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Chapter 1

Introduction

Recent advances in microelectronics have given designers of digital hardware the
potential to build electronic devices of remarkable size and complexity. With
increasing size and complexity, however, it becomes increasingly difficult to ensure
that such devices are free of design errors which may cause them to malfunction.
Exhaustive simulation of even moderately-sized circuits is impossible, and partial
simulation offers only partial assurance of functional correctness.

This is an especially serious problem in safety-critical applications, where failure
due to hardware design errors may cause loss of life or extensive damage. In these
applications, functional errors in circuit designs cannot be tolerated. But even
where safety is not the primary consideration, there may be important economic
reasons for doing everything possible to eliminate design errors—and to eliminate
them early in the design process. A flawed design may mean costly and time-
consuming refabrication, and mass-produced devices with design errors may have
to be recalled and replaced.

1.1 Hardware Verification by Formal Proof

A solution to these design correctness problems is one of the goals of recent
research in hardware verification. With this approach, the functional behaviour
of hardware is described mathematically, and formal proof is used to verify that
hardware designs meet rigorous specifications of intended behaviour. Such proofs
can be very large and complex, so mechanized theorem-proving tools are often
used to construct them.

Considerable progress has been made in this area in the past few years. Notable
large-scale applications of hardware verification include: Hunt’s verification of
the FM8501 microprocessor using the Boyer-Moore theorem prover [53], Herbert’s
verification of a network interface chip using the HOL proof assistant [48], Joyce’s
verification in HOL [56,55,58] of a simple microprocessor originally verified by
Gordon using the LCF LSM theorem prover [33], and the verification by Narendran
and Stillman of an image processing chip using a method based in rewriting [73].

Hardware verification techniques are now considered mature enough to be
applied to simple circuits intended for safety-critical applications. Cohn’s work on
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verifying the Viper microprocessor is a preliminary experiment in this area [16,17].
Viper [20] is a simple microprocessor designed at the Royal Signals and Radar
Establishment with formal verification in mind. It is intended for use in safety-
critical applications and is now commercially available. Cohn’s formal proof of
the correctness of Viper is not complete, but it covers some important aspects of
the machine’s design.

1.1.1 The Hardware Verification Method

Two things are needed for any method of hardware verification based on rigorous
specification and formal proof. The first is a formal or mathematical language
for describing the behaviour of hardware and expressing propositions about it.
The ideal language for this purpose is expressive enough to describe hardware
in a natural and concise notation yet still has a well-understood and reasonably
simple semantics. The second requirement is a deductive calculus for proving
propositions about hardware expressed in this language. This must, of course, be
logically sound; and it should be powerful enough to make it possible to prove all
the true propositions about hardware behaviour that arise in practice.

Various formal languages and associated proof techniques have been proposed
as a basis for hardware verification. These range from special-purpose hardware
description languages—with ad hoc proof rules—to systems of formal logic, and
subsets of ordinary mathematics. Formal methods for reasoning about hardware
have been based, for example, on algebraic techniques [4,12,66], various kinds of
temporal logic [8,22,25,59,72], functional programming techniques [76], predicate
calculus [23,51,53,83], and higher order logic [11,34,43].

Details of the methods for proving hardware correctness based on these different
formalisms vary. But many of them share a common general approach, in which a
formal proof of the correctness of a hardware device typically involves the following
four steps.

1. Write a formal specification S to describe the behaviour which the device
must exhibit for it to be considered correct.

2. Write a specification for each kind of primitive hardware component used
in the device. These specifications are intended to describe the actual
behaviour of real hardware components.

3. Define an expression D which describes the behaviour of the device to be
proved correct. The definition of D has the general form

D
def= P1 + · · ·+ Pn

where P1, . . . , Pn specify the behaviours of the constituent parts of the
device, and + is a composition operator which models the effect of wiring
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components together. The expressions P1, . . . , Pn used here are instances
of the specifications for primitive devices defined in step 2.

4. Prove that the device described by D is correct with respect to the formal
specification S. This is done by proving a theorem of the form

� D satisfies S

where ‘satisfies’ is some satisfaction relation on formal specifications of
hardware behaviour. This correctness theorem asserts that the behaviour
described by D satisfies the specification of intended behaviour S.

When the device to be proved correct is large, this method is usually applied
hierarchically. The device is structured into a hierarchy of components, and formal
specifications which describe ‘primitive components’ at one level of the hierarchy
become specifications of intended behaviour at the next level down. The structure
of the proof mirrors this hierarchy: the top-level specification is shown to be
satisfied by an appropriate connection of components; at the next level down,
each of these components is shown to be correctly implemented by a connection
of sub-components, and so on—down to the lowest level, where the components
used correspond to devices available as hardware primitives.

1.1.2 Limitations of Hardware Verification1

A correctness proof of the kind described above cannot guarantee that a hardware
device will not malfunction: the design of a device may be proved correct, but
the hardware actually built can still behave in ways not intended by the designer.
There are some obvious reasons for this. There may, for example, be fabrication
defects in the manufactured device. Or, since many mechanized theorem-proving
tools for hardware verification are not yet integrated with the CAD systems used to
generate circuit layouts, the design which is verified may not correspond exactly to
the device which is built. But in addition to these pragmatic problems, there are
also more fundamental reasons why a physical device, although built to a verified
design, may still fail to behave as intended by the designer. Two of these are
particularly relevant here. Both are results of completely obvious but important
limits to what can be established by formal proof.

First, a formal proof cannot demonstrate that a design will behave ‘as intended’
by the designer; a proof can show only that the design behaves as prescribed by
a written, and possibly inaccurate, formal specification. A hardware device may
therefore exhibit unexpected behaviour because its design was proved correct with
respect to a specification that fails to reflect the designer’s intent. This is an

1This section is based, in part, on Cohn’s discussion in [18] of the limitations of hardware
verification in the context of the Viper verification project.
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obvious point. But it is an especially important one when the specification is
large or the behaviour being specified is complex, for then it may be far from
clear to the designer that the specification is itself correct.

Second, a formal proof cannot, strictly speaking, demonstrate anything about a
physical hardware device. All that can be proved is that a mathematical model of
the device has the properties prescribed by a specification of required behaviour.
But a model may fail to capture important aspects of the real hardware it is
intended to describe. Design errors may therefore escape discovery because the
undesirable behaviour resulting from them is not reflected in the formal model on
which a proof of correctness is based.

Because of these fundamental limits to the scope of formal proof, the hardware
verification method described in Section 1.1.1 can never establish with complete
certainty that a physical device will function exactly as intended. A correctness
result obtained by this method can be only as good as the formal model and
the specification it relates. There are, however, two important practical measures
which can be taken to help justify confidence in the significance of correctness
results obtained by formal proof. First, specifications of required behaviour can
be made as clear and concise as possible, so that their fidelity to the designer’s
intent can be evaluated easily. This reduces the likelihood of a proof failing
to yield a meaningful result because the specification of required behaviour is
itself incorrect.2 Second, formal models can be used which describe the empirical
behaviour of real devices as accurately as possible. The more accurate the model
used, the less likely it is that a design error will escape discovery by formal proof.

Adopting these two measures—making models as accurate as possible, and
making specifications clear and concise—is essential if design verification by formal
proof is to be an effective way of dealing with the problem of hardware correctness.
An important consequence of this is that the notion of abstraction plays a central
role in effective formal methods for hardware verification.

1.2 Abstraction

Abstraction is the process by which the important properties of a complex object
are isolated for further consideration or use and the remaining ones ignored as
being irrelevant to the task at hand. An example is the process of procedural
abstraction in programming. Once a procedure has been defined, it is treated as an
atomic operation with only one important attribute: what the procedure does.
The exact sequence of computation steps which achieve this operation—how the
procedure does it—is ignored [36]. Programming language constructs that support

2Another approach is to make specifications executable, so that the designer can run them
to gain confidence in their accuracy (see [10,65,80]). This is a special case of the more general
strategy of evaluating specifications by deriving consequences of them.
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abstraction in this way are fundamental tools for dealing with the complexity of
the programming task. By allowing the attributes of a complex object which are
important to the task at hand to be isolated from those which are not, software
abstraction mechanisms provide a way of limiting the amount of detail that must
be considered at any one time [37].

Abstraction plays a similar role in hardware verification. Here, an abstraction
mechanism establishes a formal relationship of abstraction between a complex
description of hardware behaviour and a conceptually simpler one. Abstraction
mechanisms of this kind provide a means for controlling the complexity of both
formal specifications of hardware behaviour and proofs of design correctness. By
suppressing the irrelevant information in detailed formal descriptions of hardware
behaviour, and thereby isolating the properties of these descriptions which are
most important, effective abstraction mechanisms help to control the size and
complexity of the specifications at each level in a hierarchically-structured proof
of correctness. In this way, abstraction mechanisms and hierarchical structuring
can help to control the complexity of correctness proofs for large and complex
hardware designs—in the same way that software abstraction mechanisms are
used to manage the complexity of program development.

Considered in the context of the fundamental limitations to the scope of formal
proof discussed in the previous section, it is clear that the concept of abstraction
must play a central role in two areas of hardware verification: (1) in formulating
meaningful assertions about the correctness of large or complex hardware designs,
and (2) in assessing the accuracy of the formal models on which correctness proofs
are based. These two aspects of the role of abstraction in hardware verification
are discussed briefly in Sections 1.2.1 and 1.2.2 below.

1.2.1 Abstraction and Correctness

In proving the correctness of a hardware device, it is desirable to use a formal
model of hardware behaviour whose mathematical properties reflect as accurately
as possible the empirical behaviour of the physical device itself. This does not
mean that it is always necessary to model the physics of electronic circuits in as
much detail as possible: a simplified model can often be justified by the fact that
the device which is to be verified is implemented in a particular technology or
design style. But a model should nonetheless reflect as accurately as possible the
actual behaviour of a device built using the technology or design style in question.
The reason for this was discussed above in connection with the limitations of
hardware verification by formal proof—the more accurate the formal model of a
device, the less likely it is that errors in its design will escape discovery.

Specifications of required behaviour, on the other hand, must be clear and
concise, so that they are intelligible enough to be seen to reflect the designer’s
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intent. Most of the details about the actual behaviour of device which is to be
proved correct must therefore be left out the formal specification of its intended
behaviour. Only the essential aspects of its required behaviour can be included.
Furthermore, the larger and more complex the device being verified, the more
detailed information about its actual behaviour must be ignored in order to keep
the specification of its required behaviour small.

This means that specifications must, in general, present more abstract views of
the behaviour of hardware devices than models do. The concept of a relationship
of abstraction between two formal descriptions of hardware behaviour is therefore
fundamental to expressing formally what it means for a device to be ‘correct’.
Formally, the correctness of a device is stated by a theorem which asserts that a
mathematical model of its actual behaviour in some sense ‘satisfies’ a specification
of its intended behaviour. For all but the simplest devices, the satisfaction relation
used to formulate this correctness relationship must relate a detailed design model
to an abstract specification of required behaviour. This notion of correctness as a
relationship of abstraction is discussed in detail in Chapter 4 of this dissertation.

1.2.2 Abstraction and the Accuracy of Models

Although the value of a correctness result depends on how accurately a model
reflects the actual behaviour of the physical device it represents, a very accurate
formal model of hardware behaviour may be unnecessarily complex, and it may
be possible to adopt a circuit design style for which a simpler model will do. The
functional correctness of a fully complementary CMOS circuit, for example, does
not critically depend on transistor size ratios [84]. A very accurate formal model of
CMOS transistor behaviour, which takes into account transistor size ratios, would
therefore be inappropriate for this conservative design style. In this case, a less
accurate—but also simpler and more tractable—formal model of CMOS transistor
behaviour can be used. The validity of using this simpler model can be justified
on empirical grounds, in the light of what is known about the actual behaviour
of fully complementary CMOS circuit designs.

In general, a simplified model can often be justified empirically by the fact that
the device which is to be proved correct is implemented in a restricted style of
circuit design. Such a model may be less ‘accurate’ than a more complex formal
model of hardware behaviour, but the restrictions on device behaviour imposed by
the design style itself will ensure that the extra accuracy of a more complex model
is not needed. In this case, the simple formal model of hardware behaviour will in
fact be an abstraction of a more accurate—but also more complex—formal model
of hardware behaviour. Both models will describe the same physical hardware
device, but the simpler model will describe only some of the aspects of device
behaviour that are captured by the more accurate model.
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Although it may be possible to justify this use of a simplified model of device
behaviour empirically, it is also desirable to assess the accuracy of a simplified
model by more rigorous means. This can be done by means of a formal proof
which demonstrates that a simplified model is sufficiently accurate (with respect
to a more complex model) for the particular circuit design style in question. Such
a proof would show that a simple formal model of hardware behaviour is, in some
sense, a valid abstraction of a more complex formal model of hardware behaviour
for a restricted class of circuit designs. This notion of an abstraction relationship
between two formal models of hardware behaviour, and the connection between
this idea and the concept of the relative accuracy of two models, is discussed in
detail in Chapters 4 and 7 of this dissertation.

1.3 Motivation

The research reported in this dissertation was originally motivated by the author’s
experience with using the LCF LSM theorem prover [32] to prove the correctness
of an associative memory device intended for use in a local area network [6,7].
This device comprised 37 SSI and MSI TTL chips, the most complex of which
was an AM2910 microprogram controller. Although the design of this device was
relatively straightforward, its formal verification in the LCF LSM system proved to
be remarkably difficult. The main problem was simply the almost intractably large
size of the intermediate theorems generated during the proof. Single theorems
were often generated by the system which were hundreds of lines long, and several
minutes, or even several hours, of CPU time were needed to manipulate them.
The proof was completed only with considerable difficulty—some time after the
LCF LSM system had become obsolete.

The difficulties encountered during this exercise were for the most part due,
not to problems with the LCF LSM theorem prover itself, but to deficiencies in
the underlying formalism for hardware verification supported by the system. Two
main problems were encountered in the course of the proof. First, the LCF LSM
formalism (which is described in detail in [32]) limited the extent to which both the
associative memory itself and the hardware components used in its design could
be described by concise abstract formal specifications. Second, this formalism
provided only limited and inflexible abstraction mechanisms for relating formal
specifications of hardware behaviour at different levels of abstraction.

These two limitations imposed considerable restrictions on the extend to which
abstraction could be used to simplify specifications at intermediate levels in the
hierarchically-structured proof of correctness for the associative memory device.
For example, fully detailed information about the effect of executing any of 16
possible opcodes using the AM2910 microprogram controller had to be retained
in formal specifications throughout much of the proof, even though the actual
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microcode for the associative memory made use of only 5 different opcodes. It
became clear from this exercise that more effective abstraction mechanisms were
needed for controlling the complexity of specifications and proofs than were made
available by the LCF LSM formalism and theorem prover.

The research reported in this dissertation was originally undertaken in order to
develop some practical and widely applicable abstraction techniques for dealing
with the kinds of problems encountered in this application.

1.4 The Contribution of this Work

In this dissertation, it is shown how reasoning about the correctness of hardware
by formal proof can be done using certain fundamental abstraction mechanisms
to relate specifications of hardware behaviour at different levels of abstraction.
The formalism used here is a variety of higher order logic [29]. The general
approach taken in this work is pragmatic and example-driven. Correctness proofs
were done in higher order logic for a variety of simple hardware devices, each
of which was chosen to isolate the issues involved in some particular aspect of
abstraction, formal specification, or proof. Chapter 4 provides a general account
of some fundamental principles derived from these examples. Chapters 5–7 give
a selection of detailed examples which illustrate these basic principles. The aim
of these examples is to provide clear illustrations of some specific aspects of the
use of abstraction mechanisms in hardware verification. The examples given here
are therefore generally very simple (an exception is the case study in Chapter 6).

One of the main aims of this dissertation is to provide a clear and motivated
account of the role of abstraction in hardware verification, and to describe some
basic techniques by which abstraction mechanisms for hardware verification can
be formalized in higher order logic—by purely definitional means (see below). In
addition to this general account of some basic principles behind the formalization
of abstraction mechanisms for hardware verification in higher order logic, the main
contributions of the work reported in this dissertation are the following:

• A systematic method is developed for defining any instance of a wide class
of concrete data types in higher order logic (Appendix A). This method has
been fully automated in the HOL theorem prover for higher order logic. The
types definable by this method provide a firm logical basis for representing
data in formal specifications of hardware behaviour at various different levels
of data abstraction (Chapter 5).

• A new technique is described for modelling the behaviour of entire classes of
hardware designs in higher order logic. The technique is based on a formal
representation in logic for the structure of circuit designs which makes use
of recursive types definable by the systematic method mentioned above.
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This approach can be used both to prove the correctness of certain classes
of circuit designs (Chapter 5) and to support reasoning about the relative
accuracy of formal models of hardware behaviour in general (Chapter 7).

• A technique is described by which the correctness of a model that contains
detailed information about the time-dependent behaviour of a device can be
formulated with respect to a specification of required behaviour written in
terms a more abstract representation of time. The method is illustrated by
a substantial case study—the formal verification in higher order logic of a
simple ring communication network (Chapter 6).

Two fundamental principles underlie all this work. The first is that all reasoning
about hardware behaviour should be done by strictly formal proof, using only the
deductive calculus provided by the primitive basis of higher order logic. This
provides the greatest possible assurance that only logically sound reasoning is
used. The second principle is that any special-purpose notation needed to specify
hardware behaviour and to formulate propositions about hardware correctness
should be introduced by definitional means only. This ensures that inconsistency
is not introduced by postulating ad hoc axioms intended to characterize non-
primitive mathematical objects.

A consequence of adopting these two principles was that mechanized theorem
proving support was essential for the work reported in this dissertation, since for
any but the simplest theorems of higher order logic it is not feasible to carry
out fully detailed and completely formal proofs manually. Except where noted,
formal proofs for all the major theorems about hardware in this dissertation were
generated using the HOL interactive proof assistant [30]. Some special-purpose
theorem proving tools were also developed in the HOL system for the work on
abstraction reported in this dissertation. But detailed discussion of these theorem
proving tools and the fully formal proofs done using them is avoided in the body
of the dissertation and relegated to the appendixes.

