Technical Report A

Number 22

Computer Laboratory

Constraints in CODD

M. Robson

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Constraints in CODD

M. Robson

University of Cambridge Computer Laboratory
Corn Exchange Street
Cambridge CB1 3QG
England

Abstract

The paper describes the implementation of the data
structuring concepts of domains, intra-tuple
constraints and referential constraints in the
relational DBMS CODD. All of these constraints
capture some of the semantics of the database's
application.

Each class of constraint is described briefly and
it is shown how each of them is specified. The
constraints are stored in the database giving a
centralised data model, which contains descriptions
of procedures as well as of static structures. Some
extensions to the notion of referential constraint
are proposed and it is shown how generalisation
hierarchies can be expressed as sets of referential
constraints. It is shown how the stored data model is
used in the enforcement of the constraints.

Part of this report is to appear as a paper in the Proceedings of the
Second British National Conference on Databases, Bristol (1982).

1 INTRODUCTION

This paper describes the implementation of some important data
structuring concepts within the relational DBMS CODD [5]. The concepts
dealt with are domains, intra-tuple constraints and referential
constraints. All of these allow the database to capture some of the
semantics of its application. Domains capture the different meanings of
different columns of relations. Intra-tuple constraints specify
conditions which must hold between column values within a tuple.
Referential constraints express structure which can span several
relations.

These structuring primitives are not often provided within current
systems, However, they are required in a DBMS if it is to be used as a base
on which to build a more complex, higher level data model such as Shipman's
DAPLEX [9] or Hammer and Mc Leod's SDM [4].

The structure imposed by the concepts described above could be
implemented, for a particular database, by a suite of applications
programs. However, the approach taken in this paper is to integrate
facilities for describing the structure into the DBMS. The descriptions
produced are stored in the database. This gives a centralised description
of the structure of the database, in keeping with the idea of a conceptual
schema. The definitions of domains and intra-tuple constraints can be
expressed naturally as procedures for recognising valid domain elements
or tuples. If this approach is adopted, their definition requires the
ability to store procedures, as well as static structure, within the
database. The implementation of referential constraints provides
technology which is useful for the implementation of other data modelling
facilities, in particular the generalisation hierarchies of Smith and
Smith [10]. This paper describes a way in which all three types of
constraint can be implemented.

The paper is organised into four main sections. The first describes the
concepts of domains, intra-tuple constraints and referential constraints.
It also suggests some extensions to the concept of referential
constraints and shows how referential constraints can be used to specify
generalisation hierarchies. The second section summarises those features
of CODD which are relevant to the implementation described. The third
section shows how the various forms of constraint are implemented within
CODD.

2 THEORETICAL FOUNDATIONS

2.1 Domains in the Relational Model

Although the idea of a domain is central to much of the theory surrounding
the relational model, it is an idea which has often been overlooked by
those who have built relational systems, notably the builders of
SYSTEM/ R. The domains assigned to the different columns of a relation are
of great importance in determining how that relation may be manipulated
together with others, In particular the domains of a relation determine to
which others it may be meaningfully joined. It is not sufficient to
distinguish between, say, integers and strings since integers representing
age and height have completely different meanings, they only 'look the
same'. Such different meanings need to be distinguished.

Domains are in some ways like types in contemporary programming
languages. In the same way that it is possible to define new types in some
programming languages, it has been argued by McLeod [7], among others, that
database management systems should allow the abstract definition of
domains. In order to specify a domain to a DBMS it is necessary to provide
the following:

(a) adescription of the elements of the domain

(b) a specification of how the elements of the domain may be
manipulated and compared; in particular, is the domain ordered?

(c) procedures to convert the external representation of the elements
to their internal representation and vice versa.

(a) and (b) above are the abstract specification of the domain, whereas
(e) is much more concerned with the implementation (of course, the
information specified in (a) and (b) will probably heavily influence the
way in which a particular domain is represented internally). It should,
moreover, be possible to define a new domain as a restriction of a
previously defined domain. The restriction is performed by specifying a
predicate (filter) which is applied to a candidate value after it has been
recognised as an element of the old domain.

