Technical Report A

Number 224

Computer Laboratory

Generalised probabilistic LR parsing
of natural language (corpora)
with unification-based grammars

Ted Briscoe, John Carroll

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/


https://www.cl.cam.ac.uk/

© Ted Briscoe, John Carroll

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986


https://www.cl.cam.ac.uk/techreports/

Generalised Probabilistic LR Parsing
of Natural Language (Corpora)
with Unification-based Grammars

Ted Briscoe & John Carroll
(ejb / jac @cl.cam.ac.uk)

University of Cambridge, Computer Laboratory
Pembroke Street, Cambridge, CB2 3QG, UK

Abstract

We describe work towards the construction of a very wide-coverage probabilistic
parsing system for natural language (NL), based on LR parsing techniques. The
system is intended to rank the large number of syntactic analyses produced by
NL grammars according to the frequency of occurrence of the individual rules de-
ployed in each analysis. We discuss a fully automatic procedure for constructing
an LR parse table from a unification-based grammar formalism, and consider the
suitability of alternative LALR(1) parse table construction methods for large gram-
mars. The parse table is used as the basis for two parsers; a user-driven interactive
system which provides a computationally tractable and labour-efficient method of
supervised learning of the statistical information required to drive the probabilistic
parser. The latter is constructed by associating probabilities with the LR parse
table directly. This technique is superior to parsers based on probabilistic lexical
tagging or probabilistic context-free grammar because it allows for a more context
dependent probabilistic language model, as well as use of a more linguistically ad-
equate grammar formalism. We compare the performance of an optimised variant
of Tomita’s (1987) generalised LR parsing algorithm to an (efficiently indexed and
optimised) chart parser. We report promising results of a pilot study training on 151
noun definitions from the Longman Dictionary of Contemporary English (LDOCE)
and retesting on these plus a further 54 definitions. Finally, we discuss limitations
of the current system and possible extensions to deal with lexical (syntactic and
semantic) frequency of occurrence. '




Contents

Wide-coverage Parsing of Natural Language ‘ : 3

1
2 Probabilistic Approaches to Parsing 4
3 LR i)arsing and Natural Language Processing | 9
4 LR parsing within a Unification-based Grammar Framework 12
5 Construction of LR Parse Tables for Large NL Grammars 17
6 Interactive Incremental Deterministic Parsing 20
7 Non-deterministic Breadth-first LR Parsing with Unification Gram-
mars , 26
8 LR Parsing with Probabilistic Disambiguation 27
9 Parsing LDOCE Noun Definitions 32
10 Conclusions and Further Work 36



1 Wide-coverage Parsing of Natural Language

The task of syntactically analysing substantial corpora of naturally-occurring text

and transcribed speech has become a focus of recent work. Analysed corpora would

be of great benefit in the gathering of statistical data regarding language use, for
example to train speech recognition devices, in more general linguistic research,
and as a first step towards robust wide-coverage semantic interpetation. The Alvey

Natural Language Tools (ANLT) system is a wide-coverage lexical, morphological

and syntactic analysis system for English (e.g. Briscoe et al., 1987). Previous

work has demonstrated that the ANLT system is, in principle, able to assign the -
correct parse to a high proportion of English noun phrases drawn from a variety
of corpora. The goal of the work reported here is to develop a practical parser
capable of returning a single most likely parse (from the usually large number of
possibilities) for material drawn from a specific corpora on the basis of minimal

(supervised) tra.mxng and manual modification.

The first issue in corpus analysis to consider is what the analysis w1ll be used for

and what constraints this places on its form. The literature contains a variety of pro-

- posals, ranging from part-of-speech tagging to assignment of a unique, sophisticated
syntactic analysis. Our eventual goal is to recover a semantically and pragmati-
cally appropriate syntactic analysis capable of supporting semantic interpretation.
Two stringent requirements follow immediately: firstly, the analyses assigned must -
determinately represent the syntactic relations which hold between all constituents
in the input; secondly, they must be drawn from an a priori defined, well-formed
set of possible syntactic analyses (such as the set defined by a generative grammar).
Otherwise semantic interpretation of the resultant analyses cannot be guaranteed to
be (structurally) unambiguous and the semantic operations defined (over syntactic
configurations) cannot be guaranteed to match and yield an interpretation. These
requirements immediately suggest that approaches which recover only lexical ‘tags’

~or a syntactic analysis which is the ‘closest fit’ to some previously defined set of
possible analyses, are inadequate (taken alone).

Pioneering approaches to corpus analysis proceeded on the assumption that
computationally-tractable generative grammars of sufficiently general coverage could
not be developed (see papers in Garside et al., 1987). However, the development of

‘wide-coverage declarative and computationally tractable grammars makes this as-
sumption questionable. For example, the ANLT grammar and lexicon (Grover et al.,
1989; Carroll & Grover, 1989) consists of an English lexicon of 35,000 morphemes
and a ‘compiled’ fixed-arity term unification grammar containing 1346 phrase struc-
ture rules. Taylor et al. (1989) demonstrate that this grammar is capable of as-
signing the correct analysis to 96.8% of a corpus of 10,000 noun phrases extracted
(without regard for their internal form) from a variety of corpora. However, although

~ Taylor et al. show that the ANLT grammar has very wide coverage, they do not
offer solutions to the problems of 1) tuning a grammar to a particular corpus or sub-

-language 2) selecting the correct analysis from the set licensed by the grammar and
3) providing reliable analyses of input outside the coverage of the grammar. Firstly,
it is clear that vocabulary, idiom and conventionalised constructions used in, say,
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legal language and dictionary definitions will differ both in terms of the range and
frequency of words and constructions deployed. Secondly, Church & Patil (1982)
demonstrate that for a realistic grammar parsing realistic input, the set of possible
analyses licensed by the grammar can be in the thousands. Finally, it is extremely
unlikely that any generative grammar will ever be capable of correctly analysing all
naturally occurring input (if only because of the synchronic idealisation implicit in
the assumption that the set of grammatical sentences of a language is well-formed.)

Solutions to these three problems would make syntactic analysis of corpora fea-
sible. In this paper, we describe our approach to the first and second problems and
- make some preliminary remarks concerning the third (far harder) problem. Our .
approach to grammar tuning is based on a semi-automatic parsing phase during
which modifications to the grammar are made manually and statistical informa-
tion concerning the frequency of use of grammar rules is acquired. Using this sta-
tistical information and modified grammar, a breadth-first probabilistic parser is
constructed.  The latter is capable of ranking the possible parses identified by the
grammar in a useful (and efficient) manner. However, (unseen) sentences whose
correct analysis is outside the coverage of the grammar remain a problem. The fea-
sibility and usefulness of our approach has been investigated in a preliminary way
by analysing a small corpus of noun definitions drawn from the Longman Dictio-
nary of Contemporary English (LDOCE) (Proctor, 1978). This corpus was chosen
because the vocabulary employed is restricted (to approximately 2000 morphemes),
average definition length is about 10 words (with a maximum of around 30), and
each definition is independent, allowing us to ignore phenomena such as ellipsis. In
addition, the language of definitions represents a recognisable sublanguage, allow-
ing us to explore the task of specialising a general purpose grammar. The results
reported below suggest that probabilistic information concerning the frequency of
occurrence of syntactic rules correlates in a useful (though not absolute) way with
the semantically and pragmatically most plausible analysis.

2 Probabilistic Approaches to Parsing

Probabilistic approaches to syntactic analysis have mostly involved lexical ‘tagging’
with extended part-of-speech labels, or parsing using probabilistic context-free gram-
mars, both approaches based on first-order Markov modelling. Supervised and un-
-supervised learning techniques have been investigated. In the former case, an unam-
biguous training corpus must be created which is used to derive the probabilities. In
the latter, probabilities are acquired automatically using some version of the inside-
outside algorithm (e.g. Baker, 1982) and repeated re-estimation of probabilities
from an ambiguous, unanalysed corpus. Supervised learning is likely to yield better
results but requires manual analysis of a training corpus. Unsupervised learning
using the inside-outside algorithm will converge, but not necessarily on the optimal
probabilities. ' v '

- Stochastic first-order Markov models have been used to tag words in corpora with
lexical syntactic categories appropriate to their grammatical context (e.g. De Rose,



1988). Each word is associated with one or more categories and a matrix of tran-
sition probabilities between two (bigrams) or sometimes three categories (trigrams)
is used to find the most probable path through a sequence of words associated with
more than one category. This technique has been shown to yield accuracy rates of
95% or better when trained and tested on the same corpus, and several researchers
have argued that it represents a useful first stage in the production of a complete
parse of corpus material in order to reduce lexical ambiguity (Garside & Leech, 1985;
Hindle, 1989). To investigate the utility of lexical tagging, we applied this technique
to our corpus of LDOCE noun definitions, using a bigram model with 22 categories.
trained on a modified version of the tagged Lancaster Oslo/Bergen (LOB) corpus
(Garside, 1987). Manual inspection of 94 tagged definitions revealed a success rate
(per word) of 92.5%; that is, 67 errors. However, the probability of an error oc-
curring in a definition of 9 or more words remains greater than 50%, and out of 11
- definitions containing 20 or more words only 2 were correctly tagged throughout.
Errors were quite systematic and tended to occur in constructions involving syntac-
tic dependencies beyond the ‘range’ of the bigrams, such as coordination, preposed
phrases and so forth, reflecting the inadequacy of finite-state models of natural lan-
guage syntax (Chomsky, 1957). The majority of errors observed are local syntactic
ambiguities which would be rejected by a parser computing globally coherent anal--
yses. For example, in the definition of absolution given in (2-1) that is incorrectly
tagged as NP, not COMP, but there is no overall consistent syntactic analysis of
(2-1) using this tag.

(2-1) the DET. words N_ saxd_V_ by P. a DET. priest N in.P_ a_DET.
church N_service N_ when PPRO_ he_NP. declares -V_that_NP_the DET_
people.N_ are AUX_ forgiven_V_

The same tagging system, but untrained, was applied to the same corpus and
repeated re-estimation was used until the system converged. In this unsupervised
learning mode, manual inspection revealed a success rate (per word) of about 80%—
a very significant decrease in performance over the case where unambiguous data
was utilised during a supervised learning phase. Thus, tagging requires manual
creation of a training corpus to achieve useful levels of performance. In addition,
its usefulness as a first stage in parsing is further reduced by the fact that lexical
ambiguity in the ANLT lexicon (and others like it) is largely the result of different
subcategorisation possibilities within each major category, and not of part-of-speech
ambiguity per se; for example, the verb believe has eight basic entries representing
subcategorisation possibilities. For these reasons, we decided to explore approaches
‘which attempt a full syntactic analysis of untagged material.

