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Abstract

This paper describes a knowledge representation strategy, for mechanical devices, which com-
bines Knowledge of Structure and Knowledge of Purpose. Knowledge of Purpose specifies
how devices are expected to behave and Knowledge of Structure details how devices are con-
nected. Knowing ‘correct’ behaviour (Knowledge of Purpose) it is possible to usefully com-
ment on any generated behaviour, predicted or actual. Generation of behaviour is a bottom
up process (from components to systems) whereas behaviour evaluation is top down (from
systems to components), Common purpose is used to group devices into systems.

The core evaluation activity is the generation of an envisionment graph (similar to that de-
scribed by deKleer and Brown [deK84]). The complete graph represents the full set of pre-
dicted behaviour states for the represented device. These behaviour states are compared with
the Knowledge of Purpose behaviour descriptions; if conflicts are found then these are de-
scribed and the structure and purpose descriptions of the device are scanned to establish the
source of the conflict. The ideas discussed in this paper are implemented in the Doris system
which is described.




1 Introduction

-~

The design of mechanical devices usually follows a particular, describable pattern. First the in-
tended, correct behaviour of the device is described: this is the purpose which the device should
achieve. From the purpose description a structural description of a device which will achieve the
purpose is generated. Without both Knowledge of Purpose and Knowledge of Structure it is not
possible later to perform some of the most basic tasks. For example, if only Knowledge of Pur-
pose is held then it is possible to comment on the actual behaviour of a real device but it is not
possible either to predict behaviour or to locate the source of a conflict when incorrect behaviour
is detected. Having only Knowledge of Structure it is possible to predict behaviour but it is im-
possible to judge this or actual behaviour. Therefore it is important that both types of knowledge
are represented if a useful device representation strategy is to be developed.

A representation strategy which holds Knowledge of Purpose and Knowledge of Structure has
been developed. The purpose information, which drives the design task, is represented separately
from the structural information. This separation is explicit because of the advantages which accrue
both at the behavioural level and at the structural level.

At the behavioural level concentrating on describing purpose provides-a clean dcscrfption of cor-
rect behaviour. Knowing correct behaviour enables us to comment on generated behaviour (pre-
dicted or actual) of a device, whatever the behaviour. If the resultant behaviour is incorrect (fe it
conflicts with the purpose) then it is the way in which this behaviour deviates from the purpose
(the correct behaviour) which is both interesting and important. If there is no conflict, the purpose
description is then also the behaviour description.

There is no need to describe both incorrect and correct behaviour since the one is the complement of
the other: by knowing one the other is also known. Having to describe only the correct behaviour
is a significant positive feature of this system since it is very much simpler and more efficient to
describe how a device should behave than to have to try to predict and describe the full range of

incorrect behaviours.

At the structural level we model devices so that the model behaves in a manner similar to actual
devices. Actual devices know nothing of the system around them and it is only through their
connections that their behaviour is effected and that they influence the wider world, ie a device’s
behaviour is'a functioﬁ of its inputs. From this a notion of the behaviour of a generic device has
been described in terms of the state of its inputs. Thus the behaviour of any device can be predicted

by knowing its connections and its inputs. The structural description is device centered in that for
| every device only local information is held. This approach has had two important benefits. First

it keeps local information local, ie in order to describe one part, knowledge of any other part of
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a system need not be known or understood, and secondly a library of standard parts can be used
in much the same way as an engineer draws on standard parts from his workshop to assemble a
particular system.

This paper concentrates on describing the representation introduced above as it relates to the de-
sign evaluation task in particular. The design evaluation task checks that the structural design
describes a device which will achieve its stated purpose. For sirﬁplc systems design evaluation
is a simple task. It is possible for an individual to conceptualise all the different scenarios which
could affect a simple device (eg a battery, switch and light system) and fully understand how it
would behave under these different scenarios. However with even a small increase in complexity
understanding design evaluation rapidly becomes a non trivial task. The ideas expressed in this
paper are intended to provide a means by which this aspect of device understanding can be au-
tomated, thus providing a systematic mechanism for evaluating the logical aspects of the design
of mechanical causal systems. These ideas described here have been implemented in the Doris
system, as has the example presented.

