Technical Report R

Number 203

Computer Laboratory

Subtyping in Ponder

(preliminary report)

Valeria C.V. de Paiva

August 1990

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1990 Valeria C.V. de Paiva

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Subtyping in Ponder
(Preliminary Report)

Valeria C. V. de Paiva
August 22, 1990

Abstract

This note starts the formal study of the type system of the functional language Ponder. Some of
the problems of proving soundness and completeness are discussed and some preliminary results,
about fragments of the type system, shown.

It consists of 6 sections. In section 1 we review briefly Ponder’s syntax and describe its typing
system. In section 2 we consider a very restricted fragment of the language for which we can prove
soundness of the type inference mechanism, but not completeness. Section 3 describes possible
models of this fragment and some related work. Section 4 describes the type-inference algorithm
for a larger fragment of Ponder and in section 5 we come up against some problematic examples.
Section 6 is a summary of further work.

Introduction

Like many other terms in Computer Science subtyping means different things to different people.
One of its fashionable meanings these days is related to object-oriented programming languages
and the typical example in this case is to think of ‘subrecords’ as a subtype of ‘records’, [Card84].

In this note we are thinking of subtyping in a pure functional language with polymorphism.
The example we have in mind, most of the time, is the relationship between a type like VI.T — T
(polymorphic identity type) and a type Bool — Bool. Whenever a function in Ponder needs an
argument of type YVIT' — T, Bool — Bool can be used and so we say that VI".T' — T is more
general than Bool — Bool, which we write VI.T' — T > Bool — Bool. But we also consider the
possibility of a type variable V being more general than. another type variable U, V > U.

The aim of this note was to describe Ponder’s [cf. Fair85] typing system, show the soundness
of its type inference mechanism and a kind of completeness result for it. From that we wanted to
go on to discuss different semantic models for Ponder and their adequacy and/or shortcomings.
But the problem of type inference for a language like Ponder is much more difficult than we
had previously realised, so this note now intends to point out some of the problems and possible
solutions, yet to be worked out.

1 The Typing System of Ponder

In this section we review some of the syntax and typing system of Ponder. The main reference for
Ponder is Jon Fairbairn’s thesis, Design and Implementation of a Simple Typed Language based
on the Lambda-Calculus 1985, where more details can be found.

Ponder’s typing system is similar to the typing system of Fun, Cardelli and Wegner’s language
and also similar to the system F< of Curien-Ghelli. It is, in some sense, an extension of the
polymorphic Jambda-calculus of Girard and Reynolds.

The syntax of type expressions is given by

Tu=V |T—S|VW.T|uVT

where

e V is a type variable from (a given set of type variables) T'yV ars.

e T — S is the type of functions from type T to type S.

e VV.T is for all quantification over the type expression 7.

o uV.T is the recursive type defined by the type expression T.

Raw-terms are given by

ex=z|z:T—e|eea|e:T|AVe

where

e z is an individual variable in Vars,

e (z:T — e) is Ponder syntax for A-abstraction,

(e1e2) stands for function application,

(e : T) is a cast ezpression, that is, an expression that the programmer would like to have
type T,

(AV.e) is the second-order abstraction of the expression e with respect to the type variable

V.

The constants A, V, u and A bind their variable in their second argument and terms are
considered up to a~conversion as usual. '

For the time being we will not consider the recursive types. We call the system without recursive
types Ponder._.

We also adopt some conventions for meta-variables:

® ¢,e’ are expressions

e T.5 are type expressions

e V.U are type variables

e z,y are individual variables

e C,C’ stand for sets of subtyping assumptions of the form T > S where T and S are type
expressions and at least one of them is a type variable.

T’ stands for sets of typing assumptions of the form (z : T') where z is an individual variable
and T is a type expression.

Clearly T — S is the type of a first-order abstraction (z : T' — e) where e has type S and VV.T
is the type of an expression of the form AV.e where T is the type of e.

The typing and subtyping relations are specified via the following judgements:

C FT >85 typeT is more general than S under subtyping constraints C
I''C Fe:T expression e has type T in context (I, C)

A context is a pair (I, C) where

e ‘I"is alist of type declarations (z; : 1,22 : T2,...Zm : Tin), where 21, 2, .. ., T, are distinct
individual variables and T3, ...T,, are type expressions with type variables in V

e ‘C’ is a sequence of subtyping assumptions (T3 > Sy,...Tx > Si), where T;,S; are type
expressions and either T; or S; is a type variable.

To characterise the allowed expressions we have rules for subtypes and typing rules for expres-
sions.
Rules for Subtypes

(ass)

CT>S+T>S
refl —cmnre
(refl) CkT>T

CI‘leTz C"TZZTS
(trans)

CFTY 2 T;5

CFT 2T CHS51 25,

(arrow)
Ci‘Tg—*SlzTi—‘Sz

(inst)

CHVYV.T > T[5/V]

orras V & fio(T), V ¢ ftuC
en — tv(T), tv
(gen) CHFT >VV.S fi(
res Ve ftv(T
(res) CHYWT —-S52>T—VV.S # funl)

The notation T[S/V] in rule (inst), for instantiation, means the type expression T' with the
free ocurrences of the type variable V replaced by the type expression S.
Note that the usual rule relating quantifiers to subtyping, for instance in [CW’85]

CFrT>S8

V. tv(C
CHYV.T >VV.S # f(C)

can be derived as follows:

e if V is free in T, then it is not free in VV.T and we can apply rule (gen):

-_ CrT>S
CHWVWIT>T

(trans)
CFYVT>S

CHFYT >2VV.S

(gen)

Typing Rules for Expressions

‘var —_—
(var) Tz:Ttz:T
z:T\Tke:S
()
't(z:T—e€):T—-S
(ap) F'rFe:T— S Tke':T
ap
"Tlee:S
V,lke:T v ¢ fto(T)
A . — tv
(&) THAVe:VYV.T & finl
T'ke:T
(cast) ——
TH(e:T): T
'kte:T cCkrT>S
(subd)
CTke:S

Note that the familiar rule of application of types
T'ke:AVT
LFes : T(S/V)

(App)

is missing, but its role is played by the subtyping rules (inst), (gen) and (res) together with rule
(sub).

Two easy examples of derivations in this system:

(var) ————— (ass)——vemmo—o
z:Tktx:T T>S+T>S

z2:T,T>S+z: S

(sub)

e (var)
z:Trz:T

()
F{(z:T—2z2):T—T

FAT(z: T —2):VT.T =T

(4)

This formal inference system looks deceptively harmless, and systems like Fun or Fy or F*+
seem supersets of it. But there is a difference, because in all these systems, subtyping constraints
have to be of the form t{ype variable > T.

2 “Propositional” Ponder

The typing system described for Ponder_ seems very reasonable and even a familiar one. But
despite its similarities with well-known systems, it is not as usual as it seems.

We consider in this section Ponder. without quantification over types. We call this system
Ponder... or Ponder,,,, or sometimes simply PP. :

2.1 The formal system

Types are given by the syntax:
Tu=V|T—S

where V is in the set of type variables TyVars. Raw terms given by:
ex=z|z:T—¢e |erea|e:T

where z is an individual variable in Vars and T is a type expression.

Contexts consist of a set T of typing declarations of the form (z; : T;) and a set C of subtyping
constraints of the form T; > S;, where either T; or S; is a type variable.

The rules for subtyping are restricted to:

(ass)

C,T>2S8S+T>S
refl —
(res) C+T>T

Crh >Ts CtL>T;
(trans)

CHFT1 2T3

CFTi 2T CkS85 25

(arrow)

Ci"Tz—PS]ZTl—*Sz

The rules for typing terms:

var —_—
(var) I'z:Tkz:T
z:T.Tke:S
(A)
TF(z:T—e):T— S
'te:T—S TrHe:T
(app)
Thee:S
T'ke:T
(cast)
V,TF(e:T):T
Tte:T CrFT>S
(sub)
CTFe:S

Say I, C + e : T holds iff there’s a proof of it using the rules above and read it as “ e has type
T in the context (I', C)”. Note that if I', C F e : T holds, T assigns types to all free variables of e
and further, for any I', I,CF e : T holds iff I, C e : T, where I’ is the restriction of T to the
free variables of e.

Two examples of derivations
In the examples both T and S are type variables.

7,

W

(var)—————— (ass) -
z:Tkra: T T>S+T>S

z: T\ T>Skz:S

(sud)

—— (var)
z:TFz:T

F(z:T—2):T—T

o)

e want to make some observations about the logic of this fragment. In particular we want to

discuss the logic of the subtyping rules (ass) to (arrow) above.

The first thing to note is that it looks like a weak “logic of implication”.

As the set C consists of subtyping assumptions, the first rule (assumption) says we have
contraction and weakening in this logic:

T>85T>S+T>S Th>285,T>S+T>S8
Rule 2 merely gives us some basic axioms.
Rule 3 can be seen as a cut-rule.

Rule 4 (arrow) can be transformed into two rules:

CFL 2T
(=) CtTy—-S85>T, — S

CFS 285
(—2)

C"T—*SlzT—*Sz

There are other rules, which would make sense with the intuitive notion of typing as subset
inclusion, where > corresponds to C, for instance:

CFT >S5 C+T > S,
CFT>5NS;

which are not explicitly in the system. But other rules, which logically would make perfect
sense, don’t seem so reasonable here:

CFT{ > S8 CrFT> 8§

™ ™)
CFTiNnT; >S5 CFTiNT:+S

For a union of types T3 U T, we could have:

CrTi>5§ CrT;>S
CFTyUT» > S CFTIUT: > S
CFT >S5 US, CrT>S5US,

CFT> S, CrT>S,

Note that both Cardelli [Card84]and MacQueen,Plotkin and Sethi [MPS86] describe inter-
section and union of types, but they are different from the ones above.