Fujisaki et al. (1989) describe a corpus analysis experiment using a probabilis-
tic context-free grammar (CF G). They trained a CFG containing 2118 rules on a
corpus of 4206 sentences. The grammar was initially converted into Chomsky Nor-
mal Form and then Griebach Normal Form, increasing the number of productions
to 7550. These transformations simplify the statement of the training and pars-
ing algorithms. In addition, since the definition of Griebach Normal Form requires
that each production contain a terminal category as its leftmost daughter, and since
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Fujisaki et al. appear to treat lexemes as terminal categories, this means that the
grammar represents substantial lexical information too. For example, two possible
productions might be VP — believe Sfin and VP — believe NP; associating different
probabilities with these rules will allow the representation of the relative probability
of believe subcategorising for a sentential complement or noun phrase object in the
probabilistic model. The training process involved automatically assigning proba-
bilities to each CF rule on the basis of their frequency of occurrence in analyses. As
the training procedure was unsupervised, the data concerning frequency of use was
drawn from both correct and incorrect parses of the corpus. The inside-outside algo-
rithm was used to derive successive approximations for the rule probabilities which -
take into account the probabilities of the different parses of ambiguous sentences in -
the corpus. The intuitive idea is that if probabilities are continuously re-estimated
" in a manner which increases the overall probability that the set of sentences in the
training corpus were generated (regardless of syntactic analysis) by the grammar,
this will assign probabilities to individual rules which accurately reflect their fre- .
quency of use in the correct analyses of each sentence. This re-estimation process
is guaranteed to converge (Baker, 1982), in the sense that the probabilities assigned
to rules will stabilise. Fujisaki et al. suggest that the stable probabilities will model
semantic and pragmatic constraints in the corpus, but this will only be so if these
correlate with the frequency of rules (and word forms) in correct analyses, and also if
the ‘noise’ in the training data created by the incorrect parses is effectively factored
‘out. Whether this is so will depend on the number of ‘false positive’ examples, with
only incorrect analyses, the degree of hetrogeneity in the training corpus, and so
forth. Fujisaki et al. report some results based on testing the parser on the corpus
used for training. In 72 out of 84 sentences examined, the most probable analysis
was also the correct analysis. 6 of the remainder were false positives and did not
receive a correct parse, whilst the other 6 did but it was not the most probable. A
success rate (per sentence) of 85% is apparently impressive, but it is difficult to eval-
uate properly in the absence of full details concerning the nature of the corpus. For
example, if the corpus contains many simple and similar constructions, unsupervised
training is more likely to converge quickly on a useful set of probabilities.
Sharman et al. (1990) conducted a similar experiment with a grammar in ID/LP
format (Gazdar et al., 1985, Sharman, 1989). ID/LP grammars separate the two
types of information encoded in CF rules—immediate dominance and immediate
precedence—into two rule types which together define (a subset of) the CFLs. This
allows probabilities concerning dominance, associated with ID rules, to be factored
out from those concerning precedence, associated with LP rules. In this experiment,
a supervised training regime was employed. A grammar containing 100 terminals
and 16 non-terminals and initial probabilities based on the frequency of ID and LP
relations was extracted from a manually parsed corpus of about 1 million words of
text. The resulting probabilistic ID/LP grammar was used to parse 42 sentences of
30 words or less drawn from the same corpus. In addition, lexical syntactic probabil-
ities were integrated with the probability of the ID/LP relations to rank parses. 18
of the parses were identical to the original manual analyses, whilst a further 19 were
‘similar’, yielding a success rate of 88%. What is noticeable about this experiment is
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that the results are no better than Fujisaki et al.’s unsupervised learning experiment
discussed above, despite the use of supervised training and a more sophisticated lan-
guage model. It is likely that these differences derive from the corpus material used
for training and testing, and that the results reported by Fujisaki et al. will not be
achieved with most corpora. The search space involved in parsing with probabilistic
CFGs will be much greater, in general, than that involved in lexical tagging. We
demonstrated above that there is a considerable advantage to supervised as opposed
to unsupervised tagging on an identical corpus with identical category sets. It would
be surprising if this advantage were not even more pronounced in the case of the
more complex problem of parsing. However, it is also possible that integrating infor-
mation about lexemes directly into the grammar, and hence probabilistic model, as
Fujisaki et al. did, improved performance considerably over the use of probabilities
reflecting only the relative likelihood of a lexical (extended) part-of-speech tag, as in
Sharman et al. It will only be possible to draw definite conclusions when researchers

report more details concerning their (training) corpora (as we do in the appendix).
- There are several inherent problems with probabilistic CFG (including ID/LP)
based systems, whether they are trained in a supervised or unsupervised mode.
Firstly_, although CFG is an adequate model of the majority of constructions occur-
ring in natural language (Gazdar & Mellish, 1989), it is clear that wide-coverage
CFGs will need to be very large indeed, and this will lead to difficulties of (manual)
- development of consistent grammars and, possibly, to computational intractability
at parse time (particularly during the already computationally expensive training
phase). Secondly, associating probabilities with CF rules means that information
about the probability of a rule applying at a particular point in a parse deriva-
tion is lost. This leads to complications distinguishing the probability of different
derivations when the same rule can be applied several times in more than one way.
Grammar 1 below is an example of a probabilistic CFG, in which each production
is associated with a probability and the probabilities of all rules expandmg a given
non-terrmnal category sum to one.

Grammar 1
1) T —S (1.0)
) S—=NPVP (1.0)
" 3) VP — Vir NP (.4)
; 4) VP — Vintr  (.6)
(2-2) 5) NP — ProNP (.4)
6) NP —- Det N (.3)
n NP — NP PP (.3)
8) N—-NN (.3)
9) . PP - PNP (1.0)
10) N — N@ (7)

The probability of a pérticular parse is the product of the probabilities of each
rule used in the derivation. Thus the probability of parse a) in Figure 1 is .0336. The
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Figure 1: Probabilistic Context-free Derivations

probability of parse b) or c) must be identical though (.09), because the same rule
~ is applied twice in each case. Similarly, the probability of d) and e) is also identical
(.09) for essentially the same reason. However, these rules are natural treatments of
noun compounding and prepositional phrase (PP) attachment in English, and the
different derivations correlate with different interpretations. For example, b) would
be an appropriate analysis for toy coffee grinder, whilst c) would be appropriate
for cat food tin, and each of d) and e) yields one of the two possible interpreta-
tions of the man in the park with the telescope. We want to keep these structural
configurations probabilistically distinct in case there are structurally conditioned
differences in their frequency of occurrence; as would be predicted, for example, by
the theory of parsing strategies (e.g. Frazier, 1988). Fujisaki et al. (1989) pro-
pose a rather inelegant solution for the noun compound case which involves creating
5582 instances of 4 morphosyntactically identical rules for classes of word forms -
with distinct bracketing behaviour in noun-noun compounds. However, we would -
like to avoid enlarging the grammar and eventually to integrate probabilistic lexical
information with probabilistic structural information in a more modular fashion.
Probabilistic CFGs also will not model the context dependence of rule use; for
example, a NP is more likely to be expanded as a pronoun in subject position than
elsewhere (e.g. Magerman & Marcus, 1991b) but only one. global probability can
be associated with the relevant CF production. Thus the probabilistic CFG model
predicts (incorrectly) that a) and f) will have the same probability of occurrence.
These considerations suggest that we need a technique which allows use of a more
adequate grammatical formalism than CFG and a more context dependent prob-
abilistic language model. Our approach is to use the LR parsing technique as a
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‘natural way to obtain a finite-state representation of a non finite-state grammar,
and in section 8 we demonstrate that LR parse tables do provide an appropriate
amount of contextual information to solve the problems described above.

3 LR parsing and Natural Language Processing

An LR parser (Aho, Sethi & Ullman 1986) is a shift-reduce parser guided by a parse
table indicating what action should be taken next. Although originally developed
for use in the syntax analysis phase of programming language compilers (where the
grammar of the language will be unambiguous), in the past few years LR parsing
has been advocated as a suitable technology for NL parsing systems (which use
ambiguous grammars). Tomita (1987) describes an efficient breadth-first algorithm
for non-deterministic parsing with an ambiguous context-free grammar. Tomita’s
approach uses standard LR parse table precompilation techniques but generalises the
- shift-reduce parser to operate with a ‘graph-structured’ stack and find all possible
analyses defined by the grammar for some input. That is, he allows the parse table to
contain conflicting actions (such as shift or reduce, or reduce with distinct rules) in
a single state and thus define a non-deterministic finite-state automaton. Whenever
the parser reaches a state in which there is a parse action conflict, the stack divides
and both analyses are pursued, conceptually in parallel. The graph-structured stack
is similar to a chart (e.g. Gazdar & Mellish, 1989) in that it is intended to be
an efficient data structure in which shared sub-analyses are represented only once.
However, generalised LR parsing should be more efficient than standard variants of
chart parsing because the use of an LR parse table ensures that rule invocation is
as constrained as possible given known automatic precompilation techniques (e.g.
‘Tomita, 1987). :

In Flgure 2 we show the LALR(I) parse table for Gramma.r 1 above. This
grammar is ambiguous, and so the parse table contains action conflicts (in states 6
and 9). The ambiguities correspond to whether right- or left-branching analyses of
PP attachment or noun compounds are produced. A breadth-first generalised LR
parser will produce all possible analyses for the input by generalising the standard
stack based LR parsing algorithm (e.g. Aho et al., 1986) to a graph-structured stack
- based algorithm in which all paths through the parse table are explored in the event
of an action conflict.

The table consists of two parts: an action table and a goto table. The easiest
way to understand the table’s function is to examine a simple derivation. In Figure 3
we give the derivation for a sentence such as he loves her consisting of a pronoun
(ProNP), transitive verb (Vt) and a second pronoun. Since there is no ambiguity
in the analysis, the derivation can be represented as a single stack (with the top
. element on the right) and the lookahead item in parentheses to its right.