1.5 Outline of the Dissertation

A brief outline of the dissertation is given below. There is no chapter devoted
exclusively to an account of related work. This is instead discussed passim.

• Chapter 2 gives an overview of higher order logic and its mechanization in
the HOL system. The purpose of this chapter is to make the dissertation
self-contained, and the emphasis is therefore on the features of the logic
which are important to an understanding of later chapters. Of particular
importance are Sections 2.1.4–2.1.7, in which the definitional mechanisms
of the logic are explained. These play a central role in formalizing the
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abstraction mechanisms discussed in later chapters. Except in the details of
presentation, none of the material in Chapter 2 is new. Both the formulation
of higher order logic described in this chapter and its mechanization in the
HOL system are due to Gordon [29,30].

• Chapter 3 introduces the basic techniques for hardware verification using
higher order logic. A method for specifying the behaviour of hardware is
described, together with a method for constructing behavioural models of
composite devices from the specifications of their components. An example
proof is given which illustrates the general approach to verification in higher
order logic. The techniques described in this chapter are well-established
and widely-used (see, for example, [11,34,43,51]), and no claim to novelty is
made for the basic ideas behind them. The particular approach described
here is due to Gordon [34]. The account given in this chapter represents
the present author’s view of this approach. The chapter concludes with an
overview of related work on hardware verification based on formal logic.

• Chapter 4 shows how the two basic types of abstraction introduced above in
Sections 1.2.1 and 1.2.2 can be formalized in higher order logic. These two
types of abstraction are referred to as abstraction within a model of hardware
behaviour, and abstraction between models of hardware behaviour. This
chapter is concerned only with the general ideas behind the formalization
of these two kinds of abstraction in higher order logic. The technical details
are covered in the three chapters that follow.

Abstraction within a model is discussed in Section 4.1. This section shows
how the idea of correctness as a relationship of abstraction can be expressed
formally in logic and incorporated into the method of hardware verification
introduced in Chapter 3. Three basic abstraction mechanisms are discussed
in this section: behavioural abstraction, data abstraction, and temporal
abstraction. Each of these abstraction mechanisms can be used to relate
detailed formal models of hardware designs to more abstract and concise
specifications of intended behaviour. The role of abstraction in hierarchical
verification is also discussed in this section.

Section 4.2 introduces the idea of an abstraction relationship between two
formal models of hardware behaviour. An abstraction relationship of this
kind describes the conditions under which correctness results obtained in an
abstract or simplified model of hardware behaviour agree with correctness
results obtained using a more accurate but less tractable model. Only a
very brief introduction to the idea of an abstraction relationship between
two models of hardware behaviour is given in this section, but a detailed
example is provided in Chapter 7.
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• The subject of Chapter 5 is data abstraction. In particular, the emphasis of
this chapter on the use of defined logical types to represent ‘data’ in higher
order logic. In Section 5.1, it is shown how an arbitrary instance of a wide
class of concrete data types can be characterized formally in higher order
logic. In Sections 5.2 and 5.3, two detailed examples are given to show
how these defined logical types be used to support formal reasoning about
hardware behaviour where data abstraction is involved. A common theme
of these two examples is the importance of an appropriate choice of data
types for use in formal specifications of hardware behaviour.

• Chapter 6 describes some techniques developed for temporal abstraction in
higher order logic and illustrates the use of these techniques by a case study.
Temporal abstraction involves relating formal specifications that describe
hardware behaviour using different notions of time. In Sections 6.1–6.2,
a technique is described for constructing time mappings in higher order
logic, and it is shown how mappings of this kind can be used to formulate
the correctness of hardware devices with respect to temporally abstract
specifications of required behaviour. In Section 6.3, a substantial case study
involving temporal abstraction is presented: a proof of correctness in higher
order logic for the design of a simple ring communication network.

• In Chapter 7, a worked example is given to illustrate the concept of an
abstraction relationship between two models of hardware behaviour which
was introduced in Chapter 4.

• In Chapter 8, a brief summary is given of the main contributions of this
work, and some directions for future research are proposed.

• Appendix A gives a detailed account of a systematic method for defining
an arbitrary, possibly recursive, concrete data type in higher order logic. A
fully automatic implementation of this method in the HOL system is also
discussed. This work, although presented in an appendix, is one of the
main contributions of this dissertation. The method for defining logical
types explained here is fundamental to the work on abstraction discussed in
Chapters 5 and 7. The text of Appendix A is adapted with very few changes
from the self-contained account of this work published as [64], and there is
therefore a small amount of repetition in the appendix of material already
covered in the less detailed summary provided in Chapter 5.

• Appendix B contains an example interactive HOL session which illustrates
the use of the automatic theorem proving tools based on the method for
defining recursive types discussed in Appendix A.
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Chapter 2

Higher Order Logic
and the HOL System

This chapter provides an overview of the formulation of higher order logic used
in later chapters for reasoning about hardware. A brief description is also given
of the mechanization of this logic in the HOL theorem proving system.

Higher order logic is described in Section 2.1. The description given in this
section is not complete; only those aspects of the logic which are important to
an understanding of later chapters are covered. Of particular importance are
Sections 2.1.4–2.1.7, which describe formal mechanisms for making various kinds
of definitions in higher order logic. These play a central role in formalizing the
abstraction mechanisms for hardware verification discussed in Chapters 4–7.

An overview of the HOL theorem prover for higher order logic is given in
Section 2.2. A full description of the HOL system is beyond the scope of this
dissertation, and only a sketch of the approach to theorem proving used in the
HOL system is provided here. Except for some of the theorems in the T-ring
correctness proof given in Chapter 6, all the theorems of higher order logic in this
dissertation were generated in the HOL system. Details of how these proofs were
carried out in the system will not be given, but an example interactive session
with the HOL system can be found in Appendix B.

2.1 An Overview of Higher Order Logic

The version of higher order logic described in this section was developed by
Dr M. Gordon at the University of Cambridge [29]. Gordon’s version of higher
order logic is based on Church’s formulation of the simple theory of types [14],
which combines some of the features of the λ-calculus with a simplification of
the early type theory of Russell and Whitehead [82]. Gordon’s machine-oriented
formulation extends Church’s theory in two significant ways: the syntax of types
includes the polymorphic type discipline developed by Milner for the LCF logic
PPλ [35], and the primitive basis of the logic includes formal rules of definition
for consistently extending the logic with new constants and new types.

The following sections give a brief introduction to this formulation of higher
order logic. For a full account of the logic see [29,30]. In what follows, and in the
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remaining chapters, the phrase ‘higher order logic’ should generally be understood
to mean the particular formulation described here. Detailed descriptions of related
versions of higher order logic can be found in [1,47].

2.1.1 Types

Higher order logic is a typed logic. Every term of the logic has an associated
logical type which represents the kind of value it denotes. A term is considered
to be syntactically well-formed only if its type is consistent with the types of
its subterms. As a syntactic device, types are necessary to eliminate certain
‘paradoxical’ statements which, if they could be expressed in the logic, would
make it inconsistent (e.g. formulations of Russell’s paradox). Ensuring that every
term has a type which is consistent with those of its subterms simply makes such
paradoxical expressions syntactically ill-formed.

2.1.1.1 The Syntax of Types

The syntax of types in higher order logic is given by

ty ::= c | v | (ty1, . . . , tyn)op

where c ranges over type constants , v ranges over type variables, op ranges over
n-ary type operators (for n ≥ 1), and ty, ty1, . . . , tyn range over types. Type
constants and type variables are called atomic types. Types constructed using
type operators are called compound types.

Type constants are identifiers that name fixed sets of values. An example is
the primitive type constant bool. This type constant denotes the two-element set
of boolean truth-values.

Type variables are used to stand for ‘any type’. They are written α, β, γ, etc.
Type expressions that contain type variables are called polymorphic types. A
substitution instance of a polymorphic type ty is a type obtained by substituting
types for all occurrences of one or more of the type variables in ty. Type variables
occur in Church’s formulation of higher order logic [14] as metavariables ranging
over types; in the version of higher order logic used here they are part of the
object language. This allows a limited form of implicit universal quantification
over types within the logic, since theorems that contain polymorphic types are
also true for any substitution instance of them.

A compound type of the form (ty1, . . . , tyn)op denotes a set constructed from the
sets denoted by the types ty1 through tyn. The n-ary type operator op is the name
of the operation that constructs this set. The compound type (bool, bool)fun, for
example, denotes the set of all total functions from values of type bool to values
of type bool. This compound type is constructed using the binary type operator
fun, which denotes the function space operation on sets.
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2.1.1.2 Primitive and Defined Types

There are two primitive type constants in higher order logic: bool and ind. The
type constant bool denotes the two-element set of boolean truth-values. The type
constant ind denotes the set of ‘individuals’, which in this formulation of higher
order logic is simply a set with infinitely many distinct elements. There is only
one primitive type operator in higher order logic: the binary type operator fun.
If ty1 and ty2 are any two types, then the compound type (ty1, ty2)fun is the type
of all total functions from values of type ty1 to values of type ty2.

In principle, every type needed for doing proofs in higher order logic can be
written using only type variables, the primitive type constants bool and ind, and
the primitive type operator fun. But in practice it is desirable to add more
type constants and operators to the logic than are strictly necessary to prevent
inconsistency. In the version of higher order logic used here, this is done by
defining new types and type operators in terms of primitive types (or other already
defined types). A type definition extends the language of types in higher order
logic by introducing a new type constant or type operator not already present in
it. Formally, a type definition is an axiom which is added to the logic to define
the meaning of a new type expression. The primitive basis of higher order logic
includes an explicitly-stated rule of definition for introducing axioms of this kind.
This rule is explained in detail in Section 2.1.7.

Two logical types which can be defined formally using this rule are num, the
type of natural numbers, and (ty1, ty2)prod, the cartesian product of ty1 and ty2.
A summary of some notation associated with these two basic types is given in
Section 2.1.2.6, and a full account of how they are defined is given in Appendix A.
Other defined types are also introduced in Appendix A, and in Chapters 5 and 7.

2.1.1.3 Notational Abbreviations for Types

Some notational abbreviations are used to make type expressions more readable.
Compound types constructed with the type operators fun and prod can be written
using the infix notation shown below.

Infix Abbreviations for Types

Type Abbreviation
(ty1, ty2)fun (ty1 → ty2)
(ty1, ty2)prod (ty1 × ty2)

Expressions written using this infix notation are metalinguistic abbreviations
for the corresponding object-language types; unlike defined types, they are not
part of an extended syntax of object-language type expressions. The expression
‘bool→(bool→bool)’, for example, is simply shorthand for the less readable type
expression (bool, (bool, bool)fun)fun.
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By convention, it is assumed that the infix symbols → and × associate to the
right. The expression bool→(bool→bool), for example, can be written without
parentheses as bool→bool→bool. In addition, the infix symbol × is assumed to be
more tightly binding than →. So, for example, the expression bool × bool → bool

means (bool × bool) → bool.

2.1.2 Terms

The higher order logic notation for terms can be viewed informally as an extension
of the conventional syntax of predicate calculus in which variables can range over
functions (higher order variables) and functions can take functions as arguments
or yield functions as results (higher order functions). These two extensions are
illustrated by the proposition of higher order logic shown below.

∀xf. ∃fn. (fn 0 = x) ∧ ∀n. fn (n+1) = (f (fn n)) n (2.1)

This proposition states that functions can be defined on the natural numbers
such that they satisfy primitive recursive equations. It asserts that for any value
x and any function f , there is a function fn that yields x when applied to 0 and
satisfies the recursive equation fn (n+1) = (f (fn n)) n for all values of n. The
quantified variables f and fn in (2.1) are examples of higher order variables; they
both range over functions. The function f is also an example of a higher order
function; when applied to the value (fn n) on the right hand side of the recursive
equation in (2.1) it yields a function as a result.

The proposition shown above is written in an abbreviated notation. It stands
for a much less readable expression written in the ‘pure’ syntax of higher order
logic terms. This pure syntax of terms is described below in Section 2.1.2.1. Some
notational abbreviations for terms are introduced in Sections 2.1.2.4 and 2.1.2.5.
These define the notation used in proposition (2.1) and allow terms to be written
in a form which resembles the conventional syntax of predicate calculus.

2.1.2.1 The Syntax of Terms

The syntax of (untyped) terms in higher order logic is given by

tm ::= c | v | (tm1 tm2) | λv. tm

where c ranges over constants, v ranges over variables, and tm, tm1, and tm2 range
over terms. Terms of the form (tm1 tm2) are called applications, and terms of the
form λv. tm are called abstractions . In this dissertation, sans serif identifiers (e.g.
a, b, c, Const) and non-alphabetical symbols (e.g. ⊃, =, ∀) are generally used for
constants, and italic identifiers (e.g. v, x, x1, fn, F , G) are used for variables.

15



2.1.2.2 Free and Bound Variables and Substitution

An occurrence of variable v in a term tm is bound if it occurs after the dot in
a subterm of the form ‘λv. t’. An occurrence of a variable which is not bound
is called free. If tm1, . . . , tmn are terms and v1, . . . , vn are distinct variables,
then the metalinguistic notation tm[tm1, . . . , tmn/v1, . . . , vn] stands for the result
of simultaneously substituting tmi for vi for 1 ≤ i ≤ n at every free occurrence
of vi in the term tm, with the condition that no free variable in any tmi becomes
bound in the result of the substitution. When the notation tm[tm1, . . . , tmn] is
used, it should be understood to represent a term obtainable as the result of
such a substitution. In particular, ‘tm[v1, . . . , vn]’ means a term obtainable by a
substitution of the form tm[v1, . . . , vn/v′1, . . . , v

′
n] such that none of the variables

v1, . . . , vn becomes bound in the result. Thus tm[v1, . . . , vn] represents a term in
which there may be free occurrences of the variables v1, . . . , vn. As used in later
chapters, this notation should be understood simply to mean a term with exactly
n distinct free variables v1, . . . , vn. And when a term is written tm[v1, . . . , vn],
the notation tm[tm1, . . . , tmn] should, throughout the context in which this term
is discussed, be understood to mean tm[tm1, . . . , tmn/v1, . . . , vn].

2.1.2.3 Well-typed terms

Every term in higher order logic must be well-typed . Writing tm:ty indicates
explicitly that the term tm is well-typed with type ty. The well-typed terms of
higher order logic are defined inductively as follows:

• Constants: Each constant c has a fixed type ty, called its generic type.
If the generic type ty is polymorphic, then c:ty′ is a well-typed term for
any substitution instance ty′ of ty.

• Variables: If an identifier id is not already the name of a constant then
id:ty is a well-typed variable for any type ty.

• Applications: If tm1:ty1→ty2 and tm2:ty1 are well-typed terms then the
application (tm1 tm2):ty2 is a well-typed term. It represents the result of
applying the function denoted by tm1 to the value denoted by tm2.

• Abstractions: If x:ty1 is a variable and tm:ty2 is a well-typed term then
the abstraction (λx. tm):ty1→ty2 is a well-typed term. It represents the
function whose value for an argument a is given by tm[a/x].

Only well-typed terms are considered syntactically well-formed in higher order
logic. There is an algorithm, due to Milner [68], which can be used to infer the
type of a term from the generic types of the constants it contains. The HOL

16



mechanization of higher order logic uses this algorithm to assign consistent types
to logical terms entered by the user. In general, types will not be mentioned
explicitly when it is clear from the form or context of a term what its type must
be. When necessary, the notation tm:ty will be used to indicate the types of
variables or constants.

2.1.2.4 Primitive and Defined Constants

There are three primitive constants in higher order logic:

= :α→α→bool, ⊃ :bool→bool→bool and ε :(α→bool)→α.

The two constants = and ⊃ denote the binary relations of equality and material
implication respectively. These relations are represented by higher order functions;
when applied to a value, both = and ⊃ yield boolean-valued functions. For
example, the application (⊃ P ) denotes a function of type bool→bool. When
applied to a boolean term Q, the resulting term (⊃ P ) Q expresses the proposition
that P implies Q. Likewise, the application (= x) y means x equals y. The third
primitive constant—the constant ε—is a selection operator [47,60] for higher order
logic. A description of this operator is deferred until Section 2.1.5.

The three symbols =, ⊃, and ε are the only primitive constants in higher order
logic. All other constants are introduced by means of constant definitions. These
extend the logic by defining new constants as atomic abbreviations for particular
logical terms. Formally, constant definitions—like type definitions—are axioms
that extend the object-language syntax of higher order logic. The formal rule of
definition which allows these axioms to be added to the logic is explained in detail
in Section 2.1.4.

Some basic constants which can be defined formally using this rule of definition
are listed in the table shown below.

Basic Defined Constants

Defined Constant Generic Type Description
¬ bool→bool negation
∧ bool→bool→bool conjunction
∨ bool→bool→bool disjunction
∀ (α→bool)→bool universal quantification
∃ (α→bool)→bool existential quantification
∃! (α→bool)→bool unique existence
T, F bool truth-values: true and false

These constants are part of the conventional notation of mathematical logic and
can be defined formally in higher order logic so that they have their usual logical
properties. The formal definitions of these basic constants will not be given here,
but full details can be found in [29].
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2.1.2.5 Notational Abbreviations for Terms

The pure syntax of higher order logic terms described above can be made to
resemble the conventional notation of predicate calculus by means of the following
metalinguistic abbreviations.

Infixes. Certain applications of the form (c tm1) tm2 are abbreviated by writing
the constant c in infix position. These include (among others) applications of the
constants =, ∧, ∨, and ⊃. The expression (a ∧ b) ⊃ a, for example, should be
read as a metalinguistic abbreviation for the term (⊃ ((∧ a) b)) a. Other infix
notation will be introduced as needed.

Omission of Parentheses. The following conventions allow parentheses to
be omitted when writing terms. Application associates to the left, so terms of
the form (. . . ((tm1 tm2) tm3) . . . tmn) can also be written tm1 tm2 tm3 . . . tmn.
When the constants ⊃, ∧, and ∨ occur in infix position, they associate to the
right. For example, the expression a ⊃ b ⊃ c means a ⊃ (b ⊃ c). Application
of the basic constants ¬, ∧, ∨, ⊃, and = binds less tightly than application of
other functions. For example, the expression f x∧ g x means (f x)∧ (g x). These
basic constants are themselves ranked in decreasing order of tightness of binding
as follows: ¬, ∧, ∨, ⊃, =. That is, application of ¬ binds more tightly than
application of ∧, which in turn binds more tightly than application of ∨, and so
on. For example, the expression ¬a ∧ b ⊃ c means ((¬a) ∧ b) ⊃ c. Finally, the
scope of ‘λx.’ is assumed to extend as far to the right as possible. For example,
the expression λf. f x means λf. (f x) rather than (λf. f) x.

