussion of piecewise local cubics. Here we saw that the
evidence indicates that the Catmull-Rom cubic is the best all-round cubic interpolant, and that it,
or some linear mix of it and the cubic B-spline, is the best all-round cubic reconstructor.
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Chapter 4

Infinite Extent Reconstruction

In the previous chapter we discussed the most studied group of reconstructors, the piecewise local
polynomials. We now turn our attention to other classes of reconstructor:

1. the infinite reconstructors

2. the local approximations to the infinite reconstructors

3. the a priori knowledge reconstructors.

The first two are discussed in this chapter. The final class we leave until chapter 6.

4.1 Introduction to infinite reconstruction

Into this class fall all the reconstructors which use all of the sample points in the image. We will
concentrate on these four:

• sinc interpolant

• Gaussian approximant

• interpolating cubic B-spline

• interpolating Bezier cubic

All these methods are based on a theory of an infinite image; that is: the theory does not take the
image’s edges into account. In a practical situation the image has edges and these must be dealt
with if we are to use an infinite reconstructor. Edge effects and the edge extension solutions are
discussed in the next section.

4.2 Edge effects

While the finite size of real images is a readily apparent problem for infinite extent reconstructors,
the problem exists to a lesser extent for finite-extent reconstructors, such as those discussed in
the previous chapter. It is feasible that a certain transformation, reconstructor, and sampler may
combine to produce a resampling which never needs to access data beyond the edge of the image,
but in general, we have to answer the question: what is out there?

98
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The simple answer is that nothing is out there, we know absolutely nothing about the intensity
values beyond the edges of our finitely sized image. This is unfortunately of little use in cases
where we need to know the value of a sample beyond the edge of the image.

There are at least eight ways of specifying the values of the pixels beyond the image’s edge; thus
producing an infinite image from a finite one. These are:

1. Undefined

2. Error Limits

3. Constant

4. Extrapolation

5. Replication

6. Reflection

7. Transparent

8. Special Cases

The last one requires special knowledge about the reconstructor involved and must be tailored to
suit. The others are independent of the reconstructor.

There are two types of occurrence which require information about pixel values beyond the edge
of the image: (a) when we require the value of the intensity surface at some point within the finite
image’s edges, but, to calculate the value at that point, the reconstructor needs pixel values from
beyond the edge of the image; and (b) when we require the value of the intensity surface at some
point outside the finite image’s edges. Figure 4.1 gives an example of both these types of pixel. It
is possible to use a different method to generate intensity surface values of type (a) from that used
for type (b). For example, type (a) could be generated by some edge extension method while type
(b) is given a constant value. In most situations, these two cases collapse nicely into the single
case: ‘when the reconstructor requires the value of a pixel beyond the image’s edges’.

In figure 4.1 the shaded band shows the area near the edge of the image where the reconstructor
needs values beyond the image’s edge to produce intensity surface values. For an infinite extent
reconstructor this shaded area extends over the whole image, but for finite extent reconstructors
it is a band, usually a few pixels wide, around the edge of the image. It is non-existent only for
nearest-neighbour, skeleton, and Delta-function reconstruction.

The necessity of edge extension depends on the reconstructor, transformer, and sampler used. If
they form a resampling where the required portion of the intensity surface lies within the inner
region in figure 4.2 (region A) then no image extension is required, and no edge effects will occur.
An example is shown in figure 4.3(a). However, many resampling applications require values of the
intensity surface in region B (the band) and often also in region C (the outer region). An example
is shown in figure 4.3(b). In these cases we must decide how to perform edge extension and how
to minimise the resulting edge effects.

There are two possible ways of defining edge extension. One is to assign values to the unknown
pixels and use the reconstruction method on these assigned sample values to generate the intensity
surface. The other method may give values to some, or all, of these unknown pixels but it also
overrides the reconstruction method by explicitly defining part of the intensity surface, usually
region C in figure 4.2.

Little work has been done on the edge extension problem. The usual assumption that is made is
that any pixel outside the image has the intensity zero [Fiume, 1989, p.78, definition 16; Pratt,
1978, ch.9]. Two other common assumptions are that the image is repeated (that is: it tiles the
plane), or that it is mirrored and repeated. These are illustrated later in the chapter. White and
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(a)

(b)

Figure 4.1: The two types of destination pixel for which edge effects are important. The image on
the left is rotated (dashed line on right) to produce a new image (solid line on right). The shaded
area in the left hand image represents that part of the reconstructed intensity surface whose values
depend on samples outside the image’s edges. Pixel (a) in the final image lies within the original
image’s edges but its value depends on sample values outside those edges. Pixel (b) lies within the
final image’s edges but outside the original image’s edges.

A B C

image edge

Figure 4.2: The three areas of an image: A: the intensity surface in this area depends only on pixel
values within the image’s edges. B: the intensity surface in this area depends on pixel values both
inside and outside the image’s edges. C: the intensity surface in this area lies outside the image’s
edges.
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(a)

(b)

Figure 4.3: Two examples of transforms, one requiring edge extension and one not. (a) all intensity
surface values in the final image (right) lie within region A (figure 4.2) in the original image, so no
edge extension is required. (b) Intensity surface values in the final image lie in all three regions of
the original image, so some edge extension is required.

Brzakovic [1990] present two novel methods of image extension but, otherwise, there appears to be
little published on it. These, and other, methods of edge extension are discussed in detail below.

4.2.1 The methods of edge extension

Edge extension is fundamentally the process of producing pixel values outside the image’s edges
for the reconstructor to operate on, thus producing an intensity surface of infinite extent. It also
includes those methods which explicitly define part of the intensity surface to have values indepen-
dent of the reconstructor. The ensuing discussion covers the eight methods of edge extension.

(1) Undefined

Our opinion is that this is the philosophically correct value to give to those pixels which lie beyond
the image’s edges. We don’t know what these values are and so they should remain undefined.
Furthermore, if the value ‘undefined’ occurs in the definition of the intensity surface’s value at any
point then that intensity surface value is also undefined.

The practical upshot of this is that the only part of the intensity surface which is defined is that
which lies within the inner boundary of the shaded area in figure 4.2 (region A). So, if we have an
N ×N image, and a reconstructor which requires an L pixel wide boundary, the resulting intensity
surface will be defined over only (N − 2L) × (N − 2L) pixels. This assumption is often used in
other image processing operations, where the loss of a few pixels is unimportant. For example, see
Fang, Li and Ni’s [1989] discussion of two dimensional convolution.
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In resampling, however, this solution is unworkable. Firstly, if we use an infinite extent reconstruc-
tor, practically the entire intensity surface will be undefined1. Secondly, and more importantly: in
most cases, some of the destination pixels will have an undefined value. It is impossible to display
‘undefined’ as it is not a real intensity value.

We could decide that a pixel with an undefined value is displayed with some constant intensity
but, if we do this, undefined pixels cannot be distinguished from pixels which really have that
intensity. Further, if undefined values are stored as this constant value then errors will occur if
the destination image is the source for further processing unless we also keep note of which stored
pixels are defined and which are not.

The problem has a simple solution in Fang, Li and Ni’s case. Their destination image is simply
smaller than the source, and there are no undefined pixels within the destination’s edges. In our
general resampling case we cannot guarantee this, and, if we do display an image which contains
undefined pixels we must display them with some intensity other than ‘undefined’. We cannot
have undefined pixels and display them too!

This particular solution to the edge problem, while philosophically sound, is unsatisfactory for
practical purposes. We must look to other solutions.

(2) Error bounds

In the previous case we assumed that we knew nothing about the value of the pixels beyond the
image’s edges. This is untrue, in that we will, in general, know the bounds within which these
pixel values are constrained to lie. If we are dealing with an image representation which bounds
all pixel values between two extrema, then we can assume that all the unknown pixel values must
lie between them also.

Having defined bounds within which the unknown pixel values can lie, it is possible to calculate
bounds within which the intensity surface must lie, as illustrated in figure 4.4. Thus, for every
destination pixel, it is possible to give an upper and a lower bound to the pixel’s value. For some
destination pixels (under some reconstructors) these two bounds will be equal to one another and
for some they will be equal to the extrema, or even beyond them, as in figure 4.4(Catmull-Rom
cubic).

It may be thought that the error bounds of source pixels just beyond an image edge should be
less separated than those well beyond the edge. That is: the error bounds should increase as one
moves away from the edge until they reach the extrema (figure 4.5(b)). Unfortunately, this is not
the case. Theorem 1 gives the lie to the scenario in figure 4.5(b) for a general image.

Theorem 1 The first unknown pixel beyond an image’s edge can take any value between the ex-
trema.

Proof: Whittaker [1915] proves that, for any set of equispaced samples,

F∞ = {(xi, fi) : i ∈ Z, xi = x0 + i∆x}

there exists a unique function, f(x), through those sample points such that f(x) is bandlimited to
below 1

2∆x (later named the folding frequency2).

1‘practically’ because, for example, a sinc reconstructed intensity surface would be undefined everywhere except
at the sample points, where it would be equal to the sample value at that point.

2note that the Nyquist frequency of f(x) will be less than or equal to the folding frequency [see Lynn and Fuerst,
1989, p.11]
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Two-point cubic Approximating cubic B-spline Catmull-Rom cubic

(a)

(b)

(c)

Figure 4.4: Error bounds on intensity surface values. The crosses mark known pixel values, the
dotted vertical lines unknown pixel values, bounded above and below. The shaded area shows
the range of values within which the intensity surface can lie. Here we show three local piecewise
polynomial reconstructors operating on three situations: (a) constant intensity; (b) oscillating
intensity; (c) slowly varying intensity.

image edge

(a)

image edge

(b)

Figure 4.5: Two possible scenarios for error bounds on unknown pixels. (a) all unknown pixels can
take any value between the extrema; (b) pixels close to the image edge are more tightly bounded
than those farther away. Theorem 1 gives the lie to the scenario in (b).
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Now, our image is of finite extent:

Fa,b = {(xi, fi) : i ∈ [a, b], xi = x0 + i∆x}

and we have assumed that we do not know the values fi, i �∈ [a, b]. By assigning values to these,
an infinite number of infinite sets, F∞, can be created; each containing the set Fa,b. Thus, from
Whittaker’s result, we see that there are an infinite number of bandlimited functions which pass
through any finite set of sample points.

Therefore the first unknown pixel (fa−1 or fb+1) can take any value and there will still be a
bandlimited function through the set of samples. If all the samples are constrained to lie between
two extrema then these first unknown pixels will be able to take any value between them. QED.

If we know that the image is bandlimited to below the folding frequency then we may be able to
define tighter bounds than the extrema for unknown pixels close to the image’s edge. In general,
we do not have this a priori knowledge, therefore all unknown pixels are bounded between the
extrema.

This solution to the edge problem has much the same drawbacks as the previous solution: (1) it
is impossible to display a range of intensities for a single pixel; (2) an infinite extent reconstructor
will contain some uncertainty at practically every point. For example, the sinc reconstructor would
produce bounds at the extrema for all but the known sample points.

A solution to this problem would be to display the mean of all possible values at each point.
However, calculating this mean is not a simple matter. An approximation to the mean could
be obtained by setting all unknown values to the mean of the two extrema and calculating the
intensity surface from these. This collapsing of the error bounds onto a single value takes us to a
third solution: the constant value.

(3) Constant

The solution most often adopted is to set all unknown pixels to be a constant value. By common
consent it appears that this value is invariably chosen to be zero, which nearly always represents
black.

Zero, at first glance, is a sensible value. Any multiplications involving zero evaluate to zero and
thus need not be performed. Thus, for any reconstructor that can be represented by a filter, no
unknown values need to be taken into consideration when producing the intensity surface because
they contribute nothing to the evaluation of the surface values.

However, the identification of zero with black3 is unfortunate. Black is at one end of the spectrum
of possible intensity values. We are thus setting all unknown pixels to one of the two extreme
values. In other applications, for example sound and electrical current, zero is an average value.
The signal can fluctuate to positive or negative. With intensity, zero is a minimum value — you
cannot have negative light. While it is sensible to set zero intensity to be absence of light (in a
similar way to zero mass being absence of mass) and setting unknown values to be zero can be
justified (an identification of ‘nothing’ with ‘nil’), the combination of the two produces a problem,
in that it can cause excessive ringing artifacts, and negative intensities near the image’s edges.

The previous edge extension method contains the seed of a better constant value: the value halfway
between the two extrema; a mid-grey. Using mid-grey in place of any unknown value minimises
the maximum discrepancy between the last known value and the first unknown value on either
side of an edge (see figure 4.6).

Purists may balk at the idea of using any value but zero to replace the unknown values. A simple
solution to this objection is to subtract the mid-grey value from all pixels in the image, set unknown
pixels to zero, resample the image and then add back the mid-grey value. However, this only works

3or, in some rare cases, with the brightest white, for much the same effect.
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(a) (b)

Figure 4.6: Minimising the maximum discrepancy between pixel values and the constant value.
(a) using a mid-grey constant, the maximum discrepancy is half the full range; (b) using a black
constant, the maximum discrepancy is the full range.

for resamplings in which the final pixel values are linear combinations of the original pixel values,
which, fortunately, are the great majority of resamplings (see section 2.2).

Another candidate constant value is the average value of all the known image pixels. One motiva-
tion behind this choice is that it retains the DC component of the frequency spectrum: the DFT
of the finite image and the FT of the infinite extended image have the same DC component. In
most cases this average value would be close to the suggested mid-grey value. For the minority of
cases in which the image is unusually dark or unusually light, this average value is a better choice
than the mid-grey. For the rare situations with a dark centre and bright edge (or vice-versa) it is
conceivable that this average would be a worse choice than the mid-grey.

Though, overall it would appear that the average value would be slightly preferable to the mid-grey
value, this advantage must be offset against the need to calculate the average. Taking this into
consideration, there is little to choose between the two values.

Use of a constant intensity beyond the edges of the image is simple and efficient. It requires little
computational effort (except when the average intensity of the known image values needs to be
calculated, but even that need only be done once per resampling). When a destination pixel falls
well outside the edge of the transformed source image it will, in general, be given a value close to
the constant value. However, just inside and just outside the source image edge, the reconstructed
surface will display ‘edge effects’. The severity of these effects depends partly on the difference
between the pixel values just inside the edge and the constant value assigned to the unknown pixels
just outside the edge. It also depends on the reconstructor used. The sinc interpolant produces
many obvious artifacts, while a very local reconstructor, such as linear interpolation, displays
virtually no artifacts at all (see figure 4.7).

We can attempt to reduce this edge effect problem by extrapolating more ‘sensible’ values off the
edge of the image rather than simply setting all the unknown pixels to a constant.

(4) Extrapolation

Extrapolation out from the edge of the image is an attempt to make what is beyond the edge bear
some relation to what is inside the edge. It cannot create any extra information, but the hope is
that the available information can be used to produce sensible values for the unknown pixels.

Extrapolation is considerably more hazardous than interpolation [Press et al, 1988, p.85]. A typical
interpolating function (which is perforce an extrapolating function) will tend to go berserk at a
distance beyond the image edge greater than the inter-pixel spacing [ibid., p.88]. We must be
careful how we extrapolate.

One advantage we have over general extrapolation is our knowledge of the bounds within which
the values must lie. These can be used to prevent the values from going berserk and reaching
values way beyond the bounds.

The simplest extrapolation method is to copy the final row of pixels to infinity. This is illustrated
in figure 4.9 which shows the images in figure 4.8 extrapolated by this method. White and
Brzakovic [1990] modify this idea by assigning a virtually constant intensity to each unknown
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Figure 4.7: The effect of a constant zero edge extension on two reconstructors. On the left is the
intensity surface reconstructed by sinc interpolation, notice the ripples near the image edges (both
inside and outside of the edges), caused by the sharp fall off to zero. On the right is the intensity
surface reconstructed by linear interpolation. The only edge effect is a slight fading off at the very
edge of the image. The right hand image is quite blurry, but this is a property of the reconstructor,
not an edge effect.

Figure 4.8: The original images used in the extrapolation examples.

Figure 4.9: Extrapolation by copying the final row of pixels off to infinity. This process is applied
to the two images in figure 4.8
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Figure 4.10: Extrapolation by White and Brzakovic’s [1990] derivative method, which resolves ties
(equal derivative values in two or three directions) by using a random number generator. This
process is applied to the two images in figure 4.8

half-row or half-column4. These values are based on a set of known pixels in that row or column.
This, their ‘random sequence’ method, uses the n pixels on the row (or column) just within the
image edge to calculate the values using linear extrapolation under the assumption that the image
intensities form a random field. The values assigned to an unknown half-row or half-column are
not quite constant, they are very slowly varying, but the effect looks much the same as a constant
[see White and Brzakovic, 1990, figs. 3(b) and 3(c), 4(b), and 4(c) and 5(b) and 5(c)].

White and Brzakovic point out that, while this method generates pixels whose statistical properties
are close to those of true pixel within a few pixels of the image edge, this closeness deteriorates
farther from the edge. For our purposes, this method gives little advantage over simple pixel
replication. It requires much more calculation and this outweighs the slightly better estimate of
the unknown pixel values just beyond the edge.

White and Brzakovic’s [1990] second image extension method holds more promise. This ‘derivative’
method attempts to preserve the directionality of the pattern lying along the image border. It is
more successful than the other methods in generating natural looking images for a small extension,
but it deteriorates at greater distances from the image’s edges. The images in figure 4.10 were
generated using generalised Sobel operators of size 3 × 3 [Rosenfeld and Kak, 1982, vol. 2, pp.96,
99–100] to calculate the derivative values5. A modification of their method which resolves ties by
taking the average intensity of the tied pixels produces very similar results (figure 4.11). The

4A half-row is all of the pixels in a row of pixels to the right (left) of a given pixel. An unknown half-row is all of
the unknown pixels to the right (left) of the image edge. A similar definition holds for ‘half-column’ and ‘unknown
half-column’.

5Note that there are two errors in White and Brzakovic’s paper:
(1) Equation 6 (page 348) should read:

D(j, i) =

k∑
m=1

k∑
n=1

Mφ(m, n)I

(
j − (k + 1) + m, i + n − λ − k + 1

2

)
where λ = k+1

2
tan φ and m, n ∈ {1, 2, . . . , k}.

Alternatively and equivalently:

D(j, i) =

k−1∑
m=0

k−1∑
n=0

Mφ(m, n)I

(
j − k + m, i + n − λ − k − 1

2

)
where λ = k+1

2
tan φ (as before) and m, n ∈ {0, 1, . . . , k − 1}.

And (2) using this formula, pixels A, B and C in figure 2 (page 344) are the centre pixels for estimating derivatives
for 5 × 5 derivative masks but not for any other size.
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Figure 4.11: Extrapolation by a modification of White and Brzakovic’s [1990] derivative method.
This modification resolves ties by taking the average of the intensities in the tied directions. This
process is applied to the two images in figure 4.8

original method resolves ties in two or three directions by the use of a random number generator.

Extrapolation is a risky business. Even these moderately sophisticated methods only succeed for
a small distance out from the image edge. This is good for small kernel operators, those which
only need information up to a few pixels out (for example: a local reconstructor calculating values
just inside the image’s edges and needing some pixel values from just outside). But they are not
useful for infinite operators nor for large kernel operators (although White and Brzakovic [1990]
imply that they need to use kernels up to size 47 × 47, an edge extension of 23 pixels). Nor are
they particularly useful for finding a pixel value when the destination pixel maps to a source pixel
well outside the image’s edge (case (b) in figure 4.1). Because extrapolation is inaccurate at large
distances from the pixel edge we propose the following ‘hybrid’ solution:

For any pixel farther outside the image edge than a given distance, the pixel’s value is
a given constant. Between this region’s boundary and the image edge the pixels are
given extrapolated values such that they match up neatly with both the image and the
constant at the respective edges.

Figure 4.12 illustrates this concept.

There are still questions to be answered: what constant to use, how wide the extrapolated region
should be, how to perform the extrapolation. However, this solution holds promise in that: (a) it
has not got the sharp changes in intensity at the image edge that the constant solution has, and (b)
it does not tend to produce bad results at great distances from the image edge, as straightforward
extrapolation can do.

Our discussion in the previous section gives us guidance as to which constant value to use. The
three useful possibilities are:

• zero (usually black), because of the simplification this can make to the calculation of intensity
surface values;

• half-way between the minimum and maximum intensities (a mid-grey), because this min-
imises the maximum possible difference between the intensity of an edge pixel and the con-
stant intensity6;

6an ‘edge pixel’ is the last known pixel, on a row or column, just within the image’s edge.



4.2. EDGE EFFECTS 109

Image

Constant Region

(a)

ImageExtrapolation ExtrapolationConstant Constant

(b)

Extrapolated Region

Figure 4.12: Extrapolation to a constant. (a) shows the basic idea: the image is surrounded by
an area that is extrapolated, beyond this area the pixel values are set to a constant; (b) shows the
idea for a single scanline.

• the average intensity of the known pixels in the image (usually a mid-grey7), because this
keeps the average intensity of the infinite image the same as that of the finite image.

Once a constant value is chosen, the other problems remain to be tackled. How wide should the
extrapolated region be? It must be wide enough that we do not get any untoward effects in the
intensity surface near the image edges. A zero width gives the equivalent of the constant solution
in the previous section. This is obviously too small a width as it is the edge effects caused by
that solution which led us to consider other solutions. The minimum acceptable width of the
extrapolated region is a subjective judgement, depending partly on the type of image and the
constant value chosen.

On the other hand, the extrapolated region cannot be too wide. If it is allowed to be too wide
then the problem of the extrapolation being inaccurate rears its head once more. A width of eight
or sixteen pixels would seem to be practical. A width of four pixels may be acceptable.

Given this band of unknown values, how do we extrapolate sensible values? There are some obvious
simple methods of interpolating between the edge pixels and the constant pixels. For example,
simple linear interpolation between the edge pixel and the first constant pixel (figure 4.13) or cubic
interpolation through two edge pixels and the first constant pixel, ensuring that the first derivative
of the interpolated curve is zero at the first constant pixel (figure 4.14). Such methods, and the
like, produce results similar to that shown in figure 4.15. More complex methods, which take into
account more of the context of each extrapolated pixel, could be employed.

However, there is a simple method of ensuring that the extrapolated values fade off to the correct
value. That is to extrapolate using any of the existing methods and then window the resulting
data. Figure 4.16 illustrates this idea. Windowing allows such methods as the windowed, deriva-
tive method illustrated in figure 4.17. Compare this with figure 4.10 (the unwindowed derivative

7not exactly half-intensity grey like the previous value, but usually close to this.
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ImageExtrapolationConstant

Figure 4.13: Extrapolation between the image edge and the constant region by simple linear
interpolation between the edge pixel and the first constant pixel.

ImageExtrapolationConstant

Figure 4.14: Extrapolation between the image edge and the constant region by cubic interpolation
between the edge pixel, its neighbour (the pixel second from the edge), and the first constant pixel,
setting the slope of the curve to zero at the first constant pixel.

Figure 4.15: Extrapolation by linear interpolation between the edge pixel and the first constant
pixel over a band of pixels around the image edge. All pixels beyond this band are set to a constant
(mid-grey) value. This process is applied to the two images in figure 4.8
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ImageExtrapolation Extrapolation

Window

(a)

(b)

Figure 4.16: Windowed extrapolation. (a) shows the image extrapolated, (b) shows this windowed
so that the pixels outside the window are constant, the image pixels are unchanged, and the pixels
in between are smoothly windowed off to the constant value.

Figure 4.17: Extrapolation by derivative method (as in figure 4.10) windowed using a piecewise
linear window. This process is applied to the two images in figure 4.8
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(a)

Constant ConstantExtrapolated ExtrapolatedImage

(b)

Constant ConstantExtrapolated ExtrapolatedImage

Figure 4.18: Two simple windows: (a) piecewise linear; (b) cosine half-bells in the extrapolated
region. Both windows have value one inside the image and zero in the constant region.

method) and figure 4.15 (linear extrapolation to a constant).

Windowing, in this context, has some non-standard features. Firstly, the window does not neces-
sarily fade the function to zero, but to the constant intensity. This can be achieved by using the
formula:

i′(x) = W (x) × (i(x) − c) + c

where i(x) and i′(x) are the unwindowed and windowed intensity functions respectively, W (x) is
the windowing function in the range zero to one, and c is the constant intensity to which i′(x)
fades. Secondly, the window function should be unity for all pixels within the finite image. This
restriction is to prevent corruption of the existing, and presumably correct, intensity values.

The shape of the window is probably of little importance, given that the extrapolated values are
themselves approximations. A piecewise linear function, as in figure 4.18(a); or cosine half-bell
(figure 4.18(b)) are two simple windows. The cosine half-bell is the better of these two, as it is
C1-continuous.

An extension of this idea is to window the known pixel values and thus remove the need for any
extrapolation. All unknown pixels are set to the constant value. Pixels just within the image
edge are windowed, while the central portion of the image remains unaffected. Fraser [1989b] uses
such a method to fade the image to zero at the edges. However, he is quick to point out that
such windowing, while a good technique for other signal types (for example, sound), causes an
undesirable effect, vignetting, when applied to images. Figure 4.19 gives an example of vignetting.

(5) Replication

This is a simple method, often used in texture mapping applications. The image is simply replicated
an infinite number of times to completely tile the plane. Glassner [1990b] uses this as the simplest
way of generating an infinite texture from a finite ‘texture cell’. When using the fast Fourier
transform (FFT), (section 5.4.1), this is the method of edge extension implicit in the algorithm.
This property of the FFT has important ramifications, as we shall see in chapter 5.

Hall [1989] used this method in his pipelined binary image processor, where he dealt with black
text on a white background. His assumption was that the image would be all white near the edges
and so there would be no untoward edge effects (as the edges, being all white, would exactly match
up). In his later work, Hall [1991] rejected this assumption and altered his algorithm (to a constant
edge extension) in order to avoid the errors it could conceivably cause.
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Figure 4.19: An example of vignetting. The image on the left is the original, on the right it is
vignetted: it fades off towards its edges. This is almost always an undesirable effect.

Replicating the image in this way is a valid image extension method, and works well for certain
texture mapping applications (for example, generating wallpaper). However, in other areas it has
a major flaw. Except in fortuitous cases, the intensity values at one edge of the image bear no
relation to those at the opposite edge. Yet, in replication, these unrelated pixels are placed next
to one another. This causes edge effects similar to those caused by the constant extension method,
as illustrated in figure 4.20. In general, this method is not recommended except for specialist
applications such as the texture mapping operation mentioned above.

Along with simple copying, Glassner [1990b] explains that many different textures can be generated
by rotating, reflecting and/or offsetting the texture cell before copying. This is basically using the
texture cell as the unit cell for one of the wallpaper groups [Martin, 1982]. Some of these are
illustrated in figure 4.21.

While this is extremely useful for generating repetitive textures (so long as the textures are carefully
chosen), it is not generally useful for edge extension. The one wallpaper group that is useful is
that illustrated in figure 4.21 (W 2

2 (pmm)) where the image is reflected about its edges.

(6) Reflection

This, as well as being one of the methods of generating a wallpaper pattern, has been widely
used as an inexpensive method of image extension [White and Brzakovic, 1990, p.343]. It is
inexpensive because there is no need to generate any additional values, the only overhead is the
simple one of evaluating which of the existing image values to use. It is widely used because of the
expectation that, by reflecting, the pixels just outside the edge will bear a good relation to those
just inside, hence minimising edge effects. This method is implicit in the discrete cosine transform
(DCT) variation of the FFT method described in section 5.4.1, greatly improving the edge effect
performance over the FFT’s implicit replication method.

White and Brzakovic [1990] use this method as the standard against which they compare their
new methods. They conclude that this method leads to good results only in cases of highly
textured regions or regions of uniform intensity. However, this method is certainly better than
either copying or using a constant and is certainly cheaper than explicitly extrapolating. One of
White and Brzakovic’s complaints is that this method fails dismally for highly directional images.
Figure 4.22 illustrates how the various other methods cope with such a situation. Note that
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Figure 4.20: An example of edge effects caused by the replication edge extension method. The
top photograph shows an image replicated, notice how the edges of the image do not match up,
causing a large intensity difference where the replicas meet. The bottom photograph shows an
intensity surface reconstructed from this image by sinc reconstruction. Notice the ripples in the
image near the edges, similar to those in figure 4.7(left) for a constant edge extension method.



4.2. EDGE EFFECTS 115
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Figure 4.21: Some of the possible textures that can be generated by replicating a square texture
cell with no rotational or reflectional symmetry of its own. On the left is the texture cell, the four
wallpaper groups shown here are: W1, simple replication of the cell; W4, a replication that has
centres of four-fold rotation; W 2

2 , replication by reflection in both horizontal and vertical reflection
lines; and W 3

1 replication with glide reflections. All except W4 could also be used with a rectangular
texture cell. The notation used here is that used by Martin [1982]. That in brackets is the common
abbreviated form of the International Union of Crystallography.

Figure 4.22: How the edge extension methods cope with a pathological case. At top left is the
original which consists of diagonal lines at 22.5◦ (left half) and 45◦ (right half). Bottom left is
extrapolated by copying, this fails for either case as it extrapolates horizontally or vertically. Top
right is White and Brzakovic’s [1990] derivative method (figure 4.10), and bottom right is our
modification of that method (figure 4.11). Both of these perform excellent extrapolation of the 45◦
features, but fail for the 22.5◦ features, extending them horizontally, vertically, or at 45◦.
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(a) (b)

Figure 4.23: An example of an image folding back on itself. The shaded region represents the
finite sized image, and the clear region around it part of the infinite plane on which the image
sits. (a) shows the original image, (b) the transformed image. If edge extension is done by any
method other than transparent then the image will be obscured by the area around it, which is
undesirable.

White and Brzakovic’s derivative method copes splendidly with features aligned at angles of zero,
forty-five and ninety degrees, but not with a feature at twenty-three degrees. Thus, whilst giving
better results in some cases, it fails in other cases and so it has little or no advantage over reflection.

The final two edge extension methods are special cases.

(7) Transparent

In this solution, the intensity surface beyond the image’s edge is defined to be transparent. That
is, whatever existed in destination image space before the resampling can still be seen in these
regions. In many cases this will simply be equivalent to setting the intensity surface to a constant
outside the image edges. This is because the original content of the destination image will have
been that constant intensity.

However, in some situations it is vital that we make the assumption that the intensity surface
beyond the image’s edges is transparent. If the transform is such that the image folds back on
itself, then the source image must be transparent beyond its edges (and, also, it needs to have the
same intensity values on the ‘back’ as on the ‘front’). Intuitively, it is as if the opaque image is
printed on a transparent medium (such as an overhead projector acetate) which is then manipulated
(see figure 4.23). Were this transparent medium to be replaced by an opaque one (for example: of
constant intensity) then the image itself would be obscured.

Transforms of this nature have the further problem that a point in the destination intensity surface
can map to two or more points on the source intensity surface and arbitrating between them, to
determine which is visible, or how to mix the values, can be a difficult problem.

Compounding the difficulty of the transparent solution is the problem of defining the intensity
surface just within the image edge (region B in figure 4.2). The intensity values in this area are
evaluated using pixel values both inside and outside the image edges. Therefore, even though the
intensity surface is defined as being transparent outside the image edge, it is still necessary to
extend the image in order to calculate the values of the intensity surface just inside the image
edge. Thus one of the other methods of image extension must be used to produce these values,
and so there still exists the potential for edge effects just within the image edge.

One advantage of this method is that extrapolation need only be performed out as far as the
reconstructor needs values. For an infinite extent reconstructor, obviously all values still need to
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be available. But, for a piecewise cubic reconstructor, a band two pixels wide outside the image
edge is all that need be generated by extension.

Such situations as these lead to the final solution to the edge extension problem.

(8) Special cases

In situations where the intensity surface beyond the edge of the image is defined to be a constant,
or transparent, or some other case that does not depend on the reconstructor, then a small-
kernel reconstructor can use a special case extension method to produce the necessary pixel values
beyond the image edge. These methods are not the general extension methods discussed earlier
but methods specific to particular reconstructors which may only be valid for an extension of one
or two pixels beyond the image edge.

For local piecewise polynomials (chapter 3) the only documented extension method of this nature
is Keys’ [1981] single pixel extension method for the Catmull-Rom interpolant. Keys derives the
interpolant by insisting that the cubic agree with the Taylor’s series expansion of the original
function to as many terms as possible. He then [ibid., p.1155] develops a formula to approximate
one pixel value beyond the image edge in order to maintain this agreement. This extension can
be used for pixels farther out from the edge but it was developed specifically for the first pixel out
and specifically for the Catmull-Rom reconstructor.

The cubic B-spline interpolant, discussed later in this chapter (section 4.5) is theoretically of infinite
extent. In order to use this in a practical (finite) situation, end conditions have to be specified.
In this instance we do not require the values of pixels beyond the image edge, but other edge
conditions. For example, the ‘natural cubic spline’ criterion requires that the second derivative of
the intensity surface at the edge points is zero [Press et al, 1988, p.96]. Wolberg [1990, p.136], on
the other hand, implicitly assumes that the pixels just outside the image edge have intensity zero
when he uses the cubic B-spline interpolant.

A final category of special case extension methods includes the a priori method described in
section 6.4. The analysis done by this method can be used to generate an infinite image by
extending the edges found to infinity. Alternatively the pixels outside the image edge can be left
undefined and the final image have an implicit extra edge around the outside. The intensity surface
beyond the image edge can then be undefined, constant or transparent as required.

Summary

All these methods fail in certain cases. The best option for general image extension would appear
to be either reflection for quick processing, or a good extrapolation windowed to a constant. Such
an extrapolation would need to give good results out to the extent of the window8. If extremely fast
processing is required, a constant value may be used. For resampling work, it is usually desirable
to use these methods of edge extension when generating pixel values of type (a) in figure 4.1, and
to use a constant value (for example: zero, mid-grey, transparent) for pixels of type (b).

4.3 Sinc and other perfect interpolants

The theory of perfect interpolation is straightforward. If the original intensity surface is band-
limited and the sampling rate is high enough then the samples in the image contain all the in-
formation necessary to exactly reconstruct the original intensity surface. The reconstructors that
can perform this exact reconstruction are the ‘perfect interpolants’. When we introduced perfect

8In fact it need not be good quite all the way as any strange effects at the limits would be rendered practically
negligible by the windowing.
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Figure 4.24: Examples of the ranges over which an image’s Fourier transform can be non-zero.
(a) an example of the non-zero area of a bandlimited image’s Fourier transform, (b) a rectangular
passband, with Nyquist frequencies: νxN and νyN , (c) a circular passband, with Nyquist frequency:
νrN .

interpolation, in section 3.3, we only looked at the sinc function, but other perfect interpolants
exist.

An infinite extent intensity surface, s(x, y), in the spatial domain can be represented equally well
in the frequency domain by its Fourier transform:

S(νx, νy) =
∫ ∞

−∞

∫ ∞

−∞
s(x, y)e−i2π(xνx+yνy) dy dx

This frequency domain function, if bandlimited, will have a certain range over which it is non-zero,
shown in figure 4.24 (a).

Point sampling on a regular grid in the spatial domain equates to regularly replicating in the
frequency domain (section 2.4.1) as illustrated in figure 4.25.

To reconstruct a continuous spatial function from this we need an interpolation filter with a fre-
quency response which is unity for the original bandlimited area (shaded in figure 4.25) and zero
for all the replicas. Obviously such a filter cannot exist if the replicas overlap the original in any
way, so the samples need to be sufficiently close that the replicas are separated.

However, the filter does not need to take any specific value between the replicas because the Fourier
transform of the sampled image is zero in these regions. So, if the replicas do not tile the plane,
there are an infinite number of perfectly reconstructing filters for a given intensity surface.