' The parser begins in state zero with an otherwise empty stack and the lookahead
~ item being the terminal symbol associated with the first word of the input. The parse .
table entry for state zero with lookahead ProNP instructs the parser to shift and
move to state two. This causes ProNP to be pushed onto the parse stack followed
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0) 0 - (ProNP)

1) 0 ProNP 2 (Vt)
2) ONP (Vt)
3) ONPT (Vt)
4)° ONP7Vtil (ProNP)
5) ONP7Vt1l ProNP 2 (§)
6) ONPT7Vt1l NP (3)
7) ONP7Vt1ll NP 12 (%)
8) ONPT7VP (%)
9) ONPT7VPI14 (3)
10) 0S ‘ ($)
11) 0S1 v ()
12) 0T (8)

13) 0T 15 - ($)
Figure 3: Parse derivation for he loves her

by the new state number and the lookahead item to be set to the terminal symbol
associated with the next word in the input. In state two with lookahead Vt the
~ table instructs the parser to reduce with rule 5 (NP — ProNP), so the current
state is popped and the topmost category is replaced with the mother category
of rule 5. The parser next consults the goto part of the table to discover which
~ state it should move to when in state zero with the non-terminal NP. The goto
table instructs the parser to move to state seven so this state is pushed onto the
stack. Now several shift actions occur (exactly as before) until the end of sentence
marker ($) is the lookahead item. In step 6, the second pronoun is reduced to NP,
but this time the goto table instructs the parser to move to state 12 (from state
'11). In step 8, another reduction occurs from state 12 using rule 3 (VP — Vt
NP), but this time two terminals on the stack are popped and replaced with VP
because the rule specifies two daughters. Two further reductions bring the parser
~ to the accept configuration and the parse halts successfully. Blank entries in the
table correspond to error states; if the parser reaches one of these states it halts
and returns a message indicating that the input is not analysable. In the case
- where more than one analysis is possible, it is conceptually easiest to think of the
parse stack being copied and two separate analyses being pursued from thereon;
however, this conceptually straightforward approach would lead to a very meﬁiaent
implementation (hence the graph-structured stack).
~ In this paper we describe how we have extended previous work on LR parsmg of
NL; firstly, by defining an automatic technique for deriving a LR parse table from a.
unification-based grammar, secondly, by developing a probabilistic version of gener-
alised LR parsing in which probabilities derived from a training phase are associated
directly with parse actions and/or state transitions in the LR parse table and these
probabilities are used to rank distinct parse derivations, and thirdly, by developing
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a semi-automatic LR based parser for constructihg a disambiguated training corpus.
In each case, we argue that LR techniques are the most appropriate.

4 LR parsing within a Uniﬁcation-based' Gram-
mar Framework

- The heart of the LR parsing technique is the parse table construction algorithm
which is the most complex and computationally expensive aspect of LR parsing.
‘Much of the attraction of the technique stems from the fact that the real work takes
place in a precompilation phase and the run time behaviour of the resulting parser
is relatively simple and efficient. An LR parser finds the ‘rightmost derivation in
~reverse’, for a given string and CF grammar. The precompilation process results
in a parser control mechanism which enables the parser to identify the ‘handle’, or
appropriate substring in the input to reduce, and the appropriate rule of the gram-
mar with which to perform the reduction. The control information is standardly
encoded as a parse table with rows representing parse states and columns terminal
and non-terminal symbols of the grammar (see Figure 2 above). This representa-

tion defines a finite state automaton. If the grammar is an unambiguous CFG, the
" automaton will be deterministic, however, the standard algorithm for parse table
construction also builds non-deterministic automata containing action conflicts for
ambiguous CFGs. The parse table construction algorithm involves 3 steps: defining
FIRST and FOLLOW lists for the grammar (as for Earley’s algorithm), computing
a set of item sets containing dotted rules which represent the amount of input ‘con-
sumed’, and computing the transition functions between item sets. The parse table
itself is a transformation of the resulting finite-state network. The relevant algo-
rithms are described in Aho et al. (1986:215f), Chapman (1987) and elsewhere. An

introduction to and evaluation of LR parsing for NL is given in Briscoe (1987:107f).

Tomita (1987) describes a system for non-deterministic LR parsing of context-
free grammars consisting of atomic categories, in which each CF production may be
augmented with a set of tests (which perform similar types of operation available in

a unification grammar). At parse time, whenever a sequence of constituents is about

to be reduced into a higher-level constituent using a production, the augmentation
associated with the production is invoked to check syntactic or semantic constraints
- such as agreement, pass attribute values between constituents, and construct a rep-
resentation of the higher-level constituent. The parser is driven by an LR parse
table; however, the table is constructed solely from the CF portion of the grammar,
and so none of the extra information embodied in the augmentations is taken into
account during its construction. Thus the predictive power of the parser to select
the appropriate rule given a specific parse history is limited to the CF portion of the

grammar which must be defined manually by the grammar writer. This requirement

places a greater load on the grammar writer and is inconsistent with most recent
unification-based grammar formalisms, which represent grammatical categories en-
tirely as feature bundles (e.g. Briscoe et al., 1987; Pollard & Sag, 1987; Zeevat et
al., 1987). In addition, it violates the principle that grammatical formalisms should
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be declarative and defined independently of parsing procedure, since different defi-
nitions of the CF portion of the grammar will, at least, effect the efficiency of the
resulting parser and might, in principle, lead to non-termination on certain inputs
in a manner similar to that described by Shieber (1985).

In what follows, we will assume that the unification-based grammars we are con-
sidering are represented in the ANLT object grammar formalism (e.g. Briscoe et
al., 1987). This formalism is a notational variant of Definite Clause Grammar (e.g.
Perexra & Warren, 1980) in which rules consist of a mother category and one or
more daughter categories, defining possible phrase structure configurations. Cat-
egories consist of sets of feature name-value pairs, with the possibility of variable
values, which may be bound within a rule, and of category-valued features. Cat-
egories are combined using fixed-arity term unification (Prolog-style). The results
and techniques we report below should generalise to many other unification-based

- formalisms. An example of a possible ANLT object grammar rule is given in (4-1).

N-y— N+,  [N-

V 4+, V- V4,
BAR 2, BAR2, BAR 1,
PER x, PERx,  PERx,
PLUy, PLUy, PLU y,
VFM z] CSE Nom] VFM z]

(4-1)

This rule provides a (simple) analysis of the structure of English clauses, corre-
sponding to S — NP VP, using a feature system based loosely on that of GPSG
(Gazdar et al., 1985). In Tomita’s LR parsing framework, each such rule must be
manually converted into a rule of the form shown in (4-2) in which some subpart of

- each category has been replaced by an atomic symbol.

Vb —: Nn Vb
" [BAR?2, [BAR2, [BARI,
(4-2) PER x, PERGx, PER x,
PLUy, PLUy, PLU y,
VFM z] - CSE Nom] VFM gz

However, it is not obvious which features should be so replaced—why not include
BAR and CSE? It will be difficult for the grammar writer to make such substitutions
in a consistent way, and still more difficult to make them in an optimal way for
the purposes of LR parsing, since both steps involve consideration and comparison

‘of all the categories mentioned in each rule of the grammar. Constructing the LR

parse table directly and automatically from a unification grammar would avoid these
drawbacks. In this case, the LR parse table would be based on complex categories,
with unification of complex categories taking the place of equality of atomic ones
in the standard LR parse table construction algorithm (Osborne, 1990). However,
this approach is computationally prohibitively expensive: Osborne (1990:26) reports
that his implementation (in HP Common Lisp on a Hewlett Packard 9000/350) takes
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almost 24 hours to construct the LR(O) states for a grammar of just 75 productxons
In addition, this approach will be subject to the same problems with non-termination
which Shieber (1985) identifies with respect to Earley’s algorithm, for grammars
which employ features in recursive, cyclic and other complex ways. '

Our approach, described below, not only extracts unification information from
complex categories, but is also safe from inconsistency and non-termination. We
start with a unification grammar and automatically construct a CF ‘backbone’ of
rules containing categories with atomic names and an associated ‘residue’ of feature
name-value pairs. Each backbone grammar rule is generally in direct one-to-one
correspondence with a single unification grammar rule. The LR parse table is then
constructed from the CF backbone grammar. This approach results in a computa-
tionally tractable parse table construction algorithm for realistic sized grammars. '
The parser is driven by this table, but in addition when reducing a sequence of
constituents the parser performs the unifications specified in the relevant unifica-
tion grammar rule to form the category representing the higher-level constituent,
and the derivation fails if one of the unifications fails. Even though a unlﬁcatlon :
grammar will be, at best, equivalent to a very large (and possibly infinite) set of
atomic-category CF productlons, in practice we have obtained efficient LR parsers
from backbone grammars containing only about 30% more productions than the
original unification grammar. The construction method ensures that for any given
grammar the CF backbone captures the maximal amount of information available
in the categories defined which can be represented in a CFG. Thus the construc-
tion method guarantees that the resultmg LR parser will terminate and w1ll be as
predictive as the source grammar in principle allows.

Building the backbone grammar is a two-stage process:

1. Compute the largest rnaxunally specific set (in terms of subsumption) of dis-
- joint categories covering the whole grammar and ass1gn to each category a
distinct atomic category name. That is:

initialise disjoint-set to be empty;
for each category C in grammar :
let disjoint-merge be catagorles in d13301nt set which unify with C;
if disjoint-merge is empty
then add C to disjoint-set;
else replace all elements of disjoint-merge in disjoint-set
with the single most specific category which unifies with C
and all categories in disjoint-merge;
assign a distinct name to each category in disjoint-set.

2. For each unification grammar rule, create a backbone grammar rule containing
atomic categories, each atomic category being the name assigned to the cate-
gory in the disjoint category set which unifies with the corresponding category
in the unification grammar rule:

for each rule R of the form C1 --> C2 ... Cn in unification grammar
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add a rule B of the form Bl --> B2 ... Bn to backbone grammar
where Bi is the name assigned to the (single) category in
disjoint-set which unifies with Bi, for i=i, n.

Algorithms for creating LR parse tables assume that the terminal vocabulary
of the grammar is distinct from the non-terminal one, so the procedure described
~ above will not deal properly with a unification grammar rule whose mother category
is assumed elsewhere in the grammar to be a lexical category. The modification we
make is to automatically associate two different atomic categories, one terminal and
one non-terminal, with such categories, and to augment the backbone grammar with
a unary rule expandmg the non-terminal category to the terminal.

-Two other aspects of the ANLT grammar formalism require further minor elab-
orations to the basic algorithm: firstly, a rule may introduce a gap by including the
feature specification [NULL +] on the gapped daughter—for each such daughter an
extra rule is added to the backbone grammar expanding the gap category to the null
string; secondly, the formalism allows Kleene star and plus operators (Gazdar et al.,
1985)—in the ANLT grammar these operators are utilised in rules for coordination.
Rules containing Kleene star daughters are expanded out into a rule without the
daughter and one with the daughter as a Kleene plus. A new non-terminal category
is created for each distinct Kleene plus category and two extra rules are added to
the backbone grammar. One (unary) rule expands the new category as the original
category, and the other (binary) rule expands the new category to the original cate-
~ gory followed by the new one. Without further modifications this would engender a
right-branching binary tree structure, rather than the intended flat sequence of cat-
egories, but a parser can easily be modified to ﬂatten out the tree structure during
processing. For exa,mple, in the rule

N2 — N2[CO_NJ EITHER], N2[CONJ OR}+.

licensing noun phrases of the form either kim or lee or sandy, the second daughter
may be repeated an indefinite number of times. Corresponding to this unification

- grammar rule there would be three backbone grammar rules, forming for this noun

phrase the (unflattened) structure in Figure 4. Grammars written in other, more
low-level unification grammar formalisms, such as PATR-II (Shieber, 1984), com-
monly employ treatments of the type just described to deal with phenomena such
as gapping, coordination and compounding. However, this method both allows the
‘grammar writer to continue to use the full facilities of the ANLT formalism, and
allows the algorithmic derivation of an appropriate backbone grammar to support
LR parsing.

