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Abstract

Set theory is today the standard foundation of mathematics, but most
proof development systems (PDS) are based on type theory rather than set
theory. This is due in part to the difficulty of reducing the rich mathematical
vocabulary to the economical vocabulary of set theory. It is known how to
do this in principle, but traditional explanations of mathematical notations
in set theoretic terms do not lend themselves easily to mechanical treatment.

We advocate the representation of mathematical notations in a formal
system consisting of the axioms of any version of ordinary set theory, such
as ZF, but within the framework of higher-order logic with A-conversion
(H.O.L.) rather than first-order logic (F.O.L.). In this system each notation
can be represented by a constant, which has a higher-order type when the
notation binds variables. The meaning of the notation is given by an axiom
which defines the representing constant, and the correspondence between the
ordinary syntax of the notation and its representation in the formal language
is specified by a rewrite rule. The collection of rewrite rules comprises a
rewriting system of a kind which is computationally well behaved.

The formal system is justified by the fact that set theory within H.O.L.
is a conservative extension of set theory within F.O.L. Besides facilitating
the representation of notations, the formal system is of interest because it
permits the use of mathematical methods which do not seem to be available
in set theory within F.O.L.

A PDS, called Watson, has been built to demonstrate this approach to the
mechanization of mathematics. Watson embodies a methodology for inter-
active proof which provides both flexibility of use and a relative guarantee of
correctness. Results and proofs can be saved, and can be perused and mod-
ified with an ordinary text editor. The user can specify his own notations
as rewrite rules and adapt the mix of notations to suit the problem at hand;
it is easy to switch from one set of notations to another. As a case study,
Watson has been used to prove the correctness of a latch implemented as two
cross-coupled nor-gates, with an axiomatization of time as a continuum.
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Chapter 1

Introduction

1.1 Motivation

It may be fair to say that set theory is today the standard formal system for
the foundation of mathematics. One would therefore expect most attempts
at mechanizing mathematics to be based on set theory. This is not the
case, however. Proof development systems (PDSs—also known as interactive
theorem provers) have so far mostly been based on variants of type theory,
rather than set theory.! This is the case, among others, of HOL [23], TPS [4,
6], Veritas [26], EKL [33], and Nuprl [12]. '
Type theory and set theory, which originate respectively in Russell’s and
Zermelo’s systems of 1904, are competing alternatives, both having advan-
tages and disadvantages. The advantages of type theory have been pointed
out by some of the authors of PDSs based on type theory [5, Preface], [22];
and the choice of type theory for any particular PDS is not at all surprising.
What is surprising is that the favor enjoyed by set theory as a foundational
system is lost when it comes to implementing a PDS. This suggests that
there may be some feature of set theory which causes no difficulty for ordi-
nary mathematical practice but becomes an obstacle to mechanization.
Actually it is not the mechanization of set theory itself which presents a

!The system Ontic is presented as being based on ZFC, but it is not clear how the
six syntactic categories and twenty three syntactic constructs of Ontic [39, pages 194-196]
reduce to the syntax of ordinary, F.O. set theory. The language of Ontic has in fact types,
type generators and A-abstraction, so it is closer to type theory with A-conversion than to
Zermelo’s set theory.
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difficulty, but the mechanization of mathematics with a set theoretic foun-
dation. Set theory is just a particular first-order theory, and general purpose
PDSs have been successfully put to the task of proving theorems in set the-
ory. For example, Isabelle [43, 44], an interactive prover designed to support
a large class of logics, has been applied to set theory [42]. Also, it has been
observed in the automatic theorem proving community that variants of set
theory which distinguish sets from classes (often referred to as Gédel-Bernays
set theory, [19, 8, 40]) have finitely many axioms, and so existing automatic
provers can be used to search for proofs of theorems in such theories. What
is difficult is to go from the realm of set theory per se, i.e. from proving
propositions which can easily be expressed using only the set-membership
predicate symbol €, into the wider realm of mathematics.

It is not that proofs in “mathematics” are harder than proofs in “set
theory,” and the difficulty is not due to any limitation in the size of the
inference steps that mechanical provers can take. Much progress has been
made in automatic theorem proving, and an interactive prover could use the
full power of an antomatic prover to justify each of the steps of an interactive
proof; those steps could then be “larger” than the steps of a proof done by
hand.

What is then the problem? As it has already been observed by An-
drews [5, Preface], the problem is one of vocabulary. There is a considerable
gap between the extremely economical vocabulary of set theory (a single
binary predicate symbol in many versions of set theory) and the very rich
vocabulary of mathematics. In informal mathematics, the gap is bridged
by informal mathematical notations. Mathematical notations are essential:
without them, one cannot take off the ground, one cannot move from the
realm of set theory into the realm of mathematics. The problem is how to
use these notations in a mechanical theorem prover.

Logicians have proposed several competing ways of explaining mathemat-
ical notations in terms of first-order set theory. However, these explanations
were not conceived with the idea of mechanizing set theory. As we shall
see, trying to base the implementation of a PDS on any of them would
present considerable practical difficulties. Instead, we propose a new method
of formalizing mathematical notations, within a formal system which is a
conservative extension of ordinary set theory. The proposed method lends
itself readily to mechanization.
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1.2 Overview

In the remainder of this introduction we shall first consider, in section 1.3,
whether it would be possible to take mathematical notations at face value,
i.e. to formalize them without explaining them in terms of any more prim-
itive notations. In this connection we shall briefly discuss the specification
language Z. Then, in sections 1.4 and 1.5, we shall review some of the ways
of explaining mathematical notations which have been proposed to date. We
shall point out their practical shortcomings from the point of view of the
implementation of a PDS, but at the same time we shall gather useful ideas
which will lead us to the formalization which we are proposing.

The new formalization requires a formal system consisting of Church’s
higher-order logic (H.O.L.) [10] together with the axioms of ordinary first-
order set theory. Chapter 2 is dedicated to the study of that formal system.
First, a natural deduction formulation of Church’s H.O.L. is given in sec-
tion 2.3. Then in section 2.4 we prove the fact that any first-order theory
(e.g. Zermelo-Frankel set theory) developed within H.O.L. is a conserva-
tive extension of the same theory developed within first-order logic (F.O.L.)
This simple result provides the philosophical justification of our approach
to the mechanization of set theory; and as suggested in the conclusion, it
may also lead to other developments in the foundation and mechanization
of mathematics. In section 2.5 we describe our treatment of mathematical
notations in the formal system. We show that notations are eliminable, we
give the axioms of ZF and the basic notations associated with them, and we
discuss which formulas are acceptable as parameters of the axiom schema of
replacement.

In the proposed formalization, mathematical notations are considered as
shorthands for expressions of the formal system. A PDS for set theory can
then use the shorthands for input and output, while internally it uses the
corresponding expressions of the formal system. Chapter 3 shows how the
shorthands can be specified by rewrite rules and how the translation between
surface form and internal representation can be accomplished by a rewriting
system of a kind which is particularly well-behaved.

The proposed approach to the mechanization of set theory has been tested
by building a prototype PDS, called Watson, and carrying out with it a case
study in hardware verification. This is the topic of chapter 4. Section 4.1
describes the language processor of Watson. Section 4.2 then describes a
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methodology for interactive proof which has been especially developed for
Watson. The methodology borrows ideas from several other PDSs and it
features the possibility of editing proofs under construction and libraries of
results using an ordinary text editor such as Emacs. The case study is the
proof of correctness of a latch with an axiomatization of time as a continuum,
something which does not seem to have been done before in the field of
Hardware Verification. It is described in section 4.3.

The concluding chapter, after a recapitulation, points out opportunities
provided by the formal system in several areas, in particular regarding the
foundations of category theory.

1.3 Taking mathematical notations at face
value

The problem of bridging the gap between set theory and ordinary mathe-
matical notations could be avoided by “formalizing” mathematical notations
directly, without reducing them to axiomatic set theory. In some sense this
is what is done in computer algebra systems, and also in the specification
language Z [51].

Z must be mentioned here for two reasons: (i) it is part of the field of
“formal methods,” and (ii) its appeal is partly due to the fact that it is
explicitly based on set theory (although not on aziomatic set theory).

However, it is not appropriate to compare Z and Watson. While Watson
is a computer tool for developing proofs, Z is a language for developing speci-
fications. The goal of Z is to facilitate joint development of a specification by
a team of engineers; and this is achieved by imposing a discipline by means
of a common notation. In contrast, a feature of Watson is that each user
is free to design his own notations—while still being able to share results
and even proofs with users who prefer different notations; this is the topic of
chapter 3.

Computer algebra systems perform computations which a mathematician
may need during the course of a proof, but they do not deal with the totality
of a mathematical argument, and have no notion of proof within themselves.
Therefore it is not necessary to relate rigorously the notations used in a
computer algebra system to axiomatic set theory.
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A PDS, on the other hand, deals with proofs, and therefore requires a
formal system of logic. If we choose to use axiomatic set theory, we must then
explain mathematical notations in terms of axiomatic set theory. To this end,
we shall begin by reviewing the most common traditional explanations.

1.4 Axiomatic vs. metalinguistic definitions

There are two ways of introducing mathematical notations: by aziomatic
definition or by metalinguistic definition.

In the first case, a new syntactic construct is added to the object language,
and a new axiom is added to the inference system as the definition of the
new construct. For example, the unordered pair notation can be introduced
as a construct which builds a term “{A, B}” out of two terms A and B,
with the defining axiom:

VaVyVz(z € {2,y} =2=2Vz=y)

In the second case, the object language is not modified at all. Instead,
a convention is introduced in the metalanguage by which a certain (parame-
terized) metalinguistic expression refers to a certain object language expres-
sion. For example, to say that, for every pair of terms A, B the expression
“A C B” stands for the sentence

Ve(r € A Dz € B)

(where @ is a variable which is not free in A or B) would be a metalinguis-
tic definition of the subset notation. (A and B are the parameters of the
notation.)

When notations are introduced by axiomatic definition, one must ensure
that they are eliminable from proofs. That is, if a result is proved using the
notations and their defining axioms, but the result itself does not contain any
of the notations, it should be also provable without making use of the nota-
tions. In other words, the system obtained by introduction of the notations
should be a conservative extension of the original formal system.? It is also
desirable that notations be eliminable from formulas, i.e. that any sentence
containing notations be logically equivalent (in the extended formal system)

2Suppes calls this the “criterion of non-creativity.”[52, §2.1]
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to a sentence which is free of them.> Why notations should be eliminable
from proofs is clear: we do not want them to strengthen the system, and
in particular we do not want them to introduce a contradiction. Why they
should be eliminable from formulas is less clear. In fact, in formal systems
other than set theory (e.g. in type theory), the requirement of eliminability
from formulas may be superflous, and undesirable.* However, in set the-
ory there is a powerful motivation for this requirement, as we shall see in
section 2.5.

A simple way of introducing notations by axiomatic definition is to enlarge
the vocabulary of a F.O. theory with additional n-ary function symbols (or
constants as the special case where n = 0). For example, for the pair-set
notation we could use a binary function symbol “enum”: “enum A B” would
denote the unordered pair A, B. It is well known [40, §9] [34, §74] that, if
@, Y,...Y, are the pairwise distinct variables occurring free in a sentence P,

and
Yy,...Vy, 3lzP

is derivable in a F.O. theory, then the definition of a new function symbol f
by the axiom:
xT

Vyl coe vyn fyiyn

(where we assume that “f y,...y,” is free for z in P, and where P7,
is the result of substituting “f y, ...y,” for the free occurrences of = in P)
satisfies both eliminability requirements. In the unordered pair example the
axiom would be

VyVzVu(u € (enumyz) =S u=yVu=2)
and eliminability would be guaranteed by the fact that
VyVzleVu(u €z =u=yVu=2)

is derivable in a theory of sets with the axiom of extensionality and the pair-

set axiom: existence follows from the latter, uniqueness from the former.
Even when an additional function symbol, e.g. “enum”, is used, the

traditional notation, e.g. “{A, B}”, is usually still retained, as standing

3Suppes’ “criterion of eliminability.”[ibid.]
4,..undesirable because, as Suppes [ibid.] points out, many definitions are most natu-
rally formulated as conditional definitions, and as such are not eliminable from formulas.
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for the function-symbol notation. This is again a metalinguistic definition:
“{A, B}” stands for “enum A B” in the same sense as “A C B” stands for
“Vo(x € A D x € B)”. But there is a major difference: while going from
“{A, B}’ to “enum A B” is just a change of notational style, going from
“A C B” to “Ya(x € A D @ € B)” involves expanding the definition of the
notion of subset. The latter could constitute a step of a proof done by hand,
but not the former. ,

The difference between those two kinds of metalinguistic definitions be-
comes even clearer if we consider the possibility of introducing predicate
symbols in the same manner as function symbols, something not usually
done by logicians. Then we would have the choice between considering that
“A C B” stands for

Ve(ez € A D x € B) (1.1)

and considering that it stands for
subset A B (1.2)
the predicate symbol “subset” being defined by
VaVb(subset a b = Vz(z € a D z € b))

Clearly in the second case it is the axiom defining the predicate symbol which
lends its substance to the notation “A C B”. So in such case we shall still
say that the notation is defined axiomatically.

Assume now that we want to implement a PDS according to some text-
book of set theory. Assume the author of the textbook uses “A C B” as a
shorthand for either (1.1) or (1.2). With respect to the textbook, “A C B”
is not part of the object language; it is a metalinguisitic shorthand, i.e. an
abbreviation which the author uses to simplify his text, just as he may write
“wi” for “well-formed formula.” From the point of view of the theorem
prover, however, “A C B” (for particular instances of A and B) is some-
thing that the user types in and that the PDS prints out. It is a shorthand
for either (1.1) or (1.2), but it is also part of the language of the PDS as
much as (1.1) or (1.2). In other words, from the point of view of the PDS,
metalinguistic shorthands become object-language shorthands.

While shorthands should be used for interaction with the user, the in-
ference component of the PDS must manipulate expressions of the formal
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system. This means that the PDS must use the expansions of the shorthands
internally. We shall refer to the language for interaction with the user as the
surface language. The formal language is then the internal representation of
the surface language.

When axiomatic definitions are used, the surface language is made out of
shorthands which are simple stylistic variations with respect to the formal
language, e.g. “A C B” for “subset A B”. It is then easy to translate
back and forth between the surface language and the formal language. In
chapter (3) we shall see that this can be accomplished by a well-behaved
rewriting system. On the other hand, when metalinguistic definitions are
used, translation becomes difficult or impossible. A given formal language
expression may be obtainable by shorthand expansion from multiple surface
language expressions, and it may not be clear which of these to print out.
In the other direction, expansion of shorthands is combinatorially explosive;
this is because a parameter of the notation may occur multiple times in the
definiens; the length of the expansion is exponential in the depth of nesting
of definitions where this happens, which is itself unbounded.

From the point of view of the implementation of a PDS, then, axiomatic
definitions are preferable to metalinguistic ones. This is the opposite of what
logicians generally prefer. Typically logicians do not introduce additional
predicate symbols such as “subset”, because sentence constructors such as
“A C B” can be defined metalinguistically. They introduce function symbols
such as “enum” only because there are no term constructors in ordinary set
theory, and so a notation such as “{A, B}” cannot be defined metalinguisti-
cally in a straightforward way, since there is nothing that it can stand for.®
For our purposes, on the contrary, we are quite content with additional func-
tion symbols and we shall make use of additional predicate symbols as well.
Unfortunately, these expedients do not cover all mathematical notations.

1.5 Variable-binding term constructors

We have seen how some mathematical notations can be dealt with easily in a
PDS by introducing additional constants, functions symbols, and predicate

5Some authors, e.g. Godel [19], still manage to avoid an axiomatic definition in such
cases by resorting to a conrtextual definition; an example of contextual definition will be
given below.
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symbols. All such notations have something in common: they do not bind
variables. Unfortunately, there are many notations in mathematics which do
bind variables. Some of them are sentence constructors, such as

(e e A)P

and generalized quantifiers such as those discussed in section 5.2.2. They can
be defined metalinguistically, but metalinguistic definitions are undesirable
from the point of view of the implementation of a PDS, as we have seen.

Worse yet, many mathematical notations are term constructors which
bind variables. Consider for example:

e “{x € A| P}”—occurrences of @ in the sentence P are bound by the
notation.

o “U,eq B”—occurrences of @ in the term B are bound by the notation.
e “F , C”—occurrences of 7 in the term C are bound by the notation.

It is not clear how to explain these notations even if we have recourse to
metalinguistic definitions, since ordinary F.O. set theory has no term con-
structors, let alone term constructors which bind variables.

We shall now examine four methods which have been used to explain such
notations, and point out the difficulties that they raise for the implementation
of a PDS.

1.5.1 The pseudo-binding method

A common method of explanation [40, 32] relies again on the conservative
introduction of additional function symbols defined axiomatically. Now, how-
ever, a different function symbol f is used for each instance of the notation.
(By an instance of a notation we mean the result of giving particular values
to the parameters of the notation.) The arity of the function symbol f is the
number of distinct free variables occurring in the instance of the notation,

and if those free variables are y, ...¥,,, the instance is supposed to stand for
»

oy,
For example, the term “{z € y | 2 € 2}” is an instance of the notation

“{x € A| P}”, with parameter values & = “2”, A = “y” and P = “z € 2”7,
Let us use “f” as the function symbol. There are two free variables in the
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term, “y” and “z”, so the arity of “f” is 2. The term stands for “f y 2”. The
new function symbol “f” is in this case defined by the axiom:

VyVaVe(z €fyz=2z € yAz € )

Eliminability is ensured, in a set theory with extensionality and separation,
by the theorem:
VyVz3lsVz(z € s= 2z €y Az € z).

Notice the fate of the bound variable “z” in “f y z”: it disappears. Thus,
although the surface form suggests that a variable is being bound, no variable
binding occurs in the corresponding formal expression. We shall refer to this
method as the pseudo-binding approach.

The drawback of the pseudo-binding approach, from the point of view of
mechanization, is that the surface form has a very different logical structure
from the formal language expression for which it is supposed to stand. For
example P is a subexpression of the surface form “{@ € A | P}”, but not of
the corresponding formal expression “fy, ... y,”. Using the formal expres-
sion as internal representation for the surface form would then block a proof
step consisting of a rewrite within P in “{@ € A | P}”. Appendix A shows
how this can force considerable detours in the course of a proof; detours,
moreover, which it would be difficult to justify to the user.

1.5.2 Bourbaki’s approach

Authors seeking explanations closer to actual mathematical practice must
remedy the absence of variable-binding term constructors in ordinary set
theory. Generally they introduce one or two such constructs and define other
notations from them, either axiomatically or metalinguistically.

Bourbaki [9] uses as basic construct Hilbert’s e-operator.® Thus Bourbaki
develops set theory in an extension of F.O. logic, the e-calculus. A problem
with Bourbaki’s approach is that it builds-in the axiom of choice, even though
the e-calculus is a conservative extension of F.O. logic. We shall have more
to say about this in section 2.5.5.

$He calls the operator 7; also, he dispenses with bound variables in his formal language,
using the symbol O instead, and lines drawn from each occurrence of O to the occurrence
of 7 to which it refers.



1.5. VARIABLE-BINDING TERM CONSTRUCTORS 11

The e-construct, “cx P” denotes “some @ such that P if there is any, or a
completely unspecified @ otherwise”. It is indeed a term constructor, which
binds the variable  in P. Bourbaki defines other mathematical notations
metalinguistically.” For example, Bourbaki defines “{« | P}” as

eyVe(x € y = P)

where y is a variable other than @ and not free in P.

Bourbaki’s grand project, with its emphasis on carefully showing how
actual mathematical practice relates to axiomatic set theory, is a valuable
source of inspiration and ideas for an attempt at mechanizing mathematics.
Mechanization, however, was not the goal of the project, and Bourbaki’s
approach has, from that point of view, the same drawbacks as any other
approach based on metalinguistic definitions. It is remarkable that Bourbaki
was aware of the combinatorial explosion that we mentioned in section 1.4,
and curious enough to estimate the size of the expansion of the symbol “1”,
which stands in his system for “Card({#})”: the expansion would be tens of
thousands of symbols long. The possibility of mechanizing their system may
have been in the mind of some of the mathematicians who signed under the
collective pseudonym Nicolas Bourbaki.

1.5.3 Quine’s approach

In [48], Quine uses the construct “{@ | P}” (which he calls a class abstract)
as basic construct, and, like Bourbaki, defines other mathematical notations
metalinguistically, with the corresponding drawbacks for mechanization. It
is interesting to note that “{@ | P}” is itself defined metalinguistically, by
means of a contextual definition. In Quine’s system set-membership is the
only predicate symbol, and equality is not part of the object language (it is
defined metalinguistically, as equiextensionality: “A = B” for “Va(z € A =
x € B)”). So the construct can only appear in the following contexts:

y €{z | P} | (1.3)

{z|Pley (1.4)

"Including the existential and universal quantifiers.
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The former expression is defined as P; and the latter is in effect defined as
Jz(Vz(z € 2=P)ANz € Y)
The definition of (1.3) as P; gives a meaning to (1.3) whether or not
JzVe(z € 2 = P) (1.5)
holds. To avoid this, one would define (1.3) in the same fashion as (1.4), as
Jz(Ve(z € 2= P) ANy € 2)

In Quine’s system, however, class abstracts which do not necessarily sat-
isfy (1.5) play a useful role in schematic reasoning.

1.5.4 Bernays’ approach

Bernays [8] does not use metalinguistic definitions at all. As primitive
variable-binding term constructors, he uses both “{a | P}” and a descrip-
tion operator. Mathematical notations are incorporated into the language as
additional constants, function symbols, predicate symbols, or “operators,”
i.e. variable-binding constructs, defined axiomatically.

This approach is, of those that we have surveyed, the one which lends
itself most readily to mechanization. The only problem with it is its compli-
cation. There would have to be a large variety of constructs, not just in the
surface language, but also in the formal language used as internal representa-
tion and manipulated by the inference component of the PDS. For example,
to the surface construct “SZ , C” would correspond a term-construct with
four parameters, the variable ¢ and the terms A, B and C; the description
of the constructor would have to specify that occurrences of ¢ in C are al-
lowed and bound by the construct, while occurrence of ¢ in A or B are either
disallowed or not bound by the construct. Other constructs would bind mul-
tiple variables. All this would complicate the task of defining notations, and
the design of most of the components of the system, including the inference
component.

Fortunately, this complication can be avoided, as we shall now see.



Chapter 2

A formal system for the
representation of mathematical
notations

2.1 Representing notations with higher-order
constants

Consider a model M of set theory, and the notation “{A, B}”. Assuming
extensionality and pairing, for every pair of objects (A, B) in the model, there
exists one element C of M which is a SET whose ELEMENTS are 4 and B. (By
SET and ELEMENT we refer to the denotations in M of the corresponding
formal concepts of set theory.) Let F be the function from M? to M which
maps every (A, B) to the corresponding C. If the terms A and B denote
A and B, then the notation “{A, B}” denotes F(A, B). We have seen that
the notation can be formalized by introducing an additional function symbol
“enum” and considering that “{ A, B}” is a shorthand for “enum A B”. The
function symbol then denotes the function F.

Consider now the notation “{@ | P}”. This is one of the “difficult”
notations, since it binds a variable and constructs a term.

In the same manner as “{ A, B}” is related to the pair-set axiom, the no-
tation “{w | P}” is related to the Cantorian comprehension axiom. In Can-
torian set theory, the comprehension axiom stipulated that for every “prop-
erty” of objects there is a SET (unique by extensionality) whose ELEMENTS

13



14 CHAPTER 2. FORMAL SYSTEM

are those objects which satisfy the property. This axiom leads to Russell’s
paradox and had to be abandoned, but modern set theories have weaker ax-
ioms which stipulate that there is such a SET for some properties of objects.
The notation “{z | P}” denotes the SET corresponding to “the property
which P states of ®,” when this is one of such properties.

This suggests trying to formalize “{a | P}” as some kind of function
symbol, that we could call “set”, applied to some formula @ denoting the
said “property”: “{@ | P}” would be short for “set $”. Model-theoretically,
the denotation of ®, i.e. the “property”, would be the subset of M consisting
of those objects X" such that P denotes truth when @ denotes X’; and “set”
would denote a function mapping subsets of M to elements of M.

The problem is of course that there are no formulas & denoting subsets of
the model M in F.O.L. However, in Church’s system of Higher-Order Logic
with A-abstraction there are such formulas. We can take & = “AzP”. So in
Church’s system we can formalize “{@ | P}” as a shorthand for “set (A\xP)”,
or more precisely as “set,(o,) (A P)”. The type t(ot) of set,(,,) indicates that
set,(o,) denotes, as desired, a function mapping subsets of M to elements of
M; set, o) is a higher-order constant.!

As we saw in section 1.5.4, the drawback of Bernays’ approach is the
syntactic complication of having to specify and manipulate many different
variable-binding constructs. We have just seen how this complication can be
avoided in Church’s system in the particular case of the notation “{z | P}”:
by considering it as a shorthand for “set,(,,) (A@.P)” it suffices to introduce
a constant to represent the notation, “set,,)”; variable-binding is accom-
plished by the preexisting A-abstraction construct.

Other variable-binding notations can be handled similarly:

“{ee A| P} for “subset,) A (AzP)”

“Ueea B” for “union,,) A (AzB)”
« ?:A C” for “SumL(LL)LL AB ()\ZC)”
“{A}rep” for “range,,, B (AzA)”

“{A}eenyec” for “range,,), B C (AziyA)”
“Ve e A)P” for “forally,,) A (AzP)”

1 As we shall see in section 2.3.1, o denotes the type of the two truth values, ¢ denotes
the type of individuals, and (af) denotes the type of functions from the denotation of the
type 3 to the denotation of the type a.
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In contrast with Bernays’ approach, it is not necessary to specify that the
notation “{w € A | P}’ binds @ in P, that “{A},cpyec” binds @ and
1 in A, and so on, since this is implied by the formal counterparts of the
notations, “subset,,), A (A@P)”, “range,,,), B C (AxAyA)”, and so on.

2.2 The double nature of type theory

The problem of formalizing mathematical notations has led us to consider a
formal system consisting of set theory within Church’s higher-order logic. In
the rest of the chapter we are going to study this formal system and describe
more precisely the method of handling mathematical notations that we have
just sketched out.

But the formal system is unusual. It seems that it has not been used or
studied before, besides a brief mention in Henkin’s thesis [27, pages 64-67).
So it may be useful to pause now and try to put it in perspective. This
section assumes some familiarity with Church’s system, thus it anticipates
section 2.3; but it can be skipped without loss of continuity.

We have referred to Church’s system [10] as H.O.L. (as most authors
refer to it nowadays), but Church himself refers to it as type theory. So,
after declaring the intention of breaking away with the tradition of using
type theory in PDSs, it seems that we have been thrown back to it. And
indeed, Church’s system is the formal system used in TPS [6], while the HOL
prover [23] uses a formal system which is essentially a polymorphic extension
of it. Our approach, however, uses Church’s system in an essentially different
way, as we shall now show.

When the paradoxes showed that Cantorian set theory was contradictory,
two ways of overcoming the difficulty were devised. Russell restricted the
set-membership construct, by assigning types to variables and ruling out,
syntactically, instances of the construct whose parameters were not of the
appropriate types. Thus Russell’s type theory, at least as later simplified, is
a many-sorted set theory. The addition of Church’s A-abstraction construct
to the simplified type theory resulted in the system of [10]. Zermelo, on
the other hand, restricted the axiom schema of comprehension; he replaced
it with a collection of weaker axioms and axioms schemas.? Zermelo thus

?Namely empty-set, pair-set, union, power-set and separation—replacement was later
added by Frankel.
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preserved the syntactic simplicity and much of the flexibility in constructing
sets of Cantorian set theory.

Remarkably, besides being a many-sorted set theory, type theory is also
an extension of F.O.L.—hence its other name, “H.0.L.”. This has not always
been understood,® but it is true, not only in a debatable philosophical sense,
but in a precise metamathematical sense. Indeed, the theory of types admits
two model-theoretic interpretations: one, as a many-sorted set theory; the
other, as an extension of F.O.L. The latter corresponds to Henkin’s standard
models, the former to Henkin’s general models.*

In our approach, we make use of the fact that type theory is an extension
of F.O.L. to introduce a second notion of set-membership in Church’s type
theory. Both notions then coexist. The first one is exrpessed by:

SOQ MC!

The member M, is of arbitrary type «, the set S, is of type oa. The second

one is expressed by:
in,, M, S,

where in,,, is a constant. Set and member are both of type «. In pre-A
simplified type theory “S,, M,” would have been written “M, € §,,”; but
to avoid confusion we shall reserve the use of the symbol “€” to the second
notion of set-membership: “M, € §,” for “in,,, M; §,”.

We use the second notion of set membership to formalize the usual notion
of set membership in mathematics, while other PDSs such as HOL or TPS,
use the first one. Thus, even though TPS, HOL and Watson all make use
of type theory, TPS and HOL are truly based on type theory, in the sense
that they use a type-theoretic formalization of mathematics, while Watson
is based on set theory, in the sense that it uses a set-theoretic formalization.
In TPS and HOL, Church’s system plays the role of type theory, while in
Watson it plays the role of H.O.L.> Watson uses Church’s system as a richer

3Quine [48, pages 257-258] dismisses the view of type theory as H.O.L. as the result
of a confusion between schematic (metalinguistic) variables and genuine (object-language)
variables.

4More precisely, every model of type theory considered as a many-sorted set theory
is isomorphic to a general model. From this it follows that completeness for Henkin’s
general models follows directly from the completeness of many-sorted first-order logic. For
the details, see [13].

580, priority apart, Watson would have a stronger claim to the name HOL!
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framework than F.O.L. in which to develop F.O. set theory. The fact that
H.O.L. is a conservative extension of F.O.L., as we shall see below, means
that there is no reason not to do so.

Practically, using the second notion of set-membership provides the set-
forming flexibility of set theory, to be contrasted with the rigidity of a type
hierarchy.

2.3 Natural deduction formulation of H.O.L.

In this section we describe Church’s system of H.O.L., with standard-model
semantics and a natural deduction inference system.

2.3.1 The type hierarchy

We define simultaneously by induction the type erpressions, more simply
called types, and their denotations:

e “0” is a type expression. It denotes a set {F, T} of two elements which
we shall use as truth-values, T as truth and F as falsity.

e “” isa type expression. It denotes an arbitrary non-empty set M. The

elements of M are called individuals, and M is called the domain of
individuals.

o If o is a type expression denoting a set A and S a type expression
denoting a set B, then “(af3)” is a type expression denoting the set of
functions from B to A.

The types o and ¢ are the atomic types, while the types (af3) are the func-
tional types. (As we have already done in the definition, we shall use the
Greek letters a, f ..., not including of course o and ¢, as metalinguistic
variables denoting type expressions.)

The denotation M of “.” determines the denotation D, of each type
expression a. We shall refer to the family D of those type denotations as
the (standard) frame generated by M. (General models make use of “non-
standard frames”; since we shall not deal with general models, we shall say
“frame” for “standard frame”.)
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When writing type expressions, parentheses are suppressed with associa-
tion to the left.
The order of a type is defined inductively as follows:

1. The order of ¢ is 0.
2. The order of 0 is 1.

3. The order of «f3 is the maximum of (i) the order of «, and (ii) the order
of /8 plus 1. '

Every type can be written in a unique way éaj ...y, where ¢ is an atomic

type. We then say that n is the arity of the type. It is easy to see that the

order of éay...a, when n > 01is 1 plus the maximum of the orders of ay,
. Q.

2.3.2 The typed A-language

For each type o there is a denumerable set of proper symbols of type o. This
set is partitioned into two subsets, each denumerable, the constants of type
o and the variables of type . As constants we shall use the identifers in
roman font, with the type indicated as a subscript, e.g.:

¢, cl,, and,,,, subset,,, subset,(,).

As variables we shall use the identifiers in italic font, again with the type
indicated as a subscript, e.g.:

‘TH ‘TJL) pO\ a'bCOLL'

There is also an improper symbol, “A”, and parentheses are used for group-
ing subexpressions.” Unless otherwise specified, by “symbol” we shall mean
“proper symbol”.

Given a frame D, a symbol of type « denotes an element of D,. More
precisely, an assignment into D is a function ¢ from the set of all symbols into
Uq Da such that the imageé by ¢ of a symbol s of type a is an element of D,

8In our treatment, the only difference between constants and variables is that constants
cannot be bound.
TWe do not consider parentheses as symbols of the language—see chapter 3.
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called the denotation of s in ¢. We shall also consider partial assignments,
which are partial such functions. An interpretation is a pair (D, ¢) consisting
of a frame D together with an assignment ¢ into the frame.

We now define by simultaneous induction the formulas of the typed A-
language, their types, their denotations in an interpretation (D, ¢) (for a fixed
frame D but variable assignment ¢), and the binding of variables:

e If sis a symbol of type o then “s” (i.e. the expression consisting of the
single symbol 8) is a formula of type «, which denotes the image by ¢
of s.

o If Ais aformula of type o8 denoting a function f from Dy to D,, and
B is a formula of type 3 denoting an element u of Dg, then “(A B)”
is a formula of type a denoting f(u). Such a formula is called an
application, where A plays the role of function and B plays the role of
argument,

o If Ais aformula of type o and @ is a variable of type /3, then “(AzA)”
is a formula of type aff which denotes the function from Dz to D,
which maps every element u of Dg to the denotation of A in the in-
terpretation (D, ¢'), where ¢' is the assignment which maps @ to u but
otherwise coincides with ¢. Such a formula is called an abstraction,
of which the subformula A is the body. The occurrence of ® which
immediately follows ) is a binding occurrence: its scope is the body of
the abstraction, A; it binds the occurrences of @ in the body which are
not themselves bound within A and which are not binding occurrences.
An occurrence of a variable in a formula is free iff it is not a bound or
binding occurrence.

Parentheses can be suppressed when doing so does not make a formula am-
biguous, except parentheses around an application “(B C)” which plays
the role of argument in an application “A (B C)”; such parentheses are
compulsory.® Synonimously with formula we shall sometimes say well-formed
formula, especially when well-formedness, i.e. membership in the set of for-
mulas of the typed A-language, is being stressed.

It is clear that the denotation of a formula depends only on the denota-
tions of the symbols which occur free in the formula. That is, given a frame

8, ..even though the typing would make the formula unambiguous without parentheses.
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D, two assignments ¢ and ¢’ into D, and a formula A, if ¢ and ¢’ coincide
on the constants which occur in A, and on the variables which occur free in
A, then A has the same denotation in the interpretations (D, ¢) and (D, ¢').

We shall say that an interpretation satisfies A iff A is a formula of type
o whose denotation is T.

A contert of the typed A-language is a pair (A, ), where A is a formula
and x is a variable.® The type o of A is the type of the context, while the
type B of x is its argument-type. If B is a formula of type 3, then the result
of substituting B for the free occurrences of @ in A is a well-formed formula
C, of type a. We shall write A® for (A, z) and A% for the formula C. If
we let C = A” then we shall also write “C[B]” for the latter. A variable y is
free in A* iff it is free in A and it is distinct from @; it is captured by A" iff,
within A, a free occurrence of @ occurs in the scope of a binding occurrence
of y; it is adequate to A® iff it is neither free in A” not captured by A”.
In the latter case the contexts A® and (A’;)y are equivalent, in the sense
that A} is the same formula as (A})% for any formula B of same type as @;
moreover, & is adequate to (A;)? and (A;)) is the formula A. The formula
B is said to be free for & in A when no variable free in B is captured by
A°.

A simple contert is a context A® such that @ has exactly one free occur-
rence in A.

2.3.3 Conversion—the typed A-calculus

The typed A-calculus consists of the typed A-language, together with a col-
lection of conwversions. Conversions are certain binary relations between for-
mulas, which will be useful in formulating the inference rules of the formal
system, and for proving some of the results. In addition to the usual «,
and n-conversions, we define a ~y-conversion. This is a partial converse of
n-conversion; y-normal form coincides with what is sometimes called 7n-long
form. In this section we give the definitions and state some normalization
results. The technical machinery can be found in appendix B.

A special vocabulary will be used for conversions. If R is a conversion,
a step of R is a pair of formulas (A, B) € R. If (A, B) € R we say that a

9This is a one-argument context; an n-argument context would be an (n + 1)-tuple
(A,z;...T,). In section 3.3 we define a more general notion of context which applies to
languages other than the typed A-language.
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step of R takes A to B and we write A K B. A chain of R is a finite or
infinite sequence of formulas where any two consecutive ones form a step. A
finite chain is said to terminate. We say that R converts A to B iff there
exists a chain whose first element is A and whose last element is B, i.e. iff
(A, B) is in the transitive closure of R. Conversions are traditionally named
by Greek letters (there is a-conversion, S-conversion and 7-conversion; we
add ~y-conversion); this use of Greek letters bears no relation to the use of
Greek letters as metalinguistic variables denoting types, even when the same
letter is used in both ways in the same sentence.

There is an expectation that conversions preserve the denotations of for-
mulas, so we shall say that a conversion R is sound iff whenever R converts
A to B the formulas A and B have the same denotation in every interpre-
tation. '

We shall consider the following conversions and associated normalization
results:

® a-CONVERSION. A step of a-conversion takes A to B, A = B, iff: A
is a formula of the form C[ A2 U], where U is a formula of type o, @ is a
variable of type # and C is a simple context of argument-type aff; and
B is the formula C[AyU}], where y is a variable of type  adequate to
U?. This conversion is symmetric. If A converts to B we say that A
and B are the same up to renaming of bound variables.

e [3-CONVERSION. In a formula A, a 5-redez is a well-formed part of the
form “(AxU) V", where U and V are formulas, and @ is a variable (of

same type as V). A step of f-conversion takes A to B, A LA B,iff Ais
a formula with a f-redex “(A@zU)V” where V is free for ¢ in U, and B
is the formula obtained by replacing the redex with “U7,”. A formulais
said to be in S-normal form (B-nf) iff it contains no f-redexes. Notice
that we say that “(AaU) V” is a [-redex even if V is not free for x in
U; so a formula is not in f-nf if it contains a subformula of the form

“(AeU) V7, whether V is free for @ in U or not.

e 03-CONVERSION. A step of aff-conversion takes A to B, A o8 B, iff

A% Bor AL B We say that a chain of af-conversion is trivial
iff it is infinite but has a finite number of S-conversion steps. We say
that a chain of a/f-conversion is complete iff it terminates in a formula
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in B-nf, or else it is infinite. The last formula of a finite complete chain
which starts with a formula A is said to be a f-nf of A.

We observe that for every formula A there exists a non-trivial complete
chain starting with A. This is because if a formula has a -redex, even
though no f-conversion step may be applicable (because of variable
capture), it is always possible to rename bound variables so that a f-
conversion step will apply. So as long as the last formula of a chain is
not in S-nf it is possible to find an extension of the chain which has an
additional fS-conversion step.

The strong normalization theorem of the typed A-calculus [29, Apps.1,2]
asserts the following: every non-trivial chain terminates; therefore ev-
ery formula A has a S-nf (the last formula of a complete non-trivial
chain starting with A); and the f-nfs of A are all the same up to
renaming of bound variables.

e n-CONVERSION. In aformula A, an n-redex is a well-formed part of the
form “Ae(U x)”, where U is a formula of type o and @ is a variable
of type B which is not free in U. A step of 7-conversion takes A to B,
A L B, iff Ais a formula having such a redex “Az(U «)”, and B is
the result of replacing it with U. A formula is said to be in n-normal
form (n-nf) iff it has no 7-redexes.

Although formulas in 7-nf are compact, generally they are not the formu-
las used by mathematicians, and they cannot be written using traditional
mathematical notations. Take for example the formula

exists,(o,) (A2, (equal,,, y, 2.)) (2.1)

As we shall see it can be written using traditional shorthands as:

But it is not in 7-nf; »-conversion transforms it into
exists,(,,) (equal,,, y,) (2.2)

which is in n-nf and is more compact than (2.1), but cannot be expressed
using the traditional shorthands for equality and existential quantification.
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So it seems that the inverse of 7-conversion would be of more interest
to us than n-conversion, since it converts (2.2) into (2.1). Unfortunately,
after a step of (n-conversion)~! takes (2.2) into (2.1), an additional step can
take (2.1) into any of the following formulas:

(Apo(existso(o) Po)) (A2, (equal,,, v, 2.)) (
existso(o,) (Az,((Az,(equal,, ¥, .)) 2,) (
exists,(o) (Az,((Az,(equal,, 2.) v, z.)) (
existsy(o) (A2, (A7, (equal,, 3.) 2.) 2.)) (

[>T G 1 SR SN

NN NN

These transformations, however, can be blocked by specifying that the ex-
pansion U — “Aa(U @)” shall not take place if U plays the role of function
in an application, or if U is an abstraction. This leads to the introduc-
tion of a conversion which is a subrelation of (r-conversion)™; let us call it
Y-conversion:

® Y-CONVERSION. In a given formula, a v-redex is a well-formed part
whose type is functional, which is not an abstraction and which does
not play the role of function in an application. A step of 7-conversion
takes A to B, A 2 B, iff A is a formula containing a y-redex U of
type a3, and B is the result of replacing the redex with “Aa(U )",
where @ is a variable of type / which does not occur free in U. A
formula with no +-redexes is said to be in y-normal form.