2.2 Intra-tuple constraints

Intra-tuple constraints express conditions which must hold between the
values of the attributes of a relation. For example, in a relation
representing airline bookings the number of seats sold should not exceed
the number of seats available. The intra-tuple constraints form part of
the stored data model, in the same way as information about domains and
referential constraints.

The form of the predicate which can be specified as an intra-tuple
constraint is the same as that which can be specified as a test for the
relational operation of selection. The difference is the time at which
they are applied and the action taken if the tuple does not satisfy the

predicate. In the case of a selection predicate the tuple is discarded,
whereas in the case of an intra-tuple constraint the update is rejected
and the transaction aborted.

2.3 Referential Constraints

2.3.1 Definition

Referential constraints were proposed by Codd as part of his extended
relational model RM/T [1], and modified for both theoretical and
practical reasons by Date [2]. They are defined as follows.

There is a referential constraint between two relations R1 and R2 if:

(a) some subset of the attributes of R1 (the referencing attributes)
form the key of R2; ,

(b) for every tuple in R1 where the referencing attributes are not
NULL, there exists a tuple in R2 whose key is specified by the
referencing attributes,

The relation R1 is called the referencing relation, and the relation R2
the referenced relation. The referencing and referenced attributes must,
of course, have matching domains, The attributes specified in referential
constraints are 'natural' attributes over which to perform joins in the
database.

Referential constraints may be used to specify that the tuples in one
relation must be a subset of the tuples in another (subset constraints).
They may also express the fact that tuples of a relation represent
associations between tuples of other relations. For example referential
constraints could be used to specify that an assignment is an association
between a student and a project.

All the referential constraints specified for a particular database
form a dependency graph. This dependency graph may contain cycles which
require the independent insertion of several tuples in order that the
final database state will satisfy the constraints. Therefore, at some
point the database will have to pass through an inconsistent state. Hence,
referential constraints are checked at the end of transactions after all
changes have been made to the database.

One relation may reference many others with the same set of referencing
attributes. In such cases a quantifier may be specified by the user which
indicates whether referenced tuples must exist in all, some of, or exactly
one of, the referenced relations for the constraint to be satisfied. The
default quantifier is "EXACTLY ONE OF"™.

A further part of the specification of a constraint is a statement of

what changes must be performed on tuples in the referencing relation
should referenced tuples be updated or deleted. The alternatives allowed

-3 -

(with their names in brackets) are:

(a) that the update be disallowed if any references to the target
tuple exist (RESTRICTED)

(b) that the referencing tuple be modified to maintain the 1link or
that it be deleted as well (CASCADES)

(c¢) that the referencing tuple have its referencing attributes set to
NULL (NULLIFIES).

The default for both update and deletion is RESTRICTED. The same update
and deletion rules apply to all of the referenced relations for a
particular constraint.

The cascade operation of (b) may produce further cascades. This occurs
if the referencing attributes intersect the primary key of the referencing
relation and the referencing relation is the referenced relation in some
other constraint. For the rest of this paper the following syntax will be
used for the definition of referential constraints:

constraint-name: ref ->> quantifier (ref) (ref)#¥
update-rule deletion-rule
where:
<ref> is relation-name . [attribute set]
Attribute sets are ordered lists of column names, and those on the
left and right hand sides of the definition of a constraint must
agree elementwise on domain.
'#! js arbitrary repetition.
<quantifier> is either empty or one of ALL, SOME, EXACTLY ONE OF
<update-rule> is either empty or "DELETION rule"
{deletion-rule> is either empty or "UPDATE rule"
<rule> is one of RESTRICTED, CASCADES or NULLIFIES

Relations are defined as follows (omitting the specifications of the
domains associated with the attributes):

<relation name> : [attribute, ...] attribute, ..., attribute]

The attributes to the left of the '|' are the key of the relation
being defined.

2.3.2 Extensions

The following extensions to the definition presented above are useful.

(a) The effect of DELETION NULLIFIES is often not what is required
by the semantics of an application. Consider the following
example: within a college students have a tutor assigned to them.
If a tutor leaves then all of his students are assigned, at least
temporarily, to a special tutor, the senior tutor, the identity of
whom is a property of the particular college.

Here what is required is not NULLIFIES but the retrieval of a
suitable value from the database by means of evaluating a suitable

T

(b)

(c)

query. It must be ensured, however, that this "default" value is
unique for a given database state.