The typing system of Ponder does not allow type or term constants. The rationale behind it
was that one could use closed terms to code up types like integers, booleans or records [Fair89], so
there would be no need for type constants. :

But even if it is possible to do without these traditional type constants, if they do not introduce
any complications to the system I believe they should be allowed.

One interesting question is what happens to the type inference mechanism of Ponder in this
restricted fragment with no for all quantification of types. This is discussed in the next section.

2.2 The type inference mechanism in Ponder,,,,

In this restricted fragment, the type inference mechanism consists of five functions, type-check,
GE, OR, min and clos. In this section we only discuss type-check, GE and clos. The main
function of the type-inference mechanism, type-check, takes two arguments:

» a context (Cy,T')
¢ a Ponder expression ‘e’

and returns either FAIL or a type expression T and a set of constraints C' with the intended
meaning that (C,T’) proves that ‘e’ has type 7.

A context consists of two parts. The component I' of the context has type declarations of the
form (z; : T;) where z; are distinct individual variables and T; are type expressions. The component
C of the context consists of subtyping assumptions (or constraints) of the form T; > S;, where
T;, Si are type expressions. Note that this is slightly more general than contexts in the formal
system in 2.1. ‘

Definition 1 The function type-check(C,T,e) is defined by cases on the structure of the Ponder
expression ‘e’, as follows:

var if the ezpression is a variable z’, its lype is the one given in the T part of the contezt, that is:
type-check(C,T,z)=(C,T) if (z : T) is in T', FAIL otherwise.

abs if the ezpression is a A-abstraction (z:T —e), its type is T — S, provided the body ‘e’ has
type S in the context augmented with {z : T}, so:

type-check(Co,T,z:T —¢e) = (C,T — S)
if type-check(Co,TU{z : T},e) = (C, S)

cast if the ezpression is a cast (e : T), it has type T, provided the body ‘e’ can be type-checked to
S and type S is more general than T'. To prove that S > T we build up the set GE(S,T) and
take its transitive closure.

type-check(Co,T,e : T) = (clos[GE(S,T) U C}, T)
if type-check (Cy,T,e) = (C, S)

appl if the expression is an application (ejez2), ils type is the variable type R, provided thatl ‘e, ’
can be type-checked 10 Ty, ‘ea’ can be type-checked to Ty and Ty > Th — R:

type-check(Co, T, eie2) = (clos[C; U Cy U GE(T1,T: — R)),R)
if type-check (Co,T,e;) = (C1, 1)
and type-check (Cy,T,e;) = (Ca, T2)
and R is a fresh iype variable

Note that the set Cp of subtyping assumptions may start empty or not. But if clauses cast and
appl are used it will increase in size, so Co C C. Also I" may start empty or not, but whenever
rule [abs] is used it increases.

Next to define the function GE, remember that type expressions are either type variables or
arrow types.

Definition 2 Given type ezpressions T' and S the function GE(T,S) returns a set of sublyping
assumptions C. The function GE(T, S) is defined by cases on the structure of T and S as follows:

o IfT 1s a type variable V
- C1. If S is any lype ezpression, GE(V,8) = {V > §}.
o IfS is a type variable U,
- C2 IfT is any iype expression, GE(T,U) = {T > U}.
o IfT is an arrow lype T} - T
= C38. IfS is an arrow type Sy — Sz, GE(Ty — T3, 51 — S2) = GE(S:, T)UGE(T3, S2).

Definition 3 The function clos (for transilive closure under GE) iakes a set of sublyping assump-
tions C and returns clos C, the least sel such that:

e CCeclos C
e {T>V,V>S}Ceclos C= GE(T,S) Cclos C
If we apply clos to the set
C={A>A— A A—-A> A4}

as clos acts when the “middle” is a type variable, it only adds GE(A — 4,4 — A) = {A > A} to
the set C. :

Note that the algorithm always halt, as the three functions only decrease the sizes of the
expressions they’re dealing with.

Examples of the mechanism

1. Suppose I, B,V denote type variables (you might think of I as the type of Iniegers, B as
Booleans and V as a generic type variable). Suppose also that f and z have been declared
with types (I — I) — B and V. — V, respectively, in T and Cj is empty.

If we apply the function type-check to try to infer a type for fz in the context (T', Cp) we

have:
type-check(l',9,fz) = (C,R)
type-check(,0,f) = (@8,(I—1)— B)
type-check(l‘, 8,z) = (B,V-=V)
where

C=clos(GE({(I = I)— B,V -V — R))

The mechanism will call the GE with parameters (I — I) — B and (V — V) — R:
GE(I—-I)— B,(V—V)—R) GE(V —V,I] - I)UGE(B,R)

GE(I,V)UGE(V,I}UGE(B,R)

{I2V,V2>1,B> R}

W

The function clos only add to the set C the subtyping assumptions {I > I,V > V}, which
are, in some sense, already there.

The intuition here is that the set of subtyping constraints
C={I>V,V>I,B>RI>I1V>V}

‘proves’ (I — I) — B> (V — V) — R. A derivation in the system Ponder,,op is:

—— (ass) —ee (as5)
CHI>V CHV>I
(arrow) —_— (ass)
CrV—-V>I—1I CFB>R

(arrow)
CrI—I1)—B>(V—-V)—R

Now to obtain one of the possible derivations of fz : R we simply plugg in the derivation
above, call it =, in the following:

3

T+f:(I—=I)—~B CrUI—-I)—B>(V-V)=R

r¢crf:(V-V)—R FTFz: VoV
,CFfz:R

Note that if we swap arguments in T, that is if
r={f:(V—=V)—>B,z:I1-1}
we obtain the same result:
type-check(T,0, fz) = (C,R)

where C is as above.

Now for a more complicated example, where the function type-check calls itself:

. Suppose T, A and B denote type variables, a,b and f individual variables, the initial subtyp-
ing (part of a context) Cp is empty and

I'={f:T—(T—T),a:Ab:B}

To infer a type for fab in the context above, we apply type-check(T, 8, fab). If it succeeds,
we have:

type-check(T,9, fab) = (C,R) .
type-check(T,0, fa) = (Ci,R;)
type-check(T,0,b) = (Cz,Ry)

where:

e R is a new type variable

s C = clos[Cy UCy U GE(Ry, Ry — R)]

o (C1, Ry) is the result of type-check(T',0, fa) and
o (C3, R2) is the result of type-check(T,8,b).

But type-check(T,0,b) = (8, B) and type-check(T',0, fa) = (Cy, R1) where R, is a type
variable and we have to calculate C) = clos[GE(T — (T — T), A — Ry)).

GE(T —(T —=T),A—R)) = GE(AT)UGET —T,R,)

Thus Cy = {A > T,T — T > R}, as clos does nothing here.

Notethat C; VT — (T - T)> A — Ry and I',C, + fa : R;. One possible derivation would
be:

CiFA>T GFT—-T>R

THf:T—(T—T) COFT = (T—T)>A— R,
F,Cl"f:A—»Rl I‘l—a:A
F,Cll'"faZRl

Another possible derivation would be:

F'kFa:A CiFA>T

rFqu(T—»T) I''Cita:T
I''Cikfa:T—-T Ci+tT—=T>Ry
I‘,le‘faZR1

Note that the proof-theory of the system starts showing its ugly head here. Both derivations-
assume the same hypotheses and have the same number of rules, but the first is in a special
form, where subtyping assumptions are used first and that is the one the type inference
mechanism “provides”. It’s an interesting question whether the two proofs are equivalent or
not...

Also if one defines semantics in terms of the inference rules used in the derivation of a typing
T',CF e : T some kind of coherence result is needed to show that two different derivations of
the same typing give you the same meaning.

Back to the main derivation, C = clos[C; UC2UCs3), where Cy = @ and Cs = {R1 > B — R}.
Thus CyUCUC3 ={A>T,T—T> Ry, R, > B — R} and, this time clos does something,

C={A2T,T—>T2R1,R1ZB—-I»R,T—»TZB—-rR,BZT,TZR}
A derivation of I', C - fab : R can be obtained using either of the derivations 7 above in:

T

LCitk fa: Ry C3FRi>2B—R

P,Cl,C:;i'fa:B-—*R T+b: B
I‘,C1,Cgl'"fabZR

Note that both C; and C; are good contexts, which only contain subtyping assumptions of
the form var > T; or T; > var, but clos(C; U C3) is not. Also it is clear that, at least in this
simple example, one could “simplify” clos C to only the ‘essential’ assumptions

{42T.B>T,T > R}

10

A last thing to note is that we are saying here that for any type T which is less general
than both 4 and B and more general than R, we can prove that fab will have type R. The
problem is there might not be a type T which is less general than both A and B... That is
the problem addressed by functions OR and min, see section 2.2.4

2.3 Soundness of the type inference mechanism

In this very restricted fragment of Ponder it is easy to see that the type inference mechanism only
infers types which can be deduced using the formal system. To show that we need a lemma proving
that the function GE does what its intuitive meaning says it has to.

Lemma 1 Given two type expressions T and S, the function GE(T, S) returns a set C of sublyping
constraints such that C-T > §S.