If A y-converts to B and B is in -nf we say that B is a yv-nf of A. A
chain of y-conversion is complete iff it is infinite or ends in a formula
which is in 4-nf. A formula is in v-nf iff no step of y-conversion applies
to it; so for every formula A there exists a complete chain starting with
A. The following strong normalization result is proved in appendix B
(corollary B.9): every chain of y-conversion terminates, therefore every
formula A has a y-nf (the last formula of a complete chain starting
with A); and the normal forms of A are all the same up to renaming
of bound variables.

We shall say that a formula is in fvy-nf iff it is both in S-nf and in ~-nf.
Formulas in 3+-nf are important because, as we shall see in chapter 3, they
are those which can be expressed using ordinary mathematical notations.
In addition, conversion to fvy-nf will be part of the process of elimination
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of notations from formulas described in section 2.5. With this in mind we
introduce the following conversion:

® afy-CONVERSION. A step of affy-conversion takes A to B, A 2By

B,if A% BorAL Bor AL B. We say that a chain of
afiy-conversion is trivial iff it is infinite but has a finite number of
p-conversion and 7-conversion steps. We say that a chain of afy-
conversion is complete iff it terminates in a formula in fv-nf, or else
it is infinite. The last formula of a finite complete chain which starts
with a formula A is said to be a fy-nf of A. As for aff-conversion, we
observe that for every formula A there is a non-trivial complete chain
starting with A. Corollary B.11in appendix B establishes the following
strong normalization result for a3y-conversion: every non-trivial chain
terminates, therefore every formula A has a fv-nf (the last formula of
a non-trivial complete chain starting with A); and the Sy-nfs of A are
all the same up to renaming of bound variables.

It should be noted that the steps of 15-conversion which are not part of
(y-conversion)™! are redundant in the presence of a- and f-conversion. In-
deed such a step must either

1. Transform a formula of the form C[(Az(U x)) V], where x is not free
in U, into C[U V7, or else

2. Transform a formula of the form C[Ay((AxU) y)], where y is not free
in “AaU”, into C[AzU].

In the first case, the 1-conversion step is also a f-conversion step. In the
second case, the 7-conversion step can be accomplished by an a-conversion
step

CPy((AzU) y)] = C[Az((AaU) 2))]
to rename vy, if necessary, to a variable z adequate to U®, followed by a
p-conversion step

Cz((AaU) 2)) & C[Az(Uj)]

followed by an a-conversion step

Cz(UD] = Chae(U)).
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Therefore the equivalence closure of o/3y-conversion is the same as that of
a-conversion U [-conversion U 7-conversion.

The soundness of a-conversion, /-conversion and 7-conversion is easy to
establish, and well known. The soundness of the other conversions listed
above follows.

2.3.4 Logical constants and models

As described so far, the typed A-calculus is a formal system concerned with
functions, function application and function abstraction. To turn it into a
logistic system we shall make use of the fact that o denotes the two “truth-
values,” choose constants to be used as logical constants, and define the
intended denotations of these logical constants.

Church’s system [10] uses only, as logical constants, negation, disjunction,
universal quantification, and description or selection operators. Andrews’
system Qg [1, 5] uses only equality and description or selection operators.
In both systems, other logical constructs are introduced by metalinguistic
abbreviation. However, since we have seen that metalinguistic definitions
are not easily amenable to mechanization, we shall make use of a full slate
of logical constants.

To denote equality between objects of type o we shall use the constant
“equal_,,”, with the shorthand

oaq )
A=B

for equal,,, A B. The denotation of a symbol of type oaa in an assignment
¢ into a frame D is a function from D, to the set of functions from D, to
{r, T}. We define the intended denotation of “equal,,,” in the frame D as the
function which maps every element u of D, to the function which maps u to
T and every element of D, other than u to F. Then for every interpretation
T = (D, $) where ¢ maps equal,, to its intended denotation, and for every
pair of formulas A, B of type «, the denotation of

equal,,, A B

in 7 is T iff the denotations of A and B in T are the same.
To denote the conjunction of two truth values we use the constant and,,
with the shorthand
ANB
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for
and,., A B.

The denotation of a symbol of type ooo in an assignment (into any frame)
is a function from {F, T} to the set of functions from {F, T} to {F, T}. The
intended denotation of and,,, is the function which maps the truth-value u
to the function which maps the truth-value v to Tif u = v = T and to F
otherwise. That is, the intended denotation of and,,, is the usual truth-table
for conjunction, in curried form. Then, if A and B are formulas of type o,
and if Z = (D, ¢) is an interpretation where ¢ maps and,,, to its intended
denotation, 7 satisfies “and,., A B” iff it satisfies A and B.

Besides and,,, we shall use, as logical connectives, the constants not,,,
OT.. and implies,,,, with the usual truth-tables as intended denotations,
and with “-=A”, “AV B” and “A D B”, where A, B are formulas of
type o, as shorthands for “not,, A”, “or,,, A B” and “implies,,, A B”.1°
Then an interpretation in which the logical connectives have their intended
denotations satisfies “—=A” iff it does not satisfy A, it satisfies “A V B” iff
it satisfies A or B, and it satisfies “A D B” iff either it does not satify A
or else it satisfies B,

We shall also use the constants true, and false,, with shorthands T and
L, as O-ary logical connectives, with intended denotations T and F.

As universal quantifiers we shall use the constants forall,.q), for every
type a. If @ is a variable of type o and A a formula of type o, we write

Ve A

for
fora.llo(oa) AT A.

The denotation of a symbol of type o(oa) in an assignment into the frame D
is a function from the set of functions from D, to {F, T} to the set {F, T}.
The intended denotation of forall,(,q) is the function which maps the function
with constant value T to T, and every other function to F. For every formula
A of type o, variable @ of type «, and interpretation Z = (D, $) where
¢ maps forall,os) to its intended denotation, 7 satisfies “Vz A” iff “AzA”
denotes the function with constant value. T, i.e. iff for every u € D,, the

10Negation will have higher precedence than conjunction or disjunction, and these will
have higher precedence than implication.
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interpretation (D, ¢'), where ¢’ is the assignment which maps ¢ to u and
otherwise coincides with ¢, satisfies A.

Besides “for all” we shall use the quantifiers “there exists”, “there exists at
most one” and “there exists exactly one”. (“Exactly one” is useful in connec-
tion with the description operator, and “at most one” is useful in connection
with the introduction and elimination rules for “exactly one”.) For this pur-
pose we choose the constants exists,(oa), 8tmosto(oq) and unique,,,), with the
shorthands “JzA”, “lz A” and “IleA” for “exists (o) AL A", “atmosty(oa) A A”
and “unique,,,y A#A”.M The intended denotations of the constants are the
obvious ones: they map to T the functions from D, to {F, T} which take the
value T at least once (exists,(,q)), at most once (atmosto(oq)), exactly once
(unique,(,oy). Then, if ¢ is an assignment into a frame D in which these
constants have their intended denotations, the interpretation Z = (D, ¢)
satisfies “Jz A” iff some interpretation (D, ¢’) where ¢’ coincides with ¢ ev-
erywhere except perhaps at @ satisfies A; 7 satisfies “le¢ A” iff at most one
such interpretation satisfies A; and 7 satisfies “3laz A” iff exactly one such
interpretation satisfies A.

Finally, we use the constants the,,a) as description operators, i.e. to
denote objects specified by definite descriptions. We write

peA

for
thea(oa) AT A.

The description operators differ from the other logical constants in that they
have a range of admissible denotations, rather than a unique intended de-
notation. The denotation of a symbol of type a(oa) in an assignment into
a frame D is a function from the set of functions from D, to {F, T} to the
set D,. Such a function is an admissible denotation of they(oq) iff it maps
every function f : D, — {F, T} which takes the value T for exactly one el-
ement u of D, to precisely that element u. Given a formula A of type o,
a variable @ of type «, and an interpretation 7 = (D, ¢) such that ¢ maps
thea(oa) to an admissible denotation, if there exists a unique u € D, such
that A denotes T in the interpretation Z = (D, ¢') where ¢’ maps @ to u and
otherwise coincides with ¢, then “ux A” denotes u in Z. If there are zero or

1 The shorthands for quantifiers will have higher precedence than those for connectives.
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more than one such u, then “uz A” is “undefined” in the sense that the fact
that ¢ maps the,(oq) to an admissible denotation does not tell us anything
about the denotation of “ux A” in 7.

The logical constants are the equality constants, the logical connectives,
the quantifiers, and the description operators. An interpretation (D, ¢) is a
logical interpretation iff ¢ maps the description operators to admissible de-
notations in D, and the other logical constants to their intended denotations
in the frame.

A theory is a set of formulas of type o. The formulas which are elements
of a theory I are called the azioms of . A model of a theory T is a logical
interpretation which satifies the axioms of T.

We shall say that a formula P of type o is a logical consequence of a
theory T, written

kP,

iff every model of T' satisfies P.

2.3.5 Natural deduction proofs

Having defined the relation |= of logical consequence between theories and
formulas, we must now define the deducibility relation b, i.e. we must provide
an inference system.

We are using a full slate of logical constants, rather than just a small num-
ber of primitive constants, so it is natural to turn to a deduction paradigm
which places all the logical connectives and quantifiers on the same footing;
such is natural deduction. Another reason for choosing natural deduction is
that the introduction and elimination rules of natural deduction systems are
indeed “natural,” in the sense that they correspond rather closely to steps
of proofs done by hand. The primitive inference rules of a natural deduction
system are sufficient by themselves (even without the addition of derived
rules and decition procedures) for constructing rather complex proofs in a
natural way. Thus they can form the basis of the inference tool-kit of a proof
developement system. We shall see in section 4.2 that this is the case in the
theorem prover Watson.

Natural deduction has two ingredients:

1. The use of proof trees or, equivalently as observed in [47, §1.6], of linear
proofs where the lines of the proof are asymmetric sequents.
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2. The use of introduction and elimination rules for the connectives and
quantifiers.

The PDSs HOL and TPS are both described as being based on natural
deduction, and this is true in the sense that they feature the first of the two
ingredients. However, the formal systems upon which they are based are not
standard natural deduction systems, lacking the second ingredient.

In our formal system a sequent is a pair (I', P), where I' is a theory
and P a formula of type o; we shall often write I' + P rather than (T, P).
The axioms of T' are the hypotheses, or assumptions, of the sequent, and
P is the conclusion of the sequent. An inference rule with n premises is a
mechanically verifiable relation R of arity n + 1 between sequents, i.e. a set
of tuples of the form (Si,...S,, S’) where Sy, ... S, and S’ are sequents.
We shall refer to each element (Si,...S,,S’) of the inference rule R as an
instance of R, of which Si,...S, are the premises, and S’ is the conclusion;
and we shall say that S’ follows from Si, ... S, by R. We shall write inference
rules in the usual schematic way: the premises are written above a horizontal
bar, and the conclusion below it, with any conditions written as a comment
to the right of the bar; the bar is omitted when there are no premises. A
proof is a sequence of sequents, called the lines of the proof, such that each
line follows from zero of more preceding lines by an inference rule. A proof
of a sequent (T, P) is a proof whose last line is (T', P). We shall say that
P follows from T, written I' + P, iff there exists a proof of (I', P). We
shall refer to this relation between theories and formulas as the deducibility
relation. If I' F P we shall say that P is a theorem of I', or that the sequent
(T, P) is a theorem. When T is empty we shall write - P and we shall
say that P is a theorem of H.O.L. A derived inference rule is a rule which
could be added to the primitive rules of the system without modifying the
deducibility relation.

Observe that I' + P has two meanings: it can refer to a sequent, or
it can assert that P follows from I'. Correspondingly, the inference rule
notation (with the premises above a fraction bar and the conclusion below
it) also has two meanings. We have explained it above as a schema, i.e. as a
description of a generic instance of the rule, the symbol I being interpreted
as a sequent constructor. But if the symbol I is interpreted as denoting the
deducibilty relation, the inference rule notation can be read as an implication:
the statements above the fraction bar together with the side condition imply
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the statement below the bar.!? This second reading is particularly useful for
derived rules: a rule described by the fraction bar notation is a derived rule
iff the implication holds.

We shall say that a sequent (T, P) is true iff T |= P. An inference rule
is sound iff whenever the premises of an instance of the rule are true, the
conclusion is also true. We shall now give the inference rules of a system of
natural deduction for H.O.L. and show that they are sound.

2.3.6 Inference rules

The following conditions have been omitted from the rules for the sake of
clarity:

1. T, IV, T'" are theories.

2. A, B are formulas of type a.

3. C is a simple context of type o and argument-type a.
4. P, Q,. Rare formulas of type o.

5. @, yare variables of type a.

Each rule implicitly includes all applicable conditions among the above ones.
If two or more applicable conditions mention “o”, they scope of “a” is the
entire rule. For example, when the meta-variables “z” and “A” occur to-
gether in the rule V-elimination, the implicit conditions assert that “z and
A have the same type o”.

We write the hypotheses of a sequent in the traditional way, as a theory
name followed by a comma and additional formulas separated by commas.
Both the theory and the additional formulas are optional. For example,

T,-P
refers to the set of hypotheses

T U{“-P"},

12The deducibility relation could alternatively be defined as the smallest relation which
satisfies the set of those implications, one for each primitive inference rule of the system.
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and in

PHP
is the set of hypotheses is {P}.

Intrinsic rules

The first two inference rules are required by the fact that proof lines are
sequents rather than formulas; they are trivially sound.

1. Reflexivity of +.
P-P

2. Monotonicity of F.
r+PpP

TUI'+ P
Substitutivity of equality
3. Substitutivity of equality.

I+ C[A] I'A=B C does not capture any
TUl'F C[B] variable free in T

PROOF OF soUNDNESS. Let I, I' be two theories, A and B two formulas
of type «, and C a simple context of type o and argument-type a.. Assume
thatT = C(A) and I' = A = B.

We shall first show that, in every model of I, C[A] and C[B] have the
same denotation. Let C by the pair (P, x), where @ is a variable of type o,
and P is a formula of type o having a single® free occurrence of @ (and, for
simplicity, no bound or binding occurrences of ). Consider a parse tree for
P and let ng...n; (j > 0) be the ascending path going from the root of the
subformula “z” to the root of the entire tree. A parse tree for C[A] can be
obtained by grafting!? a parse tree for A onto node no, without disturbing the

13Recall that the implicit condition on C asserts that C is a simple context. Hence if
C = (P, x) there is exactly one occurrence of © in P. Of course the rule of Substitivity of
equality for arbitrary contexts C holds trivially as a derived rule of inference in the formal
systeni.

14What grafting means should be clear without further explanations, but a formal defi-
nition can be {found in appendix B, page 180.
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original parse tree above ng. Let A9 = A and let A;...A; be the formulas
corresponding to the subtrees rooted at ny...n; in the tree resulting from
the graft. In the same way, a parse tree for C[B] is obtained by grafting a
parse tree for B onto ng. Let By = B and let B;...B; be the formulas
corresponding to the subtrees rooted at n;...n; in the tree resulting from
the graft. We show by induction that every model of I assigns the same
denotation to A; and B;, for every ¢, 0 < ¢ < j, and so, in particular, to
A, = C[A] and B, = C[B]. This is the case for i = 0. Assume that the
assertion holds for 4, 0 < 7 < 7. Then it is obvious that it holds for ¢ + 1 in
the case where n;;; is an application node. If n;4; is an abstraction node,
then A;4; is of the form “AzA;”, where z is a variable, and B, is “AzB,”.
Let (D, ¢) be a model of I'. Since the variable z is captured by C it is not
free in I', so every interpretation (D, ¢') where ¢’ differs from ¢ only in the
denotation of z is also a model of I, hence, by induction hypothesis, assigns
the same denotations to A; and B;. Therefore (D, ¢) itself assigns the same
denotations to “AzA;” and “A2B,”, i.e. to A;;1 and B,41.

Now, every model of T UT' is a model of T, so it satisfies C[A], and a
model of I”, so it assigns the denotation T to C[B] as well as to C[A]. O

Conversion rules

Their soundness follows immediately from the soundness of conversion (sec-
tion 2.3.3), given the intended denotation of the constants equal,,,.

4. a-Conversion

A% B

HA=DB
5. B-Conversion

AL B

FA=DB
6. v-Conversion

AL B



2.3. NATURAL DEDUCTION FORMULATION OF H.O.L. 33

Rules concerning the logical connectives

We include here the introduction and elimination rules of intuitionistic logic
for the logical connectives, and the contradiction rule of classical logic.

7. T-Introduction
FT

8. —-Introduction
LPFL

T'-P

9. —-Elimination
TP 'k -P

; TUVF L
10. A-Introduction
THP I'@Q
TUMEPAQ
11. A-Elimination
TrFPAQ THFPAQ
reP '+Q
12. V-Introduction
r-r '-Q
THFPVQ rEPvVQ

13. V-Elimination

rFPvQ T ,P+R TI"QFR
TUD'UT'F R

14. D-Introduction
I'PHQ

TFPD>Q
15. D-Elimination
r-P>Q '+ P
ruly+qQ
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16. Contradiction
I''-Pt+ L

r-P

PROOF OF SOUNDNESS. The soundness of each of these rules is obvious from
the definition of the intended denotations of the logical connectives, and from
the observations made in section 2.3.4. As a sample, we prove the soundness
of A-introduction.

Assume I' E P and I' | Q. Let T = (D, ¢) be an arbitrary model
of TUT'. T is a logical interpretation, so ¢ maps and,,, to its intended
denotation. Then, as we observed in section 2.3.4, 7 satisfies P A @ iff it
satisfies P and Q. But 7 is a model of T, so it satifies P, and a model of I,
so it satisfies Q. Therefore 7 satisfies P A Q. Thus TUT' = PA Q. O

Equivalence and equality

The inference rules that we have introduced so far are compatible with a
wider class of interpretations than the ones which we have specified, namely
with interpretations in which the type o denotes a set of “propositions” with
arbitrary cardinality, partitioned into two classes: the “true propositions”
and the “false propositions”. Then the logical equivalence: “P O Q” to-
gether with “Q D P”, would mean that P and @ denote propositions in the
same partition, but not necessarily identical. We rule out such interpreta-
tions by the following rule:

TFP>Q I'FQ>OP
TUT'FP=Q

This rule corresponds to Church’s axiom [10, p. 61} “p= ¢ D p = ¢” (which,
he says, means that there are “only two propositions”). It is obviously sound
for our class of logical interpretations.

When o does denote the set S = {F, T}, equality in S is logical equiva-
lence; that is, the intended denotation of equal,,, is the curried truth-table
corresponding to logical equivalence; so there is no reason for having a sep-
arate connective for logical equivalence, besides equal ,,. We shall then use
the shorthand

(2.7)

P=Q

as standing for
equalOOO P Q
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(in addition to the shorthand “P = Q” which remains in effect). The infer-
ence rule (2.7) can then be written:

17. =-Introduction
THFPDQ I'tQ > P

TU'FP=Q

Rules concerning the quantifiers

18. V-Introduction

T+P  free in T
T FvaP 2 not free in
19. V-Elimination
I'+VeP A free § L p
TF P ree for @ in
20. 3-Introduction
Lr PZ A free { in P
Y ree for ¢ in

21. 3-Elimination

['FdeP I Pj FQ y adequate to P7;
Trul'kQ y not free in I or Q

22. \-Introduction

I'+-VaVy(P AP, Dz =y)
I'tHaP

y adequate to P

23. 1-Elimination

I'HaP
I'kVeVy(PAP, Dx=1y)

y adequate to P*

24. -Introducti
nroucion I'k3zP THaP

TH3lzeP
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25. Al-Elimination

I'+3lzeP 'k3laP
T'+daP I'HlaP

PROOF OF SOUNDNESS. The proofs of soundness of these rules are left to the
reader. They present no difficulty given the observations made in section 2.3.4
about logical interpretations and the following two observations:

1. If y is adequate to P®, and if ¢ and ¢’ are assignments into a frame D
which coincide on variables other than # and y, and such that ¢(z) =
#'(y), then the denotation of P in the interpretation (D, ¢) coincides
with the denotation of P} in the interpretation (D, ¢').

2. If A is free for P* and denotes u in an interpretation (D, ¢), and if ¢’
is the assignment into D which maps @ to u and otherwise coincides
with ¢, then the denotation of P% in the interpretation (D, ¢) coincides
with the denotation of P in the interpretation (D, ¢').

Rule concerning the description operators

26. p-Introduction

I'3laP
' P*_

uxP

“px P? free for  in P

PROOF OF SOUNDNESS. Assume I' = 3!z P. Let 7 = (D, ¢) be an arbitrary
model of I'. T satisfies “JlaP”. Hence, since it is a logical interpretation,
there exists exactly one u € D, (recall that a is the type of @) such that
the interpretation Z' = (D, ¢'), where ¢' is the assignment which maps z to
u and otherwise coincides with ¢, satisfies P. But then the denotation of
“uxP” in T is precisely u. Since “uxP” is free for ¢ in P, by observation
2 above, the denotation of P}, p in T coincides with the denotation of P in
I'; ie. T satisfies P p. SoT' |= Py, p. O

2.83.7 Soundness and incompleteness

Since each inference rule is sound the inference system itself is sound, i.e.
[+ P implies T = P. It is not complete, however. It follows from Gdédel’s
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incompleteness theorem that no inference system for H.O.L. can be sound and
complete for standard models. Our formal system is, however, equivalent to
the system of Church [10]. (In appendix C the equivalence is stated precisely,
and a sketch of the proof is given.) It follows from this equivalence that the
formal system is sound and complete for general models.

2.3.8 Derived rules for equality

Reflexivity of equality has not been included among the primitive rules of
inference because it is redundant: for a formula A with at least one abstrac-
tion, it is a special case of the rule of a-conversion; for a formula without
abstraction, it can be derived using F (Az,2,)A = A. Symmetry and Tran-
sitivity of equality follow immediately from reflexivity and substitutivity. So
we have the following three derived rules of inference for equality:

'+-A=18B I'+A=B TI'FB=C

FA=A =
T-B=A TUT'F A=C

where T, IV, I are arbitrary theories, and A, B and C are formulas of the
same type.

2.4 H.O.L. as a conservative extension of F.O.L.

2.4.1 First-order formulas

In this section we identify the terms and sentences of traditional F.O. logic
with certain formulas of the typed A-language.

To the constants and variables of F.O.L. correspond the constants and
variables of type ¢, which we shall call the individual constants and variables
(because they denote individuals). From now on we shall often omit the sub-
script ¢ from individual variables, to give them a more traditional appearance.
(This is what the PDS Watson does when writing out formulas. The ¢ sub-
script is not omitted from individual constants because unsubscripted roman
identifiers are used as keywords. But there will be mathematical symbols or
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keywords to stand for most individual constants that we shall use, e.g. @ for
emptyset,.)

An n-ary predicate symbol (n > 1) is a symbol (variable or constant) of
type ooy ...ap, a3 = ... = a, = t, other than the logical constant equal,,,.
An n-ary function symbol (n > 1) is a symbol (variable or constant) of type
L0 Oy O] = = Oy = L

A F.O. term is defined by induction as follows:

1. If sis an individual constant or variable, then the formula “s” is a F.O.
term.

2. If f is an n-ary function symbol, n > 1, and T ... T, are n F.O. terms,
then “f T, ... T,” is a F.O. term.

(More generally, we shall call terms the formulas of type ¢, even if they are
not F.O. terms.) A F.O. sentence is defined by induction as follows:

1. f T and T' are F.O. terms, then “T = T'” (i.e. “equal,, T T") is a
F.O. sentence.

2. If p is an n-ary predicate symbol, n > 1, and T';...T, are n terms,
then “pT, ... T,” is a F.O. sentence.

3. “1” (i.e. “false,”) is a F.O. sentence.
4. If § is a F.O. sentence, then “~8” (i.e. “not,, §”) is a F.O. sentence.

5. If § and §' are F.O. sentences, then “S A §”, “§V §” and “S > §7

are ¥.0. sentences.

6. If Sis a F.O. sentence and x is an individual variable then “VY&S” and
“Jx 87 are F.O. sentences.

(More generally, we shall call sentences the formulas of type o, even if they
are not F.O. sentences.) A F.O. theory is a set of F.O. sentences. A F.O.
formula is either a F.O. term of a F.O. sentence. A context §* is called a
F.O. context when S is a F.O. sentence and @ is an individual variable.

A F.0. vocabulary is a set of predicate symbols and function symbols. In
the rest of this section, V will denote an arbitrary F.O. vocabulary.
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We define a V-F.O. term (resp. sentence, formula) as a F.O. term (resp.
sentence, formula) whose predicate symbols and function symbols are part
of the vocabulary V. A V-F.Q. theory is a set of V-F.O.formulas, and 57 is
a V-F.O. context iff § is a V-F.O. sentence and @ an individual variable.

The F.O. logical constants are the logical constants which appear in F.O.
sentences, i.e. false,, noty,, and,so, OTeee, implies,,,, forall,,,) and exists, ().
The notion of f4-nf provides the following characterization of V-F.O. formu-
las in terms of the free symbols that they contain:

Theorem 2.1 The V-F.O. formulas are the formulas of atomic type in fy-
nf which have no free symbols other than:

1. Predicate symbols and function symbols of V.
2. F.O. logical constants.

3. Individual constants and variables.

PrRoOOF. Let S be the set of symbols consisting of: the symbols of V; the
F.O. logical constants; the individual constants and variables. Then, by
definition B.5, the V-F.O. formulas are the standard formulas of atomic type
generated by S. Therefore, by theorem B.16, they are the formulas of atomic
type in Fv-nf whose free symbols are elements of S. O

2.4.2 First-order inference

Having identified the formulas of F.O. logic with certain formulas of H.O.L.,
the standard natural deduction formulation of classical F.O.L. with equality,
for a given F.O. vocabulary V, consists of the inference rules listed below. The
metavariables occurring in each rule carry with them the following implicit
conditions:

1. T, IV, I'" are V-F.O. theories.
2. A, B are V-F.O. terms.

3. C is a simple V-F.O. context.
4. P, @, R are V-F.O. sentences.
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5. @, y are F.O. variables.

Inference rules:

A. Reflexivity of F.
P+HP

B. Monotonicity of F.
r+pr

Trulr P
C. Substitutivity of equality.

I'+-C[A] T'FA=B C does not capture any
TUT'+ C[B] variable free in I

D. Reflexivity of equality.
FA=A

E. —-Introduction
P+ L

I'--P

F. —-Elimination
THP I -P

TUIk+ L
G. A-Introduction
'+P I''Q
TUI'FPAQ
H. A-Elimination
THFPAQ '-PAQ
'-Q '-Q
I. V-Introduction '
r+-r I'+Q

TFPVQ TFPVQ
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J. V-Elimination
r-pPvaQ I'P-R I'"QFR
TUMUIFR

K. D-Introduction
IPFQ

TFPOQ

L. >-Elimination
r-P>Q ' P

TUlkF Q@
M. Contradiction
I'-PF L
THP
N. V-Introduction
TP free i T
TF VP x not 1ree in
P. V-Elimination
I'-VeP A free § P
F §_ P'jq Tee 10T T 1n
Q. 3-Introduction
T S3apP ee for x in

R. 3-FElimination
I't3JdaeP I, P; FQ vy adequate to P,
TUIl'FQ y not free in IV or Q

We write ' K,r 0. P to indicate that a V-F.O. formula P follows from a
V-F.O. theory I' by the above inference rules.

All these rules can be found among the inference rules of H.O.L. (To be
precise, when considered as relations among sequents, they are restrictions of
H.O.L. rules. Indeed they are all among the primitive rules of H.O.L. listed
in section 2.3.6, except reflexivity of equality which is a derived rule as noted
in section 2.3.8. Hence H.O.L. is an ertension of F.O.L. That is, T' being
a V-F.O. theory and P a V-F.O. sentence, if ' i, . P then I' - P. The

converse 1s also true:
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Theorem 2.2 ((conservative extension)) H.O.L. is a conservative ex-
tension of F.O.L. That is, T being a V-F.Q. theory and P a V-F.O. sentence,
Thro P iffiTH P,

ProoF. See appendix D. O

2.5 Set theory within H.O.L.

2.5.1 The power of set theory within H.O.L.

The reason for stating theorem 2.2 and giving a careful proof of it in ap-
pendix D is that it justifies the development of set theory within H.O.L.
rather than F.O.L. Indeed theorem 2.2 can be applied to any version of set
theory formulated in the framework of F.O.L., T’ being the set of axioms and
V the vocabulary of the theory. For example, ' could be the set of axioms
of Zermelo-Frankel set theory, which we shall call ZF; V would then consist
of the single binary predicate symbol in,,, (with “A € B” as a shorthand for
“n,, A B”). From now on, to make things definite, we shall focus on ZF,
and we shall let ¥V = {“in,,,”}. However, most other versions of set theory
could be used instead of ZF. In section 2.5.6 we discuss the issue of finite vs
infinite axiomatizations.

The combination of ZF and H.O.L. appears to be, at first glance, an
awesome logistic system. Theorem 2.2 tells us, however, that it is not
any more powerful than ordinary ZF within F.O.L.: any set theoretic re-
sult derivable from ZF by higher-order means (i.e. any V-F.O. sentence P
such that ZF F P) is also derivable from ZF within F.O.L. (i.e. is such that
ZF K.ro. P). The F.O. proofis of course likely to be more complicated than
the H.O. proof, and in fact, since the proof of theorem 2.2 is non-constructive,
no means of finding the F.O. proof from the H.O. one are provided. (The
problem of finding a constructive proof is left open.)

A corollary of theorem 2.2 is that ZF (or any other version of set theory)
within H.O.L. is relatively consistent with respect to ZF within F.O.L. If ZF
within H.O.L. were inconsistent then 1 would be provable:

ZF - L
But L would then be derivable from ZF in F.O.L.:
ZF F—V'F.O. _L
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So ZF within F.O.L. would itself be contradictory. Therefore developing ZF
within H.O.L. is safe: no new contradiction can thus be introduced.

In the case study (section 4.3) we shall see how higher-order reasoning
can be used to simplify a proof; and in the conclusion we shall point out
some exciting possibilities which are opened by the availablity of higher-order
means.

But our motivation for developing set theory within H.O.L. was the rep-
resentation of mathematical notations. We already know how to represent
the logical notations (equality, the connectives, the quantifiers and the de-
scription operators) and the notation of set-membership. We shall refer to
these as the primitive notations. We shall now describe our method for
representing additional, non-primitive notations.

2.5.2 Method for representing notations

We begin by showing how the method works on four examples, one for each
class of notations obtained by distinguishing term constructors vs. sentence
constructors, and variable-binding vs. non-variable-binding notations.

1. The notation
{z | P}, (2.8)
where @ is a F.O. variable and P is a sentence, is a variable-binding
term constructor, As anticipated in section 2.1, we consider it as a

shorthand for
set, (o) rxP. (2.9)

The transformation from (2.8) to (2.9) allows us to represent the no-
tation in the formal language, but it does not explain its meaning.
The meaning is expressed by an axiom involving the constant set,,,).
H.O.L. allows us to use an axiom of the form “set,,,) = ...”, namely:

sety(or) = AP isVz(z € s = p,, ) (2.10)

Using this axiom we can “expand” the notation (2.8) as follows. Let ¥
be a theory consisting of (2.10) and other such object-language defini-
tions. Then:

3 b setyo) = ApapisVz(z € s = p,, 2).
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By reflexivity and substitutivity of equality:
SH{z| P} = (ApopusVe(z € s = po, z)) AxP.

We rename 2 (the actual letter “z” used as a variable in the axiom)
to @ (whatever variable is used in the role of the parameter @ of the
notation—observe the boldface), and s (the letter “s” used as a variable
in the axiom) to some variable s (observe the boldface) distinct from
2 and not free in P:

Lk {x|P}=(ApousVe(z € s =p, x)) \xP.
By the rule of B-conversion (and substitutivity of equality):
Sh{z|P}=pusVae(x € s = (AeP)x).
By [-conversion again:
LF{x| P} =pusvVe(e € s = P). (2.11)
In section 2.5.4 we shall use the axiom of extensionality to derive:
ZFUX F 3sVae(x € s= P) D Ve(x € { | P} = P) (2.12)

from (2.11).

. The notation “(V& € E)P”, where @ is a F.O. variable, E a term and

P a sentence, is a variable-binding sentence constructor; it binds & in
P. We represent it by the formula:

forall,(o,), E Az P

(Notice that forall,,,) and forall,,,), are two different constants.) The
constant forall,(,,), is defined by the axiom:

forallyo,), = AeAp,Ve(z € € D p,, ) (2.13)
If £ contains (2.13), by reflexivity and substitutivity of equality:

Yk (Ve € E)P = (Aedp,Ve(z € e D py z)) E AP
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We. rename p,, (if necessary) to a variable P of type or which does
not occur free in E, and we rename e (if necessary) to an individual
variable e other than & and z. Then we rename z to @:

YF (Ve € E)P = (deApVz(z € eDpa)) E P

Now we need to assume that @ does not occur free in E. (If @ is free
in E the notation “(Vo € E)P” is still well defined, but the derivation
is blocked. To proceed with the derivation in that case we would first
rename the bound variable @ in “AxzP?”.) Then, by two steps of /-
conversion:

St (Ve € E)YP =Ve(x € E D (AzP) )
And by another step of F-conversion:

Y+ (Ve € EYP =Va(x € E D P) (2.14)

3. The notation “{A, B}” constructs a term but does not bind any vari-
able. We consider “{ A, B}” as a shorthand for:

enum,, A B.

In this we do not depart from the traditional method of introducing an
additional function symbol, since enum,,, is indeed a binary function
symbol. H.O.L., however, allows us again to provide the axiom defining
the notation in the form “enum,,, = ...”:

enum,, = AzdyusVz(z €Es=z=2Vz=y) (2.15)
If ¥ contains (2.15), by reflexivity and substitutivity of equality:
LH{A,B}=(AzdypsVz2(z €s=z=aVz=y)) AB

We rename s and z to two distinct variables s and 2 which do not
occur free in A or B and are distinct from z and y:

L {A, B} =(AzdypsVz(z€s=z=2Vz=y) AB
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Then, by two steps of S-conversion (after renaming y if necessary):
SH{A,B}=usVz(z€s=2=AVz=B) (2.16)

In section 2.5.7 we shall use the axiom of extensionality and the pair-set
axiom to derive:

Vz(2 € {A,B} =2= AV z = B)

from (2.16).

. Our fourth example is “A C B”. This notation is a sentence con-

structor, but it does not bind any variables. We represent if by the

formula:
subset,,, A B

subset,,, is a binary predicate symbol. Again we can define it by an
equation “subset,, = ...”:
subset,, = AzAyVz(z € 2 D 2 € y) (2.17)
If ¥ contains (2.17):
Y+ subset,,, A B=(Az)yVz(: €z D2€y)) AB

If z is a variable not free in A or B, by a-conversion and f-conversion:

¥ b subset,, A B =Vz(z € AD z € B)

In general, representing a non-primitive notation consists of two steps:
1. Choosing a formula to represent the notation in the formal system.

2. Providing an axiom which captures the meaning of the notation.

Here is a simple recipe for the first step.

The representation of a notation will always be of the form:

c ARG, ... ARG,
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(n > 0) where c is a constant specifically chosen to represent the notation,
the representing constant. When n > 0, ARG, ... ARG, are the arguments
of the representation.

The notation has syntactic parameters, such as z, E, P in “(Vz € E)P”.
Some of these parameters, such as E and P in the example, are formula
parameters, while some, such as @ in the example, are variable parameters.
The notation binds each variable parameter (if any) in a formula parameter;
in the example, the notation binds @ in P. ‘

The collection of arguments ARG}, ... ARG, is derived as follows from
the parameters of the notation. First if there are no parameters then n = 0
and the representation is reduced to the representing constant ¢. The type of
¢ is chosen according to the syntactice role of notation; usually the notation
plays the role of a term; then the type of ¢ is . If there are parameters, then
there is one argument ARG, for each formula parameter. It is constructed
as follows. If the notation binds no variable parameters in the formula pa-
rameter, then ARG, is the formula parameter itself. If the notation binds
one or more variable parameters in the formula parameter, then ARG, is
obtained by abstracting with respect to each of those variables (in arbitrary
order). In the notation “(Va& € E)P” no variable parameter is bound in
the formula parameter E, while the variable parameter  is bound in the
formula parameter P; so the arguments are “E” and “AzP”. Hence the
representation:

forallo(m)L E \xP

which we saw above. For a more complicated example consider the notation
“IA},epyec” (one of those mentioned in section 2.1): B and C do not bind
any variables, while A binds both @ and y; so the arguments are “B”, “C”
and “AzAyA”. Choosing range as the representing constant we obtain
the representation:

enm

Ia'ngeL(LLL)LL BC ()\(B)\yA)

which we proposed in section 2.1.

The type of the representing constant is determined once we have chosen
the ordering of the bound variables in each argument, and the ordering of
the arguments themselves. Indeed the type of ¢ is:

60’1 el Qg
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where i, ... a, are the types of ARG}, ... ARG, and 6 is normally ¢ or
o (according to whether the notation plays the role of a term or a sentence
respectively). The type a; of each argument ARG; is in turn:

eﬁl e ﬁm
(m > 0) where £, ... B are the types of the variable parameters bound
by the notation in the formula parameter from which ARG, is constructed
(usually f; = ... = B = ¢), and 8 is the type of the formula parameter

(6 = ¢ if the formula parameter, 6 = o if the formula parameter is a term).
If the notation binds at least one variable, the type of at least one argument
will be at least 1, so the type of the representing constant will be at least 2,
and thus the notation will be represented by a higher-order constant. In the
usual case where all the bound variables are of type ¢, the order of the type
of the representing constant will be exactly 2.1°

Notice that the recipe works correctly even for the primitive notations:
it can account for the internal representation of equality, the logical connec-
tives, the quantifiers (including the quantifiers for higher-order types), the
description operators (4 being a higher-order type for a higher-order descrip-
tion operator), and the set-membership notation.

The second step is more difficult. All that can be said in general is that,
if ¢ is the constant chosen to represent the notation, the axiom defining the
notation is of the form “c = A”. There is of course no recipe for composing
the right-hand side A. However, if help is needed, we can turn to Bourbaki
[9]. Indeed, ezpanding a notation as we have done in the four examples above
(by replacing the constant representing the notation with its definition, then
converting to A-nf) results in the Bourbaki-style expansion of the notation,
except that Bourbaki uses a selection operator rather than our description
operator p. In most definitions where Bourbaki uses his selection operator,
the operator is in fact applied to a definite description, and so a description

15Notice that the notation may require a higher-order constant even when it does not
bind any variable. This the case when one of the arguments is of type o, given that we
have somewhat arbitrarily assigned the order 1 to the atomic type o. For example the
term constructor: “if P then A else B" requires a higher-order representing constant, say
Hlou.:

“{ P then A else B" for “if,,, PAB”



2.5. SET THEORY WITHIN H.O.L. 49

operator would do as well. (A notable exception is Bourbaki’s definition of
cardinality.) In those cases, it is a simple matter undo the conversion to f-nf
and obtain, from Bourbaki’s definition, a definition “c = A” of the constant
which represents the notation in our formal system.

2.5.3 Eliminability of notations from proofs

We have extended our formal system from ZF within F.O.L. to ZF within
H.O.L. to be able to accomodate notations. We have justified the move by
showing that the extension is conservative. Introducing notations does not
require any further extension of the language of the formal system, since
the constants used to represent the notations, as identifiers in roman font
subscripted by types, are already constants of H.O.L. However the azioms
defining those constants do extend the formal system, and we need to show
that the extension is conservative. That is, we need to show that notations
are eliminable from proofs.

An (object language) definition of a constant ¢ is a sentence of the form
“c = A”, where A is a formula which contains no free occurrences of vari-
ables, and no occurrences of ¢. Given a set of definitions, the definition
graph is the graph of the relation “is defined in terms of”. That is, a pair of
constants (¢, ¢') is an element of the definition graph iff there is a definition
“c = A” where ¢’ occurs in A. A set of definitions ¥ is an abbreviation
system iff:

1. No constant has two definitions in X.

2. The definition graph of ¥ is a noetherian relation, i.e. it has no infinite
chains (see definition B.3 in appendix B, page 185).

3. No logical constant has a definition in X.

Notice that it is not sufficient to say that there are no cycles in the graph. For
example, consider the infinite family of notations “{A;,..., 4,}”, (n > 1)
and the constants which represent them, say enum,, enum,,, enum,,, etc.
Obviously, each constant, of arity n, could be easily defined in terms of the
constant of arity n + 1. Although such definitions would have an acyclic
graph, they would not constitute an abbreviation system, because the graph
would have an infinite chain.



50 CHAPTER 2. FORMAL SYSTEM

Given an abbreviation system X, the X-expansion of a formula A is the
result of starting with A and repeatedly replacing occurrences of constants
defined by ¥ with their definientia until there are no such occurrences left.
If A'is the ¥-expansion of A:

SHA=A (2.18)

Notice that this is not quite the same notion of “expansion of a notation”
that we have seen informally above. The former notion involved a conversion
into B-nf. We shall say that A’ is a £3-expansion of A iff it is a [-nf of the
Y-expansion of A. We shall say that A’ is a £87-ezpansion of A iff it is a
By-nf of the Y-expansion of A. Clearly (2.18) still holds in these cases.

Theorem 2.3 If ¥ is an abbreviation system which does not define any
constant occurring in T, and if P is a sentence which contains no occurrences
of constants defined in L, thenTUX F P iff T+ P.