The definition of section 2.3.1 restricts references to be to the
key attributes of a relation. However, references to non-key
attributes can also occur. Consider the example database fragment:

Lecturers: [Name | ...]
Courses : [Course } Lecturer,]
Exists-Lecturer: Courses.[Lecturer] ->> Lecturers.[Name]

In addition to the referential constraint 'Exists-Lecturer' there
is also the constraint that every lecturer must teach at least one
course. This constraint may be regarded as a reference from
'Lecturers' to the 'Lecturer!' attribute of 'Courses'.

The need for the extra constraint is a consequence of the fact
that referential constraints provide a way of expressing M(>=0):1
links. However, what is often required is M(>0):1 links, such as in
the example above. It therefore seems reasonable to allow the
definition of a referential constraint to specify that the link is
M(>0):1 if this is what is required. Note, however, that DELETION
RESTRICTED and UPDATE RESTRICTED become meaningless for such
a constraint, since there must always be a referencing tuple.

Having shown that 'backward' links occur when the referencing
attributes are not the key of the referencing relation, such links
certainly occur very often when the referencing attributes are
the key of the referencing relation. Consider the example:

Students : [Name | ...]
Lecturers: [Name | ...]
People : [Name | date of birth, address, ...]
Student-Is-Person: Students.[Name] ->> People.[Name]
DELETION CASCADES
Lecturer-Is-Person: Lecturers.[Name] ->> People.[Name]
DELETION CASCADES
Gen: People.[Name] ->> EXACTLY ONE OF (
Students.[Name]
Lecturers.,[Name]) DELETION CASCADES

The constraints in fact define part of a generalisation hierarchy,
in which 'Students' and 'Lecturers' are specialisations of
'People'. Although in the example 'Students' and 'Lecturers' are
disjoint sub-classes of 'People' this need not be the case (eg.
replace EXACTLY ONE OF in GEN by SOME OF). Note that for sets
of referential constraints which specify generalisations the
update and deletion rule is always CASCADES,

The method of describing generalisation hierarchies used above
is unsatisfactory, apart from being very long winded, since:

(i) it does not make clear that a particular set of
referential constraints represent a generalisation;

(ii) it is not really desirable to name each link in a
generalisation hierarchy. Therefore, such a shorthand
syntax such as:

Is-Person: People.[Name] <->> EXACTLY ONE OF
(Students.[Namel],
Lecturers.[Name])

is also unsatisfactory.

However, the fact that generalisation hierarchies can be
represented by sets of referential constraints suggests that it
is possible to maintain both by a common underlying mechanism.
Such a common mechanism should not require that generalisations
and referential constraints be represented in the same way in the
data model. Indeed, since generalisations and referential
constraints are semantically different they should be represented
differently in the data model.

An implementation of these constraints will be described in section 4
but first it will be useful to present some brief details of the internal

structure of CODD.

3 SOME INTERNAL DETAILS OF CODD

CODD is a general purpose, fully relational DBMS written entirely in
BCPL and making heavy use of coroutines [8]. The following sections
briefly describe those aspects of CODD which are relevant to the
implementation described in section 4.

3.1 Basic Storage Structures in CODD

There are two storage regimes, one of which is used for storing fixed
length data and the other of which is used for storing variable length
data. The second complements the first as described below.

Fixed length data is stored in multi-level indexed sequential files.
Care is taken to ensure that the index structure remains balanced when the
file is updated. Within the file the data is sorted which makes the
location of data items by binary chop very easy.

Variable length data is stored in a hashed storage system based on the
dynamic hashing scheme of Larson [6]. The hashing scheme assigns a unique
value to each object stored within it. This unique identifier has a fixed
length and is called a value set identifier (VID). Duplicates are not
stored and therefore two objects which are the same will be given the same
VID. This gives a quick test for equality for variable length objects,
which is often all that it is required to know. This storage regime can be
used to store arbitrary sequences of bytes.