The major task of the backbone ‘grammar is to encode sufficient information
(in the atomic categoried CF rules) from the unification grammar to constrain the
application of the latter’s rules at parse time. The nearly one-to-one mapping of uni-
fication grammar rules to backbone grammar rules described above works quite well
for the ANLT grammar, with a single exception which creates spurious shift-reduce
conflicts during parsing resulting in an unacceptable degradation in performance.
In the ANLT grammar three very general rules are used to form nominal, adjectival
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N2 -

N2-OR+
either kim N2-OR N2-OR+
% N2-OR
or sandy

Figure 4: Backbone tree for rule with a Kleene plus daughter

and prepositional phrases following a conjunction; the categories in these rules lead
~ to otherwise disjoint categories for conjuncts being merged, giving rise to a set of

overly general backbone grammar rules for co-ordination. For example, the rule in -
the ANLT grammar for forming a noun phrase conjunct introduced by a conjunction

is
* N2[CONJ @con] ~» [SUBCAT @con, CONJN +], H2.

The variable value for the CONJ feature in the mother means that all N2 cate-
gories specified for CONJ (e.g. N2[CONJ EITHER], N2[CONJ NULL])) are gener-
alised to the same category. This results in the backbone rules, when parsing either
kim or lee helps, being unable, after forming a N2[CONJ EITHER)] for either kim,
to discriminate between the alternatives of preparing to iterate this constituent (as
in the example kim, lee or sandy helps where kim would be N2[CONJ NULL)), or
shifting the next word or to start a new constituent. We solve this problem by
declaring CONJ to be a feature which may not have a variable value in an element
of the disjoint category set. This forces the system to expand out each unification
~ grammar rule which has a category containing CONJ with a variable value into a
number of rules each of which is fully-specified for CONJ, and to create backbone
rules for each of these. Although there are of the order of fifty possible values for

SUBCAT, since the value of SUBCAT is bound to that of CONJ in these rules

and there are only eight possible values for CONJ in the grammar (NULL, BOTH,
NEITHER, EITHER, AND, OR, NOR and BUT ) the general rule for forming a
nominal conjunct given above, for example, ends up being represented by a set of
eight specialised backbone grammar rules. : :
Similar types of inefficient behaviour are likely to occur with grammars whxch
utilise complex patterns of feature value propagation; inference on the patterns of
possible unification of these values and appropriate expanding-out of the categories
“concerned would be necessary for an LR parser to work effectively. We have exper-
imented with a grammar which uses ‘gap threading’ (Pereira & Shieber, 1987), and
in this case inference on the values of the features used for threading the gaps would
be necessary to prevent the parser considering analyses containing infinite sequences
~of gaps. This and other areas of complexity in unification-based formalisms need
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further investigation before we can claim to have developed a system capable of pro-
ducing an optimal LR parse table for any unification-based grammar. In particular,
declaring certain category-valued features so that they cannot take variable val-
“ues may lead to non-termination in the backbone grammar construction algorithm.
However, it should be possible to restrict the set of features which are considered
~ in category-valued features in an analogous way to Shieber’s (1985) restrictors for
Earley’s algorithm, so that an optirnal parse table can still be constructed.

5 Construction of LR Parse Tables for Large NL
Grammars

- The backbone grammar generated from the ANLT grammar is large: it contains
575 distinct categories and more than 1750 productions. We therefore chose to
construct an LALR parse table in preference to a canonical LR table, since the LALR
table for a grammar is typically much smaller: Aho, Sethi & Ullman (1986:236)
claim an order of magnitude difference for programming language grammars. For a
given grammar, an SLR table always has the same number of states as its LALR
counterpart, but the latter handles a slightly larger range of grammars without
generating action conflicts. We take the number of symbols of lookahead to be 1,
again to control the size of the parse table, since the number of states in the table -
is doubly exponential on the length of lookahead (Chapman, 1987). In fact, most
parser-generators for programming languages also use LALR(I) tables; for example,
Johnson (1975), Grosch (1990).

In the LR parsing literature there are essentza.lly two approaches to constructlng
LALR(1) parse tables. One approach is graph-based (DeRemer & Pennello 1982), -
transforming the parse table construction problem to a set of well-known directed
graph problems, which in turn are solvable by efficient algorithms. Unfortunately
this approach does not work for grammars which are not LR(k) for any k (DeRemer
& Pennello 1982:633), for example ambiguous grammars. We therefore broadly
follow the alternative approach of Aho, Sethi & Ullman (1986), but with a number
of optimisations: ,

1. Constructing the LR(0) sets of items: we first compute LR(0) states containing

- kernel items (the item [S’ — . S], where S’ is the start symbol, and all items
- which have a symbol to the left of the dot), and then add to each state its non-
kernel items by computing the LR(0) closure of the state. The computation of

sets of items is performed in two stages because this makes it more efficient to
compute whether a new candidate LR(0) state already exists, since the number

~of items in each set at this stage is much smaller. (Wxth the ANLT grammar,
‘the mean number of kernel items in each LR(0) set is about 8, whereas the
mean number of both kernel and non-kernel items per state is more than 400).

2. Computing the LALR(1) lookaheads for each item: the conventional approach
is to compute the LR(1) closure of each kernel item in order to determine the
lookaheads which are generated spontaneously and those which propagate from
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other items. However, in an initial implementation we found that the LR(1)
closure operation as described by Aho et al. was too expensive to be practica-
ble for the number and size of LR(0) states we deal with, even with schemes
for caching the closures of non-kernel items once they had been computed. In-
stead, we have moved to an algorithm devised by Kristensen & Madsen (1_981)
which avoids performing the LR(1) closure operation. The crucial advantage
of this algorithm is the ability, at any stage in the computation, to tell whether
the calculation of the lookahead set for a particular item has been completed,
 is underway, or has not yet started. This means that even partially computed
lookahead sets can be cached (with the computation yet to be done explicitly
marked), and that items whose lookahead sets are found to subsume those of
others are able to just copy the results from the subsumed sets. - .

. Constructing the parse table: the LALR(1) parse table is derived straightfor-
wardly from the lookahead sets, although to keep the size of the parse table -
within reasonable bounds we chose appropriate data structures to represent
the goto entries and shift and reduce actions. For the ANLT backbone gram-
“mar there are 133,467 goto entries (non-terminal — state pairs), 300,378 shift
actions (terminal - state pairs), and 720,482 reduce actions (terminal - rule-
number pairs); however, of the goto entries only 2,257 are distinct and of the
shift actions only 848 are distinct, most states contain just reduce or just shift
actions, and in any one state very few different rules are involved in reduce
~ actions. Taking advantage of the characteristics of this distribution, in each
state we represent (in Common Lisp)

(a) a set of goto entries as a list of (non-terminal — state) conses sorted into
a canonical order, list elements and tails of lists shared where possible
between states,

(b) a set of shift actions as a list containing a single (large) integer (the list
shared when possible between states), where if the state shifts to state s
on lookahead ¢, the element indexed by ¢ in an auxiliary array will contain
s together with a number », and bit n in the blnary representation of the

~ integer will be 1, :

(c) a set of reduce actions as, for each rule involved, a cons whose second
element is the rule number and whose first is a bit-vector (shared when
possible between states) whose nth bit is 1 if the reduce should occur
with the nth terminal as lookahead,

(d) an accept action as a cons with the first element being the lookahead
" symbol.

For the grammars we have investigated, this representation achieves a similar

‘order of space saving to the comb vector representation suggested by Aho et al.
(1986:244fF) for unambiguous grammars (see Klein and Martin (1989) for a survey
of representation techniques). The parse table for the ANLT grammar occupies
approximately 550Kbytes of memory, and so represents each goto entry and action
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Grammar Number of atomic Nufnber Number of Number

rules/categories of states LR(0) items of actions
Pascal 158 / 124 275 ? 2604
Tomita, Japanese 800 / ? ‘ ? ? ?
ANLT (1346 PS rules) 1758 / 575 3106 1345946 1020860

Table 1: Siies of grammar and LALR(1) parse tables

Grammar Backbone LR(0) state lookahead parse table
' computation construction computation construction

ANLT 250 1650 5600 2100

Table 2: Timingé for LALR(1) parse table construction (in seconds of CPU time
excluding overheads on a DEC 3100 running Allegro Common Lisp)

in an average of less than 4 bits. In contrast to conventional techniques, though,
we maintain a faithful representation of the parse table, not replacing error entries
with more convenient non-error ones in order to save extra space. Qur parsers are
thus able to detect failures as soon as theoretically possible, an important efficiency
feature when parsing non-deterministically with ambiguous grammars, and a time-
~ saving feature when parsing interactively with them (see next section). Table 1
- compares the size of the LALR(1) parse table for the ANLT grammar with several
others reported in the literature.

;From these figures, the ANLT grammar is more than tw1ce the size of Tomita’s
(combined morphological and syntactic) grammar for Japanese (Tomita 1987:45).
The grammar itself is about one order of magnitude bigger than that of a typical
programming language, but the LALR(1) parse table, in terms of number of actions,-
is two orders of magnitude bigger (figures for Pascal from Klein & Martin (1989));
thus although Tomita (1984:357) anticipates LR parsing techniques being applied
to large NL grammars written in formalisms such as GPSG, the sizes of parse tables
for such grammars grow more rapidly than he predicts.