Proor. Let I = ((A;, Q;))1<i<n be a proof of T UX + P. For every ¢,
1 < i < n, let Al be the set of T-expansions of the axioms of A; — ¥; and
let Q! be the T-expansion of Q. Let II' = ((Al, @!))1<i<n; we shall refer to
the pairs (A!, @}), 1 < i < n, as the lines of I', even though II' may not be
a proof.

Suppose that line 7 of II follows from previous lines by a rule of inference
other than 1, 8, 13, 14, 16 or 21. (Rule 1 is reflexivity of - (i.e. P I P), and
rules 8, 13, 14, 16, 21 are those that discharge assumptions.) Then line ¢ of
II' follows from the corresponding lines of II' by the same rule.

Suppose that line i of II follows by 8, 13, 14, 16 or 21 from previous lines,
one of which is line j from which a formula R is being discharged. If R
happens to be an axiom of ¥, then its Y-expansion may not be part of the
hypotheses of line j of II’; but then a new line can be derived from line j
of II' by adding the missing hypotheses, with rule 2 as justification; the new
line can be used instead of line j when justifying line 7 of II'.

Suppose that line 7 of I is ({@;},Q,) (ie. Q; F @,). If Q, is not an
axiom of ¥, then line 7 of I’ is ({Q!}, @!), which is justified by rule 1. If
Q; is an axiom of ¥, then line 7 of Il' is (§, @!). But then Q, is “c = A”,
and ¢ and A have the same S-expansion A'. Therefore Q! is “A' = A”.

H
Reflexivity of equality is not a primitive rule of inference in the system, but
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it can be derived, as we saw at the end of section 2.4.2; so line 7 of II' can be
proved.

Therefore by inserting additional lines and proof fragments, II' can be
made into a proof. The last line of I is (I' UX, P), where neither P nor the
axioms of T' contain any occurrences of constants defined by ¥. Therefore
the last line of Il is (T', P); hence:

r'-~p.

0

In particular, let T' = ZF, let ¥ be an abbreviation system which does not
define in,,,, and let P be a F.O. sentence containing no non-logical constants
other thanin,,,. f ZFUX F P then ZF + P, and by theorem 2.2, ZF K, ¢, P.

2.5.4 Some axioms and notations of ZF
Extensionality

Most axioms of ZF assert the existence of certain sets, the uniqueness of
which follows from the axiom of extensionality. The basic notations of ZF
denote those sets. We are now going to review the axioms of ZF and show how
each basic notation can be represented in our formal system by a constant
and an axiom defining it. We begin with Extensionality, Empty-set, and
Replacement.

Extenstonality.

VaVy(Vz(z Ez =2 €y) Dz =y) (2.19)

The use of (2.19) in connection with notations defined in terms of the
description operator can be illustrated with “{@ | P}”. This notation was
introduced in section 2.5.2, page 43, where we proved (2.11) and promised
to prove (2.12) using the axiom of extensionality.

The existence of a set s such that “Vz(z € s = P)” for an arbitrary
sentence P does not follow from the axioms of ZF if ZF is consistent; so it
is an explicit condition in (2.12). The proof of (2.12) is as follows. Let R be
the formula “Ve(x € s = P)” and let t be a variable distinct from s and @
and not free in P. Then R} is “Va(z € t = P)” and we have:

RAR, F Ve(r€s=P)AVe(xet=P)
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RAR; + Ve(zes=P)
RAR, F Vae(zet=P)
RAR; F Ve(zes=wxet)

Hence by the axiom of extensionality:

ZE,RAR: + s=t
ZF - RAR Ds=t
ZF F VsVi(RAR; Ds=t)

By rule 22 (-introduction):
ZF + IsR
l.e.
ZF + lsVe(x € s = P)
Let Q be the existence assumption “JsVa(z € s = P)”.
QF JsVe(z € s = P)
By rule 24 (3!-Introduction):
ZF,Q  sVa(x € s = P)
By rule 26 (u-Introduction):
ZF,Q +Va(z € usvVe(z € s = P) = P)

Then by (2.11) (which asserts that “{@ | P}” is equal to its £-expansion
“usVe (e € s = P)”):

ZFUZ, Q+Ve(z e {z| P} =P)

From this we obtain (2.12) by discharging Q.
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Empty-set
The Empty-set axiom asserts the existence of a set with no elements:
IsVz—(z € s)
On the other hand, by Extensionality, we know there is at most one such set:
ZF FlsVz—(z € s)

Hence

ZF b 3lsVz—(z € s).
By p-Introduction:

ZF F Vz—(z € usVz—(z € s)) (2.20)
We introduce the notation
“P” for “emptyset,”

with the definition:
emptyset, = usVz—(z € s). (2.21)

If ¥ contains (2.21), from (2.20) and (2.21):

ZFUS F Va—(z € 0).

Replacement

A formula is an instance of the axiom schema of replacement iff it is of the

form
Vzi1...Vz,( VeVyVu(P APY Dy =u) D (2.22)
VedsVy(y € s = Jz(z € e A P)))

where:
1. @ and y are distinct individual variables,
2. P is a V-F.O. sentence,

3. z21...%z, are the individual variables other than @ and y which occur
free in P,
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4. u is an individual variable other @ and y which is adequate to P, and

5. e and s are distinct F.O. variables, other than @ and y, which do not
occur free in P.

We shall refer to P as the parameter of the axiom schema.

Replacement has two important special cases. The first one is obtained
by taking P of the form “y = @ A Q@”, where @ is a V-F.O. sentence with
no occurrences of y (of any kind). After simplification we get:

ZF F Y2y ... Vz,(VedsVy(y € s =y € e A QY))

Nothing prevents us now from calling @ what we have been calling y, and
P what we have been calling Q7. We recognize then the theorem schema of
separation:

ZF FVz,...Vz,VedsVe(e e s=ax €e A P) (2.23)

where the conditions are as follows:
1. @ is an individual variable,
2. P is a V-F.O. sentence,

3. z1...2z, are the individual variables other than @ which occur free in
P,

4. e and s are distinct F.O. variables, other than @, which do not occur
free in P.

We shall refer to P as the parameter of the theorem schema.
Separation allows us to introduce the notation “{@ € E | P}”, where @
is an individual variable, E a V-F.O. term, and P a V-F.O. sentence. We

represent it as:

subset,o,), E Az P.

(Notice that subset,,), is a different constant from the constant subset,,
which we used to represent the notation “A C B”.) We define subset,,,)
with the axiom:

subset,(o,), = AeApo,usVe(z € s =2 € e Ap,, z) (2.24)
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Let ¥ be an abbreviation system containing this definition. Assume @ is not
free in E, and let s be a F.O. variable other than @ which does not occur
free in E or P. Then by substitutivity of equality and conversion:

SH{z€eE|P}=pusVe(zcs=axc EAP) (2.25)
By rule 14 (V-Elimination) applied to Separation (2.23):
ZF \- sV (z € s=x € E A P)
and by Extensionality:
ZF HsVe(e e s=ax € ENAP)
Therefore by rule 24 (3!-Introduction):
ZF + 3lsVe(e € s=x € EAP)

And by rule 26 (u-Introduction), followed by substitution of the left-hand
side of (2.25) for the right-hand side:

ZFUSHVe(ze{e € E|P}=xzc EAP). (2.26)

The second special case of Replacement is obtained when P is of the form
“y = A”, where A is a V-F.O. term having no free occurrences of y. After
simplification we obtain the following theorem schema:

ZF - Vz;...Vz,VedsVy(y € s=Fz(r € e Ay = A)) (2.27)
where the conditions are as follows:
1. @ and y are distinct individual variables,
2. Ais a V-F.O. term having no free occurrences of y,

3. z;...2, are the individual variables other than & which occur free in
A,

4. e and s are distinct indidvidual variables, other than & and y, which
do not occur free in A.
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We shall refer to A as the parameter of the theorem schema.

This theorem schema allows us to introduce the notation “{A},ecg” (“the
set consisting of everything of the form A for @ € E”), where A and E are
V-F.O. terms, and @ is an individual variable. We represent it by:

range,,,), £ Az A.
with range,,,), defined by:
range,,), = AeAa, usVy(y € s=3a(z €e ANy =a, ) (2.28)

Assume that @ is not free in F, and let s, y be distinct individual vari-
ables, other than @, which do not occur free in E or A. If ¥ contains
definition (2.28), by substitutivity of equality and conversion:

CH{A},er = psVyly € s=3x(z € e ANy = A)) (2.29)
Then by extensionality and theorem schema (2.27):

IZFUSFYy(y € {A}rer =3x(x € e Ay = A)). (2.30)

2.5.5 The axiom schema problem

In the statement of the axiom schema of replacement we were careful to
specify that the parameter P must be a V-F.O. formula. The reason for
this restriction is clear: otherwise we would be allowing instances of the
schema which are not V-F.O. sentences and therefore cannot be axioms of
ZF. In moving from ZF within F.O.L. to ZF within H.O.L. we have enriched
the logical framework, but we do not wish to change the set of axioms of the
theory ZF, since the resulting formal system might not then be a conservative
extension of the original one.

The restriction is not an unimportant one. Formulas containing mathe-
matical notations (other than the notations for set-membership, F.O. quan-
tification, and the logical connectives) are not V-F.O. formulas; therefore, in
principle, they cannot be used as parameters of Replacement (2.22), Separa-
tion (2.23) and theorem schema (2.27), arid they cannot be used in the role
of P in (2.26) or in the 1ole of A4 in (2.30). But Replacement and Separation
are essential in set theoretic arguments; if we were to actually rule out the use
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of mathematical notations in such contexts we would render the notations
practically useless, and we would be going against mathematical practice.

Fortunately, if a sentence P’ is logically equivalent to a sentence P (un-
der hypotheses having no free variables), then by substitutivity of equality
(equivalence, in this case), P’ can be used instead of P. And if a term A’ is
equal to A, it can be used instead of A. We thus have to show that formulas
(terms or sentences) containing mathematical notations are equivalent to V-
F.O. formulas; in other words, we have to show that notations are eliminable
from formulas.

It should be noted that notations would not be eliminable if we defined
them in terms of a selection operator instead of the description operator.
A selection operator could be easily added to our system, as a family of
constants select 4(oq) With the notation “exP” for “selectq(oa) A2 P” and the
rule of inference:

27. e-Introduction

't dzP . . )
m cx P” free for  in P

The resulting system, ZF within H.O.L.+¢, would still be a conservative
extension of ZF within H.O.L. But if we allowed occurrences of the selection
operator in the parameter of Replacement, either directly or indirectly by
allowing notations defined in terms of it, we would strengthen the system.
In particular the axiom of choice would become provable.!® (It follows from
Replacement by letting the parameter P be the sentence

y = (z,¢e2(z € z))

with 2z and y in the roles of @ and y.) This is precisely what happens in
Bourbaki’s system (recall section 1.5.2).

Notice that no harm is done by adding the selection operator to the sys-
tem, as explained, as long as it is not used in the parameter of Replacement.
The presence of the selection operator is equivalent to the type theoretic ax-
iom of choice [2]. It is interesting to note that in our formal system there
is room for both the set theoretic axiom of choice, and its type theoretic
counterpart. We have the option of using none, both, or either one.

16Tt is not provable in ZF if we assume that ZF is consistent.
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Versions of set theory which distinguish between classes and sets are
finitely axiomatizable. The axiom schema problem does not go away in
those systems. Although there is no aziom schema of replacement, there is
a theorem schema of class existence [40, proposition 4.4] which gives rise to
the same difficulty.

2.5.6 Eliminability of notations from formulas

In fact, notations defined in terms of the description operator are not elim-
inable from formulas in the system that we have so far.!” But they are
eliminable in the slightly stronger system obtained by adding the following
additional introduction rule for p, which covers the case when unique exis-
tence does not hold, by stipulating that yx P is then the empty set. (Notice
that this rule is only for the description operator the,,); we need no addi-
tional introduction rule for the,(,,) when a is other than ¢.)

26a. p-Introduction-bis

I't-3leP
I'F Ve-(x € yaxP)

x individual variable only

From now on we shall write I for the deducibility relation in this stronger
system.

The following theorem states that the stronger system is a conservative
extension of F.O.L. in the presence of ZF.

Theorem 2.4 Let T be ¢« V-F.O. theory and P a V-F.O. sentence. If
TUZF+ P

then
TUZF Ko P

17 . since our description operator is even more inderminate than the selection oper-
ator. That is, if the description operator was eliminable, it would also be eliminable in
the stronger system obtained by turning it into a selection operator (instead of adding a
separate selection operator). But then the selection operator could be used in the para-
mater of Replacement without strengthening the system, which is not the case, assuming
the consistency of ZF.
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PROOF. An interpretation with empty set is an interpretation (D, ¢) (in the
H.O. sense of section 2.3.4) with domain of individuals D, = M such that
#(in,,,) is a function f € D,,, for which there exists a unique z € M such
that, for every 2 € M,
fa)(z) = .

The unique element z is called the empty set in the domain of individuals of
the interpretation. A logical interpretation with empty-set default is a logical
interpretation with empty set where the denotation of the,,) is a function
g € D,(o,) Which maps to the empty set z every function h € D,,, which takes
the value T on zero or more than one individuals of M.

Clearly, the system obtained by adding rule 26a is sound for logical in-
terpretations with empty-set default. That is, if I' - P with the new sense
of -, and-Z is a model of ' with empty-set default, then 7 satisfies P. It is
also clear that any V-F.O. interpretation which is a model of ZF in the F.O.
sense has a H.O. extension with empty-set default.

The proof then proceeds as the proof of theorem 2.2 given in appendix D.
Assume TUZF + P where I' is a V-F.O. theory and P is a V-F.O. sentence.
Let Z be a V-F.O. interpretation which is a model of T' U ZF. Since 7 is
a model of ZF it has a H.O. extension J which is a logical interpretation
with empty-set default. By lemma D.3, J is a H.O. model of T U ZF. By
the soundness of the new inference system for logical interpretations with
empty-set default, J satisfies P, in the H.O. sense. By lemma D.3 again,
7 satisfies P in the F.O. sense. Thus every V-F.O. interpretation which is
a model of T U ZF satisfies P, i.e. I UZF | P. By the completeness of
F.O.L. (theorem D.1), TUZF K50 P. D

The following theorem states that notations are also eliminable from
proofs in the stronger system.

Theorem 2.5 If ¥ is an abbreviation system which does not define any con-
stant occurring in a theory T', and which does not define in,,,, and if P 1s
a sentence which contains no occurrences of constants defined in T, then
TUZSHPIfTE P.

PROOF. Assume I'UX F P, and let II be a proof of the sequent (T UX, P).
We construct II' as in the proof of theorem 2.3 given above. If line ¢ of II
follows from previous lines by rule 26a, of by a rule of inference other than
1, 8,13, 14, 16 or 21, then line ¢ of II' follows from the corresponding lines of
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II' by the same rule. This is because in,,, is not one of the constants defined
by X. The proof then proceeds as the proof of theorem 2.3. O

Now we show that notations are eliminable from formulas in the stronger
system.

The residual vocabulary of an abbreviation system X is the set of constants
occurring in ¥ other than those defined by X. A set-theoretic abbreviation
system is an abbreviation system whose residual vocabulary consists only of
F.O. logical constants, in,,,, the,,) and individual constants. A p-sentence is
a sentence with no occurrences of constants other than the F.O. logical con-
stants, in,,,, the,,) and individual constants, and with no free occurrences of
variables other than individual variables. Given a set-theoretic abbreviation
system T, a $-sentence (tesp. a L-term) is a sentence (resp. a term) with no
occurrences of constants other than constants defined by ¥, F.O. logical con-
stants, in,,, the,,) and individual constants, and with no free occurrences
of variables other than individual variables.

Lemma 2.6 Given a set-theoretic abbreviation system X, for every L-sentence
P there exists a p-sentence P' such that

SFP=P

PROOF. The Z-expansion of a formula does not change the variables which
occur free in the formula, it removes any constants defined by ¥ which occur
in the formula, and it adds only constants which are part of the residual
vocabulary of ¥. Therefore the -expansion of a E-formula is a p-formula.
So for P’ we can simply take the L-expansion of P. O

Lemma 2.7 For every u-sentence P in 3y-nf there erists a V-F. Q. sentence
P’ such that
ZF-P =P

ProoF. Let P be a p-sentence in fy-nf having an occurrence of the,,).
By lemma B.13, page 198, P has a subformula of the form “ux@”, where
z is an individual variable and @ is a sentence. Furthermore, if we choose
“ux@” to be an innermost such subformula, then @ has no occurrences of
the,o,) (since Q itself is a y-sentence in F4-nf).

Since “ux@” has an atomic type (namely, ¢), by lemma B.14, P has a
subformula of the form “s A; ... A,” where s is a symbol of n-ary type
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barn .. .aq and for some i, 1 < 7 < n, A;is of the form “Ay,... Ay, pzQ”.
But then «; is of the form ¢f3,,...5;. By lemma B.15 the bound variables
of P are of type ¢, so 8 must be a free symbol of P; therefore s must be:
a F.O. logical constant, the symbol ,,,, the symbol the,,), or an individual
constant or variable. The only such symbols that have a type of the form

are equal,, and in,,,. Therefore P must have a subformula R of one of the
- following forms (A being a term):

A=pzQ
prQ = A
AcpzeQ
HeQ € A

In other words, R is a formula C[u@ @], where C is a context of one of the
forms (“A = u”, u), (“u= A", u), (“A €u”,u), or (“u € A”,u), where u
is a variable which does not occur free in A.

Let then R’ be the formula:

Iy ((FzQ D Q;) A (—3zQ D Vz(—z € y)) AC[y])

where y is an individual variable not free in A and adequate to Q*, and z
is an individual variable distinct from y. Clearly, using rules 26 and 26a:

ZF+-RDOR'

Using again rules 26 and 26a, together with the axiom of Extensionality of
ZF:

ZF+ R' D R.

Hence:

ZF-FR=R.
And if P, is obtained from P by substituting R’ for R, then:

ZF-P=P,.
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P, is a u-sentence in Bv-nf having one fewer occurrence of the,,,) than P.
Therefore there exists a formula P’ which has no occurrences of the,(,,), is a
p-sentence in Sv-nf, and is such that

IZF-P =P

But a p-sentence in S4-nf having no occurrences of the,(,,) is, by theorem 2.1,
page 39, a V-F.O. sentence. O

Theorem 2.8 (Eliminability of notations from formulas) IfX is a sei-
theoretic abbreviation system, for every L-sentence P there exists a V-F.Q.

sentence P' such that
ZFUS P =P

ProOOF. By lemma 2.6 there exists a u-sentence @ such that - P = Q. Q
has a 3y-nf Q' (af3y-CONVERSION, page 24). Every symbol which occurs
free in Q' also occurs free in Q; therefore Q' is also a p-sentence. Then
by lemma 2.7 there exists a V-F.O. sentence P’ such that - Q@' = P'. By
transitivity of equality (equivalence, in this case), L+ P = P'. O

Now, given a set-theoretic abbreviation system X, if R is a formula which
would be an instance of Replacement, except for the fact that the parameter
P is a S-formula rather than a V-F.O. formula, it follows from theorem 2.8
by substitutivity of equality (equivalence in this case) that:

ZFUX F R.

So we can use the constants defined by ¥, and the notations that they rep-
resent, in the parameter of Replacement. And therefore we can also use
them in the theorem schema of Separation (2.23), in the second special
case of Replacement (2.27), and in the characterizations of the notations
“lz € E| P} (2.26) and “{A},cs” (2.30). More precisely, we have:

ZFUX FVz,...Vz,VedsVe(z €es=z € e A P)

where the conditions are as in (2.23) except that P is now any X-sentence,
Y. being a set-theoretic abbreviation system;

ZFUX FVz;...Vz,VedsVy(y € s=Fx(x € e Ay = A))
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where the conditions are as in (2.27) except that A is now any X-term, ¥
being a set-theoretic abbreviation system;

ZFUZHFVe(z e{z e E|P}=xc EAP)

as in (2.26), except that P is now any Y-sentence, ¥ being a set-theoretic
abbreviation system including equation (2.24), the definition of subset,,);

and
IFUS FVy(y € {A}ser =32(z € EAy = A))

as in (2.30), except that A is now any X-term, ¥ being a set-theoretic ab-
breviation system including equation (2.28), the definition of range,,,y,.

2.5.7 Other axioms and notations of ZF

We now give the remaining axioms of ZF, and show how we formalize a few

basic notations associated with them. In this section ¥ is a set theoretic

abbreviation system including all the definitions introduced in the section.
Pair-set aziom.

VaVydsVz(z €s=z=aVz =y)
This axiom gives rise to the notation
“{A, B} (A,B: terms) for “enum,, A B”
with the definition
enum,, = AzdyusVz(z €s=z=aVz=y)
The expansion of the notation gives:
Y+{A B} =usVz(z €s=2=AVz=B)

where 8, z are distinct individual variables which do not occur free in A or
B. Then, by the Pair-set axiom and Extensionality:

ZFUTSFVz(2€{A,B}=z=AVz=B).

There is also:
“{A}” (A: term) for “enum,, A”
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with the definition
enum,, = Az({z, z2})

from which:
LH{A} ={A, A}

Union aziom.
V23sVz(z € s=3y(z € yAy € z))
It gives rise to the notation:
“WA” (A: term) for “union, A”
with the definition:
union,, = AausVz(z € s = Jy(z € y Ay € 2))
Expanding the notation we get:
SHJA=psVz(z€es=y(z €y Ay € A))

where s, z and y are pairwise distinct individual variables which do not
occur free in A. By Extensionality and the Union axiom:

ZFUSFVz(z €| JA=Ty(z € yAy € A))
We have also two related notations:
“AUB” (A,B: terms) for “union,, A B”

with the definition:
union,,, = AzAy({_{z,y})

from which:
T+ AUB=J{A,B}

and:
“Upep A” (x: variable; B, A: terms) for “union,,,) E Az A”
with the definition:

union,(,,), = )\e)\aLL(U{au z}ree)
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which can also be written, in fully formal notation:
union,(,,), = AeAa, (union, (range,,,), ¢ Az(a, z)))

From this definition we get:

U Aa=U{Aes)

z€E

Power-set aziom.
V23sVy(y € s =Vz(z € y D 2 € z)) (2.31)

The axiom becomes more readable if we introduce the C notation, as ex-
plained in section 2.5.2:

VzIsVy(y € s=y C z) (2.32)

Formula (2.32) is not a V-F.O. sentence, so it cannot be an axiom of ZF; but
it is a theorem of the theory ZF U %:

ZFUZ F Va3sVy(y € s =y C a).
The power-set axiom gives rise to the notation:
“P(A)” (A: term) for “powerset,, A”
with the definition:
powerset,, = AzusVy(y € s =y C z).
Expanding the notation we get:
T FPA)=psVyly e s=y C A)

where s and y are distinct individual variables not free in A. And by Ex-
tensionality and Power-set:

ZFUTHFVy(y e P(A)=y C A)
Aziom of Infinity. It is traditionally given as:
Js(@ € s AVz(z € s D2 U {z} € s)). (2.33)

But of course this is not a V-F.O. formula, so it cannot be an axiom of ZF.
The real axiom is the formula obtained by
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1. Computing the X-expansion of (2.33).
2. Converting to f~-nf.

3. Eliminating the occurrences of the,,,) as explained in the proof of
lemma 2.7.

(2.33) is then a theorem of ZF U S
ZFUZF 3s(P € sAVz(z € s Dz U{z} € 3)).
Agiom of Foundation.
Ve(=(z =0) D Jy(y e s Ayna =0)) (2.34)

Again, the real axiom is obtained from (2.34) by eliminating the abbrevia-
tions.



Chapter 3

A rewriting system for the
translation of notations

3.1 A customizable surface language

The distinction between surface language and internal representation opens
up the possibility of allowing the user to customize the surface language.
This is important because mathematicians like to choose or invent their own
notations, and it is desirable that a PDS allow them to do so. Even more
importantly, what set of notations is “good” depends on the domain or even
the problem at hand. The favorite mathematical notations, e.g. “A + B” or
“A-B” or “A — B” are reused with different meaningsin different contexts.
Watson has been conceived as a general purpose PDS for mathematicians and
engineers. Since it is not known what problems it will be applied to, it is not
possible to design an optimal set of notations; so it is best to allow the user
to specify his/her own notations.

As we shall see, Watson is very flexible in this regard. It is easy to switch
from one set of notations to another. Definitions of theories, statements
of theorems and lemmas, and proofs of results can be kept in a library in
external format and internal format (or only in one of the formats, the other
format being easily produced). Different surface languages can be used within
the same library, while the common internal representation makes it possible
to use results independently of the surface language in which they are stated.

But if the surface language is to be customizable, there must be an easy,

67
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declarative way of specifying mathematical notations. And the front-end of
the PDS cannot simply consist of an ad-hoc parser and pretty-printer; it must
be able to deal with an entire class of surface languages. In this chapter we
are going to present a simple syntactic theory of one-dimensional mathemat-
ical languages, within which notations can be specified as rewrite rules and
translation can be accomplished by rewriting. (We say “one-dimensional”
languages because we shall not handle two-dimensional aspects of notations,
such as subscripts, superscripts, fraction bars, etc. An alternative linear
syntax will have to be specified instead.)

3.2 Labeled expressions and patterns

The fact that expansion of shorthands is some form of rewriting is infor-
mally obvious. To translate “{@ | P}” into “set,,,) A@P” one looks, within
a given expression, for a subexpression of the form “{@ | P}”; one notes
which variable plays the role of @, and which sentence plays the role of P;
then one constructs the expression “set,(,,) A P”; finally one substitutes the
constructed expression for the original subexpression.

The problem in making this more precise is that the theory of rewriting
systems has been developed for algebraic languages, i.e. for languages whose
expressions are F.Q. terms (hence the phrase “term rewriting system”). We
need a theory of rewriting for much richer languages. The language for
internal representation is the language of H.O.L., of which F.O.L. is a “small”
subset, and F.O. terms are only a “small” subset of F.O.L. The surface
language is, in some sense, even richer, since it involves all kinds of variable
binding constructs.

In extending the notion of rewriting to these richer languages, one has
to be careful. For example, “@ € y” normally rewrites to “in,,,  y”; but it
would be wrong to perform the rewrite within

{zxey| P} (3.1)

This is because, in (3.1), “@ € y” is not a sentence, it is only part of a
larger construct. This of course can only be seen after parsing the entire
expression. It seems therefore that the tranlation process should consist of
two steps: first, a syntactic analysis, then a series of rewrites.
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Since there are two steps, there must be an intermediate form: the result
of the analysis, to which the rewrites are applied. The result of the analysis
must specify the boundaries of the subexpressions, and their syntactic cat-
egories. We are going to restrict our attention to the style of mathematical
notation in which groupingis accomplished exclusively by parentheses. Then
the result of the analysis can be shown by adding parentheses around every
subexpression which does not have them yet, and annotating each pair of
parentheses with a phrase marker, or label, indicating the syntactic category
of the subexpression. Conversely, given such a labeled expression, the cor-
responding unlabeled expressions are obtained by erasing the markers, and
then suppressing zero, some or all the pairs of parentheses.

We shall place each marker immediately to the right of the opening paren-
thesis enclosing the corresponding subexpression. The markers are additional
symbols to be introduced besides the ordinary symbols of the language. We
shall refer to them as non-terminal symbols and to the ordinary symbols
of the language as terminal symbols. This is by an analogy with the the-
ory of context-free languages and grammars which will be made precise in
section 3.5. It should be noted that parentheses are neither terminal nor
non-terminal symbols. They form a category of symbols by themselves, the
delimiters.

In the typed A-calculus, we distinguished in section 2.3.2 between the
proper symbols (the constants and the variables) and the single improper
symbol ). They are all terminal symbols. As non-terminal symbols we shall
use FML, and VAR, for every type a: FML, will be used as a marker for the
formulas of type a; VAR, will be used for binding occurrences of variables,
that is, in “AzA”, where « is a variable of type «, we shall consider “@” as a
subexpression of syntactic category “vaR,”. (The reason for the distinction
between FML, and VAR, is that an occurrence of A can be followed by a
variable only, rather than by a subformula.) So, for example, the result of
parsing the expression

Az, (o, 2.)
is:
(FML,, ) (VAR, z,) (FML, (FML,, p,.) (FML, ,))).

For the surface language we shall use the same terminal and non-terminal
symbols as for the typed A-language, plus some additional ones. (It should
be noted that the surface language consists of shorthands for the formal
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language, but these shorthands are optional: the user can use the formal
expressions instead. Also, there are expressions in the formal language which
cannot be expressed by shorthands—more on this in section 3.4.4. Therefore
the formal language must be considered part of the surface language.) As
additional terminal symbols we shall use:

1. Miscellaneous mathematical symbols such as “v”, “€”, “U” etc.

2. Unsubscripted roman identifiers used as keywords. For example, in the
case study, section 4.3, we shall write “V low” (where V is a term
denoting a voltage level) for “low,, V", and “norD D' S §'S§"” (where
D and D' are terms denoting delays, and §, S’ and §” are terms
denoting signals) for “nor,,,, D D' S 8 §"7; “low” and “nor” are
keywords, while low,, and nor,,,,,, are constants. Keywords will also be
used instead of symbols which are not available (and cannot be imitated
by a concatenation of other symbols) in the computing environment of
Watson.

3. Unsubscripted italic identifiers used as surface versions of variables of
type ¢.

We shall use additional non-terminal symbols for the surface language only
rarely. The non-terminal symbols of the typed A-language are sufficient for
most purposes; for example, the surface language expression

{r. €y |2 €}
shall be analysed as:
(FML, { (VAR, ) € (FML, y) | (FML, (FML, 2) € (FML, z)) }). (3.2)

When we do use additional non-terminal symbols, they shall be identifiers in
small-caps font, some of them subscripted by type expressions.

The reason why we write the markers immediately to the right of the
opening parenthesis is that the resulting labeled expressions are strikingly
similar to algebraic terms, the markers playing the role of algebraic function
symbols, and the terminal symbols playing the role of algebraic constants.
These algebraic terms are many-sorted, the sort of a term being simply the
syntactic category of the expression, i.e. the marker following the opening
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parenthesis, i.e. the top level algebraic function symbol. The analogy with
sorted algebraic terms is not perfect, since function symbols and sorts are
identified, but it is good enough to allow the theory of algebraic term rewrit-
ing to carry over.

In this analogy between labeled expressions and algebraic terms there is
nothing yet corresponding to the algebraic variables, so labeled expressions
are the equivalent of ground terms. Let us then introduce pattern-matching
variables, materialized as identifiers in italics subscripted by non-terminal
symbols, to play the role of algebraic variables. The subscript of a pattern-
matching variable is its sort: if a pattern-matching variable is subscripted
by a non-terminal IV, it can only “match” labeled expressions of sort IV,
i.e. labeled expressions whose top-level label is IN. The pattern-matching
variables should not be confused, of course, with the variables of the typed
A-language, which are terminal symbols. When there is no risk of confu-
sion between the two kinds of variables, we shall refer to pattern-matching
variables simply as variables.

We shall call patterns the generalization of labeled expressions obtained
by allowing pattern-matching variables as “arguments” of the labels/funtion-
symbols. For example,

(FML, { 2ysp, € (FML, ¥) | Pear, })-

is a pattern which “matches” the labeled expression (3.2) displayed above,
with 2y,z, matching
(VAR, z)

and Py, matching
(FML, (FML, z) € (FML, z)).

The labeled expressions are then the ground patterns, i.e. the patterns with
no occurrences of pattern-matching variables.

Formally, a pattern is defined inductively as a string, or sequence, of
symbols consisting of: (i) a single pattern-matching variable; or (ii) a left-
parenthesis, a non-terminal symbol, an arbitrary number (zero or more) of
terminal symbols or (sub)patterns, and a right-parenthesis. The sort of the
pattern is: in case (i), the sort of the pattern-matching variable; and in case
(ii), the non-terminal symbol which follows the opening left-parenthesis. A
proper subpattern of a pattern A is a subpattern of A other than A itself.
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We shall refer to a string consisting of a single pattern-matching variable
as a variable pattern, and to any other pattern as a non-variable pattern.

Observe that a string consisting of a single terminal symbol is not a
pattern, and a that a terminal symbol does not have a sort. This is another
(also unessential) difference with an algebraic language, since non-terminal
symbols play the role of algebraic constants in the analogy, but algebraic
constants do have sorts in a many-sorted algebraic language.

Alternatively, algebraic constants could be considered to be algebraic
function symbols of arity 0. They would then correspond, in the analogy,
to non-terminal symbols followed by zero terminal symbols or patterns; i.e.
they would correspond to patterns consisting of a left-parenthesis, followed
by a non-terminal symbol, followed by a right-parenthesis. Then the terminal
symbols would have no counterpart in the correspondance.

A substitution (for pattern-matching variables) is a function whose do-
main is a set of pattern-matching variables, such that the image of each
variable (its substitution value) is a pattern of same sort as the variable. To
apply a substitution @ to a pattern P is to replace the occurrences in P of
variables in the domain of § with the substitution values of the variables; the
result, written P9, is a substitution instance of the pattern P. Note that
given a pattern P and a substitution instance A of P there exists a unique
substitution # which yields A when applied to P and whose domain is the
set of pattern-matching variables occurring in P.

In the next section we shall use patterns to specify rewrite rules. But
patterns can also be used to define languages. Indeed, recall that a labeled
expression is nothing but a ground pattern. A set S of patterns is stable by
substitution iff for every pattern P in S and every substitution § which maps
every pattern-matching variable in its domain to either a variable pattern or
an element of S, the pattern P#@ is also in S. Let the substitution closure
of a set of non-variable patterns II be the smallest set which includes II and
is stable by substitution. Then the language L generated by II is the set of
labeled expressions (ground patterns) in the substitution closure of II.

For example the typed A-language can be redefined as the language gen-
erated by the following patterns, which we shall call the basic patterns of the
typed A-language: '

»

1. For every pair of types o, f, the pattern “(FMLq Apay,; Brwy)”-
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2. For every pair of types «, 3, the pattern “(FMLag A Zysr, Armea)” -

3. For every type o and every proper symbol of type a of the typed A-
language, the pattern “(FML, 8)”. Recall that, in the typed A-language,
the proper symbols are the variables and the constants, all of which are
terminal symbols in the extended framework.

4. For every type a and every variable z of type a, the pattern “(VAR, )",

This new definition is equivalent to the one given in section 2.3.2 in the
following sense: for every labeled expression in the language generated by
the above patterns whose sort is of the form FML, (this excludes expressions
of sort VAR,) the result of erasing the labels is a formula of the typed A-
language, of type a; conversely, for every formula A of type o of the typed
A-language, there exists exactly one labeled expression of sort FML, in the
language generated by the above set of patterns from which A can be derived
by erasing the labels.

Consistently with our previous terminology, we shall refer to labeled ex-
pressions of sort FML, as terms, and to labeled expressions of sort FML, as
sentences.

3.3 Rewrite rules

A rewrite rule is a pair of patterns of same sort (P, P’) which satisfy the
following conditions: (i) P is a non-variable pattern, and (ii) every pattern-
matching variable which occurs in P’ also occurs in P. We shall write
P — P'for (P, P'); P is the left-hand side of the rule, and P’ the right-
hand side. For example,

(PML, Apae, € BFMLL) — (FML, (FML,, (FML,,, inou) AFML;) BFML;) (3-3)

is a rewrite rule.
A pattern A rewrites to a pattern B by an application of a rule P — P’
iff:

1. There exists a subpattern A’ of A which is the result of applying a
substitution 8 to the pattern-matching variables of P;
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2. B'is the result of applying the same substitution ¢ to the right-hand
side P'; and

3. B is the result of replacing an occurrence of A’ in A with B'.

We then say that B is a result of applying the rule to A or, more precisely,
to the occurrence of A’ which is replaced.

In section 2.3.2 we defined a context of the typed A-language as a pair
C = (A, z) and the notation C[B] as A%. Now we can define a more general
notion of context by using a pattern-matching variable instead of a variable
of the typed A-language as place holder. We define a context again as a pair
C = (A, ), where now A is a pattern and @ a pattern-matching variable.
And we define the notation C[B], where B is a pattern of same sort as x,
as the result of substituting B for @ in A. (When we say that a pattern
is of the form C[B] we shall be implicitly asserting that B is a pattern of
same sort as @.) Observe that if A has no occurrences of pattern-matching
variables other than @, and B is a labeled expression (i.e. a ground pattern),
then C[B] is a also a labeled expression.’

A simple context is a context (A, @) such that @ has exactly one occur-
rence in A. A trivial context is a context (A, x) such that A is the variable
pattern “x”.

With these definitions we can more succinctly say that a pattern A
rewrites to a pattern A’ by an application of the rule P — P’ iff A is
of the form:

C[P?)
where C is a simple context and 6 a substitution, and A’ is the expression
C[P']].

Since the rule introduces no variables (no variable occurs in P’ without occur-
ring in P), if A is a labeled expression, then A’ is also a lebeled expression.

1The new definition is indeed more general than the one of section 2.3.2: given an
old-style context (A, z) where z is a variable of type a, a corresponding new-style context
can be obtained by (i) labeling A with the appropriate non-terminal symbols to obtain
a labeled expression B; (ii) choosing a pattern-matching variable v of sort FML,, and
(iii) replacing the occurrences of “(FML, 2)” in B which have been derived from free
occurrences of x in A with v to obtain a pattern P. The new-style context is (P,v).

The new definition can be used to provide a notion of context even for languages which
do not have variables among their terminal symbols.
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It is mostly the rewriting of labeled expressions which will be of interest to
us, for the task of language translation.

As an example, let us try to apply rule (3.3) to the labeled expression
(3.2), page 70. We observe that the subexpression

(FML, (FML, z) € (FML, z)) (3.4)
is the result of applying the substitution

AFML, — “(FMLL Z)”
By, — “(FML, 2)”

to the left-hand side of the rule. Applying the same substitution to the
right-hand side gives

(FML, (FML,, (FML,,, in,,) (FML, 2)) (FML, z)) (3.5)
Then, replacing (3.4) with (3.5) in (3.2) we get:
(PML, { (VAR, 2) € (FML, y) | (FML, (FML,, (FML,,, in,,,) (FML, z)) (FML, )) }).

Notice how the rule does not apply to the substring “z € y” of “{z € y |
z € 2}”, for two reasons: “z” is not analysed as a term, and “z € y” is not
analysed as a sentence. Generally, the rule applies to “A € B” when A and
B are analysed as terms and “A € B” is analyzed as a sentence; it then
replaces (the labeled expression resulting from the analysis of) “A4 € B”
with (the labeled expression corresponding to) “in,, A B”. Thus applying
the rewrite rule is expanding the shorthand “A € B”.

All shorthands seen in chapter (2) can similarly be expressed as rewrite
rules. To obtain a rewrite rule from a metalinguistic description of a short-

hand is a matter of:

1. Labeling the schematic formula which gives the representation of the
shorthand;

2. Labeling the schematic formula which gives the shortand itself; and

3. Replacing the metalinguistic variables by pattern-matching variables
of appropriate sorts.
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Thus rule (3.3) above can easily be derived from the shorthand description:
“A € B” (A,B: terms) for “in,, A B”
by labeling “in,,, A B” as
(FML, (FML,, (FML,,, in,,,) A) B),
then labeling “A € B” as
(FML, A € B),

and finally replacing “A” with “Apy,” and “B” with “Bey,”.

How to label the representation of the shorthand is determined by the
definition given above of the typed A-language as a language generated by a
set of patterns. The labeling of the shorthand itself is not fully determined,
since we have not defined the surface language yet as a set of labeled expres-
sions. In fact, it is the labeling of the shorthands which will determine the
surface language as the language generated by the following set of patterns:

1. The patterns which generate the typed A-language, given above; and
2. The left-hand sides of all the shorthands in use.

The labeling of shorthands is however partly determined by the fact that
both sides of a rule must be of the same sort. So, for example, the top-level
label of “A € B” must be the same as the top-level label of “in,,, A B”, viz.
FML,; simply stated, “A € B” must be a sentence. Most often, shorthands
can be analysed as not having any “internal structure”: then only the top-
level label has to be added, and so the labeling of the shorthand is entirely
determined; this is the case for “A € B” which is labeled “(FML, A € B)”.

Sometimes, though, shorthands have internal structure. This is the case,
for example, of the notation “(V& € E)P”, which we saw in section 2.5.2:

“(Ve& € E)P” (x: variable; E: term; P: sentence) for “forally,,), E Az P”

Since we are not treating parentheses as terminal symbols, but rather as
delimiters, “(V& € E)” must be a subexpression. We must introduce an
auxiliary non-terminal symbol, say RQ (for “Restricted Quantifier”) to serve
as its label. Since the representation of the shorthand is a formula of type o,
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the top-level label of the shorthand is FML,. So the labeling of the shorthand
is:

(FML, (RQ Y@ € E) P)

Using pattern-matching variables zy,p,, Fry, and Pey,, the left-hand side
of the rule is
(FML, (RQ V Zyar, € EFMLL) Prwo),

and the entire rule:

(FMLo (RQ \ Tyam, € EFML,) PFMLO) —
(FML, (FMLo(0,) (FMLo(o,), forallo(o,)) Epmr,) (FMLo, A Zyan, Pewso))

Even when there are no explicit parentheses in the shorthand it may be
reasonable to introduce internal structure; for example, we could emphasize
that the notations:

{z € E| P},
(Ve € E)P,
User A (linearized as “Ux € E; A”),

etc.

have “@ € E” in common by making it a subexpression; such a subexpression
would not be a sentence, so we would have to introduce again an auxiliary
non-terminal symbol, say RANGE, to be used as its label. The left-hand sides
of the rules would then be:

(FML, { (RANGE Zysg, € Er,) | Provro })s
(FML, (RQ Y (RANGE Zysp, € Eray,)) Pemvo)
(FMLL U (RANGE Tysp, € EFML,) ; AFMLl)
etc.