-6 -

3.2 Relations and Inversions

Relations are stored as indexed sequential files, with tuples of fixed
size. Variable length data within a tuple is stored in the hashed storage
system and its VID is stored in the file representing the relation.
Typically the file representing a relation will be sorted on its primary
key fields, since this allows easy selection on key. However, there are
occasions when it is wished to access a relation other than by its primary
key. This occurs, for example, when per forming a join other than on the key
or checking a referential constraint (see section 4.4). For these reasons
CODD supports inversions. Relations are represented by a set of files
consisting of a primary version (sorted on the key of the relation) plus a
number of inversions. All alterations to the relation are automatically
per formed for all of the files representing it.

When an inversion is defined it is automatically loaded with the
relevant data sorted in the correct order. The database integrity scheme
described below ensures that, in the event of a system crash, alterations
are seen to occur to either all or none of the versions of a relation.

3.3 CODD Catalogue Structure

The structure of a CODD database is described by a normalised set of
relations, the system catalogue relations. Information about relations is
held in two relations. One, called RNAMES, contains the following
information:

(a) the name of the relation (this is the key of RNAMES)

(b) alist of pairs (column name, domain name) encoded onto a VID
(¢) the degree of the relation

(d) the key of the relation

(e) the cardinality of the relation

(f) insertion predicate for this relation, encoded onto a VID.

The second relation, called INVERSIONS, describes the physical storage
of the relation. INVERSIONS relates the relation name and a permutation
of its columns to a disc address, the relation name and permutation are the
key of INVERSIONS.

Similar catalogue relations are used to store the descriptions of
domains and referential constraints (see below).

The use of relations to store catalogue information has the advantage
that it requires no special storage structure for the catalogues. Also it
provides the ability to manipulate the catalogue relations in the same way
as any other relation in the database. However, since their use is highly
specialised they are usually manipulated by special purpose code.

3.4 Physical database integrity

The scheme for database integrity, which gives the facilities to commit
and abort transactions, is described fully in [5]. It is based on the use
of bitmaps to record the allocation of database pages, and on having a
special page (page zero) which defines the previous consistent database
state. Page zero is updated and written back when a transaction commits,
and it is only at this point that information about the old database state
is lost. Abort is achieved by restoring the DBMS's view of the database to
that recorded on the old page zero. This mechanism provides indivisible
updates and ensures that inversions will be maintained in step even over
system crashes.

3.5 Pipelines in CODD

Pipelines are a basic feature of CODD. A query is viewed as a directed
graph., The nodes of this graph represent the relational operations to be
performed and the edges of which represent pipelines passing data between
nodes. The nodes of the graph are implemented as coroutines which contain
the algorithms for the particular operation to be performed. This
structure operates as a demand driven computation pulling tuples along the
pipelines as required.

CODD provides facilities for dynamically modifying the executing
pipeline structure. In order to achieve this the DBMS maintains a model
representing the computation in progress. This technology was originally
developed for dealing with conditionals in queries, but as will be shown
in section 4.4 it and the rest of the pipeline technology is also useful
when referential constraints are being maintained.

4 TMPLEMENTATION OF CONSTRAINTS

This section shows how the various types of constraint discussed in
section 2 have been implemented in CODD. In particular it shows how the
storage structures and pipelines described in section 3 have been
exploited in this implementation.

4.1 An Example Database

This is part of a database describing a university:
Undergraduates: [Name | Supervisor, Tutor, Year, ...]
Graduate-students: [Name | Department, Supervisor, ...]
Lecturers: [Name | Department, Date appointed, ...]
Projects: [Title | Proposer, Description, ...]
Courses: [Name | Lecturer, ...]

Assignments: [Student, Project | Date started, ...]

Assign1: Assignments.[Student] ->> Undergraduates.[Name]
DELETION CASCADES
Assign2: Assignments.[Project] ->> Projects.[Title]
DELETION CASCADES
Exists-~Supervisor:
Undergraduates.[Supervisor] ->> EXACTLY ONE OF
(Graduate-students.[Name],
Lecturers.[Name]
)

Exists-Lecturer: Courses.[Lecturer] ->> Lecturers.[Name]
4.2 Domains

One way of defining domains in CODD is by writing a program which accepts
valid external representations of the domain elements and converts them
into a suitable internal representation. In addition to a program for
recognising the domain elements, a routine doing the reverse conversion
must be supplied. This routine is typically used when printing values.
Domains defined in this way are called base domains. Base domains are
assigned an internal type. As was noted in section 2.1 the type chosen will
depend upon, among other things, the orderedness or otherwise of the
domain.