The development of the ideas embodied in the Doris system follows from the work done by the
Qualitative Reasoning community {deK84, For84, Kui84], particularly the component centered
approach described by deKleer and Brown [deK84]. We have found the notions of mythical and
normal time very useful but do not follow their No Function in Structure principle. Atthe structural
level local knowledge is kept local but the purpose descriptions are not restricted in the same
way. It is the context in which a device exists which affects its behaviour. It is, therefore, not
possible to describe behaviour without using knowledge of its context. Mythical and normal time
are simply means which enable devices, which operate in parallel, to be modelled by a sequential
processor. We do not advance time by set time units but follow the approach used in QSIM [Kui86]
of advancing time by a variable amount sufficient to allow an interesting qualitative change to
occur. We make use of qualitative values and reasoning in the Doris system, There has been some
- expansion in the flexibility of these values to allow a description of their type and rimge as well
as the relationship between the values within the set. This gives the designer more freedom to
describe precisely the values which are significant in his system. However, we do not describe
purpose in terms of qualitative differential equations; rather we have chosen to describe purpose
im a manner similar to the device understanding work of Sembugamoorthy and Chandrasekaran
[Sem86). We construct an envisionment graph which is similar to that described by deKleer and
Brown. The envisionment graph is a directed graph where the nodes represent different behavioral
states and the arcs represent behaviour state transitions. The envisionment graph is complete in that

all reachable behaviour states are represented and no unattainable behaviour states are included.

As already stated above we have also been influenced by the ‘Device Understanding’ community,



particularly by the functional representation work of Chandrasekaran and his colleagues [Sem86,
Cha86, Keu89, Goe89]. However, rather than beginning with descriptions of the device’s actual
behaviour we generate the behaviour states and their transitions in an envisionment state graph.
Purpose describes the desired behaviour rather than the actual behaviour. We therefore provide a
‘lower level’, more static description of the device specifying only its structure and its purpose. Itis
the analysis of the envisionment graph, together with the Knowledge of Structure and Knowledge
of Purpose which enables us to perform the task of design evaluation. The advantages which
are to be had over the functional representation work is that the knowledge which needs to be
captured is articulated during the design process and remains constant for the duration of the life
of the device, except of course during redesign. This means that when a device begins to behave
incorrectly, perhaps due a to broken component, no new behaviour description need be externally
described. Only the status of the observable variable values are required. Using these values and
the device representation the Doris system can describe the nature and location of the fault,

The important points described here are:
* That device centered, structural knowledge provides a good basis for predicting behaviour,

e That Knowledge of Purpose describes the intended and ‘correct’ behaviour of the device
and can be used to evaluate generated behaviour - predicted or actual.

e That the manner in which Knowledge of Purpose is used removes the need to describe

‘incorrect’ behaviour.

o That this representation strategy provides a useful basis which will support several different
applications without requiring any alteration of the device descriptions.

In order to illustrate the ideas presented in this paper we shall use a model of a simple greenhouse
heating system. The purpose of this system is to maintain a higher than ambient temperature in a
greenhouse during particular periods. The system consists of an electrical timer and an environ-
ment control system. The environment control system itself consists of a thermostat and a heater.
Figure 1 shows how this system is connected. This example has been implemented in the Doris
system and the results presented are those generated by Doris.

Obviously there is a problem with using a simple system for the purposes of illustration, The intent
of the ideas described here is that the device to be evaluated should be more complex than can be
comfortably handled by an individual. However, this simple greenhouse system is used to illustrate
the ideas rather than as an example of the sort of complexity which Doris is intended to handle.
The most significant system, for example, which has been considered thus far is the hydraulic
system for the British Aerospace 146 passenger jet. This model is still under development. This

system has a high degree of redundancy (three pressure systems) and consists of many devices (>40
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Figure 1: Structure of the Greenhouse System

important devices) and many variable attributes (pressure, flow rate and fluid level are the most
important of these but the relationship between the position and settings of the spoilers, rudder etc
are also monitored).

This paper is organised along the following lines. The next two sections describe the nature and
representation of Knowledge of Structure and Knowledge of Purpose. Following that is a descrip-
tion of the task which Doris has been designed to execute. The final two sections consider other
applications (simulation, fault diagnosis and explanation) and discuss the results generated from
this work,

2 Knowledge of Structure

2.1 Devices

Knowledge of Structure is simply the knowledge of what devices form the overall system and how
they are connected. A device is either a system or a component. A system device consists of other

systems and components. Components are simple, indivisible devices.