Certain shorthands are parameterized, and give rise to a family of rewrite
rules. Thisis the case of “A = B”, where A and B are formulas of arbitrary
type «; the type « is a parameter of the notation. For every o we have a
rewrite rule:

(FMLo Ap, = BPMLQ) — equal,,, Arme Brmie

(where the labeling of the right-hand side has been erased for readability,
since it can easily be restored). The quantifiers also require one rewrite
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rule for every type. For example, this is a rewrite rule schema for universal
quantification:

(FMLo V Zvara PFMLo) —_ forallo(m)(/Xmmnal PFMLo)

We could also introduce internal structure in this notation, which is in fact
often written “(Va)P”. We would then introduce a family of auxiliary non-
terminal symbols QUANT,; the rule schema would become:

(FML, (QUANT, V Zysr,) Pes,) — forallo(m)(AJ}va Prvno)

The auxiliary non-terminal symbols QUANT, could be shared by the four
quantifiers “for all”, “there exists”, “there exists at most one”, and “there
exists exactly one”.

The translation between the surface and internal form of individual vari-
ables can also be accomplished by rewrite rules; the surface form of an in-
dividual variable is an italic identifier, while the internal form is the same
identifier subscripted by the type :. This time we have two rewrite rule
schemas, both with the identifier Id as parameter:

(FML, Id) — (FML, Id,)
(VAR, Id) — (VAR, Id,)

Table 3.1 gives rewrite rules for all the notations discussed in chapter 2.
The auxiliary non-terminal RQ is used, but not RANGE or QUANT,. The
labeling of the right-hand sides has been suppressed for readability. Two-
dimensional notations have been linearized as follows:

Uz e EB; A instead of U,ep A
{A; 2 € E} instead of {A}.ep

3.4 Rewriting

3.4.1 Example

A set of rewrite rules constitutes a rewriting system. Given a rewriting system
R, we shall say that a pattern A rewrites to A’ in R iff there exists a chain
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(FML, 3 Zvana Pewn
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equal, ., Arvra Brmva
equa’looo PFMLo QFMLO

false,

true,

not,, F FMLo

andoeo PFMLo QFMLo

OTooo Prmro @rmro

implies,,, Prvw, @rvro
forally(oa)( A% vara Pemo)
eXistSo(oa)(ALvara Prnro)
atmosto(on)(AZvana Prro)
unique, o) (AZvana Praio)
thea(oa)()‘w\’ARaPFMLo)

(FML, Id,)

(VAR, Id,)

inou AFML, BFML:

fora‘llo(OL)L Ery, ()\mVARz Is FMLO)
exists,(o.), Fpmr, (')‘T‘VA}h PFMLO)
subset,,, AFML, BFML,

sety(o1) (AZvar, Pesaro)
subset,(o,), Fpmr, (AZyar, Prvio)
range,,,), Eea, (f\fcvm, AFML,)
emptyset,

enum,,, AFML; BFML¢

enum,, Appy,

union,, Appy,

unionm AFML, BFML:

union,(,,), Ermr, (>\ﬂ3vm, Ara,)
powerset,, Apmy,

Table 3.1: Rewrite rules for the translation of shorthands.
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of one-step rewrites by rules of the system which takes A into A e iff
there exists a sequence of patterns Bj, ..., B,, n > 1, such that B; = A,
B, = A', and each B, for 1 < i < n rewrites to Bi4; by an application of a
rule of R. A normal form for R is a pattern to which no rewrite rule of R is
applicable. A'is a normal form of A iff it is a normal form for R to which
A rewrites.

We shall consider a certain collection of shorthands defining a particular
surface language, and we shall refer to the set of rules derived from those
shorthands as the rewriting system for shorthand elimintation, ReLiv. The
translation of a labeled expression from the surface language into the typed
M-language is accomplished by rewriting all the shorthands in the formula;
more precisely, by successively applying rewrite rules until no more rules
apply, i.e. by computing a normal form of the labeled expression for ReLnu.
As an example, let us compute the representation of

Va=(z € 0). (3.6)
It involves the following rewrite rules from table 3.1:

Rule 9  (Universal quantification)

Rule 5 (Negation)

Rule 16 (Set membership)
Rule 23 (Empty set)

Rule 14 (Variable conversion)
Rule 15 (Variable conversion)

The first step is to parse (3.6), i.e. to add all missing pairs of parentheses,
and to add the phrase markers. Parsing is the subject of section 3.5, but it
is obvious what the result should be:

(FML, ¥ (VAR, 2)(FML, = (FML, (FML, z) € (FML, §)))) (3.7)

Let us begin by translating the shorthand for universal quantification.
Rule 9 matches the entire formula, with zy,;, matching

(VAR, z)
and Ppy, matching

(FML, = (FML, (FML, 2) € (FML, 0))).
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We substitute these expressions for zy,z, and Py, in the right-hand side
of rule 9 (and we restore the labels of the right-hand side, which have been
suppressed in table 3.1 for readability):

(FML,
(FML (o) forallyo,))
(FML,, A (VAR, z) (3.8)
(FML, = (FML, (FML, 2) € (FML, §)))))

Let us now translate the shorthand for negation. Rule 5 applies to the
subformula.
(FML, = (FML, (FML, z) € (FML, 0)))

which it transforms into

(FML,
(FML,, not,,)
(FML, (FML, 2) € (FML, §)))

By substitution in (3.8) we get:

(FML,
(FMLy(o,) forallyo,))
(FML,, A (VAR,; 2)
(FML,
(FML,, not,,)
(PML, (FML, z) € (FML, §)))))

Translation of the shorthand for set-membership (rule 16) gives:

(FML,
(FMLo(o,) forall,,,)
(FML,, A (VAR,; z)
(FML,
(FML,, not,,)
(FML, (FML,, (FML,,, in,,) (FML, z))(FML, §))))).

Finally we apply rules 23, 14 and 15, which rewrite the following subexpres-

sions:
(FML, §) into (FML, emptyset,)

(PML, ) into (FML, z,)
(VAR, ) into (VAR, z,)
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The result is the representation of (3.6) in the formal system:

(FML,
(FML (o, forallygo,))
(FML,, A (VAR, z,)
(FML,
(FML,, n0t,,)
(FML, (FML,, (FML,,, in,,) (FML, 2,))(FML, emptyset,)))))

which becomes more readable after erasing phrase markers and unnecessary
parentheses:
forall,(o,) Az, (not,, (In,, 2, emptyset,)). (3.9)

Conversely, given an expression of the typed A-language such as (3.9), the
corresponding surface language expression (3.6) is obtained by applying the
same rewrite rules in reverse. Indeed, it is clear that if (P, P’) is a rewrite
rule for shorthand translation, then the same pattern matching variables
should appear in both patterns P and P’, and P should be a non-variable
pattern. Thus the opposite pair (P’, P) should also be a rewrite rule; and
if A rewrites to A’ by P — P’ then A’ rewrites to A by P' — P. The
opposites of the rules of Rgrv comprise what we shall call the rewriting
system for shorthand introduction, Rintro. In general, we shall say that
a rewriting system is reversible iff every rule contains the same pattern-
matching variables in its right-hand side as in its left-hand side, and all
patterns, left-hand sides as well as right-hand sides, are non-variable patterns.
The opposites of the rewrite rules of a reversible system R form a rewriting
system which we shall call the reverse of R. Thus Rgpm and Rintro are
the reverse of each other.

This method of translation raises the following questions:

1. Is it certain that the chain of rewrites will terminate, both in the direct
and in the reverse direction?

2. Is the resulting expression independent of the order in which the rewrites
are applied, in both directions?

3. Does the direct rewriting process produce a formula of the typed A-
language?
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4. Does the reverse rewriting process produce a labeled expression which
is part of the surface language?

5. Is the effect of rewriting in one direction, and then the other, to produce
the original expression?

6. Is the rewriting process fast enough for its intended use as part of the
front-end of an interactive system?

We answer these questions in section 3.4.4 after establishing the results
needed for that purpose in sections 3.4.2 and 3.4.3.

3.4.2 Some simple rewriting theory

To establish the needed results we need to develop a modest amount of
rewriting theory.

Up to now we have stayed within a very concrete framework. We have
introduced a vocabulary consisting of a variety of symbols: (i) The constants
and variables of the typed A-language, and the symbol “)\”; miscellaneous
mathematical symbols, and unsubscripted roman and italic identifiers. We
have referred to all these symbols as terminal symbols. (i) Small-caps iden-
tifiers, subscripted by type expressions of the typed A-language, or unsub-
scripted; we have referred to these as non-terminal symbols, or sorts. (iii)
Italic identifiers subscripted by sorts, which we have called pattern-matching
variables. (iv) The left and right parentheses, called the delimiters.

However, everything in the next two sections holds in a more abstract
setting, consisting of: (i) An arbitrary set of terminal symbols. (ii) An arbi-
trary set of non-terminal symbols, also called sorts, disjoint from the set of
terminal symbols. (iii) A set of pattern-matching variables, disjoint from the
two previous sets of symbols, together with a function which assigns a sort to
each pattern-matching variable. (iv) An ordered pair of delimiters distinct
from the symbols in the three previous sets. The reader shall easily verify
that all the definitions which have already been given in the concrete set-
ting and are used in the next two sections can be transposed to the abstract
setting.

As we have already pointed out, the framework in which we make use
of rewriting is slightly different from the usual one, but the differences are
unessential and the results of the theory of algebraic term rewriting carry
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over to our framework. Rewriting theory is by now well developed, and
most, if not all, of the results that we need follow from more general known
results, as we shall point out in each case. For surveys of rewriting theory see
[15, 16, 31, 35]. But the kind of rewriting system that we need for language
translation is a very specific one, and it seems awkward to rely on overly
general theorems which require elaborate proofs, when simple direct proofs
can be given. So we shall give the simple proofs in addition to indicating the
connection with the more general results.

Well-formed trees

We shall make use of parse trees of labeled expressions, and more generally of
trees associated with patterns. We consider known the definition and basic
facts and terminology related to labeled trees, when alabeled tree is regarded?
as a triple (N, S, L), where N is the set of nodes, S is the function mapping
each internal node to the ordered sequence of its successors,® and L is the
function mapping each node to its label.* We shall say that a node n' is
above a node n iff ' is on the path from the root to n, without being equal
to n; below n iff n is on the path from the root to n/, without being equal to
n'; beside n iff n and n' are on divergent rooted paths.

A well-formed tree is a labeled tree whose whose internal nodes are labeled
by non-terminal symbols, whose leaf nodes are labeled by terminal symbols
or pattern matching variables, and whose root is an internal node or a leaf
node labeled by a pattern-matching variable, but not a leaf node labeled by a
terminal symbol. We shall refer to a leaf node labeled by a pattern-matching
variable as a variable node, and to all other nodes as non-variable nodes. We
shall refer to a node which is neither the root nor a variable node as an inner

2An alternative approach, where a tree is identified with the set of path coordinates
(called positions) of its nodes, has been used in the context of term rewriting [49). The
approach which we are following is more convenient for our specific purposes as we shall
show below. :

3A node may be without successors in two different ways: an internal node n may have
a sequence of successors (n) which is empty; a leaf node has no image by S.

4This is a different use of the word label from its use in the context of labeled expressions.
We have been referring as a label or marker to the non-terminal {following a left parenthesis.
From now on we shall use only the word marker for this purpose, but we shall continue
using the phrase labeled expression. Markers will be tree-labels of the parse trees of labeled
expressions, but terminal symbols will be tree-labels of parse trees as well,
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node; the inner nodes should not be confused with the internal nodes, the
latter being simply the non-leaf nodes; the inner nodes are the internal nodes
other than the root, if any, and the leaf nodes labeled by terminal symbols,
if any.

With every well-formed tree we associate the string (sequence) of symbols
defined by induction as follows: if the root of the tree is a leaf node, labeled by
a pattern-matching variable v, then the associated string is the one-symbol
sequence “v”; if the root is an internal node, then the associated string is the
concatenation of: a left parenthesis; the non-terminal symbol which labels
the root; the strings associated with the subtrees whose roots are the children
of the root (if any); and a right parenthesis. ,

Clearly, the string associated with a well-formed tree is a pattern. Con-
versely, given a pattern A, there exists a well-formed tree, determined up to
isomorphism, whose associated string is A. If A is a labeled expression, then
‘a well-formed tree associated with A is nothing but a traditional parse tree
of A, determined up to isomorphism.

The depth of a tree is the number of nodes in the longest path from the
root to a leaf node. The depth of a labeled expression or pattern A is the
depth of any tree associated with A.

Substitution by grafting

Let T = (N,S,L) and 7' = (N, 5", L") be two well-formed trees, let n € N
be a node of 7, and let 7" = (N", 5", L") be the subtree of 7 rooted at n.
Consider the following conditions: (i) the root of 7" is n; (ii) the set of nodes
N’ of T’ is disjoint from N — N". If both conditions are met, then the triple:

T"=(N—-N"YUN, (S—S)US,(L-L"YUL

is a well-formed tree. We shall refer to this construction as the graft of 7"
onto node n of 7. When 7' meets the conditions we shall say that it is
adequate for the graft.

Consider now a pattern P and a substitution §. Let 7 be a well-formed
tree associated with P, and let n;...n; be the leaf nodes of 7 which are
labeled by pattern matching variablesin the domainof §. For1 < i < £k let v,
be the pattern-matching variable which labels n;, let A; be the pattern 6(v;),
and let 7! be a well-formed tree associated with A;. If the trees 7 have
pairwise disjoint sets of nodes, and each 7 is adequate for grafting at node
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n; of 7, then the result 7" of the k grafts is a well-formed tree associated
with the pattern Pf. Observe that the result of the graft can be described
as the componentwise union of the 7' and the triple (¥, S, L') where L' is
the restriction of L to N — {ny,...,nz}. We shall refer to a well-formed tree
T" obtained as described from 7 and ¢ as being a 6-graft of 7.

Conversely, let A be a pattern of the form P8, where P is a pattern and
6 a substitution. If 7 is a well-formed tree associated with A, then there
exists a unique well-formed tree 7" associated with P such that 7 is a §-graft
of T'.

Occurrences and overlapping

Let 7 be a well-formed tree, let A be a pattern, and let 7' be a well-formed
tree associated A. We shall say that 7' is an occurrence of A in 7 iff there
is a subtree 7" of 7" which is a §-graft of 7' for some substitution §. When
this is the case every node n of 7' is a node of 7, and if n is a non-variable
node of 7' then the labels of n in 7 and 7’ coincide, and the sequences of
successors of n in 7 and 7" coincide.

Transitivity. We shall often make implicit use of the following observation:
if T4 is an occurrence of a pattern A in a well-formed tree 7, and 75 is an
occurrence of a pattern B in 74, then 7p is also an occurrence of B in 7T
itself.

Let A be a non-variable pattern, and 7' an occurrence of A in a well-
formed tree 7, with root r. Since A is a non-variable pattern the label of r
in 7' is a non-terminal symbol f. Since the label of r if 7' is not a pattern-
matching variable, f is also the label of » in 7. Hence r cannot be a leaf
node of 7. Thus the root of an occurrence of a non-variable pattern in a
well-formed tree 7 is an internal node of 7.

We shall say that two patterns A and B overlap iff one of them, say
A, has a non-variable subpattern A’ which has a common instance with the
other pattern, B; i.e. iff one of them, A, is of the form C[A'], where C is a
simple context and A’ is a non-variable pattern, and there exist substitutions
6 and 6’ such that A'6 = Bé'. ‘

Any non-variable pattern trivially overlaps itself in this sense. However,
we shall say that a pattern A self-overlaps iff it has a common instance with
a proper subpattern A’ of itself; i.e. iff A is of the form C[A'] where C is a
simple but non-trivial context and A’ is a non-variable pattern, and there
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exist substitutions # and ¢’ such that A'0 = A6’

Let now 7 be a well-formed tree, and let 7’ and 7" be occurrences in 7°
of two patterns A and B respectively. We shall say that 7' and 7" overlap
iff the root of one of them is an internal node of the other. We shall say that
they overlap at the root iff they overlap and their roots coincide.® If 7' and
T" overlap, then so do the patterns A and B. Indeed, assume that the root
node n of 7" is an internal node of 7'. Let A’ be the pattern associated with
the subtree of 7' rooted at n. Clearly, A’ is a non-variable subpattern of A,
and the pattern associated with the subtree of 7 rooted at n is a common
instance of A’ and B.

Let 7 be again a well-formed tree, and let now 7’ and 7" be occurrences
of the same pattern A. We shall say that 7’ and 7" have a proper overlap iff
they overlap without overlapping at the root, i.e. iff the root of one of them
is an internal node of the other other than the root. Clearly, if 7' and 7"
have a proper overlap then A self-overlaps. If, on the other hand, 7' and 7"
overlap at the root, then they coincide.

Lemma 3.1 Let T be a well-formed tree and let T' and T" be occurrences
in T of two non-variable patterns. Then T' and T" overlap iff they have a
non-variable node in common.

ProoF. If 7/ and 7" overlap, then the root of one of them, say 77, is an
internal node of the other. But since 7' is associated with a non-variable
pattern, its root is an internal node of itself. Hence 7' and 7" have an
internal node (and a fortiori a non-variable node) in common.

Conversely, assume that 7' and 7" have a non-variable node n in com-
mon. By going up both trees, it is clear that the root r of one of them, say
7', is a non-variable node of the other. Then r has the same label in 7, 7’
and 7", and that label is a non-terminal symbol. Hence the root » of 7’ is
an internal node of 7", and thus 7' and 7" coincide. O '

Reduction of a redex

Let 7 be a well-formed tree, P — P’ a rewrite rule, and 7p an occurrence
of the left-hand side P in 7. Let n be the root of 7p, let A be the pattern

5Tt is possible for the roots to coincide without there being an overlap: such is the case
when and only when A and B are variable patterns.
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associated with the subtree of 7 rooted at n, and let # be the substitution
which yields A when applied to P and whose domain is the set of pattern-
matching variables which occur in P. We shall say that a tree 7' results
from 7T by rewriting Tp with the rule P — P'iff 7' is the result of grafting
an adequate tree associated with P'8 at node n of 7. If this is the case, 7"
is a well-formed tree, and it has an occurrence 7 pr of P’ 1o0ted at n. We
shall refer to 7 ps as the occurrence of P’ in 7’ resulting from the rewrite.
All trees resulting from rewrites of a given occurrence of a pattern in a given
well-formed tree are isomorphic.

Clearly, if 7' results from 7 by rewriting an occurrence 7p of P in T
with the rule P — P’, then the pattern associated with 7 rewrites to the
pattern associated with 7' by an application of the rule. Conversely, if a
pattern @ rewrites to Q' by an application of the rule P — P’, and 7 is a
well-formed tree associated with @, then there exists an occurrence 7p of P
in 7 such that, if 77 results from 7 by rewriting 7p with the rule P — P’
then 7’ is a well-formed tree associated with the pattern Q'.

When a rewriting system R is given, we shall refer to a pair (7p, P — P')
where P — P'is a rewrite rule of R and 7p is an occurrence of the left-hand
side P in a well-formed tree 7, as a redex of R in 7. And we shall refer to
a rewrite of Tp by the rule as a reduction of the redex. We shall sometimes
refer to 7p itself as the redex, if it is clear from the context which rewrite
rule P — P’ we have in mind, which is the case in particular when distinct
rules have distinct left-hand sides.

A pattern is said to be linear iff no pattern-matching variable occurs-more
than once in it. A rewriting system is lefi-linear iff the left-hand sides of the
rules are linear, right-linear iff the right-hand sides of the rules are linear.

If both sides of a rewrite rule P — P’ are linear and, in addition, P and
P’ contain exactly the same pattern-matching variables, then every pattern-
matching variable used in the rule occurs exactly once in each side. We shall
refer to such a rule as a permuting rule. In a rewriting system which is
left-linear, right-linear and reversible, every rule is a permuting rule.

It turns out that, when P — P’ is a permuting rule, there is a particularly
convenient way in which an occurrence of P in a well-formed tree can be
rewritten. Let V be the set of pattern-matching variables which occur in the
rule. As before, let 7p be an occurrence of P in a well-formed tree 7, let
n be the root of 7p, let A be the pattern associated with the subtree of 7
rooted at n, and let § be the substitution with domain V' which yields A
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when applied to P. For each v € V let T, be the subtree of 7 rooted at the
unique leaf note of Tp labeled by the pattern-matching variable v. There
clearly exists a well-formed tree Tp: which is associated with the pattern P’
and which satisfies the following conditions: (i) the root is n; (ii) for every
v € V, the unique leaf node [, labeled by v coincides with the root of 7,; and
(ii1) the inner nodes are not nodes of 7. The well-formed trees 7, v € V
have disjoint sets of nodes and are adequate for grafting at the leaf nodes
l,, v € S of Tp:. The result of the graft is a well-formed tree 74 whose
associated pattern is A’ = P'4, And 7T, is adequate for grafting at node n
of T; the result of the graft is a well-formed tree 7’. 7' is one of the trees
which result from 7 by rewriting 7p with the rule P — P’. We shall say
that 7' is the tree which results from T by rewriting Tp to Tpr in situ.

The convenience of this particular way of rewriting an occurrence of a
pattern comes from the fact that the original well-formed tree 7 is minimally
disturbed. In particular, the resulting tree 7' shares with 7 the subtrees 7,
v € S, in addition to sharing the root n of 7p and 7p/ and all the nodes
above and beside n. We shall refer to this kind of rewriting as rewriting in
situ.

Symmetry of in-situ rewriting.® If P — P'is a permuting rule and if
P’ is a non-variable pattern (so that P’ — P qualifies as a rewrite rule)
then P’ — P is also a permuting rule. In that case, if 7' results from 7 by
rewriting in situ an occurrence 7p of P in 7 with P — P’  and if Tp/ is
the resulting occurrence of P’ in 7”, then 7 results from 7' by rewriting in
situ the occurrence 7p: of P’ in 7' with P’ — P, and Tp is the resulting
occurrence of P in 7.

The following lemma exploits the concept of in-situ rewriting.”

Lemma 3.2 Let P — P' be a permuting rewrite rule, let T be a well-formed
tree having an occurrence Tp of P, let T' be a well-formed tree obtained from

¢ A non-symmetric version of in-situ rewriting could also be defining. It could be use
{for a rule P — P’ with the only requirement that P’ be right-linear. Theorem 3.3 below
could then be stated without the conditions of left-linearity and reversibility, while keeping
the same proof.

“In-situ rewriting and the lemma that follows are not easily available when trees are
defined as sets of path coordinates (“positions”) as in [49], since coordinates below 7p in
7 depend oun the shape of 7p, and coordinates below Tpr in 7' depend on the shape of
Tpi. This is one reason why we have defined a tree as a triple (N, S, L) instead of {following
Rosen’s approach.
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T by rewriting Tp by the rule in situ, and let Tpr be the occurrence of P’
in T' resulting from the rewrite. Let Q be a linear pattern. Then: (i) any
occurrence of @ in T which does not overlap Tp is also an occurrence of Q
in T'; and (ii) any occurrence of Q@ in T’ which does not overlap Tp: is also
an occurrence of Q in T'.

PROOF. By the symmetry of in-situ rewriting, (ii) follows from (i). We prove
(i). Let 7 be an occurrence of @ in 7 which does not overlap Tp. Let n be
the root of 7p and m the root of Ty. In 7, the node m can be above, below,
or beside n If m is beside n, then the subtree of 7 rooted at m is clearly also
a subtree of 7', and hence 7 is also an occurrence of @ in 7. If m is below
n then, since it cannot be an internal node of 7p, it must belong to a subtree
T, of T rooted at a leaf node p of 7p labeled, in 7p, by a pattern-matching
variable v. But 7, is among the trees which, in the process of rewriting 7, in
situ, are grafted onto 7ps, the result of the graft being then grafted onto 7
at n. Therefore 7, is also a subtree of 7', and hence 7y is also an occurrence
of @ in 7'. If m is above n then, since n cannot be an internal node of 7y, it
must belong to a subtree 7, of T rooted at a leaf node g of 7 labeled, in 7,
by a pattern-matching variable w. The subtree of 7 rooted at m is modified
in the process of rewriting 7p in situ to 7p:. However, the modification takes
place only in the subtree rooted at q. Let A be the subtree of 7 rooted at
m. Let 6 be the substitution defined on the pattern-matching variables of Q
such that A = Q¢. Since Q is a linear pattern, it has only one occurrence
of w. Let then §' be the subtitution which coincides with 6 except that it
maps w to the pattern associated with the subtree of 7" rooted at g. Since
the subtree of 7 rooted at m is a 6-graft of 7y, the subtree of 7' rooted at
m is a @'-graft of Ty, and hence 7 is an occurrence of Q in 7'. O

Termination

A rewriting system is terminating iff there are no infinite chains of rewrites,
i.e. iff there is no infinite sequence of patterns (A;);e, where each A, rewrites
to A;41 by an application of one of the rules of the system. To answer
question 1 of section 3.4.1 we shall establish in section 3.4.4 that Ry and
Rintro are both terminating. For that purpose we shall make use of the
following definition and theorem.
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Definition 3.1 A rewriting system is left-to-right non-overlapping 1ff no
left-hand side overlaps any right-hand side.

(In connection with the preceding definition, recall that the notion of pattern
overlap is symmetric. Some people refer to this same notion as symmetric
left-to-right non-overlap.)

Theorem 3.3 If a rewriting system 1is left-linear, right-linear, reversible and
left-to-right non-overlapping, then it is terminating®

This theorem follows from a result of Dershowitz [15, Theorem 33, page 109]
which asserts that a right-linear rewrite system is terminating iff it has no
infinite “forward closures”. Indeed a left-to-right non-overlapping system has
only trivial forward closures, the rules themselves. However there is a direct
proof based on lemma 3.2 which does not require the use of the of the forward
closure construction. Here is the direct proof.

PrOOF. Let R be a rewriting system satisfying the conditions of the
theorem. Every rule of R is then a permuting rule.

Let A be a pattern which rewrites to a pattern A’ by an application of
atule P — P’ of R. Let 7 be a well-formed tree associated with A. There
exists an occurrence 7p of P in 7 such that any well-formed tree obtained
by rewriting 7p with the rule P — P’ is associated with the pattern A'.
Since P — P’ is a permuting rule, 7p can be rewritten in situ; let 7'
be the resulting well-formed tree associated with A’ and 7p/ the resulting
occurrence of P’ in 7.

Let now (79, Q — Q') be a redex of R in 7'. Since R is left-to-right
non-overlapping, the patterns P’ and @ do not overlap. As a consequence,
their occurrences 7p: and 7¢ do not overlap. Let n be the common root of
7Tp and Tp, and m the root of 7p. Since @ is a non-variable pattern, m is
an internal node of 7, and therefore n # m.

Since 7 does not overlap 7, by lemma 3.2(ii), T is an occurrence of
Q in 7 also, and hence (7, Q@ — Q') is a redex of R in T; and since n # m,
it does not coincide with the redex (7p, P — P’').

We have shown that if A rewrites to A’ in one step by application of
a rule of R, then every redex of R in A’ is a redex in A other than the
one being reduced. Hence there are strictly fewer redexes in A’ than in A.
Therefore there can be no infinite chain of rewrites by rules of R. O

8See footnote 6 page 89.
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Confluence

A rewriting system is confluent iff whenever two chains of rewrites lead from
a pattern A to two patterns B and C, then two chains of rewrites lead
from B and C to the same pattern D. A rewriting system is convergent (or
complete) iff it is terminating and confluent. In a convergent system, every
pattern has a unique normal form.

To answer question 2 of section 3.4.1 we shall establish in section 3.4.4
that Rermv and RinTro are both convergent. For that purpose we shall make
use of the following definition and theorem.

Definition 3.2 A rewriting system is non-overlapping iff left-hand sides of
distinct rules do not overlap, and no left-hand side s self-overlapping.

Theorem 3.4 If a rewriting system 1s left-linear, right-linear, reversible,
non-overlapping and left-to-right non-overlapping, then it is convergent.

A rewriting system which is left-linear and non-overlapping is said to be
orthogonal [35]. Theorem 3.4 is a special case of a theorem which asserts
that every orthogonal rewriting system is confluent. A proof of this more
general theorem can be found in [49]. But again a simpler proof based on
lemma 3.2 can be given.

PRrRoOOF. Let R be a rewriting system which satisfies the conditions of the
theorem. By theorem 3.3 we already know that R is terminating. To show
that it is confluent it suffices to show that whenever a pattern A rewrites to
distinct patterns B and C in one step, then B and C both rewrite to the
same pattern D in one step.’

Assume then that A rewrites to B by one application of a rule P — P/,
and to a pattern C' distinct from B by one application of a rule @ — Q'.
Let 7 be a well-formed tree associated with A. There is an occurrence 7p
of P in 7 such that any tree resulting from 7 by rewriting 7p with the rule
P — P'is a well-formed tree associated with the pattern B. And there is
an occurrence 7¢ of @ in 7 such that any tree resulting from 7 by rewriting

9We are not using Newman's theorem here (theorem B.1, page 186). If we knew only
that B and C rewrite to D in some number of steps (local confluence), then, having
termination, we would use Newman's theorem to establish confluence. But if B and C
both rewrite to D in a single step, confluence is obvious, independently of termination:
fill-in the lattice.
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T with the rule @ — Q' is a well-formed tree associated with the pattern
C.

Because R is non-overlapping, 7p and 7, do not overlap. For if P — P’
and Q@ — Q' are distinct rules of R, then the patterns P and @ do not
overlap. And if the rules coincide, then 7p and 7 are occurrences in 7
of the same non-self-overlapping pattern; this means that they cannot have
a proper overlap; and they cannot overlap at the root, because then they
would be identical, and B and C would be the same pattern, contrary to
the hypothesis.

Since P — P’ and Q — Q' are permuting rules, 7p and 7 can be
rewritten in situ. Let 7p be a well-formed tree associated with P’ which has
the same root as 7p, which for every pattern-matching variable v occurring
in P’ has the same leaf node labeled v as 7p, and whose inner nodes are not
nodes of 7. Let Tg: be a well-formed tree associated with Q' which has the
same root as 7g, which for every pattern-matching variable v occurring in
Q' has the same leaf node labeled v as 7, and whose inner nodes are not
nodes of 7 nor of Tg. Let Tp be the tree obtained from 7 by rewriting in
situ 7p to Tps, and 7T the tree obtained from 7 by rewriting in situ 7 to
To. Tp is associated with the pattern B, and 7¢ with C respectively. By
lemma 3.2(i), 7 is an occurrence of @ in 75. T¢ has no inner nodes which
are nodes of 75, and thus within 75 it is possible to rewrite 7g in situ to
Ty let Tp be the resulting well-formed tree, and B’ the pattern associated
with it. Symmetrically, by lemma 3.2(i), 7p is an occurrence of P in 7¢,
and since 7ps has no inner nodes which are nodes of 7¢, 7p can be rewritten
in situ, within T¢, to Tpi: let T be the resulting well-formed tree, and C'
the pattern associated with it. It is easy to verify that the trees 75 and T¢»
are idendical. Hence the patterns B’ and C’ are identical, and B and C do
rewrite in one step to the same pattern. O

Rewriting algorithm

When a rewriting system R satisfies the conditions of theorem 3.4, it is
particularly easy to compute the normal form of any given pattern. Because
R is left-linear and non-overlapping (orthogonal), it is possible to use the
full substitution, or Gross-Knuth rewriting strategy [35]. Informally speaking,
this strategy calls for “reducing at once all the redexes present in the pattern”
at each step. Moreover, because the system is right-linear and left-to-right
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non-overlapping, no new redexes are introduced by one full substitution step.
Hence only one step is necessary!

We make this more precise by describing an algorithm which performs
one step of full substitution, and proving that it finds the normal form of the
pattern given as input to it when the rewriting system satisfies the conditions
of theorem 3.4. ‘

~ Algorithm 3.1 Given: a rewriting system R satisfying the conditions of
theorem 8.4. Input: a pattern A. Quput: a pattern A', which purports to be
the normal form of A.

1. If A is of the form P8 where P is the left-hand side of a rule P — P’
of R and 6 1s a substitution whose domain V 1is the set of pattern-
matching variables occurring in the rule, return A' = P'8', where §' is
the substitution which maps every v € V to the result Bl of applying
the algorithm recursively to the value B, = 6(v).

Otherwise:

2. If A is not an instance of the left-hand side of any rule of R, but it is of
the form “(f By ... B,)”, where f is a non-terminal symbol and each
B;, 1 <1 < n, s either a terminal symbol or a pattern, then return
A'=“(f B| ... B.) where B! = B; if B; is a terminal symbol, or
B! is the result of applying the algorithm recursively to B, if B; is a
pattern.

3. If A is a variable pattern, return A'=A.

Observe that the algorithm is deterministic. Indeed, since R is non-
overlapping, A can be the left-hand side of at most one rewrite rule. And the
algorithm terminates: every recursive call takes as input a proper subpattern

of A.
Theorem 3.5 Algorithm 3.1 computes the normal form of its input.

Proor. Reasoning by induction, assume that the algorithm is correct on
any input of depth less than k£ > 1, and let A be a pattern of depth k. Let
us show that the pattern A’ returned by the algorithm when applied to A
is indeed the normal form of A. We distinguish the same cases as in the
description of the algorithm.
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1. Assume that A is of the form P# for some rule P — P’ of R. Let
us use the same notations as in the description of the algorithm. By
induction hypothesis, each B! is the normal form of B,. Hence each
B, rewrites to B’ and therefore A = P§ rewrites to P§'. Since P&’
rewrites to P'¢' = A’ be an application of the rule P — P’, if follows
that A rewrites to A’

To show that A’ is a normal form of R, we reason by contradiction.
Assume that a rule Q — Q' applies to A'. Then, if 7 is a well-formed
tree associated with A', there is an occurrence 7 of @ in 7. There
is also an occurrence of 7p: in 7 whose root coincides with the root
of T. Each leaf node of Tp: is labeled by a pattern-matching variable
v € V, and is the root of a subtree 7, of 7 associated with the pattern
B'. Since R is left-to-right non-overlapping @ and P’ do not overlap.
Hence the root n of 7 cannot be an internal node of 7pr. Then n must
be a node of 7, for some v € V. But this means that the rule @ — Q'
applies to B, which contradicts the fact that B;, is in normal form.

2. Assume now that A is of the form “(f B, ... B,)” without being an
instance of a left-hand side of a rule of R, and let us use again the
same notations as in the description of the algorithm. By induction
hypothesis, for every 4, 1 < i < n, if B; is a pattern (rather than a
terminal symbol), then B; is the normal form of B;.

Since each B, rewrites to B/, it is clear that A rewrites to A'. Let
Ci,...,C,,, m <1, be achain of one step rewrites leading from A =
C, to C,, = A'. To show that A’ is a normal form we reason by
contradiction. Assume that a rule Q@ — Q' of R applies to A’. Let T4
be a well-formed tree associated with A’. There is an occurrence of Q
in 74, and since every B is in normal form, the root of the occurrence
must coincide with the root of 7 4. This means that A’ is an instance
of Q.

We have shown that A’ = C,, is an instance of the left-hand side Q
of a rule of R, and we know that the same is not the case for A = C.
Therefore there must be some j, 1 < j < m, such that C;4; is an
instance of @ but C, is not. C; rewrites to C;41 by an application
of arule R — R' of R. Let 7 be a well-formed tree associated with
C;. There exists an occurrence Ty of R in 7 which, when rewritten,
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yields a tree associated with R'. Since R — R’ is a permuting rule,
Tr can be rewritten in situ; let 7’ be a tree for C;4; obtained by
an in-situ rewrite, and calTx the occurrence of R’ in 7' to which 75
rewrites. Since C,4; is an instance of @), there exists an occurrence
To of Q in 7' whose root is the root of 7'. Since R is left-to-right
non-overlapping, @ and R’ do not overlap, and hence their respecitve
occurrences 74 and Tg do not overlap. Since @ is a linear pattern,
lemma 3.2(ii) applies, and asserts that 7 is an occurrence of @ also
in the tree 7. It is clear that the root of 7 is the same as the root of
T'. Thus Ty is an occurrence of @ at the root of 7, which means that
C is an instance of @, a contradiction.

3. Finally, assume that A is a variable pattern “v”. The output of the
algorithm is A itself. Since non-variable patterns are not allowed as
left-hand sides of rules, A is trivially a normal form, and the algorithm
is also correct in this case.

O

Observe that the algorithm performs at most as many rewrites as there
are internal nodes in A. Deciding whether a given pattern has an occurrence
rooted at a given node of a well-formed tree can done in constant time if
the pattern is linear. Rewriting an occurrence can also be done in constant
time by pointer manipulations. Hence, for a given rewriting system R, the
algorithm runs in linear time with respect to the size of A.

3.4.3 Language translation by rewriting

So far, in section 3.4.2, we have studied rewriting as an operation on patterns,
without reference to any particular language. Recall that in section 3.2 we
defined a language as the set of labeled expressions (ground patterns) in
the substitution closure of some set of patterns, which are said to generate
the language. To answer questions 3, 4 and 5 of section 3.4.1, we need a few
results concerning language generation, and the interaction between language
generation and rewriting.

This section remains in the abstract setting introduced at the beginning
of section 3.4.2.
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We begin by characterizing languages in terms of parse trees of labeled
expressions.

Let 7 be a well-formed tree whose set of nodes is N, and whose set of
non-variable nodes is N’ C N. Let ¥ be a set of occurrences of non-variable
patterns in 7. We shall say that ¥ is a tessellation of 7 iff the sets of non-
variable nodes of the elements of ¥ form a partition of N'. In the special case
where 7 is associated with a ground pattern (i.e. when it is the parse tree
of a labeled expression), ¥ is a tessellation of 7 iff the sets of non-variable
nodes of the elements of ¥ form a partition of N.

Let now II be a set of non-variable patterns and 7 a well-formed tree.
We shall say that II tessellates T iff there exists a tessellation ¥ of 7 whose
elements are occurrences of patterns which are elements of II. We shall
say that II tessellates a pattern A iff it tessellates at least one of the trees
associated with A; in which case it tessellates them all, since they are all
isomorphic.

Observe that a well-formed tree consisting of a single leaf node labeled
by a pattern-matching variable has an empty set of non-variable nodes, and
hence is trivially tessellated by any set of non-variable patterns. Thus a
variable pattern is trivially tessellated by any set of non-variable patterns.

Lemma 3.6 A non-variable pattern A belongs to the subsitution closure of
a set of non-variable patterns I1 iff it is tessellated by II. (As a special case, a
labeled expression A belongs to the language generated by a set of non-variable
patterns II iff it is tessellated by 1.)

ProoF. The set of non-variable patterns tessellated by II is clearly stable
by substitution, and includes II. Hence it is a superset of the substitution
closure of II.

We prove the converse by induction on the depth of A. Let £ > 1
and assume that every non-variable pattern of depth less than k& which is
tessellated by II is in the substitution closure of II. Let A be a non-variable
pattern of depth £ tessellated by II. Let 7 be a well-formed tree associated
with A, and ¥ a tessellation of 7 by occurrences of patterns which are
elements of II. One of these occurences, 7, must be rooted at the root n of
7. Let V be the set (possibly empty) of pattern-matching variables which
label the leaf nodes of 7. Let P be the pattern of II associated with 7.
Since 7 is an occurrence of P rooted at n, 7 is a f-graft of 7, 6 being a
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substitution with domain V. Hence A = P#. Let v be an arbitrary element
of V (if V is not empty), and let m be a leaf node of 7, labeled by v in 7.

Assume that the image of v by 4 is a non-variable pattern A', and let 7”
be the occurrence of A’ in 7 rooted at m. Let 7; € ¥ be an occurrence of a
pattern Q € II which has a non-variable node in common with 7’. 7; has no
non-variable node in common with 7Ty, since they are both in the tessellation
Y of 7. But then the root of 7; (which is a non-variable node of 7; since
Q is a non-variable pattern) is in 7', and 7; is also an occurrence of @ in
7'. This means that the elements of ¥ which have non-variable nodes in
common with 7' form a tessellation ¥’ of 7', by patterns which are elements
of II. Since the depth of 7" is less than k, by induction hypothesis A’ is in
the substitution closure of II.

Thus every non-variable pattern in the range of # is in the substitution
closure of II. Therefore A = P belongs to the substitution closure of II. O

We shall say that a set of non-variable patterns II is non-overlapping iff
distinct patterns of II do not overlap and no pattern of II is self-overlapping.
The relationship with the notion of a non-overlapping rewriting system is
as follows: if a rewriting system R is non-overlapping, then the set of its
left-hand side patterns is non-overlapping; conversely, if the set of left-hand
side patterns of R is non-overlapping and, in addition, distinct rules have
distinct left-hand sides, then R is non-overlapping.

Lemma 3.7 Let II be a non-overlapping set of non-variable patterns and T
a well-formed tree having a tessellation ¥ by occurrences of patterns which
are elements of II. Then every occurrence of a pattern P € Il in T 1s an
element of 3.