If the bandlimited area can be bounded by a circle (figure 4.24 (c)) then a perfect interpolation
filter is one which is unity within the circle and zero outside it. In the spatial domain this filter
is a first order Bessel function [Pratt, 1978; Heckbert, 1989]. Mersereau’s [1979] results allow
us to derive the spatial domain equation for a perfect hexagonal filter, useful when processing
hexagonally sampled images. However, except for a few experimental cases [Wüthrich, Stucki and
Ghezal, 1989; Wüthrich and Stucki, 1991], all images are sampled on a rectangular grid.

For a given sampling rate there is a single function that can perfectly reconstruct any function that
is bandlimited at or below half that rate. If we take the largest rectangular area in the frequency
domain which can be replicated without overlap (figure 4.21(b)), then the perfect interpolation
filter must be unity inside this area and zero outside it, because the replicas tile the plane. In the
spatial domain this filter is a two dimensional sinc function. For bandlimits of νxN and νyN in the
frequency domain, the spatial domain function is:

h(x, y) = 4νxNνyNsinc(2xνxN)sinc(2yνyN) (4.1)

This is the function which is generally used as the perfect interpolant, because it perfectly interpo-
lates all rectangularly bandlimited images. This function’s spatially separability is advantageous
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Figure 4.25: The example frequency spectrum of figure 4.24(a) replicated infinitely many times.
This is caused by sampling in the spatial domain. The original copy is shown shaded, the others
are left white.

when implementing it. If rotational invariance is more desirable then the first-order Bessel function
may be used, though it is a more difficult function to evaluate.

The most common complaint levelled against the sinc function (and is equally valid against the
other perfect interpolants) is that it produces unsightly ripples in the reconstructed intensity surface
[Mitchell and Netravali, 1988; Ward and Cok, 1989]. Another commonly mentioned problem is
that the sinc function can produce negative values in the intensity surface [Pratt, 1978; Blinn,
1989b] (section 3.5.7).

In answer to these two criticisms, it is necessary to point out that a perfect interpolant perfectly
reconstructs a sufficiently bandlimited intensity surface. If the original intensity surface is suffi-
ciently bandlimited then it will contain no negative values (negative light being impossible) and
any ripples in it are supposed to be there. The sinc function cannot introduce any negative light
or extra ripples because it exactly reconstructs the original surface.

These complaints about the sinc interpolator come from attempting to apply it to an image sampled
from an intensity surface which is not bandlimited within the limits required. In such a case,
aliasing will occur and the sinc interpolator will perfectly reconstruct an aliased version of the
original intensity surface, possibly with negative values and unsightly ripples, rather than the
original surface itself. Using the sinc function with an intensity surface that is not sufficiently
bandlimited is fraught with difficulties.

Opinion is divided in the literature about how many real images are sampled from intensity surfaces
which are bandlimited within tight enough limits to prevent aliasing. Any real world intensity
surface will be bandlimited before sampling by the physical device used to capture the image,
because no real-world device has an infinite bandwidth [Wolberg, 1990, p.99]. Fraser [1987] believes
that people, often unwittingly, rely on the physical device to sufficiently bandlimit the signal so
that either minimal or no aliasing occurs.

Artificially generated intensity surfaces can contain infinite frequencies due to discontinuities in the
surfaces. Such surfaces are not bandlimited and will always generate images that contain aliases. If
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such a surface is filtered before point sampling then it may, depending on the filter, be bandlimited
sufficiently.

From the images we have seen, it would appear that most images are not bandlimited sufficiently
to prevent the sinc interpolant from producing ripples around quick intensity changes; Wolberg
[1990, p. 108] is of the same opinion.

This is not the end of the problems with the sinc interpolant. As discussed earlier, a practical
image must be finite. When using sinc interpolation the only sensible edge extension methods are
those which fall off to zero (including the constant method which sets all values outside the edges
to zero). The following formula can be used to calculate the value of the interpolated surface at
the point (x, y):

f(x, y) =
∞∑

i=−∞

∞∑
j=−∞

sinc(x − i)sinc(y − j)fi,j (4.2)

where the sample points are located at integer locations in the xy-plane and fi,j is the sample
located at (i, j). If the sample values, fi,j , in the image are zero outside certain bounds then this
infinite (and hence impossible to do) sum reduces to a finite (do-able) one. This is why defining
all samples outside certain limits to be zero is the only sensible method of edge extension. Sinc
reconstruction is a linear process, and so we could use the trick described in section 4.2.1 to allow
any constant value, not just zero, and still require only a finite sum9.

Unfortunately, by insisting that the image be zero outside a finite boundary, the sampled intensity
surface cannot be bandlimited. While this result is not intuitive, we have found a proof of it, which
is given in theorem 2.

Theorem 2 An image that is only non-zero within finite bounds must contain aliases.

Proof: an infinite bandlimited, intensity surface is sampled by an infinite extent comb function.
The resulting function (a continuous representation of an image (section 2.4.1)), is clamped to zero
outside finite limits. This is equivalent to multiplying the sampled function by a box function.
Multiplication is commutative and so we could have got the same result by first multiplying by a
box function and then multiplying by the comb sampling function. The function that is sampled
is thus the product of the original intensity surface and a box function. It is thus of finite extent
in the spatial domain. A function cannot be simultaneously of finite extent in both the spatial
domain and the frequency domain (a detailed proof of this statement is given in appendix B.5),
and so this function cannot be bandlimited, and therefore the sampled version must contain aliases
QED.

The most obvious effect of this aliasing is rippling around the edges — this is the reason why we
went from the constant edge solution in section 4.2.1 to the ‘extrapolation to a constant’ edge
solutions in the following subsection. However, even this latter edge solution produces aliasing
effects, although not as badly.

Pratt [1978] shows another way of looking at this finite-extent sampling process. This is that a finite
extent sampling grid can be generated by multiplying the box and comb functions and applying
the product to the continuous intensity surface. The product is simply a truncated (finite-extent)
comb function. In the same way that sampling using an infinite extent comb is equivalent to
convolving with the comb’s Fourier transform in the frequency domain, sampling using this finite
extent comb is equivalent to convolving with this function’s Fourier transform in the frequency
domain. This Fourier transform is fairly simple to evaluate. With limits (±bx∆x,±by∆y), for a

9The ensuing discussion applies equally to those cases as the effect of the trick in the frequency domain is
to modify only the DC component, then to do the same processing as for the zero case (leaving the modified
DC component unchanged) and finally to reset the DC component to its original value (leaving the rest of the
components unchanged).
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(a)

(b)

Figure 4.26: The Fourier transform of a finite extent comb function. (a) the Fourier transform of
a comb function with 8 teeth, (b) the Fourier transform of a comb function with 32 teeth.

comb of spacing (∆x,∆y), it can be shown to be:

D(νx, νy) =
sin(2πνx(bx − 1

2 )∆x)
sin(πνx∆x)

×
sin(2πνy(by − 1

2 )∆y)
sin(πνy∆y)

(4.3)

The derivation of this can be found in appendix B.6. This function is illustrated in figure 4.26. It
has a similar but nonetheless different effect to convolving with a comb, with the results described
earlier.

4.3.1 Richards’ positive perfect interpolant

Pratt [1978, p.98] points out that a sinc-reconstructed function can be considered to be the super-
position of an infinite number of weighted translated sinc functions. Because each of the functions
in the sum has negative lobes, it is impossible to optically create the image by superposition be-
cause negative light does not exist. Pratt then points to Richards’ [1966] discovery of a family of
perfect interpolants that are positive in regions in which their magnitude is large, and hence can
be used for sequential optical interpolation. In resampling, we can add the intensities up inside a
computer, and so negative addends are not a problem. Nevertheless, it is instructive to look at
Richards’ function.

Richards’ interpolants are interesting in that he generates them in a similar way to the Bezier and
B-spline interpolants discussed later (section 4.5). He effectively defines a set of coefficients:

hn = fn − α × (fn−1 + fn+1) (4.4)

which he convolves with a kernel, g(x), such that:

h ∗ g = f ∗ sinc

g(x) can be evaluated from this equation and shown to be [Richards, 1966, equation 4]:

g(x) =
1√

1 − 4α2

sinπx

πx

[
1 − 2x2

∞∑
n=1

(−β)n

n2 − x2

]

where β = 1−
√

1−4α2

2α . Figure 4.27 shows this kernel graphed for two different values of α.

While this kernel is indeed positive over a significant range, when combined with the kernel
. . . , 0, 0,−α, 1,−α, 0, 0, . . . operating on h(x) (equation 4.4) it is exactly equivalent to the sinc
function and so is simply another way of writing sinc convolution. This situation is analogous
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Figure 4.27: Richards’ [1966] kernel, for α = 0.2875 (lower curve) and α = 0.4 (upper curve).

to that with the B-spline and Bezier interpolants discussed in section 4.5. In those cases, a local
kernel operates on coefficients, gn, derived from the data values, fn. However, the overall kernel
which operates on the fn values is not local. In a similar manner, the Richards kernel is positive
over its central region and operates on a set of coefficients, hn, derived from the data values, fn.
However, the sinc kernel which operates directly on the fn data values is not positive over such a
wide region.

Pratt was attracted to Richards’ kernel because it is positive in regions where its magnitude is large.
This, he claimed, allows it to be employed for sequential optical interpolation. Unfortunately this
claim is only true if all of the hn coefficients are non-negative. It is true that all of the data values,
fn, must be non-negative, because negative light does not exist. So applying a Richards kernel to
these values would have the effect desired by Pratt. However, the Richards kernel is applied to
the hn coefficients. Thus, sequentially generating an image using a Richards kernel can only be
achieved if all the hn are non-negative. A coefficient, hi, is non-negative if, and only if:

fi ≥ α × (fi−1 + fi+1) (4.5)

For the Richards kernel to be positive in the region |x| < 5 (this is the significant range used by
Richards [1966, fig. 1]) then we must have α ≥ 0.34222888± 5× 10−9 (rather than Richards’ value
of α > 0.2875). This curve is shown in figure 4.28. With α in this range, many images will
contain at least one location where equation 4.5 will not be satisfied. This unfortunately means
that the Richard’s kernel can not be used for sequential optical interpolation of these images. For
an image that is bandlimited well below the folding frequency, equation 4.5 should be satisfied at
all locations and, in these cases, it can be used for sequential optical interpolation.
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Figure 4.28: Richards’ [1966] kernel, for α = 0.342229. For α greater than this value the kernel is
positive in the range |x| < 5.

4.4 Gaussian reconstructors

The Gaussian filter is of the form:

h(s) = 1
σ
√

2π
e−s2/2σ2

(4.6)

for a standard deviation of σ with unit area under the curve.

The Gaussian has many interesting features:

• it will never produce negative values, unlike the sinc function.

• it falls to zero much faster than the sinc function and so can be truncated with little loss of
quality, unlike the sinc function [Heckbert, 1989, p.41]. See section 4.6 for more details.

• it is both circularly symmetric and separable (the only function that is), properties that
are useful in implementing the filter, for example: in Greene and Heckbert’s [1986] elliptical
weighted average filter [see also Heckbert, 1989, sec 3.5.8 and 3.5.9].

• it is an approximant, as opposed to sinc which is an interpolant.

Whilst its properties make it useful, it produces a blurrier intensity surface than, say, the Catmull-
Rom spline.

When using a Gaussian we must decide what value of σ to use. For reconstruction of unit spaced
samples, Heckbert [1989, p.41] recommends a standard deviation of about σ = 1

2 . Ratzel [1980],
and subsequently Schreiber and Troxel [1985], use σ = 0.52 (see footnote 10 for details of where this
value comes from, as it is not the value which they report). Turkowski [1990] uses two Gaussian
functions, expressed in the form:

h(x) = 2−x2/τ2

where τ = 1√
2

or τ = 1
2 . Some consider this form to be more convenient than equation 4.6 [Wolberg,

1990]. This form is not normalised, but when it is (by multiplying by the correct constant) these
two values of τ correspond to σ ≈ 0.600561 and σ ≈ 0.424661 respectively.
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Figure 4.29: The sharpened Gaussian kernel.

4.4.1 The sharpened Gaussian

This was developed by Ratzel [1980] to improve on the sharpness of a Gaussian reconstructed
intensity surface. The Gaussian’s kernel is10:

hg(s) =
1

0.52
√

2π
e−s2/2(0.52)2 (4.9)

The sharpened Gaussian kernel is the weighted sum of three of these functions, two of them offset
from the origin:

hsg(s) =
1
5

(7hg(s) − hg(s − 1) − hg(s + 1)) (4.10)

This is graphed in figure 4.29. The single side-lobe each side of the central lobe perceptually
sharpens the picture, as discussed in section 4.5.2.

The sharpened Gaussian can be considered to be the convolution of two simpler functions:

hsg(s) = hg(s) ∗ m

where m is a discrete function: m0 = 7
5 ; m1 = − 1

5 ; mn = 0, n ≥ 2; and m−n = mn.

Thus, a sharpened Gaussian intensity surface can be generated by precomputing a set of coefficients,
g = m ∗ f , and then applying the simple Gaussian (equation 4.9) to these coefficients:

f(x) = hg(s) ∗ g

This is computationally more efficient than the straightforward f(x) = hsg(s) ∗ f , especially for
the two-dimensional version of the reconstructor [Schreiber and Troxel, 1985].

10Ratzel claims to have used this Gaussian [Ratzel, 1980, p.68]:

hg(s) =
1

2.6
√

2π
e−n2/2(2.6)2 (4.7)

where n is an integer and s = n
5
. This is equation 4.6 with σ = 2.6. However, converting this to normal co-ordinates

gives:

hg(s) =
1

2.6
√

2π
e−s2/2(0.52)2 (4.8)

which is not normalised; to normalise it requires us to use equation 4.6 with σ = 0.52, which is equation 4.9. If one
examines Ratzel’s hand-tuned approximation this is, in fact, the function that he used, rather than the virtually
identical one (equation 4.7) he claims to have used. The only difference is the normalising coefficient. This is a
minor correction, but it makes a difference to the results in table 4.5 (section 4.6).
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j
i 3 2 1 0

−1 − 1
6

1
2 − 1

2
1
6

0 1
2 −1 0 2

3

1 − 1
2

1
2

1
2

1
6

2 1
6 0 0 0

Table 4.1: The coefficients ki,j in equation 4.11.

Ratzel’s [1980, p.97] results indicate that the sharpened Gaussian is a perceptual improvement
over the ordinary Gaussian11.

4.5 Interpolating cubic B-spline

In chapter 3 we met the approximating cubic B-spline (equation 3.19 with B = 1 and C = 0). It
does not produce an interpolating intensity surface. To make an interpolating cubic B-spline we
apply the B-spline filter to a different set of sample values, gi, derived from the image’s sample
values, fi, in such a way that the resulting curve interpolates the image’s sample points. This
process was briefly described in section 3.5.5.

The interpolating cubic B-spline intensity surface is defined as:

f(x) =
2∑

i=−1


 3∑

j=0

ki,j tj


 gα+i (4.11)

where α =
⌊

x−x0
∆x

⌋
and t = x−xα

∆x . The ki,j are listed in table 4.1 [Foley and van Dam, 1982]. In
order that equation 4.11 interpolates all the sample points, we must ensure that:

fi =
1
6
(gi−1 + 4gi + gi+1) (4.12)

which gives us an infinite set of equations to solve.

In a practical situation, only a finite number, say n, of the fi will be known. Say these val-
ues are f0, f1, . . . , fn−1, then to define the entire curve between x0 and xn−1, n + 2 values,
g−1, g0, g1, . . . , gn−1, gn, are required. These can be partially evaluated by solving the n equa-
tions in n + 2 unknowns:



1 4 1
1 4 1 0

1 4 1
1 · · · 1

1 4 1
0 1 4 1







g−1

g0

g1

...
gn−1

gn




= 6




f0

f1

f2

...
fn−2

fn−1




This leaves us with two edge effects problems: (1) how to define the last two equations required to
find the gi values; and (2) how to define the intensity surface outside the range x0 to xn−1.

Three common solutions to the first problem are the free-end, cyclic, and not-a-knot boundary
conditions [Wolberg, 1990, p.289].

11Ratzel actually used a truncated version of this Gaussian, setting hg(s) = 0, |s| > 1.2. Such approximations are
discussed in the section 4.6.
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The free-end, or natural, end condition involves setting the second derivative of the intensity
function equal to zero at the end points. That is, f ′′

0 = 0 and f ′′
n−1 = 0. This is equivalent to

setting:

g−1 = 2g0 − g1

gn = 2gn−1 − gn−2

and from equation 4.12 we can show that this implies that g0 = 3f0 and gn−1 = 3fn−1, giving us
a system of n + 2 equations in n + 2 variables:




0 2
1 4 1 0

1 4 1
1 4 1

1 · · · 1
1 4 1

1 4 1
0 2 0







g−1

g0

g1

g2

...
gn−2

gn−1

gn




= 6




f0

f0

f1

f2

...
fn−2

fn−1

fn−1




(4.13)

The cyclic end condition puts gi = gi+n, which means that g−1 = gn−1 and gn = g0. This gives n
equations in n variables:



4 1 1
1 4 1

1 4 1 0
1 4 1

1 · · · 1
1 4 1

0 1 4 1
1 1 4







g0

g1

g2

...
gn−2

gn−1




= 6




f0

f1

f2

...
fn−2

fn−1




(4.14)

The third end condition, that favoured by Wolberg, is the not-a-knot boundary condition. This
condition requires f ′′′(x) to be continuous at x1 and xn−2 [Wolberg, 1990, p.289]. This is equivalent
to g−1 = 4g0 − 6g1 + 4g2 − g3 and gn = 4gn−1 − 6gn−2 + 4gn−3 − gn−4. These, combined with
equation 4.12, give (see appendix B.7): g1 = 1

6 (8f1−f0−f2), gn−2 = 1
6 (8fn−2−fn−1−fn−3) and:



0 0 36
1 4 1

1 4 1 0
1 4 1

1 · · · 1
1 4 1

0 1 4 1
36 0 0







g0

g1

g2

...
gn−2

gn−1




= 6




8f1 − f0 − f1

f0

f1

...
fn−1

8fn−2 − fn−1 − fn−3




(4.15)

Note that equation 4.13 is a tridiagonal system of equations and can be solved in O(n) time [Press
et al, 1988, sec 2.6]. Equation 4.14 is virtually tridiagonal and so should be solvable in similar time
[ibid., sec 2.10]. A similar comment applies to equation 4.15.

The second question, (what exists beyond the edges), is a little more tricky. Note that by defining
the values of n + 2 coefficients, g−1, g0, g1, . . . , gn−1, gn, the intensity curve described by equa-
tion 4.11 is defined over the range x ∈ [x0, xn−1). If we only define the values of g0, g1, . . . , gn−1,
(as Wolberg [1990, p.136] does) then equation 4.11 describes an intensity curve defined over the
smaller range x ∈ [x1, xn−2).
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Outside these ranges, the intensity curve is undefined, because the necessary gi coefficients are
undefined. One solution is to set the intensity curve to a constant value outside this range, thus
making it unnecessary to specify any of these unknown coefficient values.

The cyclic boundary condition automatically defines all the coefficients by the formula gi = gi+n.
This gives a result identical to the ‘replication’ solution in section 4.2.1.

For the other boundary conditions we could specify the unknown fi values, the unknown gi values,
or the value of the intensity curve outside the defined area, as described above. Specifying the
unknown fi values would allow us to find the gi values by the impossible task of solving an infinite
system of equations. It would be possible to specify the unknown fi values only in the region which
will actually be seen in the output, making it possible to calculate all the necessary gi values.

Specifying the unknown gi values directly is perhaps a more tempting solution, and certainly
requires far less computation. This extrapolation can be achieved by any of the edge solutions in
section 4.2.1, although we are no longer working with the image samples but with equation 4.11’s
coefficients. Wolberg [1990, p.136] seems to assume that gi = 0, i �∈ {0, 1, 2, . . . , n − 1}.
The interpolating cubic B-spline has been praised as being of higher quality than the Catmull-Rom
cubic spline [Keys, 1981]. It has also been recommended as being a strictly positive interpolant,
which it certainly is not. This confusion arises from the fact that the cubic B-spline function,
which is applied to the gi coefficients, is a strictly positive function. However, the function that
is applied to the fi values is not strictly positive [Maeland, 1988]. The kernel of the interpolating
cubic B-spline actually oscillates in a manner similar to the sinc interpolant’s kernel.

The interpolating cubic B-spline’s kernel

The kernel of the interpolating cubic B-spline can be analytically derived if we ignore boundary
conditions . Equation 4.11 can now be written as a discrete convolution:

f = h ∗ g (4.16)

where f = . . . , f−2, f−1, f0, f1, f2, . . ., likewise for h and g. Further, h is defined as: h−1 = 1
6 ;

h0 = 4
6 ; h1 = 1

6 ; hn = 0, n �∈ {−1, 0, 1}.
In the frequency domain equation 4.16 is equivalent to:

F = H × G (4.17)

where, for unit spaced samples, H can be shown to be:

H(ν) =
4
6

+
2
6

cos 2πν

To find g in terms of f , we invert equation 4.17:

G =
1
H

× F

= L × F

where L is:
L(ν) =

1
H(ν)

=
3

2 + cos 2πν

and by judicious use of Dwight [417.2] we get:

L(ν) =
3
2
× 1 + a2

1 − a2


1 +

∞∑
j=1

2aj cos 2jπν


 (4.18)
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where a = −2 +
√

3. A little algebra shows that 3
2 × 1+a2

1−a2 =
√

3.

Transferring this back to the discrete spatial domain we get:

g = l ∗ f

where l is the inverse Fourier transform of L:

ln =
√

3an

l−n = ln

}
n ≥ 0 (4.19)

Thus each gi is dependent on all of the fi values.

Numerical verification of the values of li can be achieved by running a modified version of Sedgewick’s
[1988, p.549] algorithm for finding interpolating B-spline coefficients. On a dataset of 32 samples,
this gave values (for the middle region of the data, where edge effects are minimised) for the li to
three significant figures of:

l0 = 1.732 ±0.001
l−1 = l1 = −0.464 ±0.001
l−2 = l2 = 0.124 ±0.001
l−3 = l3 = −0.033 ±0.001
l−4 = l4 = 0.009 ±0.001
l−5 = l5 = −0.002 ±0.001

n ≥ 5 : l−n = ln = 0.000 ±0.001

In agreement with the theoretically derived formula.

The creation of an intensity curve can be written as:

i = b ∗ g

where b is the approximating cubic B-spline kernel. This is equivalent to:

i = b ∗ (l ∗ f)
= (b ∗ l) ∗ f

The approximating B-spline kernel, b, is graphed in figure 4.30, and the interpolating B-spline
kernel, b ∗ l, is graphed in figure 4.31. Note that b ∗ l has negative lobes.

This derivation roughly parallels that given by Maeland [1988]. Maeland’s formula for the cubic
B-spline kernel [p.214, equation 8] is, however, wrong. It is:

BMaeland(s) =




3
4 |s|3 −

3
2 |s|2 + 1, 0 ≤ |s| < 1

− 1
4 |s|3 + 1

2 , 1 ≤ |s| < 2
0, otherwise

Compare this with the correct version (equation 4.21) provided by Parker et al [1983, p.35] and
Wolberg [1990, p.135, equation 5.4.18]. Maeland’s conclusions are still valid, but the details are
slightly incorrect.

The interpolating cubic B-spline is often cited as being better than the Catmull-Rom spline (or
other cubics which fit Mitchell and Netravali’s [1988] formula (equation 3.19)) [Keys, 1981; Mae-
land, 1988]. This is due to the fact that this interpolant considers a wider range of data than
these other cubics. Further it is sinc-like in form; with the advantages that negative lobes bring
(section 3.5.7). However, it has an advantage over the sinc function in that, while the sinc kernel
only has a 1

x decay, the interpolating B-spline exhibits an exponential decay (see section 4.6).
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Figure 4.30: The approximating cubic B-spline kernel, b.
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Figure 4.31: The interpolating cubic B-spline kernel, b ∗ l.
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Figure 4.32: A Bezier cubic curve is defined by four points: its two endpoints, Pi and Pi+1, and
two control points, Qi and Ri.

The interpolating B-spline kernel can be used directly on the image data values, fi. In this case
boundary effects would be handled by one of the methods in section 4.2.1. The interpolating
B-spline kernel is analytically defined as:

h(s) =
∞∑

j=−∞
B4(j − s)

√
3a|j|, a = −2 +

√
3 (4.20)

where B4(s) is the approximating B-spline kernel:

B4(s) =




1
2 |s|3 − |s|2 + 2

3 , 0 ≤ |s| < 1
− 1

6 |s|3 + |s|2 − 2|s| + 4
3 , 1 ≤ |s| < 2

0, otherwise
(4.21)

This equation looks as if it is uncomputable because of the infinite sum. However, for any given
value of s, only four of the terms in the sum will be non-zero: those for which j ∈ {�s�−1, �s� , �s�+
1, �s� + 2}.

4.5.1 Bezier cubic interpolation

Bezier cubic interpolation is related to cubic B-spline interpolation in that a particular cubic
function is applied to a set of coefficients derived from the data points. We briefly discussed the
Bezier cubic in section 3.6.3. The Bezier cubic form is described by Foley and van Dam [1982,
sec. 13.5.2] and the Bezier cubic interpolation formula is presented by Rasala [1990]. The cubic
form is:

P (x) = [t3 t2 t 1]




−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0






Pα

Qα

Rα

Pα+1


 (4.22)

Where α =
⌊

x−x0
∆x

⌋
, t = x−xα

∆x , and P (x) = (xα, fα) is a point in space rather than simply a
function value. This equation produces a cubic curve which passes through its end points (Pα

and Pα+1) and whose shape is controlled by the endpoints and by the control points as shown in
figure 4.32.

Given a set of points, {Pi : i ∈ Z}, we can generate a set of control points, {(Qi, Ri) : i ∈ Z},
such that the piecewise Bezier cubic defined by the points is C2-continuous. Rasala [1990] gives
the conditions required to generate the control points as:

Pi − Ri−1 = Qi − Pi (4.23)
Pi − 2Ri−1 + Qi−1 = Ri − 2Qi + Pi (4.24)
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Given equation 4.23, a difference vector can be defined:

Di = Pi − Ri−1 (4.25)
= Qi − Pi (4.26)

Equations 4.24, 4.25, and 4.26 can be combined to produce a recurrence relation between the Di

and the Pi:
Di+1 + 4Di + Di−1 = Pi+1 − Pi−1

Rasala produces the following result for a closed loop of n points (that is: Pi = Pi−n):

Di =
m∑

k=1

ak(Pi+k − Pi−k) (4.27)

where:
ak = − fm−k

fm

fj = −4fj−1 − fj−2, j ≥ 2

for n even m = n−2
2 , f0 = 1, f1 = −3

for n odd m = n−1
2 , f0 = 1, f1 = −4

For the infinite case (that is: a non-repeating infinite set of points) it can be shown that:

an = −(a)n

where a = −2 +
√

3 (see appendix B.3 for details).

This is the same constant as that used in the B-spline case (equation 4.20) and, indeed, the same
sequence of coefficients (an). This is unsurprising as both situations involve the 1–4–1 kernel.
Note, however, that these values are used in different ways.

If we let Di =
[

εi

δi

]
then Qi = (xi + εi, fi + δi), Ri = (xi+1 − εi+1, fi+1 − δi+1).

Taking equation 4.27 for the infinite case, and splitting it into two parts we get:

εi =
∞∑

k=1

ak(xi+k − xi−k) (4.28)

δi =
∞∑

k=1

ak(fi+k − fi−k) (4.29)

With the sample points equispaced (xi+1 = xi + ∆x) equation 4.28 becomes:

εi = −
∞∑

k=1

(a)k × 2k ∆x

= −2∆x

∞∑
k=1

k(a)k

= −2∆x a
1

(1 − a)2
[Dwight 9.06]

=
1
3

∆x

Thus the four control points are equispaced over the unit distance, at xi, xi + 1
3∆x, xi + 2

3∆x, and
xi+1. Further, δi (equation 4.29) can be expressed as:

δi = −
k=∞∑
k=1

(a)k (fi+k − fi−k)
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Figure 4.33: The Bezier interpolating cubic’s filter kernel.

Substituting this into equation 4.22 we get:

f(x) = (−t3 + 3t2 − 3t + 1)fα

+ (3t3 − 6t2 + 3t)
(
fα −

∑∞
k=1 ak(fα+k − fα−k)

)
+ (−3t3 + 3t2)

(
fα+1 −

∑∞
k=1 ak(fα+1+k − fα+1−k)

)
+ (t3)fα+1

(4.30)

From this we can evaluate this interpolant’s kernel:

h(s) =




ai+1(3x3 + (−9i − 3)x2

+ (9i2 + 6i)x + (−3i3 − 3i2))
+ ai(3x3 + (−9i − 6)x2

+ (9i2 + 12i + 3)x + (−3i3 − 6i2 − 3i)), i ≥ 1, i = �x�
i ≤ x < i + 1

a(3x3 − 3x2)
+ 2x3 − 3x2 + 1, 0 ≤ x < 1

a(−3x3 − 3x2)
− 2x3 − 3x2 + 1, −1 ≤ x < 0

ai−1(−3x3 + (−9i + 3)x2

+ (−9i2 + 6i)x + (−3i3 + 3i2))
+ ai(−3x3 + (−9i + 6)x2

+ (−9i2 + 12i − 3)x + (−3i3 + 6i2 − 3i)), i ≥ 2, i = −�x�
−i ≤ x < −i + 1

(4.31)

This kernel is shown in figure 4.33. Comparing figures 4.33 and 4.31 it may be suspected that
this Bezier kernel may be identical to the interpolating cubic B-spline kernel (equation 4.20) in
the same way that several paths led to the Catmull-Rom. This suspicion is in fact true: a goodly
amount of algebra will show that equations 4.31 and 4.20 are identical.

An image to which Bezier/B-spline reconstruction is to be applied can be edge extended in any of
the usual ways (section 4.2.1). Rasala’s [1990] paper, rather than discussing the general method
presented here, gives the exact Bezier reconstruction for two special cases: the case of a ‘closed
loop’, that is the replication edge extension method, where the image edges, in effect, wrap round
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Brown [1969]
p.252, fig. 8

Figure 4.34: Brown’s [1969] figure 8. Images were reconstructed using a filter with first and second
side lobes. The second side lobe height was set at 2% of the central lobe’s height. This graph
shows the subjective score for two images, one live and one still, against the height of the first
side lobe as a percentage of the height of the central lobe. The best subjective quality occurs at a
height of around 12%.

to meet one another; and the case of an ‘open curve’. In this latter case, one specifies the tangent
values of the curve at the end points and reflects the curve about its endpoints. This is a special
case edge extension, similar, but not equal to, the reflection edge extension method.

The B-spline/Bezier kernel has the properties of oscillating about zero and of decaying exponen-
tially to zero. It thus has negative lobes. The first negative lobe is by far the biggest, and hence
contributes most to any sub-black or supra-white value, the second and subsequent negative lobes
contribute a negligible amount to the final intensity surface values.

The Catmull-Rom spline has these properties also. It has been suggested that the interpolating
cubic B-spline is a good interpolant because it is continuous in its second derivative, while the
Catmull-Rom spline, which is not as good [Keys, 1981] has only first derivative continuity. However,
the discussion in section 3.5.2 indicates that the presence or absence of C2-continuity has little
effect on the visual fidelity of the interpolation. It appears that it is the sharpening effect caused
by the negative lobes is the important factor here.

4.5.2 The sharpening effect of negative lobes

A reconstruction filter which has a negative side lobe, such as the Catmull-Rom or B-spline/Bezier,
produces a visually sharper intensity surface than reconstructors without such lobes. Schreiber and
Troxel [1985] noted this effect in their sharpened Gaussian filter. They point out that the overshoot
caused by the negative lobes appears to be a defect but actually is the feature responsible for the
better tradeoff between sharpness and sampling structure.

However, ringing, when there is more than one lobe either side of the central lobe, is perceived to
be a bad effect. Brown [1969] carried out a test to discover the subjective effects of these side lobes.
Brown’s results show that the presence of the first side lobe increases subjective picture quality,
provided the second lobe is non-existent or at least small. The subjective quality was measured
on a scale of 0–4 by seven observers and the average value plotted in figure 4.34. A value of 1
indicates no improvement; less than 1 is degradation. A value of 3 indicates that the image is
subjectively as good as an image of twice the test bandwidth. The best improvements occur for a
lobe of height 10–14% of the height of the intensity change (in our filters this means a first side
lobe of height 10–14% of the central lobe height). Brown’s results for the second lobe show that it
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Reconstructor Sinc Catmull-Rom B-Spline/Bezier Sharpened Gaussian
First side lobe 22% 7.4% 14% 8.4%
Second side lobe 13% 0% 3.7% 0%

Table 4.2: The heights of the side lobes of four reconstructor’s filters, given as a percentage of the
height of the central lobe.

causes subjective degradation of the image but that, for a height of 4% or less this degradation is
not significant compared to the enhancing attributes of the first lobe.

Table 4.2 contains the size of the first two side lobes of each of the reconstructors with a negative
first side lobe. The figures are given as percentages of the height of the central lobe. This table
indicates that sinc will produce a visually degraded intensity surface. This result is well known
from simply viewing sinc reconstructed and enlarged images [Mitchell and Netravali, 1988; Ward
and Cok, 1989]; see figures 2.8, 2.12, and 4.20 for examples of this degradation.

The B-spline/Bezier interpolant should produce a result which is about right, whilst both the
Catmull-Rom and sharpened Gaussian, appear to have a first side lobe that is slightly small for
best effect.

Brown states [p.252] that, for moving pictures, with a signal to noise ratio of 40dB, the best height
for the first side lobes is reduced. He found that moving the ideal value from 12% (noiseless) to
6% (noisy) gave the best results. Thus the Bezier/B-spline reconstructor would be expected to do
badly with noisy images while the other two would be better.

This effect does not account for all subjective quality, as it only improves the sharpness of the
image. However it does give an important pointer to why some reconstructors appear better than
others. Other factors, though also come into play.

The sinc and Bezier/B-spline kernels are both oscillatory. The reason the sinc kernel causes ringing
artifacts while the B-spline tends not to is that sinc has a much slower fall off to zero than the
B-spline. Thus sinc has much more prominent side lobes than the B-spline. This is picked up in
section 4.6.

The Mach band effect

One possible explanation of this sharpening is that it is due to the Mach band effect. This
physiological effect was first described by Mach [1865] and is described in detail by Ratliff [1965]
(Ratliff’s book also includes translations of Mach’s papers on this and related effects). The basic
effect, as it concerns our work, is that the bright side of an edge appears brighter than its surrounds
and the dark side appears darker. The stimulus presented to the eye by a sharp edge, and the
sensation passed by the eye to the brain, are illustrated in figure 4.35.

The sharper the edge, the more pronounced the effect [Ratliff, 1965, p.89]. The importance of
this effect is that, if the eye is presented with a different intensity distribution which produces a
sensation similar to the sensation curve in figure 4.35 then the visual system will interpret it as the
stimulus curve in the same figure. Thus, to give the appearance of a sharp edge, it is not necessary
to present the eye with an actual sharp edge. It is sufficient to present a sloping edge with a lobe
at either end, producing a very similar sensation curve to that given by a sharp edge. Cornsweet
[1970] presents an interesting illustration of two different stimuli producing the same sensation.
This is shown in appendix D.

The response function of the human visual system is known to be shaped something like that
shown in figure 4.36 [Ratliff, 1965]. This shape, with a single prominent negative side lobe is
very like that of the Catmull-Rom, sharpened Gaussian, and B-spline/Bezier kernels. Thus these
kernels will produce an intensity curve, around an edge in the image, similar to the eye’s response
to a sharp edge. This may fool the eye into seeing a sharp edge at that point. This phenomenon
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Position

Figure 4.35: The Mach band effect, showing the stimulus presented to the eye and the sensation
passed by the eye to the brain. The sensation curve has bumps either side of the edge which make
the intensity appear slightly darker on the dark side and slightly lighter on the light side.