As might be expected, and Table 2 illustrates, parse table construction for large
grammars is CPU-intensive. As a rough guide, LALR(1) table construction for a
programming language grammar can take from about 5 to 50 seconds (figures for
Modula-2 from Grosch (1990)), so scaling up two orders of magnitude, our timing .
figures for the ANLT grammar fall in the expected region.
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6 Interactive Increméntal Deterministic Parsing

The major problem with attempting to use a disambiguated training corpus is to
find a way of constructing this corpus in an error-free and resource efficient fash-
ion. Even manual assignment of lexical categories is slow, labour intensive and
error prone. The greater complexity of constructing a complete parse makes the
totally manual approach very unattractive, if not impractical. Sampson (1987:83)
reports that it took 2 person / years to produce the ‘LOB treebank’ of 50,000 words.
Furthermore, in that project, no attempt was made to ensure the analyses were well-
formed with respect to a generative grammar. Attempting to manually construct
analyses consistent with a grammar of any size and sophistication would place an
enormous additional load on the analyst. Leech & Garside (in press) discuss the
problems which arise in manual parsing of corpora concerning accuracy and consis-
tency of analyses across time and analyst, the labour intensive nature of producing
detailed analyses, and so forth. They advocate an approach in which simple ‘skele-
ton’ parses are produced by hand from previously tagged material, with checking
for consistency between analysts. These skeleton analyses can then be augmented
automatically with further information implicit in the lexical tags. Whilst this ap-
proach may well be the best that can be achieved with fully manual techniques, it
is still unsatisfactory in several respects. Firstly, the analyses are crude, whilst we
would like to automatically parse with a grammar capable of assigning sophisticated
semantically interpretable ones; but it is not clear how to train an existing gram-
mar with such unrelated analyses. Secondly, the quality of any grammar obtained
automatically from the parsed corpus is likely to be poor because of the lack of
any rigorous checks on the form of the skeleton parses. Such a grammar might, in
- principle, be trained from the parsed corpus, but there are still likely to be small

mismatches between the actual analysis assigned manually and any assigned auto-

matically. For these reasons, we decided to attempt to produce a training corpus
using the grammar which we wished ultimately to train. As long as the method

employed ensured that any analysis assigned was a member of the set defined by

the grammar, these problems during training should not arise.

Following our experience of constructing a substantial lexicon for the ANLT
grammar from unreliable and indeterminate data (Carroll & Grover, 1989), we de-
cided to construct the disambiguated training corpus semi-automatically, restricting
manual interaction to selection between alternatives defined by the ANLT grammar.
One obvious technique would be to generate all possible parses with a conventional
parser and to have the analyst select the correct parse from the set returned (or
reject them all). However, this approach places a great load on the analyst, who
will routinely need to examine large numbers of parses for given sentences. In addi-
tion, computation of all possible analyses is likely to be expensive and, in the limit,
intractable.

Briscoe (1987) demonstrates that the structure of the search space in parse
derivations makes a left-to-right, incremental mode of parse selection most efficient.
For example, in noun compounds analysed using a recursive binary-branching rule
(N — N N) the number of analyses correlates with the Catalan series (Church &
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Patil, 1982), so a 3 word compound has 2 analyses, 4 has 5, 5 has 14, 9 has 1430, and
so forth. However, Briscoe (1987:154f) shows that with a simple bounded context
parser (with one word lookahead) set up to request help whenever a parse indetermi-
nacy arises, it is possible to select any of the 14 analyses of a 5 word compound with
a maximum of 5 interactions and any of the 1430 analyses of a 9 word compound
with about 13 interactions. In general, resolution of the first indeterminacy in the:
input will rule out approximately half the potential analyses, resolution of the next,
half of the remaining ones, and so on. For ‘worst case’ CF ambiguities (with O(n?)
complexity) this approach to parse selection involves numbers of interactions which
increase at ‘little more than linear rate’ with respect to the length of the input. It
. is possible to exploit this insight in two ways. One method would be to compute all
‘possible analyses represented as a chart or graph-structured stack and ask the user
to select between competing sub-analyses which have been incorporated into a suc-
cessful analysis of the input. In this way, only genuine global syntactic ambiguities
would need to be considered by the user and, by tracing the dependencies between
sub-analyses, all further sub-analyses dependent for incorporation into a complete
analysis on a rejected sub-analysis could themselves be rejected without further in-
teraction with the user. The disadvantage of this approach is that it relies on prior
computation of the full set of analyses. The second method involves incremental
interaction with the parser during the parse to guide it through the search space of
possibilities. This has the advantage of being computationally efficient, but the po-
. tential disadvantage of requiring the user to resolve many local syntactic ambiguities
which will not be incorporated into a successful analysis. Nevertheless, using LR
techniques this problem can be minimised and, because we do not wish to develop a
system which must be able to compute all possible analyses (at some stage) in order
to return the most plausible one, we have chosen the latter incremental method.

The interactive, incremental parsing system that we implemented asks the user
for a decision at each choice point. during the parse. However, to be useable in
practice, such a system must avoid, as far as possible, presenting the user with
spurious choices that could be ruled out either by using more of the left context,
or by looking at words yet to be parsed. A system based around an LR parser
satisfies the first point, since the parse table encodes a maximal amount of left
context information. As for the second point, an LALR(1) parser is able to look -
one word ahead to resolve ambiguities (although, of course, the resolution of a local
ambiguity may potentially involve an unlimited amount of lookahead, e.g. Briscoe, '
1987:125ff). In fact, LR parsing is the most powerful parsing technique for which
an automatic compilation procedure is known. (Extensions to the LR technique, for
example those using LR-regular grammars (Culic & Cohen, 1973; Bermudez, 1991),
might be used to further cut down on interactions; however, computation of the
parse tables to drive such extended LR parsers may prove intractable for large NL
grammars. We are currently investigating this issue.)

‘An LR parser faces an indeterminacy when it enters a state in which there is
more than one possible action, given the current lookahead. In a particular state
there cannot be more than one shift or accept action, but there can be several reduce
actions each specifying a reduction with a different rule. When parsing, each shift
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or reduce choice must lead to a different final structure, and so the indeterminacy
represents a point of syntactic ambiguity (although it may not correspond to a
genuinely global syntactic ambiguity in the input, on account of the limited amount
of lookahead). : o

In the ANLT grammar and lexicon, lexical ambiguity is at least as pervasive as
structural ambiguity. A naive implementation of an interactive LR parser would
ask the user the correct category for each.ambiguous word as it was shifted; many
open-class words are assigned upwards of twenty lexical categories by the ANLT
lexicon with comparatively fine distinctions between them, so this strategy would
be completely impracticable. To avoid asking the user about lexical ambiguity, we
use the technique of preterminal delaying (Shieber, 1983), in which the assignment

of an atomic preterminal category to a lexical item is not made until the choice is

forced by the use of a particular production in a later reduce action. After shifting an
ambiguous lexical item, the parser enters a state corresponding to the union of states
that would be entered on shifting the individual lexical categories. Since, in general,
several unification grammar categories for a single word may be subsumed by a
single atomic preterminal category, we extend Shieber’s technique so that it deals
with a grammar containing complex categories by associating a set of alternative
analyses with each state (not just one), and letting the choice between them be
forced by later reduce actions, just as with atomic preterminal categories. '

In order not to overload the user with spurious choices concerning local ambigu-
ities, the parser does not request help immediately it reaches a parse action conflict.
Instead the parser pursues each option in a limited breadth-first fashion and only
requests help with analysis paths which remain active. In our current system this
type of lookahead is limited to up to four indeterminacies ahead. Such checking is
cheap in terms of machine resources and very effective in cutting down both the
number of choice points the user is forced to consider and also the average number
of options in each one. Table 3 shows the reduction in user interaction achieved by
increasing the amount of lookahead in our system. Computation of the backbone
grammar generates extra rules (as previously described, to deal with lexical cate-
gories used as rule mothers and daughters specified to be repeatable an indefinite
number of times) which do not correspond directly to single unification grammar
rules. At choice points, reductions involving these rules are not presented to the user;
instead the system applies the reductions automatically, proceeding until the next
shift action or choice point is reached, including these options in those presented to
the user. o

The final set of measures taken to reduce the amount of interaction required with
the user is to ask if the phrase being parsed contains one or more gaps or instances of
co-ordination before presenting choices involving either of these phenomena, blocking
consideration of rules on the basis of the presence of particular feature-value pairs.
The example in (6-1) shows the system parsing the sentence in an anzious mood
he helped the abbot with a four choice lookahead (user input in bold type). The
resulting parse tree is displayed with atomic category aliases substituted for the
actual complex categories. '



lookahead

none

1 choice
2 choices
3 choices
4 choices

number of mean number of options

choices

-0 L ©

in each choice

2.8
2.8
2.2
2.0
2.0

Table 3: Number of choices presented to the user and the mean number of options in
each one, parsing in an anzious mood he helped the abbot with the ANLT grammar
using different amounts of lookahead

(6-1) Parse>> in an anxious mood he helped the abbot

Are there any gaps in this phrase? n

Ambiguity in state 89/102/67/58 with (mood he helped the abbot §)
remaining in buffer. Analysis so far is in, an, anxious.

Shift word ’mood’ onto stack.

Reduce end 1 analyses nith rule A1/A (giving category
TA1-6177).

1:
2:

Which choice (1 - 2 / abort / finish)? 2
8052 msec CPU
3875 unifications, 3226 failures

1 parse
(T
(s
(P2
(P1 in
"~ (N2 an
(N2 (N1 (A2 (A1 anx1ous)) (N1 mood))))))
(S (N2 he)

(VP helped (N2 the (N2 (N1 abbot)))))))

The requests for manual selection of the analysis path are displayed to the analyst
in as terse a manner as possible and require knowledge of the ANLT grammar and
lexicon to be resolved effectively. The LDOCE definition for aconite, shown i in (6-2),
consists of 8 words and has 46 parses in the ANLT grammar. :

(6-2) a medicine made from one of these plants

For this definition, it takes 6 mteractlons to construct the correct analysis (illustrated
in Figure 5) from the 16 possible parses.
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N1 VP
medcis VB2
malde ’ l’f|1 :
fror/‘-’—_\m
Nm2
orlw - these N2 .
| N

plalnts -

Figure 5: Parse tree for a medicine made from one of these plants

This definition is of average complexity in the corpus we are considering; however,
definitions can contain more than 30 words, and in these cases there will often be
many hundreds or even thousands of parses. In a more general corpus of written
material the average sentence length is likely to be 30-40 words. The LDOCE
definition for youth hostel in (6-3) contains 30 words and is one of the more complex
examples we analysed in the experiment reported below.

(6-3) a hostel for usu young people walking around country areas on holiday for
which they pay small amounts of money to the youth hostels association or
the international yha. -

Achieving the correct analysis interactively involved 63 interactions and took the first
author about 40 minutes (including the addition of two lexical entries). The parse
tree is shown in Figure 6. This example illustrates clearly the problems with any
approach based on post hoc selection of the correct parse—we have been unable to
compute the full set of analyses for this example (on a DEC 3100 Unix workstation).
However, using the incremental approach to semi-automatic parsing we have been
able to demonstrate that the correct analysis is amongst this set. Furthermore, a
probabilistic parser with a beam-search or best-first search regime may well be able
to compute this analysis in a tractable fashion. (To date, the largest example for
which we have been able to compute all analyses had approximately 2500 analyses.)