Quantifiers. In higher order logic, the quantifiers ∀, ∃, and ∃! are functions
that map predicates (i.e. boolean-valued functions) to truth-values. For example,
the application ∃ (λx. x=x) expresses the proposition that there is at least one
value for which the predicate denoted by λx. x=x is true. In the usual notation
of predicate calculus, this proposition is written ∃x. x=x. In higher order logic,
this conventional notation for quantifiers is defined by means of the metalinguistic
abbreviations shown below.

Abbreviations for Quantifiers

Term Abbreviation Term Abbreviation
∀ (λx. tm) ∀x. tm ∀v1. ∀v2. · · · ∀vn. tm ∀v1 v2 . . . vn. tm

∃ (λx. tm) ∃x. tm ∃v1. ∃v2. · · · ∃vn. tm ∃v1 v2 . . . vn. tm

∃! (λx. tm) ∃!x. tm ∃!v1. ∃!v2. · · · ∃!vn. tm ∃!v1 v2 . . . vn. tm

A similar abbreviated notation is used for nested λ-abstractions. For example,
the expression λx y. tm is an abbreviation for the term λx. λy. tm.
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Other Notation. The expression f ◦ g denotes the composition of the two
functions f and g and satisfies the usual defining equation: ∀x. (f ◦g) x = f(g(x)).
The symbol ◦ is a defined constant written in infix position. The expression
(b ⇒ tm1 | tm2) means ‘if b then tm1 else tm2’ and is an abbreviation for the term
Cond b tm1 tm2, where Cond is an appropriately-defined constant. (See [29] for
its definition.) Other metalinguistic abbreviations and notational conventions are
introduced in later chapters.

2.1.2.6 Constants for the Defined Types num and α× β

Some constants associated with the basic defined types num and α×β are shown
in the table below.

Constants for the Defined Types num and α× β

Type Constants Generic Type Description
num 0, 1, 2, . . . num numerals of type num

Suc num→num successor
+,×, Exp num→num→num arithmetic functions
<,≤, >,≥ num→num→bool ordering relations

α× β , α→β→(α× β) pairing (infix)
Fst
Snd

(α× β)→α
(α× β)→β

projection functions for
the components of pairs

These constants are standard mathematical notation and can be defined formally
using the rule for constant definitions described in Section 2.1.4. (See [29] for
the definitions.) The usual elementary theorems about the natural numbers (e.g.
Peano’s Postulates), theorems of arithmetic, and theorems about pairs follow
from the definitions of these constants. These theorems are used in proving the
propositions about hardware discussed in later chapters, but proofs of these simple
theorems about arithmetic and pairs will not be given.

2.1.3 Sequents, Theorems and Inference Rules

The style of proof supported by Gordon’s formulation of higher order logic is a
form of natural deduction [47] based on Milner’s formulation of PPλ [35]. In this
style of proof, sequents are used to keep track of assumptions. A sequent is written
Γ � tm, where Γ is a set of boolean terms called the assumptions and tm is a
boolean term called the conclusion. The assumptions and conclusion of a sequent
correspond to formulas in predicate calculus. In higher order logic, however, there
is no special syntactic class of formulas—these are simply terms of type bool.

The sequent notation Γ � tm can be read as the metalinguistic assertion that
there exists a natural deduction proof of the conclusion tm from the assumptions
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in Γ. When the set of assumptions Γ is empty, the notation � tm is used. In
this case, tm is a formal theorem of the logic. The same notation is used for the
axioms of the logic—these are theorems which are simply postulated to be true.

In [29], the inference rules of the logic are stated using the notation illustrated
by the rule shown below.

Modus Ponens:
Γ1 � t1 ⊃ t2 Γ2 � t1

Γ1 ∪ Γ2 � t2

This rule states that from the two formulas t1 ⊃ t2 and t1 one can immediately
infer the formula t2 by modus ponens. In a natural deduction proof, formulas
occurring as lines in the proof can depend on assumptions, in the sense of having
been deduced from them. The sequent notation used in the rule shown above
makes this dependence on assumptions explicit. If t1 ⊃ t2 depends on assumptions
Γ1 and t1 depends on assumptions Γ2, then the inferred formula t2 depends on
the union of Γ1 and Γ2. This notation for inference rules resembles a sequent
calculus [26], in which sequents are assertions in the object language. The proof
system of [29], however, is essentially natural deduction. Sequents are used merely
to keep track of assumptions, and a sequent Γ � t should be read as a meta-
theorem about provability by natural deduction.

In Gordon’s formulation of higher order logic [29] there are five axioms, eight
inference rules, and two rules of definition. All the theorems about hardware in
this dissertation follow by formal proof using only this primitive logical basis.
Fully detailed formal proofs will not be given for these theorems, so a complete
list of axioms and inference rules need not be given here. Of particular relevance
to later chapters, however, are the mechanisms provided by the primitive basis
of higher order logic for making object-language definitions. Definitions of this
kind allow the logic to be consistently extended with new notation (in particular,
with new constants and types) without postulating ad hoc axioms in order to give
meaning to this notation. This provides a means for introducing special-purpose
notation for hardware verification into the logic in a rigorous and purely formal
way. This forms the basis for formalizing the abstraction mechanisms for hardware
verification discussed in later chapters. Sections 2.1.4–2.1.7 below describe how
these definitional mechanisms are supported by the primitive basis of the logic.

2.1.4 Constant Definitions

The only primitive constants of higher order logic are =, ⊃, and ε. All other
constants are introduced by means of the following rule of definition.

Constant Definitions: If tm:ty has no free variables, tm does not
contain the identifier c, there are no type variables in tm not also
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present in ty, and c is not already the name of a constant, then a new
constant c:ty can be defined by extending the syntax of the logic to
include c as a constant and adding the axiom � c = tm to the primitive
basis of the logic.

The axiom � c = tm introduced by this rule simply makes the new constant
c an object-language abbreviation for the term tm. Adding a new constant by
postulating a definitional axiom of this kind is a conservative extension of the
logic. That is, for any formula t not containing the new constant c being defined,
� t is a theorem of the extended logic if and only if it is a theorem of the original
logic. In particular, � F is a theorem of the extended logic if and only if it is
a theorem of the original logic. Thus adding axioms that define new constants
to the logic will not introduce inconsistency that was not already there; adding
definitional axioms is ‘safe’.

2.1.4.1 Derived Constant Definitions

The rule for constant definitions described above can be used to justify a derived
rule for making definitions of the form

� f x1 x2 . . . xn = tm or � f(x1, x2, . . . , xn) = tm,

where all the free variables in tm are included among x1, x2, . . . , xn. For every
such definition there is a provably equivalent equation of the more basic kind
allowed by the primitive rule for constant definitions.

For example, every theorem of the form � f x = tm[x], where x is the only free
variable in tm[x], is equivalent to a corresponding definitional axiom of the form
� f = λx. tm[x]. An equation of the form � f x = tm[x] can therefore be regarded
as a definition of the function constant f, justified by means of a derived principle
of definition based on the primitive rule for constant definitions. Any defining
equation of the two forms shown above can be justified in a similar way. Proofs of
these defining equations are straightforward and will therefore be omitted when
definitions of this kind are made.

2.1.5 The Primitive Constant ε

The primitive constant ε:(α→bool)→α is a function that maps predicates on values
of type α to values of type α. The semantics of ε can be described informally as
follows. If P :ty→bool denotes a predicate on values of type ty, then the application
ε P denotes some value of type ty for which P is true. If there is no such value,
then ε P denotes some fixed but unknown value of type ty.
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This informal semantics is formalized in higher order logic by the single axiom
for ε shown below.

� ∀P x. P x ⊃ P (ε P ) (2.2)

It follows from this axiom that ε can be used to obtain a logical term which
provably denotes a value having some property P from a theorem merely stating
that such a value exists. Formally, if P denotes a predicate, and � ∃x. P x is a
theorem of the logic, then so is � P (ε P ). The only axiom for ε is (2.2), so when
� ∃x. P x holds the only (non-trivial) facts that can be proved about ε P are the
logical consequences of � P (ε P ). In particular, if more than one value satisfies
P , then it is not possible to prove which of these values ε P denotes. And if no
value satisfies P , then nothing significant can be proved about ε P .

In practice, applications of the form ‘ε P ’ are usually treated as atomic names
for values having the property P , and it is often convenient to abbreviate such
ε-terms by defining new constants that denote them. If P [x]:bool is a term with
no free variables other than x, and � ∃x. P [x] is a theorem of the logic, then the
equation � c = (ε λx. P [x]) defines a constant c such that � P [c/x]. In presenting
proofs, this fact will be used as a derived rule of inference to justify omitting the
intermediate inference steps needed to introduce a constant c and prove � P [c/x],
given a theorem of the form � ∃x. P [x].

2.1.6 Recursive Definitions

In a constant definition, � c = tm, the constant c being defined must not occur in
tm on the right hand side of the equation. This restriction rules out the possibility
of making inconsistent recursive definitions like � c = ¬ c. Constants that satisfy
recursive equations are therefore not directly definable by the rule for constant
definitions. To define such a constant in higher order logic it is first necessary to
prove that the desired recursive equation is in fact satisfiable. The constant can
then be defined non-recursively using ε, and the desired recursive equation can be
derived from this definition using the method outlined in Section 2.1.5.

Suppose, for example, the aim is to define a constant c such that � c = tm[c],
where tm[c] is a term that contains c. To ensure that this equation is consistent,
one must first show that it can be satisfied by some value. This is done by
proving the theorem � ∃c. c = tm[c]. Using ε, the constant c can then be defined
non-recursively by the equation:

� c = (ε λc. c = tm[c]).

Using the axiom for ε, discussed in Section 2.1.5, the desired recursive equation
� c = tm[c] then follows from this non-recursive definition of c and the previously-
proved consistency theorem � ∃c. c = tm[c].
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2.1.6.1 Primitive Recursive Definitions

An important application of the method described above is in defining constants
that denote primitive recursive functions on the natural numbers. Many functions
that arise in proofs about hardware are primitive recursive, and constants that
denote such functions can be defined formally in higher order logic by means of
the primitive recursion theorem shown below.

� ∀xf. ∃fn:num→α. (fn 0 = x) ∧ (∀n. fn (Suc n) = f (fn n) n) (2.3)

An outline of the proof of this theorem is given by Gordon in [29]. The theorem
states the validity of primitive recursive definitions on the natural numbers: for
any x and f there exists a corresponding total function fn:num→α which satisfies
the primitive recursive definition whose form is determined by x and f .

Theorem (2.3) can be used to justify formally the introduction of a constant to
denote any particular primitive recursive function. Choosing appropriate values
for x and f in (2.3) yields a theorem which asserts the existence of the desired
function, and a new constant can then be introduced to denote this function.
For example, taking x and f in a suitably type-instantiated version of (2.3) to
be λm. m and λf x m. Suc(f m) yields, after some simplification, the following
theorem.

� ∃fn. (∀m. fn 0 m = m) ∧ (∀n m. fn (Suc n) m = Suc(fn n m))

This theorem asserts the existence of a recursively-defined addition function on
the natural numbers. As discussed in Section 2.1.5, a new constant + can be
introduced to denote this function using ε. This yields the theorem

� (∀m. + 0 m = m) ∧ (∀n m. + (Suc n) m = Suc(+ n m)),

which states that + satisfies the usual primitive recursive definition of addition. If
the constant + is written in infix position, this is equivalent to the two equations
shown below.

� 0 + m = m

� (Suc n) + m = Suc(n + m)
(2.4)

In [30], Gordon outlines how recursion equations like these can in general be
derived by formal proof from the primitive recursion theorem (2.3). The procedure
is straightforward, and the details of justifying primitive recursive definitions will
therefore be omitted from proofs presented here. Only the resulting recursion
equations will be shown, in the form illustrated by (2.4).

The primitive recursion theorem justifies recursive definitions on the natural
numbers only. Recursive functions defined on other logical types (e.g. recursive
data types such as lists and trees) are discussed in Chapter 5 and Appendix A.
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2.1.7 Type Definitions

The primary function of types in higher order logic is to eliminate inconsistency.
For this purpose, all that is needed are the primitive types of the logic. But there
is a pragmatic reason for having a richer syntax of types than is strictly necessary
for consistency. Extending the syntax of types in higher order logic allows more
natural and concise formulations of propositions about hardware than are possible
with only primitive type expressions. For example, introducing new types to
name sets of values that arise naturally in specifications of hardware behaviour
helps make these specifications clear and concise. This pragmatic motivation for
a rich syntax of types is similar to the motivation for the use of abstract data
types in high-level programming languages: using higher-level data types reduces
complexity by abstracting away from the details of how values are represented.

Sections 2.1.7.1 and 2.1.7.2 below describe a method for extending the logic
with new type constants and type operators. This method is based on a formal
rule of definition which allows axioms of a restricted form to be added to the
primitive basis of the logic. These axioms are analogous to definitional axioms for
new constants; they define new types in terms of other type expressions already
present in the logic. Like the rule for constant definitions, the rule for type
definitions ensures that adding a new type is a conservative extension of the logic.

2.1.7.1 The Rule for Type Definitions

The mechanism for defining logical types described in this section was suggested
by Dr M. Fourman and formalized by Gordon in [29]. It is analogous to the
mechanism for defining abstract data types in the programming language ML [19].
The basic idea is that a type definition is made by adding an axiom to the logic
which asserts that the set of values denoted by a new type is isomorphic to an
appropriate subset of the values denoted by a type expression already present in
the logic.

Suppose that ty is a type of the logic, and P :ty→bool is a predicate on values of
type ty which defines some useful subset of the set denoted by ty. A type definition
introduces a new type expression tyP which denotes a set of values having exactly
the same properties as the subset defined by P . Formally, this is done by adding
an axiom to the logic which states that there is an isomorphism f from the new
type tyP to the set of values that satisfy P :�

�

�

�

�
�
�
�

�
�
�
�

new
type

existing
type

�
isomorphism

f
tyP P ty

The function f can be thought of as a representation function that maps each
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value of the new type tyP to the value of type ty that represents it. Because f is an
isomorphism, it can be shown that the set denoted by tyP has the same properties
as the subset of ty defined by P . The new type tyP is therefore defined in terms
of ty, and its properties are determined by the choice made for the predicate P .

This method is used to define both type constants and type operators. When
ty contains no type variables, the new type tyP being defined is a type constant.
When ty contains type variables, the new type tyP is an expression of the form
(α1, . . . , αn)op, where α1, . . . , αn are the type variables in ty. In this case, the
type definition has the effect of introducing a new n-ary type operator op.

The formal rule of definition for adding new types is shown below. For clarity,
the rule is stated for the case when the type tyP being defined is a type constant.
The general rule, which also allows definitions of type operators, is similar. It will
not be shown here, but the details can be found in [29,30].

Type Definitions: If P :ty→bool has no free variables, both ty and P

contain no type variables, � ∃x. P x is a theorem of the logic, and tyP

is not already the name of a type constant, then a new type constant
tyP can be defined by extending the syntax of types to include tyP and
adding the axiom

� ∃f :tyP→ty. (∀a1 a2. f a1=f a2 ⊃ a1=a2) ∧ (∀r. P r=(∃a. r=f a))

to the primitive basis of the logic.

The axiom introduced by this rule simply states that there is an isomorphism
from tyP to the values of type ty that satisfy P . The restriction that P satisfies the
theorem � ∃x. P x ensures that the defined type constant tyP denotes a non-empty
set. This restriction is necessary because all type expressions in the logic must
denote non-empty sets.

2.1.7.2 Deriving Abstract Axioms for New Types

A type definition of the form described above merely states that a new type is
isomorphic to a particular subset of an existing type. From such type definitions,
it is possible to derive theorems that characterize new types more abstractly. The
idea is to prove a collection of theorems that state the essential properties of a new
type without reference to how it is defined. These theorems constitute a derived
‘axiomatization’ of the new type, and once they have been proved they become
the basis for all further reasoning about it.

With this approach, introducing a new type (or type operator) in higher order
logic involves two steps:

1. Find an appropriate representation for the new type, and make a type
definition based on this representation.
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2. Use the definition of the new type and the properties of its representation
to prove a set of theorems that abstractly characterizes it.

The motivation for first defining a new type and then deriving abstract ‘axioms’
for it is that this process guarantees consistency. Simply postulating plausible-
looking axioms to express the properties of a new type can inadvertently make the
logic inconsistent.1 But deriving abstract ‘axioms’ from a type definition amounts
to giving a formal proof of their consistency—by showing that there is a model
for them—and this process avoids the potential for inconsistency associated with
postulating ad hoc axioms to describe new types.

The usual axioms for the cartesian product type α×β provide a simple example
of the result of this two-step process. The essential properties of this type are
captured formally by the three theorems shown below.

� ∀a:α. ∀b:β. Fst(a, b) = a

� ∀a:α. ∀b:β. Snd(a, b) = b

� ∀p:(α× β). p = (Fst p, Snd p)

These three theorems can be derived by formal proof from an appropriate type
definition for the type operator × and suitable definitions of the three constants ‘,’
(the infix pairing operator), Fst, and Snd. All the usual properties of pairs follow
from these theorems, and once they have been proved it becomes unnecessary to
know how the type α× β was represented and defined.

All the non-primitive types and type operators used in this dissertation have
been defined formally (by the author) in the HOL system using the primitive rule
of definition described in Section 2.1.7.1 and the two-step ‘methodology’ discussed
above. Full details of the formal definitions for these types (which include the basic
types num and α × β), and outline proofs of the abstract ‘axiomatizations’ for
them, are given in Appendix A.