Figure 4.36: The response function of the human visual system, similar in shape to the kernels of
the Catmull-Rom, sharpened Gaussian, and B-spline/Bezier reconstructors.

could account in part for the success of these kernels as reconstructors, that is: they are perceived
to be good because they take advantage of a physiological effect of the eye.

The problem of negative intensities

A final note here is that there is some debate as to whether negative lobes are desirable (sec-
tion 3.5.7). The main argument against negative lobes is that they can produce negative pixel
values. Blinn [1989b] states “there is no such thing as negative light and clamping these negative
values to zero is about all you can do, but it is not ideal”. Clamping will, in fact, destroy the lobes
we are using to sharpen the edge.

An alternative to clamping is to rescale the values so that the lowest and highest intensities are
physically realisable [Wolberg, 1990, p.131]. This maintains the intensity changes required to
produce the desired effect. However, the unfortunate consequence is that the image’s contrast is
reduced, which is undesirable.

If we consider Blinn’s [1989b, p.87] statement that clamping negative values to zero is about all you
can do, it appears that something could be achieved when we examine the visual phenomena shown
in appendix D. There, Cornsweet’s [1970] figures indicate that a third solution, that of locally
rescaling intensity values, could produce desirable results. Cornsweet shows that two different
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(a) (b)

(c) (d)

Figure 4.37: A possible solution to the problem of generating negative intensity values. (a) shows
the curve we would like to simulate: a sharp edge. (b) shows the stimulus we would like to present
to the eye to fool the brain into seeing the sharp edge. (c) shows this stimulus clamped to zero,
thus destroying the illusion of a sharp edge. (d) shows a possible solution: locally modifying the
intensities so that the stimulus is still there at the dark side of the edge, and gently blending this
into the dark area to the left.

intensity distributions produce identical visual response for two different cases.

This, and other, evidence indicate that local intensity changes are far more important than slow
(non-local) changes and absolute intensity values. Thus, if we could ‘raise’ a region of negative
light into positive values and gently blend this raised region in with the surrounding areas then the
resulting visual response should be closer to the desired response than simply clamping negative
values to zero, and it would not have the undesirable characteristics of globally reducing image
contrast. The basic idea is shown in figure 4.37.

Some way of implementing a function of this nature needs to be found. This is not a simple process
as the correction applied at any one point can depend on a large neighbourhood around that point,
on the distance to the ‘centre’ of the nearest negative trough, and on the depth of that trough.
It is difficult to decide if such a ‘correction’ can be performed. If it can, then a decision must be
made as to whether it is worth the effort. Further work on this solution is required.

4.5.3 The two-dimensional interpolating cubic B-spline

The B-spline interpolant has been presented in a one-dimensional form. When using filters, such as
the sinc or Gaussian, it is simple to extrapolate from the one- to the two-dimensional filter kernel
by convolving two one-dimensional filter kernels, perpendicular to one another. This is illustrated
in figures 4.38, 4.39, and 4.40.

This two dimensional kernel can be directly convolved with the sample points. The B-spline kernel
could also be treated like this. However, the usual way of producing a B-spline curve is to evaluate
the coefficients, gi and then use a simple, local B-spline kernel on these. The standard way of
extending this to two dimensions is to evaluate the coefficients for each scan-line in one direction,
then, for each point for which a value is required, the coefficients must be evaluated for the line,
passing through the point, perpendicular to those scan lines; and hence the value at that point
calculated (see figure 4.41). This is a very time consuming process.

In practice, this limits the B-spline interpolant’s usefulness to scan-line algorithms rather than 2-D
algorithms. However, if we treat the B-spline as a filter (equation 4.20), rather than as a calculation
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Figure 4.38: The sinc kernel aligned along the x-axis.

Figure 4.39: The sinc kernel aligned along the y-axis.
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Figure 4.40: The two-dimensional sinc kernel, generated by convolving the two one-dimensional
kernels shown in figures 4.38 and 4.39.

Figure 4.41: The traditional extension of the one-dimensional interpolating cubic B-spline to two-
dimensional interpolation. Coefficients are calculated for each scan-line in the horizontal direction,
then to find the value at any one point we need to calculate a complete set of coefficients in the
vertical direction — a time-consuming process, because in general, the required points can be
anywhere in the plane, and so these vertical coefficients will not be used for more than one point.
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of coefficients, followed by a simpler filter, the two dimensional version is easy to construct from
two one-dimensional versions, as in figures 4.38 through 4.40:

h(x, y) = h(x) × h(y)

where h(x, y) is the two-dimensional kernel and h(s) is the one-dimensional kernel.

The question now arises, is it possible to generate a two-dimensional set of coefficients and apply
a simple local kernel (for example: the two-dimensional approximating cubic B-spline) to them to
produce the same result as applying the complicated non-local kernel to the image sample values?

If we assume an image of infinite extent, then equation 4.20 is the one-dimensional filter kernel for
the interpolating B-spline:

h(s) = b(s) ∗ ľ(s)

where b(s) is the cubic B-spline kernel and ľ(s) is the discrete kernel which is convolved with the
data-values, fi, to produce the coefficients, gi.

The two one-dimensional versions of h(s) are:

hx(x, y) =
{

h(x), y = 0
0, otherwise

hy(x, y) =
{

h(y), x = 0
0, otherwise

These can be convolved to produce the two-dimensional interpolating cubic B-spline kernel:

h(x, y) = hx(x, y) ∗ hy(x, y)

Expanding this out and rearranging terms we get:

h(x, y) = bx(x, y) ∗ ľx(x, y) ∗ by(x, y) ∗ ľy(x, y)
= bx(x, y) ∗ by(x, y) ∗ ľx(x, y) ∗ ľy(x, y)
= b(x, y) ∗ ľ(x, y)

where b(x, y) is the two-dimensional approximating cubic B-spline kernel and ľ(x, y) can be shown
to be a discrete function with values: lx,y = lx× ly, x, y ∈ Z (ln is defined in equation 4.19). Thus:

lx,y = 3a|x|+|y|, x, y ∈ Z

Now if we perform the discrete convolution:

gx,y = lx,y ∗ fx,y

then the two-dimensional B-spline kernel, b(x, y) applied to the gx,y coefficients will produce an
intensity surface which interpolates the fx,y data values.

lx,y is an infinitely wide filter. Its values, however, decrease exponentially as |x| + |y| increases
(this rapid decrease is noted by Rasala [1990, p.584] in his discussion of the Bezier interpolant).
This means that an excellent approximation to lx,y can be obtained by only considering values of
x and y for which |lx,y| is greater than some constant. For example, if we consider all values such
that |lx,y| ≥ 10−4 (an adequate lower bound for our purposes) then we need only consider values
of x and y for which |x| + |y| ≤ 7. This gives a diamond of lx,y coefficients to consider, with a
diagonal length of 15 coefficients (total, 113 coefficients). This can be used to calculate all the gx,y

coefficients. There are the usual edge effect problems near the image edges but these can be solved
by any of the standard edge solutions in section 4.2.1.

This method of producing the coefficients differs from the standard method. The standard method
involves the solution of a one-dimensional system of equations for each scan-line. This system has
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special end conditions (because scan-lines are finite in length) and thus cannot be represented as
a digital filter12. The special end-conditions cause a problem in that they mean that a solution
cannot easily be found to a two-dimensional system of equations, and so we must resort to the
time-consuming method shown in figure 4.41. A two-dimensional system of equations could be
generated based on the fact that:

fx,y =
1
36

(gx−1,y−1 +4gx−1,y +gx−1,y+1 +4[gx,y−1 +4gx,y +gx,y+1]+gx+1,y−1 +4gx+1,y +gx+1,y+1)

End conditions could be imposed for the edge values. This would produce a system of (N + 2)2

equations in (N + 2)2 unknowns. This two-dimensional system does not have the tridiagonal
property of its one-dimensional counterpart and so would take O(N6) time to solve [Press et al,
1988]. It may be possible to reduce this order with a specially designed algorithm [ibid., sec. 2.10],
but this possibility has yet to be investigated.

The coefficients resulting from the method of figure 4.41 are virtually identical to those generated
by the filter method except near the image edges. Near the edges, the different results are due to
the different edge solutions employed by the two methods.

4.5.4 Using the two-dimensional interpolating B-spline

We have developed three different ways of producing an intensity surface using the interpolating
cubic B-spline. To evaluate the usefulness of each method, assume that the original image contains
N × N sample values and that we need to evaluate the intensity surface at M × M points. That
is: the reconstructor forms part of a resampler which also includes some sort of point sampler.

The first of the three methods is to convolve the two dimensional interpolating B-spline kernel,
h(x, y), directly with the fx,y data values. Given these assumptions, resampling using this first
method is an O(M2) process.

The second method is to precalculate the gx,y coordinates using the lx,y filter on the fx,y data
values. The local B-spline kernel, b(x, y), can then be applied to these. The precalculation is an
O(N2) process and the intensity surface evaluation is an O(M2) process. Thus, overall this is an
O(M2) process (N is of order O(M)).

The third method is that illustrated in figure 4.41. It involves precalculating one-dimensional
coefficients for each scan-line and then, for each point evaluated, calculating a perpendicular set
of one-dimensional coefficients and then using these to evaluate the value of the intensity surface
at the point. The precalculation here is O(N2), but the evaluation of the intensity surface values
is O(NM2), except in certain special cases where it can be reduced to only O(M2). This makes
the overall process O(M3) (except in those special cases).

Thus, either of the first two cases reduces the time from O(M3) (for the third, traditional, method)
to O(M2). Which of these two is faster depends on the actual timings of the two, and on the values
of N and M .

As a rough guide, let us say that the execution time of the two methods can be written as follows:

T1 ≈ k1M
2

T2 ≈ cN2 + k2M
2

Now, for each intensity surface value evaluated by the first method, 113 numbers have to be
computed and summed (assuming we adopt the diamond-shaped kernel of page 139); while the
total for the second method is only 16. Thus k1 ≈ 7k2. For the second method to be faster than

12Remember that we originally produced the filter version by assuming an infinitely long scan-line, and therefore
no end conditions.
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Method Precalculation Calculation
1. Direction convolution — O(M)
2. Filter precalculation O(N) O(M)
3. Traditional method O(N) O(M)

Table 4.3: The orders of the operations involved in each of the three ways of calculating the
one-dimensional, interpolating cubic B-spline.

Operation k1 k2 k3 c2 c3

Multiplies 62 18 18 15 1
Divides — — — — 3
Adds 74 15 15 14 5
Table lookups 60 16 16 15 —
Function value lookups 15 — — 15 3

Table 4.4: The operations involved in calculating a value for each constant in timing equations for
each of the three ways of calculating the one-dimensional, interpolating cubic B-spline.

the first thus requires:

cN2 <
6
7
k1M

2

It can be shown that k1 is between 2 and 3 times c (see appendix B.8) and thus, for T2 > T1, we
require:

N2 < 2M2

Therefore, so long as the destination image has the same or a greater number of pixels as the source
image, the second method should be noticeably faster. On the other hand if the destination has
significantly less pixels than the source (say M2 ≤ 1

4N2), then the first method will be noticeably
faster. The third method, being O(M3) will be slower than both, except, perhaps, for very small
M .

4.5.5 Using the one-dimensional interpolating B-spline

While this O(M3) behaviour makes the traditional method unsuitable for two-dimensional recon-
struction, it suffers no such problem in one-dimension. Do these new methods of evaluating the
interpolating B-spline offer any advantages in one-dimensional reconstruction?

Again, assume that the one-dimensional source ‘image’ contains N sample values and the destina-
tion, M sample values. Table 4.3 gives the time complexities of the three methods. They are all of
the same order. To get some idea of how they compare, we will again produce some approximate
timings.

Assume:

T1 ≈ k1M

T2 ≈ c2N + k2M

T3 ≈ c3N + k3M

The number of operations involved in each of these constants is shown in table 4.4. This shows that
k2 = k3 (the process is identical for both methods), k1 ≈ 4k2, and c2 ≈ k2. Thus, for the second
method to be faster than the first requires N < 3M , that is the source image is at most three
times the length of the destination. The second and third methods are identical for calculating
the destination image values. Comparing their times for precalculating the coefficients depends
on how long a divide operation takes compared to a multiply. If a divide is about five times the
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length of a multiply the two methods take about the same time; if less then the third is faster; if
more then the second is faster.

Tests on one particular machine (a DEC Decstation 5400 running Ultrix 3.1 and X11R4) indicated
that a divide was about five times the length of a multiply. This indicates that both methods are
as fast as each other, although the second method uses less storage than the third.

Thus, for shrinking a one-dimensional image by a factor smaller than a third, the first method
is fastest. For other cases there is little to choose between the second and the third (traditional)
method. However, as we have seen, for two-dimensional images the third method is considerably
slower than either of the two new methods.

4.6 Local approximations to infinite reconstructors

The infinite extent reconstructors are good theoretical devices. With appropriate edge solutions
they can be used in a real situation, operating on an entire image. In practice, however, resampling
is a faster operation if a smaller local reconstructor is used. Thus we seek local approximations to
these non-local reconstructors.

These are two basic types of approximation: either a windowed version of the infinite reconstructor,
or a local polynomial approximation, matching the shape of the infinite reconstructor. We have
already discussed several members of this latter class. In particular, the one-parameter family
of cubics (equation 3.20) was originally developed by Rifman [Keys, 1981, p.1153] as an efficient
approximation to the sinc reconstructor [Park and Schowengerdt, 1983, p.260; Wolberg 1990,
p.129]. As such, Rifman set the parameter a = −1 in order to match the slope of the sinc function
at s = ±1. Since then, Keys [1981] and Park and Schowengerdt [1983] have shown that a = − 1

2
(the Catmull-Rom spline) is a better choice. It is still, of course, a valid approximation to a
sinc function. The local B-splines, on the other hand, are local approximations to the Gaussian
[Heckbert, 1989, p.41]. The approximating cubic B-spline is the most used member of this family.

The other form of approximation to an infinite function is a windowed version of that infinite
function. Windowing is a simple process where the infinite function’s kernel is multiplied by an
even, finite-extent window kernel. The simplest window function is a box, which has the value
one within certain bounds and zero outside. Windowing by a box function is commonly called
truncation.

Truncation’s effectiveness depends on the nature of the infinite function being truncated. If the
infinite function’s values are negligible outside the truncation bounds then the effect of truncation
on the function will also be negligible. However, if the function’s values outside these bounds are
not negligible then truncation will have a noticeable, usually deleterious, effect on the reconstructor.

Table 4.5 gives the bounds beyond which the listed functions’ magnitudes remain below each of
the listed limit values. Note that all the functions are normalised so that the area under the curve
is one. This especially relates to the the two 2−kx2

Gaussians, which are usually presented in their
unnormalised form. (Note that the Gaussians chosen by the different researchers are all similar in
value with standard deviations, ranging between σ = 0.42 and σ = 0.61.)

All of the tabulated functions, except for the sinc function, decay exponentially. All of the expo-
nential methods’ kernel values become negligible within at most ten sample spaces. The fact that
these reconstructor kernels become negligible so quickly means that they can be truncated locally
with negligible loss of quality [Heckbert, 1989 p.41; Wolberg, 1990, pp.143–146].

Examples of such truncation include Ratzel’s [1980, p.68] truncation of his Gaussian to |x| < 1.3
and of the sharpened Gaussian to |x| < 2.3 [ibid., p.69]. This truncation limit on the Gaussian
would appear to be a little low.

Turkowski [1990, pp.153–154] truncates his 2−2x2
filter to |x| < 2 and his 2−4x2

filter to |x| < 1.5.
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Limits
Function ±0.01 ±0.001 ±0.0001 Source√

8ln2
2π 2−4x2

1.280 1.571 1.816 Gaussian; Turkowski [1990],
Wolberg [1990]

1
0.5×

√
2π

e
− 1

2
x2

(0.5)2 1.480 1.828 2.119 Gaussian; Heckbert [1989, p.41]

1
0.52×

√
2π

e
− 1

2
x2

(0.52)2 1.532 1.895 2.199 Gaussian; Ratzel [1980],
Schreiber and Troxel [1985]√

4ln2
2π 2−2x2

1.740 2.165 2.520 Gaussian; Turkowski [1990],
Wolberg [1990]

Sharpened Gaussian 2.212 2.650 2.992 Ratzel [1980], Schreiber and
Troxel [1985]

tanh, k = 4 1.81 2.79 3.76 Wolberg [1990, pp.145–146]
Interpolating B-spline 2.855 4.804 6.735 section 4.5
tanh, k = 10 3.77 6.52 8.68 Wolberg [1990, pp.145–146]
sinc(x) ≈ 31.5 ≈ 318.5 ≈ 3183.0 section 4.3

Table 4.5: The functions on the left are all normalised. The table shows the minimum value of x
above which the functions value never goes outside the listed limits. All values are given to 3 or 4
significant digits. On the right are the sources for each function.

His basic assumption appears to be that three decimal places are sufficient accuracy for his purposes
[see ibid., figures 9, 10, 13, and 14]. These limits are close approximations to the 0.001 limits in
table 4.5.

Wolberg [1990, p.146] reports that the tanh filter yields excellent results when truncated to |s| ≤ 3.
The numbers in table 4.5 confirm this for the k = 4 filter, truncated to the 0.001 limit, but throw
doubt on it for the k = 10 filter. Wolberg does not make it clear which of the two filters this
truncation limit is applied to, presumably it is the k = 4 version.

In section 4.5.3 we truncated the interpolating B-spline to |s| ≤ 7, that is to the 0.0001 level.
Judging from the other results, this is a little conservative. Limiting at the 0.001 level, say |s| ≤ 5,
seems to be adequate, and agrees with Rasala’s [1990, p. 584] estimation of the truncation limit.
(Rasala estimates that for practical purposes a point is affected by values up to seven samples
away on either side. However, he comments that this estimate is pessimistic and that given certain
limits [met by our application] only values up to five samples away need be considered).

4.6.1 Sinc

The sinc function decays as 1
x . Table 4.5 shows that the practical outworking of this is that sinc

cannot be truncated locally without severely affecting its quality. Here, ‘locally’ means within at
most a dozen sample spaces.

Ratzel [1980, p. 69] used a sinc truncated to |x| ≤ 10. He found that it performed poorly. While
for a Gaussian this truncation limit is adequate, even excessive, for a sinc it is nowhere near big
enough to make the truncation errors negligible.

A solution to this problem is to multiply the sinc function by a better window function, one which
falls off smoothly to zero. Wolberg [1990, pp. 137-143] and Smith [1981, 1982] describe the common
windowing functions used with the sinc interpolant. These windows were all originally derived for
use in one-dimensional signal processing such as sound or radar signals. Visual signals tend to be
a little different (see section 2.7) and so we should not expect the results from these types of signal
to necessarily hold for images [Blinn, 1989a].

Unfortunately, any window, except a very local one, will leave the resulting reconstructor with
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large side lobes beyond the first. These will produce ringing artifacts in the reconstructed intensity
surface. Of the very local reconstructors, the best appears to be the Lanczos-3 window [Turkowski,
1990; Wolberg, 1990; Blinn, 1989b], which is:

Lanczos3(s) =
{

sinc( s
3 ), |s| < 3

0, otherwise

This gives a windowed function:

S(s) =
{

sinc(s) sinc( s
3 ), |s| < 3

0, otherwise

However, a window this local produces a function which is quite different to the original sinc
function. Hence, neither type of windowing is ideal for the sinc function.

4.7 Summary

We have discussed the problem of edge effects and the methods of edge extension. The best edge
extension solutions are windowed extrapolation, and reflection. Constant edge extension is the
fastest to evaluate.

Several of the infinite extent reconstructors have been examined. Sinc and Gaussian are well-known
reconstructors, and we briefly examined these and some of their variants.

We have derived the kernels of the interpolating cubic B-spline and the interpolating Bezier cubic.
These have been shown to be identical, and the kernel has allowed us to implement an efficient
two-dimensional version of the interpolating cubic B-spline.

Finally, we save that all of the common infinite reconstructors can be locally truncated with
practically no loss of quality, except for the sinc reconstructor. Any non-local windowing of sinc
will not remove the problem of ripply artifacts, where as a local windowing will. However, the
local windowing will also significantly change the reconstructor.

We now go on to consider a way of implementing an approximation to sinc reconstruction which
implicitly uses the replication edge extension method.



Chapter 5

Fast Fourier Transform
Reconstruction

The theoretically perfect reconstructed intensity surface is generated by convolving the image with
a sinc function. Whatever the advantages and disadvantages of this reconstruction method, it
is sometimes necessary to implement it. Sinc reconstruction is, however, extremely expensive to
implement. We saw in section 4.6.1 that the sinc function cannot be truncated to produce a local
reconstructor without severe artifacts; windowing gives better results but is still not ideal. To
implement ideal sinc reconstruction for use with point sampling and constant edge extension will
be an O(N2) process for every sample point for an N × N image. Thus resampling an N × N
image to another N × N image with single point sampling will be an O(N4) process.

Fraser [1987, 1989a, 1989b] presents a method which uses the fast Fourier transform (FFT) to
produce practically identical results to sinc reconstruction in O(N2 log N) time. This chapter
discusses his method and presents two variations on it: one to improve its accuracy near image
edges; the other to increase its speed and reduce its memory requirements.

5.1 The reconstructed intensity surface

The fast Fourier transform techniques are fast ways of implementing the discrete Fourier transform
(DFT). The DFT transforms a finite-length discrete image into a finite-length discrete frequency
spectrum. The intensity surface generated by DFT reconstruction is the periodic function described
by a Fourier series consisting of the DFT coefficients below the Nyquist frequency and zeros above
it [Fraser, 1987]. No doubt this statement requires some explanation.

Given a one-dimensional sequence of N samples, fj , the DFT produces N frequency values, Fk

[Lynn and Fuerst, 1989, p.212]:

Fk =
N−1∑
j=0

fj e−i2πjk/N , k ∈ {0, 1, . . . , N − 1}

These two discrete series, fj and Fk, each form the weights of periodic weighted comb functions:

ι(x) =
∞∑

j=−∞
fj δ(x − j

N
), fj = fj−N

I(ν) =
∞∑

k=−∞
Fk δ(ν − k), Fk = Fk−N

145
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Figure 5.1: The relationship between the discrete and continuous representations of a sampled
function. (a) shows the discrete samples, which can be discrete Fourier transformed to give (b)
the DFT of (a). (c) shows ι(x), the continuous version of (a), it consists of an infinite periodic set
of Dirac delta functions. Its Fourier transform, (d), is also an infinite periodic set of Dirac delta
functions and is the continuous representation of (b).

(a) (b) (c)

Figure 5.2: The three possible forms of the box function:

(a) b1(x) =

{
1, |x| < m

2

0, |x| ≥ m
2

(b) b2(x) =




1, |x| < m
2

1
2 , |x| = m

2

0, |x| > m
2

(c) b3(x) =

{
1, |x| ≤ m

2

0, |x| > m
2

Watson [1986] shows that these two comb functions are Fourier transforms of one another. The
relationship is illustrated in figure 5.1.

Now, to perfectly reconstruct f(x) from ι(x) we convolve it with Nsinc(Nx). This is equivalent
to multiplying I(ν) in the frequency domain by a box function, suppressing all periods except the
central one between ν = −N/2 and ν = N/2.

An important question here is what happens at the discontinuities of the box function? Figure 5.2
gives the three plausible answers to this: the value at the discontinuity can be zero, a half, or one.
In continuous work it does not matter particularly which version is used. Here, however, we are

dealing with a weighted comb function. If this comb has a tooth at the same place as the box
function’s discontinuity then it makes a good deal of difference which version of the box function
is used. Fraser [1987, p.122] suggests that the central version be used (where b2(N

2 ) = 1
2 ). His

reasoning is that all components of the Fourier sequence appear once in the box windowed function
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but the component at the Nyquist frequency occurs twice (once at each end) and so must be given
a weight of one half relative to the other components.

A more rigorous reason can be found from taking the Fourier transform of the spatial domain sinc
function:

B(ν) =
∫ ∞

−∞
Nsinc(Nx)e−i2πνx dx, N > 0

This can be shown (appendix B.2) to be:

B(ν) =




1, |ν| < N
2

1
2 , |ν| = N

2

0, |ν| > N
2

(5.1)

Thus we see that the middle version of the box function is the mathematically correct one to use1.

Applying the box function (equation 5.1) to the function I(ν) gives a non-periodic weighted comb
function, V (ν):

V (ν) = I(ν) ∗ B(ν)

=
∞∑

k=−∞
Vk δ(ν − k)

Vk =




Fk, 0 ≤ k < N
2

FN−k, −N
2 < k < 0

1
2FN/2, |k| = N

2

0, |k| > N
2

Note that there will only be coefficients at |k| = N
2 when N is even.

The coefficients of V (ν) form a Fourier series which describes a continuous function in the spatial
domain [Lynn and Fuerst, 1989, p.338]:

f(x) =
∞∑

k=−∞
Vk ei2πkx (5.2)

This is the intensity surface reconstructed by DFT reconstruction. The whole process is illustrated
in figures 5.3 and 5.4.

This same sequence of events can be seen in Watson [1986, figs 2 and 4] except that Watson uses
the third version of the box function (b3(N

2 ) = 1) rather than the second.

The reconstructed intensity surface is thus perfectly reconstructed from the samples by theoretically
convolving it with a sinc function and, in practice, using the DFT method. The significant fact
about this surface is that it is periodic. Edge extension has been done by replication and thus the
infinite convolution of ι(x) by Nsinc(Nx) can be performed in finite time: the value at any point
on the surface can be found by evaluating the sum of N or N + 1 terms in equation 5.2, although
this method of evaluation is as expensive as sinc convolution of the spatial domain samples.

The edge extension implicit in the DFT method is different from that which must be used for sinc
interpolation (section 4.3). There we saw that all pixels beyond the image edges must be given
the value zero (or somehow be faded off to zero). Here edge extension is by copying, which means
that edge effects will be visible in the intensity surface unless we get a fortuitous case where the
edges match [Fraser, 1989a, pp.667–668] (section 4.2.1).

1Any of the versions, when Fourier transformed, gives the sinc function, but the inverse transform gives the
middle version of the box function.
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Figure 5.3: The spatial domain representation of FFT reconstruction. The sampled function,
ι(x) is shown in (a). It is Fourier transformed to give figure 5.4(a). This Fourier transform is
multiplied by a box function (figure 5.4(b)) to give a finite extent function (figure 5.4(c)) in the
frequency domain. This is inverse Fourier transformed to give the continuous function (c) here.
Multiplication by a box in the frequency domain is equivalent to convolving by a sinc function,
(b), in the spatial domain.

5.2 DFT sample rate changing

The DFT can be used to change the sample rate of the image, that is: to scale the image. The
seed of this idea can be found in Schafer and Rabiner [1973]. The idea itself was developed by
Prasad and Satyanarayana [1986] and modified slightly by Fraser [1989a] to use the correct box
function. Their implementation only allows for magnification by an integer power of two. Watson
[1986] independently developed the idea, though he does not use the correct box function in part of
his implementation. His algorithm allows for scaling by a rational factor such that, if the original
sequence is N samples and the final L samples, then scaling is by a factor L/N . Watsons’ algorithm
can thus be used to scale from any whole number of samples to any other whole number of samples
whilst Fraser’s can only scale from N to 2nN, n ∈ N .

5.2.1 How it works

The following explanation is based on Watson’s [1986] work, with the modification that the correct
box function is used in the first multiplication (Watson already uses it in the second stage so it is
surprising that he is inconsistent). We first present the algorithm in the continuous domain, then
explain how it can be implemented digitally. Again the one-dimensional case is used for clarity.

The continuous version of the DFT sample rate changing process is illustrated in figure 5.6 (mini-
fication) and figure 5.7 (magnification). Our image sample values represent the weights on one
period of a periodic, weighted comb function (figure 5.6(a)). This is Fourier transformed to give
another periodic weighted comb function (figure 5.6(b)). The Fourier transform is then correctly
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Figure 5.4: The frequency domain representation of FFT reconstruction. See the caption of fig-
ure 5.3.

(a)
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Figure 5.5: Critical sampling. The sine waves in (a), (c), and (e) are sampled at exactly twice
their frequencies. The perfectly reconstructed versions are shown in (b), (d), and (f) respectively.
The function is only correctly reconstructed when the samples are in exactly the right place.
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Figure 5.6: An example of ‘perfect’ minification. The sampled spatial function (a) is transformed
to give (b), this is multiplied by a box function producing (d) [and thus generating a continuous
function (c) in the spatial domain]. (d) is multiplied by another box function to band-limit it
[filtering the spatial domain function (e)], and then sampling is performed to replicate the frequency
spectrum (h) and produce a minified image in the spatial domain (g).

box filtered (figure 5.6(d)) which gives a continuous intensity surface in the spatial domain (fig-
ure 5.6(c)). To resample this intensity surface at a different frequency (equivalent to scaling it and
then sampling it at the same frequency) we first perfectly prefilter it, using another correct box
function in the frequency domain. If we are enlarging the image this makes no difference to the
image (figure 5.7(f)), if reducing it then the higher frequency teeth in the comb function are set
to zero and any component at the new Nyquist frequency is halved (figure 5.6(f)). We can then
point sample at the new frequency, which produces periodic replication in the frequency domain.
Figure 5.6(h) shows this for reduction and figure 5.7(h) for enlargement.

Notice that the first multiplication with a box is redundant for reduction and the second is re-
dundant for enlargement. So, in either case only one multiplication by a box function is required.
Note also that the periodic copies move farther apart in enlargement, as if they had been pushed
apart at the Nyquist frequency (and its copies); and they have been pushed closer together in
reduction, hence the need to prefilter to prevent overlap and thus aliasing. The overlap at the
Nyquist frequency (and its copies at (2N +1)νN , N ∈ Z) appears to be acceptable [Watson, 1986].
Here the negative and positive Nyquist frequencies add together (hence, again, the need for the
box function to have half values at the Nyquist frequencies). With a real spatial domain function
this will mean that the even component at this frequency will be doubled and the odd component
will cancel itself. So, if the original spectrum is non-zero at the Nyquist frequency then samples
at the sampling frequency preserve only the even portion of this component. This is known as
critical sampling [Watson, 1986, p.4]. Figure 5.5 shows three sine waves sampled at twice their own
frequency, and the perfectly reconstructed version of these: only the even component survives.
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Figure 5.7: An example of ‘perfect’ magnification. See the caption of figure 5.6 for a description of
the processes. Note that multiplying (d) by the appropriate box function to give (f) has no effect
on the function in this magnification case.

Whilst this theoretical explanation clearly shows that a continuous intensity surface is generated
and resampled, as a practical reconstruction method a super-skeleton surface is generated, because
samples can only be produced at regularly spaced points, not at any arbitrary point. To be able to
sample at any point there would need to be an infinite number of points generated in each period,
and hence an infinite length of time to evaluate all the points (they must all be evaluated in a
single operation using this method).

5.2.2 Practical implementation

This algorithm is implemented using the discrete Fourier transform (normally its fast version: the
fast Fourier transform (section 5.2.4)). The process mirrors that shown in figure 5.6 and figure 5.7.
In this section we consider first the case of discrete reduction and then that of enlargement. In
both cases we use even length sequences in our examples. We consider the differences between
even and odd length sequences in the next section.

For reduction, the image (figure 5.8(a)) is discrete Fourier transformed (figure 5.8(b)). Notice that
this transform has only one Nyquist component (here shown at the negative end of the spectrum).
The periodic nature of the continuous equivalent means that the other Nyquist component, and all
the other copies of this component, have the same value. The transformed data are then multiplied
by a box function the same width as the new sample sequence. For an even length sequence, this
creates a sequence of length one more that the new sample sequence, with a Nyquist frequency
component at each end (figure 5.8(c)). These two components are added together to give a single
Nyquist component, here shown at the negative end of the period (figure 5.8(d)). Compare this
with figure 5.6(f) and (h) where sampling in the spatial domain causes the copies of the spectrum
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Figure 5.8: An example of DFT minification. The image, (a), is discrete Fourier transformed,
giving (b), which is multiplied by a box function to give (c). The two Nyquist components are
collapsed into one, producing (d), which is inverse discrete Fourier transformed, thus generating
(e), a minified version of (a).
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Figure 5.9: An example of DFT magnification. The image, (a), is discrete Fourier transformed,
giving (b). The Nyquist component is split into two halves, producing (c). This is padded with
zeros at either end to give (d), which is inverse discrete Fourier transformed, thus generating (e),
a magnified version of (a).

to overlap at the Nyquist frequency and its copies, and hence add up at these points. The modified
sequence can now be inverse transformed to give the resampled image (figure 5.8(e)).

Enlargement is a similar process. The image (figure 5.9(a)) is discrete Fourier transformed to give
its frequency domain representation (figure 5.9(b)). The Nyquist frequency component is split into
two halves, one at each end of the sequence (figure 5.9(c)). The sequence is now one sample longer.
Compare this step with figure 5.7(b) and (d) where the positive and negative Nyquist components
are both halved leaving a sequence with one tooth more in figure 5.7(d) that the number of teeth in
each period in figure 5.7(b). The altered transformed sequence in figure 5.9(c) is now padded with
zeroes at each end to give a sequence of the desired length (figure 5.9(d)). Note, in this example,
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Figure 5.10: Comparison of the usual FFT output order and the DFT output order used in
figure 5.8 and figure 5.9. At the top is the usual FFT output order. The Nyquist component is
number 5. This can be easily converted to our DFT output order, shown at the bottom. The
Nyquist component here is −5.

that one more zero is added at the negative end than at the positive end because we are assuming
that the Nyquist component is at the negative end of the spectrum. The discrete spectrum is
finally inverse discrete Fourier transformed to produce the desired enlarged image (figure 5.9(e)).

5.2.3 Odd vs even length sequences

All of the examples, up to this point, have used even length sequences. The processing required
for an odd length sequence is slightly different and slightly easier. This is due to the fact that
there is no frequency component at the Nyquist limit in an odd length sequence. Refer back to
the continuous case in figure 5.6(a) and (b). In general, for a sequence of length L, there are L
samples (teeth) in a unit distance in the spatial domain. Each period in the frequency domain
is L units long, with the teeth of the comb function at integer locations. The Nyquist frequency
is at ±L

2 . For an even length sequence there are components (teeth) at these frequencies; for
an odd length sequence there are no components at these frequencies because they are not at
integer locations. There are therefore no special case frequencies to consider when dealing with an
odd-length sequence, because there is no Nyquist component.

5.2.4 Implementation using the FFT

Implementing this algorithm using a fast Fourier transform is straightforward. Two transforms are
required, one of the original length and one of the final length. Provided an FFT algorithm can
be implemented for both lengths the whole algorithm can be implemented. All FFT algorithms
decompose the DFT into a number of successively shorter, and simpler DFTs [Lynn and Fuerst,
1989, p.221]. Thus an FFT of length 2n, n ∈ N is well known and widely used. Decomposition of
other, non-prime length DFTs is less widely used. Finally, FFTs for prime length DFTs or lengths
with large prime factors are most difficult, because the DFT has to be split into pieces of unequal
length.

One important implementation issue is that most FFT algorithms produce N coefficients in the
frequency domain ranging from ν = 0 to ν = 2νN − 1. The examples shown here in figures 5.8 and
5.9 show them ranging from ν = −�νN� to ν =

⌊
νN − 1

2

⌋
. This is no great problem as the values

generated are exactly the same because the sequence is periodic with period 2νN (see figure 5.1).
Figure 5.10 shows the equivalence. So long as this is borne in mind in implementation, no
problems will arise.
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5.3 Using the FFT to produce a continuous reconstructed
intensity surface

As pointed out in section 3.2, the FFT method is a super-skeleton reconstruction method. As it
stands it is only useful for scaling and a limited set of other transforms.