ProOF. Indeed let 7p be an occurrence of P in 7. Since P is a non-variable
pattern, the set of non-variable nodes of 7p is non-empty and, being included
in the set of non-variable nodes of 7, it intersects the set of non-variable
nodes of an occurrence 7o € ¥ of some pattern @ € II. By lemma 3.1, 7p
and 7 overlap. Hence P and Q overlap. This means, since they are both
elements of II, that they coincide. But then 7p and 7 must overlap at the
root, otherwise P would be self-overlapping. Hence the occurrences 7p and
7 coincide. O ’

A consequence of this lemma is that a non-overlapping set of non-variable
patterns II determines a unique tessellation by occurrences of patterns of II
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of every well-formed tree associated with every pattern in the substitution
closure of I (and in particular, of every parse tree of every labeled expression
in the language generated by II). We shall write

tessp(7)

for the tessellation of such a tree 7 determined by II.
We come now to the interaction of language generation and rewriting.

Lemma 3.8 Let II be a non-overlapping set of linear non-variable patterns
and let R be a reversible, left-linear, right-linear rewriting system such that
for every rule P — P' of R both P and P' are in the substitution closure
of IL. Let T be a well-formed tree associated with some pattern in the substi-
tution closure of I, which has an occurrence Tp of the left-hand side P of a
rule P — P’ of R. Let T' be a tree obtained from T by rewriting Tp in situ,
and let Tpi be the occurrence of P'in T' resulting from the rewrite. Then

(tessp(7) — tessp(7Tp)) U tessp(7p+)
is a tessellation of T' by occurrences of patterns of II.

ProoF. First observe that every rule of R is a permuting rule, and that
hence the rewrite of 7p can indeed be done in situ.

Let N be the set of non-variable nodes of 7, N; the set of non-variable
nodes of 7p, and Ng = N — N;. Then Ny and N; partition N. Let N’ be
the set of non-variable nodes of 7' and Nj the set of non-variable nodes of
Tp:. From the definition of an in-situ rewrite, it follows that No = N — N; =
N'— Nj.

Let ¥ = tessp(7) and ¥; = tessy(7p). An occurrence of a pattern
in 7p is an occurrence of the same pattern in 7, and thus £; C X. Let
¥y = ¥ —3;. Since the sets of non-variable nodes of elements of ¥; partition
N3, and the sets of non-variable nodes of elements of ¥ partition N, the sets
of non-variable nodes of elements of 3, partition No. Let ¥} = tessp(7p/)
and

Y = SoUZ) = (tessp(7) — tessp(7p)) U tessy (T p)

Since the sets of non-variable nodes of elements of ¥ partition Ng, and the
sets of non-variable nodes of elements of ¥} partition Nj, the sets of non-
variable nodes of elements of ¥’ partition N'.
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It remains to show that every element of ¥’ is an occurrence in 7' of a
pattern which is an element of II. This is clear for the elements of £{. Let
now Ty € X be an occurrence of a pattern @ € Il in 7. The non-variable
nodes of 7y are not elements of N;. Hence, by lemma 3.1, 7 does not
overlap 7p. But then, by lemma 3.2(i), 74 is an occurrence of @ in 7"
(Observe that this makes use of the fact that @ is a linear pattern.) O

Theorem 3.9 Let II be a non-overlapping set of non-variable patterns and
let R be a reversible, left-linear, right-linear rewriting system such that for
every rule P — P' of R both P and P’ are in the substitution closure of II.
If A is a pattern in the substitution closure of II, and A rewrites to A’ in
R, then A’ is also in the substitution closure of II. (As a special case, if A
is a labeled expression in the language generated by I, and A rewrites to A’
in R, then A' is also in the language generated by I':)

ProoF. It suffices to prove this when A rewrites to A’ in one step, by
application of a rewrite rule P — P’ of R. Let 7 be a well-formed tree
associated with A. There exists a redex (7p, P — P') of R in 7 which,
when reduced, yields a well-formed tree associated with A'; and since R
consists of permuting rules, the reduction can be done in-situ. Let then 7"
be a well-formed tree associated with A’ resulting from an in-situ rewrite of
Tp, and let 7p/ be the occurrence of P’ in 7" resulting from the rewrite. By
lemma 3.8, the set:

(tessi(7) — tessp(7p)) U tessp(Tpr)

is a tessellation of 7' by occurrences of patterns of II. Hence by lemma 3.6
A’ is in the substitution closure of II. O

3.4.4 Adequacy of the translation system

We return now to the concrete setting of the typed A-language and the surface
language which extends it, and we are ready to answer the questions that
were raised at the end of section 3.4.1.

Let Ity be the set of basic patterns of the typed A-language described in
section 3.2. Let Ilsgort be the set of patterns which define the shorthands,
i.e. the patterns used as left-hand sides of Rgrpy and right-hand sides of
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Rintro; and let ITrgpr be the set of patterns used as representation of the
shorthands, i.e. the patterns used as right-hand sides of Rgpv and left-hand
sides of Riytro. The typed A-language is the language generated by Iltig,
and the surface language is the language generated by Ity U IsnorT.

Since the rewrite rules are customized by the user, Rgrmg and Rintro
are not known in advnace. But we make the following stipulations:

1. The rules of RgrLmv consist, as is the case in the sample rewriting system
of table 3.1, of rules for the primitive notations, rules for non-primitive
notations, and rules that allow the omission of the subscript ¢ from
variables in the surface language (rule schemas 14 and 15 in table 3.1).

2. Except for the subscript omission rules, each rule of Ry has been
constructed following the recipe given in section 2.5.2. This means in
particular that:

(a) The same pattern-matching variables occur in the left-hand side
and the right-hand side. (This has allowed us to assert that Repmv
is reversible, and to define Rintro.)

(b) Each pattern-matching variable used in the rule has a sort of the
form FML, or VAR,.

(c) The left-hand side and the right-hand side have sorts of the form
FML,. (The type a is o for a notation playing the syntactic role of
a sentence, or ¢ for a notation playing the syntactic role of a term;
it can also be some other type, as is the case for the shorthands
used for higher-order description operators.)

(d) The right-hand side is a pattern in the substitution closure of
IItyy, of the form:

c ARG, ... ARG,

i.e., with explicit parentheses and labeling by non-terminal sym-
bols:

(FML, . ..(FMLo,q,.. .0 (FMLoa,..a; €) ARG1) ... ARG,)

where ¢ is the representing constant of the notation.'® Distinct
rules have distinct representing constants.

WARG, ... ARG, are as described in section 2.5.2, but with pattern-matching variables
instead of syntactic parameters.
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(e) Each pattern-matching variable used in a rule of Rgrmv occurs
exactly once in the right-hand side.

(f) If the left-hand side has internal structure, i.e. if it has proper
non-variable subpatterns, then the non-terminals other than the
topmost one are not of sort FML, or VAR,.

3. Each pattern-matching variable used in the rule occurs exactly once
in the left-hand side. (Otherwise a syntactic parameter would be re-
peated twice in the notation, which is unnecessary, and rare in ordinary
notations.)

4. Patterns describing distinct notations are not the same up to renaming
of variables. Patterns describing notations are those of Iy, which de-
scribe the basic notations of the typed A-language, and those of IlsyorT,
which describe the additional notations introduced by the rewrite rules.
This stipulation means that IItp;, and Isgory are disjoint, that ele-
ments of Ilsgorr which are left-hand sides of distinct rules of R are
distinct, and that distinct patterns which are elements of Ity UIlsgorT
cannot be identified by renaming variables.

These stipulations imply that IlsgorT and IIggpr are sets of linear non-
variable patterns. Observe that Iltpy is also a set of linear non-variable
patterns.

Because distinct notations have distinct representing constants, elements
of Ilggpr which are right-hand sides of distinct rules of Rgpv, i.e. left-hand
sides of distinct rules of Rintro, are distinct. Moreover, it is clear from
the general form of those patterns of IIggpg constructed according to the
recipe of section 2.5.2, and from the form of the subscript omission rules,
that distinct patterns which are elements of Ilggpr do not overlap, and that
no element of lIggpr is self-overlapping. Thus IIggpr is non-overlapping.

Consider now the set of patterns describing notations of the surface lan-
guage, IIt p, U dggorr. The patterns of IIyy;, have no proper subpatterns;
and if a pattern P of Isgort has a proper subpattern P’, then the sort of
P’ is not of the form FML, or VAR,. Every pattern of H1y; U IlsgorT, on
the other hand, has a sort of the form FML, or VAR,. Hence no pattern of
Ity U Ilsgort can have a common instance with a proper subpattern of a
pattern of HTLL U HSHORT-
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This means, first, that no pattern of 11 UIlsgory is self-overlapping. It
also means that distinct patterns of Iy, U lIsgort do not overlap. Indeed,
assume that two patterns P, P’ € Il U Ilsgort overlap, and let us prove
that they are identical.

Since neither of P and P’ can have a common instance with a proper
subpattern of the other, they themselves must have a common instance A:

A= P§= P9

where § and 6’ are substitutions. Consider a parse tree 7 associated with
A, let r be the root of 7, and let 7p and 7p: be the occurrences of P and
P’ rooted at r. A node n of 7 cannot be both a variable node of 7p and an
internal node of 7p:, or viceversa, since the variable nodes of 7p and 7ps are
labeled by pattern-matching variables with sorts of the form FML, or VAR,,
while their internal nodes other than the root are labeled by non-terminal
symbols which are not of the form FML, or VAR,. Hence 7p and 7ps have
the same set N of varaible nodes. But then, since P and P’ do not have
repeated occurrences of variables, the set of pairs (v, v’) where v and v’ are
the labels of nin 7p and 7p: for some n € N is a bijection 8 from the set of
pattern-matching variables of P onto the set of pattern-matching variables
of P'. Thus P and P’ are the same up to renaming of variables. By the
above stipulations, they must then coincide.

We have shown that no pattern of Il1p;, U Isgort is self-overlapping, and
that distinct patterns of Ity U llsgort do not overlap. Thus the set of non-
variable patterns IItp, UIlsgort is non-overlapping. Also, since the patterns
of Ilrgpr are in the substitution closure of IIty, it is easy to see that no
pattern of IIgxgpr overlaps any pattern of IIsgorr.

Since Isyort and IIxgpr are sets of linear patterns, the reversible systems
Rerum and Rintro are left and right-linear. Since no pattern of Ilggpr over-
laps any pattern of Ilggort, they are left-to-right non-overlapping. Hence,
by theorem 3.3, they are both terminating. Moreover, since Illggorr, as a
subset of Iltpy, U Isgort, is non-overlapping, and distinct rules of Rgpm
have distinct left-hand sides, Rgriv is non-overlapping. And since IIxgpg is
non-overlapping, and distinct rules of Rintro have distinct left-hand sides,
Rintro is also non-overlapping. Therefore, by theorem 3.4, both Rgpv and
RinTrO are convergent.

We have thus answered questions 1 and 2 of section 3.4.1. Every chain
of rewrites, in either direction, terminates. And every pattern has a unique
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normal form both for R and Rintro. Hence if a labeled expression is
rewritten, in either direction, until no more rules apply, then the result will
be independent of the choices made during the rewriting process regarding
which rewrite to perform next.

The fact that the rewriting systems Reim and Rintro satisfy the condi-
tions of theorem 3.4 also means that algorithm 3.1 is applicable in both cases.
Since the running time of the algorithm is linear in the size of the expression
being rewritten, this provides at least a theoretical answer to question 6.
In fact, experience shows that the speed of the rewriting algorithm is in-
deed perfectly adequate for interactive use. The rewriting time is negligible
compared with the parsing time or the pretty-printing time.

The answer to questions 3 and 4 is provided by theorem 3.9. It is not the
case, of course, that an arbitrary labeled expression is rewritten by Rgrmu
to an expression of the typed A-language, or by Rintro to an expression of
the surface language. But consider an expression of the surface language.
The set of non-variable patterns It p, U Ilsgort, which generates the surface
language, is non-overlapping; the patterns used as left-hand sides and right-
hand sides of Reymy and RinTro, the elements of Ilsgorr and Ilzppg, are
in the substitution closure of IItyy, U Ilsgorr; and the rewriting systems
ReLm and Rintro are reversible, left-linear and right-linear. Hence they
both rewrite an expression of the surface language to an expression of the
surface language. Moreover, consider an expression A of the surface language
which is in normal form for Rermv. By lemma 3.6, A is tessellated by Ity U
Ilsgort; but since A is in normal form, a parse tree for A has no occurrences
of patterns which are elements of IIggorr. Hence A is tessellated by Iltyr,
and thus it is an expression of the typed A-language. Therefore the direct
rewriting process takes an expression of the surface language to an expression
of the typed A-language.

It remains to answer question 5.

An expression of the surface language which is in normal form for Rgrm
is an expression of the typed A-language. Conversely, an expression A of
the typed A-language is in normal form for Rgrmv. Indeed, let 7 be a parse
tree of A. By lemma 3.6, there is a tessellation ¥ of 7 by occurrences of
patterns of Il . Since the set of non-variable patterns Ilty;, U Hgpory is
non-overlapping, by lemma 3.7, any occurrence of an element of IIsgort in
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7 must belong to ¥. Given that Ity and Isgorr are disjoint, this means
that there are no occurrences of patterns of Isgort in 7. Thus no rule of
RerLv applies to A. _

Consider then the process of rewriting an expression A of the typed A-
language with RiyTro until a normal form A’ for Rintro is found, and then
rewriting A’ back with Rprp until a normal form A" for Rerny is found.
Since Rintro rewrites A to A', ReLmv rewrites A’ to A. And since A is in
normal form, A” = A, '

Consider the opposite process: an expression A of the surface language
if rewritten with Rgrpy until a normal form A’ for Rerny is found. We have
seen that A’ is an expression of the typed A-language. Then A’ is rewrit-
ten with RinTro until a normal form A” for Rintro is found. Informally
speaking, if A contains subexpressions which could have been written using
shorthands but are written instead in internal representation, then A" will
differ from A, since in A" the shorthands will have been used instead. But
if this is not the case, i.e., formally, if A is in normal form for RiyTro, then
by the same argument as above, A" = A.

Thus Reimv and Rintro define a bijective correspondance between the
typed A-language and the set of expressions of the surface language which
are in normal form for Rinrtro-

Let now A be a labeled expression consisting only of shorthands, i.e. an
expression of the language generated by IIsgorr. By lemma 3.6, a parse tree
7 of A has a tessellation ¥ by occurrences of elements of lggorr. Since a
pattern which is an element of Illggpr does not overlap any pattern which is
an element IlsgorT, no pattern in IIggpg can have an occurrence in 7. Hence
A is in normal form for Riytro. By a similar argument, any expression of
the language generated by IIggpr is in normal form for Rerm.

Conversely, let A be an expression of the language generated by IIsgorrU
IMggpr which is in normal form for ReLmm. A parse tree of A is tessellated by
IIsyort UIIrgpr, but can have no occurrences of patterns which are elements
of Ilsgort, hence it is tessellated by IIggpr. Thus A is an expression of
the language generated by Ilggpg. Similarly, an expression of the language
generated by Isgort U IIrgpr which is in normal form for RiyTro is in the
language generated by IIsgorr.

The set syort U Igrepr consists of linear non-variable patterns, and is
nonoverlapping. Hence, by theorem 3.9, if an expression A of the language
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generated by lsgort UIlRepr rewrites to A’ in either Ryppv or RinTro, then
A’ belongs also to the language generated by IIsgort U IIrEpR.

Let then A be an expression of the language generated by IIsgort, let
A’ be its normal form for Rerm, and let A” be the normal form of A’
for Rintro. Since A rewrites to A’, A’ is in the language generated by
Isuort UIlrepr, and hence, since A'is in normal form for Rgryy, it is in the
language generated by IIrgpr. Furthermore, A is in normal form for Rintro,
and A’ rewrites to A in Rintro. Hence A” = A. Similarly, a complete
rewrite by Rintro (i.e. a rewrite to normal form) takes an expression B
of the language generated by IIggpr to an expression B’ of the language
generated by Isgort, and then a complete rewrite by Repmv takes B’ back
to B. Thus Rgrmv and Rintro define a bijective correspondance between
the language generated by Isgort (the set of labeled expressions consisting
only of shorhtands) and the language generate by IIggpr.

An important subset of the surface language is the set of expressions
which consist only of “ordinary”, or “first-order” mathematical notations.
To make this notion precise we define Rro as the subset of Rgpm consisting
of the following rules:

1. The rules that allow the omission of the subscript ¢ from variables in
the surface language (rule schemas 14 and 15 in table 3.1).

2. Those other rules of Rgrm whose sides are of sort FML, or FML,, and
which contain no pattern-matching variables or sort other than VAR,,
FML,, or FML,. We shall refer to the notations encoded by these rules as
“ordinary notations”. An ordinary notation is thus one which behaves
syntactically as a term or a sentence, and whose syntactic parame-
ters are individual variables, terms, or sentences. Observe that these
notations have representing constants with types of order 0, 1 or 2.

Let HSHORT-FO be the set of left-hand sides of rules of RFO, and HREPR-FO the
set of right-hand sides. We can then define the “language of ordinary nota-
tions” as the language generated by IIsgort.Fro. This language is important
because it excludes notations such are higher-order quantification which may
be unfamiliar to the user a PDS for set theory. It may be desirable to make
it possible for the user to work entirely within this language, by designing
the inference toolkit appropriately.
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By the same kind of argument as above, it is clear that Rgpm and
Rintro define a bijective correspondance between the language generated
by Ilsgorr.ro and the language generated by IIgppr.Fo.

Using the concepts and results of appendix B, it is possible to give a sim-
ple characterization of the language generated by IIggpr.ro. This language
consists, on one hand, of the labeled expressions of the form “(vaRr, Id)”,
and on the other hand, of the result of labeling with phrase markers certains
formulas of the typed A-language. It can be seen that these formulas coin-
cide with the standard formulas (definition B.5, page 201) of atomic type
generated by the set of representing constants of the ordinary notations. But
these formulas in turn coincide with the formulas of atomic type in Svy-nf
which contain no free symbols other than variables of type ¢ or constants
representing ordinary notations (theorem B.16, page 201).

It follows that any term or sentence of the typed A-language which con-
tains no free symbols other than individual variables or constants repre-
senting ordinary notations is provably equivalent to a formula which can be
written using only shorthands.

3.5 Parsing

3.5.1 The parsing problem

In sections 3.3 and 3.4 we have seen how translation from the surface lan-
guage into the typed A-language, and from the typed A-language into the
surface language, can be accomplished by rewriting. But rewriting requires
labeled expressions, as discussed in section 3.2. In this section we examine
the problem of adding parentheses and markers (non-terminal symbols) to
an unlabeled expression, in order to turn it into a labeled expression. This
is, in our context, the parsing problem. By unlabeled expression we mean an
arbitrary sequence of terminal symbols and delimiters (left or right paren-
theses). By labeled expression we mean as before a pattern (as defined in
section 3.2) having no occurrences of pattern-matching variables.

The parsing problem is of course relative to a given language. It can be
formulated more precisely as follows. Let us say that a labeled expression A’
is a marking of an unlabeled expression A iff A can be obtained from A’ by
erasing all the markers and zero, some or all pairs of matching parentheses.
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Let £ be the language generated by a set of non-variable patterns II. To
parse an unlabeled expression A with respect to £ is to find all the markings
of A which are elements of the set £. If there are such markings A is well-
formed with respect to £, otherwise it is t/l-formed. When A is well-formed,
it is ambiguous if there are more than one such markings, unambiguous if
there is only one.

Our parsing problem is related to the more traditional problem of parsing
an expression with respect to a context-free grammar as follows. We shall
refer to a non-variable pattern which has no proper non-variable subpatterns
(i.e. which has no internal structure) as a one-level pattern. Recall that a
linear pattern is a pattern which does not have more than one occurrence of
any variable. To each linear one-level pattern

(f A ... A),

(where f is a non-terminal symbol and each A, is either a terminal symbol
or a pattern-matching variable) we associate the two grammar productions:

fr— A .. A
f— (A ... A)

where A’ is the same as A, if A, is a terminal symbol, and A is the sort of A;
if A;is a pattern-matching variable, If II is a set of linear one-level patterns,
L is the language generated by II, I’ is the set of productions associated
with the patterns of II, and L' is the context-free language generated by the
grammar II', then it is easy to see that £’ coincides with the set of expressions
which have markingsin £. So to decide whether A has a markingin £ is the
same as to decide whether it is an expression of the context-free language
L'. Moreover a parse tree of A with respect to the context-free grammar
determines a marking, and conversely a marking determines a parse tree (up
to isomorphism). Thus the problem of parsing with respect to the language
generated by a set of linear one-level patterns reduces to the problem of
parsing with respect to a context-free grammar.

The languages that we are interested in are the surface language and the
typed M-language, which is contained in the surface language. Recall that the
typed A-language is generated by the set of non-variable patterns Ity ., and
the surface language by Iy, U lsyort. Let syrr = Ity U lsuorr. Two
potential difficulties arise regarding parsing with respect to these languages:
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1. While the elements of II1y;, are linear one-level patterns, the same in
not necessarily the case for Ilsgort.

2. The patterns of Iy, are described (page 1) by pattern schemas, pa-
rameterized by schematic type variables. Notations for higher-order
quantifiers and descriptors also require type parameters. Thus Ilsyrr
is infinite. If it consisted only of linear one-level patterns an equivalent
grammar could be derived from it, but it would be an infinite one.

The second difficulty is not in fact a practical one. Type variables can
be used in a straightforward way by the parser, so that there is not much
practical difference between a pattern schema with type parameters and an
ordinary pattern.

The first difficulty has been avoided in the first version of Watson, de-
scribed in chapter 4, by ruling out patterns with internal structure as left-
hand sides of rules of Rg . It is theoretically possible, however, to reduce
the problem of parsing with respect to IIsyrr to the context-free parsing
problem, even when internal strucutre is allowed in the elements of Hsygryr.
In the remainder of this section we show how this can be done.

A projection of a set of non-variable patterns II is a set of linear, one-level
patterns obtained as follows: take each pattern P which is an element of II or
a subpattern of an element of II, and replace each (variable or non-variable)
subpattern P’ of P with a pattern-matching variable of same sort as P’, using
a different pattern-matching variable each time; then from the resulting set
remove any patterns which are the same as others up to renaming of variables.

For example, if II consists of the two patterns:

(FML, (RQ V 2yvan, € Erm,) Povo)

.10
(FMLo (RQ dzyup, € EFML,) PFMLO) (3 )

then the following patterns:
(FMLo Qrg Py, ) '
(RQY Zysn, € Epa,) (3.11)
(RQ 3 2ysr, € Ermr,)

are the elements of a projection II' of II.
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Observe that different projections of a given set of non-variable patterns
differ only in the names of the pattern-matching variables used in the pat-
terns.

If I is a projection of II, every pattern of II is in the substitution closure
of II'. Hence the language £ generated by II is a subset of the language £’
generated by II'. Therefore to parse an unlabeled expression A with respect
to £ one can begin by parsing it with respect to £'. Since II' is a set of
linear one-level patterns, parsing with respect to £’ is the same as parsing
with respect to the context-free grammar derived from I as described above.
The result is the set of markings of A which are elements of the set £'. It can
then be determined which of these markings are in the substitution closure
of 1I, i.e. which of them are also elements of £. In this sense, the problem
of parsing with respect to the language generated by an arbitrary set of
non-variable patterns reduces to the problem of parsing with respect to a
context-free grammar.

In the case of interest to us, if IIsyrr contains patterns other than one-
level patterns, we can parse an unlabeled expression A with respect to a pro-
jection Ilproy of surr, then check the resulting markings for membership
in the surface language. This check may be as simple as inspecting the sort
of each marking, and rejecting those whose sorts are auxiliary non-terminal
symbols. (Recall that the auxiliary non-terminal symbols are symbols which
are not of the form FML, or VAR,, used as sorts of any proper non-variable
subpatterns of elements of Ilsgort.) Indeed, if the rewrite rules are properly
designed, the surface language should coincide with the set of labeled expres-
sions of sort FML, or VAR, in the language generated by Ilpro;. We shall
not try to give design guidelines that ensure that this is indeed the case. But
we shall describe a method for verifying this a posteriori.

Let F be a set of non-terminal symbols. We shall say that a pattern
P is peripherally F-free iff its sort it not an element of F' and it contains
no occurrences of pattern-matching variables whose sort is an element of F'.
For example, let X be the set of symbols which can be used as auxiliary
non-terminals, i.e. the set of non-terminal symbols which are not of the form
FML, or VAR,. Then the set IIsyrr = 11 U lggorr is peripherally X-free.

A set S of patterns is F-stable iff for every pattern P in S and every
substitution # whose range consists only of pattern-matching variables and
elements of S, and whose domain contains only pattern-matching variables
whose sort is in F, the pattern P#@ is also in S. The F-closure of a set II
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of non-variable patterns is the smallest F-stable set which includes II. The
F-contraction of 1l is the set of patterns in the F-closure of II which are
peripherally F-free.

For example, II' being the set of patterns (3.11), and X being as before
the set of auxiliary non-terminal symbols, the X-closure of II' consists of the
following patterns:

(FML, Qnq Pew.)

(RQ VY 2ysr, € Epm,)

(RQ 3 2ypar, € Erew,)

(F (RQ YV Zyan, € EFML,) PFMLo)
(FML (RQ v, € EFMLl) PFMLO)

and the F-contraction of I’ is the set of two patterns:

(FMLo (RQY 2yup, € Ee,) PFMLO) (3.12)
(FML, (RQ 3 Zyug, € Eem.) Pow,)

Theorem 3.10 Let F' be a set of non-terminal symbols, and II a set of
linear non-variable patterns. Then the set of peripherally F-free patterns
in the substitution closure of Il coincides with the substitution closure of
the F-contraction of Il. Hence the set of labeled expressions of the language
generated by Il whose sort 1s not an element of F' cotncides with the language
generated by the F-contraction of II.

In fact the result holds without the requirement that the patterns of II
be linear, but the proof is not as simple, and we do not need the stronger
version.

PRrOOF. It is clear that the F-closure of II is a subset of the full substitu-
tion closure of Il. Hence the F-contraction of II, and therefore its substitution
closure, are also subsets of the substitution closure of II. Moreover, since ev-
ery pattern in the F-contraction of II is peripherally F-free, and the set of
peripherally F-free patterns is stable by substitution, every pattern in the
substitution closure of the F-contraction of II is peripherally F-free. There-
fore the substitution closure of the F-contraction of II is a subset of the set
of periferally F-free patterns in the substitution closure of II.

Conversely, let A be an element of the substitution closure of II which is
peripherally F-free, and let 7 be a well-formed tree associated with A. By



112 CHAPTER 3. REWRITING

lemma 3.6, 7 has a tessellation ¥ by occurrences of elements of II. Recall
that the elements of ¥ are occurrences in 7 of patterns which are elements
of I. We shall say that two such occurrences are F-connected iff the root of
one of them is labeled by an element of F' and coincides with a variable-node
of the other. We shall say that a subset ¥/ of & is F-connected iff between
any two elements of ¥’ there exists a chain of elemets of ¥’ were consecutive
elements are F-connected. An F-connected component of ¥ is a maximal
F-connected subset of X.

Clearly, every F-connected subset of ¥ has an element which is closest
to the root. Making use of this observation, it is easy to prove by induction
that, for every F-connected subset X' of &, there exists an occurrence 7" in
7 of an element A’ of the F-closure of II, such that the set of non-variable
nodes of 7' is the union of the sets of non-variable nodes of the elements of
¥'. Moreover, if ¥’ is an F-connected component of ¥, then, given that A is
periferally F-free, the root of 7' cannot labeled by an element of F, and no
variable node of 7' (if any) can be labeled by a pattern-matching variable
whose sort is an element of F; thus A’ is periferally F-free, and hence it
belongs to the F-contraction of II. Since the F-connected components of £
partition ¥, the sets of non-variable nodes of the corresponding occurrences
of elements of the F-contraction of II partition the set of non-variable nodes
of 7, and hence those occurrences themselves constitute a tessellation of
7. Therefore, by lemma 3.6, A belongs to the substitution closure of the
F-contraction of II.

The corollary follows immediately from definitions. O »

Theorem 3.10 provides the announced method for verifying that the sur-
face language coincides with the set of labeled expressions of the language
generated by Ilpro; whose sorts are of the form FML, or VAR,. Indeed the
latter is also the language generated by the X-contraction of Ilpgroy, while
the former is the language generated by Hgygp. It suffices then to compute
the X-contraction of Ilproj, which we shall call HgonT, and verify that the
substitution closures of IlconT and Ilsyrp coincide.

The closures coincide iff each element of IlconT is in the closure of lIsyrr
and viceversa. But recall that IIsygr = 11y U sgort, that the patterns
in IItp, have no proper non-variable subpatterns, and that those in Isgort
have no proper non-variable subpatterns whose sort is of the form FML, or
VAR,. On the other hand the patterns in HgonT are all of sort FML, or
VAR,. Hence, using lemma 3.6, it is clear that if a pattern A € IIgygr is in
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the closure of IgonT, then it must be of the form P8, where P € Ilgont and
6 is a substitution whose range consists entirely of variable patterns. Since
A is linear, this means that A is the same as P up to variable renaming.
The same argument can be used with the roles of Ilsygrr and HconT reversed.
Indeed the sorts of proper non-variable subpatterns of elements of llcont are
in X by construction, while all the sorts of the elements of Ilsyrr are of the
form FML, or VAR,. Hence if an element of oy is in the closure of llsygy,
it must coincide with an element of Ilgyrr up to variable renaming. Thus
the closures of Igont and gyrr coincide iff Mooyt and Hsyrp themselves
contain the same patterns up to renaming of variables.

When applying this verification method it is sufficient to consider only
those patterns of Isyrr which do have internal structure. That is, II§ygp be-
ing the set of such patterns, Il ; the projection of igyry and Mgy the X-
contraction of Iy, it is sufficient to verify that Iy and oy contain
the same patterns up the renaming of variables. For, let Ily = Isyrr — H5ygpe
be the set of one-level patterns in Hsyrp. Then:

Osurr = Hgype U1l
Mpros = Mproy U
Meont = Hgont Ul

And Iy U Il coincides with oy U IIp up to renaming of variables iff
the same is the case for gygrp and Moyt

For example, if the two patterns (3.10) are the only ones in IIgyry having
internal structure, it is sufficent to compute the projection (3.11) of (3.10),
and the X-contraction (3.12) of (3.11), and check whether (3.10) and (3.12)
are the same up to renaming of variables. In this case they are identical.

3.5.2 Bracketing conventions

In this section we further consider the problem of parsing a labeled expression
with respect to a language generated by a set II of linear one-level patterns.

A problem with the parsing paradigm presented so far is that explicit
parentheses are required too often. For example, if II were the surface lan-
guage generated by the left-hand sides of the rewrite rules given in table 3.1,
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page 79, the expressions
ANBAC

AANBDOC
ANBVC
AVBAC

would be ambiguous without parentheses. Generally, if P, P, € II are pat-
terns of same sort f, if P, is right-recursive (it ends with a pattern-matching
variable of sort f), if P, is left-recursive (it begins with a pattern-matching
variable of sort f), and if P is obtained by substituting P, for the first
pattern-matching variable of P,, or P; for the last pattern-matching vari-
able of P;, then any unlabeled expression derived from a labeled expression
which is a substitution instance of P will be ambiguous without parentheses.

The usual solution to this is to specify the precedence and associativity of
operators. For example, by saying that A is left associative we would imply
that the first of the above expressions stands for

(AAB)AC.

By saying that A has higher precedence than D, we would imply that the
second expression stands for

(AAB)DC.

And by saying that A and V are mutually left-associative we would imply
that the third and fourth expressions stand for

(AAB)V C
(AVB)AC

The parser of Watson uses a simple convention based on the idea of
a bracketing rule. A bracketing rule is a triple consisting of two patterns
II,,II, € 1T and an integer n specifying a position in the second pattern.
(Positions start at 1, and there is one for each pattern-matching variable and
each terminal symbol in the pattern.) The implied meaning is that parenthe-
ses are required around an instance of the first pattern when substituted for
the pattern-matching variable v which occupies the n-th position in the sec-
ond pattern.!! To parse A with respect to alanguage and a set of bracketing

UWe could also define a bracketing rule as a pair (P;,C), where C is a context (Ps,v).
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rules is to compute the markings of A which are part of the language and are
compatible with the rules. We shall refer to a bracketing rule (P;, P2, n) by
saying that parentheses are required around P; in the n-th position of P,.

This convention is more general than the usual conventions of precedence
and associativity. For example, consider parsing with respect to the surface
language corresponding to the rewriting system of table 3.1, page 79. To
achieve the effect of A being left-associative, we specify that parentheses are
required around the left-hand side of rule 6 of table 3.1 (rule for conjunction)
in the third position of the same pattern. Then “AA BAC” cannot stand for
“ANA(BAC)”, soit can only stand for “(AA B) A C”. Similarly, to achieve
the effect of A having higher precedence than O we specify that parentheses
are required around the left-hand side of rule 8 (implication) in the first or
third position of the left-hand side of rule 6 (conjunction). To achieve the
effect of A and V being mutually left-associative, we specify that parentheses
are required around each of the left-hand sides of rules 6 (conjunction) and 7
(disjunction) in the first position of the other. Right-associativity and mutual
right-associativity are achieved similarly.

An advantage of bracketing rules is that they cover other conventions
relative to the use of parentheses as well. For example a bracketing rule can
be used to specify that the parentheses around the argument of a set-theoretic
function application “F(A)” are compulsory.

In Watson, which is implemented in Prolog, the set of bracketing rules
can be specified as a user-supplied Prolog predicate. But it can also be spec-
ified indirectly, by declaring the associativity and precedence of some of the
patterns that make up the surface language. (Associativity and precedence
can be assigned to any right-recursive or left-recursive pattern, not just to
operators; in particular, precedence can be assigned to quantifiers.) Then
Watson derives the set of bracketing rules by assuming that parentheses are
required, by default, around every right-recursive pattern in the first position
of a left-recursive pattern of same sort, and around every left-recursive pat-
tern in the last position of a right-recursive pattern of same sort; and then
using the declarations of associativity and precedence to specify exceptions.
Compulsory parentheses in F(A) and similar conventions can be specified
by additional, explicit bracketing rules.



Chapter 4

The proof development system
Watson

The proof development system Watson has been implemented to show the
feasiblity of using the formal system described in chapter 2, and to gain
insights into the task of mechanizing mathematics with a set theoretic foun-
dation. At this point Watson is only a prototype, with a limited linguistic
coverage and a bare-bones inference tool-kit. But it has been used to do a
proof which has eluded previous efforts in the field of hardware verification.

4.1 The language processor of Watson

4.1.1 Coverage

The user of Watson can easily design his own notations, using mathematical
symbols and keywords. There are restrictions, however, in the kind of nota-
tions which can be specified. Some of these have been imposed only for the
sake of simplicity, and are likely to be lifted in future versions of Watson,
while others will be more difficult to overcome. We list them in order of
decreasing difficulty:

1. Fraction bars, superscripts, subscripts and other two-dimensional nota-
tions are not handled; equivalent linear notations must be used instead.
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. The convention of writing

ARBTR C

for
(AR B)A(B R' C)

where R and R’ are relation symbols, such as =, < or <, cannot be
easily handled by a rewriting system of the kind described in section 3.4.

As mentioned before, the linguistic theory of chapter 3 applies to lan-
guages where parentheses are the only means of delimiting subexpres-
sions. This excludes the use of several kinds of delimiters such as (),
[] and {} for grouping; the use of a dot whose scope extends as far
to the right as possible as in “Va.P”; the use of groups of dots as
in [19] or [48]; etc. To cover these other styles, the theory would have
to be considerably generalized. However, it is expected that a rewrit-
ing system of the kind described in section 3.4 could still be used for
translation of shorthands after syntactic analysis has taken place.

Watson does not handle repetitive notations, such as
{A,,..., A} (4.1)

Theoretically, such notations present no difficulty. For example (4.1)
could be considered as a shorthand for

€NumM,q, . .ay Al e An. (42)

with oy = ... = a, = «. Each constant enum,,, ., would then be
defined by an axiom

eNUM,q, o, = AL1.. . AB,usVY(Yy Es=y=a1V...Vy=2a,) (4.3)

where s, y, ®; ... x, are pairwise distinct variables of type ¢. A
practical difficulty, though, is to find a simple way for the user to specify
the notation schema (4.1) — (4.2) and the axiom schema (4.3).

Watson only accepts one-level linear patterns as left-hand sides of
rewrite rules for elimination of shorthands. This means that it does
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not handle notations having internal structure, or notations with mul-
tiple occurrences of a parameter. The restriction to one-level patterns
could be lifted easily as explained at the end of section 3.5.1, but doing
so would complicate the specification of bracketing conventions. The
linearity restriction does not seem to be of practical importance.

4.1.2 The components of the language processor

When Watson reads a mathematical expression F it first parses it with re-
spect to the surface language; then it rewrites the resulting surface language
expression into an expression of the typed A-language. When writing a math-
ematical expression, Watson follows the opposite steps: it takes the internal
representation of the expression, which is a formula of the typed A-language,
and rewrites it using the reverse rewriting system. This in effect introduces
as many surface notations as possible. Then it takes the resulting labeled
expression and removes the phrase markers and a maximal set of parentheses
which can be removed without rendering the expression ambiguous. So at
run-time the language processor of Watson has three components: a parser,
a pretty-printer, and a rewriter. In addition there is a compiler, which takes
as input a set of notation specifications, and a set of bracketing specifica-
tions (declarations of associativity, mutual associativity and precedence, and
additional bracketing rules), and produces the data that drive the parser,
pretty-printer and rewriter.

Compiler

Each notation specification is a rewrite rule. The left-hand side of the rule is
a labeled expression. The right-hand side, on the other hand, is an ordinary
expression of the typed A-language, without phrase markers, and which does
not have to be fully parenthesized. This is possible because the syntax of the
typed A-language is built-in, and the compiler can invoke the parser on the
right-hand side, with that restricted syntax.

The compiler computes data for use by the parser, the pretty printer, and
the rewriter. The data for the parser and the pretty-printer consist essentially
of a definite clause grammar [45, 46] derived from the set of left-hand sides
(which are linear one-level patterns) as explained in section 3.5.1. In addition,
there is an operator table telling which sub-expressions of the form “A s, A"
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cannot immediately follow s; without intervening parentheses, s; and s,
being mathematical symbols (such as + or x) or keywords. The operator
table is computed automatically, without the user having to declare symbols
as operators explicitly.

The user has some control over the spacing produced by the pretty-
printer: a compulsory blank can be specified by leaving two or more blanks
at the desired position in the left-hand side of the rewrite rule.

Once the compiler has been run on a particular rewriting system and set
of bracketing rules, the data it produces can be written out as a grammar
file in binary format. Any number of such grammar files, which define as
many surface languages, can be saved. It is possible, and it takes practically
no time, to load any of these files at any time, even in the middle of a proof,
thus switching to a different syntax.

Parser

As mentioned above, the parser uses a definite clause grammar, as proposed
in [46]. However, instead of the parsing method described in [46], the parser
uses a bottom-up method inspired by [38]. The bottom-up method has
been enhanced by two improvements which exploit special characteristics of
mathematical notations:

1. Different mathematical notations tend to use different sets of mathe-
matical symbols and keywords. A notation cannot be part of a given
mathematical expression if not all the symbols and keywords used in
the notation appear in the expression. Thus it is possible to rule out
many notations by a simple scan of the input string. Typically, only a
handful of notations are left, and the parser operates with a very small
grammar.

2. Long mathematical expressions tend to be polynomials, by which we
simply mean here expressions of the form

A1 81 Aysy ... Ay sy Appr

'An initial implementation based on [46] was too slow; the second implementation
based on [38] was several orders of magnitude faster. The first implementation may have
been nalve, however.
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constructed from notations “A s; A”. As mentioned above, the com-
piler produces an operator table. If, say, the notations “A s; A" are
mutually left-associative, the operator table will tell us that “A,s, A3,
though a well-formed substring, cannot be a well-formed subexpression
of the entire expression. The same is true for “A; s; A,41” for every
i > 1. Thus the combinatorial explosion of well-formed substrings that
would arise in the bottom-up parse of a long polynomial is prevented.

Pretty-printer

The main task of the pretty-printer is to determine a minimal set of paren-
theses which makes the expression to be printed unambiguous. In addition,
the pretty-printer deals with spacing and indentation.

In Watson, parenthesization of the output requires no additional infor-
mation besides the left-hand sides of the rewrite rules, and the bracketing
conventions (associativity, precedence, and so on) available to the parser.
It is computed bottom up following the parse tree of the expression. For
each subtree, heavier and heavier parenthesizations are tried out until one is
found unambiguous by parsing it. When parsing a candidate parenthesiza-
tion, well-formed substrings of the subexpressions are reused; thus, although
pretty-printing is slower than parsing, the performance of the algorithm is
still adequate to interactive use.

Rewriter

In both directions the rewriter uses algorithm 3.1 which, as explained in
section 3.4.2, runs in time linear in the size of the expression being rewritten,
for a given set of rewrite rules. As mentioned in section 3.4.4, the rewriting
time is negligible compared with the parsing time or the pretty-printing time.