2.2 The HOL System

The HOL system [30] is a mechanized proof-assistant developed by Gordon at the
University of Cambridge for conducting proofs in the formulation of higher order
logic described in the previous section. It has been used primarily to reason about
the correctness of hardware, but much of what has been developed in HOL for
hardware verification—the theory of arithmetic, for example—is also fundamental
to many other applications. The underlying logic and basic facilities of the system
are completely general and can in principle be used to support reasoning in any
area that can be formalized in higher order logic.

1The axioms for the type (α)list in Gordon’s definition of higher order logic [29] illustrate this
danger. These list axioms are inconsistent—and this seems to have survived notice since [29] first
appeared in 1985.
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HOL is based on the LCF approach to interactive theorem proving2 and has
many features in common with the LCF systems developed at Cambridge [74]
and Edinburgh [35]. Like LCF, the HOL system supports secure theorem proving
by representing its logic in the strongly-typed functional programming language
ML [19]. Propositions and theorems of the logic are represented by ML abstract
data types, and interaction with the theorem prover takes place by executing
ML procedures that operate on values of these data types. Because HOL is built
on top of a general-purpose programming language, the user can write arbitrarily
complex programs to implement proof strategies. Furthermore, because of the way
the logic is represented in ML, such user-defined proof strategies are guaranteed
to perform only valid logical inferences.

2.2.1 The Representation of Higher Order Logic in ML

ML is a strongly-typed language. All expressions in the language have types, and
only consistently-typed expressions are syntactically well-formed. The syntax of
types in ML resembles that of types in higher order logic. For example, the ML
type int->bool is the type of functions (i.e. functional programs) that take an
integer as a parameter and return a boolean as a result. The rules for type-
checking ML expressions are similar to the rules for well-typed logical terms given
on page 16. An ML function call ‘f(x)’, for example, will be accepted by the
type-checker only if there are ML types ty1 and ty2 such that the function f has
ML type ty1-> ty2 and the value x has ML type ty1.

This type discipline is the basis for the soundness of proofs in the HOL system.
HOL is built on top of ML by extending the set of built-in ML data types with
a special-purpose abstract data type thm, values of which are theorems of higher
order logic. There are no literals of type thm. That is, it is not possible to obtain
a value of type thm simply by typing one in. There are, however, certain ML
identifiers which are given values of type thm when the system is built. These
values correspond to the axioms of higher order logic. In addition, HOL makes
available several built-in ML functions that take theorems as arguments and return
theorems as results. Each of these corresponds to one of the primitive inference
rules of the logic and returns only theorems that logically follow from its input
theorems using the corresponding inference rule. The ML type checker ensures
that values of type thm can be generated only by applying these functions either to
previously-generated values of type thm, or to the values of type thm that represent
axioms. Every value of type thm must therefore either be an axiom or have
been obtained by computation using the functions that represent the primitive

2The current implementation of HOL is a modified version of Cambridge LCF [74], which
is itself a development of the Edinburgh LCF system [35]. The basic approach to mechanized
theorem proving used in all these systems is due to Milner.
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inference rules of the logic—i.e. every theorem in HOL must be generated from the
axioms using the inference rules. In this way, the ML type checker guarantees the
soundness of the HOL theorem prover: a theorem can be generated in the system
only by valid formal proof.

In addition to the primitive inference rules, there are many derived inference
rules available in HOL. These are ML procedures which perform commonly-used
sequences of primitive inferences by calling the appropriate ML functions which
represent the primitive inference rules. Derived inference rules relieve the HOL
user of the need to give explicitly all the primitive inference steps of a proof. The
ML code for a derived rule can be arbitrarily complex. But it will never return
a theorem that does not follow by valid logical inference, since a theorem can be
obtained only by a series of calls to the primitive inference rules.

2.2.2 Interactive Proof in HOL

HOL supports two styles of interactive proof: forward proof and backward proof.
In the forward style, inference rules are simply applied in sequence to previously
proved theorems until the desired theorem is obtained. The user specifies which
rule is applied at each step of the proof, either interactively or by writing an ML
program that calls the appropriate sequence of procedures. This is usually not
the easiest way of doing a proof in the system, since the exact details of a proof
are rarely known in advance.

It is often simpler to find the proof by working backwards from the statement
to be proved (called a goal) to previously proved theorems which imply it. This
is the backward, or goal-directed, proof style. The HOL system, following LCF,
supports this style of proof by means of ML functions called tactics. These break
goals down into increasingly simple subgoals—until the subgoals obtained can be
proved directly from theorems already derived. Again, the user specifies which
tactic to use at each step. In addition to breaking a goal down into subgoals, a
tactic also constructs a sequence of forward inference steps which can be used to
derive the goal, once the subgoals have themselves been proved. This is necessary
because all theorems in the system must ultimately be obtained by forward proof.
This approach to proof using tactics is due to Milner. It is described in detail
in [30,35,74].

2.2.3 Efficiency in HOL

The LCF approach to theorem proving used in HOL ensures the soundness of
any proof done in the system. This approach, however, is computationally very
expensive. Completely formal proofs of even simple theorems in higher order logic
can take thousands of primitive inferences, and when these proofs are done in the
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HOL system, all the inferences involved must actually be carried out by executing
the corresponding ML procedures.

There are, however, two important features of the HOL system which, together,
allow efficient proof strategies to be programmed. The first of these is a feature
inherited from LCF: theorems proved in HOL (or LCF) can be saved on disk and
therefore do not have to be generated each time they are needed in future proofs.
The second feature is the expressive power of higher order logic itself, which
allows useful and very general ‘lemmas’ to be stated in the logic. The amount
of inference that a programmed proof rule must do can therefore be reduced by
pre-proving general theorems from which the desired results follow by a relatively
small amount of deduction. These theorems can then be saved and used by
the derived inference rule in future proofs. This strategy of replacing ‘run time’
inference by pre-proved theorems is possible in HOL because type polymorphism
and higher-order variables make the logic expressive enough to yield theorems of
sufficient generality.

This simple strategy for making derived rules efficient is illustrated by the
method for automating recursive type definitions described in Appendix A. In
Section A.5.4, a theorem is described from which an abstract ‘axiomatization’ for
any concrete recursive type can be deduced with relatively little inference.
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Chapter 3

Hardware Verification using
Higher Order Logic

This chapter describes the basic techniques for using higher order logic to specify
hardware behaviour and to prove the correctness of hardware designs.

The advantages of higher order logic as a formalism for hardware verification
are discussed by Gordon in [34] and by Hanna and Daeche in [43,44]. Higher
order logic makes available the results of general mathematics, and this allows
the construction of any mathematical tools which are needed for the verification
task in hand. Its expressive power permits hardware behaviour to be described
directly in logic; a specialized hardware description language is not needed. In the
formulation used here, new constants and types can be introduced by means of
the definitional mechanisms described in Chapter 2. This allows special-purpose
notation for hardware verification to be introduced as a conservative extension of
the logic, without the need to postulate ad hoc axioms. In addition, the inference
rules of the logic provide a secure basis for proofs of correctness. A specialized
deductive calculus for reasoning about hardware behaviour is not required.

An overview of formal proof as a method for demonstrating the correctness
of hardware was given in Section 1.1.1 of the introductory chapter. This chapter
outlines how higher order logic supports the approach described there. Section 3.1
describes how the behaviour of hardware is specified in the notation of higher order
logic. Section 3.2 describes how a specification of the behaviour of a composite
device is constructed from the specifications of its parts. Section 3.3 describes a
simple and direct approach to formulating the correctness of hardware designs in
logic. In Section 3.4, an example is given to illustrate this approach. The chapter
concludes with an account of related work based on formal logic.

3.1 Specifying Hardware Behaviour

The approach to specifying hardware behaviour described in this section is well-
known (see, for example, [11,34,43,51]). The basic idea is to specify the behaviour
of a hardware device by stating which combinations of values can be observed
on its external wires. Such a specification is expressed formally in logic by a
boolean-valued term with free variables that correspond to these external wires.
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This term imposes a constraint on the values of these free variables. To reflect the
behaviour of the device it specifies, the term is chosen such that the combinations
of values that satisfy this constraint are precisely those which can be observed
simultaneously on the corresponding external wires of the device itself.

For example, consider the device Dev shown below.

Deva

b

c

d

This device has four external wires: a, b, c, and d. A formal specification of its
behaviour in logic is a boolean-valued term of the form tm[a, b, c, d]. This term is
constructed such that for all values of the free variables a, b, c, and d:

tm[a, b, c, d] =




T if the values denoted by a, b, c, and
d could occur simultaneously on the
corresponding external wires of Dev

F otherwise

There is no restriction on the form that the specification tm[a, b, c, d] must take.
Any mathematical concepts and notation needed to describe the behaviour of Dev

may be used, provided they can be defined formally. Since higher order logic is a
formalism intended as a foundation for mathematics, it has the advantage that it
is possible (in principle) to define in the logic the mathematical tools required to
describe the behaviour of any particular device.

This approach to specifying hardware in logic describes its behaviour only in
terms of the values that can be observed externally. No information about internal
state is used in a specification. Furthermore, there is no distinction between the
inputs and the outputs of a device—the constraint imposed by a specification
on its free variables need not be a functional one. Both specifications of the
hardware primitives used in designs and specifications of the intended behaviour
of designs can be expressed formally in logic by this method. Such specifications
can describe either purely combinational behaviour or time-dependent (sequential)
behaviour. These two possibilities are discussed below in Sections 3.1.2 and 3.1.3.
This approach can also be used to write formal specifications that only partially
describe the behaviour of a device. This is discussed in Section 3.1.4. A simple
method for abbreviating specifications is first introduced in Section 3.1.1.

3.1.1 Abbreviating Specifications

The rule for constant definitions discussed in Section 2.1.4 of Chapter 2 provides a
formal mechanism for abbreviating hardware specifications of the kind described
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above. Such a specification is just a boolean-valued term with free variables, and
an object-language abbreviation for it can be introduced simply by defining a
predicate constant to name the constraint it imposes on these variables.

For example, the specification of the device shown in the previous section can
be abbreviated by means of the predicate Dev which is defined formally by:

� Dev(a, b, c, d) = tm[a, b, c, d]

This introduces a new predicate constant ‘Dev’ into the logic and makes the
logical term ‘Dev(a, b, c, d)’ an object-language abbreviation for the specification
tm[a, b, c, d]. The constant Dev itself is an atomic name for a class of devices,
each of which exhibits the same sort of behaviour as the others but has differently
labelled external wires. Any particular device in this class is specified by an
application of Dev to an appropriate 4-tuple of variables; for example, the term
Dev(w, x, y, z) specifies a device with external wires named w, x, y, and z. This can
be viewed as providing an object-language notation for generic, ‘parameterized’
specifications of hardware behaviour.

An alternative way of abbreviating the term tm[a, b, c, d] is by introducing the
defining equation:

� Dev a b c d = tm[a, b, c, d]

This makes the constant Dev a higher order function, rather than predicate on
4-tuples. This higher order form of defining equation has the advantage that the
function defined by it need not be applied to all four variables a, b, c, and d at
once. For example, the term ‘Dev a’ is a well-formed ‘partial application’ of Dev

to the variable a only.

3.1.2 Specifying Combinational Behaviour

The most direct application of the hardware specification method discussed above
is in describing the purely combinational behaviour of hardware devices. Here, a
highly simplified view is taken of hardware behaviour: only the static behaviour
of a device is specified, and the possibility that its behaviour may change over
time is ignored. An example is the combinational specification of an exclusive-or
gate shown below.	



�
�
�
�i2

i1 o � Xor(i1, i2, o) = (o = ¬(i1 = i2))

In this specification, the values T and F are used to represent the two logic levels
‘true’ and ‘false’, and the variables i1, i2, and o range over these two boolean truth-
values. The term Xor(i1, i2, o) describes a relationship between these variables
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which corresponds to the way an exclusive-or gate works in practice: the output
o is true exactly when either i1 or i2 is true but not both.

The output of the exclusive-or gate shown above is a simple function of its two
inputs. The full generality of the ‘relational’ method of specifying behaviour is
therefore not needed; the combinational behaviour of this gate could be specified
equally well by the function ‘Xor’ defined below.	



�
�
�
�i2

i1 � ¬(i1 = i2) � Xor(i1, i2) = ¬(i1 = i2)

In general, however, a hardware device may have bidirectional external wires, used
for both input and output. And one advantage that relational specifications have
over functional ones is that they directly support formal specifications of such
devices. This is illustrated by the N-type transistor and its formal specification
shown below.

s d

g

� Ntran(g, s, d) = (g ⊃ (d = s))

In this specification, the source s and the drain d of the transistor are bidirectional.
It follows from the specification that if the gate g has the value T then s and d must
have the same boolean value. But the direction of signal flow (if any) between s

and d is not expressed by the term ‘T ⊃ (d = s)’, which merely states that the
values on s and d must be equal.

Because relational specifications do not distinguish between inputs and outputs,
they can be interpreted in ambiguous ways. For example, Hoare [51] has pointed
out that the transistor specification shown above might lead one to conclude that
if opposite values are supplied to the source and drain then this will cause the
gate to have the value F. The exclusive-or specification defined above also admits
of ambiguous interpretation. It can be viewed as the specification of a gate with
inputs i1 and i2, and output o. But it can also be viewed as the specification
of an exclusive-or gate with inputs i1 and o—and output i2. The purely logical
properties of the term ‘Xor(i1, i2, o)’ are appropriate to both interpretations.

This problem of ambiguous interpretation is partly due to the inadequacy of
combinational specifications in general. Real hardware has delay: a change of
input values takes time to produce a change of output. But a combinational
specification presents only a static view of hardware behaviour, and it cannot
suggest the temporal relationship between a change of input and a change of
output. For this, another way of describing behaviour is needed.

3.1.3 Specifying Sequential Behaviour

The sequential behaviour of hardware devices can be specified in logic by using
functions to describe the sequences of values that appear on their external wires
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at successive moments of time. With this approach, time is represented by the
natural numbers, which in higher order logic are denoted by the defined logical
type num. The sequence of values that appears on a wire is represented by a
function f :num→bool, so that the value present on the wire at any particular time
t is given by the application f(t). A specification of the time-dependent behaviour
of a device is then a constraint on variables that range over such functions.

For example, the behaviour of a rising-edge triggered D-type flip flop can be
specified in logic by the term Dtype(ck, d, q) defined, together with an auxiliary
function Rise, as shown below.

Dtype

�
d

ck

q

� Dtype(ck, d, q) = ∀t. q(t+1) = (Rise ck t ⇒ d(t) | q(t))
� Rise ck t = ¬ck(t) ∧ ck(t+1)

In this specification, instants of discrete time are represented by natural numbers,
and the variables ck, d, and q range over functions of logical type num→bool.
The term Dtype(ck, d, q) specifies the sequential behaviour of a D-type flip-flop by
imposing constraints on the functions ck, d, and q. Whenever the clock ck rises,
the value on the input d is sampled and appears on the output q one time unit
later. When the clock does not rise, the output q remains stable over time.1

This example illustrates why it is advantageous to use higher order logic, rather
than first order logic, to specify hardware behaviour. In general, a specification of
sequential behaviour is a term that impose constraints on higher order variables.
In the D-type specification, for example, the variables ck, d, and q are higher order
variables. They range over functions of logical type num→bool. The constant
Rise is also higher order. It denotes a function which both takes a function as an
argument and yields a function as a result. Higher order logic directly supports
these higher order entities, and this expressive power allows natural and direct
specifications of sequential behaviour in logic.

3.1.4 Partial Specifications

A partial specification is one that does not completely describe the behaviour
of a hardware device, but only selected aspects of it. The ability to write such
specifications is essential if formal verification is to be applied to very large or
complex devices. To be intelligible, the formal specification of intended behaviour
for such a device must concentrate on only the essential features of it—a complete
description may be too complex.

1This is, of course, a highly simplified view of the behaviour of a D-type flip flip. More realistic
formal specifications of this device can be found in [34,44,48,79].
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Partial specifications of behaviour can be expressed in logic in a natural and
direct way. Specifications are just terms that describe constraints on the values
that can appear on the external wires of a device. A partial specification simply
constrains these values only in the situations that are significant or relevant. In all
other situations, it leaves them unconstrained. The D-type flip flop specification
shown above is a simple example. The equation for the output wire q in this
specification constrains the value of q(t+1) for all t, but the value of q(0) is
left unconstrained. This specification is therefore only a partial specification of
behaviour: the value of the output q at ‘time zero’ is not specified.

This D-type example is a somewhat special case: the output q is unspecified
only at one particular point in time. A more general application of partial speci-
fications is illustrated by the specification shown below.

Devi o � Dev(i, o) = (P i ⊃ (o = f i))

Here, a partial specification is used to leave undefined the value on the output
wire o for certain values on the input wire i. The term ‘P i’ is a condition on
this input value, and the output o is specified only for inputs that satisfy this
condition. This is reflected formally in the specification by the fact that if P i = F

then the term ‘P i ⊃ (o = f i)’ is satisfied for any value o.
This is a commonly-used technique for writing partial specifications that define

the behaviour which a device is required to exhibit only for selected input values
(examples can be found in [34,44,48,55,63]). Such specifications are appropriate
when it is known that the device will be used in an environment where only these
input values arise, and it is therefore unnecessary to specify its required behaviour
for all input values.

3.2 Deriving Behaviour from Structure

To prove the correctness of a composite hardware device—a device built by wiring
together components—a method is needed for constructing a formal description
of its behaviour in logic. This is done by first writing a formal specification
for each kind of primitive hardware component used in its design. Instances of
these specifications are then combined syntactically to obtain a logical term that
describes the net behaviour of the entire device. This term is called a model of
the composite device.

Two syntactic operations on terms, called composition and hiding, are used in
constructing models. These operations represent two ways in which a physical
device can be constructed from its parts: composition represents the operation
of wiring parts together, and hiding represents the operation of ‘insulating’ wires
from the environment. A model is constructed syntactically by applying these two
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operations to the logical terms that describe the constituent parts of a device.2

The next two sections describe how these operations can be represented in higher
order logic. The techniques described in these sections are well known and widely
used (see, for example, [11,34,43,51]).

3.2.1 Composition

Composition models the effect of joining two devices together by connecting them
at all identically-labelled external wires. Syntactically, composition is done simply
by forming the conjunction of the logical terms which specify the devices that are
connected together.