There are four internal types, two of which are ordered and two of
which are unordered. The ordered types are integers and fixed length
character strings. The unordered types are arbitrary sequences of bytes
and boolean values.

The code for recognising and printing elements of a domain is known to
the database via the name of the domain. Given this name the DBMS can find
and load the required code. The runtime system of BCPL provides
facilities for these routines to be accessed and used. The binding between
domain and type is achieved by the command:

CREATE DOMAIN domain name TYPE internal type

g
CREATE DOMAIN number TYPE integer

Ideally programs such as 'number! should be part of the database rather
than the DBMS since the domains of a database can be application-specific
rather than general to all problems. Some such programs will be required
so commonly that they should be included as part of the database when it
is created; the domains 'numbers' and ‘'strings' are examples of such
domains.

The base domains provide the basis on which to build hierarchies of
derived domains, each with a base domain as its root. These are domains
defined in terms of previously defined domains by the command:

CREATE DOMAIN Domain name ON 0ld domain name FROM predicate
the '0ld domain name' may be either a base domain or a previously defined
derived domain. The 'FROM predicate' part of the definition may be omitted
or be a general condition which will restrict which values of the old
domain are permissible in the new domain.
Examples:

(a) CREATE DOMAIN project-—numbers ON numbers FROM [1..10000]
This defines the domain 'project-numbers' to be those integers in
the range 1 to 10000.

(b) CREATE DOMAIN age ON numbers
CREATE DOMAIN distance ON numbers
These two domains have the same set of values but are regarded as
having different meanings.

(¢) CREATE DOMAIN departments ON strings FROM "Physics" |
"English"
This defines the domain 'departments' to contain only the strings
"Physies" and " English",

The domain predicates are 'compiled' into a format known as indirect
threaded code. This is an interpretable code format based on that used in
the implementation of macro-SPITBOL [3]. The threaded code for an
expression 1is essentially post-fixed polish representation of the
expression, with one extension described below. The interpreter uses a
stack for intermediate results and literal data is included in line., The
interpreter itself is a branch table indexed by the function codes in the
string to be interpreted, and its performance is good in that it evaluates
even quite complex predicates quickly. The predicates themselves are
stored in the database in the hashed storage system, from which they are
unpacked when they are needed. The same technique is used for the
construction of predicates for the relational operation of selection.

I mentioned above that there is one extension to the predicates being
simple post-fixed polish representations of boolean expressions. This
extension 1is best described by considering as an example the domain
'departments' defined above. Suppose that the list of names of departments

- 10 =

had contained several hundred entries instead of just three. It would be
quite inefficient to implement a predicate that performed the test on
whether a string was a valid department name as follows:

TEST department.name = department1 THEN success
ELSE TEST department.name = department2 THEN success

ELSE failure

It is much better to enumerate the set of valid department names in a file
and have an instruction in the threaded code of 'look up value in set'.
Such lists are stored in CODD as sorted lists of values in an indexed
sequential file. If the items are not of fixed length then a set of value
set identifiers is stored.

It should be noted that although 'enumeration' lists may look like
single column relations they are not treated as such, since unlike the
contents of a relation they represent a fixed part of the data model. That
is, their purpose and significance is different from that of tuples in
relations. In particular, the user is not free to add or delete values at
will from domains, although the database administrator may have need to do
so. These differences in 'meaning' should not, however, stop the use of
similar implementation techniques.

The information about domains is stored, like that for relations, in a
catalogue relation which forms part of the stored data model. This
relation, called DOMAINS, is defined as:

Domains: [domain name | Underlying domain name, Type, Predicate]
with the convention that for base domains

Domain name = Underlying domain name

In CODD the information about domains is used to check that:

(a) operations requiring matching domains have valid arguments;

(b) constant values, which are supplied as selection criteria, are
from the same domain as the attributes to which they are being
compared;

(¢) the values of the columns of a tuple are from the correct domain

when the tuple is being updated or inserted.

Some of the operations included under (a) are join, set union and the
definition of referential constraints.