All devices share a common structural framework, see Figure 2. They receive inputs and produce
outputs vianamed ports. The originating device and output port from which the input is sourced is
declared with each input port. A device may also embody a certain amount of logic, which we call
control. Atany time, a device is in one of three states - quiet, alert or energetic - and its behaviour
is a function of its inputs and control. The device is quiet when its inputs are not available, alert
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Figure 2: Device structure

when its inputs are available but control resolves to not true, and energetic when its inputs are
available and its control resolves to true. The device as described here is what we regard as the

generic device.

Devices are connected together by connecting their input and output ports. Every device also has
associated with it a purpose. The actual purpose description is held separate from the structure
description for reasons which are discussed in the following section. Within the structural de-
scription there is only an identifier which provides the link between the structural description and
anamed purpose description.

The actual representation of the greenhouse system's thermostat is shown in Figure 3.

device (d_greenhouse_thermostat, component,
p_greenhouse_thermostat,
control ([equal (v_greenhouse, temp, low)l]),
input ({port (elec, d_environ_control, elec)]),
output ([port (e_out)]})).

The name of the device is ‘d.greenhouse_thermostat’. Itis a "component' and has a purpose
‘p.greenhouse-thermostat’ whichis defined elsewhere. This device also embodies some internal
controllogic-‘equal (v.greenhouse, temp, low)’.Ithasanamedinputport-‘elec’-which
isconnected tothe *e Lec' port of the device 'd.environ.control’. Ithas one output port-‘e_out’.
The thermostat is energetic when the temperature is low and when its electrical input is available,

Figure 3: A Component Device

Our use of the term structure is perhaps narrower than that normally employed. We do not repre-
sent each device’s behaviour explicitly, but by knowing the behaviour of the generic device we are
able to determine an actual device's behaviour given the status of its extemal influences. Thus our
knowledge of structure holds specific physical information about particular instances of devices
which allows their behaviour to be determined, as dictated by their external influences and internal




logic.

2.2 Variables

In addition to the structure of devices we need also to model the changes of the interesting variables
in a system. In the greenhouse system we are interested in temperature (in this example called
‘v.greenhouse, temp’) and time (‘v.clock, time'). In addition to specifying the way in
which values change, we also need to represent variable type, initial value and whether the value
is generated intemnally or externally. Variable type is either qualitative, quantitative or binary.
Figure 4 presents the information held for the greenhouse temperature attribute.

variable(v_greenhouse, temp, qualitative, low, internal,
logic({energetic(d_greenhouse_heating)),
increase_value(v_greenhouse, temp),
decrease_value(v_greerhouse, temp))).

‘v.greenhouse, temp'is a qualitative variable, It has an initial value (for the purposes of envi-
sionment) of * Low". Its value is affected by devices *internal’ to the greenhouse system thus it is
possible to determine how the value will change solely by understanding the relationship between it
and the devices within the greenhouse system and without any need to consider possible external influ-
ences. The ‘1logic’ structure should be read as an if-then-else statement. When the device ‘d_¢reen=-
house.heating’ is energetic then ‘v.greenhouse, temp' will increase else it will decrease,

Figure 4: An internal, qualitative variable

For qualitative variables we have also to specify which values we are concemed with and how
they are related to each other, For example, Figure 5 shows this information for ‘v.greenhouse,
temp', It is possible to define qualitative variables where there is no distinction made between the
decreasing, steady and increasing states or where these are only significant for the intermediate

values, ie not for those at the extremes.

range (v_greenhouse, temp, [low, normal, highj, [r.r}).

*1ow’ is less than ‘normal’ which is less than *high’. The fourth parameter is used to describe the
nature of the qualitative values. A list indicates that the values have distinct increasing, decreasing and
steady components to them. The identifiers in the list may be either ‘p’ (point) or ‘x’ (range), these
are used to give particular information about the character of the lowest and highest qualitative values.
‘p’ indicates that the associated end value'’s component parts are not significant and *r* that they are,
A ‘one’ in place of the list would have indicated that only the actual value without the direction of
movement is significant.

Figure 5: Qualitative variable range

It can be useful to know the relative time taken for different variables to change value. It can be
specified that variables will change in an order of magnitude faster ‘higher_order’ or with the
same order of magnitude ‘same_order’. Figure 6 shows how the fact that within the greenhouse
system it is expected that temperature will change faster than the value of ‘v_clock, time’.
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higher order((v_clock, time), (v_greenhouse, temp)).