Fraser [1987, 1989a, 1989b] takes this FFT method and extends it to produce a continuous intensity
surface, which is thus useful for any transform. Fraser’s idea is to use the FFT method to generate
several extra points between the existing sample points. If the FFT method is used to scale
by a factor of M (an integer) then M − 1 extra sample points will be generated between each
adjacent pair of original sample points. A local interpolant is then used to interpolate between
these points, which all lie on the theoretically perfect intensity surface (equation 5.2). The FFT
enlargement eliminates the majority of the rastering artifacts that would arise from applying the
local interpolant to the original samples.

In practice Fraser [1987, p.122] scales the image by a factor of four or eight using the FFT
method and then employs the Catmull-Rom cubic interpolant to produce the intensity surface.
It is profitable to compare interpolation by the sinc function, the Catmull-Rom cubic and the
FFT/Catmull-Rom interpolant. Ignoring edge effects, figure 5.11 compares these three inter-
polants in the frequency domain. The sinc function preserves the central copy of the signal, as
is required for perfect interpolation. The Catmull-Rom interpolant attenuates some frequencies
below the Nyquist frequency and passes some above it, thus the reconstructed signal is a distorted
version of the ‘perfectly’ reconstructed signal.

The FFT/Catmull-Rom method consists of two steps. The first, the FFT step, produces a spectrum
which has copies of the original spectrum at four or eight times the spacing in the sampled signal,
with gaps between them of three or seven times the sampling frequency respectively. In the second
step, where the Catmull-Rom interpolant is convolved with the FFT scaled signal, the central
copy is almost perfectly preserved and the other copies are almost completely suppressed. Thus
the FFT/Catmull-Rom method produces a nearly perfect reconstructed surface.

5.3.1 Implementation

There are two distinct steps in this process, as illustrated in figure 5.12. First the image is ‘enlarged’
by a factor of, say, four and then this intermediate image is reconstructed using the Catmull-Rom
cubic to give the continuous intensity surface.

The FFT process requires a large amount of extra storage for the intermediate image. The in-
termediate image is generated in its entirety by a single FFT and cannot be generated a piece at
a time on demand (but see section 5.4.2). Further, storage must be provided for the frequency
domain representation of the image. This can be stored in the same location as the images if an
in-place FFT is used [Lynn and Fuerst, 1989]. However the image data is real while the frequency
domain data is complex; hence the frequency domain data requires twice the storage space of the
image data if a naive FFT algorithm is used.

Two features of the process enable it to be implemented more efficiently than a general FFT.
Firstly, the image data is real, so the frequency domain data exhibits conjugate symmetry; that
is: Fk = F ∗

−k. This symmetry enables us to halve the number of operations required for both the
forward and inverse fast Fourier transforms [Watson, 1989, p.15] and halve the storage required
for the frequency domain data. Secondly, there are a large number of zero values in the frequency
domain image that is to be inverse transformed. Operations on these zeros are unnecessary because
the FFT consists of several multiply and add stages. Multiplying by zero and adding the product
gives the same result as doing nothing. Some savings can be made by implementing a special
version of the FFT which does not perform the unnecessary operations. Smit, Smith and Nichols
[1990] discuss precisely this version of the FFT. They show that, for scaling an image of size N by
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Figure 5.11: A comparison of sinc, Catmull-Rom, and FFT/Catmull-Rom reconstruction. (a)
shows the Fourier transform of the sampled function; (b) is the sinc reconstructed function, there
are no aliases in this function; (c) is the Catmull-Rom reconstructed function, it contains aliases.
(d) is the FFT scaled function, which has the effect of pushing the components farther apart (in
this figure they are moved twice as far apart). When (d) is reconstructed using a Catmull-Rom
function, fewer aliases are produced (e). In a real situation the components will be moved farther
apart than shown here, reducing the errors further.
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Figure 5.12: FFT/Catmull-Rom reconstruction is a two-stage process, requiring production of an
intermediate (scaled) image. The scaling can be ×4 or ×8.

a factor of M , a reduction in time of around log2 N/ log2 MN can be achieved when M and N are
both powers of two.

Combining both savings, a 512 sample one-dimensional sequence magnified by a factor of four
takes just over 40% of the time that a naive FFT implementation would take. The saving for a
512 × 512 two-dimensional image is the same.

5.4 Problems with the FFT reconstructor

There are two major problems with the FFT reconstructor. Firstly, edge effects appear in the
intensity surface to a considerable distance from the edges. Secondly, the process is both time and
memory intensive. We tackle these two problems separately and draw them together at the end.

5.4.1 Edge effects

Inherent in the FFT reconstructor is the assumption that edge extension is done by replicating
(copying) the image. Looking back to section 5.1 we can see this in the explanation of FFT scaling.
Except in exceptional cases, there will be a sharp change in intensity along the edges of the image
where the replicas join. Figure 4.20(top) gives an example of this.

From section 4.2.1 we know that perfect reconstruction causes unsightly ripples for some distance
around such sharp changes. The FFT method implements perfect reconstruction and so there will
be ripples visible around the ‘edge’ of the intensity surface. Figure 4.20(bottom) gives an example
of these ripples.

Visual examination of images with large intensity differences at the edges indicates that these
ripples can extend twelve to sixteen original sample spacings from the edge. This means that
around twelve percent of a 512 × 512 image is degraded by this process. A larger proportion is
degraded in smaller images.

Solving the edge effect problem

Fraser [1989a, p.668] noted the errors due to edge effects, and that low errors occur when there
are “fortuitous end-around effects”, that is: when the intensities at opposite edges are very close.
We simply cannot depend on good fortune to always provide images with nice end-around effects.
Indeed, most images do not fall into this category.

Fraser [1989a, p.669; figs. 3, 4; 1989b, p.269 & fig. 1] avoided the edge effects in his experimental
measurements by considering only the central portion of the image, remote from the edges and
any edge effects. In resampling work, however, it is usually necessary to use the entire image and
so the edge effect problem cannot be avoided.
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The solution is to produce a situation where the intensities at opposite edges of the image match
before the image is transformed. There are several ways to do this:

1. window the image;

2. extend the image so that the edges match;

3. linearise the image;

4. use reflection in place of replication.

(1) Window the image

Fraser [1989a, pp.671–3] solves the edge effect problem by end-windowing the image. He applies
cosine half-bells to each end of each row and column in the image to form a new image whose
intensities fall off smoothly to zero at the edges. Fraser showed that only a small amount of
windowing can significantly affect the result. A window covering only four sample spacings (two
at each end) reduces the distance from the edge that errors are noticeable to around a sixth of the
distance without windowing, in the cases where the ripples are most noticeable.

The problem with this method is that it causes a different visual artifact, known as vignetting.
This effect is illustrated in figure 4.19. Windowing reduces the rippling artifact near the edges of
the image at the expense of introducing the vignetting artifact. In places where the rippling was
less noticeable, the vignetting may cause larger errors than the ripples would have. That is: it is
possible for the vignetting to be more objectionable than the rippling.

(2) Extend the image so that the edges match

This is similar to the windowing idea. The image is left unchanged in this case and a few extra
lines of pixels added around the outside to ‘fade off’ to some constant value. A more sophisticated
algorithm than simple fading could be tried (section 4.2.1). Once the image has been enlarged by
the FFT method the extra lines can be discarded.

A simple algorithm can be developed which fades each row and column to a constant value within
a few pixels. A problem with this method is that many FFT algorithms are designed for sequences
of length 2n, n ∈ N , and many images have heights and widths which are also powers of two.
Extending an image by a few pixels before transforming will be extremely inconvenient in these
cases. Extending an image to twice its width and height (with mostly some constant value in the
extension) would be more convenient (figure 5.13).

(3) Linearisation

The idea behind linearisation is to remove a linear trend from the data, so that the two ends match
in intensity, then do the processing, and finally add the trend back in. This process, illustrated in
figure 5.14, can be described for one dimension as follows:

Given a set of N data points, fn, subtract a linear trend from the data to give a new sequence gn:

gn = fn − sn

where: s =
fN−1 − f0

N

Expand gn by a factor Z, using the FFT method, to give hn. This can be converted back to an
expansion of fn by adding back the linear trend:

in = hn + s
n

Z
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Figure 5.13: Three ways of coping with edge effects in FFT expansion of an image. (a) windowing
the image, shaded area affected; (b) extending the image; and (c) extending the image to twice its
size in both dimensions. In all three cases the resulting image (larger in (b) and (c)) is extended
by replication by the FFT.
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Figure 5.14: An example of linearisation. (a) shows the original samples and a linear trend through
them; (b) shows the same samples with the linear trend removed; (c) is the FFT expanded version
of (b); (d) is (c) with the linear trend added back in.
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Analysing this method shows that it removes the edge ripples from the resulting image.

The transform of the original image, f , is F :

Fk =
N−1∑
n=0

fn e−i2πkn/N

This can be expanded by the FFT method to give J , the Fourier transform of the expanded image,
j:

Jk =
ZN−1∑
n=0

jn e−i2πkn/ZN

In general j will contain edge ripples.

On the other hand, the transform of the linearised image, g, is G:

Gk =
N−1∑
n=0

gn e−i2πkn/N

=
N−1∑
n=0

fn e−i2πkn/N − s
N−1∑
n=0

n e−i2πkn/N

= Fk − sEk

This can be expanded to give H:
Hk = Jk − sE′

k

Inverse transforming H gives the image, h, which then has the linear trend added back in to give
the final image, i:

in = jn − se′n + s
n

Z

The difference between the latter two terms is an edge ripple which cancels out the edge ripple in
j.

Extending to two dimensions

It is a simple matter to linearise a two dimensional image so that either the horizontal or the
vertical edges match. This is achieved by linearising each column or row individually. It is possible
to linearise every row and then linearise every column in the row-linearised image (this can be
shown to leave every row and every column linearised). However, after FFT enlargement the
image cannot be de-linearised because new rows and columns have been generated, between the
existing rows and columns, for which no linearisation information exists.

It is impossible to linearise the image as a two dimensional whole so, if we wish to apply the
linearisation process to a two-dimensional image we must think of some other way to perform
the operation. To do this we alter the two-dimensional FFT expansion. A two dimensional FFT
is performed by applying the FFT to every row in the image and then to every column in the
row-transformed image. The FFT expansion expands the resulting frequency domain image and
then two-dimensionally inverse transforms it. As noted above, this process is not amenable to
linearisation. However, if the process is altered so that the rows are expanded first and the columns
of the row-expanded image are expanded as a separate step, then linearisation is possible. The
standard method and this new two-stage method are illustrated in figures 5.15 and 5.16. It is not
immediately obvious that both methods should produce the same result (without linearisation).
Experiments on several images have shown that they are equivalent (to within the numerical
accuracy of the computer on which the operations were performed).
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Figure 5.15: The standard way of performing two-dimensional FFT expansion of an image. This
method is not amenable to linearisation.
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Figure 5.16: The two-stage method of performing two-dimensional FFT expansion of an image.
This method is amenable to linearisation of each of the two stages.
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(a) (b) (c)

Figure 5.17: Two ways of reflecting an image to produce an image of twice the size in each
dimension. (a) the original image; (b) reflected with the original in a corner; (c) reflected with the
original in the centre.

Applying the linearisation to each of the two stages suppresses the edge ripples which would
otherwise result. Obviously linearisation is applied to the rows in the row-expansion stage and to
the columns in the column expansion stage2.

(4) Using reflection in place of replication

In chapter 4 we saw that reflection is a better extension method than replication. Reflection ensures
that the edges match. Reflection can be implemented in the FFT expansion stage by using an
image twice the size in both dimensions and filling the extra three quarters with reflected versions
of the image as illustrated in figure 5.17. Once this image is enlarged, using FFT expansion,
only the appropriate quarter of the expanded image need be used in the ensuing Catmull-Rom
reconstruction.

This method quadruples the computation required to perform the FFT expansion. Fortunately
there is a way to compute the expansion in the same time as the basic FFT method; that is to use
the discrete cosine transform (DCT), in place of the DFT.

Discrete cosine transform expansion

The discrete cosine transform of a sequence fn, n ∈ {0, 1, . . . , N − 1}, is [Ahmed, Natarajan and
Rao, 1974]:

F0 =
√

2
N

N−1∑
n=0

fn

Fk =
2
N

N−1∑
n=0

fn cos
(2n + 1)kπ

2N
, k ∈ {1, 2, . . . , N − 1}

The special case for F0 can be combined into the general form as illustrated in the two-dimensional
DCT [Chen and Pratt, 1984]:

Fk,l =
4C(k)C(l)

MN

M−1∑
m=0

N−1∑
n=0

fm,n cos
(2m + 1)kπ

2M
cos

(2n + 1)lπ
2N

2Linearisation is a good word to play that game where you try to get as many words as possible from a single
long word. For example: line, arise, ear, rise, is, at, on, in, ate, note, not, near, rest, least, sat, sate, nation, sir, sire,
sit, sits, tin, tins, linear, salt, real, role, sole, aerial, nil, sale, rail, tail, tale, notion, elation, eat, eats, nit, trial, etc.
[Gibbs, 1992]
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2N

N(a)

(b)

Figure 5.18: The implicit periodicity of (a) the discrete Fourier transform, and (b) the discrete
cosine transform (after Rabbani and Jones [1991], figure 10.4).

k ∈ {0, 1, . . . ,M − 1}
l ∈ {0, 1, . . . , N − 1}

C(j) =

{
1√
2
, j = 0

1, otherwise
(5.3)

The DCT expresses the image as a sum of cosinusoidal terms [Chen and Pratt, 1984]:

f(m,n) =
M−1∑
k=0

N−1∑
l=0

C(k)C(l)Fk,l cos
(2m + 1)kπ

2M
cos

(2n + 1)lπ
2N

Compare this with the DFT decomposition into a sum of complex exponential terms (equation 5.2).
The two transforms have different implicit periodicities (figure 5.18). As we have seen the DFT
assumes a replicated periodic image whilst the DCT assumes a reflected periodic image [Rabbani
and Jones, 1991, pp.108-111]. Expansion of the DCT can be performed in much the same way as
for the DFT. But there turns out to be a slight catch to DCT expansion, which we now explain.

Working in one dimension for clarity, given an image fn, n ∈ {0, 1, . . . , N −1}, the DCT is defined
as:

Fk =
2C(k)
MN

N−1∑
n=0

fn cos
(2n + 1)kπ

2N
, k ∈ {0, 1, . . . , N − 1} (5.4)

where C(k) is defined in equation 5.3.

This can be expanded by a factor Z to Gk:

Gk =
{

Fk, k < N
0, otherwise , k ∈ {0, 1, . . . , ZN − 1}

Note that, unlike the DFT expansion, there is no special (Nyquist) frequency component, nor are
there any negative frequencies.

G can now be inverse transformed to give an expanded image, g:

gn =
ZN−1∑
k=0

C(k)Gk cos
(2n + 1)kπ

2ZN
, n ∈ {0, 1, . . . , ZN − 1} (5.5)
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Here lies the catch: with the DFT every Zth member of the expanded image would be in the original
image, with Z − 1 new image samples between every adjacent pair. That is: gZn = fn. With the
DCT, as it stands, this is not the case and a small correction must be made to equation 5.5 to
make it the case. To explain what happens we see that:

fn =
N−1∑
k=0

C(k)Fk cos
(2n + 1)kπ

2N
, n ∈ {0, 1, . . . , N − 1} (5.6)

this is simply the inverse of equation 5.4. Equation 5.5 can be rewritten as:

gn =
N−1∑
k=0

C(k)Fk cos
(2n + 1)kπ

2ZN
, n ∈ {0, 1, . . . , ZN − 1} (5.7)

The differences between these two equations are the factor of 1
Z in the cosine’s argument, and that

there are Z times as many gn as there are fn. We require:

gZn = fn, n ∈ {0, 1, . . . , N − 1}

We can rewrite equation 5.7 for gZn as:

gZn =
N−1∑
k=0

C(k)Fk cos
(2n + 1

Z )kπ

2N
, n ∈ {0, 1, . . . , N − 1} (5.8)

The only difference between equation 5.6 and equation 5.8 is that the (2n + 1) in equation 5.6 is
replaced by (2n + 1

Z ) in equation 5.8. The net result is that there is a linear phase shift in the gn

with respect to the fn.

This can be simply corrected by either:
(a) altering equation 5.5 to:

gn =
ZN−1∑
k=0

C(k)Gk cos
(2n + Z)kπ

2ZN

or:
(b) correcting for the linear phase shift in the subsequent small kernel interpolation. That is:
instead of sample gn being at location x = x0 + n∆x

Z it is shifted slightly to be at:

x = x0 +
(
n −

(
1
2 − 1

2Z

)) ∆x

Z

Thus the DCT can be successfully used as an expansion method which does not produce edge
ripple effects.

Expansion using other transforms

The DFT and DCT are only two of many types of image transform. We have seen that both of
these can be used for image expansion. In general, any transform can be used for image expansion
provided that N of the basis functions of the expanded version are identical to the N basis functions
of the smaller version, except for a scale factor and possibly a linear phase shift, n′ = sn + c. The
DFT and DCT are examples of such transforms. For the DFT the basis functions are:

{e−i2πkn/N , k ∈ {−N
2 ,−N

2 + 1, . . . , 0, 1, . . . , N
2 − 1}, n ∈ {0, 1, 2, . . . , N − 1}} (5.9)

Expanding this by a factor Z we find the basis functions for k ∈ {−N
2 ,−N

2 +1, . . . , 0, 1, . . . , N
2 −1}

are:
{e−i2πkn′/ZN} (5.10)
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Setting n′ = Zn gives N functions from equation 5.10 which are equal to the N in equation 5.9.
Thus it is possible to expand an image using the DFT.

Likewise for the DCT the basis functions are:

{ 1√
2
, cos

(2n + 1)kπ

2N
, k ∈ {1, 2, . . . , N − 1}, n ∈ {0, 1, 2, . . . , N − 1}} (5.11)

Expanding by a factor of Z we find that the lowest N basis function of the new sequence are:

{ 1√
2
, cos

(2n′ + 1)kπ

2ZN
, k ∈ {1, 2, . . . , N − 1}} (5.12)

Setting n′ = Zn + (1
2 − 1

2Z ) makes N functions in equation 5.12 equal to those in equation 5.11
and so the DCT can also be used for image expansion.

Such an expansion is carried out by taking the coefficients of the basis functions in the original
sequence and allocating them to the equivalent basis function in the expanded sequence. All
other coefficients in the expanded sequence are set to zero. The DFT is a bit of a special case as
the Nyquist component in the original sequence has two matching components in the expanded
sequence with half its coefficient being given to each.

To illustrate this principle for other transforms take two square wave transforms: the Walsh-
Hadamard transform and the Haar transform, both considered for N,Z ∈ {2n, n ∈ N}. The basis
function for both transforms are square-like waves. The first sixteen Walsh-Hadamard basis func-
tion are shown in figure 5.19(a) and the first sixteen Haar basis function are shown in figure 5.19(b).
Enlarging either by a factor of Z leaves the first N basis functions scaled but otherwise unchanged
and thus either can be used for image expansion.

This can be implemented so that there is no phase shift or so that there is the same phase shift as
in the DCT. For both transforms, this latter case produces identical results to nearest-neighbour
expansion of the image, which would be considerably quicker to implement. The former produces a
shifted version of this nearest-neighbour expansion. Therefore, while theoretically possible, neither
of these transforms provide a particularly efficient way of achieving this type of expansion.

5.4.2 Speed and storage requirements

These image expansion methods are extremely time and memory intensive. Transform expansion
for an N × N image is O(N2 log N), thus increasing rapidly as image size increases. An N × N
image expanded by a factor Z requires Z2N2 complex numbers to be stored for a straight forward
FFT expansion, a quarter of this for an optimised FFT expansion, and Z2N2 real numbers for the
other transforms discussed in the previous section. For example, a DCT expansion of a 256 × 256
image by a factor of four would typically require 4MB of storage. Experience on the Computer
Laboratory’s workstations has shown that they tend to fail when asked to allocate these huge
quantities of memory to an image processing program. On occasion processes have required over
50MB of memory to expand a large image by a factor of eight, and such quantities seem well
beyond the capability of the machines. Even where large quantities of memory are available most
of it will tend to be in virtual memory, incurring an extra time cost as data is paged in and out of
random access memory. In order to speed up the algorithm and reduce the need for large quantities
of quickly accessible storage we can tile the image (figure 5.20). Tiling is used in image coding to
reduce the time and memory cost of the coding algorithm and because image tend to be locally
similar and globally dissimilar. The JPEG image compression method, for example, splits the
image into 8 × 8 pixel non-overlapping tiles [Rabbani and Jones, 1991, p.114].

In image extension we will use relatively large tiles (32 × 32 pixels is a good size), and they will
overlap. Processing is done on each tile separately and so, if they did not overlap, the edges of the
tiles would be obvious. Overlapping the tiles places each tile in its local context. That is: a tile is
expanded but only the central portion is used, as illustrated in figure 5.21.
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Figure 5.19: (a) the first sixteen Walsh-Hadamard basis functions; (b) the first sixteen Haar
basis functions (after Hall [1979, pp.138–145]), these remain the same, no matter how many more
coefficients there are.

Figure 5.20: An image (shaded) divided into tiles.
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Discrete Fourier Transform

Add zeros

Inverse

Transform

Place central portion
in expanded image

to expand image

Figure 5.21: Using a tiled DFT expansion. Each tile is individually expanded, within its local
context, and the appropriate expanded portion put into the expanded image.
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Figure 5.22: The values in table 5.1. Error intensity is the height of the largest ripple in intensity
values, ranging from 0 to 255. This is graphed on a logarithmic scale. Only values for which
Central Portion Size + Window Size ≤ 32 were evaluated.

As with the untitled version, if we use a DFT expansion, we are faced with edge effects. The DFT
of a tile implicitly assumes that the infinite image is that tile replicated to infinity. The central
quarter of the expanded tile will probably be unaffected by these edge effects but transforming an
image twice the size of the useful portion in both dimensions is quite an overhead. It would be
better if the useful portion was a larger proportion of the whole tile.

Here the edge effects solutions come into play. We could apply a DCT, or linearisation and a DFT
to the tile, both of which would markedly increase the size of the usable inner portion of the tile.
Further, windowing is a viable proposition here because the windowed pixels will be in the unused
outer portion of the tile. An experiment has been performed to ascertain the best size of window
and central portion given a tile size of 32× 32 pixels. A completely black image was enlarged with
windowing designed to fade the image off to white. Thus any artifacts in the expanded image will
be extremely obvious as non-black pixels. This experiment gives a feel for the maximum errors
likely due to windowing. In practice windowing should be done to a mid-grey, halving these errors;
but many people prefer to window off to an extreme, usually black, and so it is necessary to record
these maximum errors.

The results of this experiment are tabulated in table 5.1 and graphed in figure 5.22. The window
size refers to the number of pixels in a row (or column) that are windowed. Half this number are
windowed at each end of a row or column.

Any combination which has an intensity error less than three produces no visible artifacts. If
windowing is done to a mid-grey than any combination with an intensity error under six produces
no visible artifacts. Therefor any combination of an n× n central portion in a 32× 32 tile is good
provided n ≤ 26 and the window width is greater than 2 and less than 32−n. Besides requiring no
visible artifacts we also require the largest possible central portion relative to the tile size. Thus
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Window Central Portion Size
Size 30 28 26 24 22

2 200± 0.5 57.8± 0.2 57.0± 0.2 30.8± 0.2 31.6± 0.1
4 × 62.8± 0.2 4.24± 0.01 3.70± 0.01 0.98± 0.005
6 × × 29.2± 0.1 1.68± 0.005 1.46± 0.005
8 × × × 16.7± 0.05 0.91± 0.005

10 × × × × 10.75± 0.03

Table 5.1: The maximum height of the ripples caused by DFT reconstruction. These heights are
measures in intensity levels on a scale from 0 (no ripples) to 255. Obviously there was little point
in testing cases where the windowing intruded into the central portion, so these entries are marked
with a cross. The values in this table are graphed in figure 5.22.

(a)

(b)

(c)

Figure 5.23: (a) a 26× 26 pixel tile within a 32× 32 pixel context, the outer two pixel wide border
is windowed using the window function shown in (b). (c) shows the actual effect of this window
which fades the function off to a mid-grey value.

we chose a 26 × 26 central portion in a 32 × 32 tile with a four pixel window (that is a two pixel
wide cosine half bell windowed border around the tile) and fading to a mid-grey. This is illustrated
in figure 5.23.

Speed and storage savings

If the tiles are of size L×L and the image to be expanded is of size N ×N then this tiling method
reduces the time required from O(N2 log N) to O(N2 log L). The memory required to perform the
transforms is also reduced, from O(N2) to O(L2). The memory required to store the expanded
image remains at O(N2). However, each pixel in the expanded image store only need be accessed
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once in the expansion process, whilst each element in the transform memory must be accessed.
2+2 log2 L times (for an untiled transform L = N). There is also the possibility that the expanded
image could be generated a few tiles at a time, as required, rather than as a whole, which is what
the untiled version must do.

The tiled version of the algorithm thus makes a big difference to the amount of transform memory
required for the transform. With a 256× 256 pixel image split in to 32× 32 tiles, a sixty-fourth of
the memory is required, reducing the required 4MB of random access memory quoted on page 164
to 64kB.

If the whole operation can be carried out in random access memory then little difference is made
to the time taken to expand the image. In the example in the previous paragraph the time is
reduced by thirty percent if 32× 32 non-overlapping tiles are used and increased by nine percent if
a 26× 26 pixel central portion is used in a 32× 32 tile. However, if the untiled version is swapping
in and out of virtual memory then the tiled version can run considerably faster.

Implementation in hardware

Fraser [1989a] notes that the FFT is a time-intensive process, which perhaps explains why this
method of reconstruction has been neglected. However the advent of very fast FFT hardware
means that FFT interpolation is feasible.

As an example, dataβ produce a dedicated FFT processor which can perform a 1024 point FFT
every 700µs [Data Beta, 1992]. To enlarge a 256 × 256 image to 1024 × 1024 using this processor
would take 753ms. Using 32 × 32 non-overlapping tiles would take 525ms, and using overlapping
32 × 32 tiles with a 26 × 26 pixel central portion would take 819ms.

Theoretical ramifications of tiling

By tiling the image we destroy the theoretical basis behind applying the DFT or DCT to the
whole image as a way of performing sinc reconstruction. Applying the DFT or DCT to a tile
gives an approximation to this reconstruction. The untiled version gives an approximate sinc
reconstruction based on all of the information in the image, the tiled version gives an approximate
sinc reconstruction based on local information only. We can consider the entire image to be a large
tile taken from an infinite, non-repeating picture. In this scenario the tiled version of the process
is a scaled-down version of the untiled version with the advantage that most of the tiles can be
placed in some sort of context.

In spite of this it is surprising that the tiled and untiled algorithms give virtually identical results.
This observation lends weight to the hypothesis that it is local information that is important in
determining the intensity surface’s values, rather than any globally encoded intensity information.

5.5 Summary

We have seen how DFT expansion can be used, with a local piecewise polynomial reconstructor,
to generate a near perfect sinc reconstructed intensity surface in O(N2 log N) time.

We have examined two areas where improvements can be made to the existing method. The first,
the edge effect problem, has several solutions, one of which led to the use of the DCT in place of
the DFT, with better intensity surface quality near edges. This also laid the foundation for the
use of any transform in performing the necessary expansion. The second, the need for time and
space savings, led to a tiling solution, which dramatically reduces the amount of memory required
to perform the transforms and, where virtual memory must be used for a non-tiled version, can
lead to speed improvements also.
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Chapter 6

A priori knowledge reconstruction

If we have some a priori knowledge about the image we are resampling then we may be able to
reconstruct a better intensity surface than we could without this knowledge.

A priori knowledge comes in two forms:

1. Knowledge about how the image was sampled;

2. Knowledge about the image’s content.

The majority of this chapter is concerned with finding an exact reconstruction of the image in one
particular case where both these are known. Before progressing to this we look at what can be
achieved when only the first is known.

6.1 Knowledge about the sampler

Most images are captured by some physical device. Knowledge of that device’s sampling process
gives the potential to invert the process and restore what would have been produced by single point
sampling the original intensity surface, or at least a closer approximation to it than that produced
by the device. The closer an image is to the single point sampled image, the better many of the
NAPK reconstructors discussed in the previous three chapters will work.

Much effort has been expended over the years on image restoration, the attempt to produce a
better image from a less good one. Such a process could be applied to an image which could then
be reconstructed using a NAPK method.

Referring back to figure 2.3 we can add this restoration process to the figure, and add also the
theoretically equivalent path of single point sampling, as shown in figure 6.1. This inversion of the
capture process could be built into the reconstructor, giving an APK reconstructor by combining
a restorer and a NAPK reconstructor.

6.1.1 Inverting the sampling filter

All capture devices implement some form of area sampling. This sampling can be thought of
as convolving the intensity surface with a sampling filter, followed by single point sampling the
resulting intensity surface (section 2.5.1). If this sampling filter can be inverted, and the inversion
implemented, then it can be used for image restoration and hence APK reconstruction. This
process is illustrated in figure 6.2, in the frequency domain.

171



172 CHAPTER 6. A PRIORI KNOWLEDGE RECONSTRUCTION

Real
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Figure 6.1: The image capture process, and how inverting the capture produces a better image. The
first two stages are taken directly from figure 2.3. A real world image is projected to an intensity
surface which is captured by some area sampling process. Inverting this sampling produces an
image which is as if the intensity surface had been single point sampled.

(a)
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Figure 6.2: Frequency domain illustration of area sampling and APK reconstruction. The Fourier
transform of the continuous intensity surface, (a), is multiplied by the area sampler’s Fourier
transform, (b), giving a filtered intensity surface, (c). This is sampled by convolving with a comb,
(d), to give the sampled, filtered image, (e). Inverting (b) gives (f). If (e) is multiplied by (f) then
we get (g), an exact reconstruction of (a).
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If the sampling filter has frequency spectrum S(ν) then the inverted filter could be given the
spectrum I1(ν) = 1

S(ν) . If S(ν) extends beyond the folding frequency then this will have the
undesirable effect of amplifying copies of the central component of the image’s spectrum. So, the
desired form of this inverted filter is:

I2(ν) =
B1(ν)
S(ν)

That is: the ideal filter’s spectrum, B1(ν), multiplied by the inverted sampling filter’s spectrum,
1

S(ν) . I2(ν) can be implemented as convolution in the spatial domain, if the inverse filter’s kernel
can be determined. Or it can be approximated using the DFT, with the inverse filtering being
performed in the frequency domain and an appropriate NAPK reconstruction method applied to
the resulting image. The DFT reconstruction methods of the previous chapter could be combined
with this DFT restoration to produce an improved reconstructed intensity surface.

The problem with this method is that all practical sampling filters fall off as they move away from
zero. Thus the inverse filter amplifies those frequencies near the folding frequency. It is these
frequencies in the image which have the smallest amplitudes and which are most affected by noise
and any aliasing which may occur. The frequencies near zero, which are least amplified by the
inverse filter, are those which are at least affected by these two problems. Therefore inverse filtering
amplifies any noise and aliasing artifacts present in an image. It is thus unsuitable for all images
except those with very low noise and practically no aliasing.

6.1.2 Modified inverted sampling filter

Oakley and Cunningham [1990] have considered the problem of finding the best reconstruction
filter given the sampling function. They develop an error measure which they claim is a good
approximation to the visual quality of the reconstructed images [ibid., p.191]. By minimising
this measure over all images they produce a formula for the optimal reconstruction filter. In one
dimension it is:

I(ν) =
K(ν)S∗(ν)

1
∆x

∞∑
n=−∞

∣∣S (
ν + n

∆x

)∣∣2 (6.1)

where S∗(ν) is the complex conjugate of S(ν); ∆x is the sample spacing in the spatial domain;
and K(ν) is the Fourier transform of the ideal reconstruction filter. Here ‘ideal reconstruction
filter’ means the filter you would like to convolve the original intensity surface with to produce the
reconstructed intensity surface. Several such functions are of interest:

1. K(ν) = 1; that is: the reconstructed intensity surface should be as close as possible to the
original intensity surface. Oakley and Cunningham [1990] call this a restoration case. This
reconstruction filter is highly sensitive to noise [ibid., p.180]. Note that, if the sampling
filter is bandlimited to below the folding frequency then the reconstruction filter generated
by equation 6.1 is equal to both I1(ν) and I2(ν), except for a multiplicative constant. A
second restoration filter is where K(ν) is the statistically optimal Wiener filter for the con-
tinuous image formation case. This produces an implementation of the Wiener filter which
is corrected for the effects of sampling.

2. K(ν) is a low-pass filter. Here the reconstructed intensity surface approximates as closely as
possible the original intensity surface convolved with the low pass filter. Of special interest
is the case where K(ν) = B1(ν). The reconstructed intensity surface will approximate a
perfectly low-pass filtered version of the original intensity surface. It is instructive to note
that the sum of the squares in the denominator of equation 6.1 is the sampling filter squared
in the frequency domain, then sampled in the spatial domain and transformed into the
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frequency domain. Thus the function:

S∗(ν)
∞∑

n=−∞

∣∣S (
ν + n

∆x

)∣∣2
is closely related to 1

S(ν) with some modification to take into account the fact that the image
is sampled, not just an intensity surface filtered by S(ν). If S(ν) is bandlimited to below the
folding frequency then

S∗(ν)
∞∑

n=−∞

∣∣S (
ν + n

∆x

)∣∣2 =
1

S(ν)

3. K(ν) = S(ν). The reconstructed intensity surface here is the original surface convolved by
the sampling filter — thus producing the theoretical surface generated just before single point
sampling occurred. Oakley and Cunningham [1990, p.181] call this “matched reconstruction”
or the “interpolating case”. If S(ν) is bandlimited to below the folding frequency than the
resampling filter is a box function: I(ν) = ∆xB1(ν). This means that the reconstructed
intensity surface is the same as that produced by convolving the image with the sinc function.

Both Oakley and Cunningham [1990] and Boult and Wolberg [1992] have generated implementa-
tions of matched reconstructions filters. These filters have been based on rectangular and hexago-
nally sampled Gaussian filters [Oakley and Cunningham, 1990] and on box and cubic B-spline filters
[Boult and Wolberg, 1992]. Both claim that their derived reconstruction filters perform better than
the best NAPK reconstructors, notably better than the Catmull-Rom cubic interpolant.

6.2 Knowledge about the image content

It is possible that a better reconstruction can be achieved if we know something about the image’s
content. This is true for image restoration; Oakley and Cunningham [1990, p.180] state that:

“In general, successful image restoration relies not only on correct linear processing,
but on the the exploitation of prior knowledge about the image source.”

In the image resampling field itself, Ward and Cok [1989, p.264] hypothesise:

“If there is sufficient a priori knowledge of the content of an image, the visual quality
can be improved by using interpolation functions that use this a priori information.
For example, if the original image is known to consist of uniform areas and edges,
interpolated pixels can be constrained by some rule to be close in value to some of the
neighbouring pixels.”

This is an interesting idea but Ward and Cok do not take it any farther.

In the fields of image understanding and computer vision much work has, and is, been done on
trying to extract features from a digital image. If an accurate list of features could be extracted
then it could be used to drive a renderer which would generate a transformed image. This process
is illustrated in figure 6.3. This is analagous to the reconstruct–transform–sample decomposition
in figure 1.14, the difference being that the intensity surfaces are replaced by scene descriptions.
Unfortunately, the generation of a detailed enough scene description is extremely difficult for even
the simplest scenes and so this process would appear to be impractical for image resampling, except
in the case of very limited sets of images.
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Figure 6.3: A three stage decomposition for a resampler which analyses an image into a scene
description, transforms this and then renders it. Compare figure 1.14.
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Figure 6.4: The general intensity curve input to one-dimensional sharp edge reconstruction. It
consists of areas of constant intensity separated by sharp discontinuities.