- 11 =

4.3 Intra-tuple constraints

In the same way that domain predicates can be stored as interpretable code
within the database, so also can predicates representing intra-tuple
constraints. They are stored as an attribute of the RNAMES catalogue
relation, and are therefore part of the stored data model.

The update predicate forms part of the argument to the update component
of CODD. Instead of just performing the update the update program first
tests the new tuple value with the update predicate, for the relation
being modified, and the tuple is inserted or altered only if this test
returns 'true'; otherwise the update is rejected and an error message
produced. This use of update filters is similar to that described by
Stonebraker [111].

4.4 Referential Constraints

There are two components of CODD which are important for the maintenance
of referential constraints., These are:

(a) the update program

(b) a constraint checking program. This is, in some sense, a query that
is evaluated at the end of any transaction involving an update.
The result of this program determines whether to commit or abort
the transaction.

For their operation both of the above components rely on having a
representation of the dependencies between relations which are imposed by
the referential constraints. These dependencies constitute the reference
graph. Within a CODD database the reference graph is stored in two
relations, the reference graph relations, as proposed by Date. These
relations are defined as:

RGX: [Constraint name | Referencing relation name,
Referencing attributes, quantifier,
update rule, deletion rule]

RGY: [Constraint name, Referenced relation name |
Referenced Attributes]

The attributes REFERENCING RELATION NAME and REFERENCED RELATION
NAME are lists of column names held as value set identifiers, The
reference graph relations for the example database are shown in figure 1.

The syntax used to specify referential constraints to CODD is that
used for the examples in this paper. When a constraint is defined it is
checked that it is consistent with the stored data model. This requires
that the relations specified exist, that the referencing and referenced
attributes match in domain (the domain information being held in the
catalogues), and that the referenced attributes are the Kkey of the
referenced relation.

- 12 =

RGX:
Constraint Referencing Referencing Quantifier Update Deletion

Name Relation Attributes Rule Rule
Assigni Assignments Student EXACTLY ONE R C
Assign2 Assignments Project EXACTLY ONE R C
Exists- Undergraduates Supervisor EXACTLY ONE R R
Supervisor
Exists- Courses Lecturer EXACTLY ONE R R
Lecturer
RGY:
Constraint Referenced Referenced
Name Relation Attributes
Assigni Undergraduates Name
ASsign2 Projects Title
Exists- Graduate-Students Name
Supervisor
Exists- Lecturers Name
Supervisor
Exists- Lecturers Name
Lecturer

In RGX for the update and deletion rules R is RESTRICTED and C is
CASCADES.

Figure 1: The Reference Graph Relations for the Example

When a relation is to be updated the information in RGX and RGY is
used to build an in-store representation of the dependency structure
applying to the relation. This data structure is a directed graph with two
types of node. One of the types of node represents relations and the other
represents constraints. The constraint nodes contain information about
quantifiers and update and deletion rules. Relation nodes only point to
constraint nodes and vice versa.

The structure of a relation node is:

(a) relation description as obtained from the RNAMES catalogue

(b) number of references from this relation

(e¢) number of references to this relation

(d) for each constraint node for which this relation is the
referencing relation:
(1) pointer to relevant constraint node
(2) referencing attributes

(e) for each constraint for which this relation is the referenced
relation:
(1) pointer to the relevant constraint node

- 13 -

The structure of a constraint node is:

(a) pointer to referencing relation node
(b) number of referenced relation nodes
(c¢) update rule
(d) deletion rule
(e) quantifier
(f) for each referenced relation node:
(1) pointer to referenced relation node
(2) correspondence between referencing attributes and the key of
the referenced relation,

This structure is used to control the cascading of alterations and
deletions and the testing of constraints at the end of a transaction. The
structure forms part of the environment in which both the update program
and the constraint checker function.

The update program takes as input a stream of tuples to be inserted,
deleted or altered and produces two outputs, These outputs are:

(a) a stream of keys, to be passed to the constraint checker at the end
of the transaction;
(b) a stream of tuples which are the cascaded updates or deletions.

The constraint checking program takes as input a list of objects of the
form:

(pointer to constraint node, l1ist of tuples)

one for each constraint to be checked. The constraint node is used to
determine the referenced relations and the relevant quantifier. The 1list
of tuples is produced from the referencing attributes of the referencing
relation and will be a list of keys of the referenced relation. Consider
as an example the constraint node for the constraint 'Exists-Supervisor!
in the example of section 4.1. For each input object the constraint checker
verifies that the referential constraints are satisfied. If any constraint
is violated the whole transaction is aborted, otherwise it is committed.