‘v.greenhouse, temp’changesstatus anorder of magnitude faster than‘v.clock, time’. This
means that between changes in ‘v_.clock, time’,‘v_greenhcuse, temp’ should have the op-
portunity to change at least once, ‘v.greenhouse, temp’may in fact maintain the same value but
nevertheless it must be recomputed before ‘v.clock, time'is again considered by the evaluation
system,

Figure 6: Relative time for variable change

3 Knowledge of Purpose

Knowledge of Purpose is associated with each device. Knowledge of Purpose specifies a device’s
intended behaviour and so provides the basis on which to evaluate either its actual or predict-
ed behaviour. It is important to emphasise that purpose specifies intended behaviour and does
not describe actual behaviour, actual behaviour being generated during envisionment. The struc-
tural representation of the thermostat was shown in Figure 3, it referred to a purpose description
‘p_greenhouse.thermostat’. This purpose description appears separately from the structural
description of the device (see Figure 7 for ‘p_greenhouse.thermostat’ description). This fea-
ture mirrors our perception that structure and purpose descriptions are the product of different
stages in the overall design process. Even during redesign it is possible to see how changes which
are made to purpose descriptions are handled separately from changes made to the structural de-

sign,

purpose (p_greenhouse_ thermostat, weak,
what ([keep (v_greenhouse, temp, normal)]),
when ([active (d_greenhouse_thermostat)])).

The purpose ‘p.greenhouse.thermostat’ is satisfied when the device ‘d_greenhouse-
.thermostat’ is active (i alert or energetic) and the variable ‘v_.greenhouse, temp’isnormal
The strength of the purpose logic is ‘weak’ which signifies that the what must be true if the when is
true but if the when is not true then no judgement is made about the status of the what logic. If rather
than ‘weak’ the strength were ‘st rong’ then either the what must be true when the when is true or the
what must be false for the purpose to be satisfied.

Figure 7: Purpose description for the greenhouse thermostat

A vocabulary of terms such as ‘keep’ and ‘active’, for the purpose of evaluating the status of
variables and devices, has been defined. Keep is satisfied if the variable holds the desired value or
if it is changing towards this value. Since we know the range of values for the variable and how
they are related to each other it is possible to check the direction of change. A device is active if
its control logic resolves to true; it is thus active when it is either alert or energetic, ie when it is
not quiet. The flexibility of the representation allows us to define device specific terms if required,
as well as to alter the default descriptions provided.

Knowledge of Purpose also provides the basis on which several devices are grouped together to
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form a system - a complex device. Recognising this feature of systems enables us to develop
hierarchically oriented representations of complex devices. The advantage of this approach is
that for very large and complex systems we are able to examine parts without being forced to
model the whole. Thus if a system A is made up of sub-systems I, J, and K and we know that
these sub-systems behave as expected, they may be represented as simple, component devices for
the purpose of describing A as well as for examining the behaviour of A. This is a completely
natural approach, we do not describe the behaviour of a power station starting with descriptions
of the smallest components. Rather we describe its purpose and, if required, how its different
sub-systems combine to achieve this. If more detail is required we explain how these sub-systems
behave in terms of their purposes and their parts. In the Greenhouse system, the fact that the timer
and the environment control system combine to achieve the greeﬁhouse system's purpose enables
us to group them together into a named, complex device.

3.1 General Engineering Techniques

System Device

=

g_control D with C
N D

Spaces for Systems, Components
or Assumptions to be connected

general engineering {g_control_D with_C(D, C),
what ([output_port (C, Out), input_port (D, _, C, Out)]),
when ({])).
general engineering(g_control_D_with C(D, C),
what (active (D}), . ]
when ([output_port (C, Out), input_port (D, _, C, Out),
avail (C, Out)})).

This template represents an arrangement of devices where a device D is controlled by controlling one
of its inputs using a device C., The devices D and C can themselves be either systems, components or
assumptions,

Figure 8: General engineering template

Common purpose allows us to group components together and leads to the last important type -
of knowledge which we consider and represent. The way in which devices are connected influ-
ences the manner in which the whole system will behave. In certain instances the manner of their
interconnection follows some generally accepted principle. For example, an accepted way of con-
trolling the behaviour of a device is to control one or more of its inputs (the actual representation
is shown at the bottom of Figure 8). We have taken this notion of * general engineering techniques’
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and included it within the description of system devices.