Proof: By structural induction. As before, T and S can be either variables or arrow types. We
check each one of the possibilities.

e if T is a type variable V

- case 1: If S is any type expression, by definition, GE(V, S) = {V > S}. The singleton
set {V > S} clearly proves V > S, using rule assumption (ass):

————eeee (@55)
V>SFV>S

e If S is a type variable U,

— case 2: If T is any type expression, the result is as trivial as case 1, since by definition

GE(T,U)={T >U}.
e if T is an arrow type Ty — T

— case 3: If S is an arrow type S5; — S; then GE(Ty} — 12,51 — S,) = GE(S;,Th)u
GE(T3,Sz). By induction hypothesis there exists C;, and a derivation 7, such that
Ci1F 51 2 T1. Also there exists C2 and a derivation 75 such that Ca + T3 > Sa. Then
rule (arrow), plus weakening, guarantees that C;,Co F Ty — T > S; — S,.

) T2
GFS 2Ty C:FT 2 S5,
(w) (w)
C,,CoF 51 2T C,C:FT 25,

(arrow)

Ci,CoF 1 =T33 25— 85

Now using the lemma we want to prove soundness of the type inference mechanism with respect
to the typing rules. The proof is by induction on the structure of the expression e. The basis
corresponds to e being a variable.

It is clear from the definition of the function type-check that the functions GE and clos,
hence lemma 1, are needed in the cases of e a casted expression or e an application.

Theorem 1 Given a context (Co,T') and an ezpression in Ponder ‘e’ such that
type-check(Co,T,e) = (C,T)

there ezists a derivation w according to the rules such that = has as its last formula C,T'tF e : T

11

BASIS of INDUCTION: H e is a variable, type-check(Co, T, z) = (C, T'), implies, by definition
of the function type-check that the assertion (z : T) is in the context I' and C; = C. The
derivation 7 in this case is simply

(var)

. ICkz:T
Now for the induction step, we have 3 cases:

e If e is a A-abstraction (z : T — ¢), and type-check(Co,I',z: T — €) = (C,T — S), then,
by definition, type-check(Co,I' U {z : T}, e) = (C, S).

By induction hypothesis there exists a derivation 7 whose last formulaeis T',z : T,Ct+e: S
and we can use rule (A) to get a derivation with last formula I',CF (z : T —¢): T — S.

L

[,z:T,Clke:S
I''CH(z:T—¢):T—8
o If e is a casted expression (e : T') and type-check(Cq, T, (e : T)) = (C, T), then there exists

a set of constraints C and a type S such that

— type-check(C,,T,e) = (C, S) and

— C =clos{C; UGE(S,T)).
By induction there exists a derivation m; whose last formulais C;,T'Fe: S. _
Using the lemma, the function GE(S,T) produces a set of subtyping assumptions C» such
that Co + § > T, via derivation ma.
Using weakening and rule (sub) we derive I',C},Ca F- € : T. The set C = clos[C; U C3} so it
contains Cy UC», we have I',C't ¢ : T and using rule (cast) the result.

()

M T2

Ci,Tke: S CoFS>T

(sub)
C1,Co,Tke:T

C,TH(e:T):T

(cast)

e If e is an application e, €2 and type-check(Co,T',e1e2) = (C, R) then,

— type-check(Cy,T,¢e;) = (C1,T1) and

— type-check(Cy,T,e2) = (Ca, T>) and

- C=clos(Cy UC2UGE(Ty, T» — R)) and

— R is a fresh type variable.
By induction there is a derivation m; with last formula C;,T I e; : Ty and also a derivation
w2 which proves Ca, T F €4 : T5.
By lemma GE(T1,T> — R) produces a set Cs such that Cs + Ty > (T3 — R), using derivation
73. Using rules (sub) and (app) (plus weakening) we conclude Ci,Cy,Cs,T'F e1e2 : R.

] T3
C',,I‘I-e]:Tl Csi‘T] Z(TQ"R) T2
Cg,Cl,rf'éllT;)—-R Cg,r}‘eleg

C],Cg,Ca,rf' €€ R
C,FI— €1€2 R

12

2.4 The ‘existential’ character of the algorithm

To show soundness of the type inference mechanism for PP only the three functions type-check,
GE and clos are necessary. But functions OR and min have a different role to play.
The function OR is similar, in a way, to function GE:

Definition 4 Given type expressions T and S the function OR(T,S) returns a set of sublyping
constraints C. The function OR is defined by cases on the structure of T and S as follows:

* IfV is a type variable and S any type ezpression OR(V, S) = GE(V, S)UGE(S,V).
o IfT is an arrow ezpression Ty — T» and S a type variable V,

OR(Ty — T3,V) = GE(Ty — T3, V) UGE(V, Ty — T3)

e IfT and S are arrow types Ty — T3 and §; — Ss, OR(Ty} - 13,51 — S2) = OR(T3, S,).
Function min is similar to function clos.

Definition 5 The function min takes a set C and closes it under minimal types, so min C is the
least set such that

e CCminC
e {T>V,§>2V}C minC= OR(T,S) Cmin C

The intuition behind OR and min is that if the algorithm produces, for a given context (T, Cp)
and an expression e, a set of constraints C of the form

C={A>T,B>T)

then even if there exists a derivation of T, C I ¢ : S there might not exist a type T which is at the
same time less general than A and B. To make sure that such a T exists the algorithm calls min
and OR. These functions interact with the other functions by adding new type contraints. Thus
if we apply min to the set of subtyping constraints obtained by clos C, it might call OR and the
set of contraints can only increase.

In the first example above, where

C={I>V,V>I1,B>RI>I1V>V)}

OR and min do nothing,.
In the second example above, where

C={A>T.T-T>R,Ri>B—RT—T>B—RB>TT>R)

the function min C will call OR(A, B), which implies that botk A > B and B > A are going to be
added to the set.

Note that more subtyping constraints restrict the number of possible typings for expressions
in given contexts, but soundness is not affected. The termination of the algorithm is not affected
either, as both OR and min decrease the size of the expressions they deal with.

2.5 Some kind of Completeness ?

Note that there is no chance of completeness for the type inference mechanism, at least in the
usual sense. For instance if I'= {z : T'} and C = {T > S}, the derivation ‘

FkFz:T CFT>S
Crz:S

(sub)

13

is perfectly valid, but the type inference mechanism will never return type S for the variable z.
But, at least in this simple case, it’s possible to define the set of possible typings of ‘z’ in the
contest (T, C), call it PT{r c)(z). In the example above PTir.c)(z) ={T, S}.
We could try to define (inductively) sets of possible typings of an expresion ‘e’ in a context
(T, C). In our example 1 where

C={I>V,V>LB>RI>IV >V}

and = {z:V — V,f:(I = I) — B} there is a finite number of possible typings for z, f and
fz. For instance PTirc)(z)={V =V, I =1, 1> V,V = I} :

But that does not work in general. HI'={z:S}and C={S> S — 5,5 — S > S} where
S is a type variable, it’s easy to see that PTirc)(z) = {S,S —= 5,(S = S) = (§ = S5),...} an
infinite set!!! :

It seems that one would like to rule out these loops, without ruling out, as for instance Mitchell
does in [M84], arrow types in the set of constraints.

Note that Lemma 1 proves ‘soundness’ of the function GE for PP, but there is no ‘complete-
ness’, as the derivation

CFT1_>_T2 Cl'T’.’ZTS
CFN2>2T;

is valid if for instance C = {T} > T», T > T3} but the function GE applied to T} and T3 will only
produce the subtyping constraint {T} > T3}.

3 Semantics of Ponder,,,,

The system we are calling Pondery,,, could well be called simple typed lambda-calculus with
subtyping. It has been discussed, or rather, supersets of it have been discussed, in the literature
mainly in Cardelli’s A Semantics of Multiple Inkeritance, in Bruce and Longo’s A Modest Model
of Records, Inheritance and Bounded Quantification as well as in Mitchell’s Coercion and Type
Inference. These three papers propose three different models for the calculi they are discussing,
and all of them restrict to models of Ponder,,p.

In this section we discuss their approaches, similarities and differences to the one taken in
- Ponder, as well as semantic models for the system Ponder;, ., called from now on PP.

3.1 The Lambda Model

Mitchell’s paper Coercion and Type Inference presents a system of inference rules that seems very
similar to PP. We call his system M. In our notation, the syntax for type expressions of M is:

TEzp=K |V |T-T
and raw terms are given by:
Ezp=1=z|)z.e|ee

Contexts are (I',C), where T is a set of typing declarations of the form (z : T) and C consists of
coercions of the form T > S where T and S are afomic types, that is either type constants or type
variables. '

The four main rules of inference of M are:

14

(var) ’
CTl,z:TFrz:T

Cz:T,Tke:S

()

C,T+(Aze):T— S

CTre:T—S C,TrFe:T
(app)

C,Thee:S

C,Tte:T CrFT>S

(coerce)
C,The:S

It also has two subsidiary rules which read:
(arrow) From T > T ;md S >SsderiveTy - 51 2>2T, — S,
(trans) From Ti 2 T; and T > T3 derive Ty > T3

The main differences between M and PP are:

1. system M does not allow subtyping constraints which refer to arrow types;

2. in system PP we have to declare the type of the variable we are abstracting over, so the
system is closer to the typed lambda-calculus;

3. PP does not allow type constants, which M does;
4. system M has no casting of expressions.
Mitchell’s subtyping relation is stricter than ours, as he can prove the following lemma:

Lemma 2 In system M
CFN —-T,>285 — S iff CFS 2T and CHFT2> 8,

In the system PP we know that if CF S > T and CH T2 > Sy then CHT) — T > §; — 53,
using rule (arrow), but the converse is not necessarily true. If

C*‘T1—*T-_:ZS1—’52

that could mean that C+ T3 > S; and C+ S; > T3, but it can also be the case that there exists
an X suchthat CFTy — T > X and CF X > S; — S». Note that it is the same problem
discussed in section 2.2.4.