4.2 A methodology for interactive proof

4.2.1 Motivation

It would have been possible to try out the formal system and the theory
of mathematical languages that we have described so far by modifying an
existing theorem prover. For example, a language processor could have been
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added to the HOL theorem prover. However, the new formal system and
new linguistic theory invited the design of a new theorem prover according
to the same guiding principle, viz. the desire to allow mathematicians and
engineers to carry out proofs in a way not much different from what they
are accustomed to. So a new methodology for interactive proof as been
developed for Watson. The new methodology does not ignore previous work
in interactive theorem proving; rather, it borrows and combines features from
several different sources, notably HOL and TPS.

The main feature of the new methodology is that it provides a comfortable
environment where the user can:

1. Interrupt his/her work, save it in a hierarchically organized library, and
retrieve it and resume it later.

2. Use results before proving them without giving up on the guarantee of
correctness.

3. Inspect his/her work and, moreover, correct it, using an ordinary text
editor.

4. Switch easily from one surface language to another; use results stated or
proved using a different surface language; share results with researchers
using a different surface language.

This flexibility is provided at two levels: within a given proof, and across
proofs, when developing one or more theories.

We now make this more concrete by providing a brief description of the
inferential aspects of Watson. ‘

4.2.2 Named theories

A theory, as we have seen, is a set of sentences. A theory can be given a
name by a theory declaration. In most cases, a declaration associates a name
with a theory of the form

TZU...UT,U{Py,..., Py},

where T'; ...T,,, the immediate subtheories, are previously declared theories,
and P, ... P,,, the immediate azioms, are sentences. Such a declaration can
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be entered by a command given to Watson; but usually it is easier to write
it down in the appropriate file of the library, in the following form:

Defined theory Name;
subtheories Name, ..., Name;
axioms Name: “Formula", ..., Name: “Formula".

For example, here is the theory devices used in the case study, exactly as it
appears in the library:

Defined theory devices;
subtheories time, voltages;
axioms
~nor_def: "fnor_oiiiii = \d1lh\dhl\x\y\z (
dlh %in %time /\
0 < dlh /\
dhl %in %time /\
0 < dhl /\
x %in Ytime -> %voltages /\
y %in %time -> %voltages /\
z %in %time -> Y%voltages /\
1£0 111 (
t0 %in %time /\ t1 %in %time /\ t0 + dlh < t1 /\
1$(t0 <t /\ t < t1 => x(t) %low /\ y(t) %low) =>
762 (t1 < $2 /\ 't (£0 + dlh < t /\ t < t2 => z(t) %high))) /\
1£0 111 (
$0 %in %time /\ t1 %in %time /\ t0 + dhl < t1 /\
1$(t0 < t /\ t < t1 => x(t) %high \/ y(t) %high) =>
?t2 (t1 < t2 /\ !t (t0 + dhl < t /\ t < t2 => z(t) %low))))",
latch_def: "Ylatch_oiiiiii = \d1lh\dhl\a\b\g\gbar(
“nor dlh dhl a gbar q /\ Y%nor dlh dhl q b gbar)",
latch_spec_def: "%LatchSpec_oiiiii = \d\a\b\q\gbar(
d %in %time /\
0<d/\
a %in %time -> %voltages /\
b %in %time -> Y%voltages /\
q %in %time -> %voltages /\
gbar %in %time -> %voltages /\
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140 141 152 (
t0 %in Y%time /\
t1 %in %time /\
t2 %in Y%time /\
t0 + d < t1 /\
t1 < t2 /\
It (t0 <t /\t < t1 =
't (60 <t /\ t < t2
=>
?7t3 (
2 < £3 /\
1t (t0+d <t /\t<
It (t0+d <t /\t <
/\
1£0 1t1 182 (
t0 %in Y%time /\
t1 %in Y%time /\
t2 %in Y%time /\
t0 + d < t1 /\
t1 < t2 /\
't (t0 <t /\ ¢t < t1l =

In
v Vv

1
v

't (t0 <t /\ t < t2 =>
=>
73 (

t2 < t3 /\

1t (t0+d <t /\t <
1t (.0 +d <t /\t <
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b(t) %high) /\
a(t) %low)

t3 => q(t) %high) /\
t3 => gbar(t) %low)))

a(t) %high) /\
b(t) %low)

t3 => gbar(t) %high) /\
t3 => q(t) %low))))".

It consists of two immediate subtheories, time and voltages, and three
immediate axioms nor_def, latch.def, and latch spec.def. The example
shows some of the notational compromises that have been made:
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1. The identifiers in roman font of the formal system become identifiers
preceded by %, while identifiers in italic font use no prefix. Thus

%high stands for high

%time stands for time
%in stands for in

X stands for z
dlh stands for - dih
gbar stands for gbar

2. Type subscripts are written on the same line, separated by an under-
score from the identifier; o is written o, ¢ is written i. Thus

Ynor_oiiiii stands for NOT,,,.0
%latch_oiiiiii stands for latch,,,,...
WLatchSpec_oiiiii stands for LatchSpec,,,,,,

3. The symbol ! is used for V, 7 for 3, /\ for A, and so on. The keyword
%in, stands, as we have seen, for the roman identifier “in” which itself
is used instead of the unavailable symbol €.

Sometimes this kind of theory declaration cannot be used, and sometimes
it could be used but it is not convenient. In particular, it cannot be used for
ZF, which has an infinite number of axioms. We still want to tell Watson
the name of the theory, zf, and list some of the axioms, such as empty-set,
pair-set, and so on. We do this by an incomplete declaration of the form

Primitive theory Name;

subtheories Name, ..., Name;

axioms Name: “Formula", ..., Name: "Formula",
free variables:

This tells Watson that the named theory has certain axioms and subtheories,
but that there may be others which are not mentioned.? Since Watson needs
to know exactly what variables are free in the axioms of the theory, any such
variables which do not occur free in the mentioned axioms or subtheories
must be listed in the optional part free variables of the declaratmn Here
is a possible declaration of the theory zf:

2The terminology Defined theory vs. Primitive theory is borrowed from concept
declarations in KL-ONE.
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Primitive theory zf;

axioms extens: "!x !y (lz (z %in x <=> z %in y) => x = y)",
empty_set: "7?s ix ~ x %in s",

pair_set: "!x !y ?s !z (z %in s <=> z Y%in x \/ z %in y)",
union: "!x 7s !z (z %in s <=> ?y (z %in y /\ y %in x))",
power_set_prim: "!x ?s !y(y %in x <=> !z(z %in y => z %in x))".

The instances of the axiom schema of replacement are missing. This is reme-
died by an inference rule (in the sense of section 4.2.5) which takes as argu-
ments the parameters e, @, y, 4, 8 and P of the axiom schema and produces
a theorem of the form:

ZF b V2 .. . Vz,( VeVyVu(P APY Dy =u) D
VedsVy(y € s = Jz(x € e A P))).

Besides the axiom schema of replacement, the axioms of infinity:
3s(@ € s AVz(z € s Dz U{z} €59))
and foundation:
Ve(=(z=0) D> Fy(yez Ayna=0))

are also missing from the declaration of zf. This is because it is not easy
to express them without using the notations “¢”, “{A}”, “A U B”, and
“A N B”. Eliminating the notations by hand would be quite tedious. It
would be possible to write a program to eliminate notations systematically
by the method described in section 2.5.6. But there would be no point to
it. Instead, we simply declare the abbreviated axioms to be theorems in the
theory zfa consisting of zf together with axioms defining the representing
constants of a number of mathematical notations:

Theorem infinity: zfa |-
"?s (Y%iemptyset %in s /\ !x (x %in 8 => x Yunion {x} %in 8))".

Theorem foundation: zfa |- )
"i1x (° x = Y%emptyset => 7y (y %in x /\ y Yinters x = Y%emptyset))".

Of course no proofs are provided for these theorems.
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4.2.3 The library

The library is a tree of Unix directories which contains the following kinds
of data:

1. Declarations of theories.

2. Declarations of theorems and lemmas. Each declaration states a given
result and associates a name with it; optionally, there is a pointer to a
proof of the result, consisting of the name of a proof file, together with
the name of a line which proves the result. The difference between the
two kinds of results is that lemmas are not visible to Watson outside
the directory where they are declared.

3. Proofs.

The hierarchical arrangement of the data in the library has the purpose
of facilitating its organization and retrieval. It does not impose any usage
restriction, except the above-mentioned one for lemmas. A theory or theorem
declared in a given directory may be used in any other directory.

Data within a directory is organized in files, as follows:

1. The text file thrsrsts.ext contains declarations of theories, theorems
and lemmas, and pointers to proofs, in human-readable and editable
format, using some particular surface language.

2. The binary file thrsthms.bin contains declarations of theories and
thoerems, but as internal data structures immediately usable by the
theorem prover. All mathematical expressions involved in the declara-
tions are formulas of the typed A-language; that is, they make use of
no mathematical notations.

3. The binary file Immsprfs.bin contains declarations of lemmas and
pointers to proofs, in binary format, again with no use of mathematical
notations. '

4. Any number of files ProofName.psel contain proofs, either completed
or in progress, in human-readable and editable format (psel stands for
“proof state in external language”).
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5. Any number of files ProofName.psil contain proofs in binary format
(psel stands for “proof state in internal language”).

Thus all declarations and proofs can be stored in text files and/or in bi-
nary files, either file format being optional. By default, Watson makes use of
the binary files, which can be read in and written out almost instantaneously.
On demand, however, Watson can produce a text file using whatever surface
syntax is currently active. And it can read in a text file and produce the
corresponding binary file.

The ability to edit files using an ordinary text editor has turned out to
be very useful in practice. For example:

1. The proof of correctness of the latch makes use of about twenty simple
theorems of the theory time. The proof was started before any of those
theorems had been proved, or even stated. As the need for a theorem
arose, the theorem was added to the text file thrsrsts.extin the time
directory. This was done using an ordinary text editor in a different
window. Then the corrected text file was read in by a single command
to Watson, without interrupting the proof, and it was possible to use
the theorem immediately. Once the proof of correctness was completed,
all the theorems of time were proved easily.

2. During development of the proof of correctness errors were often made.
For example, at some point the subformula q %low was written instead
of q(t) %low. The error propagated itself over many lines of the proof
before it was discovered. But, even though no log of the commands
was being kept, it was not necessary to redo any work. The proof was
written out in text format; all occurrences of q %low were changed to
q(t) Y%low with a single query-replace command of the text-editor; the
text file was read in (and verified); and the proof was resumed at the
point were the error had been discovered. ‘

Because it is easy to correct mistakes, the user can concentrate on the overall
argument of the proof, rather than on getting every detail right.

The duality of text and binary files means that every result can be stated
and proved in whatever surface syntax is more convenient. It can then be
used (via the binary format) when a different syntax is in effect. This also
realizes the above-mentioned feature that results and even proofs can be
easily shared among researchers using different notations.
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4.2.4 Proofs

In section 2.3.5 we defined the notion of proof in the formal system. We now
use the word in a different sense, to denote a data structure in Watson which
materializes the state of development of a proof. The relationship between
the two senses of the word will be made more precise in section 4.2.9. A
Watson proof can exist in three different forms: as a text file, as a binary
file, or as an in-core data structure which is being modified by Watson in
response to user commands.

A Watson proof consists of lines, justifications of the lines, and a few
other pieces of information which we shall describe later. Each line has at
most one justification. Each justification consists of an inference rule (in
the sense of section 4.2.5), with optional parameters, and a list of premises.
Each premise is either a line of the proof or a named theorem or lemma;
we say that a line having a justification follows from the the premises of its
justification. The proof can be viewed as a labeled ordered graph, with the
lines (and any named results used in the proof) as nodes, the justifications as
labels, and the premises of the justification of a line as children of that line.
The existence of a data structure that embodies a proof under construction
is a departure from HOL, and more generally from the LCF tradiction. In
this respect Watson is closer to TPS. A proof graph has also been advocated
in [41].

Each line of a proof is a named sequent, i.e. it consists of a name, a set
of hypotheses, and a conclusion. The hypotheses being sentences, the set
of hypotheses is a theory. It is not necessarily a named theory, however:
it would be awkward to have to declare and name each of the temporary
theories which result from assumption introdution and discharge in a natural
deduction proof. Instead, the set of hypotheses is described by a theory name
together with a list of lines:

Theory, Line,. .. Line, |- “Conclusion" .

The intended theory is the union of the theory named Theory and the set of
conclusions of the lines named Line; ... Line,. We shall refer to Theory as
the theory of the line, and to Line; ... Line, as the assumptions of the line.
The expectation is that the theory will change rarely, or not at all, in the
course of a proof, while the assumptions will change often.

A proof has proved lines and unproved lines. The set of proved lines is
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defined as the smallest set S such that S contains every line which follows only
from theorems, lemmas, and lines which are elements of S. Under normal
circumstances, if a line has been proved in this sense, then its conclusion
indeed follows from its hypotheses in the formal system; this is made more
precise in section 4.2.9. Among the unproved lines some do not have a
justification at all; these are called goals. Usually, when the proofis finished,
all the lines have been proved and one of them is the theorem or lemma which
was to be proved; such a line cannot have assumptions. The fact that a line
proves a named theorem or lemma is recorded as part of the proof; we have
seen that this is also recorded with the result in the file thrsrsts.ext.

The fact that a line has been proved is implicit in the proof graph; but
proved lines are also explicitly marked as such. The marking has two pur-
poses:

1. It makes it easy to tell the user which lines have been proved. When a
goal receives a justification which turns it into a proved line, any line
of which it is a premise may become proved; this in turn may cause
other lines to become proved, and so on. The marking is propagated in
the graph, and, as lines are marked, their names are displayed on the
screen.

2. The order in which the lines are marked defines the direct proof which
corresponds most closely, in some sense, to the way in which the user
has constructed the proof. When writing out the proof as a text file
the user has two options: either to list the lines in the order in which
they have been created, or to list them in the order in which they have
been marked as proved.

4.2.5 Inference toolkit

In section 2.3.5 we defined an inference rule as a relation between sequents.
Now we are also going to use the phrase to refer to a Watson procedure
related to a primitive or derived inference rule of the formal system. There
are three kinds of such procedures:

1. A forward tule takes as arguments the premises (existing lines, the-
orems or lemmas), a name for the conclusion, and perhaps some pa-
rameters, computes the conclusion (a sequent which follows from the
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premises by the corresponding inference rule of the formal system),
and adds it to the proof graph, under the given name, together with a
justification.

2. A backward rule takes as arguments the conclusion (an existing goal),
perhaps some of the premises and some parameters, and names for the
remaining premises; it computes the remaining premises, it adds them
to the graph uder the given names, and it attaches a justification to
the conclusion. Since the conclusion acquires a justification it ceases
to be a goal, while the new lines, which have no justifications, become
new goals.

3. A verification rule takes as arguments the names of the premises and
conclusion, and perhaps some parameters; it adds no new lines to the
graph; it verifies that the conclusion does follow from the premises by
the corresponding inference rule of the formal system, and it adds to
the graph a justification of the conclusion.

The inference toolkit of the first version of Watson is minimal, although
sufficient to do non-trivial proofs with relative comfort. It has the following
components:

1. Primitive inference rules. For each of the primtive inference rules of
the formal system there is at least a verification version, and usually
either a forward version, a backward version, or sometimes both. Most
of the rules have been made more comfortable by generalizing them
slightly (then they correspond to derived rules of the formal system).
For example forall_elim, which implements V-Elimination, can spe-
cialize several variables at once, and and_intro, which implements A-
Introduction, can assemble any number of conjuncts. The substitution
rule is generalized as:

C does mnot capture any

I+ C[A] I'+Ve,...Ve,(A = B) variable free in I

Pul'tk C[B] and in Vzi...Va,(A =
B)

which is easily shown to be a derived rule of inference.
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2. Rule of replacement. This is the rule which makes up for the absence

of the axiom schema of replacement in the named theory zf. In fact
it does more, since it accepts as parameters of the schema 3-sentences
rather than just V-F.O. sentences, based on theorem 2.8.

More precisely, the rule comes in a verification version and a forward
version. The verification version takes as argument an existing goal
I' F Q. It verifies that the theory of the goal has zf as a subtheory
(not necessarily an immediate subtheory) and it checks whether its
conclusion is of the form:

Vzi...Vz,( VeVyVu(P APY Dy =u) D
VedsVy(y € s = 3z(x € e A P)))

where 23, ..., Z,, €, &, Yy, u and s are asin the description of the axiom
schema (section 2.5.4, page 53), and where P is a Y-sentence for some
set-theoretic abbreviation system ¥ which is included in the theory of
the sequent. In practical terms, the rule verifies that every constant
occurring in P which is not a F.O. logical constant, in,,,, the,,), or a
constant of type ¢, is ultimately defined in terms of such constants by
a set of definitions which are axioms of the theory of the sequent.

The forward version takes as arguments the name for the line to be
created and the parameters e, @, y, u, 8 and P of the schema, puts
together the instance of the schema, constructs a line with the instance
of the schema as conclusion, zf as theory, and no assumptions, and
adds the line to the graph, with a justification having no premises.

A few convenience rules, such as: reflexivity and symmetry of equality;
a rule of separation, which is the equivalent of the rule of replacement
for the axiom schema of separation; a rule of abbreviation expansion,
which takes as a parameter a constant, finds a definition for it in the
theory of the sequent, replaces the constant with its definition, and
converts to f-nf; and a few others.

4. The Horn rule, described below.

5. The four classical methods of proof, described below.
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4.2.6 The Horn rule

The Horn rule comes in a forward version and a verification version. There
is no backward version yet, although one would be very useful. We describe
the forward version. It takes as arguments the premises, which must be of

the form:
Po I‘ViB] . .an(Al AN ./\Am D C)

I+ B,

Fnl |’_ BTI'I

It tries to find U,...U, such that each B; is the result of simultaneously
substituting U;...U,, for @;...®, in A; without variable capture. If it
succeeds, it forms the sentence Cpl" 7. If here again there is no variable

capture, the rule succeeds and adds the sequent
LoU...UT, FCy

to the proof graph with its justification.?

The Horn rule does not shorten proofs dramatically: it replaces a call to
forall_elim, a call to and_intro and a call to impl_elim (which imple-
ments D-Elimination). However it is convenient because it saves the trouble
of specifying the formulas to be substituted for the variables in the universal
prefix. Also, it makes proofs clearer; the Horn rule is the natural way of
making use of theorems of the form:

Vie,.. Ve, (A1 N... AN A, DC). (4.4)

Since such theorems are very common, the rule is used very often.

But the rule is also important in that it shows how techniques developed
for automatic theorem proving in F.O.L. could be adapted for use in set
theory. In F.O.L, if Ay,..., A, By,..., B,,, C were atomic formulas, (4.4)
would of course be a Horn clause, and the rule would be the equivalent of
performing m resolution steps. But here, even when @, ...z, are variables
of type ¢, (4.4) is not a Horn clause, since A;...A,, and C are formulas

3To compute the union of the hypotheses of a set of lines, Watson takes the union of
the sets of assumptions, and the greatest of the theories of the lines. If there is not a
greatest theory, the rule fails. As mentioned before, it is expected that all the theories will
most often be the same in the course of a proof.
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of H.O.L. Generally the sentence (4.4) is not even a substitution instance
of a Horn clause, since the variables @, ...®, can occur, in the body of an
abstraction within a A; or within C. This means that Andrews’ “Rule Q”
[5, §5236, page 177] is not sufficent to derive the conclusion of the Horn rule
from the premises. But we see that we can proceed as in F.O.L. with the
simple addition of a check for variable capture.

It should be observed that the necessity of adapting F.O. techniques is not
an unpleasant byproduct of our decision to develop set theory within H.O.L.
The problem is inherent to the use of mathematical notations which bind
variables. Since the problem does not occur in axiomatic set theory without
such notations, this shows again, from a different angle, that mathematical
notations do add something practically substantial to axiomatic set theory,
which cannot easily be dismissed as “syntactic sugar.”

4.2.7 The methods of proof

There are four classical methods of proof, which Bourbaki calls: the method
of the auxiliary hypothesis, the method of proof by disjunction of cases, the
method of the auxiliary constant, and the method of proof by contradiction.
They correspond closely to the rules of the formal system where assumptions
are discharged. However, there is slightly more to them than those rules, so
in Watson they are provided as separate elements of the toolkit.

Remark. From the example given in [4] it appears that the rules P-
INDIRECT and P-CHOOSE of TPS are identical to the method of proof by
contradiction and the method of the auxiliary constant in Watson, respec-
tively.

Remark. Each of the methods is invoked as a command with no argu-
ments. (Except that the method of the auxiliary constant takes the constant
as an optional argument. The “constant” is in fact a variable, as in Bour-
baki.) They act upon the current line and the current goal. The current line
and goal are maintained by Watson automatically, but the choices made by
the system can be overriden by the user. The maintenance of the current goal
is in some sense a generalization of the mechanism provided by the “subgoal
package” of Cambridge LCF.

We describe now each of the four methods:

1. Method of the auziliary hypothesis—aux_hypo. It can be invoked when
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the conclusion of the current goal G is of the form “P D @Q”, and
it uses a rule impl_intro which implements primitive rule 14 (D-
Introduction). The procedure aux_hypo which implements the method
takes the following two steps:

(a) It assumes P, i.e.it creates and proves a line L with conclusion P
and with L itself as the only assumption, using an inference rule
procedure assume which corresponds to primitive rule 1 (Reflex-
ivity of ).

(b) It calls the backward version of impl_intro on (, with the name
of the newly created line L as a parameter. This results in the
creation of a new goal G’ with conclusion @, with the same theory
as (¢, and with the same assumptions as G plus L; and also in the
justification of G by impl_intro with (' as premise.

After the call to aux_hypo the current goal becomes /. The user will
try to prove this new goal, which means proving @ with the additional
hypothesis P, If the user succeeds, the marking of G’ as proved will
trigger the automatic marking of G as proved. Thus when the user
proves @ under the hypothesis P, he or she will be notified that “P D
Q7 as been proved as well.

2. Disjunction of cases—by_cases. It can be invoked when the current
line L has a conclusion of the form P; V...V P,, and it uses a rule
or_elim which implements a generalization of rule 13 (V-Elimination)
to multiple disjuncts. It takes the following steps:

(a) It assumes P;...P,, which results in the creation of n lines
Ly...L,.

(b) It calls the backward version of or_elim on the current goal G,
with the current line L as disjunctive premise, and the names of
the lines L, ... L, as parameters. The rule creates n case premises

4Every line must have a theory, besides its list of assumptions. The theory given to L
by aux_hypo is the one of the goal line G. (It might be better to use the empty theory
empty.) The theory is passed to assume as a parameter. Thus the procedure assume
combines the primitive rules 1 (Reflexivity of ) and 2 (Monotonicity of F).
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M,...M,. Each M; is obtained from G by adding L; as an as-
sumption, and becomes a new goal. The old goal G is justified by
or_elim with L, M, ... M, as premises.

After invoking by-cases the user will try to prove each of the new
goals M;. This means proving the conclusion @ of GG n times, each time
with a P, as additional hypothesis. When the last of theses subsidiary
goals is proved, the goal G will automatically be marked as proved,
and the user will be notified that @ is now proved, without additional
hypotheses.

Method of the auriliary constant —aux_const. It can be invoked when
the conclusion of the current line L is of the form “JazP”. It uses
the backward version of exists-elim, which implements rule 21 (3-
Elimination). It takes a variable y as an optional parameter. If y is
given, it checks that it is of same type as © and adequate to P, If the
y parameter is not present, @ is used instead. Then aux_const takes
the following steps:

(a) It assumes Pj, which results in the creation of a new proved line
L.

(b) It calls exists_elim, passing it as a parameter the name of the
new line L’. This results in the creation of a new goal G/, which is
the same as the current goal GG, but with G’ as an additional as-
sumption. A justification of G from L and G’ by rule exists-elim
is added to the proof graph.

After invoking aux_const the user’s task is to prove G, i.e. to prove
the conclusion @ of G with the additional hypothesis P;. Once this is
done, the user will be notified that GG has been proved as well, i.e. that
Q has been proved without the additional hypothesis.

Method of proof by contradiction —by_contra. It relies on two inference
rules: not-intro, which implements primitive rule 8 (=-Introduction),
and contra, which implements primitive rule 16 (Contradiction). The
procedure by_contra assumes the contrary P of the conclusion @ of
the current goal G. (If @ is of the form —Q' then P is Q'; if the
conclusion of G is not a negation, then P is —=Q.) This results in
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a newly proved line L having P as conclusion and only assumption.
Then it calls the backward version of the appropriate inference rule:
not_intro if Q is a negation, contra otherwise. This results in the
creation of a new goal (' with conclusion L and the hypotheses of G
plus the additional hypothesis L, and in the justification of G with
premise G'. '

After invoking by_contra the task of the user is to prove G', i.e. to prove
1 with the contrary P} as additional hypothesis. When this has been
achieved G will be m: s proved automatically, and the user will be
notified that @ has beewu v ved.

4.2.8 A simple example

To acquire a feel for the way proofs are done in Watson, with the limited
inference toolkit available in this initial version, let us examine in detail the
proof of a simple theorem, theorem time8 in the theory time:

VzVy(z € time Ay € time Dz < yVy < z)
We prove this knowing that the ordering of time is total:
VaVy(z € time Ay € time D2 <yVy < z) (4.5)
and z < y being defined from z < y as follows:
VaVy(z <y =z <yA-z =y). (4.6)

So the proof is very simple, by cases using (4.5). If y < z obviously z <
yVy < z. If 2 <y, then we consider again two cases: 2 = y, ~z = y. In the
first case y < = by reflexivity of <, in the second case z < y using (4.6).

Let us now follow the details of the proofin Watson. Here is the statement
of the theorem in the file thrsrsts.ext:

Theorem time8: time |-
“ix 1y (x %in %time /\ y %in %time => x <y \/ y =< x)".

We shall see in section 4.3 what the representations of the notations %time,
< and =< are in the formal system, but we don’t need to know this now. We
begin by setting up the goal with a command mk_goal:
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GOAL: Line gl: time |-
Yy ly(x %in %time /\ y %in %time => x<y \/ y=<x)".

Then we call the backward version of the rule forall-intro, which imple-
ments a generalization of rule 18 (V-Introduction) that introduces a universal
prefix with multiple variables. We obtain a new goal:

GOAL: Line g2: time |- "x %in %time /\ y %in %time => x<y \/ y=<x".
g y y y

and line g1 acquires a justification, with line g2 as premise. We can ask
Watson to print the current state of the proof:

Line gl: time |- "!x !y(x %in %time /\ y %in %time => x<y \/ y=<x)"
would follow from g2.
Rule: forall_intro.

GOAL: Line g2: time |- "x %in %time /\ y %in %time => x<y \/ y=<x".

The current goal is line g2.

To prove line g2 we prove

x<y \/y=<x
under the assumption
x %in %time /\ y %in %time.

That is, we use the method of the auxiliary hypothesis, by calling aux_hypo.
This creates and proves line 11:

Line 11: time, 11 |- "x %in %time /\ y %in %time"
follows by rule: assume.

sets up the new goal g3:
GOAL: Line g3: time, 11 |- "x<y \/ y=<x".

and justifies line g2 by line g3 and the rule impl_intro:
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Line g2: time |- "x %in Y%time /\ y %in %time => x<y \/ y=<x"
would follow from g3.
Rule: impl_intro.

Now we work forward from line 11 towards satisfying goal g3. We start by
splitting the conjunction, by a call to the forward version of and_elim, which
implements primitive rule 11 (A-Elimination):

Line 12: time, 11 |- "x %in %time"
follows from 11.
Rule: and_elim.

Line 13: time, 11 |- "y %in %time"
follows from 11.
Rule: and_elim.

Then we use of the axiom of theory time which asserts that =< is a total
ordering:

total: "!x!y (x %in %time /\ y %in %time => x =<y \/ y =< x)",
We apply the axiom by a call to horn, which creates and proves line 14:

Line 14: time, 11 |- "x=<y \/ y=<x"
follows from theorem total, 12, 13.
Rule: horn.

In this case horn does not simplify the proof much, since the formulas to be
substituted for the variables x and y are just the variables themselves; but
horn still makes the proof clearer.

From line 14, as anticipated, we reason by cases. This is done by a call
to by_cases, which makes the two assumptions:

Line 15: time, 15 |- "y=<x"
follows by rule: assume.

Line 16: time, 16 |- "x=<y"
follows by rule: assume.



140 CHAPTER 4. THE PDS WATSON

sets up two goals:

GOAL: Line g4: time, 16, 11 |- "x<y \/ y=<x".

GOAL: Line g5: time, 15, 11 |- "x<y \/ y=<x".

and justifies the old goal g3 by the new goals and or_elim:

Line g3: time, 11 |- "x<y \/ y=<x"
would follow from 14, g4, gb5.
Rule: or_elim.

Line g5 follows immediately from line 16 by V-Introduction. So we call the
verification version of the rule or_intro which implements V-Introduction.
No new lines are created, but a justification for g5 is added to the proof
graph:

Line g5: time, 15, 11 |- "x<y \/ y=<x"
follows from 15.
Rule: or_intro.

Now we have to prove goal g4 from line 16. We want to distinguish two
cases, z = y and — 2 = y, so we need the theorem:

Fe=yVoz=y.

This is an instance of a tautology; however, using a tautology rule would clash
with the style of proof by natural deduction. In fact, there is no tautology
rule in Watson (although clearly one should be implemented at some point).
The appropriate thing to do in a natural deduction system is to use the well-
known proof of the principle of the excluded middle. This proof has been
done in Watson, giving the theorem

Theorem excluded_middle: empty |- "!p_o (p_o \/ = p_o)".

Notice that this theorem could not be expressed if we were working within
F.O.L. rather than H.O.L. We would then only have a theorem schema:

FPV-P
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with a schematic proof. In the object language, we would have a different
proof for every instance of P. This is an example of how the formal system
of Watson makes it possible to bring schematic arguments into the object
language, so that they can be carried out using the theorem prover.

So we make use of excluded_middle. We apply to it forall_elim,
specializing p, to = = y:

Line 17: empty |- "x =y \/ "~ x = y"
follows from theorem excluded_middle.
Rule: forall_elim.

Now we call by_cases, which results in making the two assumptions:

Line 18: empty, 18 |- "~ x = y"
follows by rule: assume.

Line 19: empty, 19 |- "x = y"
follows by rule: assume.

setting up the two goals:
GOAL: Line g7: time, 19, 16, 11 |- "x<y \/ y=<x".

GOAL: Line g8: time, 18, 16, 11 |- "x<y \/ y=<x".

and justifying the old goal g4:

Line g4: time, 16, 11 |- "x<y \/ y=<x"
would follow from 17, g7, g8.
Rule: or_elim.

We prove g7 first, from 19. Axiom refl of theory time asserts that < is
reflexive:

refl: "tx (x %in %time => x =< x)",

We use it by calling horn on the axiom and line 12:
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Line 110: time, 11 |- ''x=<x"
follows from theorem refl, 12.
Rule: horn.

Then by substitutivity of equality from 110 and 19:

Line 111: time, 11, 19 |- "y=<x"
follows from 110, 19.
Rule: subst_mp.

We close the gap by calling the verification version of or_intro on 111 and
g7. Goal g7 is now proved:

Line g7: time, 19, 16, 11 |- "x<y \/ y=<x"
follows from 111.
Rule: or_intro.

We turn then to goal g8, which we prove from line 18. We form the conjunc-
tion of the two case assumptions, lines 16 and 18:

Line 112: time, 16, 18 |- "x=<y /\ ~ x = y"
follows from 16, 18.
Rule: and_intro.

This means that x is strictly less than y. To get this we use the axiom
t1t_i_def of theory time:

tlt_i_def: “"!x !y (x <y <=>x =<y /\ “x=y)",
by specializing it into:

Line 113: time |- "x<y <=> x=<y /\ ~ x = y"
follows from theorem tlt_i_def.
Rule: forall_elim.

Rather inelegantly, we have to explicitly swap the two sides of the equivalence:

Line 114: time |- "x=<y /\ = x =y <=> x<y"
follows from 113.
Rule: sym_eq.
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Now by substitutivity of equality (equivalence, in this case):

Line 115: time, 16, 18 |- "x<y"
follows from 112, 114.
Rule: subst_mp.

The last step is to close the gap between line 115 and goal g8 by a call to
the verification version of or_intro. A justification is entered for g8, which
becomes proved. Then Watson tells us that g4 is proved as well, and that so
are g3, g2 and g1. Watson then notices that g1 is a root of the proof graph
(i.e. there are no unproved lines having a justification which has g1 has a
premise) and says so. Finally, Watson notices that there are no goals left,
i.e. that everything has been proved, and lets us know. Here is the resulting
proof, with the lines printed in the order in which they have been entered.
A direct proof, with the lines printed in the order in which they have been
proved, can also be produced, but it is less readable.

Line g1: time |- "!x !y(x %in %time /\ y %in %time => x<y \/ y=<x)"

follows from g2.
Rule: forall_intro.

Line g2: time |- "x %in %time /\ y %in %time => x<y \/ y=<x"
follows from g3.
Rule: impl_intro.

Line 11: time, 11 |- "x %in %time /\ y %in %time"
follows by rule: assume.

Line g3: time, 11 |- "x<y \/ y=<x"
follows from 14, g4, gb5.
Rule: or_elim.

Line 12: time, 11 |- "x %in %time"
follows from 11.
Rule: and_elim.

Line 13: time, 11 |- "y %in %time"
follows from 11.
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Rule: and_elim,

Line 14: time, 11 |- "x=<y \/ y=<x"
follows from theorem total, 12, 13.
Rule: horn.

Line 15: time, 15 |- "y=<x"
follows by rule: assume.

Line 16: time, 16 |- “x=<y"
follows by rule: assume.

Line g4: time, 16, 11 |- “x<y \/ y=<x"
follows from 17, g7, g8.
Rule: or_elim.

Line g6: time, 15, 11 |- "x<y \/ y=<x"
follows from 15.
Rule: or_intro.

Line 17: empty |- "x =y \/ = x = y"
follows from theorem excluded_middle.
Rule: forall_elim.

Line 18: empty, 18 |- "~ x = y"
follows by rule: assume.

Line 19: empty, 19 |- "x = y"
follows by rule: assume.

Line g7: time, 19, 16, 11 |- "x<y \/ y=<x"
follows from 111.
Rule: or_intro.

Line g8: time, 18, 16, 11 |- "x<y \/ y=<x"
follows from 115.
Rule: or_intro.
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Line 110: time, 11 |- “x=<x"
follows from theorem refl, 12.
Rule: horn.

Line 111: time, 11, 19 |- "y=<x"
follows from 110, 19.
Rule: subst_mp.

Line 112: time, 16, 18 |- "x=<y /\ =~ x = y"
follows from 16, 18.

Rule: and_intro.

Line 113: time |- "x<y <=> x=<y /\ ~ x = y"
follows from theorem t1t_i_def.

Rule: forall_elim.

Line 114: time |- "x=<y /\ ~ x =y <=> x<y"
follows from 113.

Rule: sym_eq.

Line 115: time, 16, 18 |- "x<y"

follows from 112, 114.
Rule: subst_mp.

4.2.9 The guarantee of correctness

Difficulties

145

The most important service provided by a PDS is that it guarantees the
correctness of the proof. But this guarantee is relative to the correctness
of the prover. In order for the guarantee to be absolute, the prover itself
would have to be proved correct. This, however, is difficult to do, given the
state of the art in program verification. To date, no PDS has been formally
verified. And, since a PDS is a complex program, it is almost certain that

any unverifed PDS has bugs in it.

In Watson there is an additional obstacle to guaranteeing the correctness
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of the proof. We have seen that the user is allowed extreme flexibility in the
way he or she conducts a proof and develops a theory. Results can be used
before they are proved, and proofs and theories can be freely edited with an
ordinary text editor. So the user can easily introduce circularities and other
errors in his proofs and theories.

In spite of these difficulties, Watson does provide some guarantee of cor-
rectness. The approach to doing so is inspired in part by the one followed in
HOL, which itself goes back to LCF.

HOL/LCF: an architectural guarantee of correctness

In HOL as in LCF the prover consists of a collection of routines written in
and accessible from a typed functional language called ML. In ML there is a
special type thm. Only the routines which implement the forward versions of
the primitive inference rules produce data structures of type thm. Forward
versions of derived inference rules produce theorems only by calling primitive
rules. Backward versions of rules are called tactics. Given a goal, a tactic
produces a set of subgoals, together with a wvalidation routine. When the
subgoals are proved, i.e. when data structures representing sequents which
coincide with the subgoals but have type thm are obtained, the validation
routine can be called on the proved subgoals to prove the goal, i.e. to compute
a data structure representing a sequent which coincides with the goal but has
type thm.

This scheme can be thought of as providing an architectural guarantee
of correctness: by restricting the pieces of code which are allowd to create
theorems, only those pieces of code have to be assumed correct. Thus the
LCF/HOL guarantee is a relative one, which can be stated as follows: if the
forward versions of the primitive rules of inference are implemented correctly,
and the typing mechanism of ML functions correctly, and the user does not
circumvent the typing mechanism (say, by using the routine mk_thm which
can make anything into a thm), then anything with type thm does indeed
represent a theorem of the formal system. It should be noted that this
approach has two drawbacks: it relies on a particular kind of programming
language, and it produces theorems rather than proofs.®

5That is, proofs are not materialized by any data structures. So the only way of
recording a proof is by logging the commands which are used to construct it. And the
only way of communicating the proof of a theorem is to provide an ML program which
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Watson: three levels of guarantee

Watson provides three distinct guarantees, based on three differents sets of
hypotheses. The first guarantee can be stated as follows:

1. if the rules of inference and graph handling mechanisms are imple-
mented correctly, and

2. the user does not manipulate the graph except through the rules of
inference provided by Watson, and

3. the theorems and lemmas used in the proof are correct,

then whenever a line is marked as being proved its conclusion does indeed
follow from its hypotheses in the formal system.

This is an architectural guarantee of correctness, like the HOL/LCF guar-
antee. Buggy programs can be used to constructs proofs; as long as these
programs interact with the proof graph via the designated entry points, i.e.
the proof rules provided by Watson, the guarantee of correctness is preserved.
The difference with HOL/LCF is that the trusted code includes not only the
implementation of the primitive rules, but the implementation of derived
rules as well; and not only the forward versions of rules, but all versions of
each rule. An essential aspect of this guarantee is that it rules out circularities
in the proof.

The second guarantee relies on the single proof verifier. This is a program
which verifies the justifications of the lines of a proof, and the marking of
lines as proved. Each justification is in fact the name of a validation routine
to be called by the verifier to check that the conclusion does follow from
the premises. The verifier calls the validation routine of each line, passing it
as parameters the premises and conclusion.® If no errors are found, it then

computes the theorem. Understanding the proof by reading the program can be next
to impossible. However, Avra Cohn is now working on an enhancement to the tactic
mechanism which will produce proof trees in addition to the validation functions.

61n some cases, parameters are kept together with the name of the validation routine, as
part of the justification of a line. The verifier then passes those parameters as arguments to
the validation routine, in addition to the premises and the conclusion of the inference step.
Observe that the validation routine is not very different {from the verification version of the
rule. In fact, to save some code, the validation routine serves a dual purpose in Watson.
Besides being used by the verifier, it is also used during the interactive construction of the
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checks that the marking is correct according to the state of the graph. The
guarantee can be stated as follows:

1. if the validation routines are correctly implemented, and
2. the single proof verifier is correct, and
3. the theorems used in the proof are correct,

then if the verifier finds no errors and a line is marked as proved its conclusion
does follow from its hypotheses in the formal system.

This second guarantee is not architectural: it does not rely on the cor-
rectness of the code which constructs the proof, but rather on the correctness
of a separate program (the verifier and validation routines) which goes over
the proof after it has been constructed. Thus this guarantee is preserved
even if the user writes programs that access the proof graph directly. Also,
this guarantee does away with reliance on the correctness of the backward
versions of the rules, thus playing a role similar to the role played by the
tactic mechanism in HOL/LCF. But it goes further, since it does not rely
on the forward versions either: it relies only on the verification versions. In
HOL/LCF it is natural to view the forward versions of rules as the primary
ones, because the programming language ML is functional, and thus an in-
ference rule is most naturally embodied in a function which computes the
conclusion from the premises. However, independently of any particular pro-
gramming environment, the verification versions of the rules seem simpler
and in some sense more primitive than the forward versions.

The third guarantee relies on a recursive proof verifier. The recursive ver-
ifier verifies the proof on which it is invoked, plus the proofs of any theorems
and lemmas used in the proof which do have proofs stored in the library,
plus the proofs of any results used in those proofs, and so on. When done, it
lists all the results which have been used and for which no proofs have been
found in the library. The recursive verifier also checks the declarations of
all the named theories which come up in the proofs (in particular, it verifies
that there are no circularities in the declarations, and that the lists of free
variables of each theory are correct). This third guarantee can be stated as
follows:

proof: the verification version of the rule calls the validation routine, and if it gets a green
light, it adds the justification record to the proof graph.
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1. if the validation routines are correct, and
2. if the recursive proof verifier is correct, and
3. if all the results accepted without proof hold in the formal system

then if the verifier finds no errors, any line marked as proved is a result which
holds in the formal system. In particular this guarantee protects against
circularities across proofs which are possible because the user can use a result
before proving it. When the recursive verifier finds no results without proof,
Watson solemnly declares that the proof has been done from first principles.