To illustrate the type of algorithm that could be developed we will consider a simple case. In this
case we limit the class of images to those which consist of areas of constant intensity bounded by
infinitely sharp edges. These images will be sampled using an exact-area sampler on a square pixel
grid.

We begin by considering the one-dimensional case before progressing to the two-dimensional case.

6.3 One-dimensional sharp edge reconstruction

The general intensity curve in the one-dimensional case consists of a series of plateaux of constant
intensity separated by sharp discontinuities. Such an image is shown in figure 6.4. It can be
described mathematically as:

g(x) = gc, xc ≤ x < xc+1 (6.2)

where (. . . , (x−1, g−1), (x0, g0), (x1, g1), . . .) is an ordered set of ordered pairs of position and in-
tensity information. The pairs are ordered on position values: xc < xc+1, and the intensity values
fall in the range 0 ≤ gc ≤ 1.

6.3.1 The black and white case

To simplify matters we begin by considering only the black and white case where gc = 0 or gc = 1.
Zero is taken to be black, and one, white. We start by looking at the simplest case: a single
edge between a black area and a white area (see figure 6.5). This can be represented as the set
((−∞, 0), (x1, 1), (∞, φ)) where φ is an arbitrary value which is never used.

Without loss of generality we can consider sampling with unit spacing, and with position x1

between zero and one (0 ≤ x1 < 1). If the samples are represented as {ĝn, n ∈ Z} then sample ĝn

is taken at point x = n + 1
2 [Heckbert, 1990a]. This disparity between continuous and discrete

coordinates, illustrated in figure 6.6, greatly simplifies many of the calculations on them.
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Figure 6.5: The black and white case with a single edge. The edge is at x1. To the left the intensity
curve is blank (0), and to the right, (1).
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Figure 6.6: The positions of the discrete samples relative to the continuous coordinate system
[after Heckbert, 1990a, fig 1]

If the function shown in figure 6.5 is point sampled then the sample values will be:

ĝn = 0, n < 0

ĝ0 =
{

0, x1 < 1
2

1, x1 ≥ 1
2

ĝn = 1, n > 0

The information about the discontinuity’s position is lost here. It is only possible to say where the
edge occurred to within ± 1

2 .

However, we want to use exact-area sampling which is equivalent to convolving with a box filter
followed by point sampling (section 2.5.1). Convolving the intensity curve with this box filter
produces the function in figure 6.7.

Point sampling this function produces the sample values:

ĝn = 0, n < 0
ĝ0 = 1 − x1

ĝn = 1, n > 0

The information about the position of the discontinuity is now encoded in ĝ0. It can be exactly
reconstructed from that value:

x1 = 1 − ĝ0 (6.3)

A similar situation holds in the case where g(x) = 1, x < x1 and g(x) = 0, x ≥ x1, shown in
figure 6.8. Here the sample values will be:

ĝn = 0, n < 0
ĝ0 = x1

ĝn = 1, n > 0

And the discontinuity can be reconstructed exactly as being at:

x1 = ĝ0 (6.4)

Thus, in either case, we can exactly reconstruct the curve from the image.
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Figure 6.7: The intensity curve of figure 6.5 convolved with a box filter of width one.
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Figure 6.8: The other single edge black and white case, white to the left of the discontinuity and
black to the right.

Black and white case — many edges

If we extend this to a situation where there are many edges alternating the intensity between black
and white then we can apply the above result in the following way. The original function, g(x),
is represented by its exact-area samples {. . . , ĝ−1, ĝ0, ĝ1, . . .}. The function that is reconstructed
from these samples is, gr(x). gr(x) can be generated in a piecewise manner as follows:

Algorithm 1
For every pixel, a:

If ĝa = 0 then gr(x) = 0, a ≤ x < a + 1

If ĝa = 1 then gr(x) = 1, a ≤ x < a + 1

If 0 < ĝa < 1 then

if lim
x→a−

gr(x) = 0 or lim
x→(a+1)+

gr(x) = 1 then

gr(x) =
{

0, a ≤ x < a + 1 − ĝa

1, a + 1 − ĝa ≤ x < a + 1

if lim
x→a−

gr(x) = 1 or lim
x→(a+1)+

gr(x) = 0 then

gr(x) =
{

1, a ≤ x < a + ĝa

0, a + ĝa ≤ x < a + 1
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(a)

(b)

Figure 6.9: Two ways of interpreting the sample sequence 0.5, 1.0, 0.7, if each pixel is allowed to
contain one edge. Only (b) is possible if edges are constrained to be at least one sample space
apart.

This algorithm will not give an exact reconstruction for all possible g(x). In theorem 3 we see
what restrictions must be put on g(x) for gr(x) to be an exact reconstruction, that is: to ensure
that gr(x) = g(x). The last part of this algorithm shows that, in addition to the intensity level of
the edge pixel, one extra bit of information is required to uniquely determine the location of the
edge. This bit is the orientation of the edge: whether it is rising from zero to one, or falling from
one to zero. The orientation can be ascertained from the orientation of the reconstructed function
in either of the adjacent pixels. A single zero or one pixel is required in the entire infinite sequence
to fix the orientation for all edges. This information can then be propagated through the sequence
to produce gr(x).

An alternative representation of gr(x) would be to find the values (. . . , (x−1, g−1), (x0, g0), (x1, g1), . . .)
which define g(x) (equation 6.2). This can be done from gr(x), as produced by algorithm 1. An
algorithm to directly generate the (xc, gc) pairs must be constructed so as to take into account the
possibility of edges which fall exactly at pixel boundaries. Here the pixels either side of the edge
will have sample values zero and one indicating the discontinuity, rather than a single pixel with
a value between zero and one indicating it1. Notice that algorithm 1 implicitly deals with this
situation in its first two cases.

Theorem 3 Algorithm 1 exactly reconstructs gr(x) = g(x) if adjacent edges in g(x) are spaced
more than one sample space apart. That is: xc+1 − xc > 1,∀c.

Proof: if xc+1 − xc > 1,∀c then:

1. No pixel can contain more than one edge, thus ensuring that any grey pixel codes the position
of one, and only one, edge. This edge can be reconstructed using orientation information
and equation 6.3 or 6.4.

2. Any edge occurring at a pixel boundary generates a zero sample value on one side and a one
sample value on the other. This ensures that no dichotomies arise in the reconstruction. For
example, if we imposed the lesser restriction that each pixel could only contain a single edge
(but that the edges could be any distance apart) then the sample sequence . . . , 0.5, 1, 0.7, . . .
could be interpreted in two different ways, as can be seen in figure 6.9, whereas the tighter
restriction imposed here permits the unique interpretation in figure 6.9(b).

3. Orientation information can be generated by any pair of adjacent pixels. If their sample

1The assumption that the samples on either side will have values zero and one is valid if the conditions in
theorem 3 are adhered to.
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values are ĝc and ĝc+1 then the following table gives the orientation information:

ĝc ĝc+1 lim
x→(c+1)−

gr(x) lim
x→(c+1)+

gr(x)

0 − 0 −
1 − 1 −
− 0 − 0
− 1 − 1
α β > 1 − α 1 1
α β < 1 − α 0 0

where 0 < α, β < 1. We can never have a situation where β = 1−α because this would mean
that two edges were exactly one sample space apart which is not allowed.

From this information we can produce an algorithm which generates the exact reconstruction,
gr(x) from local information, rather than depending on some global method to propagate the
orientation information back and forth along the number line. Such an algorithm is essential
for the reconstruction of a finite length sequence of samples because it is possible to conceive of a
situation where no zero or one samples would occur within a finite length to provide the orientation
information for algorithm 1. The improved algorithm, for a sequence of infinite length, is:

Algorithm 2
For every pixel, c:

If ĝc = 0: gr(x) = 0, c ≤ x < c + 1

If ĝc = 1: gr(x) = 1, c ≤ x < c + 1

If 0 < ĝc < 1:

If ĝc−1 < 1 − ĝc: gr(x) =
{

0, c ≤ x < c + 1 − ĝc

1, c + 1 − ĝc ≤ x < c + 1

If ĝc−1 > 1 − ĝc: gr(x) =
{

1, c ≤ x < c + ĝc

0, c + ĝc ≤ x < c + 1

An algorithm to find the ordered pairs that define g(x) is:

Algorithm 3
1. For every pixel, c:

If ĝc = 0 and ĝc−1 = 1: output (c, 0)

If ĝc = 1 and ĝc−1 = 0: output (c, 1)

If 0 < ĝc < 1:

If ĝc−1 < 1 − ĝc: output (c + 1 − ĝc, 1)

If ĝc−1 > 1 − ĝc: output (c + ĝc, 0)

2. Sort the ordered pairs, (xi, gi), which have been output, into an ordered set on their x-values.
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Finite-length black and white functions

A finite length function can be defined as

g(x) = gc, xc ≤ x < xc+1, c ∈ {0, 1, 2, ..., N} (6.5)

where: ((−∞, g0), (x1, g1), (x2, g2), . . . , (xN , gN ), (+∞, φ)) is an ordered set of ordered pairs, xc <
xc+1 − 1. gN+1 = φ is irrelevant, as its value is never used.

g(x) is defined over all real numbers; a finite length version of g(x) must be defined over at least
x ∈ [�x1� − 1, �xN� + 1) giving at least samples ĝ�x1�−1, ĝ�x1�, . . . , ĝ�xN	−1, ĝ�xN	. The reason for
these limits is to ensure that even an edge at x1 = �x1� or xN = �xN� can be detected.

The algorithms to reconstruct g(x) from its samples are very similar to algorithm 2 and algorithm 3.
The main difference is that the first pixel is a special case. Note that the algorithms given below
only work if there are at least two samples in the sample set. Edge effects are avoided by assuming
that the intensity value at either end of the sequence continues to infinity. This is explicit in the
definition of g(x) (equation 6.5).

Algorithm 4
To reconstruct gr(x) from samples ĝa, ĝa+1, . . . , ĝb−1, ĝb:
For every value c ∈ {a, a + 1, . . . , b − 1, b}:

If ĝc = 0: gr(x) = 0, c ≤ x < c + 1

If ĝc = 1: gr(x) = 1, c ≤ x < c + 1

If 0 < ĝc < 1:

If c = a:

If ĝc+1 > 1 − ĝc: gr(x) =
{

0, c ≤ x < c + 1 − ĝc

1, c + 1 − ĝc ≤ x < c + 1

If ĝc+1 < 1 − ĝc: gr(x) =
{

1, c ≤ x < c + ĝc

0, c + ĝc ≤ x < c + 1

If c �= a:

If ĝc−1 < 1 − ĝc: gr(x) =
{

0, c ≤ x < c + 1 − ĝc

1, c + 1 − ĝc ≤ x < c + 1

If ĝc−1 > 1 − ĝc: gr(x) =
{

1, c ≤ x < c + ĝc

0, c + ĝc ≤ x < c + 1

This algorithm exactly reconstructs the values of g(x) over the range a ≤ x < b, given the following
conditions:

1. xc < xc+1 − 1, ∀c ∈ {0, 1, ..., N} (that is: all adjacent edges are greater than one sample
space apart);

2. a < b (that is: at least two samples)

3. a ≤ �x1�− 1 and b ≥ �xN� (that is: enough information to adequately reconstruct the edges
at both ends).

The last contstraint allows us to exactly reconstruct the intensity surface over the entire number
line. If we only need the values of g(x) for a ≤ x < b, they can be relaxed to:

a ≤ �x1� and b ≥ �xN� − 1
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(a) (b)

Figure 6.10: The two possible interpretations of a grey pixel value for a single pixel.

The need for constraint 1 was determined in theorem 3, and the need for constraint 2 is implicit
in algorithm 4 requring two adjacent pixels to ascertain the edge position in certain cases. If
there is only one pixel then we cannot extract the orientation information and thus there are two
possiblities for a grey pixel, as illustrated in figure 6.10.

The finite length algorithm to find the edge positions (that is: the (xc, gc) pairs) is similar to
algorithm 3. To exactly reconstruct g(x) it requires constraints 1, 2, and 3 as given above.

Algorithm 5
To reconstruct gr(x) from samples ĝa, ĝa+1, . . . , ĝb−1, ĝb:

1. Set n ← 0, x0 ← −∞

2. If ĝa = 0: g0 ← 0
If ĝa = 1: g0 ← 1
If 0 < ĝa < 1:

(a) n ← 1

(b) If ĝa+1 < 1 − ĝa: g0 ← 1, x1 ← a + ĝa, g1 ← 0
If ĝa+1 > 1 − ĝa: g0 ← 0, x1 ← a + 1 − ĝa, g1 ← 1

3. For c = a + 1 to b:
If ĝc = 0 and ĝc−1 = 1:

(a) n ← n + 1

(b) gn ← 0, xn ← c

If ĝc = 1 and ĝc−1 = 0:

(a) n ← n + 1

(b) gn ← 1, xn ← c

If 0 < ĝc < 1:

(a) n ← n + 1

(b) If gn−1 = 0: gn ← 1, xn ← c + 1 − ĝc

If gn−1 = 1: gn ← 0, xn ← c + ĝc

4. xn+1 ← ∞, gn+1 ← φ

5. gr(x) = gz, xz ≤ x < xz+1, z ∈ {0, 1, 2, . . . , n}

We now present an example of how algorithm 5 works:

Let ((x0, g0), (x1, g1), (x2, g2), (x3, g3), (x4, g4), (x5, g5))
= ((−∞, 0), (0.4, 1), (2.2, 0), (3.4, 1), (5, 0), (∞, φ)) (6.6)

This defines g(x) as illustrated in figure 6.11
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Figure 6.11: The intensity curve used in the example on page 181 is shown in (a). It is defined by
equation 6.6 and equation 6.5. The finite image sampled from this intensity curve is shown in (b).

Taking ĝn, n ∈ {0, 1, 2, 3, 4, 5} we get:

ĝ0 = 0.6, ĝ1 = 1, ĝ2 = 0.2, ĝ3 = 0.6, ĝ4 = 1, ĝ5 = 0

Stepping through algorithm 5:

Step Actions
1. n ← 0, x0 ← −∞
2. (a) n ← 1

(b) g0 ← 0, x1 ← 0.4, g1 ← 1
3.(c = 1)
3.(c = 2) (a) n ← 2

(b) g2 ← 0, x2 ← 2.2
3.(c = 3) (a) n ← 3

(b) g3 ← 1, x3 ← 3.4
3.(c = 4)
3.(c = 5) (a) n ← 4

(b) g4 ← 0, x4 ← 5
4. x5 ← ∞, g5 ← φ

In step 5, gr(x) is specified by the ordered set of ordered pairs:

((−∞, 0), (0.4, 1), (2.2, 0), (3.4, 1), (5, 0), (∞, φ))

which is identical to the specification of the original intensity curve, g(x) (equation 6.6).

6.3.2 The grey level case

The extension to grey levels immediately increases the amount of information required to locate
an edge’s position. In the black and white case we require the intensity value of the pixel in which
the edge falls (hereafter called the ‘edge pixel’) plus one bit of orientation information to ascertain
whether the edge is a rise from zero to one or a fall from one to zero. In the grey level case, where
the original function is defined in equation 6.2, we require three pieces of information to exactly
locate an edge. These three are the intensity of the edge pixel and the intensities of the grey
level plateaux on either side of the edge. In the absence of any other information we assume that
these latter two values are provided by the two pixels immediately adjacent to the edge pixel. This
situation is illustrated in figure 6.12.
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Figure 6.12: An edge in the grey level case. The intensity to the left of the edge is gl, to the right,
gr. The three sample values are: ĝa−1 = gl, ĝa = gr + (xc − a)(gl − gr), and ĝa+1 = gr.
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Figure 6.13: Two possible ways of reconstructing the same finite-length sequence of pixel values.
(a) shows a sequence of pixel values. (b) and (c) show the two possible ways of reconstructing
these values. Note that each case has one pixel in which there is insufficient information to decide
what happens within that pixel. Also, it is every second pixel that contains an edge.

We can find the position of the edge from the three sample values as:

xc = a +
ĝa+1 − ĝa

ĝa+1 − ĝa−1
(6.7)

and the value of the plateau in the intensity curve immediately to the right of this edge as gc = ĝa+1.
Therefore, to exactly reconstruct an edge, there must be a single edge within the edge pixel and
no edges within the two adjacent pixels. We will assume that this is the case for all edges in the
intensity curve, thus no edge pixel will be adjacent to any other edge pixel.

How then do we ascertain which are edge pixels and which are not? For simplicity consider
only the cases where no edges occur at pixel boundaries (we will shortly examine the special
case where they do occur here). The problem is that we cannot determine from an individual
sample’s value whether it is an edge pixel or not. In the black and white case it is simple: an edge
pixel has a value between zero and one, whilst a non-edge pixel has a value of either zero or one
(remember, we are not considering edges that occur at pixel boundaries). In this grey-scale case
it is simple to invent a finite-length sequence which is ambiguous. For example the set of samples
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 can be reconstructed in two possible ways, shown in figure 6.13.

It proves to be easiest to identify pixels which do not contain edges and to ascertain from these
which pixels do contain edges. There are two cases where a pixel can be definitely said not to
contain an edge:

1. if an adjacent pixel has the same value as this pixel then neither can contain an edge;

2. if both adjacent pixels have different values to this pixel and they are either both greater or
both lesser values than this pixel’s value, then this pixel does not contain an edge.

If a pixel’s value is zero or one, then one of these two cases will always be true.
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Figure 6.14: The arrangement required to identify an edge at a pixel boundary is shown in (a): two
pixels either side of the edge with the same intensity. (b) shows a situation that can be interpreted
wrongly. If γ < α < β then an edge will be found in the α pixel rather than an edge at x = a and
one in the γ pixel, as occurred in the original intensity curve.
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Figure 6.15: The situation for a four-pixel sequence.

Having found a single non-edge pixel, the entire infinite length becomes an unambiguous encoding
of g(x). The only case where no non-edge pixel could be identified using the above rules is where
the sample values continuously ascend or descend, never reaching one or zero at either end.

Let us now consider the case of an edge at a pixel boundary. Equation 6.7 can still be used to find
the edge position. But, to prevent ambiguity, there must be two samples of equal value on either
side of the edge, giving a sequence of four samples with the edge in the middle of the sequence.
Figure 6.14 shows the ambiguity which arises if this constraint is not obeyed.

This constraint, and the constraint that the two pixels adjacent to an edge pixel may not be edge
pixels, can be drawn into a single rule: that any two edges in the original image must be farther
than two sample spaces apart. That is, in equation 6.2:

xa+1 − xa > 2 (6.8)

It is debatable whether this equation should have ≥ rather than >. With the black and white
case we found that the greater than without the equality allowed us to unambiguously reproduce
the reconstructed surface from any pair of sample values. Proceeding on that precedent, we will
attempt to find some unambiguous reconstruction from a finite-length set of contiguous samples,
assuming that equation 6.8 holds.

Is there an unambiguous reconstruction from a four-pixel sequence?

The shortest length which can contain two potential pairs of edges is four pixels long. If these four
pixels contain either of the two situations described on page 183 then the original function can
be unambiguously reconstructed over at least the central two pixels (the outer two may require
one extra pixel of information in order for us to apply equation 6.7). In the cases where neither
situation occurs the four sample values will be either increasing or decreasing. Without loss of
generality we can take the increasing case with the left-most pixel being pixel zero, as illustrated
in figure 6.15.

We know the values of ĝ0, ĝ1, ĝ2, ĝ3. They are related by:

0 < ĝ0 < ĝ1 < ĝ2 < ĝ3 < 1

The values of ĝ−1 and ĝ4 are unknown, but are used in some of the intermediate formulae.

There are two possibilities: either edges occur in pixels 0 and 2 or in pixels 1 and 3. We want to
find some way of distinguishing between these two. The only constraint on the original function
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Possible edge pixels Number of cases Percent of cases
0 and 2 1,167,877 29.8%
1 and 3 1,092,634 27.9%
Both 793,406 20.2%
Neither 867,308 22.1%
Total 3,921,225 100.0%

Table 6.1: The results for a four pixel long sequence, with pixels having values of 0.01n, n ∈
{1, 2, . . . , 99}. The table shows the number of cases in which edges could occur in pixels 0 and 2
only, pixels 1 and 3 only, either of these cases, or neither of them.

is that any two edges must be more than two sample spaces apart. Therefore we need to find the
potential edge locations, x0;x2 and x1;x3, and the distances between these pairs of edges ∆0,2 and
∆1,3. The edge locations can be found using equation 6.7 and the distance between edges thus
become:

∆0,2 = 2 +
ĝ3 − ĝ2

ĝ3 − ĝ1
− ĝ1 − ĝ0

ĝ1 − ĝ−1
(6.9)

∆1,3 = 2 +
ĝ4 − ĝ3

ĝ4 − ĝ2
− ĝ2 − ĝ1

ĝ2 − ĝ0
(6.10)

The distance between edges must be greater than two, so, to ensure unambiguous reconstruction
either ∆0,2 > 2 or ∆1, 3 > 2. If both inequalities are true, then either case could hold and
reconstruction is ambiguous. A problem with finding when these inequalities hold is that the
unknown value ĝ−1 appears in equation 6.9 and ĝ4 in equation 6.10. If we set the former to 0 and
the latter to 1, we maximise the values of ∆0,2 and ∆1,3. We need to know these maxima in order
to ascertain if unambiguous reconstruction can be achieved given just the values ĝ0, ĝ1, ĝ2, and
ĝ3. Setting these two values to these extrema gives us the following conditions:

1. For it to be possible for edges to be located in pixels 0 and 2, we require:

ĝ3 − ĝ2

ĝ3 − ĝ1
− ĝ1 − ĝ0

ĝ1
> 0 (6.11)

2. For it to be possible for edges to be located in pixels 1 and 3, we require:

1 − ĝ3

1 − ĝ2
− ĝ2 − ĝ1

ĝ2 − ĝ0
> 0 (6.12)

It can easily be shown that both conditions can be true for some combinations of sample values,
for example: ĝ0 = 1

20 , ĝ1 = 2
20 , ĝ2 = 4

20 , and ĝ3 = 9
20 produces, in equation 6.11: 3

14 > 0, and in
equation 6.12: 1

48 > 0.

To give some idea of what is going on, an experiment was performed using all possible values of
ĝ0, ĝ1, ĝ2, ĝ3 ∈ {0.01, 0.02, 0.03, . . . , 0.98, 0.99}. This gave the results shown in table 6.1. In nearly
26% of the cases where one of the edge cases is possible, the other is possible too. Therefore the
inequalities in equation 6.9 and equation 6.10 do not effectively arbitrate between the two cases.

Longer sequences

An obvious extension to this idea is to use a larger context to determine where the edges fall.
Rather than explicitly extend to a five pixel context, then to a six pixel context, and so on, we
present the general case, for an n pixel context.
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Possible edge pixels Number of cases Percent of cases
Even only 9,349,562 12.4%
Odd only 35,036,048 46.5%
Either 2,624,600 3.5%
Neither 28,277,310 37.6%
Total 75,287,520 100.0%

Table 6.2: The results for a five pixel long sequence, with pixels having values of 0.01n, n ∈
{1, 2, . . . , 99}. The table shows the number of cases in which edges could occur in the even numbered
pixels only, the odd numbered pixels only, either even or odd, or neither even nor odd.

Possible edge pixels Number of cases Percent of cases
Even only 189,397,344 15.9%
Odd only 179,280,225 15.0%
Either 8,826,079 0.74%
Neither 814,548,752 68.3%
Total 1,192,052,400 100.0%

Table 6.3: The results for a six pixel long sequence, with pixels having values of 0.01n, n ∈
{1, 2, . . . , 99}. The table shows the number of cases in which edges could occur in the even numbered
pixels only, the odd numbered pixels only, either even or odd, or neither even nor odd.

Given n consecutive pixel values: ĝ0, ĝ1, . . . , ĝn−1, such that 0 < ĝa < 1 and ĝa < ĝa+1, and given
that any two edges will be greater than two sample spaces apart:

1. For it to be possible for the edges to the edges to be in the even numbered pixels, we require:

δ0,2 > 0, δ2,4 > 0, . . . ,

{
δn−3,n−1 > 0, n odd
δn−4,n−2 > 0, n even

2. For it to be possible for the edges to occur in the odd numbered pixels, we require:

δ1,3 > 0, δ3,5 > 0, . . . ,

{
δn−3,n−1 > 0, n even
δn−4,n−2 > 0, n odd

where:
δa−1,a+1 =

ĝa+2 − ĝa+1

ĝa+2 − ĝa
− ĝa − ĝa−1

ĝa − ĝa−2

and the two required but unknown pixel values are set to:

ĝ−1 = 0
ĝn = 1

When n = 5, both cases are possible for, for example: ĝ0 = 0.2, ĝ1 = 0.3, ĝ2 = 0.4, ĝ3 = 0.5, and
ĝ4 = 0.7. With these values: δ0,2 = 1

6 , δ1,3 = 1
6 , and δ2,4 = 1

10 .

When n = 6, both cases are still possible. For example, with ĝ0 = 0.01, ĝ1 = 0.02, ĝ2 = 0.03,
ĝ3 = 0.05, ĝ4 = 0.1, and ĝ5 = 0.3: δ0,2 = 1

6 , δ1,3 = 3
14 , δ2,4 = 2

15 , and δ3,5 = 4
63 .

For n = 5 and n = 6 similar experiments were performed to that for n = 4. The results of these
are shown in tables 6.2 and 6.3. For the case of n = 6 we would expect an equal number of cases
for even only and odd only. The difference in table 6.3 is most likely due to bias in the particular
1.2 billion samples we took.

Obviously the proportion of situations where either case could be true declines as n increases from
4 to 6; but the fact that there are still situations where either case is possible means that we cannot
use these inequalities to arbitrate between the cases.
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We have been unable to find a proof which shows that, for any length, there are always situations
where both cases are possible, or that there is a length for which it is possible to unambiguously
arbitrate between the two cases. However the series of sample values: ĝa = ln(ca + k), with
suitable choices for c and k, appears to provide situations where either case could be true for
very large n. For example: c = 0.001, k = 1.001 provides a situation where both cases are true
for any n, n ≤ 1717. To discover if a logarithmic sequence can produce a situation where both
cases are true for arbitrarily large n seems an insoluble problem in itself. For example, computer
calculations show that c = 10−4 and k = 1+10−4 gives a situation where either case could be true
for n ≤ 17, 181, whilst c = 10−6 and k = 1 + 10−6 does not give such a situation for any n.

In the face of this failure to find an unambiguous reconstruction from a finite-length sequence,
what can we say?

Firstly, with n = 6, only about 2.3% of the situations where one case could be true can also
represent the other cases. Thus, we could use n = 6 and, in ambiguous situations, depend on
pixels beyond these six to provide sufficient contextual information to unambiguously reconstruct.
This option would succeed almost always, but, as we have seen, even with a very long sequence
of samples there exist situations which are ambiguous over the entire sequence. Secondly, these
calculations have been based on the assumption that any two adjacent edges are greater than two
sample spaces apart (equation 6.8). We could increase this limit. The simplest way to ensure
unambiguous reconstruction for a finite-length sequence is to have one known non-edge pixel in
the sequence. Non-edge pixels can be identified using one of the two rules on page 183. Pixels
obeying the second rule are impossible to ensure for any length of sequence with any minimum
limit on the distance between adjacent edges. It is possible to ensure that at least one non-edge
pixel can be identified using the first rule, provided that:

xa+1 − xa > 2 +
1⌊

n−1
2

⌋ (6.13)

for a sequence of n pixels.

This condition ensures that, in most cases, there are adjacent pixels in the sequence of n pixels
which can be identified as non-edge pixels using the first rule on page 183. In the remaining cases,
where no two adjacent pixels have the same value, we can be sure that the pixels at the extreme
ends of the sequence are both non-edge pixels. This latter situation only occurs when n is odd,
The limiting value can obviously be made closer to two by increasing the length of the sequence.

6.3.3 Practical reconstruction

To perfectly reconstruct a function from a sequence of samples we need to convert the above results
to a practical algorithm. One such algorithm considers sequences of three pixels, thus requiring
all edges to be greater than three sample spaces apart. By considering longer sequences a smaller
minimum distance can be used, and by considering all N samples a distance very close to two
could be achieved for large enough N .

The algorithm for three pixel sequences is:

Algorithm 6
Given a sequence of samples: ĝa, ĝa+1, . . . , ĝb, generated from a function g(x), where g(x) is de-
scribed by equation 6.2, and the ordered set of pairs is ((−∞, g0), (x1, g1), . . . , (xm, gm), (∞, φ)).
Then an exact reconstruction, gr(x), can be made from the samples in the range x ∈ [a + 1, b), if:

1. b − a ≥ 2 (at least three samples);

2. xc+1 − xc > 3, ∀c ∈ {1, 2, . . . ,m − 1} (all adjacent edges greater than three sample spaces
apart).
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gr(x) is generated piecewise as follows:

For every value c ∈ {a + 1, a + 2, . . . , b − 2, b − 1}:

If ĝc−1 = ĝc or ĝc+1 = ĝc

then gr(x) = ĝc, c ≤ x < c + 1

If ĝc−1 �= ĝc and ĝc+1 �= ĝc

then gr(x) =
{

ĝc−1, c ≤ x < c + ε
ĝc+1, c + ε ≤ x < c + 1 where ε = ĝc+1−ĝc

ĝc+1−ĝc−1

If ĝa = ĝa+1

then gr(x) = ĝa, a ≤ x < a + 1
otherwise gr(x) is undefined for a ≤ x < a + 1

If ĝb = ĝb−1

then gr(x) = ĝb, b ≤ x < b + 1
otherwise gr(x) is undefined for b ≤ x < b + 1

You will note that this algorithm perfectly reconstructs the original function in the range x ∈
[a + 1, b). It is undefined in the range x ∈ [a, a + 1) and x ∈ [b, b + 1) if there are edges in pixels
a and b respectively. This is a manifestation of the edge effect problem — there is not enough
information to exactly reconstruct the function in these two end pixels. An equivalent algorithm
to find the (xi, gi) pairs will be unable to ascertain the values at the extreme ends of the range of
pixels in the same situations.

An alternative strategy is to allow adjacent edges to be closer together but insist that no edge
occur in either of the pixels at the extreme ends of the sample sequence. These changes to the
criteria would enable us to always exactly reconstruct an intensity curve.

This final, one-dimensional algorithm, exactly reconstructs the entire original function, provided
that the original function obeys the given criteria.

Algorithm 7
Given a set of samples: ĝa, ĝa+1, . . . , ĝb−1, ĝb generated from a function g(x), an exact reconstruc-
tion, gr(x), of g(x) can be generated by this algorithm provided:

• g(x) is generated by equation 6.2 from the ordered set of ordered pairs:
((−∞, g0), (x1, g1), (x2, g2), . . . , (xm, gm), (∞, φ)) where xc < xc+1, ∀c ∈ {1, 2, . . . ,m − 1};

• xc+1 − xc > 2, ∀c ∈ {1, 2, . . . ,m − 1};

• a + 1 ≤ x1;

• xm < b.

gr(x) is generated by:

1. m ← 0
x0 ← −∞
g0 ← ĝa

previous ← NotEdge

2. For c ← a + 1 to b − 1:
If ĝc �= ĝc−1 and previous = NotEdge
then:

(a) m ← m + 1
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(b) gm ← ĝc+1,
xm ← c + ĝc+1−ĝc

ĝc+1−ĝc−1
,

previous ← Edge

otherwise:
previous ← NotEdge

3. xm+1 ← ∞, gm+1 ← φ

4. gr(x) = ge, xe ≤ x < xe+1, e ∈ {0, 1, 2, . . . ,m}

For an infinite length sequence all that need be done is to identify a single non-edge pixel and
apply this algorithm forward toward positive infinity and a slightly modified version of it backward
toward negative infinity. Thus, provided that there is a single identifiable non-edge pixel in the
infinite image, a perfect reconstruction can be generated. As equation 6.8 must be true in this
algorithm, an identifiable non-edge pixel will almost certainly appear in an infinitely long sequence.

6.3.4 Use in resampling

If we are resampling functions of the type described by equation 6.2 then the above algorithms give
an exact reconstruction of the original function. This is better than any of the NAPK methods
could do with this particular set of original functions, and even better than the APK methods
disscussed in section 6.1, because neither the sampling kernal nor the original function are band
limited. The band-unlimited nature of these functions is discussed in the next section.

The final algorithm in the previous section (algorithm 7) generates a description of the function
which can be transformed and the new description rendered as illustrated by figure 6.3. Thus
the resampled version is as accurate as it could possibly be, having been rendered from an exact
description of the function.

6.3.5 Relationship to sampling theory

It is well known that any function, f(x), can be exactly reconstructed from single point samples,
f̂i, provided that the highest spatial freqency in f(x) has wavelength longer than two sample
spacings (section 2.4.1). If, without loss of generality, we take the sample spacing to be one, then
this condition is that the highest spatial frequency is less than one half. Perfect reconstruction is
performed by convolving the samples by an appropriate sinc function.

The algorithms given in this chapter have shown that any function, g(x), which can be defined
by equation 6.2 can be exactly reconstructed from its exact-area samples ĝi, provided that any
two edges in the image are greater than two sample spaces apart and that there is at least one
identifiable non-edge pixel in the sample set. Perfect reconstruction in this case is performed by
algorithm 7 modified for an infinite set of samples, as explained on page 189.

The sets of functions which can be exactly reconstructed by these two methods are disjoint except
for the trivial case f(x) = g(x) = K, a constant. This can be proven by noting that, except for the
trivial case, g(x) always contains sharp edges, which require infinite frequencies to generate whilst
f(x) must always be bandlimited.

Classical sampling theory produces criteria for perfect reconstruction based on Fourier transform
theory [Shannon, 1949]. The resulting method of perfect reconstruction is a simple mathematical
process: convolution of the samples by a sinc function. The method of perfect reconstruction
presented here, on the other hand, consists of an algorithm which generates a description of the
original function.
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Sinc Reconstruction Sharp Edge Reconstruction

Original function f(x) =
∫∞
−∞ F (ν)ei2πνxdν g(x) = ga, xa ≤ x < xa+1

Specified by its spectrum: F (ν) an ordered set of ordered pairs of
edge position and intensity level
information:
((−∞, g−∞), . . . , (x−1, g−1),
(x0, g0), (x1, g1), . . . , (∞, φ)).

Restrictions on the
specification

|ν| < 1
2 , this is equvailent to

|λ| > 2 where the wavelength
λ = 1

ν

xc+1 − xc > 2, ∀c, plus at least
one identifiable non-edge pixel

Sampling method Single point sampling Exact area sampling

Reconstruction
method

Convolution by a sinc function Using algorithm 7 extended to
the infinite case

Comments Only works for an infinite set of
samples

Can work on both infinite and fi-
nite sets, to work on a finite set
requires an extra restriction, that
is: no edge in the first or last
pixel in the set

Table 6.4: Comparison of sinc and sharp edge reconstruction assuming unit spaced samples.

A further difference between the two is in the types of function and types of sampling which are
used. Classical sampling theory considers a function to be a (finite) sum of sinusoids, whilst the
process described in this chapter considers a piecewise constant function. The former is typical
of audio and AC electrical signals, whilst the latter is typical of visual signals. Classical sampling
theory considers single point samples, while this process considers exact-area sampling which is a
good approximation to the form of sampling employed by a charge coupled device (CCD) sensor
[Kuhnert, 1989] or by a microdensitometer with appropiate aperture shape [Ward and Cok, 1989],
both image capture devices. A summary of the differences between the two perfect reconstruction
is given in table 6.4.