To give semantics to system M Mitchell starts with a model of the untyped lambda-calculus,
thought of as a triple (D, Fun, Graph). To quote his definition:

Definition 6 A lambda model (D, Fun,Graph) is a set D logether with mappings Fun: D —
[D — D} and Graph:[D — D} — D such that:

1. Fun-Graph = l|p_p)

2. all functions in D that are dcfinable by lambda-ezpressions can be “compiled” inio elements
of D using Graph.

15

In other words, take D a set which solves the following domain equation
D = [D -+ D]

and where the isomorphisms are called Fun and Graph.
Adapting the ideas of Type Inference and Coercion to system PP we forget about type constants
K and add one main rule of inference

C,T'kFe:T
CI'k(e:T):T

and a subsidiary rule

—— 1
C+T>T (refl)

Note that the rule

(ass)
C,T>S+T>S
is implicit in M.
Types are interpreted as arbitrary sets of elements of lambda-models. A type environment 5
for a model (D, Fun, Graph) is a mapping from type variables to subsets of D. The meaning of a
type expression T in a type environment 7 is defined inductively by:

([Vln = V)
(T—TTn = {d|Vd, €[[T]ln, Fun(d)(dy) € [T}

Coercions or subtyping constraints are interpreted as subset inclusion. Thus, say a model D
and a type environment 7 satisfy a set of coercions C = {T} > S,..., T} > S} if

(Tl € [Si))n for all T;>2S8 inC

Given a lambda model (D, Fun,Graph) and an environment p mapping individual variables
to elements of D, the meaning of an expression e of PP is defined inductively by:

[l=]lp = p(z)
[[z:T—¢€llp = Graph(Ad.[[e]]p(d/z))
[le: Tlp = [lellp
[[esez]lp = Fun([[e:]]p)([[e2]]p)

A model D, a type environment and an environment p satisfy type assigment T if whenever
(z:T)isin T, p(z) is in [[T]]7.
A model D, a type environment 7 and an environment p satisfy a typing (e: T) if [lellp € [[TT]n.
Informally the statement
I''CkxeT

means that if types satisfy the subtyping constraints C and if variables have the types assigned by
T' then the expression e has type T.

Definition 7 Say that the assertion
I'CEae:T

1s satisfied in the lambda model D iff for every environment p and every lype environment which
salisfy C and T’ also satisfye: T.

We have a semantic soundness result.
Theorem 2 If T.Cte:T then T, C Eae:T.

To prove it, we need an obvious lemma:

16

Lemma 3 The subtyping subsidiary rules (refl), (arrow) and (trans) are sound in this model.
Rule (trans) because of the transitivity of subset containment:
(T3lln C ([T2lln and ([T:]ln € [Z3]ln imply {(T3]ln C [Tl

Rule (arrow) because if you have a function f:Ty — 5 in the picture below, f can be restricted
to take elements of 75 and if the image is in S, it is automatically in S,.

A ¥ S,

=177 =

(T2]]n C [(T3]ln, [(Silln € [[S2lln = [Ty — Silln € [[T2 — So]ln

Prove the theorem by induction on the proof I',C F e : T. In the basis case the proof is an
assumption

I''Craz:T

z is a type variable and (z : T') is in T. The result is trivial, by definition of (9, p) satisfying C and
I.

If the proof has more than one rule and z is a variable, then (z:85)isin T and there is a
derivation 7 consisting only of rules (arrow) and (trans) such that CF S > T and

T

Tke:S CHS>T
I''Chkz:T

By definition p(z) € [[S]]n. Using lemma 2, [[S]ln C [[T]]n. Thus p(z) € [[T]]n.
If the proof has more than one rule and z is not a variable, 3 possibilities:

o If the last rule applied was (1), the expression is (z : T — ¢€) and there is a derivation 7 of

Fu{z:T},CFe:S.
T

FTru{z:T},CFe:S

(A
'CH(z:T—¢e): T—S

By induction hypothesis TU{z : T},C |=» € : S, so for all (p,) satisfying T U {z : T} and
C, we know [[e]]p € [[S]]n. But all (p,) in this case, satisfy (T, C) as well and by definition
[[z : T — e]lp = Graph(Ad.[[e]]p(d/x). We want to show that {[z:T — ellp € [[T— S)In,

where
([T — STln = {d | ¥d, € [[T]}n = Fun(d)(d:) € [[S]}n}

Thus it is enough to show that Fun(Graph(Xd.[[e]lp(d/z)))(d1) € [[S]]n. As Fun(Graph(f) =

f, we only need to show that Ad.[[e]]p(d/z)(d:) € [[S]]n for all d; € {[TT}n. But [[e]]p € [[S]In
by induction hypothesis.

o If the last rule applied was (app) then the expression is ejez and there are derivations m,
such that I',CFe; : T — S and 3 such that T',C ea:T.

m 2

I''Ctey: TS I'ClFey:S

app
I''CFeies:S (app)

17

By induction we know I',C [Ex €1 : T — S and I',C =y €2 : T. Thus [[e1]]p € [[T — Slin
and [[e2]]p € [[T]]n. By definition

([exezllp = Fun([[ea]lp)([le=]p)
hence [[ese2]}p € [[S]]n.

o If the last rule applied was (coerce) then there is a derivation m; such that I',CF e : T and
a derivation r; such that CFT > S.

L$ T2

Cke:T C+T>S
I,CFe:S

By induction hypotbesis [[e]}p € [[T]]]n and {[T]]n € [[S]}n, which implies [[¢]]p € [[S]}n/

(coerce)

o If the last rule applied was (cast) then there is a derivation 1 of T',CF e : T.

T
r,Ctre:T
ILCr(e:T):T

By induction [[e]]p € [[T]]n. By definition [[(e : T") : T]]p = {[e : T1lp = [[e]]p and we have
that [[(e : T) : T)}p € [[T]]n.

(cast)

The main results of Mitchell’s paper are:

e the theorem which says that the type inference system is sound and complete with the added
equality rule :
I''Cre:T exf

(eq)
I''Ctre:S

o a corollary that says the four first rules of M are complete for typing terms in normal form

o The four rules of M plus the equality rule above make a semantically complete set of rules,
but an undecidable one.

The reason Mitchell gives for his system being incomplete does not apply to the system PP.
In PP every subterm of a term of the calculus has a normal form. At least two questions here:

o Is the system PP complete as it is 7

o What happens to PP if one decides that subtyping constraints can only exist between atomic
types, or less strictly, constraints do not relate a type variable with an arrow type containing
it?

My guess is that if we could prove a lemma 1, the system PP would be complete. But at the
moment it is just a conjecture.,

Mitchell also presents a type-checking algorithm, with three subsidiary algorithms. One such
algortithm computes coercion sets. and looks very much like GE. He also uses a notion of normal
well-yping (and unification).

In a later paper Mitchell uses a generalisation of ideal models, because he’s interested in inter-
preting VV.V as a non-empty subset of D. Later on he uses PER models because of extensionality.

18

3.2 The Weak Ideal Model

Cardelli’s paper describes an eztended version of the typed lambda-calculus with subtyping, because
he basically wants to discuss records and their use in object-oriented programming. If one crosses
out from his system, constants, conditionals, records, variants and recursive data, as well as type
constants, record types and variant types we have a system similar to PP.

We recall and adapt the ideas on A Semantics of Multiple Inheritance, to the system PP. In
the restricted version of Cardelli’s system he has as types:

TEzpu=K |T—T

as raw-terms:
Erpi=z|z:T—e}e:T|ee;

and as rules of inference:

(var) —— ifT>S
Fz:Tkz:S
z:T,T'+e: S
()

FF(Az.e): T— S

I'te:T—S TFe:T

(app)
T'kee:S
I'te:T
(spee) where T> §
TH(e:T):S

The main differences between (the restriction of) Cardelli’s system, call it C, and PP are that
e C has no type variables;

e C has no set C of subtyping assumptions explicitly in the formal system;

e in C rule (sub) is a derived rule;

e in C one proves that > is a partial order, hence reflexive, transitive and antisymmetric;
(mention casting?)

e C has meet and join types.
Cardelli’s subtyping relation is also stricter than ours, as he has a definition:
Ty — Ty >85— 5 iff S12T and T > 5,

The semantics Cardelli gives for C are based on the weak ideal model of MacQueen, Plotkin
and Sethi in [MPS]. Adapting it to PP we have:
Let V be the recursively defined domain of values.
VE(V- V)+W

where V — V is the continuous function space and W = {w}.

Let Z(V) be the set of non-empty ideals of V, ie left-closed subsets of V, which are closed
under least upper bounds of increasing sequences and do not contain wrong. To provide semantic
interpretations we describe two semantic functions:

E:Ezp—Env—V
T:TEzp— TEnv — I(V)

where Env = Var — V is the set of environments ranged over by p and TEnv = TVar — I(V)is
the set of type environments, ranged over by 7. Both functions are given by structural induction.