The keys to be checked for referential constraints are passed between
the update program and the constraint checker by means of a flexible
buffer. This is a pipeline which can store, in principle, an unlimited
number of tuples, those tuples which cannot be held in store being written
to disec.

Exactly how the cascading of updates is organised depends on the
structure of the part of the dependency graph representing the cascades

required for a particular update. There are three classes of graph:

(a) trees
(b) cyclic graphs (eg. a relation referencing itself)

- 14 -

(¢) acyclic graphs which fork then join again.

In case (a) it is possible to build update nodes for each relation in
the cascade and connect them to their producers by pipes which will carry
the tuples they are to insert or delete. In this case all of the updates
can be performed in parallel since they do not affect each other. Note
that not all of the update nodes may in fact operate since some may get no
input.

For case (b) not all of the update nodes can be built before the update
commences. More structure will be built if the output of cascaded tuples
from the cycle is not empty.

In both of cases (a) and (b) standard CODD pipeline technology can be
used to organise the pipes required between update nodes in cascades.
Cascades with multiple consumers are dealt with by the use of COPY nodes.
These are pipeline nodes which produce two output streams each of which is
a copy of a single input stream. The facilities available for
conditionally building pipeline structure, which was developed to
incorporate data dependent tests into queries, are used to deal with
cyclic graphs. In this case flexible buffers are required to hold cascaded
tuples until the next level of update routines are built and activated.

There are potential problems with case (c¢) which have not yet been
fully investigated. These are:

(a) if two streams of cascaded updates are to be applied to the same
relation because the cascade graph had previously forked, the
result of these updates might depend upon the order in which they
are applied;

(b) if two streams, one a cascade of deletions and the other a test for
deletion RESTRICTED are incident on the same relation, the
result may depend on whether the deletions or the test is
per formed first.

In constructing the graph representing the cascades which are to be
per formed, the tree is always terminated either by UPDATE/DELETION
RESTRICTED or when the referenced relation is not itself referenced. As
mentioned above, however, not all the cascades may in fact occur since the
altered or deleted tuples may not be referenced, and hence not produce
tuples for the cascade.

In the maintenance of referential constraints the presence of
inversions allows the tests for the update and deletion rule RESTRICTED
to be made easily. Also it is possible to decide on which tuples to add to
a cascaded stream very easily. Therefore, the definition of a referential
constraint causes the automatic creation of the necessary inversions. For
example, the definition of the constraint 'Assign2' would cause an
inversion of 'Assignments' sorted on 'Project' to be created.

- 15 -

4.4,1 Dynamic Definition of Referential Constraints

In the above discussion it has been tacitly assumed that the data model is
a static object. Indeed in an ideal world this would be the case: the data
model would be defined once (correctly) and would never need to be
altered. However, the world is not like this. Therefore, it must be
possible to create new constraints and delete old ones. Deletion of old
constraints causes no problems. However, the creation of a new constraint
requires that the current database state be tested to check that it
satisfies the new constraint. The definition of a new constraint must,
therefore, automatically generate such a check, and produce output
indicating in what ways, if any, the current state violates the constraint.

4,4,2 Replacing NULLIFIES by a computed value

This requires some way of storing in the database the rule for deriving
the computed value. In CODD this rule will be in the form of a relational
algebra expression. Such expressions can be represented by prefixed polish
strings which can then be stored in the value set mechanism and their
unique identifiers stored in RGX instead of the simple update or deletion
rule. A query can be constructed from the prefixed polish string. If the
value which this query will yield is required then the query can be
evaluated in the same way as any other query.

4.4,3 References to non-key attributes

A solution to this problem, which was described in section 2.3.2, can be
illustrated by considering the constraint 'Exists-Lecturer' in the example
of section U.1. Suppose that there is also the constraint that each
lecturer must give at least one course.