The effect of errors

Two types of error beset these algorithms: one due to the finite number of samples, the other due
to errors in the sample values themselves. Sinc reconstruction will only work for an infinite number
of samples. A finite set causes edge effects, which must be dealt with using one of the methods
in chapter 4 to produce an approximately correct reconstruction. Exact grey scale reconstruction
can deal with finite numbers of samples, as described in algorithm 7 or algorithm 6.

Errors in the sample values themselves, from whatever source, prevent either method from pro-
ducing an exact reconstruction of the original function. Sinc reconstruction degrades gracefully as
the magnitude of the error increases. With small errors in the sample values sinc still produces a
good approximation to the original function.

Exact grey scale reconstruction, on the other hand, degrades gracefully as quantisation error in-
creases but fails completely for any other type of error. This failure is due to an inability to ensure
that adjacent non-edge pixels have the same intensity, a fact which is assumed by all the algo-
rithms. With only quantisation errors, adjacent non-edge pixels will have the same intensity, but
it will be a quantised version of the correct intensity. With other errors, it is possible to modify the
reconstruction algorithm to take into account an error distribution over the sample values; perhaps
by considering two adjacent pixels to have the same grey-value if their values lie within a certain
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distance of each other. Such a modification is left for future work.

An analysis of the algorithm’s performance for quantisation errors shows that, if the two grey
levels either side of an edge quantise to the same qunatisation level, then that edge cannot be
reconstructed at all: it ‘dissappears’. All other edges will tend to move slightly. The smaller the
difference in grey level either side of the edge, the larger the maximum possible difference in edge
position between the original and the reconstructed functions, but the less visible the edge to the
eye and so possibly, the less the eye will care about the shift. For N quantisation levels, when ∆g,
the difference between adjacent grey levels, is ∆g � 1

N−1 ; this maximum shift in edge position is
approximately ± 1

∆g (N−1) . See appendix B.9 for details.

We have demonstrated that, in an error-free system, a class of intensity curves can be exactly
reconstructed by sharp edge reconstruction, which cannot be exactly reconstructed by classical
sampling theory methods. We now consider if such a class exists for two-dimensional intensity
surfaces.

6.4 Two-dimensional sharp edge reconstruction

The original intensity surface in this case consists of areas of constant intensity bound by sharp
edges. The image is produced by taking exact-area samples off this intensity surface. We will
consider a square pixel grid and, without loss of generality, unit spaced samples. Thus if the
original function is g(x, y), then ĝi,j is taken over the area i ≤ x < i + 1, j ≤ y < j + 1; that is:

ĝi,j =
∫ i+1

i

∫ j+1

j

g(x, y) dy dx

A good deal of research has been done on locating the positions of edges in images. These tend to
be developed for and tested on real, noisy images, and give approximate locations of edges in the
image. By constrast we are here assuming a perfectly sampled, perfect intensity surface — thus no
errors appear in the sample values. The aim is to ascertain whether, in the absence of any errors,
perfect reconstruction is possible. If so, what criteria must the original intensity surface obey for
perfect reconstruction to be possible.

6.4.1 Single point sampling case

Before looking at exact-area sampling, we examine how much information we can extract from a
single point sampled image. Here a pixel’s sample value is the value of the intensity surface at
the pixel’s center. An edge will thus be identifiable as being close to where adjacent pixels have
different intensities.

In the one-dimensional case the edge occurs in a single pixel, and thus the error in edge position
is ± 1

2 sample spaces. In the two dimensional case, an infinitely long edge will pass through an
infinite number of pixels. Thus there is potential to extract accurate information about the line’s
slope and position by considering more of the evidence than a single pixel’s worth.

Theorem 4 If we have an intensity surface containing a single, infinitely long straight edge, single
point sampled over all Z2, then the slope of that edge can be exactly determined, whilst its position
may have some inaccuracy.

Proof: Consider only edges with a slope between zero and one:

y = mx + c, 0 ≤ m ≤ 1

where the area below the edge is white and above it is black. All other cases can be transformed
into this case by rotation of 90n◦, n ∈ Z and/or reflection in the line y = 0.
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Key
Pixel centre

Position of edge

Black pixel

White pixel

01 1 1 0 1 0 1hi

Figure 6.16: An example of a single point sampled single edge. The hi are a Rothstein code for
the edge.

For every integer x-coordinate we define a number hi, which is either one or zero, depending on the
values of the pixels near the edge. To ascertain the value of hi we first find j such that ĝi,j �= ĝi,j+1,
then:

hi =
{

1, ĝi−1,j �= ĝi,j

0, ĝi−1,j = ĝi,j

Part of an edge is illustrated in figure 6.16, with the hi values given underneath. A value of 1
indicates that this column contains the first white pixel on a row, a value 0 indicates that it does
not.

. . . , h−1, h0, h1, h2, . . . is a Rothstein code describing the line [Weiman, 1980; Rothstein and Weiman,
1976]. The slope of the line is the number of 1s in the sequence divided by the total number of
digits in the sequence:

m = lim
k→∞

k∑
i=−k

hi

k∑
i=−k

1

(6.14)

If the sequence of hi values is aperiodic then equation 6.14 converges on the real value of m
[Rothstein and Weiman, 1976, p.123]. A finite length fragment gives an approximation to the real
slope [ibid., p.110]. These statements are also true for a periodic sequence of hi values, but in this
case the value of m is rational. If the length of a period is q and each period contains p 1s then
the slope is [ibid., p.109]:

m =
p

q

Thus the slope of the edge can be exactly determined, in all cases, because we have an infinite
number of hi values.

If hi is periodic (that is: m is rational) then the position, c, can only be determined to within
some error bounds. If the slope is expressed as m = p

q with p and q relatively prime then c

can be determined with an error of ± 1
2q . This is illustrated in figure 6.17. The truth of this

error bound can be seen by finding the y-intercepts, yi, of the edge with each of the sampling
lines; y = i + 1

2 , i ∈ Z. The fractional parts of these values repeat with period q, and within a
period they are evenly spaced. Thus, if the fractional part of yi is ei = yi − �yi�, then, because
yi+1 = yi + p

q , we can write, for some en:

en = o +
np mod q

q
(6.15)

where n is chosen so that en < 1
q and thus o, the offset from zero, is such that o < 1

q .
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Key
Pixel centre

Position of edge

Black pixel

White pixel

1
q

Figure 6.17: The error bounds on the position of a line of rational slope, in this case the slope
m = p

q = 3
5 . The line can be positioned anywhere over a vertical distance of 1

q .

The values of ei are periodic, with period q. They are also evenly distributed. The minimum
difference between any two different values of ei is 1

q . Thus o can range over values up to 1
q apart

and yet the same sample values will be generated. The error in the position, c, is plus or minus
half this number, that is ± 1

2q .

If we wish to know the positional error in the direction perpendicular to the edge, rather than
along the y-axis then, given that the error along the y-axis is εy = ± 1

2q , then the positional error
perpendicular to the edge is:

ε⊥ = ± 1

2
√

p2 + q2

If the sequence hi is aperiodic (that is: m is irrational), then we can condider the situation as q
goes to infinity:

lim
q→∞

ε⊥ = 0

Therefore, there exists only one possible position for a line of irrational slope, and c can be exactly
determined in this case. QED.

For a finite length edge the slope can only be determined approximately. When a sequence of m
hi values are available, h1, h2, . . . , hn, then the slope is approximated by:

m̌ =

n∑
i=1

hi

n

We can see that a good approximation to the line’s slope and position can be obtained from the
single point sample case. Can the exact-area sample case improve on these results?

6.4.2 Exact area sampling — black and white case, single edge

Given an image, area sampled from an intensity surface consisting of a single edge between an
area of constant intensity zero and an area of constant intensity one, what can we say? Firstly the
position of the edge can be approximately determined from the location of the grey pixels in the
image. The edge must pass through all these grey pixels in the image. We call such pixels ‘edge
pixels’. Secondly, the exact slope and positions of the edge should be determinable from a finite
number of pixel values. (In the single point sample case an infinite number of pixel values were
requried to exactly determine the slope, and there existed situations where the position could not
be exactly determined).



194 CHAPTER 6. A PRIORI KNOWLEDGE RECONSTRUCTION

θ
ρ

x

y

Figure 6.18: The (ρ, θ) parameterisation of a straight line. θ is the angle the line makes with the
positive x-axis, ρ is the perpendicular distance from the line to the origin.

Hypothesis: The position and slope of a single, infinitely long, straight edge between an area of
constant intensity zero and an area of constant intensity one can be exactly determined from two
exact-area sample values.

This hypothesis has its foundation in the recognition that only two numbers are required to exactly
specify a straight line. In section 6.3.1 we saw that a single number specified the position of a sharp
edge in one dimension and that this positional information was coded in a single pixel values (plus
one extra bit of orientation information which could be derived from a neighbouring pixel). Here
we will see that the slope and direction of a straight line are indeed coded in the sample values
of two adjacent edge pixels plus some extra bits of orientation information, which can be derived
from neighbouring pixels. Because of the need for this orientation information, the hypothesis is
incorrect, but it is not far from the truth.

The equation of a straight line

Three parameterisation of a straight line, which prove useful when determining the position of an
edge, are:

1. y = mx + c, the standard equation of the line, using the slope, m, and y-intercept c, as the
parameters. This equation for a straight line has problems in that a vertical line cannot be
represented and a small change in m makes a large difference in the line when m is small
and a small difference in the line when m is large, meaning that an error measure on m (or
on c which has a similar problem) is difficult.

2. x = t cos θ + ρ sin θ, y = t sin θ − ρ cos θ, using parameters ρ and θ. ρ is the perpendicular
distance from the line to the origin, and θ is the angle the line makes with the positive
x-axis (figure 6.18). These two parameters are better than m and c in that they render a
uniform description for any position and orientation (error bounds will be the same for all
orientations and positions) and have no special case (such as the vertical lines in the previous
case) [Kitchen and Malin, 1987]. However, they can also make the algebra more difficult.

3. x = x0t, y = y0(1− t). The two parameters x0 and y0 are the x- and y-intercepts of the line
as shown in figure 6.19(a). This parameterisation can represent any line except one for which
x0 = y0 = 0, or a vertical or a horizontal line which does not pass through the origin. An
alternative parameterisation using the same philosophy is that shown in figure 6.19(b) using
y0 and y1, the y-intercepts of the line at x = 0 and x = 1 respectively. This gives: x = t,
y = (1 − t)y0 + ty1. This parameterisation cannot represent vertical lines.

Neither of these parameterisations renders a uniform description for all positions and orien-
tations. In the former, for example, when either parameter is close to zero, a small change
in the other will cause a large change in the line. However, both of these very similar
parametrisations prove useful in the ensuing work.
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Figure 6.19: Two intercept parameterisations of a straight line. (a) in terms of its x- and y-axis
intercepts, x0 and y0. (b) in terms of two y-intercepts, y0 and y1.

value = 0.25

value = 0.5

value = 0.75

0o 26.6o 45oθ

Figure 6.20: A single edge pixel’s value can represent an edge at any orientation. Here we see three
pixel values (0.25, 0.5, and 0.75) each with five of the many possible edges that could pass through
the pixel.

All three parameterisations completely determine the position and slope of a line in two parameters.
It is therefore not unreasonable to expect that two pixel values will also completely determine the
position and slope of the edge.

What can one pixel value tell us?

To again simplify matters we consider only an edge with slope between zero and one, and with
black (intensity zero) above it and white (intensity one) below it. All other possible situations can
be transformed into this set of situations by reflection and/or rotation. The single edge pixel will
have a grey value between zero and one. Its value reduces the set of possible edges through the
pixel from an infinite set to a smaller, but still infinite, set. Examples are shown in figure 6.20. The
ambiguity in the line’s slope and position can be removed by considering the value of an adjacent
edge pixel.

Before doing this we classify edge pixels into three groups based on how the edge passes through
the pixel. Type I pixels have the edge passing through their bottom and right sides (figure 6.21(a)).
Type II have the edge passing through the left and right sides (figure 6.21(b)), and Type III have
the edge passing through the left and top sides (figure 6.21(c)). No other combination of sides
can occur for an edge with slope between zero and one. Edges passing through the bottom-left or
top-right corner can be considered to be of any appropriate type.

If we now apply a local coordinate system to the pixel, with the origin at the bottom left corner
and the pixel of size 1 × 1 (figure 6.21(a)), then we can describe the edge simply using the third
of our three parameterisations of a straight line on page 194. These descriptions are shown in
figure 6.21(b), (c), and (d).
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Figure 6.21: The coordinate system for a pixel and the three types of pixel. (a) Local coordinate
system for the pixel. (b) Type I pixel, parameterised by x0 and y1. (c) Type II pixel, parameterised
by y0 and y1. (d) Type III pixel, parameterised by y0 and x1.

Case Third intercept calculation
I.II y2 = y1(1 + 1

1−x0
)

I.III x2 = 1 + 1−y1
y1

(1 − x0)

II.II y2 = 2y1 − y0

II.III x2 = 1−y0
y1−y0

III.I y2 = y0 + 1−y0
x1

Table 6.5: How the third intercept is calculated from the first two in all five possible cases.

The sample value, A, for each type of pixel can easily be determined using these simple formulae:

AI =
1
2
(1 − x0)y1 (6.16)

AII =
1
2
(y0 + y1) (6.17)

AIII = 1 − 1
2
x1(1 − y0) (6.18)

The information that can be gathered from two adjacent edge pixels

Given an edge pixel we will consider also the next edge pixel to the right, or, if this is not an edge
pixel, then the next edge pixel above. This gives the five possible situations shown in figure 6.22.
No other situations are possible given the restrictions we have placed on edge orientation. In each
case the third intercept is given the subscript 2 in order to save confusion and unify the notation
for all cases. This third intercept can be derived from the other two, because the first two uniquely
define the lines. These derivations are shown in table 6.5.

Given the two pixel values, call the left one, A, and the right, B, it is possible to recover the values
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Figure 6.22: The five possible arrangements of two adjacent edge pixels for a line of slope between
zero and one. Each is named by the types of the two pixels ordered from left to right, or bottom
to top. The origin is always considered to be at the bottom left corner of the bottom left pixel.

of the first and second intercepts, thus uniquely determining the edge position and slope from the
two pixels’ values.

Case II.II

This is the simplest case. The pixel values are given by:

A =
1
2
(y0 + y1)

B =
1
2
(y1 + y2)

=
1
2
(3y1 − y0)

where the last step is produced by replacing y2 with its equivalent equation in table 6.5.

Some fairly simple algebra leads to the results:

y0 =
1
2
(3A − B)

y1 =
1
2
(A + B)

From these, and table 6.5, we can also find y2:

y2 =
1
2
(3B − A)

The other four cases are not as simple as this. Rather than show the working here we present only
the start and end of the algebraic manipulation.
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Case I.II

The equations for the pixel values are:

A =
1
2
(1 − x0)y1

B =
1
2
(y1 + y2)

= y1 +
y1

2(1 − x0)

which produce these equations for the intercepts:

y1 = −2A + 2
√

A2 + AB

x0 = 1 − 2A

−2A + 2
√

A2 + AB

For the denominator to be zero in the latter equation requires A = B = 0, which means that the
edge passes along the lower boundary, rather than intercepting it, so the value of x0 is undefined.
Such a situation should be considered as case II.II, not case I.II.

Case I.III

The equations for the pixel values are:

A =
1
2
(1 − x0)y1

B = 1 − 1
2
(x2 − 1)(1 − y1)

= 1 − 1
2

(1 − y1)2

y1
(1 − x0)

which produce these equations for the intercepts:

y1 =
√

A√
A +

√
1 − B

x0 = 1 − 2A − 2
√

A(1 − B)

For the denominator to be zero in the equation for y1 requires A = 0 and B = 1, which implies
that the slope of the line is greater than one. Therefore this situation cannot arise.

Case II.III

The equation for the pixel values are:

A =
1
2
(y0 + y1)

B = 1 − 1
2
(1 − y1)(x2 − 1)

= 1 − 1
2
(1 − y1)

(
1 − y0

y1 − y0
− 1

)
which produce these equations for the intercepts:

y1 = 1 + 2(1 − B) − 2
√

(1 − B)2 + (1 − A)(1 − B)

y0 = 1 − 2(1 − A) − 2(1 − B) + 2
√

(1 − B)2 + (1 − A)(1 − B)
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III.I I.III I.II II.III II.II II.II
y0 2 − x2 x0 2 − x2 y0 1 − y2

x1 1 − y1 y1 1 − y1 y1 1 − y1

y2 2 − x0 y2 1 − y0 y2 1 − y0

A B A 1 − B A 1 − B
C A B 1 − A B 1 − A

Table 6.6: The equivalences between the various cases. Note that II.II is equivalent to itself.
Substituting the values in the right hand column in the place of those in the left hand column in
the left hand case’s equations will produce the right hand case’s equations.

Case III.I

This is different from the other four cases in that it uses the pixel above pixel A, rather than to
the right. We will identify this pixel’s value as C. The pixel to the right has value B = 1. The
equations for the pixel values are:

A = 1 − 1
2
(1 − y0)x1

C =
1
2
(1 − x1)(y2 − 1)

=
1
2

(1 − x1)2

x1
(1 − y0)

which produce these equations for the intercepts:

x1 =
√

1 − A√
1 − A +

√
C

y0 = 1 − 2(1 − A) − 2
√

(1 − A)C

For the denominator to be zero in the equation for x1 requires A = 1 and C = 0, which means
that the edge passes along the boundary between the two pixels, rather than intercepting it, so
the value of x1 is undefined. Such a situation should be considered as case II.II, not case III.I.

Equivalences between cases

In figure 6.22 we can see that cases I.II and II.III are very similar. By a substitution of variables
one case can be made equivalent to the other, thus linking the sets of equations for the two cases.
The same is true of cases I.III and III.I. The equivalences are shown in table 6.6. Substituting the
values in the right hand column in the place of those in the left hand column in the left hand case’s
equations will produce the right hand case’s equations.

Identifying the case

Given the edge pixel, of value 0 < A < 1, if the next pixel to the right is not an edge pixel (that is:
B = 1) then we know that we have case III.I. The pixel, of value C, above pixel A is used in the
calculation. If C = 0 and B = 1 then the edge passes through the top right corner of the pixel.
Case III.I still calculates the intercepts correctly; they are:

x1 = 1
y0 = 2A − 1

If 0 < B < 1 then we could be dealing with any of the other four cases. Fortunately the values A
and B uniquely identify which to apply.
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A B

C

Figure 6.23: The arrangement of pixels A, B, and C.

I.II I.III II.II II.III
0 ≤ x0 ≤ 1 0 ≤ x0 ≤ 1 0 ≤ y0 ≤ 1 0 ≤ y0 ≤ 1
0 ≤ y1 ≤ 1 0 ≤ y1 ≤ 1 0 ≤ y1 ≤ 1 0 ≤ y1 ≤ 1
0 ≤ y2 ≤ 1 1 ≤ x2 ≤ 2 0 ≤ y2 ≤ 1 1 ≤ x2 ≤ 2

Table 6.7: The restrictions on the values of the parameters in the four cases which use pixels A
and B.

Possible values of A and B are restricted to lie in the square:

0 ≤ A ≤ 1

0 ≤ B ≤ 1

Further restrictions are produced by making the slope of the edge lie between zero and one: a
minimum slope of zero means that

A ≤ B

A maximum slope of one affects only case, I.III, where it implies that x2 − x1 ≥ 1 (in the other
three cases the slope can never exceed one). Working through the algebra of this gives us the
restriction:

B ≤ 1
2
− A +

√
2A, 0 ≤ A ≤ 1

2

These four restrictions define the boundary in figure 6.24 within which A and B must lie. The
other lines in figure 6.24 are set by restricting the values of the intercepts in each case to lie within
the boundaries listed in table 6.7. These lines bound the areas with which each case deals.

Some involved algebraic manipulation or a dense sampling of A,B pairs will determine which
areas within the boundary are dealt with by each case. Figure 6.25 shows these areas. They do
not overlap and completely fill the area within the boundary. The boundaries between the various
areas are where the edge passes through the corner of one of the pixels. These are illustrated in
figure 6.26, along with the situations that occur at the boundaries of the whole area.

These results are all well and good for edges with a slope between zero and one, allowing us
to exactly reconstruct the line from two adjacent sample values. It leaves the question of how
to identify the orientation of a general edge so that it can be transformed to this case and its
intercepts determined.

Identifying the orientation

Given two edge pixels A and B, arranged as shown in figure 6.23, the orientation of the edge can
be determined to one of two octants. This is shown in figures 6.27 and 6.28. A similar diagram can
be drawn for edge pixels A and C arranged as in figure 6.23. Examples are given in figure 6.29.
To determine which of these two choices is correct we require more information than supplied by
the two pixel values.
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Figure 6.24: The restrictions on A and B values for the various cases, this figure shows the bounding
lines of the areas covered by each case. The light line shows the boundary within which A,B pairs
must lie, the equations defining this boundary are given in the text. The other four lines are
generated by imposing the restrictions in table 6.7. They are:

L1: B = 2 − A − 1
4A

L2: A = (B− 1
2 )2

1−B

L3: B = 1 − 1
3 (1 − A)

L4: B = 3A
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I.II II.II

I.III II.III

I.II

II.III
I.III

II.II

Figure 6.25: The four disjoint areas covered by the four cases.

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i) (j)

(k) (l) (m)

Figure 6.26: The special cases, on boundaries in figure 6.25. They are defined by their locations
in (A,B) space. (a) (0, 1

2 ), the point on the left boundary where I.II meets I.III; (b) (1
4 , 3

4 ), the
point in the middle where all four regions meet; (c) (1

2 , 1), the point on the top boundary where
I.III and II.III meet; (d) (0, 0), the bottom left corner; (e) (1, 1), the top right corner; (f) moving
along the boundary line A = B from (0, 0) to (1, 1); (g) moving around the boundary from (0, 1

2 )
to (1

2 , 1); (h) moving along the top boundary from (1
2 , 1) to (1, 1); (i) moving along L3 from (1

4 , 3
4 )

to (1, 1); (j) moving along L2 from (0, 1
2 ) to (1

4 , 3
4 ); (k) moving up the left boundary from (0, 0) to

(0, 1
2 ); (l) moving along L4 from (0, 0) to (1

4 , 3
4 ); (m) moving along L1 from ( 1

4 , 3
4 ) to (1

2 , 1).



6.4. TWO-DIMENSIONAL SHARP EDGE RECONSTRUCTION 203

α

β

γ

δ
0

0.5

1

0 0.5 1

B

A

Figure 6.27: These are four areas of A,B space: corresponding to four pairs of octants. We have
been considering area β. An edge in any area can be identified to be in either of two possible
locations, shown in figure 6.28.
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octant 3
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Figure 6.28: The four areas in figure 6.27 can identify an edge to be one of just two possibilities.
In each case these two edges lie in two different quadrants. Examples are shown here for each case.
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Figure 6.29: Two examples of the two possibilities for a given pair of adjacent grey pixel values.
(a)(i) can represent either (a)(ii) or (a)(iii), (b)(i) can represent either (b)(ii) or (b)(iii).

µ ν

A B

κ C λ

Figure 6.30: The 3 × 3 context of the edge pixel A, with the pixel labels used in the text.
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4 sample
spacings

4 sample
spacings

Figure 6.31: To ensure that every edge generates at least one edge pixel at the centre of a 3 × 3
context through which no other edge passes, there must be at least one edge point on every edge
such that no other edge passes through a 4 × 4 sample spacing ‘exclusion zone’ cantered on that
edge point.

If we pick a single edge pixel and use the 3× 3 pixel region around it we can be certain to get the
orientation right. The 3 × 3 region is illustrated in figure 6.30. If the 3 × 3 region is rotated and
reflected so that κ ≤ λ ≤ µ ≤ ν then we can be certain that the edge is in the first octant. We can
then apply our equations to A and B (or A and C, if B = 1) and then transform the results back
to the correct octant. Note that, after rotation and reflection, κ = 0 and ν = 1.

6.4.3 Extension to grey scale — single edge

A single edge, where the intensity on either side may have any value, can be exactly reconstructed
as easily as a black and white edge. Taking a 3× 3 area, as in figure 6.30. Again rotate and reflect
it so that κ ≤ λ ≤ µ ≤ ν. Then, if A �= κ and A �= ν, A is an edge pixel. All values in the 3 × 3
square can be modified so that κ = 0 and ν = 1. Taking o to be the old pixel value and m, the
modified pixel value, the modification is simply

m =
o − κ

ν − κ

for each pixel value. The edge can now be found in the same way as for the black and white case.

6.4.4 Extension to many edges

Many edges in an intensity surface means that it consists of areas of constant intensity separated
by sharp edges. Provided every edge generates at least one edge pixel at the centre of a 3×3 block
of pixels through which no other edges run, then the method of the previous section can be used
to find the slope and position of all the edges in the image.

To ensure that every edge generates at least one block of pixels of this type there must be at
least one position along the edge such that no other line passes inside a square of side four sample
spacings centred at that point. An example is given in figure 6.31. A 4 × 4 region is required
because we do not necessarily know where the pixel edges are going to fall, but we can be sure
that there will be a 3× 3 pixel block inside this 4× 4 exclusion zone, and that the central pixel of
this block will contain this edge point, thus this central pixel will be an edge pixel.
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Potential edge pixel

Potential area pixel

Pixel that has been
identified as both a
potential edge and a
potential area pixel

An edge

Key

Figure 6.32: The algorithm discussed in the text would classify the pixels as shown for this com-
bination of edges.

Figure 6.33: No edge can generate three edge pixels of the same intensity in any of these L-shaped
arrangements.

How edge pixels are found

This restriction on the original intensity surface ensures that there will be at least one 3 × 3 pixel
block for every edge through which no other edge passes. This allows us to calculate the slope and
position of the edge. The problem is now to separate those 3 × 3 blocks which contain a single
edge from those which contain no edges or which contain two or more edges.

One solution to this problem is to first find all of the four-connected areas of constant intensity
and mark all of the eight-connected neighbours of this area as potential edge pixels. An example
is shown in figure 6.32. The second step is to apply our equations to the 3 × 3 region around
each potential edge pixel (and any pixels which were not identified as either potential edge pixels
or area pixels). The edge information is only retained for those regions for which it is consistent
with the pixel values. This gives us the position and slope of all edges in the image.

These two steps need some fleshing out. The first step, area-finding, is achieved by a single
observation and a modification of a well-known algorithm. The observation is that no single edge
can generate three edge-pixels of the same intensity in an L-shaped arrangement (those illustrated
in figure 6.33). Such an arrangement of three pixels can thus be assumed to be part of an area
or caused by a combination of several edges. In the first case none of the three pixels is an edge
pixel, in the latter, none is at the centre of a 3 × 3 block containing only a single edge. Thus no
pixel identified by this method need be passed to the second step.

A pixel from an L-shaped block of three of the same intensity can be used as the seed to a flood-fill
algorithm [Foley et al, pp.979–982]. Every pixel in the filled area is identified as a possible area
pixel and every pixel not in, but eight-connected to, the area is identified as a possible edge pixel.
This process is repeated until all identifiable areas have been flood-filled. If an L-shaped block is
generated by multiple edges the whole algorithm should still work, because neither these pixels,
nor any pixel of the same intensity four-connected to them, will uniquely identify a single edge.
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Note that some pixels may be identified as both possible edge pixels and possible area pixels (for
example: when an edge falls on a pixel boundary), this is not a problem and, for the next stage,
these pixels should be treated as possible edge pixels.

In the second step every possible edge pixel is processed individually. All pixels that have not been
identified as possible edge or possible area pixels must also be processed. Such pixels may arise in
a small single pixel wide area with no L-shaped group of pixels in it.

An attempt is made to rotate and reflect the 3×3 region centred on each pixel so that κ ≤ λ ≤ µ ≤ ν
in figure 6.30. If this is impossible then we can be certain that more than one edge pixel passes
through this region, otherwise we apply our equations to generate a slope and direction for an
edge, along with the intensity on either side of the edge. These four values can then be used to
generate pixel values for all nine pixels in the region. If these match the true pixel values then
there is only one edge in the region and we can output the edge parameters and the grey values
either side of the edge, otherwise we ignore these values. This will generate the parameters for all
of the edges in the image (duplicate sets of parameters can be discarded).

This process gives us the slope and positions of all the edges in the image, because every edge
has at least one pixel in a 3 × 3 area which will uniquely identify it. As a byproduct the process
gives us the intensities of the areas either side of each edge. What it does not give us are the end
points of the edges. However, for a scene to be consistent all areas must be of constant intensity
and bound by straight edges. Hence it should be possible for an algorithm to be devised which
generates the end points of all the edges given the image, the slopes and positions of all the edges,
and the grey values either side of each edge; all of which can be derived from the above methods
and equations. Such an algorithm has not been developed, it is left for future work. Some idea of
how if could operate is given below:

Every edge’s edge pixels are rendered assuming that it is the only edge in the image.
The values produced are compared with the values in the image and all correct values
noted as being pixels through which this edge is likely to be the only edge. The pixels at
either end of a run of such edge pixels are likely to contain two or more edges. Such end
pixels can be rendered using all suitable edges in the description. If the correct value is
generated it is likely that the edges used pass through the pixel. Intersections between
edges must be found to render these pixel values and these intersections are likely to
be the ends of lines. When three or more edges pass through a pixel all combinations
of intersections may need to be tried to find the correct one.

Without designing such an algorithm it is impossible to say whether or not any extra restrictions
must be placed on the input intensity surface to allow for exact reconstruction.

6.4.5 Discussion

Whether or not extra restrictions are required, this work shows that there exists a class of two-
dimensional intensity surface which can be exactly reconstructed from their exact-area sampled
images. Apart from the trivial, constant intensity surface, no member of this class can be exactly
reconstructed from its single point sampled image using classical sampling theory.

Such an exact reconstruction would be extremely useful in resampling as it allows the resampling
to produce the best possible resulting image. However, the class of intensity surfaces that can be
exactly reconstructed by this method is extremely limited.

Real images

Several types of real image could potentially be exactly reconstructed by these methods. For
example: printed matter (text and diagrams) and especially cartographic documents (maps) may
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Figure 6.34: Several different types of edge which occur in real images. Only the step and line
edges are adequately modelled in our exact reconstruction process (after Marr [1976] and Horn
[1977]).

meet the requirement for areas of constant intensity separated by sharp edges. The ability to
scan a map into a computer and get an exact digital representation would be extremely useful.
Unfortunately, the nature of the maps (for example line widths of 0.1mm or finer are common-place
[Woodsford, 1988]) means that an extremely high-resolution scan would be required to produce an
image which met our criteria for exact reconstruction. There is the additional problem that the
task does not just involve finding edges, but requires significant intelligence in recognising what
each area of colour and each edge represents (information on the problems involved in digitising
maps may be found in Waters [1984, 1985], Woodsford [1988], Laser-Scan [1989] and Waters,
Meader and Reinecke [1989]).

Real images of real scenes, as opposed to real images of two dimensional ‘flat’ scenes (books, paper,
maps) pose difficulties. A major problem is that the things we humans perceive as edges may bear
little resemblance to the sharp discontinuity used to model an edge in this work. Horn [1977]
discusses edges in real scenes and explains how different edges in real scenes produce different
intensity profiles. He and Marr [1976] classify the different types of edge, some of which are shown
in figure 6.34. Only two of these types match our model of an edge as a discontinuity.

Despite these problems with applying our work to real images, the process developed here pro-
duces interesting theoretical results in that a class of intensity surfaces which cannot be exactly
reconstructed by classical sampling theory can be exactly reconstructed by these methods and
equations.
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(a) (b) (c)

Figure 6.35: Layout of CCD sensors. The solid lines show the receptive area of each pixel’s sensor.
(a) common CCD sensor, (b) advanced CCD sensor, (c) ideal CCD sensor. (After Kuhnert [1989]
fig 3.)

Errors

As in the one-dimensional case, the introduction of errors causes problems. Again, quantisation
error introduces an inaccuracy into the calculated edge parameters, while other errors require
parameter calculations based on probabilities rather than being deterministic as they have been in
the above discussion.

The advantage here over the one-dimensional case is that every line has many edge pixels and
each pair of these can be used to estimate the slope and position of the line (note that not only
adjacent pairs of edge pixels can be used, but any two edge pixels provided we know their types
(I, II, or III) and their relative position). Also the position of all the edge pixels in the pixel grid
gives bounds on the slope and position of the line, because the line has to pass through all of its
edge pixels. Therefore we can expect to be able to generate a fairly accurate approximation from
a noisy image provided that none of the edges are very short.

Other published work

Klassman [1975] considered the case of thick lines. These can be considered as two parallel edges
between which lies a black region and outside which lie two white regions. Klassman’s results
indicated that, even with no errors in the pixel values, there will always be an error in the estimated
position of the line no matter how thick it is. Our process, on the other hand, would be able to
exactly find the position the line provided its width is such that the 4×4 exclusion zone constraint
is satisfied for some point on each edge.

Kuhnert [1989] considers rectangular pixels as used in a CCD device, he gives three types of CCD
cell, shown in figure 6.35. We have been using an ideal CCD-sensor layout (figure 6.35(c)). Kuhnert
uses the advanced layout (figure 6.35(b)). He considers an edge between two areas of constant
intensity but concludes that his model of the sensor does not permit a unique conclusion on the
position and slope of the edge. He says that this is unsurprising given that the original intensity
surface violates the sampling theorem. However, we have seen here that exact reconstruction of
such an intensity surface is possible, given exact-area sampling.

Hyde and Davis [1983] consider a similar situation to ours: a single edge, of finite length, between
two areas of constant intensity. They use two least-squares edge estimation techniques, assuming
some noise in the image. The first step, which they assume is done for them, is to identify the edge
pixels. Then, one technique gives the least-squares edge fitted to the centres of the edge pixels,
that is: no intensity information is utilised. This is similar to the black and white case discussed
in section 6.4.1. The second technique gives a least-squares fit based on the intensity values of the
edge pixels. The sum of the squares of the difference between the true intensity values and the
estimated intensity values, is minimised.

Their conclusion is that the differences between the two techniques are not significant enough to
warrant the use of the second, more costly technique. That is: taking the intensity values into
consideration gives little advantage over simply using the position of all the edge pixels to calculate
the edge’s parameters. Compare this with our method which gives the exact position of an edge,
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Figure 6.36: Kiryati and Bruckstein [1991] use exact-area sampling over abutting circular areas.
The dots are the pixel centres, the circles are the pixel areas. (After Kiryati and Bruckstein [1991]
fig 1.)

Figure 6.37: A case which violates the restrictions of Kiryati and Bruckstein’s [1991] exact recon-
structor.

using grey-level information. However, it must be said that our method does not take noise into
account whilst Hyde and Davis assume a noisy image.

Kitchen and Malin [1989] consider a single, infinitely long, straight edge between areas of intensity
zero and one, which has been exact-area sampled. This study the behaviour of several common edge
operators on this step edge. Their results show that none of these operators gives a particularly
good approximation to the correct orientation or position of the edge. The principle conclusion is
that, even under ideal conditions, the common edge operators are not very accurate.

The most recent piece of research is that of Kiryati and Bruckstein [1991]. They consider a similar
situation to ours, except that they use exact-area sampling in abutting circular pixels, as shown in
figure 6.36. Their work is detailed and they show that, given an intensity surface which obeys
certain restrictions, an exact reconstruction can be made from its circular exact-area sampled
image. This again shows that classical sampling theory is not the final arbiter of which intensity
surfaces can be exactly reconstructed from their images and which cannot. One interesting point is
that Kiryati and Bruckstein’s restrictions exclude intensity surfaces like that shown in figure 6.37.
Provided the six edges in this intensity surface are long enough that each has a point surrounded
by a 4 × 4 zone excluding all the other edges, there seems no reason why the algorithms outlined
in this chapter could not exactly reconstruct this image.