19

Definition 8 The semantic function T:TEzp — TEnv — I(V) is defined by:

T([Vln (V)
T[T —T"In {feV=V|veT[Tlln= f(v) € T[[T]n} in V.

The semantic function £: Exp — Env — V is defined by:

Ellz]lp = p(z)

Elz:T—ellp = (vLlellp{v/z})in V
fle:Tle = £l

Ellere2llp = if&fle]]Jp€V =V then

(if E[le2]lp € W then wrong else (E[[e1]]p|V — V)(E[le2llp)) else wrong

Note that for all type expressions T, T[[T]}n is an ideal (hence L € T[[T]]n) and for all T, all
nand foralv eV,

v € T[[T]}n = v # wrong
The interpretation of subtyping constraints (T > S) is done through (set-theoretical) inclusion

of ideals. Thus:
T2S & T([Tnc T((SIln

So the main difference between this semantics and the previous one is that here, because of

recursion (which is not present yet!), we are taking as types restricted subsets (ideals) of the domain
V.

The same semantic soundness result we had for lambda models is obtained, if we define the
relation |=;. To define the relation k=, say that a type environment 5 agrees with C a set of
subtyping constraints {T1 > Sy,..., Tk 2 S} it T[T]ln C T[[Si]Inforalli=1,... k.

Also an environment p agrees with T and lype environment 7 iff for all assertions (z : T) in T,

pllzl] € T([T]}n.

Definition 9 Given a contezt (I',C) and a judgement (e:T) say T',C k=1 e : T iff for every 1ype
environment n which agrees with C, and for every environment p that agrees with ' and 1, we
have that E[[e]]lp is in T[[T])n.

Theorem 3 If I''Cte:T thenT,Clre:T.

Cardelli also mentions a type-checking algorithm for his calculus and proves soundness of this
algorithm with respect to the formal inference system.

20

3.2 Modest Model

Bruce and Longo start their paper A Modest Model of Records, Inherilance and Bounded Quantifi-
cation stating that ideal models are not sound because of the failure of weak extensionality (check
BMNM&8). We describe a restricted form of their version of typed A-calculus with subtyping.
Type expressions are like in PP, subtyping constraints are of the form V > T, where V is a
type variable and T is any type expression. Expressions are like in PP except that their system,
from now on BL, has no casting of expressions.
Rules of inference are similar to the ones in PP, namely:

(ass) CV>TFV2>T

(ref) CFT>T

CFh > CFD>T;
(trans)
CFT1 > Ts
CrB>Ty CFS§ 25
(arrow)
CFT =851 2Ty — 8
(var) -
Clz:Tkz:T
Cz:T.Tke:S
(X
ClHF(z:T—e):T— S
C,TFe:T—S§ CTre:T
(app)
CThee:S
C,Tte:T CT+-T>S
(sub)
C,The:S

Thus without records system BL looks the same as PP, BUT they only accept subtyping
constraints where the lhs is a type variable. :
Following Bruce and Longo, we want to show a per model for PP.

Definition 10 Let (N,) be Kleene'’s applicative structure. Say that A is a per on N iff A is a
symmelric and transitive binary relation on N. If A is a per call the set dom(4) = {n|nAn} its
domain.

The category PER has as objects pers on N. To define morphisms of pers we need another
concept.

Definition 11 Given a per A and for any n € dom(A), we write [n]4 for the equivalence class
of ‘n’ with respect to A. Then the quotient set of N with respect 1o A, denoied Q(A) is the set
{[n]aln € dom(4)}.

Now a morphism of pers from A to B is a map f : Q(A) — Q(B) such that
3nVp(pAp = f([n]a) = [n.p]B)

Recall the definition of function spaces or exponentials in PER. If A and B are per’s, define
A —p.r B as the per such that:

Vm,n m(4 —., B)n iff Vp,q (pAg=> m.pBn.q)

There are also categorical products of pers and PER is a cartesian closed category.

21

Definition 12 Given pers B and C, we say B > C iff B C C as pairs of ordered pairs, so for all
m and n if mBn then mChn.

Proposition 1 (Bruce and Longo) If T» > Ty and $; > S5 then Ty — S; >T, — S,.
Three possibilities here:

e Following, for instance, Asperti, we might want to say types of PP are objects in PER and
terms of PP are arrows in the category PER.

¢ Following Amadio’90 we might deal with type environments and environments.
o Follwing Mitchell’86 we can erase types to prove soundness.

In all cases, suppose a type environment 7 consists of a mapping from type variables into objects
of the category PER.

Definition 13 The semantic function {[]): TEzp — TEnv — PER is defined by:

([(V]ln
([T — T'n

]

(V)
(Tl —per ([T
A type environment 7 satisfies a set of subtyping constraints C if

[(Tlnc ((Silnfor all T; > S; in C

First, following Asperti, interpret types as pers in PER as above. Then say a context
F={z;:N,...,z1: T}
is interpreted as a product of its types, so
(T n=[Tnx ... x [T:]n

Typed terms-in-context are to be interpreted as morphisms in PER from the interpretation of the
context to the interpretation of its type:

[TFe:TIn= (s L2 11y
Thus we have an inductive definition:
e If the rule applied is (var), e is a variable z and (z: T) is in T,
([P A{z:THn=m:([T]ln x ... x [Ta]ln — [[T]]
e If the rule is (1), e is a lambda-abstraction (z : T — e) : T'— S and if we know
([el}n: [ICU = = TT)n L {[SThy
then -
[[(z : T —e) : T — S]ln = [T} L ([T T} — [[SThn)

e If the rule is (app), the expression e;e; is an application where e;:T — S and e5 : T and if
we know [[e1]ln: [T]}n <~ [[T — ST}y and [fea]}7: [TTln <= [[S]}n then

[[erex]ln = evalo< f,g >
e If the rule was (cast) and we know [[T'F e : T]}p = f:[[[]}n — [[T]]7, then
(TF(e:T): T]jn = idyryy o f: ([T JIn — [[T])n

22

o If the rule was (sub) and we know [[['+ e : Tln = f:[[T]]n — [[T]]n and [[T]]n C [S]}n then
the new meaning is the function f restricted to [[S]]n,

[[TFe:Sln= flgsps

We could extend this interpretation to say {[[T,C F e : T]]p if 5 satisfies C and [[T F e : T]jp as
above. But the problem with this definition is that it is based on the inference rules and as there
may be several different proofs of a certain typing, we have to prove that different proofs of the
same typing give the same meaning to this expression. That’s a difficult coherence result. Bruce
and Longo manage to avoid this problem by omitting the rule (sub) and using explicit coercions
in the second half of their paper, ¢f. Amadio’90 p22.

Now, following Amadio, define an environment p as a mapping from individual variables into

U4ePER Q(4)-
For all A, B in PER, define -4 g as the morphism Q(A —,.. B) x Q(4) — Q(B) given by

[fla=B -a,8[n]a = [fn]B.
Say environment p agrees with type environment 7, notation (p | #) if for all z of type T

p(z) € Q([[TTn).

Given environments 7 and p such that (p | 5), the interpretation of well-typed expressions is
inductively defined as follows:

Definition 14 The semantic function [[]]: Ezp x Tenv x Env — UscPER Q(4) is defined by:

[(z:THnp = p(z)

[(z:T—e):T—5Snp = {¢ €N |nAn implies ¢n € [[e]lp([n]A/z)n}
where A = [[T]]n

[lere2]Inp = [lex]]ne 4,5 [[e2llnp

where ey : (T — S),e2: T and A =[[T)]n, B=[[S]]n
lle:TNnpe ([ellne

Say a typing e : T is satisfied by a pair of environments (7, p),

Feme:T iff ([ellon € Q(I[TTIm)
Say a context (T, C) is satisfied by a pair of environments (7, p) Eme C, T if

1. n satisfies C,

2. (pln)and
3. Epmyz:Tlorall(z:T)in I.

But with this defininition of ‘l=(,,)’ if € : T and T > S we do not necessarily have e : S, as
T C S as pers does not imply Q(T) C Q(S). Thus to have proposition:

Proposition 2 IfT',Cte:T then T, C Epe:T.

we have to define I',C [=p e : T appropriately. Maybe we should mention other models, for
instance complete pers or reducibility candidates. Amadio fits them nicely under the big umbrella
of per models.

Some general questions:

e Should we try to compare algorithms? they’re all provably sound.

e What would be a general categorical model for simply typed-lambda-calculus with subtyping?
A ccc with an extra function spaces? Curien and Ghelli suggest a ccc with a distinguished
collection of coercion arrows, closed under certain operations...

e Could Wand’s method be used with type variables?

23

4 The Type Inference Mechanism

In the larger fragment Ponder.., the type inference mechanism will deal with contexts having
three parts,

e The component T, as before, consists of type declarations of the form {z1:T,...,2n : T}
where z; are individual variables and T; are type expressions.

» The component C consists of subtyping assumptions of the form T} > S;, where T, S; are
type expressions.

e The component F consists of a list of type variables which are “fired” by the type inference
mechanism. That means that the algorithm should prove the inferred type for the expression
without using any extra hypotheses on V’s that are fixed.

The type inference mechanism now consists of four main parts, the functions type-check,
valid, GE and OR.

The main function, as before called type-check takes two arguments:
e a context (Fp,Co,I)
o a Ponder expression ‘e’

and it returns either FAIL or a type expression T and another (part of) context [F,C] with the
intended meaning that (C,T) ‘proves’ that ‘e’ has type 7.