For example, suppose that the two devices D1 and D2 are specified by the
boolean terms tm1[a, x] and tm2[x, b] respectively, as shown below.

D1a x

tm1[a, x]

D2x b

tm2[x, b]

The two terms tm1[a, x] and tm2[x, b] describe the values that can be observed
independently on the external wires of the devices D1 and D2. If these two devices
are connected together by the wire x, the values that can be observed on the
external wires of resulting composite device are just those that can be observed
simultaneously on the wires of both its components. A model of the resulting
behaviour is given by the logical conjunction of the terms which specify these
components:

D1 D2a b
x


tm1[a, x] ∧ tm2[x, b]

The result is a term with three free variables: a, x, and b. This term constrains
the values on the wires of the composite device to be exactly those allowed by the
constraints imposed by both tm1[a, x] and tm2[x, b].

3.2.2 Hiding

In general, a model constructed by composition may have free variables which
correspond to wires that are used only for internal communication between the
components of a device. Hiding models the effect of insulating these wires from

2This approach is based on the algebraic method of modelling concurrent systems, originally
proposed by Milne and Milner in [67].
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the environment, making them internal to the device. Syntactically, hiding is
done by existentially quantifying the free variables in a term which correspond to
internal wires. This results in a term in which these variables are bound—and
therefore no longer represent external wires of a device.

Consider, for example, the term tm1[a, x] ∧ tm2[x, b] which describes the com-
posite device shown in the previous section. Suppose that the wire which corre-
sponds to the free variable x is used for internal communication only. A model in
which this wire is internal to the device, hidden from the environment, is given
by existentially quantifying over the variable x:

D1 D2a b
x

∃x. tm1[a, x] ∧ tm2[x, b]

The result is a term in which only the variables a and b, corresponding to the
external wires of the device, are free. This term expresses the constraint that two
values a and b can be observed on the external wires of the device exactly when
there is some internal value x such that the constraints for the components of the
device are satisfied.

3.2.3 A Note on Terminology

A specification constructed by the methods described in the preceding sections is
called a model of the device it describes. In general, what is meant by a ‘model’
is a logical expression which describes the behaviour of a particular hardware
device. Such an expression ‘models’ the behaviour of a device, in the sense that
its purely formal properties are intended to reflect at least some aspects of how the
device really behaves. For example, term ‘Dtype(ck, d, q)’ defined in Section 3.1.3
is a formal model of the behaviour of a D-type flip-flop. A term constructed by
composition and hiding from the specifications of the parts used in a design is
also referred to as a ‘model’. Such a term models the behaviour of a particular
composite hardware device.

In what follows—and especially in Chapters 4 and 7—the term ‘model’ is also
sometimes used to mean a collection of formal specifications which describe the
primitive components used in hardware designs. For example, a collection of
specifications for the primitive components used in building CMOS circuits (i.e.
transistors) will be called a CMOS ‘transistor model’. Such a model consists of
a particular choice of specifications for the primitive hardware components used
in all CMOS designs. A model, in this sense of the word, provides the basis for
constructing descriptions of particular composite devices. The behaviour of any
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particular CMOS circuit, for example, can be described by a term constructed
from the primitive specifications that constitute a CMOS transistor model.

Both senses of the word ‘model’ are used in later chapters (and the remaining
sections of this chapter), but the sense in which the term ‘model’ is used is always
indicated explicitly when it may not be clear from the context in which it occurs.

3.3 Formulating Correctness

Once a model of a device has been constructed by the method discussed above,
the correctness of the device can be expressed by a proposition which asserts
that this model in some sense ‘satisfies’ an appropriate specification of required
behaviour. The most direct way of formulating this satisfaction relationship is by
logical equivalence. With this formulation, the correctness of a hardware design
is asserted by a theorem of the form:

� M [v1, . . . , vn] = S[v1, . . . , vn]

where the term M [v1, . . . , vn] is the model of the device which is asserted to be
correct, and the term S[v1, . . . , vn] is the specification of required behaviour. This
theorem states that the truth-values denoted by these two terms are the same for
any assignment of values to the free variables v1, . . . , vn. This means that the
design is clearly ‘correct’ with respect to this specification, since the behaviour
described by the model is identical to that expressed by the specification.

Formulating correctness by an equivalence of this kind is usually appropriate
only for small or relatively simple hardware designs. For more complex devices,
it is usually impractical to formulate correctness in this way. Indeed, for all but
the simplest devices, it is clear that satisfaction must not be logical equivalence.
If correctness is formulated by an equivalence of the form shown above, then the
specification S[v1, . . . , vn] must denote the same constraint on the free variables
v1, . . . , vn as the model M [v1, . . . , vn] does. But if the device to be proved correct
is large or complex, and if the model of the device is at all realistic, then both
the model and any logically equivalent specification are likely to be large and
complex as well.3 This means that the specification of intended behaviour may
be too complex to be seen to reflect the designer’s intent—the correctness of the
specification may be no more obvious than the correctness of the design itself.

For the specification of a complex device to be intelligible to the designer, it
must generally be limited to a more abstract view of its behaviour than is given
by a detailed model of its design. The relationship of satisfaction which is used to
express correctness must therefore, in general, be one of abstraction, rather than

3The specification may, of course, be expressed in a more concise notation than the model, but
the perspicuity obtainable in this way is limited.
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strict equivalence. The formalization of this notion of correctness is discussed in
detail in Chapter 4, and in the chapters that follow.

3.4 An Example Correctness Proof

In this section, a very simple example is given to illustrate the basic approach
to verification introduced above. The example is the formal verification of the
standard CMOS circuit design for a inverter. The purpose of this example (which
has been taken from [11,34]) is to provide a very simple preliminary illustration
of hardware verification using higher order logic, and it is not suggested that the
particular correctness result demonstrated here has any significant practical value.
More realistic examples are given in later chapters.

3.4.1 The Specification of Required Behaviour

The first step in the verification of an inverter is to write a formal specification of
required behaviour for the design. A specification of the combinational behaviour
which a correctly implemented inverter is required to exhibit is given by the term
‘Not(i, o)’ defined below.

���
��� �i o � Not(i, o) = (o = ¬i)

This specification simply asserts that the boolean value on the output o must be
the negation of the value on the input i.

3.4.2 Specifications of the Primitive Components

The formal specifications shown in Figure 3.1 describe the four different kinds of
primitive components used in CMOS circuit designs. The terms Pwr p and Gnd g

specify the behaviour of power (VDD) and ground (VSS) nodes respectively. The
specifications Ntran(g, s, d) and Ptran(g, s, d) specify the behaviour of N-type and
P-type transistors. These are modelled as ideal switches which are controlled by
the boolean values present on their gates. For example, Ntran(g, s, d) acts as an

�
s d

g

� Ptran(g, s, d) = (¬g ⊃ (d = s))

s d

g

� Ntran(g, s, d) = (g ⊃ (d = s))
g

� Gnd g = (g = F)

p

� � Pwr p = (p = T)

Figure 3.1: CMOS Primitives.
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ideal switch which is closed when g=T and open when g=F. This is, of course, a
highly simplified model of CMOS transistor behaviour.

These four specifications constitute a model of CMOS designs in general, in the
sense that a description of the behaviour of any particular CMOS circuit can be
constructed from instances of these primitives using composition and hiding. This
is an example of a ‘model’ in the second sense discussed above in Section 3.2.3.
That is, the specifications shown in Figure 3.1, together with the operations of
composition and hiding, form the basis for constructing a formal description of
any particular circuit design.

3.4.3 The Design Model

Given the CMOS primitives defined in the previous section, a model ‘Inv(i, o)’
of the behaviour of a CMOS inverter can be constructed using the operations of
composition and hiding discussed in Section 3.2.

�
�

i o

p

g

� Inv(i, o) = ∃g p. Pwr p ∧ Gnd g ∧ Ntran(i, g, o)∧ Ptran(i, p, o)

Figure 3.2: A Formal Model of a CMOS Inverter.

The definition of Inv(i, o) is shown in Figure 3.2. The model is constructed
using logical conjunction ‘∧’ to compose the specifications which describe the
four constituent parts of a standard CMOS inverter. The variables p and g in the
definition represent wires which are internal to the inverter’s design. They are
therefore ‘hidden’ from the environment using the existential quantifier ‘∃’. The
net effect is that the term Inv(i, o) is satisfied precisely when the values i and o

satisfy the constraint imposed by the specifications of the parts used in the design,
for some internal values p and g.

3.4.4 The Proof of Correctness

The correctness of the inverter design is expressed formally by the theorem of
higher order logic shown below:

� Inv(i, o) = Not(i, o)

Here, the satisfaction relation between the design model and the specification
is simply logical equivalence—the design of an inverter is easily simple enough
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for correctness to be formulated by equivalence. The correctness theorem shown
above states that the behaviour described by the model ‘Inv(i, o)’ exactly matches
the required behaviour which expressed by the specification ‘Not(i, o)’. The CMOS
circuit shown in Figure 3.2 therefore correctly implements this required behaviour.

An outline of the formal proof of this correctness theorem is given below. Each
step in this proof can be justified formally using only the inference rules of higher
order logic, but only an informal sketch of the proof is given here. A completely
formal proof of this particular correctness result is trivial to generate in the HOL
theorem proving system.

Proof Outline:

1. The definition of the constant Inv is:

� Inv(i, o) = ∃g p. Pwr p ∧ Gnd g ∧ Ntran(i, g, o) ∧ Ptran(i, p, o)

2. Expanding with the definitions of Pwr, Gnd, Ntran, and Ptran yields:

� Inv(i, o) = ∃g p. (p = T) ∧ (g = F) ∧ (i ⊃ (o = g)) ∧ (¬i ⊃ (o = p))

3. By the meta-theorem � (∃v. v=tm ∧ t[v]) = t[tm/v] this is equivalent to:

� Inv(i, o) = (i ⊃ (o = F)) ∧ (¬i ⊃ (o = T))

4. Simplifying using the laws � (o = F) = ¬o and � (o = T) = o gives:

� Inv(i, o) = (i ⊃ ¬o) ∧ (¬i ⊃ o)

5. Replacing i ⊃ ¬o by its contrapositive o ⊃ ¬i yields:

� Inv(i, o) = (o ⊃ ¬i) ∧ (¬i ⊃ o)

6. By the definition of boolean equality, this is equivalent to:

� Inv(i, o) = (o = ¬i)

7. Abbreviating the right hand side using the definition of Not gives:

� Inv(i, o) = Not(i, o)

Steps 1–3 of this proof illustrate a procedure which is commonly used in proofs
of hardware correctness. This consists of first expanding with the definitions of
the parts used in the model, and then eliminating the equations for internal wires
of the device using the meta-theorem shown in step 3. For other examples of the
use of this technique, see [11,34,63]. Step 4 of the proof makes use of the fact that
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formulas in higher order logic are simply boolean terms. Steps 5–7 amount to an
elementary proof in standard propositional calculus.

This example, although trivial in itself, illustrates the general approach to
proving a hardware design correct in higher order logic. First, a specification of
intended behaviour is written. A specification is then written for each different
kind of primitive device used in the design, and instances of these specifications
are composed to obtain a formal model of the design. Finally, a theorem is proved
which asserts that this model in some sense ‘satisfies’ the specification of required
behaviour. In the example given above, this satisfaction relation between the
model and the specification is just logical equivalence. Formal mechanisms for
expressing satisfaction by a relationship of abstraction, rather than simply by
equivalence, are discussed in detail in the next chapter.

3.5 Related Work

Various approaches to hardware design verification have been proposed based on
specification and proof in formal logic. These include methods based on first order
logic, higher order logic, and temporal logic. A brief outline of some of this work
is given below.

Early Work using First Order Logic

Early work in applying first order logic to hardware verification was done by
T.J. Wagner at Stanford. In [83] Wagner uses a mechanized proof checker for first
order logic to prove the correctness of clocked sequential circuits. The approach
is based on an ad hoc axiomatization in logic of an algebra of signal transitions.
Device specifications are conjunctions of first order terms that describe conditional
register transfer operations. A similar approach, based on resolution and a clausal
form for conditional assignments to registers, is discussed by Wojcik in [87].

The Boyer-Moore Logic and Theorem Prover

A notable application of first order logic is W. Hunt’s verification of a 16-bit mi-
croprocessor using the Boyer-Moore theorem prover [9,53]. The Boyer-Moore logic
is quantifier-free first order logic with equality and axiom-schemes of induction.
Hunt describes hardware behaviour in this logic using a functional approach: the
behaviour of a hardware device is modelled by a function from inputs to out-
puts. Sequential behaviour is described by recursive functions defined on lists.
These lists represent sequences of discrete moments in time. Specifications of re-
quired behaviour are also functions, and the correctness of designs is formulated
by function equality. Structural induction on lists is used to prove the equality of
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functions that describe sequential behaviour. All the proofs in the microprocessor
verification were performed using the Boyer-Moore theorem prover.

Conlan CHDL’s and First Order Theories

Eveking [23,24] uses the standard notion of a theory [47] to formalize hardware
descriptions in first order logic. This approach was developed in connection
with the CONLAN project [75], which provides a family of computer hardware
description languages (CHDL’s) for describing digital systems. Eveking’s approach
is to associate a first order theory with each hardware description written in one
of these languages.

Such a theory consists of the predicate calculus augmented with a particular
collection of extra constants and axioms. These axioms are of two kinds: CHDL-
specific axioms, and description-specific axioms. CHDL-specific axioms simply
describe the various constructs of the CHDL in which the hardware description is
written. These axioms are analogous to the theorems of higher order logic which
characterize the defined entities used in specifications of hardware (e.g. the defined
type num and the defined constants +, ×, etc.).

The description-specific axioms of a theory formalize the particular hardware
description associated with it. Taken as a group, these axioms are analogous to
a model (in the sense of a formal description of an individual hardware device)
in the higher-order approach described in this chapter. Each axiom states which
values can be observed at certain points in a circuit. A typical example (taken
from [23]) is shown below.

� ∀t. ((0<t) ∧ (a(t−1) = T)) ⊃ (x(t) = y(t−1))

The functions a, x, and y in this axiom represent the sequences of values that can
be observed over time at three particular points in a circuit. With the higher-
order approach described in Section 3.1.3, these sequences would be represented by
higher order variables ranging over functions. With Eveking’s first order approach,
however, these sequences are represented by function constants. The description-
specific axiom shown above characterizes the relationship which holds between
the values observed at the three points of the circuit represented by these three
function constants. In Eveking’s work, both specifications of required behaviour
and models of hardware designs are theories which contain description-specific
axioms of this kind.

Eveking formulates design correctness using the notion of one theory being an
extension of another.4 A theory T2 is an extension of a theory T1 if every axiom
of T2 is a theorem of T1. The correctness of a device is demonstrated formally

4The notion of interpreting one theory in another is also used to formulate correctness. A
discussion of this way of formulating the correctness of designs is deferred until Section 4.3.
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by showing that a theory describing the behaviour which the device is required
to exhibit is an extension of a theory which models the actual behaviour of the
device itself. This is similar to formulating correctness in higher order logic by an
implication of the form � M ⊃ S, where M is the model of a design and S is the
specification of required behaviour.

As presented in [23], the approach described above is based on first order logic
only. Certain concepts which often arise in reasoning about hardware behaviour,
however, are most naturally represented by higher order entities. The function
Rise defined on page 34 is a typical example. In later papers (e.g. [24]) Eveking
extends the logic he uses by including certain higher-order constructs, so that
such naturally higher-order entities can be represented. These extensions include
second-order functions (i.e. ‘functionals’) and λ-abstractions.

First Order Theories for Asynchronous Devices

Barros and Johnson [2] use first order logic to reason about the ideal behaviour
of four commonly-used asynchronous devices: the arbiter, the synchronizer, the
latch, and the inertial delay. The approach taken is axiomatic—each device is
described by a collection of first order axioms (i.e. a first order theory). These
axioms are of three kinds: output axioms, forward axioms, and reverse axioms.
Output axioms express idealizing assumptions about the values on the output
wires of a device. The formal description of each device includes, for example, an
output axiom which asserts that every transition between boolean values on its
output wires takes a bounded amount of time. Forward axioms specify the effect
which a particular sequence of values at the inputs of a device has on the values at
the outputs. These axioms stipulate conditions on the inputs of a device which are
sufficient for a certain kind of output behaviour to occur. Reverse axioms specify
the conditions which the inputs of a device must satisfy for a particular output
behaviour to occur—i.e. reverse axioms express necessary conditions on the inputs
for a certain kind of output behaviour to be observed. One of the notable features
of this approach is this systematic approach to describing asynchronous hardware.

Barros and Johnson use equivalence of theories5 to formulate the functional
equivalence of the four asynchronous devices mentioned above. Two of these
devices are considered to be equivalent if they can be used to implement, or
‘simulate’, each other. More precisely, two devices D1 and D2 are considered
to be equivalent if a circuit which behaves like D1 can be built using instances
of D2 as primitive components, and vice versa. This notion of equivalence of
devices is expressed formally by equivalence of theories. Two devices D1 and D2

are equivalent if: (1) a theory describing D1 is an extension of a theory which
describes an appropriate implementation of D1 constructed using instances of D2

5Two first-order theories are equivalent if each one is an extension of the other.
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as primitive components, and (2) a similar proposition holds in which the roles of
D1 and D2 reversed. This approach was used to demonstrate the equivalence of
the four asynchronous devices mentioned above. The complete proof for all four
devices is not given in [2], but an outline of the formal proof of equivalence for
the inertial delay and the latch is given to illustrate the general approach.

Higher Order Logic: Veritas

Higher order logic was first proposed as a formalism for hardware verification
in the early account of the Veritas project given by F.K. Hanna in [41]. The
Veritas approach to hardware verification is described in detail by Hanna and
Daeche in [43], and a case study which illustrates this approach (the verification
of a D-type flip flop) can be found in [44]. The term ‘Veritas’ is used to refer
both to the general approach to hardware verification described in these papers
and to the particular species of higher order logic which is used in this approach.