All three guarantees are practically useful. The first guarantee allows the
user to conduct a proofinteractively as he or she wishes, forward or backward,
entering and using lines before proving them, without the danger of forgetting
~ to prove a subgoal or doing a circular “proof.” The second guarantee is most
useful when proofs are edited by hand. When the edited text file is read in,
the single proof verifier is called on it and guarantees among other things
that the justifications, which may have been entered by hand, do hold. The
third guarantee is useful at the end of a long proof which may have required
many lemmas and may thus have spawned many subsidiary proofs. The user
will then call the resursive proof verifier to make sure, among other things,
that he or she has not forgotten to prove any lemmas, and that there are no
circularities among the lemmas.

4.8 A case study in hardware verification

4.3.1 Choice of the case study

As a case study we have chosen the proof of correctness of a latch imple-
mented as two cross-coupled nor-gates. In the field of hardware verification
this proof is important because the latch is one of the most elementary de-
vices which can retain data, and the basic building block of flip-flops. Thus
the latch is the bridge between asynchronous and clocked devices. From the
point of view of theorem proving, the proof of correctness of the latch is non-
trivial while not being very long, and it illustrates some interesting aspects
of the formal system, such as the use of the axiom schema of replacement
(via its consequence, the theorem schema of separation).
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The proof is also interesting because it seems to have resisted previous
efforts of researchers in the field of hardware verification.

John Herbert has proved the correctess of a Master-Slave flip-flop and an
Edge-Triggered D flip-flops using HOL [28]. The latch is a basic component
of these flip-flops. The correctness of the latch has been proved, and the
the proof is reported in detail. But a discrete model of time has been used;
moreover, the fact that the latch retains data for as long as the inputs show
no new data is proved by induction, which relies precisely on the discreteness
of time. In Watson, on the other hand, time has been axiomatized as a
continuum, and the proof that the latch retains data uses the characteristic
property of a continuous ordering, namely that every non-empty set bounded
below has a greatest lower bound.

Hanna and Daeche report in [25] that the proof of correctness of an Edge-
Triggered D flip-flop has been carried out using Veritas. The correctness of
the latch is mentioned as a lemma, but there is no indication of how the
proof has been done, even though it is the most mathematically interesting
part of the overall proof, the rest of which is described in detail. The authors
do not even say if they have used a discrete or continuous axiomatization of
time, which, as we have seen, is an essential distinction regarding the proof
of correctness of the latch. Since the authors do not actually say that the
lemma has been proved, it may be that it has been accepted without proof.

4.3.2 Axiomatization of continuous time

Time is axiomatized in classical mechanics as an affine space over an oriented
one-dimensional vector space over the field of the real numbers. That is, the
set of durations is an oriented one-dimensional vector space over the reals
(the orientation distinguishes positive durations from negative ones), and the
set of instants is an affine space over that vector space. Recall that U is an
affine space over a vector space V when it is equipped with a function which
maps every pair of points A, B of U to a vector AB and which satisfies the
following two conditions, where A, B and C range over U, and z over V:

VAYBYC(AB + B(C' = AC)
VAV23!B(AB = z)

The ordering of the reals induces orderings on the durations and on the
instants. All these isomorphic orderings are total; divisible, or dense, i.e. such
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that there is a point in between any two points; and moreover continuous, or
having the greatest lower bound property, i.e. such that every non-empty set
bounded below has a greatest lower bound.

For the purpose of this case study, however, we shall simplify this struc-
ture, without loss of generality.” We identify durations and instants, and we
structure time as an additive group with a total, dense, continuous ordering
(thus omitting scalar multiplication). Let us review the constants, notations
and axioms that we use in Watson (all the axioms are in the theory time
unless otherwise noted):

1. The constant time, denotes the set of instants/durations. We use the
keyword time as a shorthand for time,:

time — time,

2. Commutative group structure. The constant tplus, denotes the group
operation, i.e. addition of durations:

tplus, € time X time — time

Furthermore, to represent the notation “A + B” we need a constant
tplus,,,:
(FML, Apay, + Bewn,) — tplus,,, Apae, Brw,

which is defined as
tplus,,, = apply,,,, tplus,

The constant apply,,,, is defined in theory zfa; it takes a set theoretic
operation to a H.O.L. operation:

apply... = Af Az y(f(z,y))

In this axiom, “f(z,y)” involves two notations: the ordered pair no-

tation “(A, B)” and the set theoretic function application “A(B)”.

"By “without loss of generality” we mean that the simplified structure can be defined
in terms of the complete structure, and that the statement of correctness of the latch
{for the complete structure follows immediately {from the statement of correctness for the
simplified structure.
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The latter uses another constant in the “apply” family; it stands for
“apply,,, A B”, where apply,,,, also defined in zfa, takes set theoretic
functions to H.O.L. functions:

apply,,, = Afdzuy((z,y) € f)

The constant tzero, denotes the neutral element of addition; the symbol
0 is used as a shorthand for tzero,:

0 — tzero,

The constant tminus, denotes the unary minus operation, i.e. the func-
tion which maps group elements to their inverses in the group. To
represent the notation “—A” we use a constant tminus,,:

(Fl\lLt - AF]\iL,) — tl’ninus“ AFML[

The function symbol tminus,, denotes the H.O.L. function correspond-
ing to the set theoretic function denoted by tminus,:

tminus,, = apply,,, tminus,

With these constants we express the axioms of the commutative group
structure as follows: ‘

VaVy(z € time Ay € time D2+ y = y + 2)

VaVyVz(z € time Ay € time Az €time D (2 + y) + 2 =2 + (y + 2))
Va(z € time D 2 + 0= z)

Vz(z € time D 2 + (—2) = 0)

Ordering. We are going to use < and <. We use the constants tle, and
tlt, to denote the corresponding set theoretic relations on time,. But
we also need two binary predicate symbols to represent the notations;
we use tle,,, and tlt,,,:

(FMLL Ap, < BFML,) — tleo,, Apmu. Brm.
(FMLz Apa, < BFML,) — tlto, A, Brm,
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and we define them with the axioms:

tle,,, = apply,,,, tle,
tlt,, = apply,,, tlt,

where apply,,,, is yet another constant of the “apply” family, which this
time maps set theoretic binary relations to H.O.L. binary relations:

a’pplyotu = )\7’)\13)\@]((13, y) e 7“)

Using these notations we express the relationship between the two bi-
nary relations with the axiom:

VeVy(z < y=z <yA-z=y)
Then we state the axioms of a total, dense, continous ordering:

Vz(z € time Dz < 7)
VaVy¥(z <yAy < 2D < z)
VaVy(z SyAy<z Da=y)
VaVy(z € time Ay € time Dz <y Vy < z)
VaVy(z <y D 3z(z2 < 2 A 2 < y)
Vs( s CtimeA-s=0ATyVz(z €s Dy <) D
Fglb(Vz(z € s D glb < 2) AVy(Va(z € s Dy < z) Dy < gib)))

4. Finally we express the compatibility of the ordering with the group struc-
ture:

VaVyVz(z € time Ay € time Az € timeAz <y Dz +2z<y+z)

4.3.3 Modelling of devices

A gate is sometimes modelled as having a certain delay d and producing
at time ¢ 4+ d the output corresponding to the inputs at time ¢. This is an
unrealistic assumption for two reasons:

1. A short enough change in one of the inputs may not be propagated to
the output.
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2. The delay d given in the specification of a gate is an upper bound; there
is no guarantee that the output will not change sooner. Consequently,
there is no guarantee that a given value will linger at the output for
the full delay d after the inputs have changed.

A more realistic assumption, and one which is sufficient to do the proof, is
the following: if certain values are continuously present at the inputs for a
time interval Jto, #1] of duration greater than d, then the corresponding value
will be present at the output over Jto + d, t5, for some ¢, > t;. Notice that
not positive lower bound is specified for the duration ¢, — t; during which
the output keeps its value after the input values have changed; it can be
arbitrarily small.

In certain technologies one of the transitions from low to high or high to
low takes significanly longer than the other; so we use two distinct delays:
dlh from low to high, and dhl! from high to low.

We model the signals as functions from time into the set of voltages. We
do not need any structure on the set of voltages, other than two voltage
ranges:

highvrange, C voltages,
lowvrange, C voltages,

To say that a voltage is high or low we use the postfix notations “A high”
and “Alow”, which we represent with the constants high,, and low,,:

(FMLo A, high) — high,, A,
(FML, Ay, low) — low,, Ay,

The two representing constants are defined as the unary predicates denoting
membership in the voltage ranges, by the axioms:

high, = apply,,, highvrange,
low,, = apply,,, lowvrange,

where apply,,, is the constant of the “apply” family which maps a set to a
unary predicate:
apply,, = Ariz(z € r)

We use the notation
norDEABC
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to express the fact that C is the output signal of a nor gate with low-to-high
delay D and high-to-low delay E when the input signals are A and B. The
notation is represented in the formal language by the predicate nor,,,,..:

(FMLo nor Dy, Erve, Aew, Brwa, CFML:) —
NOTosrsee Drm‘ EFML, AFMl.t Br-MLt CFML,

Here is the definition of the predicate, as it appears in the declaration of
the theory devices (the notation %time -> %voltages denotes the set of
set-theoretic functions from ¥%time to %voltages):

nor_def: "Y%nor_oiiiii = \dlh\dhl\x\y\z (
dlh %in %time /\
0 < dilh /\
dhl %in %time /\
0 < dhl /\
x %in %time -> %voltages /\
y %in %time -> Y%voltages /\
z %in %time -> Y%voltages /\
140 141 ( ‘
t0 %in %time /\ t1 %in %time /\ t0 + dlh < t1 /\
(50 < ¢ /\ t < t1 => x(t) %low /\ y(t) %low) =>
742 (1 < t2 /\ 't (¢0 + dlh < t /\ t < t2 => z(t) %high))) /\
1$0 111 (
t0 %in %time /\ t1 %in Y%time /\ t0 + dhl < t1 /\
14 (t0 < t /\ t < t1 => x(t) %high \/ y(t) %high) =>
742 (t1 < t2 /\ tt (£0 + dhl <t /\ t < £2 => z(t) %low))))"

The latch is implemented as two cross-coupled nor-gates (figure 4.1). The
circuit has two parameters, the delays D and E of the nor-gates. We use
the notation

latth DEABQR

to express the fact that @ and R are the output signals of the latch, im-
plemented with nor-gates of low-to-high delay D and high-to-low delay E,
when the input signals are A and B. The notation is represented in the
formal language by the constant latch,,,,,,, (the implementation predicate of
the latch):

(FMLo latch Deyg, Ermu, Arsa. Bese, Qe RFML:) -
latcho,,,., -DFML, EFMLL AFMLl BFML4 QFML: RFMIu
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b gbar

Figure 4.1: Implementation of the latch
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And here is the definition of the implementation predicate, as it appears in
the theory devices.

latch_def: "%latch_oiiiiii = \dlh\dhl\a\b\q\gbar(
%nor dlh dhl a gbar q /\ Y%nor dlh dhl g b gbar)".

Finally we need a specification for the latch. The inputs a and b of the
latch encode one bit of data as follows: if b is high and a low we say that a
1 is present at the inputs; if a is high and b low a 0 is present at the inputs;
if both @ and b are low then we say that no data is present at the inputs;
the case where both a and b are high is meaningless. The outputs encode a
1 when ¢ is high and gbar is low, and a zero when ¢ is low and gbar is high.
The desired behaviour is for the outputs to reflect the input data, with some
delay d, when data are present at the imputs, and to remember the data
when it goes away from the inputs, for as long as both inputs stay low.

More precisely, if b is high over Jto, t1], with ¢; —t¢ > d and a is low over
the same interval, and stays low beyond ¢; until ¢5, then ¢ should be high
and gbar should be low over Jt, + d, t3[, for some t3 > t,. (Proving that the
outputs keep their values beyond ¢, should enable the verification of circuits
which use the latch as a component.) Similarly, if a is high over Jto, 1],
1, > to + d, and b is low over Jto, 5[, t2 > 11, gbar should be high and ¢ low
over Jty + d, 13, for some ¢35 > ¢;. Here is the definition of the specification
predicate of the latch, as it appears in the declaration of the theory devices.

latch_spec_def: "Y%LatchSpec_oiiiii = \d\a\b\g\gbar(
d %in %time /\
<d /\
%in %time -> Y%voltages /\
%in %time -> Y%voltages /\
q %in %time -> %voltages /\
gbar %in %time -> %voltages /\
1£0 11 162 (
t0 %in %time /\
t1 %in %time /\
t2 %in %time /\
t0 + d < t1 /\
t1 < t2 /\
It (0 < t /\ t < t1 => b(t) %high) /\

T o O
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1t (80 <t /\ t < t2 => a(t) Y%low)
=>
743 (
t2 < 13 /\
It (80 +d <t /\ t < t3 => q(t) %high) /\
tt (40 +d <t /\ t < t3 => gbar(t) %low)))
/\
1£0 161 142 (
t0 %in %time /\
t1 %in Y%time /\
t2 %in %time /\
t0 + d < t1 /\
t1 < t2 /\

It (80 <t /\ t < t1 => a(t) %high) /\
It (80 <t /\ t < t2 => b(t) %low)
=>
7t3 (
t2 < t3 /\

1t (¢0 + d <t /\ t < t3 => gbar(t) %high) /\
1t (40 +d <t /\ t < t3 => qt) %low))))".

As for the other device predicates, we shall use a notation

(FMLo LatchSpec Dene, Arm, Bemine Qe RFML[) '
La'tChSPeComu DFML, AFMLL By, QFML, RFML;

We are going to prove that the two cross-coupled nor-gates of figure 4.1
implement a latch whose delay is the sum of the low-to-high and high-to-low
delays of the gates. Here is the statement of the correctness theorem, as it
appears in the thrsrsts. ext file of the directory 1ib/time/hv:

Theorem latch_correct: devices |- "!dlh !dhl !a !b !q !gbar (
%latch dlh dhl a b q gbar =>
“LatchSpec (dlh + dhl) a b q gbar)".
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4.3.4 Proof of correctness of the latch
Summary of the proof

Here is an informal explanation of the behaviour of the latch, which one
would expect to find in an electrical engineering textbook:

Assume that b is high and a is low. After a delay dhl, gbar is
low. Now both a and gbar are low, so after a further delay dih ¢
is high. Now that ¢ is high it does not matter if b goes low, gbar
will stay low. So as long as a stays low, ¢ will stay high.

This may be convincing, but it is not a proof. The proof which has been
carried out in Watson can be summarized in English as follows.

PROOF OF CORRECTNESS OF THE LATCH. Assume first that b is high
over lto,t1[, t1 > to + dhl+ dih, and a low over Jio,to, t; > t1. Then,
from the specification of the second nor-gate (the one with inputs ¢, b and
output gbar), gbaris low over Jto + dhl, ¢;] (in fact, over Jto + dhl, ¢4], for some
14 > 1;). Therefore, from the specification of the first nor-gate (the one with
inputs a, gbar and output ¢), ¢ is high over Jto + dhi+ dlh, 1] (in fact, over
Jto + dhl+ dih, t4], for some t4 > 14).

Reasoning by contradiction, assume that it is not the case that, for some
ty > ty, q is high and gbarlow over Jto + dhi+ dih, t3[. Let then s be the set of
time points t > to + dhl+ dlh where it is not the case that ¢ is high and gbar
is low. The set s cannot be empty, because then for any t3 > ¢t ¢ would be
high and gbar low over Jto + dhl+ dih,t3[. And the set s is bounded below,
by to + dhl+ dlh. So let t5 be its greatest lower bound.

We have seen that ¢ is high over Jto + dhl+ dlh, t;], while gbaris low over
the same interval. So there are no elements of sin Jto+ dhl+dlk, t1[. Therefore
t1 is a lower bound of s, and t; < t5. Also, t5 cannot be strictly greater than
t5, because then ¢ would be high and gbar low over Jto + dhl+ dlh,t3], with
t3 = ts, contradicting our hypothesis. So t; <5 <t5.

Since there are no elements of s in Jto + dhl+ dlh, t5[, ¢ is high and gbar is
low over the interval. In addition, gbar is low over Jtq + dhl,¢;1[. Hence, since
to + dhl < to + dhl+ dlh < t; < t5, gbaris low over Jto + dhl, t5].

Since ¢ is high over Jto + dhl+ dih,t5[ and b is high over Jto, ¢1[, for every
t €Jto,ts[ at least one of them is high at time ¢. Since gbar is low over
Jto + dhl ts[ while a is low over Jtg, ¢35, both of them are low over Jtg + dhl, ts[.
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So, since at least one of the inputs of the second nor-gate is high over
Jto, ts[, the output gbar is low over Jto + dhl o[, for some tg > t;. And since
both inputs of the first nor-gate are low over Jto + dhl,t5[, the output g is
high over [t + dhi+ dlh, t], for some t7 > t5.

Let tg be the earliest of ¢ and ¢;. Then ¢ is high and g¢bar is low over
Jto + dhi+ dlh,tg[. So there are no elements of s over that interval, and g is
a lower bound of s. But fg > ¢5, a contradiction.

We still have to prove that, if a is high over J¢o, t1[, t1 > to+ dhi+ dlk, and
b low over Jto, 2], 12 > 11, then gbaris high and ¢ low over Jto + dhi+ dlh, t3],
for some t3 > t,. But this follows from the previous case if we observe that
a nor-gate is symmetric, and therefore the latch is symmetric too. O

The proof in Watson has about 350 lines. The symmetry of the nor-
gate and the symmetry of the latch have actually been proved as separate
theorems:

Theorem nor_sym: devices |-
“Idlh 'dhl !'x !y !'z(%nor dlh dhl x y z => Ynor dlh dhl y x z)".

Proof of theorem nor_sym: line gl in nor_sym.

Theorem latch_sym: devices |-
“1dlh !'dhl 'a !'b !q !gbar(%latch dlh dhl a b q gbar => latch dlh
dhl b a gbar q)".

Proof of theorem latch_sym: line gl in lat_sym.

and they have been used in the proof of correctness of the latch to derive the
second case from the first one. Many simple consequences of the axiomati-
zation of time were required during the proof; they have all been proved as
separate theorems. However the proof has not been done from first principles;
the following theorems have been admitted without proof:

Theorem thm2: zfa |-
"ta !'b !x !y (x %in a /\ y %in b => (x,y) %in a # b)".

(where a # b denotes the cartesian product of a and b).
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Theorem thm3: zfa |-
“la b tx !y ((x,y) %in a # b => x %in a /\ y %in b)".

Theorem thm4: zfa |-
"la b 'f Ix (f %ina -> b /\ x %in a => £(x) %in b)".

No particular difficulty is expected in proving these theorems with Watson.

Usage of the theorem schema of separation

The proof makes use of the theorem schema of separation. This is implicit
in the sentence of the summary of the proof:

... Let then s be the set of time points ¢ > tg+ dhl+ d{h where it
is not the case that ¢ is high and gbar is low. ...

This sentence corresponds to the following two lines of the proof:

Line 187: devices |-

"1dhl !'dlh !'q !qbar !t0 !e ?s !t(t %in s <=> t %in e /\
(t0+dh1+d1h<t /\ ~ (q(t) %high /\ gbar(t) %low)))"

follows by rule: sep_inst.

Line 188: devices |-

“?s 16(t %in s <=> t %in %time /\ (t0+dhl+dlh<t /\
= (q(t) %high /\ gbar(t) %low)))"

follows from 187.

Rule: forall_elim.

Line 188 is an instance of schema (2.23), page 54, P being:
t0+dh1+d1h<t /\ = (q(t) %high /\ gbar(t) %low)

When represented in the surface language, P is a formula which contains the
following constants: tplus,,,, tlt,,, and..., not.,, apply,,, high,,, low,. Of
these, and,,, and not,, are F.O. logical constants. But the presence of the
others means that P is not a p-sentence. So Watson must look for axioms
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defining these constants in the theory devices. In this case, the constants
are ultimately defined in terms of F.O. logical constants, in,,,, the,o,), and the
following constants of type :: tplus,, tlt,, time,, highvrange, and lowvrange,.
So by theorem 2.8, P can be used as a parameter. This determination is
done by Watson quite fast, using data structures compiled when theories are
declared. Notice that this does not require user intervention: in particular
the user does not have to flag particular axioms of a theory which are going
to be used as definitions of constants representing notations.

Simplification of the proof by H.O. reasoning

In the summary of the proof we have used the time interval notation “JA, B[”.
This notation can be represented internally as

Openlval,, A B
with the constant Openlval,,, defined by
Openlval,,, = AaMb{z | a <z Az < b}

However, although intervals are convenient in the English-language summary
of the proof, their use tends to complicate the formal proof, so in fact they
have not been used.

Intervals would have been useful in the following two proof fragments: (i)
the proof fragment showing that gbar is low over Jto + dhl, t5[, given that it
is low over Jto + dhl,t1] and Jto + dhl+ dih,t5[, and (ii) the proof fragment
showing that at least one of the inputs to the second nor-gate, b(t) or ¢(?),
is high for every ¢ €lto,ts[, given than b is high over Jto,#;[ and ¢ is high
over Jto + dhl+ dih ts[. With intervals, one can prove as a lemma that, if
a < b < ¢ < dthen Ja,d[Cla, c[U]b, d[ (in fact ]a, d[=]a, c[U]b, d[), and then
one can use the lemma twice. Without intervals, each proof fragment can
be done easily, but the little argument by cases involved in the proof of the
lemma has to be done twice.

But there is an interesting alternative to using intervals by which the
common argument can be factored out. This is to prove the following higher-
order theorem:

Theorem timel2: time |-
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"Ip_oi ta tb lc !d (

a =<b /\
b < ¢ /\
c =< d /\

1t (a<t/\t<c=>pooit)/\

1t (b<t /\t<d=> poit)
=>

't (a <t /\t<d=>p_oit))".

Proof of theorem timel2: line gl in timel2.

and then use it by specializing p,, to the appropriate A-abstraction,
At (gbar(t) low)
or
At(b(t) high V ¢(t) high).

This is a second example of how schematic reasoning can be formalized in
Watson as higher-order reasoning. (The first example was the use of the
theorem of the excluded-middle in the proof described in section 4.2.8.)
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Conclusion

5.1 Summary

We have proposed an approach to the mechanization of mathematics with a
set theoretic foundation.

The approach is based on a formal system consisting of the axioms of
ordinary set theory, but within H.O.L. rather than F.O.L.; more precisely,
within a version of H.O.L. with A-abstraction and with a description operator
which maps undefined descriptions to the empty set. We have shown that set
theory within H.O.L. is a conservative extension of set theory within F.O.L.;
that is, any F.O. set theoretic result proved in the proposed formal system
can also be proved, in principle, in set theory within F.O.L.

In such a formal system, mathematical notations can be represented by
constants, those which bind variables necessitating higher-order constants.
The representing constants can be defined, in the object language, by axioms
constituting a set theoretic abbreviation system, i.e. by a set of definitions
with a well-founded definition graph, and with a residual vocabulary con-
sisting only of F.O. logical constants, the predicate and function symbols of
the version of set theory under consideration, the description operator for
individuals, and individual constants.

We have shown that the formal system remains a conservative extension
of set theory within F.O.L. when it is augmented with the axioms of a set
theoretic abbreviation system and constants defined by the abbreviation sys-
tem are allowed in instances of the axiom schema of replacement (in theories
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such as ZF) or instances of the theorem schema of class existence (in theories
which distinguish between sets and classes).

We have shown how a well-behaved rewriting system can be used to
translate between the formal language and the surface language, the latter
being the result of augmenting the former with the syntax of mathematical
notations.

The proof development system Watson has been built to demonstrate this
approach to the mechanization of mathematics. Watson features a method-
ology for interactive proof which reconciles safety with flexiblity of use, by
providing a guarantee of correctness at three different levels. Theory decla-
rations, statements of results, and proofs can be saved in a tree structured
library, and can be perused and modified using an ordinary text editor. The
surface language is customizable: the user can specify his own notations as
rewrite rules. It is easy to switch from one surface language to another. Dif-
ferent languages can be used within the same library, and researchers using
different surface languages can easily share results and even proofs. Wat-
son has been used to prove the correctness of a latch implemented as two
cross-coupled nor-gates, with an axiomatization of time as a continuum.

5.2 Opportunities provided by the formal
system

The motivation for the proposed formal system is to accomodate mathemat-
ical notations. This requires up to second-order constants with axiomatic
definitions, up to third-order equality for the axioms defining the constants,
and A-abstraction; but no more. Higher-order quantification, in particular, is
not required. So it seems that our formal system is much richer than required
for our stated goal.

There is however no point in restricting the system since we have shown
that, as it is, it adds no new results to ordinary set theory within F.O.L.
Instead, we should consider the rich inferential apparatus that we are getting
“for free” as an exciting new resource to be explored. Indeed, although the
formal system does not introduce new results, it does introduce a rich new
class of mathematical methods which are not available in ordinary set theory
within F.O.L. We conclude by pointing to some possibilities which are thus
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opened by the formal system.

5.2.1 Schematic reasoning

A schematic proof is a proof which contains syntactic variables standing for
indeterminate sentences, terms or symbols. It represents a family of object
language proofs. Schematic proofs can only be done properly when there is
a formal distinction between an object language and a metalanguage.

Schematic proofs come up mostly in metamathematics. But schematic
* reasoning also comes up in ordinary mathematics. For example, when math-
ematicians talk about “classes” within ZF, as in [32], their arguments can
be formalized as schematic proofs, where what they call a class becomes
a generic sentence asserting some property of a generic individual. For an
extremely elaborate example of schematic reasoning, see Quine [48].

In our formal system some arguments which would require a schematic
proof in ZF within F.O.L. can be carried out as ordinary proofs of higher-
order theorems. We have seen two examples of this, in sections 4.2.8 and 4.3.4.

5.2.2 Generalized quantifiers

Many generalized quantifiers are definable in the formal system, including
cardinality quantifiers, topological quantifiers, and branching quantifiers.
Others should be axiomatizable if not definable. We give three examples
of definable quantifiers:

1. More than half, a cardinality quantifier. We consider the object lan-
guage sentence:

More than half of the & in E are such that P

as standing for:
MoreThanHalf,,,, E Az P

Then MoreThanHalf,,,) can be defined as:

MoreThanHalf,,,), = AeApo,( Card({z € e | =(po 2)}) <
Card({z € e | po, 2}))
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where the cardinality of a set might be defined as the smallest ordinal
number which is equinumerous to the set, and then A < B is an
alternative notation for A € B.

2. A topological quantifier. We consider the object language sentence:
An open set of @ in E are such that P

as standing for:

Open E \zP

o(ot)e

The notion of an open set is relative to a particular topology; so let the
constant OpenSets, denote the set of open sets of the topology. Then
the quantifier Open,,,), is defined as:

Open, ), = AeApo({z € e | po, 2} € OpenSets, ).

oot )

3. A branching quantifier. We consider the object language sentence:

For every x there exists a ¢ and for every u a v (depending
only on u) such that P

as standing for:
BQo(ouw) AZAYAUAVP

with the branching quantifier BQ,,,,,,) defined as follows:

BQO(OLLLL) = ApOLLLLafLLBgLLV‘TLVU‘L (pouu z, (fu ml,) U, (gu U‘L))

5.2.3 Foundations of category theory

Category theory seems to be the only branch of mathematics where Zermelo’s
method for avoiding the paradoxes—by limiting Comprehension—is an ob-
stacle to mathematical practice. This is because category theory considers
collections of objects, such as the collection of all sets, all groups, all topo-
logical spaces, and so on, which are not co-extensional to sets. On the other
hand in Russell’s solution to the paradoxes—type theory—Comprehension
is not restricted, and the problem does not come up: the collection of all
groups of a given type constitutes a category in a higher type.
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In ZF /HOL, although those large collections are still not co-extensional to
any sets, it is possible to refer to them by formulas of types other than ¢, e.g.
“N\zT” for the collection of all sets (in a version of ZF without urelements),
or “Az(z is a group)” for the collection of all groups. Then, since HOL is
also type theory [13], one can develop category theory as one would in type
theory. The fact that ZF/HOL is a conservative extension of ZF /FOL means
that any first-order set theoretic result provable by means of category theory
in this fashion is also provable in ZF /FOL.

This seems to be a valid alternative to the introduction of universes [17,
18, 24, 36, 37], which is the traditional way of providing a set theoretic
foundation for category theory.
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Appendix A

Difficulties with
pseudo-binding

Section 1.5 describes the pseudo-binding method, which is probably the most
common approach to the explanation of mathematical notations which bind
variables and construct terms. In this appendix we illustrate the practical
difficulties which would arise if we tried to use the formal language expres-
sions prescribed by the pseudo-binding method as internal representation of
the corresponding surface language expressions in a PDS.

Assume that in the course of a proof we have proved the following lines:

u={r€y|laenz=ua} (A.1)
v={z€y|azCz} (A.2)

and we want to prove “u = v” using the theorem
VaVy(z Ny =2 =2 C y) (A.3)
In Watson, one can rewrite (A.1) to
u={z€y|ezCz} (A.4)

in one step, by a generalization of the rule of substitution, using (A.3). Notice
that this does not make use of the definition of the notation “{@ € A | P}”.
It only makes use of the fact that, in Watson’s internal representation as
well as in the surface language, “z Nz = 2” is indeed a subexpression of the
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sentence (A.1). Another substitution step then yields “u = v” from (A.4)
and (A.2). If on the other hand the pseudo-binding method had been fol-

lowed, then the expression
{zeylenz=2z} (A.5)

would be a shorthand for a term consisting of a function symbol, say “f”,
applied to the free variables “y” and “2” of (A.5), so line (A.1) would be a
shorthand for:

u=1yz (A.6)

The rewrite “o Nz = 2” — “o C z” cannot be performed on (A.6), since
“2 Nz = 2” is not a subsexpression of “u = fy z”. We must then use the
axiom defining the function symbol f:

Ve(z €fyz=azeyhanz=z) (A.7)
The rewrite can be performed in (A.7):
Va(z €efyz=z€yAa Cz) (A.8)
Then “u” can be substituted for “fy 2”:
Ve(z€u=zeynaCz) (A.9)
The right-hand side of (A.2),
{rey|zCz} (A.10)

also stands for a function symbol, say “g”, applied to its free variables “y”

and “z”; so (A.2) stands for
v=gyz (A.11)

We must use the definition of “g”:
Ve(z €gyz=a€ynaCz) (A.12)
and substitute “v” for “gy z”:

Ve(z€v=2€yAzC2) (A.13)
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From (A.9) and (A.13), by substitution:
Va(z €Eu=z € v) (A.14)
Finally, from (A.14) and the axiom of extensionality:
U=

To summarize, the use of the pseudo-binding method blocks the rewrite
“:Nz = a”" — “z C z” and forces instead a detour in the proof. The
detour includes the use of three axioms: the two axiomatic definitions of “f”
and “g”, and the set theoretic axiom of extensionality. This is an artificial
complication of the proof. Moreover, it would be quite awkward to justify to
the user of a PDS why the rewrite is allowed in (A.7) but not in (A.1).
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Appendix B

Conversion

In this appendix we prove the strong normalization theorem for afy-conversion
and we establish the characterization of formulas in f~-nf as standard for-
mulas. For a thorough study of the lambda calculus see [7].

B.1 Preliminaries

B.1.1 a-classes

The relation A = B between formulas A and B is symmetric, so its
reflexive-transitive closure “A a-converts to B”, i.e. “A and B are the same
up to renaming of bound variables” is an equivalence relation, whose classes
we shall call a-classes, or simply classes when no confusion is possible. We
shall write A for the a-class of A.

The normalization theorems are more easily proved for a-classes first,
because conversion behaves more regularly between a-classes than between
formulas.

We say that (A, B) is a step of f-conversion between classes A and B iff
there exist representatives A of A and B of B such that (A, B) is a step of
B-conversion between the formulas A and B; y-conversion and 7-conversion
between classes are defined identically from ~-conversion and 7-conversion
between formulas.

A class A is said to be a class in B-nf iff there exists no class B such
that (A, B) is a step of S-conversion. (Note that a similar definition could
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not be used for A-nf between formulas, because no f-conversion step applies
to a formula having a single f-redex “(AzU) V” where V is not free for @
in U.) If Aisin f$-nf, then every representative of A is in f-nf. Conversely,
if a representative of 4 is in f3-nf, the same is true of A as a class.

A class A is said to be a class in y-nf iff there exists no class B such that
(A, B) is a step of y-conversion. If A is in y-nf, then every representative of
A is in y-nf. Conversely, if a representative of A is in v-nf, the same is true
of A as a class.

We say that (A, B) is a step of 3y-conversion iff it is a step of S-conversion
or a step of y-conversion. We say that a class A is in f+y-nf iff there is no
class B such that (A, B) is a step of fy-conversion, i.e. iff it is both in #-nf
and ~-nf.

B.1.2 o-trees

The proofs of the normalization theorems will be considerable simplified by
considering tree structures associated with a-classes and derived form the
parse trees of their representatives, which we shall call a-¢rees.

The typed A-language is a context-free language, generated by the gram-
mar consisting of the following production schemas.

FML, — FML,5 FMLg
FML,3 — A VARgFML,
FML, — Id,
FML, — Id,
VAR, — 1Id,

where the non-terminal symbols are the subscripted symbols FML, and VAR,
for every type o, and the terminal symbols are the subscripted symbols Id,,,
for every roman identifier Id and type «, and Id,, for every italic identifier
Id and type o.

Any formula of the typed A-language has a parse tree with respect to this
grammar, defined in the usual way as a triple (N, S, L), where N is the set of
nodes of the tree, S the function mapping each internal node to the sequence
of its children, and L the function mapping each node to its label (leaf nodes
are labeled by terminal symbols, internal nodes by non-terminal symbols).
(A generalization of the notion of parse trees, applicable to arbitrary “labeled



B.1. PRELIMINARIES 177

FML,

(m

EML,

(1) 0»)é
ec‘eu #b

Figure B.1: Parse tree of “exists,(,,) Az,(equal,, y, z,)”
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expressions” will be given in section 3.4.2.) For example, figure B.1 shows a
pictorial representation of the parse tree of

existso(o,) Az.(equal,,, ¥, z,)

Any set of appopriate cardinality can serve as set of nodes of a parse tree. In
figure B.1 we have simply chosen as nodes the consecutive integers 1.. 15,
assigned in a preorder traversal of the tree. The three components N, S5 L
are then as follows (square brackets are used to denote sequences);

N = {1,...,15}

S = {(1[2.4).(2,[3)(45.6,8)). (6 [7), (8,[9,14)), (9, [10,12]),

(10,{11)). (12, [13]). (14, [15])}

{ (1, FML,), (2, FMLy(o). (3, existsoa)), (4, FMLo, ) (5,4),
(6,VAR,), (7, z,), (8, FML,), (9, FML,, ), (10, FML,,,),
(11,equal,,), (12,FML,), (13, ), (14,FML), (15, 2,)}

L

Il

(e7%3

An a-tree for an a-class A is a structure (N', S', L', B) obtained as follovss
take a parse tree (N, S, L) of a representative A of A; let N'=Nand S =
let L' be the result of removing from L the node-label pairs correspondmg
to binding occurrences and bound occurrences of variables; and let B be the
set of pairs (p, g) where p is a node corresponding to a bound occurrence of a
variable, and ¢ is the node corresponding to the binding occurrence which is
referred to by the bound occurrence. For example, to derive an a-tree from
the parse tree of figure B.1, we remove the pairs (7,z,) and (15, z,) from L
and we let B = {(15,7)}; so the four components N', S', L' and B of the
a-tree are:

N = N
= {1,...,15}
$ =8

= {(1,]2.4)).(2,[3)). (4,[5,86,8]),(6,[7]), (8,19, 14]), (8, 10, 12]),
(10,[11)), (12, [13]), (14, [15])}
L' = {(1,FML,), (2, FMLyy), (3, existso(a)), (4, FML,,), (5, A),
(6, VAR,), (8, FML,), (9, FML,,); (10, FML,,),
(11, equal,,,), (12, FML,), (13, 3.), (14, FML,) }
B = {(15,7)}
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FML,

) {
!
! ‘
! ’
( (u\ ) (13)e , /
\ “Qour L ’
/
\ .
~ ~ — - — - —-— - -

Figure B.2: a-tree of a-class of exists,,,) Az,(equal,, y, z,)
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Figure B.2 shows a pictorial representation of the a-tree.

We define an a-{ree as any structure which can be obtained as the a-tree
of some a-class by the above construction. (We leave it to the reader to
propose an intrinsic definition.) There is an obvious notion of isomorphism
of a-trees, and the construction defines the a-tree of a given a-class up to
isomorphism.

Given an a-tree 7 = (N, S, L, B) and anode n € N, we define the subtree
of 7 rooted at n as the structure 7' = (N, S, L', B') where N’ is the set of
descendents of n, and S’, L/, B’ are the restrictions of the functions S, L, B
to N'. In a parse tree, an occurrence of variable in a subtree may of course
be bound by a binding occurrence outside of the subtree; this means that a
node of 7' may have a dangling binding; that is, B’ may have elements (z, y)
where y € N — N'. So a subtree of an a-tree is a quasi-a-tree rather than
an a-tree. We leave it to the reader to come up with an initrinsic definition
of the notion of quasi-a-tree such that 7"’ satisfies the definition iff it can be
obtained as a subtree of an a-tree 7. Notice that an a-tree is a special case
of a quasi-a-tree.

The notion of isomorphism between quasi-a-trees is straightforward ex-
cept perhaps for the treatment of dangling bindings. We shall stipulate that
an isomorphism must carry a dangling binding to another dangling binding
which points to the same outside node. The formal definition is as follows.
Let 7 = (N,S,L,B) and 7' = (N', L', 5", B') be two quasi-a-trees. An
isomorphism from 7 to 7' is a bijection f from N onto N’ such that:

1. S’ coincides with the function which, for every n in the domain of S,
maps f(n) to the sequence f(s;))i<i<,, where the sequence (s;)i<i<; is
the image of n by the funcion S.

2. L' coincides with the function which, for every n in the domain of L,
maps f(n) to L(n).

3. B’ coincides with the function which, for every n which has an image
p by B, maps f(n) to f(p)ifpe N,ortopifpg N.

Isomorphism of a-trees is a special case of isomorphism of quasi-a-trees.
a-Trees are useful because fS-conversion and 4-conversion for a-classes
can be realized as transformations on a-trees. With a view to the defini-
tion of such transformations, we introduce the following operation on quasi-
a-trees, defined up to isomorphism: the result of grafting a quasi-a-tree
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T = (N, L, S, B) onto a node n of a quasi-a-tree 7' = (N', L', §', B') is the
quadruple (N — N"UN" S~ S§"uS" L—L"UL", B~ B"UB"), where
(N" L" 5" B") is the subtree of 7 rooted at n and (N", L™, S", B") is a
quasi-a-tree isomorphic to 7, rooted at n, and whose set of nodes N is
disjoint from N — N”.

From now on we shall refer to isomorphic quasi-a-trees as if they were
identical, and we shall speak in the singular of the a-tree of a given class.

B.1.3 Conversion in terms of a-trees

In an a-tree 7 = (N, S, L, B), a (-redex is a subtree rooted at a node n,
which is of the following form, as depicted in the upper half of figure B.3:
the label of n is FML,; n has two children (from left to right) p and ¢; p is
labeled FML, 4 and has three children (from left to right) », s and ¢; r is a
leaf node labeled by the symbol A; s is labeled by VAR, and has a single
child u, which is an unlabeled leaf node; ¢ is labeled FML, and is the root of
a subtree 7;; we call v; ... v, the j (0 < j) leaf nodes of 7; which B maps to
u, and w; ... w, their parents (which are labeled FMLg); finally, ¢ is labeled
FMLg and is the root of a subtree 7,. To reduce such a redex is to graft 7,
onto Ty at nodes w4 ...w, and then to graft the result onto 7 at node n.
The result is the tree 7' depicted in the lower half of figure B.3.

A pair of a-classes (A4, A’) constitutes a step of f-conversion iff the a-tree
of A" is the result of reducing a S-redex in the a-tree of A.

In an a-tree 7 = (N, S, L, B), a y-redex is a node n labeled FML,s which
is a not an abstraction node and which is not the left child of an application
node. The reduction of such a +-redex is accomplished by “inserting” the
y-link of type af8 at n; the y-link of type af7 is the structure, defined up to
isomorphism, depicted in figure B.4. (We leave it to the reader to provide
an explicit formal definition for it.) The insertion of the 4-link, as shown in
figure B.5, consists of grafting the subtree rooted at n onto the tip m of the
4-link, then grafting the resulting quasi-a-tree onto node n of 7. It should
be noted that a 4-link is not a well-formed a-tree or quasi-o-tree (because of

IThe notions of absiraction nede and application nede come in the obvious way from
the corresponding notions for formulas of the typed A-language. Abstraction nodes are
characterized by kaving three children, while application nodes are characterized by having
two.



Figure B.3: Reduction of a #-redex
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FMLg

Figure B.4: v-link of type af8
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Figure B.5: Reduction of a y-redex by insertion of a y-link.
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the truncated tip) but the definition of grafting, without modification, can
be extended to cover the case of grafting onto a -link.

The insertion of a v-link hardly seems a reduction. A reduction of sorts
does take place, however, as we shall see in section B.2.2.

A pair of a-classes (A, .A') constitutes a step of y-conversion iff the a-tree
of A’ is the result of reducing a y-redex in the a-tree of A.