The parse histories resulting from semi-automatic parsing are automatically
stored and can be used to derive the probabilistic information which will guide
‘the parser after training. We return to a discussion of the manner in which this
information is utilised in section 8. '
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7 Non-deterministic Breadth-first LR Parsihg with
Unification Grammars | o

As well as building an ‘interactive parsing system incorporating the ANLT gram-
mar (described above), we have also implemented a breadth-first non-deterministic
LR parser for unification grammars. This parser is integrated with the Grammar
Development Environment (GDE, Carroll et al., 1988) in the ANLT system, and
provided as an alternative parser for use with stable grammars for efficient parsing
of large bodies of text. The existing chart parser, although slower, has been retained
since it is more suited to grammar development, because of the speed with which
modifications to the grammar can be compiled and its better debugging facilities
(Boguraev et al., 1988). ’ ' : -

Our non-deterministic LR parser is based on Tomita’s (1987) parsing algorithm
and uses a graph-structured stack in the same way. Our parser is driven by the
LALR(1) state table computed from the backbone grammar, but in addition on
each reduction the parser performs the unifications appropriate to the unification
grammar version of the backbone rule involved. The analysis being pursued fails
if one of the unifications fails. The parser performs sub-analysis sharing (where if
two or more trees have a common sub-analysis, that sub-analysis is only represented
once), and local ambiguity packing (in which sub-analyses which have the same top
node and cover the same input have their top nodes merged, being treated by higher
level structures as a single sub-analysis). However, we generalise the technique of -
packing described by Tomita, driven by atomic category names, to complex feature-
based categories following Alshawi et al. (in press): the packing of sub-analyses
is driven by the subsumption relationship between the feature values in their top
nodes. An analysis is only packed into one that has already been found if its top
riode is subsumed by, or is equal to that of the one already found. An analysis, once
packed, will thus never need to be unpacked during parsing (as in Tomita’s system)
since the value of each feature will always be uniquely determined. E

We noticed during preliminary experiments with our unification LR parser that
it was often the case that the same unifications were being performed repeatedly,
even during the course of a single reduce action. The duplication was happening in
cases where two or more pairs of states in the graph-structured stack had identical
complex categories between them (for example due to backbone grammar ambigu-
ity). During a reduction with a given rule, the categories between each pair of states

* in a backwards traversal of the stack are collected up and unified with the appro-
priate daughters of the rule. Identical categories appearing here between traversed
pairs of states leads to duplication of unifications. By caching unification results
we eliminated this wasted effort and improved the initially poor performance of the
parser by a factor of about three. ‘ v - _
‘As for actual parse times, Table 4 compares those for the GDE chart parser,
the semi-automatic, user-directed LR parser, and the non-deterministic LR parser.
Our general experience is that although the non-deterministic LR parser is only
around 30-50% faster than the chart parser, it often generates as little as a quarter
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Parser : Parse time

Bottom-up chart 7.4

LR semi-automatic (with 4-choice lookahead) 7.2
LR non-deterministic : 5.7

Table 4: Chart and LR parse times for the LDOCE definition loss of attention to
what one is doing with the ANLT grammar (in CPU seconds on a DEC 3100)

the amount of garbage. (The relatively modest speed advantage compared with the
substantial space saving appears to be due to the larger overheads involved in LR
parsing). Efficient use of space is obviously an important factor for practical parsing
of long and ambiguous texts.

8 LR Parsing with Probabilistic Disambiguation

Several researchers (Wright & Wrigley, 1989; Wright, 1990; Ng & Tomita, 1991;
Wright et al., 1991) have proposed using LR parsers as an efficient method of parsing
with a probabilistic context-free grammar. This approach assumes that probabilities
are already associated with a CFG and describes techniques for distributing those
probabilities around the LR parse table in such a way that a probabilistic ranking of
alternative analyses can be computed very efficiently at parse time, and probabilities
assigned to analyses will be identical to those defined by the original probabilistic
CFG. However, our method of constructing the training corpus allows us to associate
probabilities with an LR parse table directly, rather than simply with rules of the
grammar. An LR parse state encodes information about the left and right context
of the current parse. Deriving probabilities relative to the parse context will allow
the probabilistic parser to distinguish situations in which identical rules reapply in
different ways across dnﬂ’erent derivations or apply with dxﬂ'enng probabilities in
different contexts. : :
- Semi- automatic parsing of the training corpus yields a set of LR parse hlstorles
which are used to construct the probabilistic version of the LALR(1) parse table.
The parse table is a non-deterministic finite-state automaton so it is possible to
apply Markov modelling techniques to the parse table (in a way analogous to their
- application to lexical tagging or CFGs). Each row of the parse table corresponds to
the possible transitions out of the state represented by that row and each transition
is associated with a particular lookahead item and a parse action. Non-determinism
_ arises when more than one action, and hence transition, is possible given a particular
lookahead item. The most straightforward technique for associating probabilities
with the parse table is to assign a probability to each action in the action part of
the table (e.g. Wright, 1990). If probabilities are associated directly with the parse
table, rather than derived from a probabilistic CFG or equivalent global pairing of
probabilities to rules, then the resulting probabilistic model will be more sensitive
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to context. For example, in the derivation for he loves her discussed in section
3, the distinction between reducing the first pronoun and second pronoun to NP
(using the same CF production from Grammar 1) can be maintained in terms of
the different lookahead items paired with the reduce actions relating to this rule in
state 5 of the parse table in Figure 2; in the first case, the lookahead item will be
‘Vi’, and in the second ‘$’. However, this approach does not make maximal use of
the context encoded into a transition in the parse table and it is possible to devise
situations in which the reduction of a pronoun in subject position and elsewhere
would be indistinguishable in terms of lookahead alone; for example, if we added
appropriate rules for adverbs to Grammar 1, then this reduction would be possible
with lookahead ‘Adv’ in examples like he passzonately loves her and he loves her
passionately.

A slightly less obvious approach is to further subdivide reduce actions according
to the state reached after the reduce action has applied. This state is used together
‘with the resultant non-terminal to define the state transition in the Goto part of the
parse table. Thus, this move corresponds to associating probabilities with transitions
in the automaton rather than with actions in the action part of the table. For
example, a reduction of pronoun to NP in subject position in the parse table for
Grammar 1 in Figure 2 always results in the parser returning to state 0 (from
which the Goto table deterministically prescribes a transition to state 7 with non-
terminal NP). In the derivation shown in Figure 3 it can be seen that the second
pronoun reduction results in the parser returning to state 11. Thus training on
a corpus with more subject than non-subject pronominal NPs will now result in
a probabilistic preference for reductions which return to ‘pre-subject’ states with
‘post-subject’ lookaheads. Of course, this does not mean that it will be impossible
to devise grammars in which reductions cannot be kept distinct which might, in
principle, have different frequencies of occurrence. However, this approach appears
to be the natural stochastic, probabilistic model which emerges from the LR parsing
technique Any further sensitivity to context would require sensitivity to patterns
in larger sections of a parse derlvatlon than can be defined in terms of an LR state
transition. ’ ,

The probabilities required to create the probabilistic version of the parse ta.ble‘
can be derived from the set of parse histories resulting from the training phase
described in section 6, by computing the frequency with which each transition from -
a particular state has been taken and normalising these such that the probabilities
assigned to each transition from a given state sum to one. In Figure 7 we show
a probabilistic LALR(1) parse table for Grammar 1 derived from a simple, partial
(and artificial) training phase. In this version of the table a probability is associated
with each shift action in the standard way, but separate probabilities are associated
with reduce actions depending on the state reached after the action; for example, in
state 4 with lookahead ‘N@’ the probability of reducing with rule 10 is .17 if the state
reached is 3 and .22 if the state reached is 5. The actions which have no associated
probabilities are ones which have not been utilised during the training phase; they
have an implicit probability equivalent to one observation for each possible action on
a row of the table. For this reason, the explicit probabilities for each row sum to less
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than one. The goto part of the table is not shown because it is always deterministic
‘and, therefore, we do not associate probabilities with goto transitions.
_ The difference between our approach and one based on probabilistic CFG can be
brought out by considering various probabilistic derivations using the probabilistic
parse table for Grammar 1. Assuming that we are using probabilities simply to rank
parses, we can compute the total probability of an analysis by multiplying together
the probabilities of each transition we take during its derivation. In Figure 8, we
~ give the two possible complete derivations for an example like the winter holiday
camp closed consisting of a determiner, three nouns and an intransitive verb. The
-ambiguity concerns whether the noun compound is left- or right-branching, and, as
~ we saw in section 2 a probabilistic CFG cannot distinguish these two derivations.
~ The probability of each step can be read off the action table and is shown after the
~ lookahead item in the figure.

In step 8 a shift-reduce conflict occurs so the stack ‘splits’ whilst the left- and
right-branching analyses of the noun compound are constructed. The a) branch
corresponds to the right-branching derivation and has a probability of 4.3 x 1078,
‘whilst that of the left-branching b) derivation is 5.3 x 1073. Since the table was
constructed from parse histories with a preponderance of left-branching structures
this is the desired result. In practice, this technique is able to distinguish and train
accurately on 4 of the 5 possible structures for a 4 word noun-noun compound; but
~ it inaccurately prefers a completely left-branching analysis over structures like ((n
(n n)) n). Once we move to 5 word noun-noun compounds, performance degrades -
further. However, this level of performance on such structural configurations is likely
to be adequate, because correct resolution of most ambiguity in such constructions
is likely to be dominated by the actual lexical items which occur in individual exam-
ples. Nevertheless, if there are systematic structural tendencies evident in corpora
~ (for example, Frazier’s (e.g. 1988) parsing strategies predict a preference for left-
branching analyses of such compounds), then the probabilistic» model is sensitive
enough to discriminate them. :

In practice, we take the geometric mean of the probabilities rather than their
product to rank parse derivations. This is done to provide a crude form of normal-
isation of the length of the derivation required to produce competing analyses (see
also Magerman & Marcus, 1991b). Otherwise, it would be difficult to prevent the
system always developing a bias in favour of analyses involving less rules or equiva-
lently ‘smaller’ trees, almost regardless of the training material. Of course, the need
for this step reflects the fact that, although the model is more context dependent
than probabilistic CFG, it is by no means a perfect probabilistic model of NL. For
example, the stochastic nature of the model and the fact that the entire left con-
text of a parse derivation is not encoded in LR state information means that the
probabilistic model cannot take account of, say, the pattern of resolution of earlier
conflicts in the current derivation. Another respect in which the model is incom-
plete is that we are associating probabilities with the context-free backbone of the
unification grammar and, therefore, the probabilistic model has no access to infor-
mation concerning feature values or feature propagation. One consequence of this is
that it is quite possible that, given a particular input, an otherwise highly probable
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State $ Det N@ P ProNP Vi vt
0 s3 82
(.50) (.50)
1 rl
(0 .83)
2 r5 rS r5 r5
(8 .33) {0 .50)
3 s4
-(1.00)
4 rlo . rlo 1o r10 rlo
(3 .11 6 .1l1) (3 .17 5 .22) (3 .11) (3 .11 5 .11)
5 ré s4 ‘6 ré ré
(8 .13 11 .13) (.33) (11 .13) (0 .20)
6 r8 r8 8 r8 r8
(3 .17 S .17) - (3 .25) (3 .17)
s4
(.17)
7 s8 sl3 sll
{.43) (.43)
8 s3 s2
{.50) (.50)
9 r9 r9 r9 x9
(12 .40) (12 .40)
»sB
10 . x7 r7 r7
' »(11 .40) (11 .40)
11 s3 s2
(.75)
12 r3 ) s8
(7 .43) (.43)
13 rd
(7 .75)
14 r2
(0 .84)
‘15 acc

(1.00)

Figure 7: A probabilistic version of the parse table for Grammar 1
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derivation will fail because of unification failure associated with a reduce operation.
As long as we only use the probabilistic model to rank successful analyses, this is not
particularly problematic. However, it is possible to envisage parser control regimes
which attempted, say, beam search, using probabilistic information associated with
transitions, which would not yield the desired result given this property. As with
any such probabilistic model, it would be possible to enrich it further to create a
better approximation; however, most such enhancements would increase the amount
of training material required to the pomt where supervised training, at least, would
be quite impractical.