6.4.6 Extensions

Three possible extensions to the described reconstructor are:

1. To make it more useful this algorithm could be altered to recognise sharp edges between
areas of slowly varying intensity. Then exact reconstruction could be used at the edges and
some local reconstructor in the slowly varying parts. Cumani, Grattoni and Guiducci [1991]
have tried a similar idea for image coding: exactly storing the image near sharp edges and
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storing very little information in the slowly varying areas between regions. Such an idea
could be tried with resampling where the intensity surface in the slowly varying regions is
reconstructed differently to that near the edges.

2. A straight edge can be represented by two parameters. A circle by three. An extension could
be made to find a circle’s parameters from three pixel values on the circle’s edge. Preliminary
results show that the algebra involved in these computations is considerably more involved
than that for straight edges.

3. Two problems with images that have been enlarged using good NAPK reconstructors are:
(1) the straight edges become blurry; and (2) textured areas do not reveal any finer texture
(for example, enlarging a tree produces a blurry tree, you do not see more of the tree’s
structure). Kajiya and Kay [1989] call this effect ‘the painter’s illusion’. The image gives the
impression that more detail is there at the sub-pixel level than is actually present. When the
image is enlarged this lack of fine detail becomes readily apparent. The work in this section
has attempted to solve the first of the two problems. An extension would be to tackle the
second: how to reconstruct, or resample, a textured region so that the resampled image is
visually acceptable.

6.5 Summary

We have seen that, given knowledge about how an image was sampled, a better reconstructed
intensity surface can be generated. The bulk of this chapter dealt with sharp edge reconstruction.
We have proven that, for a certain set of one-dimensional intensity curves, exact reconstruction is
possible from the exact area sampled image of an intensity curve in the set. We have also given
strong evidence that a similar result holds in two dimensions.

The significance of this result is two-fold. Firstly, it shows that classical sampling theory is not
the final word on which intensity surfaces can be exactly reconstructed from images. Secondly,
it indicates that a good reconstruction of this particular class of real intensity surface may be
possible.



Chapter 7

Transforms & Resamplers

In this chapter we draw together the threads of reconstruction, sampling, and transformation. We
discuss the overall resampler, the measurement of quality, and some points about transforms in
general.

The transform is at the heart of the resampling. The other two sub-processes can be considered
as simply format converters (chapter 1) allowing the transform to be performed in the continuous
domain, where it is simple, rather than in the discrete domain, where it is complicated. In general
the transform moves intensity information around but neither loses nor adds any information.
Reconstruction and sampling, on the other hand, tend to be lossy operations.

Thus, it is the choice of reconstructor and sampler which determines the quality of the overall
resampler. These should therefore be the best possible, regardless of the transform. For certain
classes of images there are perfect reconstruction and sampling processes, but, for the average
image, such perfect processes do not exist. So we must content ourselves with the best imperfect
resampler that we can implement.

Before we continue we need to note that, in chapter 1, a resampler consisted of a specific recon-
structor, transform, and sampler. Often however, we will wish to discuss the same reconstructor
and sampler coupled with many different transforms, or some class of transforms. In these cases
we still speak of a resampler but it is one in which the transform can be any of a set of transforms
or sometimes any transform at all, whilst the reconstructor and sampler remain fixed.

7.1 Practical resamplers

In general the better the reconstructor or sampler, the more difficult it is to implement and so we
need to trade off between a good reconstructor or sampler and an easily implemented one. We need
to make as many simplifications as possible, with the least effect on quality in order to produce a
quick, practical, and good resampler.

For certain transforms it transpires that changing the reconstructor or changing the sampler makes
little difference on the overall result of the resampling, while changing the other can make a great
difference. Heckbert [1989, pp.51–52] shows that, for large magnifications, the reconstruction
method dominates the resampler and the sampler is irrelevant, so it may as well be a single point
sampler for simplicity. He also shows that for large minification the sampling method dominates,
and the reconstructor is irrelevant. In this case we can use a simple reconstructor with much the
same effect as a complex one.

For a resampler which may have to cope with both large magnifications and large minifications,
we require either a good reconstructor and a good sampler, or some sort of combination where a
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switch is made from a good magnification resampler to a good minification resampler as the scale
factor passes through one [Heckbert, 1989, p.52].

Near a scale factor of one, the evidence indicates that changing the sampler makes little or no
difference to the quality of the resampled image1, and that there is little to choose between the
quality offered by the better reconstructors. With a magnification factor near one, reconstruction
by nearest-neighbour produces noticeable artifacts and reconstruction by linear interpolation often
gives a blurry result, but other methods produce few, if any artifacts (see section 7.3.2 which
discusses the effect of reconstructors at large scale factors compared with their effect at a scale
factor of one). Therefore, good samplers are required for minification, and good reconstructors
required for same-scale operations and magnification.

7.1.1 Restricted resamplers

While theoretical resamplers can be applied to any transform, a practical resampling method may
only be applicable to a limited set of transforms. A resampler employing point sampling can be
used with any invertible transform provided that the reconstructor can give the value of the original
intensity surface at an arbitrary point. An invertible transform here is one for which any output
point can be mapped, by the computer program, to a point in the input intensity surface. Many
transforms are covered by this restriction. Those which are not can be closely approximated by
transforms which are.

Practical resamplers which employ area sampling tend to be more restricted in the types of trans-
forms they can be used with. This restriction is due to their implementation, discussed in sec-
tion 1.8.2. Greene and Heckbert [1986], for example, consider a resampler composed of a Gaussian
reconstructor and a Gaussian area sampler. This resampler only works with affine transforms.
However, a local affine approximation to the true transform can be used, allowing the recon-
structor to approximate the correct results for a wide range of transforms. Other area sampling
resamplers give a transform-dependent approximation to a transform-independent sampler. Such
resamplers include those developed by Crow [1984], Glassner [1986], and Fournier and Fiume [1988].
Their starting point in algorithm development is a transform-independent area sampler. The final
algorithm has a transform-dependent area sampler in order to be practical.

Williams [1983] has an interesting approach to approximating a nearest-neighbour reconstruc-
tion/exact area sampling resampler. If we look at his entry in appendix A, we see that his method
is equivalent to point sampling off a three-dimensional reconstructed volume. The first two dimen-
sions are the usual spatial coordinates whilst the third dimension, d, is related to the size of the
output pixel projected back onto original image space. The volume is created by first minifying
the image several times (by a nearest-neighbour reconstruction/exact area sampling resampler) to
generate an image pyramid. Each image in the pyramid is then reconstructed by linear interpo-
lation and the whole volume filled in by linear interpolation between the intensity planes in the
pyramid (figure 7.1).

7.1.2 Resampler equivalences

The implementation of an area sampler, described in section 1.8.2, is possible because of the equiv-
alence of two different decompositions. In general, any resampler can be decomposed in many
different ways; the transform remaining the same but the reconstructor and sampler being dif-
ferent. As an example, consider a resampler consisting of nearest-neighbour reconstruction, a

1The evidence, indicating this result for samplers, is in the papers which discuss resampling for geometric cor-
rection of images. Such correction does not require large scale changes and none of these papers discuss any form
of sampling other than single point. Our own observations indicate that an exact area sampler makes no appre-
ciable difference in near-same scale transforms, compared with single point sampling, unless a nearest-neighbour
reconstructor is used.
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Figure 7.1: Williams’ [1983] reconstructor. An image pyramid is formed by nearest-
neighbour/exact area scaling by a factor of two, several times. Each level of the pyramid is then
enlarged by linear interpolation, and then the third dimension is filled in by linear interpolation
between the resulting intensity surfaces.
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Figure 7.2: Three equivalent decompositions of the same reconstructor: (a) nearest-
neighbour/exact area, (b) linear/single point, and (c) delta-function/triangle filter.

translation, and exact area sampling. This same resampler can be decomposed into linear interpo-
lation and single point sampling; or into Dirac delta function reconstruction and triangle filtered
area sampling. These three decompositions are illustrated in figure 7.2, for one dimensional sig-
nals. If we now change the transform, these three decompositions are no longer equivalent. For
example: take a resampler with nearest-neighbour reconstruction, scaling transform, and exact
area sampling. Its equivalent decomposition with point sampling is shown in figure 7.3. The re-
constructor depends on the scale of the transform. This equivalence can lead to confusion. Durand
and Faguy [1990] for example, mistakenly equate scaling using nearest-neighbour reconstruction
and exact area sampling with scaling using linear intepolation and single point sampling, when
this equivalence is only correct for a scale factor of one.

For a general transform using transform-independent reconstruction and area sampling, the equiva-
lent decomposition with single point sampling will have a reconstructor that is transform-dependent.
We hypothesise that, given a transform-independent reconstructor, an arbitrary transform, and a
transform-independent sampler, any equivalent resampler will have a transform-dependent recon-
structor and/or a transform-dependent sampler. This hypothesis shows why area sampling resam-
plers are so much more difficult to implement than point sampling ones. It is because, in the method
of section 1.8.2, the area sampler has to be converted to a point sampler to be implementable, and
so the reconstructor in the equivalent point sampling resampler is transform-dependent, and hence
difficult to implement.

7.2 Transform dimensionality

Resampling has been applied to one-, two-, and three-dimensional images. One use of resampling
is in texture mapping where a two-dimensional image is mapped onto a three-dimensional surface
which is then projected onto a two-dimensional plane, giving an overall 2D to 2D transform. Image
warping and rectification are also generally 2D to 2D transforms.

For any dimensionality the theory is much the same. However, resamplings where a many di-
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Figure 7.3: Two equivalent decompositions of the same reconstructor: (a) nearest-neighbour/exact
area, (b) a transform-dependent reconstructor combined with point sampling. A third decomposi-
tion could be generated with delta-function reconstruction and a transform-dependent sampler.
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Figure 7.4: A shear transform, with nearest-neighbour reconstruction and exact area sampling.
(a) The 2D resampling; (b) the 11

2D resampling process for a single scanline.

mensional transform is split into two or more one-dimensional passes are a special case (see sec-
tion 1.7.5). There are two types of one-dimensional resampling used in such multipass algorithms
on two-dimensional images. We have choosen to call these 1D resampling and 11

2D resampling.

In 1D resampling each scan-line is treated as a one-dimensional resampling problem. That is: the
scan-line has length but not breadth [Euclid, 300BC]. It is thus easy to use the one-dimensional
theory to develop resamplers for this case. In 11

2D resampling each scan-line is considered to be one
pixel wide, and the transform applied to it does not necessarily have to be the same across the entire
width of the line, it is thus a restricted two-dimensional resampling. An example of 11

2D resampling
is given by Paeth [1990], where he implements rotation as three shears. Each shear is implemented
as a one-dimensional resampling on each row or column of the image (figure 7.4). Paeth takes
this exact 1 1

2D resampling and approximates it by a 1D nearest-neighbour reconstruction/exact
area sampling resampler.

This idea can be extended to, for example, three dimensions. With one-dimensional resampling,
in 3D, we can either have a breadth-less 1D resampling, or a volume with cross-section of size a
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Figure 7.5: The reconstruction process we want to evaluate is on the left, we would like to view
the intensity surface that it produces. The other three processes are needed for us to be able to
view an approximation to the reconstructed intensity surface on a physical display device.

pixel width by a pixel width. This could be called 12
3D resampling.

7.3 Evaluation of reconstructors and resamplers

In chapter 3 we said that reconstructors are evaluated either on their visual results or on their
mathematical properties. But how do we visually evaluate a reconstructor? It produces an intensity
surface which cannot be represented inside the computer and cannot be displayed directly unless a
piece of hardware is built which takes the discrete image as input and produces the reconstructed
intensity surface in a form that can be viewed directly by the eye. In general, such a piece of
hardware would be impossible, or at best, expensive and difficult to build.

The usual way to visually assess reconstructors is to resample an image using the appropriate
reconstructor, a magnification, and single point sampling, and then display this much larger image
on an ordinary CRT [Andrews and Patterson, 1976; Schreiber and Troxel, 1985; Mitchell and
Netravali, 1988; Wolberg, 1990; Boult and Wolberg, 1992]. The process involved is shown in
figure 7.5. The intensity surface we are evaluating is therefore not the intensity surface which we
view, but is separated from it by a sampling and another (probably dissimilar) reconstruction.

How valid are the results of this type of evaluation? We can conclude that they are adequate if
the effects of the sampling and the display reconstruction are small compared to the effects of the
reconstructor we are studying. Such a situation will arise under a significant magnification of the
intensity surface and when the displayed intensity surface is viewed from sufficient distance that
the display’s reconstruction effects are not noticeable (see the discussion in section 7.3.1 on the
effect of viewing distance on the perceived intensity surface).

The former point about significant magnification is justified because of two results of insufficient
magnification. The first is that, under low magnification, the sampling significantly affects the
result. For small magnification the combination of a reconstructor and sampler can produce very
different results to those expected from considering the reconstructor alone. This happens because
the combination of reconstructor and sampler generate a discrete reconstructor with different
properties to the continuous one. The solution is to either magnify by a large factor (for example:
×8), which ameliorates this problem; or to magnify by an irrational factor (for example: ×e or
×π), which randomly distributes errors across the magnified image rather than producing a regular
error pattern. The latter solution is not preferred because the error is still there, it is just not as
obvious because it is random [Cook, 1986].

The second reason for using a large magnification factor is so that the reconstruction filter is large
compared to the display reconstruction filter. This means that the display reconstruction filter
has little effect on the overall filter, and so what we see is very similar to the reconstruction filter
which we are trying to evaluate. If we assume that the display reconstructs using a typical Gaussian
convolved with a box filter2, then the overall reconstruction filter viewed is shown in figure 7.6 for
various magnification factors of a linear interpolant.

Thus, for our results to be valid we need large magnification. A factor of four is the minimum

2the box filter is the nearest-neighbour reconstruction used in most display drivers, and the Gaussian is the blur
caused by the phosphor spot on a CRTs surface.
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Figure 7.6: The effect of magnification factor on displaying a reconstructors results. On the left is
the linear interpolation filter, (a), whose effects we are trying to view. After sampling this becomes
(b) for magnification by 2, (c) for magnification by 4, and (d) for magnification by 8. Reconstruction
by the display’s Gaussian∗box reconstructor gives an overall reconstructor shown in (e), (f) and
(g). As the magnification factor increases, so the overall reconstructor better approximates (a),
the reconstructor we are trying to evaluate.

that will be useful, eight is better. Andrews and Patterson [1976] used a factor of 16, which is the
largest factor recorded in the literature.

Whilst useful for evaluating reconstructors, enlargement of this nature is not a particularly useful
function of resampling. By enlarging a function to, say, four times its size in both dimensions, we are
basically using the original as a compressed version of the resampled image. It is possible to achieve
much higher quality reproduction, using the same number of bits of information, by using a better
compression method than sampling at one quarter of the frequency and reproducing the original by
resampling. However, Reed, Algazi, Ford and Hussain [1992] have used such resampling as part of
a more complex compression method. First, the image is subsampled at an eighth the resolution in
each dimension, and this minified image encoded and transmitted. Secondly the difference between
the original image and this small image enlarged by cubic interpolation is quantised, encoded and
transmitted. At the receiver, the minified image is decoded and enlarged by the same resampling
method, and the difference image is decoded and added back to the enlarged image.

Resampling cannot create extra information. So reconstruction is the process of arranging the
available information in the best possible way. By enlarging an image we stretch the available
information over a wide area and the artifacts of the reconstruction method become readily ap-
parent. This is why we use enlargement to subjectively study reconstruction methods, it is a way
of getting a handle on what the reconstructed surface actually looks like. However, in practical
applications, it is desirable to have as much information as possible available. Thus, if we know
beforehand the range to which we may have to transform our original image, then we should ensure
that the original contains as many, if not more, samples than the final image will require. This
ensures that we will be discarding information rather than having to ‘fill in the gaps’, and thus
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our final image will contain the maximum amount of information possible. This is a tall order
because often we do not know what transformations will have to be performed on an image when
it is captured. However, if the choice exists between recapturing the image at higher resolution or
resampling it to higher resolution, then recapturing it is by far more preferable from the point of
view of image quality.

It is interesting to consider an application where the size of the final image is roughly known
before the original is captured. Venot et al [1988] and Herbin et al [1989] describe a system for the
registration of medical images. The normal process is that two or more images are captured over
the period of treatment and registered with one another to track the progress of healing. The first
image to be captured is the standard. Subsequent images are then taken over a period of weeks
and are registered against the standard. Venot et al [1988, p.300] give their default range of scale
factors to be 0.8 to 1.2. This implies that they expect subsequent images to be at roughly the same
scale as the first. This is a sensible assumption: too much larger than the original and excessive
processing would be required to reduce it down to size and, more importantly, with a fixed size
image some of the necessary parts of the second image could be lost off the edges (for example: the
edge of a region of scar tissue could fall outside the image’s edge). Much smaller than the original
and there would be insufficient detail in the second image, it would need to be enlarged too much,
and of course no extra information would be available.

Our recommendation is that, ideally, the second image should be a little larger than the first to
allow for some information loss during the resampling process. Some information is bound to be
lost in this process, so having more than enough to start with will partly compensate for the quality
degradation due to the resampling.

7.3.1 Display artifacts

Now, consider the effect of the display reconstructor on the resampled image. Pavlidis [1990]
and Blinn [1989b] both say that it is the display reconstructor which causes at least some of the
rastering effects in the continuous intensity surfaces that we view. This is certainly true. Pavlidis
[1990] suggests that we could improve the performance of our graphics displays by using a better
reconstructor between the digital image and the displayed intensity surface. Such an idea merits
consideration, but there are two factors which may make it impractical or unnecessary.

The first is that this idea cannot be implemented easily with CRT technology. A better recon-
structor than the box convolved with a Gaussian that is currently used could be designed for
reconstruction along a raster scan line, by altering the digital to analogue converter used to drive
the CRT. But it is difficult to see how it could be made to work between scan lines, because the
reconstruction method in this direction is inherent in the CRT and cannot be altered by changing
the process which drives the display. Perhaps extra scan lines could be used between the true ones?

The second is that, regardless of the reconstruction method, from a great enough distance, the
reconstructed image looks the same. Using nearest-neighbour, linear, Catmull-Rom and FFT
reconstruction we found that the four magnified versions were indistinguishable when a single
pixel subtended a visual angle of less than about 2 minutes. Thus, provided the CRT is always
viewed from at least this distance (50–60cm for a typical display), rastering effects caused by the
display should be undetectable. As we cannot guarantee that the display will always be viewed
from at least this distance, there is value in Pavlidis’ suggestion, although it may require non-CRT
display technology to implement.

As to worries about evaluating resampled images on an imperfect display device: (1), the image
will always have to be displayed somehow, so that it may be a good thing to evaluate it on a typical
display; (2), if we are worried about it, we can enlarge the image using any reconstructor we think
desirable, and then view the image on the display from a much greater distance, ameliorating the
effects of the display reconstructor, as discussed earlier.
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Figure 7.7: Two images rotated by 5◦ using four reconstructors and single point sampling. In both
cases: top left: nearest-neighbour; top right: linear interpolation; bottom left: Catmull-Rom cubic
interpolation; bottom right: FFT interpolation.

7.3.2 Judging a resampler by its reconstructor’s quality

Resamplers are evaluated visually by examining the displayed resampled image and comparing
it with the displayed original image (as in figure 1.8). They are evaluated mathematically by
comparing the original and resampled images in some way, or by considering the mathematical
features of the whole resampler.

Resamplers are often evaluated by considering only their reconstructors and assuming that the
quality of the resampler depends solely on the quality of the reconstructor. We have already seen
that this is not necessarily a valid assumption.

One practical example of this error of reasoning, occurred in the following situation. Four recon-
struction methods, nearest-neighbour, linear, Catmull-Rom and an FFT method, were used with
single point sampling. Three different transformations were used: magnification by a factor of four,
and rotation by five and forty-five degrees. The first transformation is a standard way of assessing
the quality of different reconstructors [Mitchell and Netravali, 1988; Andrews and Patterson, 1976].
The results from the magnification (figures 7.9 and 7.10) indicated that the FFT method is inferior
to the Catmull-Rom method. The nearest-neighbour and linear methods are inferior also3.

The results from the rotation by 5 degrees (figure 7.7) however, indicate that the FFT method is
as good as the Catmull-Rom method. The nearest-neighbour and linear methods are still inferior4.

However, when rotating by forty-five degrees, all four methods produce virtually identical results
(figure 7.8). The trained eye can pick up some blurriness in the linear version and some minor
defects in the nearest-neighbour version but these are almost negligible.

The point here is that a resampling method cannot be judged on its reconstructor alone, as some
are wont to do, but rather on the reconstructor, transform, and sampler. Here we see that recon-
structors of widely differing quality can produce resamplers of similar quality because the transform
and sampler are such that the differences in reconstructor quality are negligible in the overall re-
sampler. Obviously, from this, there are situations where a low quality reconstructor will be just
as effective as a high quality one. The best example of this is in minification, where the quality of

3The main problems with the reconstructors are: blockiness (nearest-neighbour), blur (linear) and ringing (FFT).

4Nearest-neighbour produces a lot of obvious ‘jaggies’, linear produces a slightly blurry image.
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Figure 7.8: Two images rotated by 45◦ using four reconstructors and single point sampling. In
both cases: top left: nearest-neighbour; top right: linear interpolation; bottom left: Catmull-Rom
cubic interpolation; bottom right: FFT interpolation.

the sampler is important, and the quality of the reconstructor is practically irrelevant.

7.3.3 Artifacts in resampled images

Mitchell and Netravali [1988] consider several artifacts which can occur in a resampled image:
sample frequency ripple, anisotropic effects, ringing, blurring, and aliasing. If we are comparing
different type of resampler, (for example: linear against cubic against FFT reconstructors), rather
than searching for, say, the best cubic reconstructor, then we can assume that the first two problems
have been designed out of the resampler. These two tend to be easy to remove early on in resampler
design. If they do occur, the solution is to use a better reconstructor. This leaves us with several
artifacts which may occur in an image, Mitchell and Netravali’s latter three plus an additional few.
They all have their causes and most can be corrected for:

• Aliasing — caused by bad sampling. May be corrected by sampling well, or may be desirable
in certain cases (for example: the exact reconstruction method in chapter 6 required an
aliased image as input).

• Ringing — caused by a combination of aliasing and near ‘perfect’ reconstruction. May be
corrected by using a less than perfect reconstructor (for example: Catmull-Rom cubic, rather
than sinc) or by not using aliased images. May also be caused by a well sampled image and
near perfect reconstruction giving a result that is exactly correct, but which we conceive to
be very wrong (see section 2.7).

• Rastering — an artifact caused by bad reconstruction. Most noticeable with nearest-neighbour
reconstruction where it produces the well-known ‘jaggy’ effect (for example, figure 7.10(top
left)). The solution is to use a better reconstructor.

• Blurring — caused by certain types of reconstruction. Notably, all strictly positive recon-
structors produce blurred results. The solution is to use a reconstructor with negative lobes,
or an exact reconstructor, as in chapter 6. The former solution can lead to negative inten-
sities. There is a trade-off here, between removing blur and wanting to be certain of always
having positive intensities.
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Figure 7.9: A checkerboard image enlarged fourfold using four reconstructors and single point
sampling. Top left: nearest-neighbour; top right: linear interpolation; bottom left: Catmull-Rom
cubic interpolation; bottom right: FFT interpolation. For this particular image the nearest-
neighbour method gives an exact reconstruction, an unusual occurrence.
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Figure 7.10: A captured image enlarged fourfold using four reconstructors and single point sam-
pling. Top left: nearest-neighbour; top right: linear interpolation; bottom left: Catmull-Rom cubic
interpolation; bottom right: FFT interpolation.
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• Missing detail — this was mentioned at the end of chapter 6. It occurs when a textured
region is enlarged and no extra detail becomes apparent. There is no obvious solution to this
problem.

• Blurry edges — occur, under magnification, even with good reconstructor. They are due to
a lack of information about edge position. One solution to this was developed in chapter 6.

These last two artifacts are due to the original image being a representation at a specific scale of an
intensity surface. Magnifying the image reveals the lack of underlying detail in this representation.
(‘the painter’s illusion’ [Kajiya and Kay, 1989]). There are certain methods which try to produce
underlying detail. One is the exact reconstructor of chapter 6 which can reconstruct straight edges.
Another is the fractal compression technique [Sloan, 1992] which represents an image as a set of
fractal definitions. This allows an image to be magnified and produce finer detail than was in the
original. There is of course, no guarantee that this fine detail will be accurate. In general, we
cannot access any underlying detail and so must content ourselves with the information that exists
in the original image.

7.3.4 Quality measures

One very useful tool in the evaluation of resamplers would be a single number which could be
calculated from an image, or images, which would indicate the quality of the resampling. For
example, say we had a quality measure which we could apply to a single image. When we generate
several resampled images from the same original, using the same transform but different resamplers,
we could calculate this measure for them. Ideally, the measure should order the resampled images
in order of increasing visual quality.

In practice, subjective visual judgements are often used. For example, Mitchell and Netravali
[1988] used subjective visual judgement by experts to assess image quality. Vogt [1986] and Fiume
[1989] both bemoan the lack of a formal measure of goodness, which thus leaves it up to a human
to make arbitrary statements about how good an image is. Vogt especially comments that it is
difficult to compare more than four images at one time without losing judgement.

Pratt [1978] discusses qualitative measures of image quality. He says that they are desirable
because:

• they form a basis for the design and evaluation of imaging systems;

• they eliminate the cumbersome, and often inaccurate efforts of image rating by human ob-
servers;

• they can form the framework for the optimisation of image processing systems.

He goes on to comment that, unfortunately, developing such quantitative measures is tricky and
that, while much progress has been made, the measures that have been developed are not per-
fect. Counter-examples can often be generated that possess a high quality rating but that are
subjectively poor in quality and vice-versa. He claims that the key to the formulation of better
image quality measures is a better understanding of the human visual system. At the present time,
Pratt states that the most common and reliable judgement of image quality is subjective rating
by human observers.

Nagioff [1991] discussed the problem for comparing image compression techniques. She concluded
that the best way of judging image quality, to date, is root mean square difference between com-
pressed and original versions combined with visual inspection, but that neither on its own is a
sufficiently good quality measure.

The image quality measures that have been developed, can be divided into two classes [Pratt,
1978]:
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• bivariate — a numerical comparison between two images;

• univariate — a numerical rating assigned to a single image based upon measurements on
that image.

Many bivariate measures have been used. One such is the root mean square difference. In image
resampling we are faced with the problem that we cannot use difference measures of this type
because the original and resampled images are not aligned. A solution to this problem is to resample
the image and then resample the resampled image to realign it with the original. Hammerin and
Danielsson [1991] and Parker et al [1983] do this to get mean square differences for rotated images.
The argument here is that the degradation in both rotations is roughly the same and so the mean
square difference is a valid measure of the quality of a single rotation.

Unfortunately, this argument fails when the transform involves a scale change. Magnifying an image
and reducing an image are very different operations and an algorithm that is good at one can be
hopeless at the other. For example, we performed an experiment in which an image was magnified
and reduced, and the root mean square difference between the original and the doubly resampled
image calculated. This was done for a range of magnifications and a number of resamplers. The
results are shown in appendix C. The worst resampler (nearest-neighbour reconstruction/single
point sampling) performed the best in this test because it allows the original image to be exactly
reproduced for any magnification factor greater than one, yet it produces the worst magnified
image. The better resamplers produced worse numerical results on this test, but better visual
results in the magnified images. Thus the root mean square difference between an image and its
doubly resampled version is not a good measure of quality for transforms involving any sort of
scale change.

What is required is a univariate quality measure, one which can be calculated for a single image.
Such a measure is likely to be very hard to find. Pratt [1978 pp.175-176] only gives one true
univariate measure, the ‘equivalent rectangular passband measure’, and he says that this has not
proven to be well correlated with subjective testing. One possible candidate is the mean intensity
level. However, this should be constant for all images resampled from the same source, and so is
unlikely to be a good discriminator between resamplers.

Oakley and Cunningham [1990, p.191] claim that their accuracy metric is closely related to the
visual quality of the results. They propose to present a future paper discussing the relationship
between the theoretical and visual performance of the optimal reconstruction filter generated using
this accuracy metric.

To give some idea of the relative merits of various possible measures, we performed experiments,
comparing five different quality measures, on six different images, using four different resamplers,
over a range of rotations from zero to forty-five degrees.

The first quality measure was root mean square difference between a doubly rotated image and the
original; it is a valid measure here because there is no scale change in the transform. The other
four were calculated from the central portion of a single, resampled image. These were determined
as follows:

Three were measures of image entropy. One was the entropy itself, defined as:

H = −
N−1∑
i=0

pilnpi

where pi is the probability that a pixel will have intensity i and N is the number of intensity levels.

Entropy was chosen because it is often proposed as a measure of the amount of information in
an image. It is debatable how well this information measure relates to image quality. What it
does measure is the minimum number of bits per pixel required to encode the image, with no
relationships between adjacent pixels taken into consideration.
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Figure 7.11: The six images used in the quality measure experiment. See text for a description of
the images.

The other two entropy measures do take adjacent pixel values into consideration. One of these was
the entropy of the differences between a pixel’s intensity and each of its four-connected neighbours’
intensities. This we termed the ‘difference entropy’. The third entropy measure was second order
entropy which uses the probability that a pixel will be a certain intensity given the intensity of
one of its four-connected neighbours.

The hypothesis in choosing these measures is that it is not so much the absolute intensity of each
pixel that is important in image quality, but the relative intensities; the eye being more sensitive
to intensity differences (for example: edges), than to absolute intensities.

The fifth potential quality measure that was tested was developed based on the same hypothesis.
The concept behind this is to take the weighted root mean square of the difference between each
pixel and every other pixel:

I =

√√√√√√√√
∑

i

∑
j �=i

(fi − fj)2 × wi,j

∑
i

∑
j �=i

wi,j

The weights, wi,j , were set to be the inverse square of the distance between the two pixels. The
measure we actually implemented in our experiment is an approximation to this, which considers
only a pixel’s eight-connected neighbours. A low value of this measure should indicate a smooth
image and a high value a heavily corrugated one.

Figure 7.11 shows the six images used in the experiment. Images 1 and 6 have only two intensity
levels (a dark and a light grey, not black and white) and hence very low entropies. Images 2
and 3 are extracts from natural images, one of a log cabin and one of a woman with some party
decorations in the background. Image 4 is extracted from a piece of computer art with many grey
levels and some patterned areas. Image 5 is a computer generated sine wave, sampled very close
to its Nyquist limit. It is thus a pathological case for which we would expect any resampler to fail
except one using sinc reconstruction.

Four resamplers were tested, all using single point sampling. The reconstructors involved were
nearest-neighbour, linear interpolation, Catmull-Rom cubic interpolation, and FFT/Catmull-Rom
interpolation, which approximates sinc reconstruction. The results of the experiments are graphed
in appendix C.
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The visual evidence indicates that the Catmull-Rom and FFT methods give similar results, both
producing acceptable resampled (rotated) images, the linear interpolant often gives blurry results
and the nearest-neighbour gives results which usually contain obvious jaggy artifacts, most notice-
able along edges.
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Analysis of the results in appendix C gives some interesting information about these resamplers
and the images they produce:

1. Apart from pathological image 5, the RMS difference between original and doubly resampled
images remains almost constant for the linear, Catmull-Rom, and FFT methods for all images
at all rotation angles. This indicates that there is something inherent in these methods which
causes the differences, rather than an angle-dependent factor. For nearest-neighbour the RMS
difference climbs as the angle increases. This indicates that, as the angle increases, more and
more pixels are being lost or moved to the wrong location by this method.

2. The nearest-neighbour method preserves all the entropy measures, some extremely precisely,
even in cases where the other methods produce widely different values. This is presumably
due to the fact that nearest-neighbour does not produce any new (interpolated) pixel values,
merely moves the old ones to new locations, and adjacent pixels in the original image usually
remain adjacent in the resampled image.

3. The other three methods increase the entropy of the image. Image 1 is an interesting case
here. In order to produce a visually acceptable resampled image, the resamplers produce an
image with far more entropy than the original. The Catmull-Rom and FFT methods depend
on the side lobe sharpening effect to produce sharp edges, requiring a far larger range of pixel
values than the original which simply had sharp edges. Two very different ways of producing
the same visual result.

This data implies that more ‘information’ is required to represent a resampled image than
is required to represent the original. This is not an intuitive result as no resampling process
can increase the amount of real information in an image, in fact they tend to lose informa-
tion. This data could thus mean that a resampler compensates for this lost information by
producing an image which generates the correct visual stimulus in a more complex way than
the original.

4. The other two entropy measures also increase with the linear, Catmull-Rom, and FFT meth-
ods. The exceptions to this are the two natural images (2 and 3) with linear interpolation,
where the entropy reduces. This may be due to linear interpolation’s tendency to blur
(smooth) an image, reducing the differences between adjacent pixels, but, if this is so, why
is the same effect not apparent in the artificial images?

5. Of all the entropy measures, the FFT result is always higher than the linear result except
in the case of image 5’s second order entropy and the Catmull-Rom result is higher than
linear in all but image 3’s entropy, where they are the same. The FFT and Catmull-Rom
methods are not as consistently ordered: in images 2, 3, 4 and 6 the FFT value is always
higher than Catmull-Rom’s. In images 1 and 5 it is not. Quite how this relates to subjective
image quality has yet to be tested. We suspect that there is a relation but a probabilistic
rather than a consistent one.

6. The final ‘smoothness’ measure gives interesting insights. The nearest-neighbour method
produces a less smooth (higher value) or similarly smooth image to the original. Linear and
Catmull-Rom give smoother images, perhaps indicating that they blur the original in the re-
sampling. Linear consistently produces a smoother image than Catmull-Rom. Catmull-Rom,
in turn, consistently produces a smoother image than the FFT method. The most surprising
result is that the FFT method gives almost exactly the same value for the resampled image as
for the original in three of the six images. The consistent ordering provided by this measure,
except for the nearest neighbour case, gives some hope that it may be a step toward a useful
quality measure. Further work is required to confirm or contradict this view.

While these results are interesting, they have not given us a conclusive quality measure. It may
yet prove possible to find a good univariate measure.
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7.4 Summary

In a resampler, it is the reconstructor and sampler which cause degradation in the image. For
transforms which minify the image, good sampling is required; for transforms which magnify,
good reconstruction is required; and for same-scale transforms, the quality of both reconstructor
and sampler have little effect on the overall quality of the resampler, except that skeleton, delta
function, or nearest-neighbour reconstruction cause obvious degradation.

If the required transform is known before the original image is captured, then it should be captured
slightly larger than the final image will be in order to ensure that no magnification is required.
This will maximise the information in the resampled image.

When subjectively evaluating visual reconstructor quality, the image should be magnified using
that reconstructor, before displaying it on a display device. This minimises the effect of the sampler
and the display on the displayed intensity surface.

Subjective image quality is difficult to evaluate mathematically, especially as a univariate measure
is required for measurements on any resampler which involves a scale change. We experimented
with four univariate measures, and commented on our results. However, we could draw no defi-
nite conclusions. Further work is required on these measures, especially on the last ‘smoothness’
measure, in order to discover their true utility.



Chapter 8

Summary & Conclusions

We have examined many facets of digital image resampling, concentrating on the reconstruction
sub-process. In this final chapter we summarise the main results and conclusions, briefly mention
other results, and end with three suggestions for future research.

8.1 Major results

In the area of piecewise local polynomials we have shown that zero-phase, piecewise local quadratics
can be derived. Of the two that we did derive, one gives practically identical visual quality to the
Catmull-Rom cubic interpolant, which is the best all-round piecewise local cubic interpolant. This
quadratic can be evaluated in about 60% of the time of the cubic, giving a significant time saving
in situations where we require the Catmull-Rom’s visual quality.