General engineering templates provide designers with an arrangement of devices which is already
understood. The greenhouse heating system, as shown in Figure 9, makes use of two templates.
The first is that we can control the environment control system. by controlling one of its inputs
(electricity) by using a timer. The other template used embodies the knowledge that a variable
(temperature) can be kept constant if there is a device (the thermostat) which will measure its value
and if there are two devices which will i‘espectively raise and lower the temperature. Time and
temperature are variables which influence the behaviour of the devices ‘Timer® and ‘Thermostat’
* respectively.

O)
|To keep temperature constant at certain timesl

: :
~

|To_keep temperature constant| *

Thermostat [Cooler]
st

|The Greenhouse never becomes too hot}

Time Temperature

8Greenhouse System . . ﬁ] = System Device

B =~ Component Device
Environment Control System = Assumption

Figure 9: Greenhouse system engineering

The fact that in this system the cooling system is represented by an assumption rather than by an
actual device is discussed in the next section.

3.2 Assumptions

Apart from recording the purpose of devices which form part of a system the designer may some-
times incorporate assumptions into the system'’s design. In understanding how the device should
behave and trying to explain the reasons for any deviation from this expectation it is often useful
to have these assumptions explicitly recorded. The overall purpose of the\greenhouse system is
to maintain a higher than ambient temperature at 'c¢xtain times of day. Thus the expectation is
that the greenhouse need never be cooled and so no cooling component included, only a heater.
Therefore the cooling device is replaced by the explicit assumption the greenhouse never becbmes
too hot (as shown in Figure 9). For the Greenhouse systém to bchavc‘g:om:ctly this assumption
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must always hold true. The logic for assumptions (as illustrated in Figure 10)works in the same
way"as that for purpose descnpuons

assumption (d greenhouse _cooling,
what ([decreasing (v _greenhouse, temp)]),
when ([not (energetic (d |_greenhouse_heating))})).

When ‘d-greenhouse_heating’ is not energetic then ‘v_greenhouse, temp' should be de-
creasing,

Figure 10: Cooling assumption

Comment

" Knowledge of Purpose is the basis on which the structural design is developed. The designer’s
task is to produce a structural design which satisfies the specified purpose. The specification of
the structural description and the purpose description are the results of different phases in the
design process, even if they both come from the same source. During the structural design it often
becomes apparent that certain objectives are unattainable angi then either the intended purpose
must be modified or the structural design changed, Even then the process of formulating a different
structural design is distinct from the purpose modification process. Therefore we found it natural
to clearly separate (physically as well as logically) Knowledge of Purpose from Knowledge of
Structure,

4 Doris

The object of the Doris system is to evaluate the behaviourof devices, checking that their computed
behaviour does not conflict with their specified purpose.

We have followed the approach of deKleer and Brown [déK84] with respect to the generation of the
envisionment graph, In addition, as each new node is added to the envisionmient graph the actual
behaviour of the devices is determined and checked against their purpose. If no conflict is detected
the next node is generated until all nodes have been generated (eg see Figufe 11). If a conflict is
discovered, the envisionment process is halted and Doris identifies, as closely as possible, where

- in the system the conflict originates. The following two subsections describe these tasks.

Y
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4.1 Envisionment

The envisionment process has two distinct phases: the time during which devices change state and
the time during which variables change state. At each node the new variable values are generatéd
first and then the devices allowed to change state. Obviously in the.real world these two types of
changes occur simultaneously. However the limitations of a sequential evaluator impose certain
restrictions on the way the real world can be modeled, therefore a notion of sequence has been im-
posed. Given that the time taken for variables to change is usually long compared to the time taken
for devices to change it is not unreasonable to make this distinction. DeKleer and Brown [deK84]
introduced the terms normal time and mythical time to describe these different time periods.

During normal time the system generates new nodes. This is done by allowing a single variable
(chosen from the list of variables which are in a position to change) to change value. If # variables
potentially will change at a given node then there will be a branching factor of » at that node. As
- discussed earlier, variables change value according to the logic set out in their definition. Once a
new node has been created mythical time is invoked and the devices change state.