We intend to develop a version of the parser which uses probablhstlc information
to define a best-first search regime in order to reduce the average computational cost
of finding the desired analysis. Nevertheless, the current breadth-first probabilistic
parser is more efficient than its non-probabilistic counterpart described in the pre-
vious section, since it is able to probabilistically unpack the packed parse forest.
However, due to the possibility of unification failures caused by conflicting feature
~values percolated up a tree from packed constituents we cannot utilise the efficient -
unpacking algorithm for CF grammars given by Wright et al. (1991) (which allows
~ the first m most probable derivations to be recovered from the parse forest without
“the need for exhaustive search). Instead we unpack the parse forest starting from

the leaves, retaining at most m alternative sub-trees with identical mother categories
at each stage. This method entails an exhaustive traversal of the packed forest, but
does have the property of limiting the amount of structure that is built.

9 Paréing LDOCE N oun Deﬁhitions

" In order to test the techniques and ideas described in previous sections, we under-
took a preliminary experiment using a subset of LDOCE noun definitions as our test
corpus. (The reasons for choosing this corpus are discussed in the introduction.) A
corpus of approximately 30,000 noun definitions was created from LDOCE by ex-
tracting the definition fields and normalising the definitions to remove punctuation,
font control information, and so forth. . A lexicon was created for this corpus by
extracting the appropriate lemmas and matching these against entries in the ANLT
lexicon. The 10,600 resultant entries were loaded into the ANLT morphological sys-
tem (Ritchie et al., 1987) and this sublexicon and the full ANLT grammar formed
the starting point for the training process. '

246 definitions, selected without regard for their syntactic form, were parsed
semi-automatically using the parser described in section 6. During this process, fur-
ther rules and lexical entries were created for some examples which failed to parse.
151 were successfully parsed and 63 lexical entries and 14 rules were added. Some of
the rules required reflected general inadequacies in the ANLT grammar; for example,
- we added rules to deal with new partitives and prepositional phrase and verb comple-
mentation. However, 7 of these rules cover relatively idiosyncratic properties of the
definition sublanguage; for example, the postmodification of pronouns by relative
- clause and prepositional phrase in examples beginning something that..., that of...,
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parenthetical phrases headed by adverbs, such as the period... esp the period, and
coordinations without explicit conjunctions ending with etc, and so forth. Further
special rules will be required to deal with brackets in definitions to cover conventions
such as ¢ man (monk) or woman (nun) who lives in a monastery which we ignored
for this test. Nevertheless, the number of new rules required is not great and the
need for most was identified very early in the training process. Lexical entries are
more problematic, since there is little sign that the number of new entries required
will tail off. However, many of the entries required reflect systematic inadequacies in
the ANLT lexicon rather than idiosyncracies of the corpus. It took approximately 1
~person / month to produce this training corpus. As a rough guide, it takes an aver-
age of 15 seconds to resolve a single interaction with the parser. However, the time
a parse takes can often be lengthened by incorrect choices (and the consequent need
to back up manually) and by the process of adding lexical entries and occasional
rules. - .y L ’ - o
The resultant parse histories were used to construct the probabilistic parser. We
tried both the approaches described in section 8, associating probabilities directly
with shift or reduce actions in the action table and associating them with transitions
involving actions from the action table (to a particular goto state in the case of.
reduce actions). The resulting parsers were used to reparse the training corpus and
the most highly ranked analyses were automatically compared to the original parse
histories. We have been unable to reparse in a breadth-first fashion all 151 of those -
examples parsed manually because of the size of the search space for many of the
examples, combined with the fact that the probabilistic parser does not, as yet, use
the probabilities to control this search, but merely to rank the resultant analyses.
We have reparsed 63 of the 151 original examples—all those of less than 10 words
(mean length 5.3). We report detailed results for the parser based on associating:
probabilities with transitions and discuss the (minor) differences in results below.
Of the 63 reparsed definitions, in 47 cases the correct analysis (as defined by the
training corpus) is also the most highly ranked. In 11 of the remaining cases the
correct analysis is the second most-highly ranked analysis. Of the total of 16 cases
where the correct analysis is not the most-highly ranked, in 4 the most-highly ranked
analysis is, in fact, correct and the training data is wrong. In each of these cases
there is a discrepancy of only one rule. Of the remaining 12 clearly incorrect parses,
in 8 cases there is also a one-rule discrepancy between the most probable analysis and
- the correct one. In 3 of these cases there was an inappropriate structural preference
for ‘low’ or ‘local’ attachment (see Kimball, 1973). If these results are interpreted in
terms of a goodness of fit measure such as that of Sampson et al. (1989), the measure
would be better than 98%. If we take correct parse / sentence as our measure then
the result is 81%, which is slightly worse than that of Fujisaki et al. (1989).

We also parsed a further 54 LDOCE noun definitions not drawn from the training
corpus, each containing up to 10 words. Of these, in 31 cases the correct parse was
the most highly ranked, in 5 cases it was the second most highly ranked, in 1 case the
third most highly ranked, and in the remaining 17 cases it was not in the first three -
analyses. This yields a correct parse / sentence measure of 57.4%. Examination of
the failures again revealed that a preference for local attachment of postmodifiers
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"Figure 9: Analysis for A feeling or manner that is pretended

accounted for 3 cases, a preference for compounds for 5, and inadequacies in the
grammar of coordination for 3. The others are mostly caused by the lack of lexical
entries with appropriate SUBCAT features.

Comparison with the more straightforward approach of associating probabilities
directly with parse actions revealed a slight advantage for this technique on this test
sample — we achieved 85.9% correct parses / sentence for the training sample and -
63.8% for the unseen sample. There appears to be no theoretical reason for this
result. One possible explanation is that associating probabilities with transitions
has the effect of increasing the number of distinct ‘operations’ to which probabilities
are assigned so that given the very limited amount of training material we have
created ‘to date, this version of the parser is undertrained by comparison with the
one in which probabilities are associated directly with parse actions. Only further
experimentation will tell us definitively which is the most successful approach, but
the theoretical analysis presented in section 8 suggests that associating probablhtles
with transitions should provide a more contextually dependent model.

In Figure 9 we show the analysis for the unseen definition of affectation which
‘has 45 parses of which the most probable is correct (using both techniques) - this
represents one of the most convincing demonstratlons of the potentlal value of the
techniques described, so far. S o -

In Figure 10 we show the single a.nalysxs asmgned to one definition of anchor-
age. This is an example of a false positive which, in this case, is caused by the
lack of a lexical entry for charge subcategorising it for an infinitival complement.
Consequently, the parser finds an analysis in which charged is treated as a transitive
passive participle, as in the money charged was wrong, to anchor in is treated as
an infinitival relative with a NP gap, as in @ place to anchor in, and a harbour is

“analysed as a zero relative clause in which a, because it can function as a number, is
able to occur as a pronoun, and harbour is treated as a transitive verb with missing
- object. Thus the analysis found would be approprlate for a place visited to anchor
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Figure 10: Analysis for The money charged to anchor in a harbour

in one likes. Apart for the treatment of a, it is difficult to fault this analysis and
the same is true for the other (mostly less bizarre) false positives we have looked
" at. Such false positives present the biggest challenge to the type of system we are
attempting to develop. One hopeful sign is that the analyses assigned such examples
appear to have low probabilities relative to most probable correct analyses of other
examples. However, considerably more data will be required before we can decide:
whether this trend is robust enough to provide the basxs for automatic identification
of false positives. - :
The appendix prov1des a complete list of the examples parsed and gives the
number of parses.for each and whether the correct analysxs was in the top three
most probable.
Using a manually disambiguated trammg corpus and manually tuned grammar
appears feasible with the definitions sublanguage. Results at least comparable to
“those obtained by Fujisaki et al. (1989) and Sharman et al. (1990) are possible on
the basis of a quite modest amount of manual effort and a very much smaller training
corpus, because the parse histories contain little ‘noise’ and do usefully reflect the
- semantically and pragmatically appropriate analysis in the training corpus, and
also because the number of failures of coverage were reduced to some extent by
adding the rules specifically motivated by the training corpus. Unlike Fujisaki et
al. or Sharman et al., we did not integrate information about lexemes into the rule
probabilities or make use of lexical syntactic probability. It seems likely that the
structural preference for local attachment might be overruled in appropriate contexts
if lexeme (or better, word sense) information were taken into account. The worse
results obtained for the unseen data appear to be caused more by the non-existence
of a correct analysis in a significant number of cases, rather than by a marked decline
in the usefulness of the rule probabilities. This again highlights the need to deal
effectively with examples outside the coverage of the grammar.
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10 Conclusions and Further Work

The system that we have developed offers partial and practical solutions to two of
the three problems of corpus analysis we identified in the introduction. The problem
of tuning an existing grammar to a particular corpus or sublanguage is addressed
partly by manual extensions to the grammar and lexicon during the semi-automatic
training phase and partly by use of statistical information regarding frequency of
rule use gathered during this phase. The results of the experiment reported in the
last section suggest that syntactic pecularities of a sublanguage or corpus surface
quite rapidly, so that manual additions to the grammar during the training phase
are practical. However, lexical idiosyncracies are far less likely to be exhausted dur-
 ing the training phase, suggesting that it will be necessary to develop an automatic
method of dealing with them. In addition, the current system does not take account
of differing frequencies of occurrence of lexical entries; for example, in the LOB cor-
pus the verb believe occurs with a finite sentential complement in 90% of citations,
although it is grammatical with at least a further five patterns of complementation.
This type of lexical information, which will very likely vary between sublanguages,
should be integrated into the probabilistic model. This will be straightforward in
~ terms of the model, since it merely involves associating probabilities with each dis-
tinct lexical entry for a morpheme and carrying these forward in the computation of
the likelihood of each parse. However, the acquisition of the statistical information
from which these probabilities can be derived is more problematic. Existing lexical
taggers are unable to assign tags which reliably encode subcategorisation informa-
tion. Therefore, progress on this front must await successful techniques for robust
phrasal analysis of corpora (e.g. Magerman & Marcus, 1991a). In addition, it has
‘become clear that the ANLT lexicon and grammar of derivational morpholoslcal
processes needs to be improved. ' :