Definition 15 The function type-check([F,C),T,e) is defined by cases on the structure of the
Ponder ezpression ‘e’, as follows:

var if the expression is a variable ‘z’, ils type is the one given in the ' part of the contert, that is:
type-check([F,C|,T',z)= ([F,C),T) if(z : T) is in T, FAIL otherwise.

abs if the expression is a A-absiraction (z:T —e), its type is T — S, provided the body ‘e’ has
type S in the conlext augmented with {z : T}, so:

type-check([Fo,Co},T,z: T — e) = ([F,C},T — S)
if type-check([Fo, Co], T U {z : T},) = ([F,C],S)

fall if the ezpression is a for all quantification AV.e, ils type is VV.S, provided ‘e’ can be type-
checked 1o S, with the assumption that V is fized:

type-check([Fo, Co],T,AV.e) = ([F\ {V},C],VV.S)
iftype-check([Fo U {V},Co],T,¢e) = (|[F,C], S)

cast if the ezpression is a cast (e : T), it has the casted type T, provided typechecking ‘e’ gives S
and it is consisient lo say that {ype S is more general than the cast T,§>T:

type-check([Fo, Co),T e : T) = (valid[GE(S,T) U [F,C]],T)
iftype-check([Fy, Co),T,€) = ([F,C), S)

appl if the ezpression is an application (eyes), ils type is the variable type R, provided thatl ‘e’
can be type-checked 10 Ty, ‘ez’ can be type-checked 10 Ty and these lypings are consisient with
h>T,—R:

type-check([Fo, Co), T, e1e2) = (valid[[Fy, C1] U [Fa, Co)) UGE(T}, T — R),R)
if type-check([Fo, Co]. T, 1) = ([F1, C1], Th)
and type-check([Fo, Co],T, e2) = ([Fa, Cs), T>)
and R is a fresh 1ype variable

24

Some observations before we define valid, GE and OR:

o The set F of fixed variables always start empty. Note that clause fall does not really increased
it, since if the mechanism succeeds, the variable that was made fixed, is taken out the set *.
But as we shall see the function GE does add variables to this set. So Fy C F.

e The set C of subtyping assumptions may start empty or not. But if clauses cast and appl
are used it will increase in size, so Cg C C.

» The convention is to write type-check ([Fo,Co,T) = (c,T) if C is not FAI L.Alternatively,
we could write escape clauses, if valid[F,C # FAIL all over the definition.

o Two special conventions apply to contexts.

— The Fairbairn convention says all bound variables have different names from the other
variables in the context, to quote,

Whenever YV.T occurs, it is assumed that V is distinct from all other vari-
ables encountered (in practice this is implemented by renaming).

— The T-convention says type variables do not occur free in the initial context T, C fed
into the type-inference mechanism.

For purposes of analysis, we think of the function valid as the composition of three functions,
e clos (for transitive closure under GE),
e min (for closure under minimal t.ypas) and
o check, which checks a set of assumptions C for consistency.

Definition 16 The function clos lakes a set [F,C] and returns clos [F,C), the least set such that:
o [F,C]Cclos [F,C)
¢ {T>V,V > S} Cclos [F,C] = GE(T, S) C clos [F,C]

Definition 17 The function min takes a set [F, C] and closes il under minimal types, so min [F,C)
is the least set such that

o [F,C]C min [F,C]
* {T2V,§>V}Cmin [F,C]= OR(T,S) C min [F,C]
The function check, as the name indicates, checks a set [F, C] for consistency.

Definition 18 Given a set [F,C],

FAIL if{fized V,T > V} C[F,C]
check([F,Cl)={ FAIL if{fized V.V > T} C [F.C]
[F.C] otherwise

Note that check([F, C]) either returns FAIL or the same set [F, C]. (We will also consider the
function valid,, which is only the composition of clos and check.)

Now to define the function GE. remember that type expressions are either type variables, or
arrow types or for all quantified type expressions.

Definition 19 Given type ezpressions T and S the function GE(T, S) returns a pair [F,C) where
C is a set of sublyping assumptions and F is a set of fized type variables. The Junction GE(T, S)
is defined by cases on the structure of T and S as follows:

o IfT is a lype variable V

25

~ C1. If S is any type expression, GE(V,S) = [8,{V > S}].
o IfS is a type variable U,
= C2. IfT is any type expression, GE(T,U) = [8, {T > U}].
e IfT is an arrow type Ty — T>
~ CS. If S is an arrow type Sy — Sy, GE(Ty — T3, $1 — S3) = GE(S1, T1)UGE(T3, Sa),

where union means union in both coordinates.
= C{ IfSisVU.S', GE(Thy — T»,VU.8') = {V}UGE(T} — T5,8"), where union means
that the variable V is added to the set of fized variables of GE(Th —» T, 5").

o IfT is a for all quaniification YV.T'
— C5. If S is any type ezpression, GE(VV.T',S) = GE(T",).

Examples Revisited

Example 1. Suppose I, B and V are type variables. Suppose also that f and z have been declared
in T with types (I — I) — B and VV.(V — V), respectively. (The difference from the example in
section(?) is that z before was declared of type V — V.)

If one applies the function type-check to try to infer a type for fz in the context where Cy = @
andI'={f:(I—=1)— B,z:YV.V =V}

type-check(l',0, fz) = (C,R)
type-check(l',0,f) = B,(I—1I1)— B)
type-check(l',0,2z) = (8,VV.V V)

where

C = clos(GE((I — I) — B,(YV.V — V) — R))

The mechanism will call the GE with parameters (I — I) — B and (VV.V — V)—R:
GE((I—1)— B,(YW.V = V) —=R) GE(VV.V — V,I - I)UGE(B, R)
GE(V - V,I - I)UGE(B,R)
GE(I,V)UGE(V,I)UGE(B,R)
0.{I>2V,Vv>1B82R}]

As before, the intuition is that the pair [#, C] returned by GE, where
C={I>V,V>1,B>RI>ILV>V}

‘proves’ (I — I} — B > (VV.V — V) — R. It’s easy to describe a possible derivation in the
system Ponder_.

(inst) —————— (ass)
VWV -V >TI—1 CFB>R

CrI—1)—B>(W.V—=V)=R

(arrow)

But there are many others. Another derivation, closer to the algorithm would be:

CHI>VCFV>I

PEVVV — V2V =V CFV—-V>I—-1

CHFW.V —V>I—1 C+B>R
Cr(I—I1)—B>(WV.V—-V)=R

26

Note that the first derivation above only uses one of the assumptions in C. Now to obtain one
of the possible derivations of fz : R we simply plugg either of the derivations above, call it 7, in
the following:

T

THf:(I-I)=B CFUI—=I)—B>(\V.V—-V)=R

LLCFf:(VWW—=V)—=R F'Fz:YWWV -V
CkFfz:R

The main role of ‘fixing’ variables is to prevent derivations which could otherwise ‘go through’.
A variation on the example above might help to explain it.

Example 2. If the declaration part of the context I' said instead {f : (YW.V - V) = B,z : I — I }
and if we try to infer a type for fz,

type-check(T,9, fz) = (C,R)
type-check(l',0,f) = (8,(VW.V—=V)—B)
type-check(I',0,z) = (8,I—1)

where

C = clos(GE((YV.V — V) — B,(I — I) — R))

The mechanism will call GE with parameters (VV.V — V) — B and (I — I) — R:
GE((WW.WV —-V)—B,(I—-I)—R) GE(I - I,VV.V - V)UGE(B,R)
{V}IUGE(I -1,V — V)UGE(B,R)

[V fiz,{V>1,I1>V,B>R}]

Intuitively it’s easy to see that (I — I) cannot be more general than VV.(V — V), which is
what the firsl line is trying to prove. In the algorithm V in F means that V should be any variable,
so it should not have constraints imposed over it.

If we call the set {V > I,I > V,B > R} = C, the pair [V,C] will be ‘inconsistent’, and
valid([V,C]) = FAIL.

Example 3. Suppose T, A and B denote type variables, a,b and f individual variables, the initial
subtyping part of a context C, is empty and

P={f:VI.T — (T —T),a:A,b: B}

To infer a type for fab in the context above, we apply type-check(T, 0, fab). If it succeeds,

we have:
type-check(l',0,fab) = (C,R)
type-check(l',0,fa) = (C1,R,)
type-check(I',0,.b) = (Ci, Ra)
where:

e R is a new type variable

e C =clos[C; UC2UGE(Ry, R: — R)]

e (C1, Ry) is the result of iype—check(l‘,ﬂ, fa) and
e (Cq, Ra) is the resultiof type-check(T,8,b).

27

But type-check(T',0,b) = (0, B) and type-check(T,0, fa) = (C1,R,) where R, is a type
variable and we have to calculate C; = clos[GE(VT.T — (T — T),A — R;)).

GE(NVT.T — (T —T),A—Ry)) = GE(A T)UGE(T —T,Ry)

Thus C, = {A> T,T — T > R}, as clos does nothing here. Note that, as before, C; + VI.T —
(IT'—-T)>A—RyandT,Ci} fa: R;. One possible derivation would be:

OGFA>T CFT-T>R

(arrow)

THf:T—(T—T) O FT—(T—T)>A—R;

rGirf:A- Ry T'Fa:A

P,C1}‘fa:R1

Back to the main derivation, C = clos[C; U C2 U Cs], where C, = @ and Cs = {Ry > B — R}.
Thus C,UCUCs={A>T,T — T > Ry, Ry > B — R} and, this time clos does something,

C={A>2T\T-T>R,Ri>2B—-RT—-T>B—R,B>T,T>R}

One derivation of ', C I fab : R can be obtained as:

T

P,Cll-fa:Rl Cal‘R;lZB—"R

ILCi,C3F fa: B— R THb:B
P,C1,Cgl'fab:R

Note that the function GE(T, S) always terminates in Ponder_. It returns F a set of fixed
variables and a set of assumptions C, where each one of the assumptions is of the form V > S or
S >V, where V is a type variable.