Those devices which use (in their control logic) the most recently changed variable are updated
and if their behaviour changes then those devices to whom they are connected and those systems
of which they form a part, are also updated. Mythical time continues until equilibrium is reached.
This is essentially a bottom up process, from components to systems. However as the status of
output ports change so the behaviour of connected devices on the same level of the hierarchy, also
change. If these are systems devices then these changes are propagated down to the system's parts.

4.2 Purpose Analysis

The knowledge contained within the purpose description details certain behaviour patterns which
must hold true if the device is to achieve its purpose. Therefore at every node in the envisionment
graph this logic must be true. Purpose is described in the same terms as are used to define the
status of devices and variables. For example, ‘keep’ and ‘active’ used in Figure 7 are defined
using the language introduced in Section 2.

A number of approaches could be used to check that there is no conflict between the behaviour
of a system and its putpose. Rather than checking every device at every node in the graph, the
default method is to check that the purpose of the highest level device is satisfied. If there is no
conflict at this level its parts are not examined since the assumption can be made that they are also
achieving their purposes. This feature has been introduced for reasons of computational economy,

but at the same time it is our opinion that this is a natural problem solving strategy.
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Itis possible to force a more exhaustive examination of the device and its parts by specifying which
additional devices should also be checked. In systems which have built in redundancy, knowing
that parts of the system may be failing even though the main system appears to be performing
satisfactorily is an important consideration when analysing device behaviour. Of particular interest

in such systems is the robustmess of the overall system when failures occur.

If a conflict is detected, the reaction is always the same. The device hierarchy is unpacked, and an
attempt is made to identify as closely as possible the source of the conflict (see Figure 12). If the
conflict is associated with a system device (rather than a component) the parts of the system are
cach analysed. This process recurses down the hierarchy until either the problem is associated with
a component or until no further conflicts are found. If no further conflicts are found the problem
is at the systems level, ie the parts do not combine to achieve the desired behaviour through some

fault in the engineering.

4.3 Example - The Greenhouse System

Figure 11 shows the envisionment graph produced for the greenhouse system. All nodes have been
generated and no conflicts were found. The order in which the.nodes are generated does not affect
the shape of the graph. Doris generates the envisionment graph depth first which reflects imple-
mentation issues rather than any envisionment principle. The inner cycle represents the behaviouxj
when the ‘timer = on’, ‘temperature’ cycles between ‘low’ and ‘normal’. The outer cycle
represents the behaviour of the greenhouse system when ‘time = off’, ‘temperature’ con-
verges on ‘low’. The behaviour of ‘v.clock, time’isinfluenced by factors outside the green-
house system and thus at every node it may change value, thus the bidirectional links between the

inner and outer cycles.
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——p-=Direction of change

0 timer = off temp = [low, 0]} 6 timer = on temp = [normal,O]
1 timer = off temp = [low,-] 7 timer = on temp = [normal, -]
2 timer = on temp = [low, -] 8 timer = off temp = [normal,-]
3 timer = on temp = [low, O] 9 timer = off temp = [normal,O}
4 timer = on temp = [low,+] 10 timer = off temp = [normal,+]
5 timer = on temp = [normal,+] 11 timer = off temp = [low,+]

Figure 11: Greenhouse system envisionment

4.3.1 Scenario 1

Figure 12 illustrates the reaction when a conflict is detected. First the conflict is reported at the
‘d.greenhouse_system’ level. The purposes of its parts are examined and a conflict is found
with the ‘d_environ_control_system’. Its parts in turn are examined and the ‘d.greenhouse-
_thermostat’ is found not to be fulfilling its stated purpose (NB the problem with the thermostat
is due in part to the description of its purpose, the real purpose is to output electricty when temera-
ture is low, the effect is to keep temperature normal). In addition it is reported that the connection
between the ‘d_greenhouse.-thermostat’ and the ‘ci.greenhouse_heating' does not corre-
spond with the ‘d_environ_system’ general engineering technique. The envisionment graph
produced up to the point when the conflict was found is also presented.
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W= o

"d_greenhouse_system" is not fulfilling its purpose
When it is active and "v_clock,time = on"
"v_greenhouse,temp should be kept normal and

v_greenhouse, temp should not become high" BUT
"v_greenhouse, temp is high and increasing”

"d_environ_control" is not fulfilling its purpose
When it is active and "v_clock,time = on"
"v_greenhouse, temp should be kept normal and
v_greenhouse,temp should not become high" BUT
. "v_greenhouse, temp is high and increasing"