An implementation of the Veritas logic in the purely functional programming
language Miranda6 [81] is described by Hanna and Daeche in [42]. This logic is
a version of polymorphic higher-order logic based on the typed λ-calculus. The
syntax of terms in this formulation of higher order logic is similar to the syntax of
terms described in Chapter 2, but the type system of Veritas includes elements
of Martin-Löf’s Intuitionistic Type Theory [61] and is therefore more flexible and
expressive than the type system used here. For example, the type system of the
Veritas logic includes subtypes; these are not available in the formulation of
higher order logic described in Chapter 2.

The Veritas approach to hardware verification is similar in many ways to
the approach described in the preceding sections of this chapter. A full account
of the Veritas methodology will therefore not be given here (for this, see [43]).
There is, however, one aspect of Veritas which relates to the work described in
Chapter 7 of this dissertation. This is discussed briefly below.

In the Veritas approach, the structure of hardware is modelled independently
of its behaviour . This is done by using a hierarchy of axiomatically characterized
types and subtypes to represent various kinds of purely structural entities (e.g.
input ports, output ports, and n-input logic gates). This differs from the approach
outlined in this chapter, where the primary emphasis is on behaviour. Here, the
structure of hardware is modelled only to the extent that it is reflected by the
syntactic structure of the logical terms which model its behaviour. In Chapter 7
of this dissertation, however, a technique is developed by which the structure of
hardware can be modelled more explicitly. This technique resembles the Veritas

approach to structure mentioned above—at least in so far as logical types are used
to model the structure of circuits independently of their behaviour. The details
are given in Chapter 7.

6Miranda is a trade-mark of Research Software Ltd.
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Higher Order Logic: HOL

The approach to hardware verification using higher order logic described in this
chapter is due to Dr. M. Gordon and was first presented by him in [31]. More
widely-known early accounts of Gordon’s approach are the papers [34] and [11]. A
more recent general account, in which the emphasis is on reasoning about CMOS
circuits, is given by Hoare and Gordon in [51].

Several researchers have based their work on Gordon’s formulation of higher
order logic, its mechanization in the HOL system, and the general approach to
hardware verification proposed in the papers cited above. Herbert [48] uses higher
order logic and the HOL system to prove the correctness of an ECL chip used as
a component in the Cambridge Fast Ring Network [52]. Dhingra [21] uses higher
order logic to formalize the design rules of a CMOS design style called CLIC.
Joyce [56,55,58] uses higher order logic and HOL to prove the correctness of a
microprocessor. The formal verification of the Viper microprocessor in HOL is
documented by Cohn in [16,17]. Aspects of this research that relate specifically
to the subject of the present work are discussed in later chapters.

Temporal Logic

In addition to the work mentioned above, which is all based on either first-order or
higher-order predicate calculus, formal methods for specifying hardware behaviour
and reasoning about hardware correctness have also been based on temporal logic.

An early application of temporal logic to hardware verification is the correctness
proof for the design of an arbiter given by Bochmann in [8]. Bochmann uses
temporal operators such as � (‘henceforth’) and 
 (‘eventually’) to capture the
time-dependent properties hardware components. The arbiter correctness proof
in [8] is done by proving that a collection of ‘invariant assertions’ hold for all
states that can be reached from the initial state of the device. The correctness of
the arbiter design then follows from these invariant assertions.

Moszkowski [72] defines a logical formalism for specifying hardware behaviour
called ITL (Interval Temporal Logic). The truth of a formula in ITL is defined
relative to a finite interval of discrete time. Modal operators are used to express
temporal concepts in terms of these time intervals. Moszkowski shows how this
can be used to describe formally a wide variety of time-dependent aspects of
hardware behaviour. In [71], Moszkowski describes a logic programming language
called ‘Tempura’ which is based on a subset of ITL. Moszkowski shows how this
language can be used to simulate formal specifications of hardware behaviour
written in ITL. Some extensions to ITL and further applications of ITL to hardware
verification are discussed by Leeser in [59]. Hale [40] gives a formal semantics for
ITL in higher order logic, and uses the HOL system to prove properties of Tempura
programs.
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In [22], Dill and Clarke present a method for automating the verification of
asynchronous circuits using temporal logic. Specifications of required behaviour
are written in a version of propositional temporal logic called CTL. A circuit is
shown to satisfy a CTL specification by first translating a gate-level description of
the circuit into a state transition graph. The CTL specification for the circuit is
then checked automatically against this state graph representation by a program
called a model checker. This program checks that the paths, or sequences of states,
in the state transition graph satisfy the given CTL specification. The automatic
verification of an arbiter is given as an example to illustrate this approach.
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Chapter 4

Abstraction

Abstraction plays a central role in making formal proof an effective method for
dealing with the problem of hardware correctness. The reasons for this were given
in Chapter 1, in the context of a discussion of some fundamental limits to the
scope of hardware verification by formal proof. In Section 1.2, two ways in which
the notion of abstraction plays an important role in hardware verification were
introduced. This chapter describes how these two types of abstraction—which
will be referred to here as abstraction within a model1 of hardware behaviour and
abstraction between models of hardware behaviour—can be formalized in higher
order logic.

Abstraction within a model is discussed in Section 4.1. This type of abstraction
has to do with the way in which correctness is formulated in logic. With the
approach to hardware verification introduced in Chapter 3, the correctness of
a device is stated formally by a proposition of logic which asserts that some
relationship of ‘satisfaction’ holds between a formal model of its design and an
appropriate specification of intended behaviour. For the reasons discussed in
Chapter 1 and Section 3.3, this satisfaction relationship must, in general, be
one of abstraction. That is, a formulation of correctness must relate a detailed
model of an actual hardware device to a more abstract specification of required
behaviour. Section 4.1 shows how this notion of correctness as a relationship
of abstraction can be formalized in logic and incorporated into the method of
hardware verification introduced in Chapter 3.

The second type of abstraction—abstraction between models—is discussed in
Section 4.2. Here, the concern is not with the correctness of individual hardware
designs, but with the idea of an abstraction relationship between two different
collections of formal specifications for the primitive components used in designs.
One such collection can be an abstraction of another, in the sense that it presents
a more abstract view of the same primitive components. In this case, either
set of primitive specifications can be used to construct a design model for any
particular hardware device. Design models constructed using the more abstract
primitives, however, will generally be simpler—but also less accurate—than design

1Here, a ‘model’ means a collection of formal specifications for the different kinds of primitive
hardware components from which devices are built (cf. Section 3.2.3).
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models constructed using the more detailed primitives. But for certain kinds of
devices, the design models constructed from these two sets of primitives may be
effectively equivalent (in a sense which is explained in Section 4.2). For this class
of devices, the more abstract primitives should be used, since this will result
in models which are just as accurate as the ones constructed from the detailed
primitives, but which are more tractable. Section 4.2 shows how the concept of
an abstraction relationship between models can be expressed formally in logic,
and explains how this relates to the idea that a class of design models constructed
from a set of abstract primitives may be effectively equivalent to a class of design
models constructed from a set of more detailed primitives.

This chapter is concerned only with the general ideas behind the formalization
of these two kinds of abstraction in logic. Only a very simplified account is given
here, and some of the complexities which arise in practice are either ignored or
mentioned only briefly. In subsequent chapters, however, concrete examples are
given to show how the general principles introduced here are applied in practice.

4.1 Abstraction within a Model

There are three important ways in which the specification of required behaviour
for a hardware device can present a more abstract view of its behaviour than is
given by a realistic formal model of its design.

First, the specification may be only a partial specification of required behaviour,
which leaves unspecified some aspects of the behaviour given by the model of the
device itself. Such a specification typically stipulates how a device is expected to
behave only when it is used in certain environments. In all other environments,
the behaviour of the device is not specified. The formal model of a hardware
device, however, generally gives more detail than this. It describes how the device
behaves when it is placed in an arbitrary environment, not just how it behaves
in only selected environments. In this case, a partial specification of required
behaviour contains less information about the behaviour of the actual device than
the model does—the formal relationship between the model and the specification
of required behaviour is one of behavioural abstraction.

Second, the specification may be expressed in terms of a higher-level notion
of data than is used in the model. The design model for a hardware multiplier,
for example, might describe its behaviour in terms of the individual binary values
present on each of its input and output wires. An abstract specification for this
device, however, is more likely to describe its functional behaviour in terms of the
numbers being multiplied than in terms of individual bits. In this case, the formal
relationship between the design model and the more abstract specification is one
of data abstraction: the specification is written using a more abstract notion of
data than the concrete binary representation of numbers used in model.
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Finally, the specification may be formulated in terms of a less detailed notion
of time than is used in the model. The formal specification of required behaviour
for a large device—a microprocessor, for example—is unlikely to include as much
information about how the device behaves over time as will be given by a detailed
model of its design. A realistic model of a microprocessor might, for example,
describe its behaviour at a level of temporal detail which includes information
about system timing and propagation delay. But an abstract specification for this
device is more likely to describe it as a finite state machine, in which the emphasis
is on the sequence of operations carried out by the device, rather than the exact
times at which these operations occur. This specification would then represent a
temporal abstraction of the more detailed behaviour given by the model.

The next three sections show how correctness statements can be formulated
in logic which express these three basic kinds of abstraction relationship between
a design model and an abstract specification of required behaviour. In the most
general case, a correctness statement may involve all three types of abstraction.
The aim of the following three sections, however, is to provide a clear account
of the motivation for each type of abstraction and to discuss how each one can
help to simplify specifications of required behaviour. Each type of abstraction
is therefore considered separately in these three sections. Example correctness
statements in which all three types of abstraction are combined are considered in
later sections of this chapter.

4.1.1 Behavioural Abstraction

A specification of required behaviour is simply a logical term which expresses a
constraint on the values that can appear on the external wires of a device. As
was discussed in Section 3.1.4, a partial specification is one which imposes only a
partial constraint on these values. This constraint will be satisfied by only very
restricted combinations of values in the situations or contexts for which a specific
behaviour is required of the device. But in the situations where the behaviour
of the device is intended to be left unspecified, the constraint imposed by the
specification will be satisfied by a relatively wide range of combinations of values.

The formal model of a device, however, will generally describe the combinations
of values which actually appear on its external wires—even in the situations where
a particular combination of values is not called for by a more abstract partial
specification of required behaviour. This means that there will be combinations of
values which are allowed by a partial specification of required behaviour, but which
do not satisfy the constraint imposed by a more detailed model. A satisfaction
relation based on behavioural abstraction must therefore express a relationship
between a strong constraint (the model) and less restrictive one (the specification).

It is straightforward to formulate a correctness statement which expresses this
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abstraction relationship in logic. Suppose that the two terms M [v1, . . . , vn] and
S[v1, . . . , vn] are the formal model of a hardware device and a partial specification
of required behaviour respectively. The idea that the specification imposes a less
restrictive constraint on the free variables v1, . . . , vn than the model is expressed
formally by the correctness theorem shown below.

� M [v1, . . . , vn] ⊃ S[v1, . . . , vn]

This theorem asserts that any combination of values which satisfies the constraint
imposed by the model also satisfies the constraint imposed by the more abstract
partial specification of required behaviour.

This is a weaker correctness statement than the one used in the inverter example
given in the previous chapter, where correctness was stated as a logical equivalence
between the model and the specification. Here, the model is required only to imply
the specification. Every combination of values that satisfies the model must also
satisfy the specification. But there may also be combinations of values which are
allowed by the specification, but which (according to the model) never actually
appear on the external wires of the device itself. This reflects the fact that the
partial specification is a behavioural abstraction of the model: the specification
stipulates only selected aspects of the device’s behaviour and therefore defines a
range of allowable behaviour for the device. The criterion of correctness expressed
by logical implication is that the behaviour actually exhibited by the device must
lie somewhere within this range.

This use of logical implication to state correctness is natural and well known,
and examples can be found in many papers on hardware verification using formal
logic [11,43,51]. What is emphasized in the present discussion is merely that
this formulation of correctness expresses a relationship of abstraction between the
formal model of a hardware device and a more abstract specification. Relaxing
the criterion of correctness from logical equivalence to logical implication allows
the specification of required behaviour for a device to stipulate only some of the
aspects of its behaviour which are captured formally by a more detailed formal
model of its design. Only those properties of the device which are relevant to
its functional correctness need be ‘mentioned’ explicitly in the specification. The
specification can therefore be more succinct than is possible when the model and
the specification are required to be logically equivalent.

4.1.2 Data Abstraction

Besides being only a partial specification, an abstract specification of intended
behaviour for a device may also be written in terms of a correspondingly abstract
notion of the kinds of values it operates on. The free variables which occur in
such a specification will not stand for the values actually present on the external
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wires of the device itself, but for more abstract externally observable quantities.
And the specification will be written using operations which can be meaningfully
applied to these abstract quantities, rather than the operations which are carried
out by the actual hardware on a more concrete representation of these values.
The logical types of the free variables which represent these abstract quantities
in the specification will therefore generally differ from those of the free variables
in a formal model of the design itself. A satisfaction relation based on data
abstraction must therefore relate ‘concrete’ values of one logical type in a model
to more ‘abstract’ values of another logical type in a specification.

In the simplest case of data abstraction, both the model and the specification
express a constraint on free variables that directly correspond to the physical wires
of the device, but use different logical types to represent the range of values that
can appear on these wires. In this case, the model and the specification will be
logical terms of the form:

M [c1, . . . , cn︸ ︷︷ ︸
type ty1

] and S[a1, . . . , an︸ ︷︷ ︸
type ty2

]

In this very simple case, each variable ai in the specification represents the same
externally observable value as the corresponding variable ci in the model. The
specification, however, is expressed as a constraint on abstract values of type ty2,
instead of the concrete values of type ty1 in the model that represent the values
actually present on the external wires of the device.

To formulate a correctness statement that relates these two specifications, it
is necessary to ‘translate’ the constraint on values of type ty1 expressed by the
model into a constraint on more abstract values of type ty2. This can be done by
using an appropriately-defined data abstraction function to map concrete values
of type ty1 in the model to abstract values of type ty2 in the specification. Given
such a function f:ty1→ty2, a correctness statement which expresses a relationship
of data abstraction between the model and the specification can be formulated as
shown below.

� M [c1, . . . , cn] ⊃ S[f c1, . . . , f cn]

This theorem states that every combination of values c1, . . . , cn which, according
to the model, actually appears on the external wires of the device is a concrete
representation at a lower level of data abstraction for a combination of more
abstract values which is allowed by the specification.

As with behavioural abstraction, correctness is expressed in this theorem using
a satisfaction relation based on logical implication. But here, it is a translation
of the values present in the model that must satisfy the specification of required
behaviour, rather than the values themselves. This translation is obtained by
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point-wise application of the data abstraction function f to the free variables of
the model: the abstraction function f is used to map each concrete value ci in the
model to a corresponding abstract value ‘f ci’. The combination of abstract values
thus obtained must satisfy the constraint expressed by the abstract specification
of required behaviour. That is, the values f c1, . . . , f cn must, when substituted
for the free variables a1, . . . , an, satisfy the constraint given by the abstract
specification S[a1, . . . , an]. The resulting correctness statement asserts that the
operations on concrete values carried out by the device correctly implement the
required operations on abstract values expressed by the specification.

In this very simple example, there is a one-to-one correspondence between the
free variables in the model and the free variables in the specification. But in
general this may not always be the case: an observable value represented by a
single variable in the abstract specification for a device may in fact correspond
to a collection of values in the model of its design. For example, the model of an
8-bit binary counter might contain eight boolean variables, one for each output
wire; but an abstract specification for this device may simply represent its output
by a single variable ranging over numbers.

A correctness statement based on data abstraction may therefore involve more
complex functions of the variables in the model than was suggested by the simple
example given above. An example is the correctness statement shown below.

� M [c1, . . . , cn] ⊃ S[f1(c1, . . . , ci), f2(ci+1, . . . , cn)]

Here, the specification of required behaviour is a constraint of the form ‘S[a1, a2]’
on two abstract quantities a1 and a2. In the model these two abstract values are
represented by a collection of n concrete values. Two data abstraction functions f1
and f2 are used in this correctness statement to relate these concrete values in the
model to the abstract values which they represent: the function f1 maps c1, . . . , ci

to one abstract value in the specification, and the function f2 maps ci+1, . . . , cn

to the other. Many other patterns of correspondence between the free variables
in a model and the abstract values in a specification are, of course, also possible.

The advantage of data abstraction is that it allows the specification of required
behaviour for a device to be written in terms of abstract ‘high-level’ operations on
data, without having to specify precisely how this data is represented in the device
itself. In a correctness theorem of the kind discussed above, data abstraction
functions can be used to separate the details of data representation from the
formal specification of required behaviour. This allows the specification to be
expressed in terms of the mathematical entities and notation most appropriate to
an intuitively clear and textually succinct abstract statement of the computation
a device is intended to carry out.
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4.1.3 Temporal Abstraction

In addition to being expressed at a higher level of data abstraction, an abstract
specification of required behaviour may also give less detail about how a device
behaves over time than a realistic model of the device itself. It may, for example,
state the behaviour a device is expected to exhibit at only certain significant or
‘interesting’ points of time, and leave unspecified the details of any intermediate
states through which the device must pass to realize this behaviour. In this case,
the specification will employ a more abstract notion of time than would be used
in a more detailed design model—i.e. a model that does describe the device’s
behaviour at these intermediate states. A satisfaction relation based on temporal
abstraction must therefore establish a relationship between two different formal
representations of time: an ‘abstract’ representation of time in the specification,
and a ‘concrete’ representation of time in the model.

In the general case, each unit of discrete time in the specification corresponds
to an interval of discrete time in the more detailed design model. In this case,
the specification describes the values that appear on the external wires of the
device at fewer points of ‘real’ time than the model does. Each point of ‘abstract
time’ in the specification corresponds to a particular point of ‘concrete time’
in the model. And, at these corresponding points in time, the model and the
specification impose the same constraint on the values that can appear on the
external wires of the device. But the model also constrains these values at points
of concrete time which lie between what are considered to be adjacent points of
time at the more abstract level of the specification. A correctness statement that
relates this model to the more abstract specification must therefore establish a
correspondence between two different time-scales: a ‘fine-grained’ time-scale in
the model and a ‘coarse-grained’ time-scale in the specification.