The type inference system seems sound, if not complete, and naively, at least the main tool to
prove the soundness of the type-checker should be the following lemma. In analogy with section
2.3 it says that given two type expressions T and S, the function GE(T, S) returns a pair [F,C]
that either ‘proves’ T' > S or is inconsistent, in the sense that valid([F,C]) = FAIL. But that
doesn’t work, due to side conditions.

Conjecture 1 Given fwo type expressions T and S, the function GE(T,S) returns a éair [F,C]
such that if valid([F,C)) = [F,C)], then CF T > S.

Proof(777): By structural induction. As before, T and S can be either variables, or arrow types
or for all quantified types. We check each one of the possibilities. Note that we run into problems
in cases 4 and 6.

¢ if T is a type variable V

— case 1: If § is any type expression, by definition, GE(V,S) = [8,{V > S}]. The
singleton set {V > S} clearly proves V > S, using rule assumption (ass).

o If $ is a variable type U,

— case 2: I T' is any type expression, the result is as trivial as case 1, since by definition

GE(T.U)=[0.{T > U}].

e if T is an arrow type 77 — To

28

— case 3: If S is an arrow type 51 — S; then GE(T} — 13,5, — S;) = GE(S,,Th)u
GE(T3,S2). By induction hypothesis there exists [y, C1), valid([F1,Cy]) = [F1,€C1]
and a derivation 7, such that C; F S, > T;. Also there exists [F>, Cs), valid([F,, C) =
[F2.C5] and a derivation 72 such that Cy - T5 > S,. Then if valid([F1, 75, C1,Ch]) =
[F1, F2, Cy, Co], rule (arrow) (plus weakening) then guarantees that Ci,CoF T =T >
Sy — Ss.

T T2

CikS 2T CF 122 5,
C,,CeF 1 =T > 85 — 5,

(arrow)

— case 4: If Sis VU.S', then GE(Ty — T»,VU.S') = {U} U GE(T} — T2,8"). Suppose
GE(T — T», §') = [, C]. By induction hypothesis, if valid([F, C] = [F, C] then there
exists derivation 7 such that CF T3 = T2 > §'.

By FC, the bounded variable U is different from all the other type variables, so U ¢
fto(h — Tz).

Thus, if U is not free in C and if valid[F UU,C] = [F U U, C] then we can use rule
(gen) to conclude C+ Ty — Ty > YU.S', but that is not always the case....

L3

CFTy - Ty > S U ¢ ftv(C),U ¢ ftv(Ty — T3)
CHFTy =Ty >VU.S

e if T is a for all quantification VV.T"

— case 5: If § is either a variable or an arrow type, since GE(YV.T",S) = GE(T", S),
by induction hypothesis there exist [F,C] = valid[F,C] and derivation 7 such that
CHT' 2§ and by (inst), C+ VV.T' > T'. Using transitivity we get C - YV.I" > S.

T
_— (inst) —
OFYV.T > T CFT' > 8§
CHFWI' >S5S (trane)

— case 6: If S'is a for all quantification VU.S', GE(VV.T",VU.S') = GE(T",VU.§") = {U}U
GE(T",5"). By induction hypothesis there exist [F, C] = valid[F,C] and derivation
such that CF T’ > S’. As before U ¢ ftv(T') by FC.

U ¢ ftv(C) and if [FUU, C] = valid[F, C] we can use (gen), to get C+ T" > VU.S'.
By instantiation @ - VV.T” > T" and transitivity gives us C - VV.T' > VU.S'.

But there’s a big if in this clause as well.
T
CFT' > 8

(inst) (gen)
PFYV.T > T CHT >VU.8

CFVYV.I >VU.§'

(trans)

Now even if we had the lemma we still would have problems to prove the soundness of the
type inference mechanism with respect to the typing rules of section 1. It is clear from the
definition of the function type-check that the functions GE and valid, hence lemma 1, are
needed in the cases of e a casted expression or e an application.

29

Conjecture 2 Given a context (F5,Co,T') and an ezpression in Ponder ‘e’ such that
type-check(®,Co,T,e) = ([F,C),T)

there ezists a derivation 7 according 1o the rules such thal 7 has as ils last formula C,TFe:T

Proof(7?7): By induction on the structure of the expression e. The basis corresponds to e
being a variable.
BASIS: If e is a variable, type-check(Fo,Co,T,z) = ([F,C],T), implies, by definition of
the function type-check that the assertion (z : T) is in the context T', C = Cp and Fp = F.
Now for the induction step, we have 4 cases:
~ If e is a A-abstraction (z : T — e), and if type-check(Co, T,z : T —e) = (7. C, T—
S) then type-check (Co,TU{z : T}, e) = ([F,C),T.).
By induction hypothesis there exists a derivation = whose last formulae is ',z : T, C, I

e : T, and we can use rule (A) to get the derivation with last formula T',C + (z:T—
e): T—8S.

L

I'z:T,Cte:S
I'N'Cr(z:T—e):T—S

— If e is a casted expression (e : T) and if type-check(Co,T,(e : T)) = (C,T) then
type-check(Co,T',e) = (C1,5) and C = valid(C; U GE(S,T)). By induction there
exists a derivation whose last formulais C;,I'Fe: S.

By conjecture 1 (?7), GE(S,T) produces a set of assumptions Cs such that C, F S >T
and using weakening and rule (sub) we can derive I', Cy,Ca e : T.

o)

T

C,,Tke:S CokFS2T
Cl,Cz,F}'e:T

— If e is an application e; ¢, and {ype — check(Co, T, eiez2) = (C, R) then:

* type-check(Co, T, e;) = (C;,Th),

* type-check(Cy, T, e2) = (Ca, T2),

* C = valid(C, UC, UGE(Ty,T>» — R)) and

* R is a fresh type variable .
By induction there is a derivation w; such that its last formula is Ci, Tk ey :T1. Also
there is a derivation 7, which proves Ca,I'F €5 : T5. By conjecture (?) GE(Ty,T2 — R)
produces a set C3 such that C3 - 73 > T» — R, via say w3 and using rules (sub) and
(app) we have C,T'F e1e2: R.

w3 ™
Cs"leTg-—-R Cl,I‘I-elle . 2
CI,CQ,P}‘Clth—'R C3,F*‘€2:T2

app
C';,C-_»,C;;,I"P-eleg:R ()

— If e is an expression Al.e and type-check(Co,T,AV.e) = (C\ {fired V},VV.5) then
type-check(Cy,T,¢) = (CU {fized V},S). By induction there exists a derivation
whose last formula is I'. C U {fized V} Fe: S.

IF V is not free in C then the rule for for all quantification applies.

30

Thus, even if we had the lemma, we'd still have a problem.

But the problem with the lemma is a serious one, in the sense that, the way the algorithm is
defined, it is possible to accept an expression e, given a contex T, producing type expression T and
subtyping constraints C, such that there is NO proof in the formal system of

I''Cke:T
Some considerations are in order:

e the examples of failure of the mechanism I have at the moment do not satisfy the second
convention on contexts mentioned just before the definition of valid. That is they do have
free type variables in T. So, in a sense, they are not practically-minded as programmers
would not declare free type variables.

o one of the points about the problematic examples in the next section is that GE returns a
set of fixed variables F and apart from using F to fail a set, when that’s the case, F is not
used anymore, so we are throwing valuable information away.

¢ lack of soundness is a much more serious problem as far as type inference mechanis are
concerned than lack of completeness. But it is no use at all to have a sound system which
does almost nothing.

We will discuss some examples and some possibilities of fixing the type inference mechanism in
the next section.

5 Problematic Examples

The reader may have noticed that we skimmed over the role of fixing variables. Fizing variables is
an implementational trick. The fixing of variables should stop undesirable derivations of constraints
of the form V — V > VI'.T — T and also make sure that when dealing with type abstraction over
terms, one is really allowed to abstract.

But to fulfill its dual role, it seems to me that the algorithm has to be changed. We start with
an easy example. '

Example 4 Suppose V, U are type variables. Suppose also that I' consists of a single declaration
assumption {z : VV.(V — V)} and that Cy is the empty set. If we want to type-check the cast
expression (z : VU.(U — U)) in the context (I', Cp) we have:

type-check(T,0,(z: VU.(U — U))

(CVU(U—=U)) if
type-check(T,0, z) (

(Clss)

where C = valid(GE(S,YU.(U — U)) UC,) and S is the type the mechanism assigns to z.

It is clear that type-check(T,0,z) = (8,VV.(V — V)). And it is obvious that the type-checker
should accept the type YU.(U — U) as an alpha-variant of the type declared, but the way functions
were defined

GE(VV.(V = V), YU(U - U))={U fiz,U > V,V 2 U}
and valid fails this set.

Note that this example shows lack of completeness, not unsoundness!

One of the several possible ways of fixing it, is to say that when the V quantification of V gets
stripped off, V' is marked as not fixed, or general. So when we come to the comparison between
the variables we could say that comparing a variable which is fixed with one which is general,
shouldn’t fail the set.

That means a change in function GE as well as in check, but they are not serious changes.