"d_environ_control’s" general engineering principle:
"g_control D _with C(d_greenhouse_heating,d_greenhouse_thermostat
can not be satisfied because
"the output_port of d_greenhouse_thermostat is not
connected to the input_port of d_greenhouse_heating"

"d_greenhouse_thermostat" is not fulfilling its purpose
When it is active and "v_clock,time = on"
"v_greenhouse,temp should be kept normal and

v_greenhouse,temp should not become high" BUT.
"v_greenhouse, temp is high and increasing”

Current Status @
v_greenhouse, temp is [high,+)
v_clock, time is on

d_greenhouse_system is energetic
d_environ_control is energetic
d_greenhouse_heating is energetic
d_greenhouse thermostat is alert
d_timer is energetic

Conflict Reported
‘ 6 >:= { 5 ;:= 4

timer = off temp = [low,0)

timer = off temp = [low,~-] 4 timer = on temp = [low,+]
timer = on  temp = [low,-) 5 timer = on temp = [normal,+]
timer = on  temp = [low,O0] 6 timer = on temp = (high,+])

Figure 12: Doris output when thermostat unconnected
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5 Other Applications

The representation described above has been developed with a view to providing a general repre-
sentation of devices which can be used unaltered by other applications. Therefore no reference to,
or knowledge of the design evaluation task is made within the representation. Furthermore a seri-
ous effort has been devoted to maintaining a clear device centered approach, as well as maintaining
a clear separation between Knowledge of Purpose and Knowledge of Structure. Other applications
for which this representation is applicable are simulation, fault diagnosis and explanation.

5.1 Simulation

Simulation as defined here is the task of forming the envisionment graph, not the usual task which
maps the behaviour of a device in distinct time units along a straight line. The envisionmen-
t graph describes the whole set of the device’s behaviour states and as such it gives a full and
complete description of the device’s behaviour. Envisionment not only permits the exploration
of the behaviour of correctly functioning devices but also provides the means to determine the
consequences of induced faulty behaviour.

It is important that designers understand not only the correct behaviour of their devices but al-
so what behaviour would result given some failure within the device. This is especially true for
devices with built in redundancy where it is important to understand what consequences failures
within the device have on its overall behaviour. In these cases it is useful to understand the re-
lationship between redundancy and robustness. On safety critical systems this is especially true,
eg in aircraft hydraulic systems and nuclear power station cooling systems. Generating the envi-.
sionment graph for incorrectly working devices might therefore be as important as generating the
graph for correctly working devices as the graph provides a basis for understanding the behaviour

of the device even when it is faulty.

The problem illustrated earlier in Figure 12 was generated by introducing a fault into the knowl-
edge base, the connection between thermostat and heater was broken. The envisionment process
was halted as soon as the conflict was found. If purpose analysis is not required then it can be
suppressed and a complete envisionment graph will then be generated, whatever the behaviour of

the device.
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5.2 Fault Diagnosis

Fault diagnosis can be thought of as the other side of the design evaluation coin in that the task
is to identify which parts of a complex device are the source of unsatisfactory behaviour. During
design evaluation the task assumes that the components behave correctly (unless it is explicitly
stated otherwise) and it is their structural combination (the engineering) which is the focus of
attention. In fault diagnosis the intention is to provide some indication of the nature and locality
of the fault (thus focusing on devices) from a description of the external behaviour of the device. In
order to perform fault diagnosis it must be assumed that the model correctly represents the system
and that the model during design evaluation generates correct behaviour, Although the emphasis
is different during fault diagnosis and design evaluation the problem solving mechanics are the

same,

Our approach, as implemented in Doris, is to fix the variables to the observed values and then
to perform the evaluation process as described above. Any conflict is identified and reported in
just the same manner as above. Thus variable values are fixed to the values observed and an
envisionment graph is generated. If all variable values are specified then the graph will consist
of a single node. If a partial set of the values is provided then a partial graph is produced and
the behaviour of each node is examined. The process of design evaluation is equivalent to fault
diagnosis where no observed values are given.and so a full envisionment graph is generated.

An interesting feature of this approach is that only a description of correct behaviour is used. The
process of fault diagnosis describes how and why the observed behaviour deviates from the known
correct behaviour by identifying the points of conflict within the system structure. This reflects our
view that what is most significant about faulty behaviour is way in which it deviates from correct
behaviour.