In the scheme described above this is easily tested since the inversion
required already exists to deal with the alteration and deletion of tuples
in 'Courses' under the constraint 'Exists-Lecturer'. Therefore all that is
required is an indication in the catalogues to indicate that whenever a
tuple is inserted into 'Lecturers' or deleted from 'Courses' the constraint
that every lecturer must teach one course is to be tested. The constraint
checking program can easily be extended to perform this check at the same
time as other referential constraints are checked.

4,5 Generalisation

Given the mechanism described in section 4.4, it is possible to maintain
generalisation hierarchies provided that a suitable dependency graph can
be constructed from the catalogue relations which represent the
generalisations,

A suitable representation for the hierarchy is:

Gen-Links: [Child, Parent | 1]
Gen-Nodes: [Node | Partition/ Cover]

- 16 -

where there is a tuple in 'Gen-Nodes' for every type which is the supertype
of a generalisation. The attribute 'Partition/Cover' specifies whether or
not the populations of the subtypes of this type are disjoint.

From the tuples of these two relations the required dependency
structure can be constructed since:

(a) the update and deletion rules are always CASCADES

(b) the referencing and referenced attributes, since they are always
the keys of the relations representing the subtypes and
supertypes, can be recovered from the catalogue representing the
relations.

5 CONCLUSIONS

It has been first shown how facilities for describing some powerful data
structuring primitives have been incorporated into a particular DBMS, and
further how the descriptions they produce can be stored in the database
itself. This is an important step forward in the incorporation of semantic
information into the database. The centralised database description
produced is in keeping with the idea of a conceptual schema. Secondly, some
extensions to the idea of referential constraints have been presented and
it has been shown that these fit into the implementation described.
Thirdly, the paper has demonstrated that generalisation hierarchies can be
specified and maintained by using referential constraints as the basic
building blocks.

It should be noted that in performing the work described a number of
features of the particular DBMS used were of great help; in particular,
the pipeline structures which were available. These pipelines provided a
natural way to express the cascading of updates required for the
implementation of referential constraints. This demonstrates that
pipelines are useful for the maintenance of constraints during update as
well as for retrieval.

Although, as Codd has stated in [1], the task of capturing the meaning
of data is a never-ending one, the work described here represents a useful
contribution.

Acknowl edgements
I would like to thank M.A. Gray, C. Jardine, Dr. J.K.M. Moody and

Dr. K. Sparck Jones, both for reading drafts of this paper and for
participating in discussions on the ideas described herein.

- 17 -

REFERENCES

£1]

(21

(31

[u]

(51

(61

t71]

8]

[9]

(101

[11]

Codd E.F.
Extending the relational model to capture more meaning.
ACM: Transactions on Database Systems Vol 4 No 4 pp397-434 (1979)

Date C.J.

Referential Integrity.

Proceedings of the 7th International Conference on Very Large
Databases, Cannes, France. pp2-12. (1981)

Dewar B.K. and McCann A.P
MACRO SPITBOL: A SNOBOLY Compiler
SOFTWARE: Practice and Experience Vol 7 pp95-113 (1977)

Hammer M. and Mc Leod D.J.
Database description with SDM: A Semantic Data Model
ACM: Transactions on Database Systems Vol 6 No 3 pp351-386 (1981)

King T.J.

The design and implementation of a relational database for
Historical Records.

Ph.D. Thesis. University of Cambridge (1979)

Larson P.A,
Dynamic Hashing
BIT Vol 18 pp184-201 (1978)

Mc Leod D.Jd.

High Level Domain Definition.

ACM: SIGPLAN-Notices Vol 11 Special issue, Proceedings of the
Conference on Data: Abstraction, definition and structure ppl7-57

Moody J.K.M. and Richards M.
A coroutine mechanismn for BCPL

SOFTWARE: Practice and Experience Vol 10 pp765-771 (1980)

Shipman D.W.
The functional data model and the data language DAPLEX.
ACM: Transactions on Database Systems. Vol 6 No 1 pp140-173 (1981)

Smith J.M. and Smith D.C.P.
Database Abstractions: Aggregation and Generalisation.
ACM: Transactions on Database Systems. Vol 2 No 2 pp105-133 (1977)

Stonebraker M,

Implementation of Integrity Constraints and Views
by Query Modification,

Proceedings ACM-SIGMOD Conference 1975 pp65-78

- 18 -