31

Definition 20 Given iype expressions T and S the function GE(T,S) returns a pair (F,G,C)
where C is a setl of sublyping assumptions, F is a sel of fired 1ype variables and G is a set of

general variables. The function GE(T,S) is defined by cases on the siructure of T and S as
Sfollows:

e IfT is a iype variable V

= C1. If § is any type expression, GE(V,S) = [8,{V > S}].
o IfS is a type variable U,

— C2. If T is any type ezpression, GE(T,U) = [8,{T > U}].
o IfT is an arrow type T} — T

— C8. If S is an arrow lype S) — Sa, GE(T1 - 15,5 — Sz) = GE(S],T;)UGE(Tz,Sz),
where union means unton tn all coordinaies.

- C4. IfS isVU.S', GE(Ty — T3,VU.S') = {U fiz} UGE(T\ — T»,S"), where union
means that the variable V is added 1o the set of fized variables of GE(Ty — T3,S").

e IfT is a for all quaentification YV.T'

— C5. If S is any type expression, GE(VV.IV,S) = {V gen} UGE(T',S) where union
means that the variable V is added 1o the set of general variables of GE(T', S).

Definition 21 Given a set [F,G,C],

FAIL if{V fiz,T> V)
checky([F,G,CY)={ FAIL if{V fiz,V > T}
[F.G6,C] otherwise

C [F,G,C} and T not a general variable
c[F.6.C]

[, and T not a genral variable

But problems can be a lot more serious, as the example below shows:
Example 5. Suppose U,V, S, T and T> denote type variables. Suppose also that f and z have
been declared with types VU(S — (U — U)) — V and T} — T3, respectively, in I' and Cy is
empty.

If we apply the function type-check to try to infer a type for fz in the context (T',Cp) we
have:

type-check(T',0, fz) = (C,R)
type-check(l',0,f) = OYVU(S—U—-U))—V)
type-check(l',0,z) = 0.0 -T)

where
C=valid(GEVU(S — (U = U)) = V,(Th —T2)— R))

This calls the function GE with parameters YU.(S — (U — U)) - V and (T} = T) — R:
GENVU(S—- (U —=U)—V,(I1 — T»)— R) GE(Ty = T3,VU.(S = (U = U))UGE(V,R)
GE(Th = T3,S— (U - U))UGE(V,R)U{U fiz}
GE(T>,U - U)UGE(S,Ti)UGE(V,R)U{U fiz}
{21, T2 > (U —U),V>RYU{U fiz}

Wunu

Then valid({S>T1,T2o > U — U,V > R}U{U fiz}) is the same set,
C={S2TN,T»>2U—-UV >R}

and the intuition should be that the C ‘proves’ VU.(S — (U = U)) =V > (T} = T2) = R
But there is NO possible derivation

CHVU(S—(U—=U)—=V>(Ti =T)—R

32

in the system Ponder_!!!

Notice that we could make the algorithm sound by changing function check so that, whenever V
was fixed and V appeared free in one of the subtyping constraints (not against a general variable),
the set failed. But as we mentioned before, the system would be very poor with this definition of
check. Moreover, it would make no sense to have the example above FAIL and the one below all
right. ' :
Example 6 Suppose now that f and = have been declared with types (S — YU.(U — U) -V
and T} — T3, respectively, in T and Cjy is empty.)

If we apply the function type-check to try to infer a type for fz in the context (T, Co) we
have:

type-check(T,0, fz) = (C,R)
type-check(l',0,f) = (8,(S—=VU(U—=U))—=V)
type-check(I',0,z) = 0,771 — To)

where
C = valid(GE((S - VYU(U - U))— V,(T1 — T2) = R))

The function GE will be called with parameters (S — VU.(U — U)) — V and (T} — T3) — R:
GE(TA = T3,(S = VU(U = U))UGE(V,R)

GE(T2,YU.U — U)U GE(S,Ty) U GE(V, R)U
{S>T, T >VU.U = U,V>R)

GE((S —=VU.(U = U)) = V.(T1 » Ta) — R)

But (§ — VU(U — U)) — V and YU.(S — (U — U)) — V are equivalent and the system
Ponder_ proves that. Thus it makes no sense to have example 5 rejected and 6 accepted. Note
also that the set above is what the mechanism should have returned in the example 5, as it indeed
proves what we want.

Another observation is that had the context in example 5 been closer to programmers’ intuition,
as for instance, it is in the example below, it’d have been posssible to give a derivation. One question
is whether, if one uses only contexts satisfying the two conventions mentioned, is the type inference
mechanism sound.

Example 7 Suppose now that f and z have been declared with types YU.(S — (U — U N—-V
and VTy, T5.(Ty — T3), respectively, in T and Cy is empty.

If we apply the function type-check to try to infer a type for fz in the context (T, Co) we
have:

type-check(I', 0, fr)
type-check(T, 0, f)
type-check(T', 8, z)

(C,R)
@VU(S—-(U—=0)—=V)
(0,VT1,T2.(T1 - Tz))

where

C = valid(GE(VU.(S — (U = U)) = V,VT}, T2.(T1 — T3) — R))

Thus the mechanism will call the function GE with parameters YU.(S — (U — U)) — V and
VTl,Tg.(T]_ hand Tg) — R:

GE(VU.S — (U — U) — V.VT}, T2.Ty — Ty — R)

GE(YTy,T2.Ty — Tu,VU.§ — (U — U)UGE(V, R)

GE(Ty — T2,YU.§ — (U — UYUGE(V, R)U{T1, Ty gen}
GE(Ty,U — U)UGE(S,T1) UGE(V,R)U{Ty, Tz gen} U{U fiz}
{S>T1. T2 > U — U,V > R}yU{Ty,T» gen} U{U fiz}

e nw

33

6 Conclusions and further work

After looking at examples 5 and 6 one could think that to attain soundness of the type inference
mechanism, it would be enough to “normalise” types, by that I mean, vaguely, to push into the
expresssion as far as possible the quantifiers. But that does not gives us a proof of soundness and
there is some evidence that it is not desirable in all cases. It seems that a serious study of the
proofs in the calculus Ponder needs to be undertaken.

I would like to mention that both ideal models and Per models should be able to cope with
modelling Ponder_. But there is no point in doing it unless we can get a sound type inference
mechanism for Ponder._.

Acknowledgments I would like to thank Martin Hyland, Jon Fairbairn, Andy Pitts, Robin
Milner, Mike Gordon, Andy Gordon and Randy Pollack for several discussions on the subject of
this report. Especially I would like to thank Eugenio Moggi for a careful reading of the manuscript.
Some of his suggestions and Martin Hyland’s ideas have been stored away for work in preparation.

References

[AMA] R. Amadio Typed Equivalence, Type Assignment and Type Conlainment to appear in
Proc. CTRS’90, March ’90.

[ASP] A. Asperti Categorical Topics in Compuler Science Technical Report TD- 7/90 from
the University of Pisa.

[BCGS] V. Breazu-Tannen, T. Coquand, C. Gunter and A. Scedrov Inheriiance and Ezplicit
Coercion LICS’89

[B&L) K. Bruce and G. Longo A modest model of records, inherilance and bounded gquantifi-
cation LICS’88

[Card] L. CARDELL! A Semantics of Multiple Inheritance, Information and Computation,76
138-164, 1988.

[C&W] L. CARDELLI and P. WEGNER On Undertanding Types, Data Abstraction and Poly-
morphism Comp. Surveys, 1985

[C&G] P.L. Curien and G. Ghelli Coherence of Subsumption Technical Report TD- 34/89 from
the University of Pisa.

[D&M] L. Damas and R. Milner Principal type schemes for functional programs POPL’82

[Fair] J. FAIRBAIRN Design and Impletementation of a Simple Typed Language based on the
Lambda-Calculus, Technical Report 75, Computer Laboratory, University of Cambridge,
May 1985.

[Fair) J. FAIRBAIRN Ponder and ils Type System Tech. Report 31 Computer Laboratory
University of Cambridge, Nov'82.

[Fair] J. FATRBAIRN 4 New Type-Checker for @ Functional Language Tech. Report 53 Com-
puter Laboratory University of Cambridge, 84.

[Ghe] G. Ghelli Proof Thcoretic Studies about a Minimal Type System Integrating Inclusion
and Parametric Polymorphism - Technical Report TD- 6/90 from the University of Pisa.

[Fair] J. FAIRBAIRN Some Typcswith Inclusion Properties in ¥V, —, up Tech. Report 31 Com-
puter Laboratory Universiiy of Cambridge, June 89.

34

[3M]
9]

[MPS]
[Mitc]

[Mitc]
[Mite]

[Wan]

L. Jategaonkar and J.C. Mitchell ML with Ertended Pattern Maiching and Sublypes
ACM Conference on LISP and Functional Programming July 88.

L. Jategaonkar ML with Eztended Pattern Maiching and Subiypes Tech Report
MIT/LCS/TR-4G8, August &9.

D.MACQUEEN, G. PLOTKIN and R. SETHI An Ideal Model for Recursive Polymor-
phic Types Infod:Control 71

J.MITCHELL Coercion and Type Inference ACM Symp on LISP and Functional Pro-
gramming, 82.

J.MITCHELL Polymorphic Type Inference and Containment Info&Comp 76

J.MITCHELL A Type-Inference Approach to Reduction Properties and Semantics of
Polymorphic Ezpressions POPL-86

M. Wand Type Inference for record concatenation and multiple inheritance LICS’89.