5.2.1 Example - Fault Diagnosis

Symptom: Greenhouse is cold when it should be warm (je ‘v_greenhouse, temp’ is low and
‘v.clock, time'is on).

Reaction from Doris: see Figure 13,

5.3 Explanation

There are two types of explanation: First, explanation which details the nature of the behaviour of

the device and second explanation which describes the structure of the envisionment graph.
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"d greenhouse_ system" is not fulfilling its purpose
When it is active and "v_clock, time = on"
"v_greenhouse, temp should be kept normal and

\Y greenhouse temp should not become high" BUT
"v_greenhouse, temp is low"

"d _environ_control® is not fulfilling its purpose
When it is active and "v_clock,time = on"
"v_greenhouse,temp should be kept normal and

\Y greenhouse temp should not become high" BUT
ny” _greenhouse, temp is low"

*d greenhouse_thermostat" is not fulfilling its purpose
When it is active and "v_clock,time = on"
"v_greenhouse,temp should be kept normal and
v greenhouse temp should not become high" BUT
"v_greenhouse, temp is low"

"d greenhouse heatlng" is not fulfilling its purpose
When it is energetic
"v_greenhouse,temp should be increasing" BUT
"y greenhouse, temp is not decreasing"

Current Status

e e o 7 s 0 s e B

A greenhouse, temp is [low, 0]
v clock, time is on

In this example Doris reports that there is a problem with the greenhouse system (‘d.greenhouse-
-system’). It tells us that it is the environment control system (‘d.environ._control’) part which
yields the conflict. Within the environment control system both the thermostat and the heater are not be-
having correctly. The reason for this problem is that the heater is not raising the greenhouse temperature
('v-greenhouse, temp'). (Note that the conflict associated with the thermostatis more a reflection
of the description, which is not strictly true, than with the behaviour of the device. The thermostat's real,
and more immediate purpose is to act as a switch and to allow electricity to flow when the temperature
is too low, rather than to control temperature.}

Figure 13: Greenhouse too cold

First, if at the end of the envisionment process no conflict has been detected then the behaviour
of the device can be explained in terms of the purpose it achieves, which is set out in the purpose
definitions in the knowledge base. If more detail is required then the device’s parts can be subjected
to the same treatment.

Of more interest is an analysis and explanation of the envisionment graph. This project has not
fully developed this application. However, there are certain features of the representation which
provide a handle on the problem. Understanding the time relationship between variables (i¢ know-
ing how fast different variables change value with respect to each other) allows a partitioning of the
graph into regions. The graph can also be divided into regions where devices maintain a particular
status. These regions will, to some extent, represent the same parts of the graph, eg in Figure 11
the outer ring contains those nodes when ‘v.clock, time’ is off as'well as when the timer is
quiet. Given this ability to simplify a complex graph the task remains to describe the behaviour of

the device within these sub-graphs, as well as the transition between regions.
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6 Concluding Remarks

The main emphasis of this work has been on developing a representation strategy which han-
dles Knowledge of Structure and Knowledge of Purpose. The crux of the matter, as discussed in
[Cha86, Sem86 and Keu89], is 10 understand that Knowledge of Structure alone does not allow
for a complete understanding of devices.

The articulation of purpose is the essential quality which groups components together to form
systems. The ability to represent purpose allows for the creation of a hierarchy of systems and
components. This nicely complements the consolidation work of Bylander [Byl85, Byl88] since
we provide a clear basis for grouping devices into systems.

The representation of purpose provides constraints which reduce the ‘frame problem’ since it spec-
ifies which behavioral abstractions constitute interesting aspects of the device’s behaviour. The
terms used to describe purpose are defined using the language which describes device and variable
status and this provides the mechanism for making the link between device behaviour and purpose
description,

The development of a single representation strategy which represents both systems and compo-
nents equally effectively allows different applications to traverse this hierarchy of devices easily
and so allows them (and their designers and users) to concentrate on the task and not on the ma-
nipulation of the knowledge base.

Doris provides a meeting point between the work done by the Qualitative Reasoning community
[deK84, For84, Kui84] and that being pursued by those involved with the development of the Func-
- tional Representation of devices [Cha86, Sem86, Keu89, Goe89]. This is a logical development
since both are dedicated towards developing better techniques for representing and understanding
the relationship between structure and behaviour,
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