Insertion of a v-link at a node n without restrictions on n corresponds
to the opposite of n-conversion. That is, a pair of a-classes (A,.A"), with
associated pair of a-trees (7,7"), constitutes a step of 5)-conversion iff 7 is
the result of inserting a v-link of type o8 at a node n labeled FML,5 of 7"

In section 2.3.3 we saw, for formula conversion, that steps of n-conversion
whose opposite pairs were not steps of y-conversion were redundant in the
presence of a-conversion and S-conversion. For a-classes, a step of n-conversion
whose opposite pair is not a step of y-conversion is a pair (A, A'), with as-
sociated pair of a-trees (7,7"), such that 7 results from 7" by insertion of
the ~-link of type a3 at a node n labeled FML,g, in the two cases in which
such a node n is not a v-redex: when n is the left child of an application
node in 77, and when n is an abstraction node. In both cases, (A, A") is a
B-conversion step.

B.1.4 Newman’s theorem

The definitions and results in this section are taken from [30].
We shall write R* for the transitive-reflexive closure of a binary relation

R.

Definition B.1 A binary relation R 1s confluent iff whenever (a,b) € R”
and (a,c) € R* there exists d such that (b,d) € R™ and (c,d) € R™.

Definition B.2 A binary relation R islocally confluent iff whenever (a,b) €
R and (a,c) € R there ewists d such that (b,d) € R™ and (c,d) € R".

Definition B.3 A binary relation R is noetherian iff it has no infinite
chains (i.e. iff there is no infinite sequence where every pair of consecutive
items 1is an element of R.).

Remark. A relation R is well-founded iff every non-empty set S has an
element 2 which is minimal for R (i.e. which is such that (y, z) € R implies
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y € S). If R is well-founded, then its inverse R~! is obviously noetherian.
Conversely, if R™! is noetherian, then R is well-founded (using the axiom of
choice, or just dependent choice). We shall use one or the other terminology
depending on which relation, R or R™', it is more convenient to use.

Theorem B.1 (Newman) A noetherian relation is confluent iff it is locally
confluent. ’

ProoF. See [30]. O

Definition B.4 y is a normal form of z for the binary relation R iff (z,y) €
R* and there exists no z such that (y,z) € R.

(Notice that this notion of normal form is in agreement with the definitions of
-nf, y-nf and B~-nf for a-classes, and with the definition of y-nf for formulas.
But it is not in agreement with the definition of f-nf and #+-nf for formulas,
since a formula may have a /3-redex, and hence not be in normal form in the
sense of section 2.3.3, while no step of S-conversion applies to it (because of
variable capture) and hence the formula is in normal form for S-conversion
in the above sense.)

Clearly, if a relation is noetherian every formula has at least one normal
form, and if a relation is confluent, every formula has at most one normal
form. Thus if a relation is both noetherian and confluent (or, by Newman’s
theorem, noetherian and locally confluent), then every formula has exactly
one normal form,

B.1.5 Well-ordering of finite multisets

In this section we define the ordering of multisets on an ordered set, we pro-
vide a useful criterion for establishing that one multiset is less than another,
and we prove that multisets on a well-ordered set are well ordered. We must
distinguish two kinds of multisets. Dershowitz [14] does not make the dis-
tinction, but his arguments cannot be carried out rigorously without making
it. Outside of this appendix, by “multiset” we shall refer to a multiset of the
first kind. The proof of the main lemma, lemma B.4 is adapted from [14].
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Two kinds of multisets

Let A be a set. A multiset of the first kind on A is a function with domain A
whose range consists of cardinal numbers. A multiset of the second kind on
A is simply a function whose range is a subset of A. A multiset M of the first
kind is associated with a multiset f of the second kind iff, for every z € A,
M(z) is the cardinality of f~!(z) (the set of inverse images of z by f). The
cardinal number M (z) is referred to as the count of z in the multiset of the
first kind M.

We shall say that a multiset of the second kind is finite iff its domain is
finite (i.e. iff it is finite as a set of ordered pairs). We shall say that a multiset
of the first kind is finite (as such a multiset) iff all the counts are finite and
only a finite number of them are not zero. We shall only be concerned with
finite multisets of either kind.

Remark. Each finite multiset of the second kind determines a finite mul-
tiset of the first kind. Conversely, each finite multiset of the first kind is
associated with at least one finite multiset of the second kind (proof left to
the reader). In fact, a finite multiset of the first kind is associated with
“many” finite multisets of the second kind, so many that they do not form a
set. So the finite multisets of the second kind on a set A do not form a set.
The finite multisets of the first kind on A, however, do form a set, which we
shall write M 4.

Ordering of multisets

Let now < be a binary relation on A. We define a binary relation on the set
of multisets of the first kind on A as follows: M is less than M', M < M’
(we use the same notation, but there should be no risk of confusion), iff

1. For some z € A, M(z) < M'(z), and

2. For every z € A, if M'(z) < M(z) then there exists y > 2 such that
M(y) < M'(y).

Let f and g be multisets of the second kind. We say that a function A
from the domain of f into the domain of g is a bridge function from f to g
(relative to the binary relation < on A) iff every y in the domain of g falls
in one of two categories:
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1. y has exactly one inverse z by h, and f(z) = g(y) or

2. every inverse z of y by h is such that f(z) < g(y),

and moreover the second category is non-empty. We say that f is less than
g, f < g (we use the same notation once again, but there should be no risk
of confusion), iff there exists a bridge function from f to g. (Of course, there
is no set whose elements are the ordered pairs (f, g) such that f < g in this
sense.)

Lemma B.2 Let f and g be finite multisels of the second kind on A, and
let M and M' be the corresponding multisets of the first kind. If < is an
ordering on A, then f < g iff M < M'.

PrOOF. Left to the reader. O
Remark. Relying on lemma B.2, we shall usually establish M < M’ by
constructing a bridge function from f to g.

Lemma B.3 If (A, <) is an ordered set, then so is (M, <).

ProoF. The relation < on finite multisets of the first kind is obviously
irreflexive. We show that it is transitive. Let M, M’ and M" be finite
multisets of the first kind on A, such that M < M’ and M’ < M". Let f,
f', f" be finite multisets of the second kind associated with M, M’ and M".
By lemma B.2 f < f’ and f' < f”, so there exist bridge functions h from f
to f' and A/ from f' to f". The composition h' o h is then a bridge function
from f to f. Therefore f < f" and by lemma B.2 again, M < M". O,

Lemma B.4 There are no infinite descending chains of finite multisets of
the second kind on a well-ordered set.

Proor(adapted from [14]). Let (A4, <) be a well-ordered set. We reason by
contradiction. Assume that there exists an infinite descending chain of finite
multisets of the second kind (f;)i>0. Let B; be the domain of each f;.

We construct a sequence of trees (¢;);>0 as follows. We start with a root
node, and construct ¢y by installing as children of the root as many nodes as
there are elements in By, labeled by the elements of By. We refer to these
labels as B-labels. Then we add a second kind of labels, called A-labels,
the A-label of each of the children of the root being the image by fo of its
B-label, Now assume that we have constructed the tree ¢;, and that the
following induction conditions hold in ¢
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1. Every node other than the root has an A-label; if node p is a child of
node ¢ and g is not the root, the A-label of p is less than the A-label
of g.

2. Only leaf nodes have B-labels; the B-labeling is a bijection between a
subset of the leaf nodes and B;.

3. If a leaf node has a B-label z, then its A-label is f;(z).

(Observe that ¢, satisfies the induction conditions.) Let & be a bridge function
from f;4; to f;. We construct ¢;4; as follows. We consider each leaf node n
which does have a B-label y.

1. If y has inverse images z1...xx (k > 0) by A, and fi41(z;) < fi(y) for
every 7, 1 < j < k, we install k nodes p;...px as children of n. To
each p; we assign the A-label 2, and the B-label fi;1(z;). Finally we
remove the B-label of n. (Notice that in the case where k£ = 0 this
reduces to removing the B-label of n; no children are installed.)

2. If y has one inverse image z, and h(2) = y, we change the B-label of n
to z.

It is clear that t;,, satisfies the induction conditions.

If at some stage of the construction no new nodes are added, at least
one B-label will be removed. So this can only happen a finite number of
consecutive times. Therefore the number of nodes of ¢; is unbounded.

Having constructed the sequence of doubly-labeled trees (¢;)i>0, let (t!)i>o
be the sequence of singly-labeled trees obtained by dropping the B-labeling
component from each tree. Each ¢! is a subtree of t{,,. The componentwise
union of the ! is then a tree t..

Since the size of the ¢! is unbounded, ¢/, is an infinite tree. By Koenig’s
lemma it has in infinite branch. The A-labels along this branch constitute
an infinite descending chain in (4, <), a contradiction. O

Theorem B.5 (Dershowitz) If (A,<) is a well-ordered set, then so is
(MA,<).

ProoF. By contradiction. Let (M;)o<i be an infinite descending chain
of finite multisets of the first kind on A. There exists a sequence (fi)o<i
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where each f; is a finite multiset of the second kind associated with M;.? By
lemma B.2 (f;)o<; is a descending chain, which by lemma B.4 is a contradic-
tion.

B.2 Normalization

B.2.1 Conversion to B-nf

The normalization result regarding /f-conversion is the strong normalization
theorem for the typed A-calculus. We state the result without proof for a-
classes. Then we derive the result for formulas, as a corollary. The purpose
of this is to follow the same pattern that we shall follow for the normalization
results regarding conversion to y-nf and to fvy-nf. Proofs of the result in the
literature, though, are usually given for formulas.

For additional definitions and remarks see section 2.3.3.

Theorem B.6 S-conversion of a-classes is confluent and noetherian; there-
fore every a-class has a unique 3-nf.

PrRoOOF. Omitted. Confluence can be established as in the untyped A-
calculus. The first proof of confluence is due to Church [11]. More recent
proofs can be found in [7, §11.1] and [29, App. 1]. The termination result is
due to Tiiring. A proof can be found in [29, App. 2]. O

Corollary B.7 Every sequence of formulas which ts a non-trivial chain of
af3-conversion steps terminates. Every formula has a f-nf. The f-nfs of a
given formula are all the same up to renaming of bound variables.

ProoF. If (A, B) is a formula a-conversion step, then A = B, and if (A, B)
is a formula f-conversion step, then (A, B) is an a-class S-conversion step.
Therefore from an infinite non-trivial chain of (formula) af-conversion one
could derive an infinite chain of class f-conversion. So there are no infinite
non-trivial chains of (formula) af-conversion. For every formula A there is a
complete non-trivial chain starting with A (section 2.3.3). Such a chain must
terminate, and the last formula in it is a #-nf of A. So every formula has a

2AC not needed.
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B-nf. If B is a f-nf of A then, by definition (section 2.3.3), A af-converts
to B, and B is in f-nf. So A f-converts to B and B is in -nf as an a-class;
i.e. B is the 3-nf of A. Thus all the -nfs of A are representatives of one and
the same a-class, and hence they are all the same up to renaming of bound
variables. O

B.2.2 Conversion to y-nf

Theorem B.8 ~y-conversion between o-classes 1is noetherian and confluent;
therefore every a-class has a unique y-nf.

ProoF. Consider the reduction of a y-tedex as shown in figure B.5. The
nodes ¢, 7, t, w cannot be ~-redexes because they are not labeled FML,.
Node p cannot be a y-redex because it is the root of an abstraction. Node u
cannot be a y-redex because it is the left child of an application node. This
leaves only s and v as possible y-redexes among the new nodes introduced
by the reduction. On the other hand the reduction eliminates the y-redex n.
The types of the potential new redexes are o and /7, while the type of the
eliminated redex is a3. The order of [ is strictly less than the order of af.
The order of o is at most equal to the order of a3, while the arity of o is one
less than the arity of a3. So if we define an ordering on the types: 1 < 8 iff
the order of 7 is less than the order of § or the orders are the same but the
arity of 1 is less than the arity of 4, then we have:

{a<a[3’
p < of

This means (by lemma B.2) that the multiset of types of y-redexes (i.e. the
function which maps each type o to the number of v-redexes of type «) is
less after than before the reduction. The ordering < on the set of types
is clearly a well-founded relation; therefore, by theorem B.5, there cannot
be an infinite descending chain of multisets. So there cannot be an infinite
descending chain of vy-reductions; i.e. class y-conversion is noetherian.

By theorem B.1, to prove that class y-conversion is confluent it suffices
to prove that it is locally confluent. But this is'obvious: if an a-tree has
two redexes n; and n,, the result of inserting a ~-link at n;, then at n, (i.e.
at the node which obviously corresponds to n, in the a-tree resulting from
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the first insertion) is the same a-tree (of course up to isomorphism) which
results from first inserting a -link at n,, then at ny. O

Corollary B.9 Fuvery sequence of formulas which is a chain of y-converston
steps terminates. Every formula has a y-nf. The y-nfs of a given formula
are all the same up to renaming of bound variables.

Proor. If (A, B) is a step of formula y-conversion, (A, B) is a step of a-class
~y-conversion. So if (A,),>o were an infinite chain of formula «-conversion,
(Z:)HZO would be an infinite chain of a-class y-conversion. Therefore there
is no infinite chain of formula y-conversion. Hence every formula has a vy-nf.
If the formula B is a y-nf of the formula A, the a-class B is the y-nf of the
a-class A. Thus all the y-nfs of a given formula are elements of one a-class,
and hence they are all the same up to renaming of bound variables. O

B.2.3 Conversion to gy-nf

Theorem B.10 [y-conversion between a-classes is noetherian and conflu-
ent; therefore every a-class has a unique Jvy-nf.

Proor. We prove first local confluence, then termination; confluence will
then follow from theorem B.1.

Local confluence

Let A, A', A" be three a-classes such that (A,.4") and (A, A") are v
conversion steps. We want to show that there exists an a-class B such that
A" and A" convert to B (by perhaps multiple steps of f4-conversion). If
in fact (A,.4") and (A, A") are both f-conversion steps, the existence of B
follows from the confluence of f-conversion. If they are both «-conversion
steps, the existence of B follows from the confluence of y-conversion.

It remains to consider the case where one of them, say (A, A'), is a f-
conversion step, while the other, (A4,.4"), is a y-conversion step. Let 7, 7,
T" be the a-trees of A, A', A”. Since 7' results from 7 by reduction of a
(-redex, T and 7' are as figure B.3 shows. 7" results from insertion of the
4-link of type 6 at a node m labeled FMLg, where ¢ is a functional type. The
node m cannot be 7, s, u or any of the nodes v; (1 < ¢ < j), since these
do not have such a label. It cannot be p either, since p is the root of an
abstraction. The following possibilities remain for m:
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m is one of the nodes in the unshaded triangle; i.e. mis a node of T
which is not in the subtree rooted at n, or m coincides with n. There is
a corresponding node m/ in 7', Insertion of the -link of type § at m/
results in an a-tree 7"'; and 7" results also from 7" by a S-conversion
step. Figure B.6-I summarizes the relationships between the four a-
trees. The a-class associated with 7" can then play the role of B.

m is one of the nodes of singly shaded triangle, other than ¢; i.e. m is
one of the nodes of the subtree rooted at ¢, 7;, but not ¢ or one of the
nodes v; (1 <7 < j)—it may be one of the nodes w; (1 < ¢ < j). Same
as case 1.

m is a node of the doubly shaded triangle other than g; i.e. m is-a node
of the subtree rooted at g, 7, other than the root. There are j nodes
my ...m, which correspond to m in 7', one in each of the j copies of
T, rooted at w...w]. By insertion of the y-link of type # at m; ... m,,
i.e. by j consecutive y-conversion steps, 7' converts to an a-tree 7"
which results also from 7" be a S-conversion step. The situation is
depicted in figure B.6-II. The desired a-class B is the one associated
with 7",

m = 1 (then § = a); this can happen only if ¢ is not an abstraction
node. The node corresponding to m = t in 7' is n/. As before, the
insertion of the 4-link of type # at n' produces an a-tree 7" which
results also from 7" by reduction of a S-redex. But this time, the
insertion of the +-link does not always constitute the reduction of a
~-redex. We must therefore distinguish two cases:

(a) n is not the left child of an application node in 7. Then n’' is
not the left child of an application node in 7”, hence it is a -
redex, and insertion of the y-link does constitute the reduction of
a y-redex. There is then no difference with cases 1 and 2. The
relationships between the four trees 7, 7', 7" and 7" is as shown
in figure B.6-1. The desired a-class B is the one associated with
T"/.

(b) n is the left child of an application node in 7; hence the same
is true of n' in 7'. Then n' is not a +-redex, and insertion of
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the 4-link of type o does not correspond to a y-conversion step.
However, as seen in section B.1.3, the opposite transformation,
from 7" to T', is then a step of S-conversion. Figure B.6-III
summarizes the relationships between the four a-trees. As the
desired a-class B to which both A4’ and .A” convert we can simply
take in this case A, since two steps of f-conversion take A" to A",

5. m = g (then # = ). The nodes corresponding to min 7" are wj ... w).

By inserting the v-link of type /2 at each of those nodes we obtain an
a-tree 7" which results also from 7" by a step of S-conversion. Some
of these insertions will constitute y-conversion steps, some will not,
depending on whether the corresponding node w! is not or is the left
child of an application node in 7'. By performing first the insertions
which do constitute y-conversion steps we obtain an intermediate tree
7" Each of the other insertions is the opposite of a S-conversion step;
so T" B-converts to 7™, The situation is depicted in figure B.6-IV. As
the desired a-class B we take the one associated with the a-tree 7.

Termination

Reasoning by contradiction, assume that there exists an infinite chain (A;)i»o
of By-conversion. Since y-conversion is noetherian, there must be an infinite
number of fS-conversion steps in the chain. Let f(i) be the integer such
that (A, Asi)+1) is the i-th such step, and let B; be the v-nf of Ay
Notice that B;y, is the y-nf of Aj(;)41 besides being the 4-nf of Ay(i11), since
Ajiiye1 y-converts to Ag41). We are going to show that there is a chain of
[-conversion, having at least one step, which takes B; to B;;;. This means
that the formulas B;, ¢ > 0, are part of an infinite chain of f-conversion, a
contradiction since fS-conversion is noetherian.

Let T, 7', T" be the a-trees associated with Ay, A4 and By T
results from 7 by reduction of a f-redex, so 7 and 7" are as depicted in
figure B.3. 7" results from 7 by insertion of 4-links of appropriate types at
all the y-redexes of 7. Thus we have the same situation that was discussed in
the proof of local confluence, except that all the y-redexes of 7 are involved
rather than just one of them.

As explained in the proof of local confluence, each one of the y-redexes
of T has zero, one or more images in 7': those in the unshaded and singly
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shaded triangles of the upper half of figure B.3 have one image, those in the
doubly shaded triangle have one image in each of the copies of the triangle
grafted on wy ... w; (§ > 0). Thus to the set N of -redexes in 7 corresponds
a set of nodes N'in 7'. The insertion of ¥-links of appropriate types at each
one of the nodes in N’ results in a tree 7", which results also from 7" by
reduction of one fB-redex. Not all the nodes in N’ are 7-redexes. For those
which are v-redexes, insertion of the y-link is reduction of the redex; for those
which are not, insertion of the +-link is the opposite of the reduction of a
B-redex. Let 7" be the tree resulting from 7' by insertion of the 4-links
at those which are y-redexes. Then 7" also results from 7" by removal of -
the other -links, i.e. by as many f-conversion steps. We have therefore the
situation depicted in figure B.7.

It is clear that every y-redex of 7' must be one of the images of a y-redex
of T. Therefore all the y-redexes of 7' are elements of N', and 7" is the
result of reducing all the y-redexes of 7'. So the a-class associated with 7"
is the v-nf of A;(;)41, 1.e. Bi41. But then a step of f-conversion takes B; to
the a-class associated with 7", which itself 5-converts to B;4+1. So we have
proved that there is indeed a fS-conversion chain, of non-zero length, taking
B; to B;x;. O

Corollary B.11 Every sequence of formulas which is a non-trivial chain of
afiy-conversion steps terminates. Every formula has a fy-nf. The By-nfs of
a given formula are all the same up to renaming of bound variables.

PRrROOF. See the proof of corollary B.7. O

B.2.4 Properties of fy-nf

Lemma B.12 If A is a formula of atomic type in fry-nf, there exist an
integer n > 0, a symbol 8, and n formulas By ... B, such that A is:

SB] ...Bn.

Moreover, for every i, 1 < 1 < n, there exist an integer m > 0, m variables
X1 ... &, and a formula C of atomic type (and in fy-nf) such that B; is the
formula:

Aeq ... e, C.
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PROOF. Consider a parse tree for A. Let po be the root of the tree. Since
the type of A is atomic, po cannot be an abstraction node. If it is a symbol
node, let n = 0 and let s be the associated symbol. If it is an application
node, let p; be its left child. If p; is itself an application node, let p; be its
left child, and so on until we reach a node p, which is not an application
node. p, cannot be an abstraction node, otherwise p,-; would be the root
of a B-redex. Therefore p, must be a symbol node. Let s be the associated
symbol. Let ¢;...¢, be the right children of p,—1.. . po, and let B;...B, be
the formulas associated with the subtrees rooted at g1 ...¢n. As desired, A
is then the formula:

SBl Bn

Now consider an arbitrary ¢, 1 < ¢ < n. If ¢; is not an abstraction node
it must be of atomic type: otherwise it would be a ~-redex. Then let m =0
and let C be B,. If ¢; is an abstraction node, let r; be the root of the body
of the abstraction; if ry is itself an abstraction node let 7, be the root of the
body of this second abstraction, and so on until we find that r,, is not an
abstraction node. ,, must then be of atomic type, otherwise it would be
a y-redex. Let C be the formula associated with the subtree rooted at 7,
and let @;...%, be the variables bound by the abstractions whose bodies
are rooted at 71...7m,. Then, as desired, B, is the formula

>\ZI'.1 e )\mmC.

O

Lemma B.13 If a formula A of atomic type in By-nf has an occurrence of
a symbol s, which is not a binding occurrence of a variable, then it has a
subformula of atomic type which is of the form

S.B1 Bn

(n > 0), and where the occurrence of 8 in question is the one shown. More-
over, for every i, 1 < i < n, there exist an integer m > 0, m wvariables
zy...2, and a formula C of atomic type (and in By-nf) such that B; is the
formula

Az .. Az, C.



B.2. NORMALIZATION 199

ProoF. If s is of atomic type, let n = 0. Otherwise consider a parse tree
for A. Let py be the symbol node corresponding to the occurrence of s. p,
cannot be the root, since A is of atomic type. Let p; be the parent of po;
p; must be an application node, and py must be its left child, otherwise po
would be a v-redex. If p; is not of atomic type, it must itself have a parent
py of which it is the left child, otherwise p; would be a y-redex. And so on
until we find a node p, which is of atomic type. Let ¢;...¢, be the right
children of p;...p,, and let B;...B, be the formulas associated with the
subtrees rooted at ¢; ...q,. Then, as desired, the formula rooted at p, is

S-B] '-'Bna

and it is a subformula of A having an atomic type. The second part of the
proof is as in the proof of lemma B.12 above. O

Lemma B.14 If A is a formula of atomic type in fy-nf which has an oc-
currence, other than A itself, of a formula C of atomic type, then A has a
subformula of atomic type of the form

sB, ... B,

(n > 0), where s is a symbol and for some i, 1 < i< n, B; is of the form
Aey .. e, C

the occurrence of C in question being the one shown.

PRrooF. Consider a parse tree for A, and let 7 be the root of the subtree
associated with the occurrence of C in question. rg is not the root, so it
has a parent p. If p is an application node, 7o must be its right child (since
it is of atomic type); then we let m = 0 and we call u the node p. If p
is an abstraction node, then we let 7y = p. r; must have a parent; if it is
an abstraction node, then we call it r,, and so on until we reach a node r,,
whose parent is not an abstraction node. We call u the parent of r,,,; u is an
application node, and r,, cannot be its left child, because u would then the
root of a f-redex. So r,, is the right child of u (as in the case m = 0 above).

We let v; be the left child of u. If v; is not a symbol node it must be an
application node (otherwise its parent would be the root of a f-redex); then
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we let v, be its left child, and so on until we reach a node v; (i > 1) which is
a symbol node. Let s be the symbol associated with v;.

We let w; = u. If wy has functional type it must be the left child of a
node which we call w; (otherwise it would be a ~-redex), and so on until we
reach a node w; (j > 1)) which is of atomic type.

Let n = ¢+ 75— 1 and let ¢1,...,9i-1,¢,...,9, be the right children
of vi_1,...,v1,Ws,...,w; (which reduces to wi,...,w,; when ¢ = 1). Let
B, ...B, be the formulas associated with the subtrees rooted at ¢;...¢qy,.
Let @;...®,, be the variables bound by the abstractions rooted at r,,...7;.
Then the subformula of A associated with the subtree rooted at w; is

sB,...B,.
It has an atomic type. And B; is:

Axq. .. e, C.
a

Lemma B.15 If A is a formula of atomic type in fy-nf, and if the free
symbols of A have types of order 2 or less, then the bound variables of A are

of type ¢.
ProoF. By induction on the depth of A. Assume A is of depth &, and
assume the lemma holds for all formulas of depth less than k. By lemma B.12,

A is of the form
3B1 Bn

(n > 0) where s is a symbol. Let us show that the bound variables of each
B; are of type «. Again by lemma B.12, each B; is of the form

Az .. e, C,

(m > 0) where C is of atomic type (and, of course, in fy-nf). By induction
hypothesis, all variables bound within C are of type ¢. It remains to show

that @, ...z, are of type ¢. If 6 is the type of C and ay, ..., a,, are the
types of @1, ..., &, the type of B; is da,, ...a;. Since the order of the
type of 8 is at most 2 the order of the type of B, is at most 1, i.e. the order
of 6a,, ... a1 1s at most 1. Hence the order of each of oy, ..., a,, is 0, i.e.

] =...= 0, =1t 0
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Definition B.5 The standard formulas generated by a set of symbols S are
defined inductively as follows:

1. If s is a symbol of atomic type which is an element of S, or if 8 is a

variable of type v, “s” is a standard formula generated by S.

S

If A is a standard formula generated by S and @ is a variable, “AxA”
is a standard formula generated by S.

3. If s is an element of S of type Saq ...y, where & is an atomic type,
and A+, ..., A, are standard formulas generated by S of types aq, ...,
o, then “s Ay ... A, " is a standard formula generated by S.

Theorem B.16 S being a set of symbols whose types are of order at most
2, a formula A of atomic type is a standard formula generated by S off it is
in By-nf and its free symbols are elements of S or variables of type .

PrROOF. Let A be a formula of atomic type. If A is a standard formula
generated by S it is obvious, by induction according to definition B.5, that it
is in Av-nf and has no free symbols other than elements of S or variables of
type .. Conversely, we reason by induction on the depth of A. Assume that
every formula of depth less than &k which is in fy-nf and whose free symbols
are elements of S or variables of type ¢ is a standard formula generated by
S. Let A be a formula of depth % in S~-nf which has no free symbols other
than elements of S or variables of type ¢. By lemma B.12 A is of the form

8B1 Bn

where s is a symbol, which must be an element of S, or a variable of type ..

Every B, is of the form
Az ... e, C,

C being a formula of atomic type. By lemma B.15, @; ...®,, are variables
of type ¢; hence every symbol free in C which is not a variable of type ¢ is
also free in A, and therefore is an element of S. Since C is in fv-nf (as a
subformula of A) and its type is atomic, by the induction hypothesis it is a
standard formula generated by S. Therefore B; is also a standard formula
generated by S. Since this is the case for every B;, A itself is a standard
formula generated by S. O
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Appendix C

Equivalence to Church’s
system

The system of [10] differs from ours in that it uses only the logical constants
NOtooe, OTpos, forallysa) and thes(on) (with other names). In our system, the
logical constants not used by Church can be “defined” in terms of those used
by Church; more precisely we have:

Fand,,, = APOAQO(_'(—'po \% ﬂ(]o))

F implies,,, = ApoAgo(=po V o)

- equaloaa = Aa:(:\)\yavfoa(foa Toq O foa ya)

F true, = Vz,(z, = z,)

t false, = —true,

k- eXiStSo(oa) = Apoa('—‘vwa_'(poa ma))

F atmosto(oa) = APoaV2a Vi (Poa Za A Poa Ya D Ta = Ya)
F uniqueo(oa) = Apoa(amoa(poa ma)/\!moa(poa wa))

The above set of theorems of H.O.L. is an abbreviation system (see sec-
tion 2.5). Let then ¢ be the function which maps every formula A to
the formula obtained by eliminating the abbreviations from A. We have
F A = ¢(A); when A is of type o this can be written

FA=d(4). (C.1)

Let ® be the function which maps every theory to the set of images by ¢ of
its axioms.
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Remark. Let A be a formula, let B = ¢(A), let A’ be a Sy-nf of A and
B’ a fy-nf of B. Because A’ is in fy-nf, by lemma B.13, each occurrence
of a logical constant in A’ is part of a pattern which can be written using
the shorthand corresponding to the constant introduced in section 2.3.4. For
example, every occurrence of and,,, is part of a pattern “and,,, A B” which
can be written “A A B”. So A’ can be entirely written using the shorthands
for the logical constants: there are no occurrences of logical constants not
covered by the shorthands (an example of which would be the occurrence of
and,., shown in “B (and,., A)”. Each shorthand has a reading in Church’s
system, e.g. “A A B” is read “~(-=AV —B)” in Church’s system. B'is then
the formula which results from expanding the shorthands according to their
reading in Church’s system.

Our system is equivalent to Church’s in that I' F A iff &(T) kopera #(A).
We give now a sketch of the proof of this equivalence.

Assume ®(T) koo ¢(A). This means that there exists in Church’s
system a proof of #(A) from ®(T'). Such a proof is a sequence of formulas
Ap... A, where A, is #(A) and for every 7 (1 < ¢ < n) one of the following
conditions holds:

1. A; is a formula of ®(T).

2. A;is an alphabetic variant of one of Church’s axioms. We mean of
course one of the axioms 1, 2, 3, 4, 5%, 62, 9%, 10°#, or (Church’s
reading of) “p, = ¢, D po = ¢, ; an alphabetic variant of an axiom
is an axiom obtained by optionally renaming variables (free or bound)
occurring in the axiom.

3. A, follows from previous formulas by one of Church’s rules of inference
(rules I through VI), with the restriction that no variable free in the
hypotheses (T) can play the role of x, in rules IV or VL

There is no difficulty in showing, by induction on ¢, that
I'F A,
for every 7, 1 <4 < n. In particular I' - A,, i.e. T F ¢(A), and by (C.1),

'-A
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Conversely, assume I' F A. A proof of this in our system is a sequence
of pairs (T, A;) (1 < i < n) where (T, A,) is (I', A) and each pair follows
from zero or more previous ones by application of a natural-deduction rule
of inference. This time we show by induction that, for every ¢ (1 < i < n)
®(T;) Fomwrn #(A;). Again there is no particular difficulty in doing so. For
example, consider the case where (T;, A;) follows from (T';, A;) and (T'x, Ayx)
(j < tand k < i) by A-introduction. That is, A;is A, A Ay and T;is T'; UT,.
By the induction hypothesis there is a proof P; in Church’s system of ¢(A;)
from ®(T,) and a proof Py of ¢(A;) from ®(Tx). We want a proof of ¢(A;)
from ®(T;) = ®(T;) U (Ts). If A}, A}, A are the images by ¢ of A;, A,
Ay, we have

A; = “(Aporgo(=(-po V 7)) A AL

Let
Al = “o(~A)V-ALY.

In Church’s system there is a proof P of A} from A) and A;, since the
system is complete for the propositional calculus. And there is a proof P’
of A! from A! by conversion. The concatenation of P,, P, P and P’ would
be the desired proof of A! from &(I;), except that proof P, may apply rules
IV or VI to a variable which occurs free in the hypotheses of P, (or vice
versa). This problem can be solved by selectively renaming occurrences of
the offending variable in P, (or P,) before concatenating.
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Appendix D

Proof of the conservative
extension theorem

In this appendix V is an arbitrary F.O. vocabulary.

Given a non-empty set M, a V-F.O. assignment into M is a function
defined over the union of V and the set of the individual constants and
variables which takes the following kinds of values, or denotations:

1. An individual constant or variable denotes an element of M.
2. An n-ary function symbol denotes a function from M™ into M.

3. An n-ary predicate symbol denotes an n-ary relation over M, i.e. a
subset of M".

A V-F.O. interpretation is a pair (M, ¢) where M is a non-empty set (the
domain of the interpretation), and ¢ is a V-F.O. assignment into M.

The denotation (in the F.O. sense) of a V-F.O. term T in a V-F.O. in-
terpretation (M, ¢) is defined inductively as follows:

1. If s is an individual variable or constant its denotation is ¢(s).

2. If f is an n-ary function symbol of ¥ denoting a function f from M"
into M, and T;...T, are n V-F.O. terms with denotations t,...%,,
the denotation of the term “f T, ... T,” is f(z1,...,2,).

Whether or not a V-F.O. interpretation Z = (M, ¢) satisfies (in the F.O.
sense) a V-F.O. sentence S is defined inductively as follows:

207
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1. T and T’ being V-F.O. terms, 7 satisfies “T = T'” iff T and T' have
the same denotation in 7.

2. p being an n-ary predicate symbol, mapped by ¢ to the n-ary relation
r € M", and T;...T, being n terms with denotations u;...u, in Z,
7 satisfies “pTy ... T, iff (ug,...,u,) € 1.

3. No V-F.O. interpretation Z satisfies “L”.
4. S being a V-F.O. sentence, 7 satisfies “~S” iff it does not satisfy S.

5. § and S’ being V-F.O. sentences, 7 satisfies “S A §'” iff it satisfies
both S and §'; it satisfies “§ Vv §'” iff it satisfies either § or §'; it
satisfies “§ O 8'” iff it does not satisfy § or else it satisfies §'.

6. S being a V-F.O. sentence, and @ an individual variable, 7 satisfies
“Yx 8 iff, for every u € M, the interpretation 7' = (M, ¢'), where
¢' maps @ to u and otherwise coincides with ¢, satisfies §; it satisfies
“Io 87 iff, for some u € M, I’ defined as before satisfies S.

A V-F.O. interpretation 7 is a model (in the F.O. sense) of a V-F.O.
theory T iff it satisfies all the axioms of I'. T being a F.O. theory, P a
F.O. sentence, and V a F.O. vocabulary which includes all the predicate and
function symbols occurringin I’ and P, we say that P is a logical consequence
of T with respect to V, iff every V-F.O. interpretation which is a model of
I’ satisfies P. This, however, does not depend on V, so we shall simply say
that P is a logical consequence of T in the F.O. sense, written T' = | P.

Theorem D.1 (Soundness and completeness of F.O.L.) T being a V-
F.O. theory, and P a V-F.O. sentence, I hpo P iff T |5  P.

ProoF. Known [5, 40]. O

Definition D.1 Let T = (M, ¢) be a V-F.O. interpfeta.tz'on and J = (D, )
a H.O. interprelation as defined in section 2.8.4. We say that J is a H.O.
extension of Z iff D is the frame generated by M, J 1is a logical interpretation,
and:

1. For every individual constant or variable 8, ¢¥(8) = ¢(s).
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2. For every n-ary function symbol f, if ¢(f) is a function f: M™ — M,
then Y(f) is the function g € Dyay . an, X1 = ... = @n = 1, obtained by
currying f, i.e. such that, for every n-tuple (z1...2,) € M",

9(1’1)‘~(l’n) = f(mlw . '>'T'n)

3. For every n-ary predicate symbol p, if ¢(p) 1s a relation r C M", then
Y(p) is the function g € Doay.am, @1 = ... = 0, = L, such that, for
every n-tuple (z1...2,) € M™,

' i (zq...02n) €T
glz1).(2n) = { Fif (21...2,) &7
Lemma D.2 Every V-F.O. interpretation has a H.O. extension.

Proor. Let (M,4) be a V-F.O. interpretation, and let D be the frame
generated by M. Since M is not empty, it has an element v. We define
inductively a map o — p,, with domain the set of all types, and such that
Pa € D, for every type a, as follows:

1.p=v
2. p,=TF
3. pap : D+ D, is the constant function with value p,,.

Now we define an assignment 1 into D such that (D, ¢) is a H.O. extension
of (M, ¢), as follows:

1. ¢ maps every symbol in V and every individual constant or variable to
the value required by definition D.1.

2. 1 maps every description operator the,(oq) to the function f: Doy +—
D, which sends every function g : D, — {F, T} which takes the value
T for a single element u of D, to f(g) = u, and every other function
h: D, — {F, T} to f(h) = pa.

3. ¢ maps every other logical constant to its intended denotation in D.

4. 1 maps every other symbol, of type a, to pg.
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a

Lemma D.3 If S is a V-F.O. sentence, T a V-F.O. interpretation, and J
a H.O. extension of I, then T satisfies S off J does.

Proor. First, given Z = (M, ¢) and J = (D, ¢), we prove that every V-F.O.
term T has the same denotation in the two interpretations, by induction on
T.

1. If T is of the form “s”, where 8 is an individual constant or variable,
then the two denotations of T are ¢(s) and (s), which coincide, given
that J is a H.O. extension of Z.

9. Let T be of the form “fT; ... T,”, where f is an n-ary function symbol
and T, ...T, are V-F.O. terms which, by induction hypothesis, have
the same denotations u; ...u, under Z and J. Let ¢(f) be f: M"
M. Then, since J is a H.O. extension of Z, )(f) is the function g €
Diayoany @1 = ... = oy = 1, such that, for every n-tuple (21...2,) €
M™,

g(z1) ... (2,) = flz1,. .., 20).

Then, in particular

g(ur) . (un) = flua, . un),

and g(u;) ... (u,) is the H.O.-denotation of T in J, while f(u1,..., uy)
is the F.O.-denotation of T in 7.

Now, for every V-F.O. sentence § we prove the following by induction on
the definition of § as a V-F.O. sentence: for every V-F.O. interpretation 7
and every H.O. extension J of Z, 7 satisfies § iff 7 does.

1. Let § be of the form “T = T, where T and T' are V-F.O. terms.
Let 7 be any V-F.O. interpretation, and J any H.O. extension of Z.
We know that T and T’ have the same denotations u and ' in 7 as
in J. By definition, 7 satisfies S (in the F.O. sense) iff u = «/; but, as
observed in section 2.3.4, since J is a logical interpretation, it satisfies
S (in the H.O. sense) iff u = v/'.
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2. Let S be of the form p Ty ... T,, where p is an n-ary predicate and
T,... T, are V-F.O. terms. Let Z = (M, ¢) be any V-F.O. interpreta-
tion, and let J = (D, ) be any H.O. extension of Z. We know that
T;...T, have the same denotations u; ...u, in Z and J. Let ¢(p) be
r € M™ and ¥(p) be g € Douy .oy 01 = ... = ap = . I satisfles S iff
(u1,...,u,) € r. But, by definition of the notion of extension, this is
the case precisely when g(uy)...(u,) = T, i.e. when J satisfies S.

3. Let S be of the form “S'A8§"”, where §' and §” are V-F.O. sentences.
By induction hypothesis, for any V-F.O. interpretation 7, and any H.O.
extension J of Z, T satisfies § iff 7 does, and the same holds for s,
Let Z and 7 by any such interpretations. By definition, Z satisfies S iff
it satisfies both §' and §”. But, as observed in section 2.3.4, since 7 is
a logical interpretation, it satisfies § (in the H.O. sense) iff it satisfies
both §' and §”. Therefore 7 satisfies S iff J does.

The cases where S is of the form “1”, “=8", “§'v §"” or “§' > §"”
are treated similarly.

4. Let S be of the form “VY&S", where @ is an individual variable and
S’ is a V-F.O. sentence. Let 7 = (M, ) be a V-F.O. interpretation,
and let J = (D, 1) be a H.O. extension of Z. Let u be an element
of M. Let ¢' be the V-F.O. assignment into A{ which maps @ to u
and otherwise coincides with ¢, and let Z' be the V-F.O. interpretation
(M, ¢'). Let ¢/ be the assignment into the frame D which maps @ to u
and otherwise coincides with ¢, and let J' be the H.O. interpretation
(M,"). Clearly, J' is a H.O. extension of I'. Hence, by induction
hypothesis, Z' satisfies §' iff 7’ does.

7 satisfies § (in the F.O. sense) iff, for every u € M, the F.O. interpre-
tation Z' constructed from u as described above satisfies §'. Jsatisfies
S (in the H.O. sense) iff, for every u € M, the H.O. interpretation J'

constructed from u as described above satisfies §'. Therefore 7 satisfies
S in the F.O. sense iff 7 satisfies § in the H.O. sense.

The case where S is of the form “3zS'” is treated similarly.
O

PrOOF OF THEOREM 2.2, We already now that H.O.L. is an extension
of F.O.L. Conversely, assume I - P, where T' is a V-F.O. theory and P is
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a V-F.O. sentence. Let Z be a V-F.O. interpretation which is a model of T.
By lemma D.2, there exists a H.O. extension J of Z. By lemma D.3, J is
"a model of T' (in the H.O. sense). By the assumption and by the soundness
of H.O.L. (section 2.3.7), J satisfies P, in the H.O. sense. By lemma D.3
again, 7 satisfies P in the F.O. sense. Thus every V-F.O. interpretation
which is a model of T' satisfies P, i.e. ' |5  P. By the completeness of
F.O.L. (theorem D.1), ' K.p 0 P. O
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