Moving to non-local reconstructors, we have derived the kernels of the interpolating cubic B-spline
and interpolating Bezier cubics, and shown them to be the same. This kernel has allowed us
to create an efficient way of extending the one-dimensional cubic B-spline to a two-dimensional
reconstructor.

For edge extension, we concluded that replication or windowed extrapolation are the best meth-
ods, with constant extension the fastest. With sinc reconstruction: constant edge extension, or
windowed extrapolation, are the only practicable edge extension methods, giving an O(N4) re-
sampling time for an N × N image. However, FFT reconstruction reduces this to O(N2 log N),
with replication edge extension. We have provided solutions to two major problems with FFT
reconstruction: (1) Edge effects, for which four solutions were presented. The fourth, DCT re-
construction, uses reflection edge extension and paves the way for us to show when and how a
general transform can be used for image reconstruction. (2) Time and storage requirements, for
which a tiling solution was developed. The tiled version greatly reduces the memory required for
performing the transform, and, when the untiled version must be executed using virtual memory,
the tiled version can reduce the time requirement as well. The fact that the tiled version gives
very similar visual results to the untiled version gives weight to the hypothesis that local, rather
than global information is important in image reconstruction.

In a priori knowledge reconstruction, we considered one particular set of one-dimensional intensity
curves, coupled with one particular type of sampling. Here we proved that, given certain conditions
on the original intensity curve, it can be exactly reconstructed from its exact area samples. These
intensity curves cannot be exactly reconstructed using classical sampling theory. For the two-
dimensional case the evidence strongly suggests that a similar proof can be found.

Finally, drawing the strands together, we show that the quality of the resampler is not dependent
solely on the quality of its reconstructor, but on all three sub-processes. We have performed
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some experimental work on measuring the quality of an image, which is a step in the search for a
univariate quality measure for images.

8.2 Other results

An analysis of the factors involved in designing piecewise local polynomials has been given, showing
that it is very difficult to include all of the desirable factors in a single piecewise local polynomial
reconstructor.

An analysis of several infinite reconstructors has shown that all decay exponentially, except sinc,
allowing them to be truncated locally with negligible loss of quality. Sinc can be windowed locally,
greatly changing its nature, or non-locally, which does not solve the problem of undesirable ripples
being generated near edges in non-bandlimited images. We have proven the result that no finite
image can be bandlimited.

The three-part decomposition developed in chapter 1 has underpinned all of the other work in this
dissertation. We believe it has shown its utility throughout all this work.

8.3 Future work

We could extend the work on piecewise local polynomials to fifth and higher orders, to ascertain
whether such extension is worthwhile. Our opinion is that there is probably little to gain from
such extension, and that, to achieve better reconstruction, methods other that piecewise local
polynomials must be considered.

The work on the two-dimensional sharp edge reconstructor in section 6.4 has stopped short of a
working implementation. Development of such an implementation, following the outline given in
section 6.4, is a necessary piece of future work.

Finally, more analysis of the quality measures examined in section 7.3.4 is required. Special
attention should be paid to the ‘smoothness’ measure to ascertain its utility.



Appendix A

Literature Analysis

Many resamplers have been considered over the years. This appendix contains a table of the
resamplers considered in many of the papers in the field. Each set of resamplers is decomposed
into its three constituent parts, as described in chapter 1 (figure 1.14). We have deliberately
omitted the books and surveys on the subject as these consider a very large number of resamplers
and draw heavily on the papers listed here. Specifically omitted are Heckbert [1986a], Heckbert
[1989], Wolberg [1990] and Foley et al [1990].
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Reference Reconstructors Transforms Samplers
Andrews and
Patterson [1976]

Nearest-neighbour; linear;
approximating quadratic B-spline;
approximating cubic B-spline;
four-piece piecewise linear.

Scaling ×16. Further experiments with
nearest-neighbour and linear
reconstruction only: scaling ×8, ×4,
×2 and ×1.

Single point.

Bier and Sloan [1986] Don’t say. Mapping a two-dimensional image
onto a three-dimensional surface via
an intermediate simple
three-dimensional surface (plane, box,
cylinder, or sphere).

Don’t say.

Blinn [1989b] Nearest-neighbour; linear; Gaussian;
sinc; Lanczos windowed sinc.

None (frequency domain analysis of
reconstructors).

None (frequency domain analysis of
reconstructors).

Boult and Wolberg
[1992]

Linear; interpolating cubic B-spline;
Catmull-Rom; cubic interpolant
(a = −1); quadratic APK
reconstructor based on rectangular
and Gaussian area samplers; two piece
cubic APK reconstructor based on
rectangular area sampler.

Scaling by 8. Single point.

Braccini and Marino
[1980]

Nearest-neighbour. Rotation; scaling; general affine;
non-affine; four-point transformations.

Single point.

Catmull and Smith
[1980]

Don’t say (but see e.g. Smith [1981,
1982]).

Two-pass, one-dimensional rotation;
rational linear; bilinear.

Don’t say (but see e.g. Smith [1981,
1982]).

Crow [1984] Linear. Arbitrary. Exact area sampling over a rectangle
in the original image space, this area
based on the size and position of the
final pixel inverse mapped into original
image space.
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Durand [1989] Nearest-neighbour on an abutting

circular pixel grid, zero between the
circles.

Rotation. Exact area on an abutting circular
pixel grid.

Durand and Faguy
[1990]

Nearest-neighbour; quadratic and
cubic B-splines.

Scaling by a rational factor. Exact area.

Fant [1986] Nearest-neighbour;
nearest-neighbour/linear crossbred.

Arbitrary 1D transforms in multi-pass
operations.

Exact area.

Feibush, Levoy and
Cook [1980]

Linear. Perspective. Single point, exact area, Gaussian.

Fournier and Fiume
[1988]

Piecewise polynomials (and arbitrary
reconstructors).

Conformal; perspective. Piecewise polynomial approximations
to various sampling filters; specifically
Gaussian, sinc and difference of
Gaussian.

Fraser [1987, 1989a,
1989b]

FFT/Catmull-Rom with and without
windowing; Catmull-Rom; cubic
interpolation with a = 0 and a = −1;
linear.

Rotation (one pass 2D and two pass
1D).

Single point; sinc filtering.

Fraser, Schowengerdt
and Briggs [1985]

Nearest-neighbour; Catmull-Rom. Two-pass, one-dimensional, separable
operations: specifically rotation and
third-order polynomial warping. Also
the transpose operation required
between the two passes.

Single point.

Frederick and
Schwartz [1990]

see Williams [1983]. Conformal mapping. Either
(a) directly (if the mapping is
invertible), or (b) approximately via
triangulation and two-dimensional
linear interpolation over the triangles.

see Williams [1983].

Glassner [1986] Nearest-neighbour. Arbitrary (none specifically analysed). An approximation to exact area
sampling.
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Goshtasby [1989] Nearest-neighbour. Correction of image deformation using

a Bezier patch method (local scaling is
×0.97–×1.03 (±3%), thus little change
in scale; shearing is also involved but
no transformation is of high
magnitude).

Single point.

Greene and Heckbert
[1986]

Gaussian. Perspective. Gaussian.

Hammerin and
Danielsson [1991]

Linear; 2-, 4- and 8-point cubic splines. One-pass (2D), two-pass (1D) and
three-pass (1D) rotation.

Single point

Hanrahan [1990] Catmull-Rom cubic interpolation (but
discusses the theory of perfect
reconstruction).

Three-dimensional affine
transformations (but discusses
two-dimensional and more complex
three-dimensional transformations).

Single point (but discusses
pre-filtering).

Heckbert [1986b] Linear. Arbitrary. Various area samplers over a rectangle
in the original image space, this area
based on the size and position of the
final pixel inverse mapped into original
image space.

Herbin et al [1988] see Venot et al [1989]
Hou and Andrews
[1978]

Cubic B-splines. Also briefly mentions
nearest-neighbour, linear, quadratic
B-splines, polynomial interpolation
and sinc interpolation. Compares
nearest-neighbour, linear, interpolating
cubic B-spline and approximating
cubic B-spline for magnification.
Compares cubic B-spline with sinc for
minification.

Scaling ×r, r ∈ R (in software).
Scaling ×M

N , M,N ∈ Z (in hardware).
Single point.
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Keys [1981] Linear and Catmull-Rom (also briefly

looks at nearest-neighbour; sinc;
six-point cubic and piecewise cubic
Lagrange interpolant).

Scaling ×5 15
32 (horizontally), ×5 1

4
(vertically) for linear and
Catmull-Rom reconstruction.

Single point.

Lee [1983] Linear; interpolating cubic B-spline
and restoring cubic B-spline (also
discusses nearest-neighbour,
Catmull-Rom, and sinc).

Scaling ×z, only integral values of z
are used by Lee but the method is not
restricted to integers.

Single point.

Maeland [1988] Interpolating cubic B-spline; linear;
cubic convolution with a = 0 (two
point cubic), a = − 1

2 (Catmull-Rom),
a = − 3

4 (also mentions a = −1).

Arbitrary — no specific
transformation discussed.

Single point.

Maisel and Morden
[1981]

Sinc. Two pass 1D rotation (frequency
domain analysis).

Single point.

Mitchell and Netravali
[1988]

Two parameter family of cubic
reconstructors; 30 unit wide windowed
sinc.

Scaling. Single point.

Namane and
Sid-Ahmed [1990]

Find the border pixels of the
character, scale these pixels,
interpolate between the scaled points
and fill in the character.

Scaling (note that the reconstructor
and transform are intimately tied
together. All processing is in the
discrete domain, no continuous
intensity surface is produced in this
method).

Single point (note that this processing
is performed on a binary image and
produces a binary image).

Oakley and
Cunningham [1990]

A matched APK reconstructor based
on a Gaussian area sampler; compared
against Catmull-Rom cubic and
nearest-neighbour.

Scaling. Single point.
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Oka, Tsutsui, Ohba,
Kurauchi and Tago
[1987]

Nearest-neighbour. Block affine approximation to general
transformation.

Minimum enclosing rectangle of pixel
preimage (approximating exact area
area sampling).

Paeth [1986, 1990] Nearest-neighbour. Three pass 1D rotation. Approximation to exact area (both 1D
and 11

2D); triangle and higher order
sampling filters.

Park and
Schowengerdt [1982]

Nearest-neighbour; linear; cubic with
a = −1; sinc.

None (frequency domain analysis of
reconstructors).

None (frequency domain analysis of
reconstructors).

Park and
Schowengerdt [1983]

Nearest-neighbour; linear; cubic
interpolating piecewise polynomials
(including Catmull-Rom); sinc.

None (frequency domain analysis of
reconstructors).

None (frequency domain analysis of
reconstructors).

Parker, Kenyon and
Troxel [1983]

Nearest-neighbour, linear,
approximating cubic B-spline, cubic
convolution with a = − 1

2
(Catmull-Rom) and a = −1 (also
mentions a = − 3

4 ).

General two-dimensional
transformations. Specific examples
used are rotation and subpixel
translation. Applied to image
registration.

Single point.

Ratzel [1980] See Schreiber and Troxel [1985].
Reichenbach and Park
[1982]

Mitchell and Netravali’s [1988] two
parameter family of cubics.

None (frequency domain analysis of
reconstructors).

None (frequency domain analysis of
reconstructors).

Schafer and Rabiner
[1973]

Digital filters: Lagrange interpolation;
linear interpolation; optimum FIR
interpolation.

Scaling ×M
N , M,N ∈ Z. Single point.

Schreiber and Troxel
[1985] (based on
Ratzel [1980])

Nearest-neighbour; linear; truncated
Gaussian; truncated sharpened
Gaussian; truncated sinc;
approximating cubic B-spline; two
types of sharpened cubic B-spline.

Scaling ×5 (also scaling by other
factors to find best sharpened
Gaussian prefilter and best sharpened
Gaussian reconstructor).

Single point.

Smit, Smith and
Nichols [1990]

FFT; FFT with ARMA algorithm;
nearest-neighbour.

Scaling ×2k, k ∈ Z (with potential to
truncate result to a sub-image).

Single point.
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Smith [1981] Sinc. Scaling. Single point; sinc filtered sampling.
Smith [1982] Catmull-Rom; approximating cubic

B-spline; various windowed sincs.
Scaling and arbitrary. None (discussion of reconstruction and

transforms only).
Smith [1987] Not stated (but see e.g. Smith [1981,

1982]).
Two-pass; one-dimensional
superquadric; bi-cubic and
bi-quadratic warps.

Not stated (but see e.g. Smith [1981,
1982]).

Trussell et al [1988] Inverse sinc. Correction of one-dimensional sample
position errors.

Single point.

Turkowski [1990] Nearest-neighbour; linear; two
Gaussians; two Lanczos windowed
sincs.

Scaling ×2, 3, 4;× 1
2 , 1

3 , 1
4 . Single point.

Venot et al [1988],
Herbin et al [1989]

Don’t say. Registration of two-dimensional
images. Translation, rotation, scaling,
included in a general transform which
also allows for grey-scale manipulation.

Don’t say.

Ward and Cok [1989] Linear; Catmull-Rom (with and
without coefficient bins); Hamming
windowed sinc.

Scaling × 3
2 , ×2 and ×4 (all three

reconstructors). Non-seperable and
seperable rotation (Catmull-Rom
only).

Single point.

Watson [1986] FFT Scaling. FFT
Weiman [1980] Nearest-neighbour. Rotation, scaling, shearing by

multi-pass 1D algorithms.
Exact area.
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Williams [1983] A three-dimensional intensity volume

is produced. It is generated by linear
interpolation between two-dimensional
intensity planes. Each plane is
generated by two-dimensional linear
interpolation between sample points
created by a two-dimensional
nearest-neighbour/exact area
resampling (minification by
2n, n ∈ {0, 1, 2, 3, . . .}) of the original
image.

General. Any transformation although
ones with highly non-symmetrix
(non-square) pixel preimages do not
work well.

Single point sampling into the
three-dimensional volume using spatial
(x and y) coordinates and a “depth”
coordinated wich is related to the size
of the destination pixel mapped onto
the original image.

Wolberg and Boult
[1989]

see Fant [1986]. Arbitrary two-pass 1D transformations
specified by spatial lookup tables.

see Fant [1986].



Appendix B

Proofs

B.1 The inverse Fourier transform of a box function

(section 2.4.1)

s(x) =
∫ ∞

−∞
Box(ν)ei2πνx dν

=
∫ νb

−νb

ei2πνx dν

=
1

i2π x
ei2πνx

∣∣∣∣νb

−νb

=
1

i2π x

(
ei2πνbx − e−i2πνbx

)
=

1
i2π x

(cos(2πνbx) + i sin(2πνbx) − (cos(2πνbx) − i sin(2πνbx)))

=
1

i2π x
(2i sin(2πνbx))

=
sin(2πνbx)

πx
= 2νbsinc(2νbx)

sinc(x) is defined in the literature as either sinc(x) = sin(x)
x or as sinc(x) = sin(πx)

πx . In this thesis
we will stick with the latter.

B.2 The Fourier transform of the sinc function

(section 5.1)

The sinc function is defined as:

h(x) = N
sinπNx

πNx
, N > 0

It’s Fourier transform is:

H(ν) =
∫ ∞

−∞
h(x)e−i2πνx dx
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=
∫ ∞

−∞
N

sin(πNx)
πNx

[cos(2πνx) − i sin(2πνx)]

=
1
π

∫ ∞

−∞

sin(πNx) cos(2πνx)
x

dx − i

π

∫ ∞

−∞

sin(πNx) sin(2πνx)
x

dx

=
1
π

A(x, ν) − i

π
B(x, ν)

Let y = πNx. Thus: x = y
πN and dy

dx = 1
πN .

A(x, ν) =
∫ ∞

−∞

sin(πNx) cos(2πνx)
x

dx

=
∫ ∞

−∞

sin(y) cos(2y/N)
y

dy

sin is an odd function, 1
y is an odd function, and cos is an even function, therefore the function

that is being integrated is even, and so:

A(x, ν) = 2
∫ ∞

0

sin(y) cos(2y/N)
y

dy

=




0,
∣∣ 2ν

N

∣∣ > 1
π
2 ,

∣∣ 2ν
N

∣∣ = 1
π,

∣∣ 2ν
N

∣∣ < 1

[Dwight 858.9]

B(x, ν) =
∫ ∞

−∞

sin(πNx) sin(2πνx)
x

dx

=
1
2

∫ ∞

−∞

cos(π(N − 2ν)x)
x

dx − 1
2

∫ ∞

−∞

cos(π(N + 2ν)x)
x

dx

[Dwight 401.07]

Now, cos is an even function and 1
x is an odd function, so the equation inside each of the integrals

is odd, meaning that each integral equates to zero (
∫ 0

−∞
cos kx

x dx = −
∫∞
0

cos kx
x dx).

Thus:
B(x, ν) = 0

and therefore:

H(ν) =




1, |ν| < N
2

1
2 , |ν| = N

2

0, |ν| > N
2

B.3 Derivation of a = −2 +
√

3

(section 4.5.1)

From Rasala [1990] we know that:

ak = −fm−k

fm

where fi = −4fi−1 − fi−2, f0 = 1, f1 = −3 or − 4.
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For i very large:

fi−1

fi
=

fi−1

(−4fi−1 − fi−2)

= − 1

4 + fi−2
fi−1

= − 1
4 − 1

4+
fi−3
fi−2

= − 1
4 − 1

4− 1
4− 1

. . .

From this we can see that:

lim
i→∞

(
fi−1

fi
− fi−2

fi−1

)
= 0

and so,

lim
m→∞

a1 = lim
m→∞

−fm−1

fm

= lim
m→∞

1

4 − fm−2
fm−1

= lim
m→∞

1

4 − fm−1
fm

=
1

4 − lim
m→∞

a1

which implies that the limit of a1 as m goes to infinity is: a1 = 2 ±
√

3.

Now, the value of a2 as m goes to infinity can be defined in terms of this limit of a1:

a2 = −fm−2

fm

= a1 ×
fm−2

fm−1

= −a2
1 (m → ∞)

A similar argument for the general case as m goes to infinity is:

an = −fm−n

fm

= −fm−1

fm
× fm−2

fm−1
· · · × fm−n

fm−n+1

= −(−a1)n

= −(a)n (m → ∞)

where a = −a1 = −2 ∓
√

3.

The case a = −2 −
√

3 gives a divergent series of ai values, while the case a = −2 +
√

3 gives a
converging series. Thus:

a = −2 +
√

3
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B.4 The Straightness Criteria

(Section 3.5.3)

For first order continuity:

Given m sample points, fα−a, fα−a+1, . . . , fα, . . . , fα+b, all having the same value, fα, we want the
reconstructed segment dependent on these m values to be f(x) = fα.

Thus:

fx = fα

b∑
i=−a

n−1∑
j=0

ki,jt
j

= fα, ∀t ∈ T

T =
{

[0, 1), m even
[− 1

2 , 1
2 ), m odd

where: α =
⌊

x − x0

∆x

⌋
and t =

x − xα

∆x
.

This implies that:
b∑

i=−a

n−1∑
j=0

ki,jt
j = 1

which gives us the result that:

b∑
i=−a

ki,j = 0, ∀j ∈ {1, 2, . . . , n − 1}

b∑
i=−a

ki,0 = 1

which is equation 3.13.

For second order continuity:

Given m sample points, fα−a, fα−a+1, . . . , fα, . . . , fα+b, having value fα+i = fα + iδ, we want the
reconstructed segment dependent on these m values to be f(x) = fα + tδ.

Thus:

f(x) =
b∑

i=−a

n−1∑
j=0

ki,jt
j(fα + iδ)

= fα + tδ, ∀t ∈ T

T =
{

[0, 1), m even
[− 1

2 , 1
2 ), m odd

where: α =
⌊

x − x0

∆x

⌋
and t =

x − xα

∆x
, as before.

This implies that:

fα + tδ = fα

b∑
i=−a

n−1∑
j=0

ki,jt
j + δ

b∑
i=−a

n−1∑
j=0

iki,jt
j

and so:

fα = fα

b∑
i=−a

n−1∑
j=0

ki,jt
j (B.1)
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tδ = δ
b∑

i=−a

n−1∑
j=0

iki,jt
j (B.2)

Equation B.1 is the same as for first order straightness, and so equation 3.13 holds for second order
straightness as well. Equation B.2 reduces to the following results:

b∑
i=−a

iki,j = 0, ∀j ∈ {0, 2, 3, . . . , n − 1}

b∑
i=−a

iki,1 = 1

which is equation 3.14.

B.5 Proof that a signal cannot be simultaneously of finite
extent in both the frequency domain and the spatial
domain

(section 4.3)

Assume that f(x) and F (ν) are a Fourier transform pair. Further assume that f(x) is real, of
finite extent, and infinitely piecewise differentiable:

f(x) ∈ R

f(x) = 0, |x| > xK

and that F (ν) is bandlimited:
F (ν) = 0, |ν| > νN

F (ν) =
∫ ∞

−∞
f(x)e−i2πνx dx

=
∫ xK

−xK

f(x)e−i2πνx dx

=
f(x)e−i2πνx

−i2πν

∣∣∣∣+xK

−xK

− 1
(−i2πν)

∫ xK

−xK

f ′(x)e−i2πνx dx

[Dwight, 79]

=
f(x)e−i2πνx

−i2πν

∣∣∣∣+xK

−xK

− f ′(x)e−i2πνx

(−i2πν)2

∣∣∣∣+xK

−xK

+
1

(−i2πν)2

∫ xK

−xK

f ′′(x)e−i2πνx dx

= eiax

(
f(x)
ia

− f ′(x)
(ia)2

+
f ′′(x)
(ia)3

− f ′′′(x)
(ia)4

+ · · ·
)∣∣∣∣xK

−xK

, a = −2πν

= (cos(ax) + i sin(ax))
(

f(x)
(ia)

− f ′(x)
(ia)2

+
f ′′(x)
(ia)3

− f ′′′(x)
(ia)4

+ · · ·
)∣∣∣∣xK

−xK

= cos(ax)
(

f ′(x)
a2 − f ′′′(x)

a4 + · · ·
)∣∣∣xK

−xK

+ sin(ax)
(

f(x)
a − f ′′(x)

a3 + · · ·
)∣∣∣xK

−xK

+ i cos(ax)
(
− f(x)

a + f ′′(x)
a3 − · · ·

)∣∣∣xK

−xK

+ i sin(ax)
(

f ′(x)
a2 − f ′′′(x)

a4 + · · ·
)∣∣∣xK

−xK
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= cos(ax)φ(a, x)|xK

−xK

+ sin(ax)χ(a, x)|xK

−xK

+ i cos(ax)(−χ(a, x))|xK

−xK

+ i sin(ax)φ(a, x)|xK

−xK

= cos(axK)(φ(a, xK) − φ(a,−xK))
+ sin(axK)(χ(a, xK) + χ(a,−xK))
+ i cos(axK)(−χ(a, xK) + χ(a,−xK))
+ i sin(axK)(φ(a, xK) + φ(a,−xK))

(B.3)

Where:

φ(a, x) =
(

f ′(x)
a2

− f ′′′(x)
a4

+ · · ·
)

and:

χ(a, x) =
(

f(x)
a

− f ′′(x)
a3

+ · · ·
)

Now, if we set equation B.3 to be zero outside the bandlimit of F (ν) (as we assumed) and remember
that f(x) is a real function, then we find that:

φ(a, xK) = −φ(a,−xK), |a| > νN/2π

φ(a, xK) = φ(a,−xK), |a| > νN/2π

χ(a, xK) = −χ(a,−xK), |a| > νN/2π

χ(a, xK) = χ(a,−xK), |a| > νN/2π

These four equations show that:

φ(a, xK) = 0, |a| > νN/2π (B.4)
φ(a,−xK) = 0, |a| > νN/2π

χ(a, xK) = 0, |a| > νN/2π

χ(a,−xK) = 0, |a| > νN/2π

Taking equation B.4 as an example:

φ(a, xK) =
(

f ′(xK)
a2

− f ′′′(xK)
a4

+
f (V )(xK)

a6
− · · ·

)
= 0, |a| > νN/2π

which gives the following equalities:

f ′(xK) = 0,
f ′′′(xK) = 0,

f (V )(xK) = 0
...

This gives us the result:
φ(a, xK) = 0, ∀a

A similar argument holds for φ(a,−xK), χ(a, xK) and χ(a,−xK). From these and equation B.3 it
can be seen that:

F (ν) = 0, ∀ν

which implies that:
f(x) = 0, ∀x
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So there exists only one trivial case in which the original assumption holds, that is f(x) = 0
and F (ν) = 0. Therefore the Fourier transform of a real, finite-extent function, f(x) cannot be
bandlimited, unless f(x) = 0. Further, the Fourier transform of a bandlimited function, F (ν)
cannot be a real, finite-extent function, unless F (ν) = 0.

B.6 The Fourier transform of a finite-extent comb

(section 4.3)

Let the finite extent, one-dimensional comb function, d(x), be defined as:

d(x) =
b∑

j=−b

δ(x − j∆x)

Its Fourier transform is:

D(ν) =
∫ ∞

−∞

b∑
j=−b

δ(x − j∆x)e−i2πνx dx

=
b∑

j=−b

e−i2πνj∆x

=
b∑

j=−b

cos 2πνj∆x − i sin 2πνj∆x

= cos 0 + 2
b∑

j=1

cos 2πνj∆x [sin odd, cos even]

= 1 + 2
b∑

j=1

cos 2πνj∆x

= 1 + 2
cos(b + 1)πν∆x sin bπν∆x

sinπν∆x
[Dwight 420.2]

= 1 +
sin((2b + 1)πν∆x)

sin πν∆x
+

sin(−πν∆x)
sinπν∆x

[Dwight 401.05]

= 1 +
sin((2b + 1)πν∆x)

sin πν∆x
− 1

=
sin((2b + 1)πν∆x)

sin πν∆x

In two-dimensions:

d(x, y) = d(x) ∗ d(y)

=
bx∑

j=−bx

by∑
k=−by

δ(x − j∆x, y − k∆y)

Implying that the two-dimensional Fourier transform is:

D(νx, νy) = D(νx) × D(νy)

=
sin((2bx + 1)πνx∆x)

sinπνx∆x
× sin((2by + 1)πνy∆y)

sin πνy∆y
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B.7 The not-a-knot end-condition for the B-spline

(section 4.5)

The cubic B-spline function (equation 4.11) is:

f(x) =
2∑

i=−1


 3∑

j=0

ki,j tj


 gα+i

The third derivative of this is:

f ′′′(x) = 6
2∑

i=−1

ki,3 gα+i

= −gα−1 + 3gα − 3gα+1 + gα+2

The not-a-knot condition requires f ′′′(x) to be continuous at x1 and xn−2. At x1:

−g−1 + 3g0 − 3g1 + g2 = −g0 + 3g1 − 3g2 + g3

⇒ g−1 − 4g0 + 6g1 − 4g2 + g3 = 0 (B.5)

We know that (equation 4.12):

fi =
1
6
(gi−1 + 4gi + gi+1)

For f0 we can write 6f0 = g−1 + 4g0 + g1. Subtracting this from equation B.5 gives:

−8g0 + 5g1 − 4g2 + g3 = −6f0 (B.6)

For f2 we can write 6f2 = g1 + 4g2 + g3. Subtracting this from equation B.6 produces:

−8g0 + 4g1 − 8g2 = −6f0 − 6f2 (B.7)

And for f1 we can write 48f1 = 8g0 + 32g1 + 8g2. Adding this to equation B.7 gives:

36g1 = 48f1 − 6f0 − 6f2 (B.8)

Making equation B.8 a function of g1 gives us:

g1 =
1
6
(8f1 − f0 − f2)

QED

A similar derivation holds for gn−2.

B.8 Timing calculations for the B-spline kernel

(section 4.5.4)

In the first method we need to sum 113 terms (assuming we adopt the diamond shaped kernel
discussed on page 139). Each term is of the form:

ViWjfx−i,y−j

Where 15 Vi and 15 Wj values must be precalculated as follows:

Vi = vi,3r
3 + vi,2r

2 + vi,1r
1 + vi,0

Wi = wj,3t
3 + wj,2t

2 + wj,1t
1 + wj,0
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Operation Method 1 Method 2 M1/M2
Multiplies 320 113 3×
Adds 202 112 2×
Table lookups 120 113 1×
Function value lookups 113 113 1×

Table B.1: Timing calculations for the two ways of implementing the interpolating cubic B-spline.

where i and j range from -7 to 7, vi,n and wj,n are retrieved from a table, and the rn and tn terms
are precalculated.

From this we find that we require 320 multiples, 202 adds, 120 table lookups and 113 function
value lookups for each intensity surface value calculation.

Using the second method, each coefficient is calculated by summing 113 products of a table lookup
(a|i|+|j|) and a function value lookup (fx−i,y−j). This makes the requirement 113 multiples, 112
adds, 113 table lookups and 113 function value lookups, per coefficient.

These values are laid out in table B.1, from which we can conclude that the first method’s calcu-
lation is 2 to 3 times as long as the second method’s, thus 2c < k1 < 3c.

B.9 The error in edge position due to quantisation

section 6.3.5

The edge’s position is given by:

xm = c +
ĝc+1 − ĝc

ĝc+1 − ĝc−1

(equation 6.7).

Without loss of generality, take c = 0:

xm =
ĝ1 − ĝ0

ĝ1 − ĝ−1
(B.9)

With quantisation, the values of ĝ−1, ĝ0, and ĝ1 in equation B.9 are quantised:

ĝ−1 = Q(gl)
ĝ0 = Q(gr + ε(gl − gr))
ĝ1 = Q(gr)

The quantisation function is:

Q(g) =
1

N − 1
〈(N − 1)g〉

The error caused by this is ± 1
2(N−1) , so:

Q(g) = g ± 1
2(N − 1)

(B.10)

Substituting equation B.10 into equation B.9 gives:

xm =
gr ± 1

2(N−1) − (gr + ε(gl − gr) ± 1
2(N−1) )

gr ± 1
2(N−1) − gl ± 1

2(N−1)
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=
ε(gr − gl) ± 1

(N−1)

gr − gl ± 1
(N−1)

=
ε(∆g) ± 1

(N−1)

∆g ± 1
(N−1)

(B.11)

where: ∆g = gr − gl.

If ∆g � 1
N−1 then equation B.11 becomes:

xm ≈
ε(∆g) ± 1

(N−1)

∆g

= ε ± 1
∆g(N − 1)

As xm is an approximation to ε, the error in xm is ± 1
∆g(N−1) provided ∆g � 1

N−1 .



Appendix C

Graphs

The graphs are unavailable in this online version of the report owing to the way in
which they were produced.

This appendix contains the results used in section 7.3.4. There are two sets of experimental results.
The first consists of three graphs showing the root mean square difference between an image and
its doubly resampled image, for a range of magnification factors (each image is magnified by this
factor and then minified by the inverse of the factor). The three images used are reproduced in
figure C.1.

The second set of results consists of thirty graphs. There are five sets of graphs, one for each of
the quality measures investigated. Each set contains six graphs, one for each of the six images
involved in the experiments. These images are reproduced in figure 7.11.

Note that the fifth measures, called ‘smoothness’ in section 7.3.4 is here called ‘bumpiness’.

Figure C.1: The three images used in the first experiment.
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Appendix D

Cornsweet’s figures

This appendix should have contained two photocopies of Cornsweet’s [1970] figures 11.2 and 11.3.
Unfortunately, we were unable to get permission to copy these figures before the dissertation was
bound. Instead we present approximations to Cornsweet’s figures, which attempt to illustrate the
same effect. The two images in each photograph (figures D.1 and D.3) are generated from different
intensity distributions (shown in figure D.2), but, in each case, they give approximately the same
visual sensation.
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Figure D.1: Two intensity curves which produce roughly the same response from the human visual
system. The profiles of the edges in the two images are shown in figure D.2(a) and (b) (left and
right images respectively). Note that, in the right hand image, the intensity at the centre of the
stripe is the same as the intensity at the left and right edges of the image. (After Cornsweet [1970]
fig 11.2).

(a)

(b)

(c)

(d)

Figure D.2: The intensity profiles of the edges (a) and (b) in figure D.1; (c) and (d) in figure D.3.



251

Figure D.3: Two intensity curves which produce roughly the same response from the human visual
system. The profiles of the ‘edges’ in the two images are shown in figure D.2(c) and (d) (left and
right images respectively). The left hand image has no edges, while the right has slowly changing
edges one quarter and three quarters of the way across the image. Thus, in the right hand image,
the intensity at the centre of the image is not the same as the intensity at the left and right edges,
even thought it looks virtually the same. (After Cornsweet [1970] fig 11.3).
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Glossary

Approximant a reconstructor that does not necessarily interpolate the image samples. Compare
interpolant.

Area sampler a sampler which uses intensity surface values over some area to provide a value
for each pixel in the image. Compare point sampler.

Decomposition dividing a process into sub-processes in order to better understand the process.
In this dissertation decomposition is applied to the image resampling process, notably de-
composing it into three sub-processes: reconstruction, transform, and sampling.

Destination image the image that is output by a resampling process, also called resampled image
or final image.

Filter in an area sampler there is an equivalence that allows us to represent the sampler as a filter
combined with single point sampling, such that the filter is the function that is convolved with
the intensity surface before single point sampling the filtered surface. Some point samplers
can also be represented in this way. Some reconstructors can be represented by filters, so
that the reconstructed intensity surface that they produce is the convolution of the filter with
the image. Also called kernel or ‘filter kernel’.

Final image the image that is output by a resampling process, also called destination image or
resampled image.

Final intensity surface the intensity surface generated by transforming the original intensity
surface. The final image is generated from it by sampling.

Hedgehog an omnivorous mammal renowned for its prickliness.

Image in this dissertation ‘image’ almost exclusively refers to a discrete image. A continuous
image is known as an intensity surface.

Image samples the sample values that make up a discrete image. Also called pixels or pixel
values.

Intensity surface a continuous surface in three dimensions, with two spatial dimensions and
one intensity dimension. There is a many-to-one mapping from two-dimensional spatial
coordinates to intensity values. Can be extrapolated to an intensity volume (three spatial
dimensions and one intensity dimension) or to a colour surface (where colour dimensions
replace the single intensity dimension). Also known as ‘continuous image’.

Interpolant a reconstructor that interpolates the image samples. Compare approximant.

Kernel an abbreviation of ‘filter kernel’ (see filter).

Original image the image that is input to the resampling process, also called source image.

Original intensity surface the intensity surface generate from the original image by reconstruc-
tion.
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Pixel (a) a single sample value in an image; (b) the theoretical area represented by such a sample
value in an intensity surface which generates, or is generated by, that image. Also called
‘pel’.

Point sampler a sampler which only uses intensity surface values at a countable set of points to
provide a value for each pixel in the image. Compare area sampler.

Reconstruction applying a reconstructor to an image to produce an intensity surface.

Reconstructor a process which reconstructs a continuous intensity surface from a discrete image.

Resample to take a discrete image and produce another image which appears to be a spatially
transformed version of the first.

Resampled image the image that is output by a resampling process, also called final image or
destination image.

Resampler a process which performs image resampling.

Sampler a process which produces a discrete image from a continuous intensity surface.

Sampling applying a sampler to an intensity surface to produce an image.

Single point sampler a point sampler which uses a single intensity surface value to provide a
value for each pixel.

Source image the image that is input to a resampling process, also called original image.

Sub-process a process that forms part of a larger process. Sub-processes are generated by de-
composition of some process. Also called: a ‘part’ or ‘stage’ of the larger process.

Transform a process which takes a continuous intensity surface and produces another, trans-
formed, intensity surface from it.

Warp a synonym for resample, used more in computer graphics work; whilst ‘resample’ is used
more in signal processing work.
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André, J. and Hersch, R.D. (eds.); Cambridge University Press, UK, 1989; ISBN 0–521–
37490–1, pp.261–270