This correspondence can be described formally by a function that maps each
point of abstract time in the specification to a corresponding point of concrete
time in the model. Such a function is a time mapping that describes the precise
relationship between the abstract time-scale used in the specification and the
concrete time-scale used in the more detailed model. A simple example is shown
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Figure 4.1: A Mapping between Time-scales.
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in Figure 4.1. The solid lines in this diagram represent continuous or real time.
The dots represent the points of real time which constitute the two discrete time-
scales involved: the concrete time-scale tc used in the model, and the abstract
time-scale ta used in the specification. The mapping f describes the relationship
between these two time-scales. To every point of time t on the abstract time-scale,
the function f assigns a corresponding point of concrete time ‘f t’ such that the
order of time is preserved:

� ∀ t1 t2. (t1 < t2) ⊃ (f t1 < f t2)

This establishes a correspondence between units of time on the abstract time-scale
and intervals of time on the concrete time-scale by mapping successive points of
abstract time to selected points of concrete time.

Any correspondence between successive units of abstract time and contiguous
intervals of concrete time can be described formally in logic by a time mapping of
this kind. The particular point of concrete time assigned by such a function to each
point of abstract time will, of course, depend on the exact relationship between the
model and the specification involved. For example, each unit of abstract time in
the specification for a clocked synchronous device might correspond to an interval
of concrete time between two rising edge of a clock signal in the model. In this
case, the function f would map points of time on the abstract time-scale to the
points of concrete time at which these rising edges of the clock occur. A detailed
account of how such a function can be defined will not be given here, but will be
deferred until Chapter 6.

Given an appropriately-defined mapping f from abstract time to concrete time,
a correctness statement that relates a model to a specification at a higher level of
temporal abstraction can be formulated in logic as follows. Suppose that the two
logical terms

M [c1, . . . , cn] and S[a1, . . . , an]

are the model of a device and an abstract specification of required behaviour,
respectively. To simplify matters, assume that the free variables in both the model
and the specification are functions of type num→bool, and that ci corresponds to
ai for 1 ≤ i ≤ n. If the specification is a temporal abstraction of the model (in the
sense discussed above) and if the device is correct, then each sequence of values
ai in the specification will correspond to a subsequence of the values given by the
variable ci in the model. Each function ai in the specification will represent a
sequence of values which could be obtained by ‘sampling’ the function ci at only
those points of concrete time which are significant at the abstract level of the
specification, and therefore correspond to points of discrete time on the abstract
time-scale used in the specification.

55



Given a function f that describes this correspondence, a correctness statement
that relates the model to the specification can be formulated as shown below.

� M [c1, . . . , cn] ⊃ S[c1 ◦ f, . . . , cn ◦ f]

This theorem states that if the functions c1, . . . , cn satisfy the temporally detailed
constraint imposed by the model, then the functions c1◦f, . . . , cn◦f will satisfy the
temporally abstract specification of required behaviour. Here, the model describes
the values that appear on each external wire ci at points of fine-grained or concrete
time. The function f specifies which of these points of concrete time correspond
to points of time on the abstract time-scale. Composition on the right with f

constructs an abstract sequence of values ‘ci ◦ f’ from each detailed sequence of
values ci by sampling the function ci at these selected points of concrete time. The
combination of abstract sequences obtained in this way must satisfy the abstract
specification of required behaviour.

The resulting correctness statement asserts that the combinations of values
present on the external wires of the device satisfy the specification of required
behaviour at each point in time that is regarded as significant or important at the
abstract level of description. That is, the behaviour of the device when observed
at only those selected points of concrete time specified by the function f satisfies
the temporally abstract specification of its required behaviour.

The advantage of temporal abstraction is that it hides irrelevant details about
intermediate state transitions from the abstract specification of required behaviour
for a device. Points of time on the abstract time-scale in a correctness theorem
based on temporal abstraction correspond to selected points of time on the more
detailed concrete time-scale, and it is only at these selected points of time that
the device’s behaviour is stipulated by the abstract specification. Furthermore,
the use of a time mapping to relate abstract and concrete time-scales not only
allows the behaviour of the device at other points of time to be left unconstrained
by the specification, but also makes intermediate states transitions completely
invisible to the specification. Intermediate states represented by points of time
on the concrete time-scale used in the model simply do not exist on the abstract
time-scale used in the specification. This allows the specification to describe the
required behaviour of a device at only significant points of time, without also
having to indicate precisely which points of time are in fact of interest.

4.1.4 Two Problems

The underlying satisfaction relation in all three forms of correctness discussed
above is logical implication. In each case, correctness is stated by an implication
of the form M ⊃ S, in which the model is the antecedent and a substitution
instance of the specification is the consequent. There are two problems that can
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arise when correctness is stated by an implication of this form. These are discussed
briefly in the two sections that follow.

4.1.4.1 Underspecification

Whenever the behaviour which a device is required to exhibit is stated formally by
a partial specification, there is the possibility that this partial specification in fact
underspecifies the intended behaviour of the device. That is, a partial specification
may inadvertently fail to stipulate some important aspect of the device’s intended
behaviour, and therefore be satisfied by a wider range of values than is actually
intended by the designer. In this case, the constraint expressed by the specification
will be satisfied by some combinations of values which in fact ought not to appear
on the external wires of the device. But when correctness is formulated as logical
implication, a model which is satisfied by these undesirable combinations of values
(and therefore represents an incorrect design) will, according to this formal notion
of correctness, be considered correct with respect to this specification.

This is much less likely to happen when correctness is stated formally by logical
equivalence. If the specification and the model are required to express the same
constraint on the free variables which they contain, then any weakness in the
specification must either: (1) be matched exactly by a corresponding degree of
‘nondeterminism’ in the model, or (2) make it impossible to complete the proof
of correctness. But if the criterion of correctness is relaxed to logical implication,
then the specification is allowed to express a strictly weaker constraint than the
model. An inadequate specification is therefore less likely to be detected during
the course of a proof, since the behaviour given by the model is required only to
lie somewhere within the range of behaviour stipulated by the specification.

There is no complete solution to this problem, since it is a problem of inaccuracy
in the specification of intended behaviour for a device. For the reasons already
discussed in Chapter 1, it is not possible to prove that a partial specification in
fact covers all the essential aspects of a device’s intended behaviour. Whenever
it is possible to leave something unspecified, it is also possible to leave something
essential unspecified.

4.1.4.2 Inconsistent Models

A second problem with using logical implication to express correctness is that
an inconsistent model then trivially satisfies any specification.2 An inconsistent
model is one which cannot be satisfied by any assignment of values to its free
variables. A simple example is the term ‘Pwr x ∧ Gnd x’, where Pwr x and Gnd x

are instances of the specifications for power and ground defined in Chapter 3.

2In [11], this is called the ‘false implies anything problem’. The pragmatic solution to this
problem mentioned in this section was suggested by M. Fourman.

57



This term is logically equivalent to falsity, since no boolean value x can satisfy
both Pwr x and Gnd x. If satisfaction is formulated as logical implication, then
this inconsistent model satisfies (i.e. implies) any specification. In general, if the
model on the left hand side of the implication:

M [v1, . . . , vn] ⊃ S[v1, . . . , vn]

is false for all values of the variables v1, . . . , vn, then this implication is a theorem,
no matter what constraint is imposed on these variables by the term on the right
hand side of the implication. This is clearly unsatisfactory, since a formal theorem
of this kind provides no meaningful assurance of functional correctness.

The ideal solution to this problem would be to have a collection of specifications
for the primitive components used in designs that always yields a consistent model,
no matter how this model is constructed from these primitives using the syntactic
operations of composition (‘∧’) and hiding (‘∃’). This, however, may require the
specifications for primitive components to be of considerable complexity. A more
pragmatic solution is to check the consistency of the particular design model on
which proof of correctness is based. This can be done by proving a consistency
theorem of the form:

� ∃v1 . . . vn. M [v1, . . . , vn]

in addition to proving a correctness statement of the general form illustrated by
the implication shown above. Proving this extra consistency theorem ensures that
the model shown above can be satisfied by at least one combination of values for
the variables v1, . . . , vn. It therefore shows that this model does not satisfy a
specification merely because it is inconsistent. If none of the external wires of
a device are bidirectional (i.e. every wire of the device is either an input or an
output), then a stronger consistency theorem can be formulated:

� ∀i1 . . . in. ∃o1 . . . om. M [i1, . . . , in, o1, . . . , om]

This theorem states that for any collection of input values i1, . . . , in, there are
output values o1, . . . , om which, according to the model, are consistent with them.
Again, this shows that the model does not satisfy a specification of required
behaviour merely because it is inconsistent. An example of a consistency theorem
of this second kind can be found in Section 5.3.3.4 of Chapter 5.

In general, it is necessary to prove a consistency theorem of one of these two
kinds, in addition to a correctness theorem, whenever a satisfaction relation based
on implication is used. Consistency theorems are usually not proved in most of the
examples presented in the literature, since the models which are used are generally
simple enough to be easily seen to be consistent. But when formal verification is
applied to much larger examples, it may be necessary to consider more explicitly
the possibility that the models involved might be inconsistent.
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4.1.5 Discussion

For clarity, only a highly simplified account was given in the preceding sections
of the three most basic ways in which correctness can be expressed in logic by
a satisfaction relation based on abstraction. Some complexities which arise in
practice, but which were left out of consideration in the simplified account given
above, are discussed below. Some of the aspects of data and temporal abstraction
which will be discussed in Chapters 5 and 6 are also mentioned briefly below.

• One aspect of the formalization of data abstraction in higher order logic which
was not discussed above is the task of defining logical types to provide formal
representations of ‘data’ in logic. To make effective use of data abstraction, a
variety of types are needed, both for writing abstract specifications of intended
behaviour and for defining realistic design models. The free variables in both
models and specifications stand for the values by which a device communicates
with its environment. To provide a direct and natural representation for these
values, it is generally necessary to introduce new logical types whose formal
properties are appropriate to the kinds of values involved. As was discussed
in Chapter 2, this must be done by first defining these types and then proving
that they have the desired properties. This aspect of the formalization of data
abstraction in higher order logic is discussed in detail in Chapter 5.

• In the overview of temporal abstraction given above, what was not discussed in
any detail is the task of defining the time mappings needed to relate abstract
and concrete time-scales. The points of time at which values are of interest
to the abstract specification for a device usually depend in some way on the
operation of the device itself. For example, an abstract specification may (as
was mentioned above) stipulate the values that must appear on the inputs and
outputs of a device at points of abstract time which correspond to the rising
edges of a clock. In this case, the correspondence between abstract time and
concrete time will depend on the behaviour of the clock, and a mapping between
time-scales that describes this correspondence must therefore be constructed
from the clock signal itself. A general technique by which functions that map
from one time-scale to another can be constructed in this way is discussed in
detail in Chapter 6.

• In the correctness theorem given above as an example of temporal abstraction:

� M [c1, . . . , cn] ⊃ S[c1 ◦ f, . . . , cn ◦ f]

a single time mapping f is used to construct a subsequence ‘ci ◦ f’ from each
sequence of values ci in the model. In general, however, it is not necessarily
the case that the same mapping of time-scales can be used for every variable
in a model. For example, the abstract specification for a device driven by a
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2-phase clock might represent a temporal abstraction obtained by sampling the
values present at certain points in the circuit on the one phase of the clock and
sampling the values present at other points in the circuit on the other phase
of the clock. A statement of correctness in this case must employ two different
time mappings to relate this specification to a more detailed model of the
device—one for each clock phase. Examples of temporal abstraction in which
different mappings between an abstract time-scale and a concrete time-scale
occur in the same correctness statement can be found in Chapter 6.

• The distinction between data and temporal abstraction made in the preceding
sections is that data abstraction involves a translation of the values by which
a device communicates with its environment, whereas temporal abstraction
involves a translation of the times at which these communications occur. In
many correctness statements in which both types of abstraction are involved,
the satisfaction relation used to formulate correctness can be expressed as a
combination of two distinct components: a data abstraction and a temporal
abstraction. A formulation of correctness which combines data abstraction and
temporal abstraction, and which illustrates this factorization of the abstraction
relationship into separate data and temporal components, is discussed below
in Section 4.1.7.

• Although it is a generally useful principle of organization to distinguish between
data and temporal abstraction, some abstraction relationships do not fit neatly
into one category or the other, but are best regarded as hybrid combinations
of both data and temporal abstraction. For example, the translation from
a bit-serial representation of numeric data in a design model to a sequence
of numbers in an abstract specification of required behaviour is both a data
abstraction (translating bits to numbers) and a temporal abstraction (relating
a group of values spread out over points of concrete time to a value at a single
point of abstract time). Although correctness statements based on translations
of this kind are not easily expressed as simple combinations of two distinct
types of abstraction (i.e. data and temporal abstraction) the formalization in
higher order logic of correctness statements of this kind does not present any
special problems.

• The distinction made in the previous section between temporal abstraction
or data abstraction and behavioural abstraction might seem—from a purely
formal point of view—to be a somewhat artificial one. All the correctness
statements given above as examples of data and temporal abstraction can also
be seen as examples of behavioural abstraction, in which the specification of
required behaviour is simply a weaker constraint than the model. Consider, for
instance, the correctness theorem which was given in Section 4.1.2 to illustrate
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the idea of a relationship of data abstraction:

� M [c1, . . . , cn] ⊃ S[f c1, . . . , f cn]

As was discussed in Section 4.1.2, a theorem of this kind can be viewed as
expressing a relationship of data abstraction between the model M [c1, . . . , cn]
and an abstract specification of required behaviour S[a1, . . . , an]. But it can
also be seen as expressing a relationship of behavioural abstraction, in which
the specification of required behaviour is the term ‘S[f c1, . . . , f cn]’.

• The distinction between these two views of the same correctness statement is a
pragmatic distinction, rather than a strictly formal or syntactic one. It is only
when the specification for the correctness theorem shown above is taken to be
the constraint on abstract values ‘S[a1, . . . , an]’, where externally observable
values are represented by abstract variables, rather than data representations
constructed from concrete variables, that this theorem express a relationship
of data abstraction between the model and the specification. The distinction
between the two possible views of this formal theorem is therefore purely a
matter of what is considered to be ‘the specification’ of intended behaviour for
the device in question.

• To provide a clear motivation for the three types of abstraction discussed above,
correctness was treated as a relationship between a fully concrete design model
for an actual hardware device and an abstract specification intended behaviour
for the device in question. In general, however, the correctness proof for a
large device must be structured hierarchically, so that a logical term which is
considered to be the model of a component at one level in the hierarchy becomes
the specification of required behaviour for a more concrete component at the
next level down.3 A correctness proof therefore usually involves a hierarchy
of nested abstractions, rather than a single abstraction from one fully detailed
concrete model to a top-level specification of required behaviour. The notion
of hierarchical proof is discussed in further detail in Section 4.1.8 below.

4.1.6 Validity Conditions

Another complexity not mentioned in the preceding account of abstraction is that
an abstraction is normally valid or appropriate only under certain conditions. A
given specification may in fact present a valid abstract view of the actual behaviour
of a device only under certain conditions, which will be referred to here as validity
conditions on a correctness statement expressed as a relationship of abstraction.

3Of course, the free variables in such a term do not generally stand for the values on the physical
‘wires’ of an actual device, but usually represent more abstract externally observable quantities.
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Suppose, for example, that the term M [c1, . . . , cn] is the formal model of a
hardware device, and that S[a1, . . . , an] is a specification of required behaviour
expressed at a higher level of data abstraction than the model. For a given design
model and a given abstract specification, it may not always be possible to prove
a correctness theorem of the simple form discussed above in Section 4.1.2:

� M [c1, . . . , cn] ⊃ S[f c1, . . . , f cn]

where f is an appropriate data abstraction function that maps concrete values
in the model to abstract values in the specification. The device modelled by the
term M [c1, . . . , cn] may in fact behave as stipulated by the abstract specification
of required behaviour only for a restricted range of values on its input wires, or
in only certain well-behaved contexts or environments.

In this case, it will not be possible to prove a correctness statement of the
simple form shown above. Instead, the correctness statement must involve an
extra constraint that states the conditions under which the device in fact does
behave as required by the abstract specification:

� C[c1, . . . , cn] ⊃ (M [c1, . . . , cn] ⊃ S[f c1, . . . , f cn])

The term ‘C[c1, . . . , cn]’ in this correctness statement is a validity condition on the
abstraction relationship between the model and the specification. By imposing a
constraint on the free variables c1, . . . , cn this condition describes the external
environments in which the device modelled by M [c1, . . . , cn] in fact does behave as
stated by the more abstract specification of intended behaviour. The specification
present a valid abstract view of the behaviour described by the more detailed
formal model of its design only when the device is placed in an environment that
satisfies this constraint.

A validity conditions of the kind illustrated by this example can arise whenever
correctness is formulated by a satisfaction relationship based on any of the three
types of abstraction discussed in the preceding sections. In each case, a validity
condition expresses a constraint that must be satisfied by the environment in
which a device is operating in order ensure that it will behave as required by
the abstract specification. Particular examples of the sorts of validity conditions
that arise when correctness is formulated as a relationship of data abstraction or
temporal abstraction can be found in Chapters 5 and 6.

4.1.7 A Notation for Correctness

In the most general case, a correctness statement can involve a combination of
all three types of abstraction—data, temporal, and behavioural. Furthermore, as
was pointed out above, a correctness statement based on temporal abstraction
may involve several different mappings from abstract to concrete time, and a
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correctness statement based on data abstraction may involve functions that map
a collection of concrete values represented by several free variables in the model
to a single abstract value in the specification of required behaviour.

For notational clarity, however, the discussion of abstraction in the remaining
sections of this chapter will be restricted to correctness statements expressible by
theorems of the general form shown below:

� C[c1, . . . , cn] ⊃ (M [c1, . . . , cn] ⊃ S[f ◦ c1 ◦ g, . . . , f ◦ cn ◦ g]) (4.1)

A theorem of this form expresses correctness as a combination of behavioural,
temporal, and data abstraction. The term M [c1, . . . , cn] is the design model for
the device in question. The specification of required behaviour is term of the
form S[a1, . . . , an]. Each abstract variable ai in the specification corresponds to
the concrete variable ci in the model for 1 ≤ i ≤ n. The condition C[c1, . . . , cn]
is a validity condition on the abstraction relationship between these two formal
descriptions of the device’s behaviour. Each variable ci in a correctness theorem
of this form is assumed to have logical type num→ty1, and represents a sequence
of externally observable values of type ty1 at points of time on a concrete time-
scale. The function f is a data abstraction function of type ty1→ty2 that maps
concrete values of type ty1 in the model to abstract values of type ty2 in the
specification. The function g is a time mapping from the abstract time-scale used
in the specification to the concrete time-scale used in the model.