The task of selecting the correct analysis from the set licensed by the grammar
is also partially solved by the system. It is clear from the results of the preliminary
experiment reported in the previous section that it is possible to make the semanti-
cally and pragmatically correct analysis highly ranked, and even most highly ranked
in many cases, just by exploiting the frequency of occurrence of the syntactic rules

-in the training data. However, it is also clear that this approach will not succeed
in all cases; for example, in the experiment the system appears to have developed
a preference for local attachment of prepositional phrases (PPs) which is inappro-
priate in a significant number of cases. It is not surprising that probabilities based
solely on the frequency of syntactic rules are not capable of resolving this type of
ambiguity; in an example like John saw the man on Monday again it is the tempo-

ral interpretation of Monday which favours the adverbial interpretation (and thus
non-local attachment). Such examples are syntactically identical to ones like John
saw the man on the bus again in which the possibility of a locative interpretation
creates a mild preference for the adjectival reading and local attachment. To select
the correct analysis in such cases it will be necessary to integrate information con-
cerning word sense collocations into the probabilistic analysis. We are interested in
collocations between the head of a PP complement, a preposition and the head of -
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the phrase being postmodified. In general, these words will not be adjacent in the
text, so it will not be possible to use existing approaches unmodified (e.g. Church
& Hanks, 1989), because these apply to adjacent words in unanalysed text.

One way of integrating ‘structural’ collocational information into the system
presented above would be to make use of the semantic component of the (ANLT)
grammar. This component pairs logical forms with each distinct syntactic analy-
sis which represent, amongst other things, the predicate-argument structure of the
input. In the resolution of PP attachment and similar ambiguities, it is ‘colloca-

tion’ at this level of representation which appears to be most relevant. Integrating
~ a probabilistic ranking of the resultant logical forms with the probabilistic ranking
of the distinct syntactic analyses presents no problems, in principle. However, once
again, the acquisition of the relevant statistical information will be difficult, because
it will require considerable quantities of analysed text as training material. One way
to ameliorate the problem might be to reduce the size of the ‘vocabulary’ for which
statistics need to be gathered by replacing lexical items with their superordinate
terms (or a disjunction of such terms in the case of ambiguity). Copestake (1990)
- describes a program capable of extracting the genus term of a definition from an
LDOCE definition, resolving the sense of such terms, and constructing hierarchical
‘taxonomies of the resulting word senses. Taxonomies of this form might be used to
replace PP complement heads and postmodified heads in corpus data with a smaller
number of superordinate concepts. This would make the statistical data concerning
trigrams of head-preposition-head less sparse (c.f. Gale & Church, 1990) and easier
to gather from a corpus. Nevertheless, it will only be possible to gather such data
from determinately syntactically analysed material.

The third problem of dealing usefully with examples outside the coverage of

the grammar even after training is not addressed by the system we have developed.
Nevertheless, the results of the preliminary experiment for unseen examples indicate
that it is a significant problem, a least with respect to lexical entries. A large part
. of the problem with such examples is identifying them automatically. Some such ex-
amples will not receive any parse and will, therefore, be easy to spot. Most though,
will receive incorrect parses (one of which will be automatically ranked as the most
probable) and can, therefore, only be identified manually for the moment. Jensen et
~al. (1983) describe an approach to parsing such examples based on parse ‘fitting’ or
rule ‘relaxation’ to deal with ‘ill-formed’ input. An approach of this type might work
with input which recieves no parse, but cannot help with the identification of those
which only receive an incorrect one. In addition, it involves annotating each gram-
mar rule about what should be relaxed and requires that semantic interpretation
can be extended to fitted parses. . '

Garside & Leech (1985) and Sampson et al. (1989) propose more thorough-going
probabilistic approaches in which the parser uses a statistically-defined measure of
‘closest fit’ to the set of analyses contained in a ‘treebank’ of training data to assign
an analysis. This approach attempts to ensure that analyses of new data will conform
as closely as possible to existing ones, but does not require that analyses assigned
are contained in the set defined by the generative grammar implicit in the treebank
analyses. If successful, this approach would solve the three problems of corpus
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analysis identified above. Sampson et al. report some preliminary results for a parser
of this type which uses the technique of simulated annealing to assign the closest
fitting analysis on the basis of initial training on the LOB treebank and automatic
“updating of its statistical data on the basis of further parsed examples. Sampson
et al. give their results in terms of a similarity measure with respect to correct
analyses assigned by hand. For a 13 sentence sample the mean similarity measure
was 80% and only one example received a fully correct analysis. These results suggest
that the technique is not reliable enough for practical corpus analysis, to date. In -
addition, the analyses assigned, on the basis of the LOB treebank scheme, are not
syntactically determinate (for example syntactic relations in unbounded dependency
constructions are not represented) and the analyses assigned are not drawn from a
prior well-defined set. ,
In the short term, we intend to continue to resolve the related problems of gram-
" mar coverage and false positive examples which have only incorrect parses by manual
analysis of the output of the probabilistic parser, manual addition of grammar rules
and lexical entries, and incorporation of correct parses into the training materials
with periodic re-estimation of probabilities. Using this technique we can also incre-
mentally acquire probabilities concerning lexical entries and structural word sense
collocations from the disambiguated training corpus. This ‘intermediate’ training
~ phase should be feasible because the correct analysis, where it is available, should
occur high in the ranked list of possible parses and should, therefore, be identifiable
relatively quickly. In addition, once we judge that a good set of initial probabilities
has been obtained and the problem of false positives reduced to manageable levels, it
should be feasible to move to an unsupervised training regime in which probabilities
are automatically re-estimated using the inside-ouside algorithm and only a subset
of new material is manually checked in order to build up a growing corpus of correct
analyses against which continuing convergence can be repeatedly re-estimated.

In the longer term, we intend to explore techniques for automatic extension of
the grammar or parser in the face of failures of coverage in a probabilistic context.
The lack of a parse could be used to trigger inductive grammar or parser extension ’
processes within the parse contexts defined by the more highly ranked partial deriva-
tions. Within such a ‘probabilistic (nearly) deterministic’ parse context, induction
of appropriate rules may prove feasible (e.g. Berwick, 1985). In addition, experience

" may show that it is possible to infer the existence of false positives from abnormally
low probabilities for the highest ranked parses or alternatively from abnormally low
values for sub-analyses within such parses relative to other hlghly ranked parses for
input which does have a correct parse. '

In conclusion, the main positive points of the paper are that, 1) LR parse ta-

" bles can be used to define a more context dependent and adequate probabilistic
model of NL, 2) optimally efficient LR parse tables can be constructed automati-
cally from unification-based grammars in standard notation, 3) effective parse table
construction and representatlon techniques can be defined for realistically-sized am-

_biguous NL grammars, 4) semi-automatic LR based parse techniques can be used
to efficiently construct training corpora, and 5) the LR parser and ANLT grammar
jointly define an appropriate probabilistic model into which probabilities concerning
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lexical subcategorisation and structurally defined word sense collocations could be
integrated. -
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Appendix

Below are the results of the experiment with LDOCE noun definitions. Column one:
ranking of correct parse; column two: number of analyses.

Examples reparsed from training corpus

3 freedom from control

3 monastery or convent

the group of people living in such a building
the alphabet as taught to children

sudden forgetfulness

an example of this

the act of washing oneself

an australian aborigine

place where one lives

the act of putting an end to something

great hatred

5 an example of this by accident or intention
loss of surface by rubbing

the act of making shorter

loss of attention to what one is doing

a person who stays away

a glass of this

a member of an academy

the act of increasing speed

the act of accepting or of being accepted

in business an agreement to pay

means of entering

way in

something added

an addition

agreement as to a demand

strong expressions of approval and praise
loud shouts of welcome and honour -

an upward slope

strong praise and approval

something that helps or makes an action easier
a person who plays a musical accompaniment
the act of finishing work completely and successfully
something completely and successfully done

a lady-like art

1 an agreement between countries businesses etc
the quality of being accurate

15 bitterness of speech temper or manner

1 an example of this
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5
2
6
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a chemical made from acetic acid

a continuous pain

the quality of being acid

something esp a liquid with an acid taste

an antiaircraft gun or fire from such a gun

a medicine made from one of these plants

the group of people living in such a building
the act of making shorter :

powers and skills esp of the mind

the lowest temperature that is thought to be possible
the wood of this tree

a jew

power control etc

a simple or foolish country man

the yellow central part of an egg

a very long time

a type of short dog with fairly long hair
young people considered as a group

young animals

a young person esp a boy

early life

young men and women considered as a group

a long loud cry

something that binds people or things together

Parses of unseen material

w

29

52
19
16

27
15
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something needing action

a happening

behaviour which is not one ’s natural manner
a feeling or manner that is pretended
something which causes suffering

a person from africa

the power or force which causes a result
one of the periods of life

a long time

something that annoys one

a group or mass formed by this

thinking in the same way

a person or thing that supports or helps
the act of directing a weapon remark etc
a dog with a rough coat '
type of large terrier

the act of allowing fresh air into a room
any letter that is sent by air
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6
16
7
3 .
22
47
5
5
26
3
14
15
1
1

N

11
2
7

a large passenger aircraft

letters parcels etc sent by air

the system of sending things by air

the speed at which an aircraft travels through the air
the sky or the space above the ground

the sky as something through which to fly

a very gentle wind

an attack by military aircraft

a case or example of this work

a female airman

an animal or plant that lacks the typical colouring
the white or colourless part of an egg

a person who studied or practised alchemy
the drinks containing this"

false name

the muslim name for god

a share as of money or space

money provided for a special purpose

a person who helps or supports one
something that attracts or charms

quantity or sum

total quantity or sum.

a sexual relationship esp one that is secret
large amount

the state of being amused

the act or action of producing this state

a person who believes in anarchism

absence of government or control

absence of order

something hated

‘a person skilled in anatomy

a place where ships may anchor

the money charged to anchor in a harbour
a means of making firm .

an old man

a person who helps another in work

45