A correctness statement of the general form shown above relates a detailed
design model to a more abstract specification of required behaviour by means of a
point-wise mapping from the free variables in the model to corresponding values
in the specification. Each temporally detailed sequence ci of concrete values in the
model is mapped to a temporally abstract sequence ‘f ◦ ci ◦ g’ of abstract values
by composition on the left with the data abstraction function f and composition
on the right with the time mapping g. A correctness statement of this general
kind therefore involves both temporal abstraction and data abstraction. It is
furthermore assumed that the abstract constraint ‘S[a1, . . . , an]’ may be only a
partial specification of required behaviour, in which case the specification is also
a behavioural abstraction of the model.

When the functions f and g in a correctness statement of the form shown above
are both identity functions, a theorem of this kind simply expresses a relationship
of behavioural abstraction between the model and the specification (in this case,
the abstract and concrete types ty1 and ty2 are in fact the same). Similarly, when
only the data abstraction function f is the identity function, a theorem of this
form expresses a relationship of temporal and behavioural abstraction; and when
only the time mapping g is the identity function, a theorem of the form shown
above states correctness as a relationship of data and behavioural abstraction.
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In what follows, a correctness statements written in the form shown above
can be assumed to be qualified by a validity condition C[c1, . . . , cn] which is non-
trivial, in the sense that it is not simply satisfied for every possibly combination
of values for the free variables c1, . . . , cn. An abstraction relationship which is
not qualified by a validity condition will be written:

� M [c1, . . . , cn] ⊃ S[f ◦ c1 ◦ g, . . . , f ◦ cn ◦ g] (4.2)

I.e. correctness will be stated in this case without a validity condition on the
satisfaction relationship between the model and the abstract specification.

4.1.7.1 An Abbreviated Notation for Satisfaction

To simplify the discussion of abstraction in the remaining sections of this chapter,
the following notation is introduced to abbreviate correctness statements of the
form explained above. Any correctness statement of the general form given by
theorem-scheme (4.1) can be written:

� C[c1, . . . , cn] ⊃ (M [c1, . . . , cn] ⊃ S[F c1, . . . , F cn]) (4.3)

where F is the higher order abstraction function denoted by λc. f ◦ c ◦ g. A
correctness theorem of this form will therefore be abbreviated by writing:

� C[c1, . . . , cn] ⊃ M [c1, . . . , cn] sat
F

S[a1, . . . , an] (4.4)

Whenever a correctness statement is written using this notation,4 it is assumed
that F stands for an abstraction function of the form λc. f ◦ c ◦ g, where the
function f is a data abstraction function and the function g is a time mapping.
The notation used in a correctness statement of this kind should be regarded
as a metalinguistic abbreviation for a correctness theorem of the form given by
theorem-scheme (4.3). Correctness theorems which are not qualified by a validity
condition (i.e. theorems of the form given by theorem-scheme (4.2) shown above)
can also be abbreviated using this notation.

4.1.7.2 Notation for Behavioural Abstraction

In an abbreviated correctness theorem written using the metalinguistic notation
introduced above, it is always assumed that the function F has the form λc. f◦c◦g,
for some data abstraction function f and time mapping g. In the sections that
follow, however, it will not be necessary to mention particular data abstraction
functions and time mappings—except in the following special case.

4Although this notation expresses a concept of satisfaction which is similar to that formalized
by the sat relation in CSP [49], the ‘sat

F
’ notation used here is not the same as ‘sat’ in CSP.
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When both f and g are identity functions, a correctness theorem of the kind
discussed above simply expresses a relationship of behavioural abstraction between
the model and the specification. In this case, a correctness statement will be
abbreviated by:

� C[c1, . . . , cn] ⊃ M [c1, . . . , cn] sat
I

S[c1, . . . , cn]

Here, the function I is simply the identity function that maps each variable ci

in the model to the same value ci in the specification. A theorem written in
this form expresses a relationship of behavioural abstraction between the model
and the specification (i.e. the relation sat

I
can just be read as logical implication).

A behavioural abstraction which is not qualified by a validity condition will be
written using the same notation, but without the condition ‘C[c1, . . . , cn]’.

4.1.7.3 Omission of Free Variables

When it is not necessary to draw attention to the particular free variables in the
logical terms involved in correctness theorems of the kind discussed above, these
variables will simply be omitted. In this case, correctness statement involving
abstraction will be abbreviated by writing:

� C ⊃ M sat
F

S and � M sat
F

S

When this abbreviated notation is used, it assumed that C and M represent a
validity condition and a design model respectively, and stand for logical terms that
contain free variables c1, . . . , cn. It is also assumed that S represents an abstract
specification of required behaviour, and stands for a logical term containing free
variables a1, . . . , an ranging over abstract values. Again, the function F is assumed
to be a function of the form λc. f ◦c◦g. Finally, when only behavioural abstraction
is involved, correctness statements will be written:

� C ⊃ M sat
I

S and � M sat
I

S

where I stands for the identity mapping (as discussed in the previous section).

4.1.8 Abstraction and Hierarchical Verification

In the simple inverter example given in Chapter 3, the correctness proof was
based on a single model of the entire circuit, constructed by composing the formal
specifications of all the primitive components used in its design. For designs of any
considerable size, however, this direct approach is usually impractical. Instead,
the design of the device which is to be proved correct must be structured into a
hierarchy of models, and its correctness demonstrated by hierarchical verification.
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4.1.8.1 Hierarchical Verification

Figure 4.2 shows a simple example of hierarchical verification. The design to
be verified is structured into a two-level hierarchy of components. At the top
level of this hierarchy (level 0), the design consists of two components S1 and S2,
connected together by the internal wire z. At this level, these two components
are considered to be primitive devices, and are modelled formally by the terms
S1 and S2. The term M models the behaviour of the entire device at this level.
It is constructed by composing S1 and S2 and hiding the internal wire z. The
correctness statement at this level of the proof asserts that the model M satisfies
the specification S, which describes the intended behaviour of the entire design.

At the next level down (level 1), the terms S1 and S2 become specifications
of required behaviour for the two devices modelled by M1 and M2. These two
models are constructed from the specifications of the primitive components P1,
P2, P3, and P4. At this level, there are two separate correctness theorems to
be proved. These two theorems assert that the devices modelled by M1 and M2

correctly implement the abstract behaviours required by the specifications S1 and
S2 respectively. It follows from this, and from the correctness result for M proved
at level 0, that wiring together the two devices modelled by M1 and M2 gives a
concrete implementation of the entire design which is correct with respect to the
top-level abstract specification S.

P1 P2 P3 P4

P1 P2

M1

x

︷ ︸︸ ︷
�

P3 P4

M2

y

︷ ︸︸ ︷
�

Level 1

Models:
� M1 = ∃x. P1 ∧ P2

� M2 = ∃y. P3 ∧ P4

Correctness:
� M1 sat

G
S1

� M2 sat
G

S2

S1 S2

︷ ︸︸ ︷
�

S1 S2

M

z

Level 0

Model:
� M = ∃z. S1 ∧ S2

Correctness:
� M sat

F
S

Figure 4.2: Hierarchical Verification
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This hierarchical approach to hardware verification is possible in logic because
both design models and specifications of required behaviour have exactly the
same syntactic status. Both are simply boolean terms; and the model-building
operations of composition (‘∧’) and hiding (‘∃’) can be applied to both. Logical
terms which are used as abstract specifications at one level in a hierarchical proof
can therefore be treated as models at the next higher level. In a formalism in
which specifications of required behaviour and models are syntactic entities of
two distinct kinds, this direct approach to hierarchical verification is not possible.

An important advantage of hierarchical verification, of course, is that if multiple
instances of the same kind of component are used at one level of the hierarchy,
then a design for that kind of component has to be verified only once at the
next level down. Furthermore, if a component is proved correct with respect to a
concise, abstract specification of required behaviour, then this can be used in place
of a more detailed design model at the next higher level. In the hierarchical proof
shown in Figure 4.2, for example, the design model M at the top level of the proof
is constructed from the abstract specifications S1 and S2, rather than the more
detailed concrete models M1 and M2. This gives a more tractable model at the
top level than would otherwise be possible, and helps to control the complexity
of the proof at that level. In this way, abstraction mechanisms, together with
hierarchical structuring and regularity, can help control the complexity of large
correctness proofs.

4.1.8.2 Putting Hierarchical Proofs Together

A hierarchical proof of correctness for the design of large device will typically
involve many intermediate levels of specification between the fully concrete design
model and the top-level abstract specification of required behaviour. At each
level in the hierarchy, correctness theorems will relate each subcomponent to an
abstract specification at the next higher level. In the general case, there will be
several independent correctness theorems at each level in the hierarchy, one for
each different kind of ‘primitive’ component used at that level. To complete such
a proof, it is necessary to combine the intermediate correctness results that relate
models and specifications at each level of the hierarchy into a single correctness
theorem that relates a complete and fully concrete model of the entire design to
the top-level abstract specification of intended behaviour.

For example, in the simple two-level hierarchical correctness proof discussed
above, there are three separate correctness theorems:

Level 1: � M1 sat
G

S1 � M2 sat
G

S2 Level 0: � M sat
F

S

Two correctness theorems are derived at the lowest level in the hierarchy. These
relate the concrete models M1 and M2 to the intermediate abstract specifications
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S1 and S2 respectively. At the next level, a third correctness theorem relates
the model M to the top-level abstract specification S. The intermediate model
M at this level is constructed from the specifications S1 and S2 for the concrete
components at the next level down.

Proving these three theorems shows only that each component in the hierarchy
is correct with respect to its abstract specification. To complete the proof of
this device, one must also derive a correctness theorem for the entire design with
respect to the top-level abstract specification. That is, in addition to proving the
three separate correctness theorems shown above, one must also derive from these
theorems a correctness theorem for a model of the entire design:

� (∃z. (∃x. P1 ∧ P2) ∧ (∃y. P3 ∧ P4)) sat
H

S where H = F ◦G

This theorem states that a complete and fully detailed design model constructed
from the concrete primitive specifications P1, P2, P3, and P4 satisfies the top-level
abstract specification of required behaviour S. The abstraction function H used
to formulate satisfaction in this correctness theorem is simply the composition of
the functions F and G used to formulate satisfaction at levels 0 and 1 respectively.

To obtain a correctness theorem for a hierarchically-structured design from
a collection of separate correctness results for each level of the hierarchy, the
satisfaction relation used to formulate correctness must satisfy the three rules
shown in Figure 4.3 below. The sat-trans rule requires the satisfaction relation
which is used to formulate correctness to be transitive. If this rule holds, then
any two correctness theorems � M1 sat

F
M2 and � M2 sat

G
S derived for adjacent

levels in a hierarchical proof can be composed to obtain a correctness theorem

• sat-trans:
� M1 sat

F
M2 � M2 sat

G
S

� M1 sat
G◦F

S

• ∧-mono:
� M1 sat

F
S1 � M2 sat

F
S2

� (M1 ∧M2) sat
F

(S1 ∧ S2)

• ∃-ext:
� M sat

F
S

� (∃c. M) sat
F

(∃a. S)

Figure 4.3: Three Meta-theorems about Satisfaction.
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� M1 sat
G◦F

S which relates the detailed model M1 to the abstract specification S.
The abstraction function F in this rule maps the free variables in the concrete
model M1 to abstract values in the intermediate model M2, and the abstraction
function G maps values in the intermediate model M2 to values in the top-level
specification S. When the two correctness theorems are composed, the abstraction
function used in the resulting satisfaction relation is simply the composition of
the functions G and F .

The ∧-mono rule states that the operation of composition is monotonic with
respect to satisfaction. If this rule holds of the satisfaction relation used to state
correctness, then a correctness theorem for a composite hardware device can be
derived from separate correctness theorems for each of its subcomponents. The
rule states that if the models M1 and M2 satisfy the abstract specifications S1 and
S2 respectively, then the composition of the models will satisfy the conjunction
of the abstract specifications. It is assumed that the same abstraction function
F is used to formulate correctness for each of the two models M1 and M2. In
the ∧-mono rule, the function F is also the abstraction function for the derived
correctness result.

The ∃-ext rule states that satisfaction must be preserved when internal wires
are hidden using the hiding operator ∃. The variables c and a in this rule stand for
corresponding concrete and abstract values in the model M and the specification
S respectively. The rule states that if the model M satisfies the specification S,
then the model ‘∃c. M ’ obtained by hiding the internal value c will satisfy the
abstract specification ‘∀a. S’ obtained by existentially quantifying the abstract
variable a. The abstraction function F in the derived correctness result is the
same as the abstraction function in the original theorem.

In general, meta-theorems similar to the three rules shown in Figure 4.3 must
hold for any formulation of satisfaction for the correctness of components in a
hierarchically-structured correctness proof. For the general class of correctness
theorems introduced in Section 4.1.7 (here abbreviated using the sat

F
notation)

it is straightforward to prove that these rules hold. Similar rules for combining
correctness results can also be derived when several different abstraction functions
are used in a single correctness statement, or when several concrete variables in a
design model are mapped to a single abstract value in an abstract specification.

Given these rules about satisfaction, the separate correctness theorems derived
for each level of a hierarchically structured design can always be combined to
obtain a correctness statement that relates a fully detailed model for the entire
design to the top-level abstract specification of required behaviour. There is a
straightforward systematic procedure for deriving a correctness theorem for a
hierarchically structured design from the correctness theorems obtained for its
subcomponents at each level in the hierarchy. For each composite component in
the hierarchy, a correctness theorem can be obtained by combining the correctness
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results for its constituent parts using the two rules ∧-mono and ∃-ext. The rule
sat-trans can be used to compose the correctness results that link adjacent levels
in the hierarchy to obtain a correctness theorem that relates the most concrete
design model to the top-level abstract specification. For the simple example of
hierarchical verification shown above in Figure 4.2, the process of assembling the
separate correctness theorems obtained at each level into a correctness theorem
for the entire design consists of the derivation shown below:

1. � M1 sat
G

S1 [correctness of M1]

2. � M2 sat
G

S2 [correctness of M2]

3. � (M1 ∧M2) sat
G

(S1 ∧ S2) [∧-mono: 1, 2]

4. � (∃z. M1 ∧M2) sat
G

(∃z. S1 ∧ S2) [∃-ext: 3]

5. � (∃z. S1 ∧ S2) sat
F

S [correctness of M ]

6. � (∃z. M1 ∧M2) sat
F◦G

S [sat-trans: 4, 5]

7. � (∃z. (∃x. P1 ∧ P2) ∧ (∃y. P3 ∧ P4)) sat
F◦G

S [6, and definitions of M1, M2]

In the first four steps of this proof, the two correctness theorems for the each of
the two components at level 1 are combined using the rules ∧-mono and ∃-ext

to obtain the correctness theorem for the entire design which is shown in step 4.
The abstract specification ‘∃z. S1∧S2’ in this theorem is just the design model at
used at level 0, and the desired correctness theorem therefore follows immediately
by the transitivity property of satisfaction expressed by the rule sat-trans. For a
hierarchical design of more than two levels, the sequence of deductions illustrated
by this example is applied recursively.

4.1.8.3 Hierarchical Verification and Validity Conditions

The rules given in the previous section are somewhat over-simplified, in that
they do not take validity conditions into account. In a hierarchical proof where
validity conditions are involved, a more complex process of reasoning is required
to combine the correctness theorems obtained at each level in the hierarchy. In
particular, one must show that any validity conditions which arise at intermediate
levels in the hierarchy are satisfied, since the final result must be a correctness
statement that relates a fully concrete design model to the top-level abstract
specification. In general, this may involve strengthening the intermediate abstract
specifications in the hierarchy. This in turn may entail strengthening the validity
conditions at lower levels of the hierarchy.

Rules for combining correctness results which are similar to those discussed in
the previous section but which also take validity conditions into account can be
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• sat-trans:
� C1 ⊃ M1 sat

F
(C2 ∧M2) � C2 ⊃ M2 sat

G
S

� C ⊃ M2 sat
G◦F

S

• ∧-mono:
� C1 ⊃ M1 sat

F
S1 � C2 ⊃ M2 sat

F
S2

� (C1 ∧ C2) ⊃ (M1 ∧M2) sat
F

(S1 ∧ S2)

• ∃-ext:
� C ⊃ M sat

F
S

� C ⊃ (∃c. M) sat
F

(∃a. S)
[c not free in C]

Figure 4.4: Extended Meta-theorems about Satisfaction.

formulated in a number of different ways. One possible formulation consists of
the three extended meta-theorems about satisfaction shown in Figure 4.4 above.

The most straightforward of these rules is the extended ∧-mono rule. This
rule states that the validity condition for a composite design is just the logical
conjunction of the validity conditions for its components. The extended sat-trans

rule reflects the fact that intermediate validity conditions must be satisfied in
order to compose the correctness results for two adjacent levels of a hierarchical
proof. Here, the abstract specification ‘C2 ∧ M2’ at the lower level consists of
both the model and the validity condition for the higher level. In the ∃-ext rule,
the validity condition C on the derived correctness theorem is the same as the
validity condition for the given correctness theorem. But the rule can be applied
only when the existentially quantified variable c does not occur in the condition
C. That is, the validity condition may not directly constrain the value of the wire
which is to be hidden.

In addition to the three extended meta-theorems shown in Figure 4.4, the
following vcond rule is needed:

• vcond:
� (C1 ∧M) ⊃ C2 � C2 ⊃ M sat

F
S

� C1 ⊃ M sat
F

S

This rule allows a strong validity condition C2 to be replaced by a weaker validity
condition C1 when it is known that the constraint imposed by C1 and the model
M is sufficient to ensure that C2 is satisfied. This rule is needed in order to
simplify validity conditions that arise in connection with the three rules shown
in Figure 4.4. For example, the vcond rule may be needed to eliminate a free
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variable c in the validity condition of a correctness theorem obtained using the
∧-mono rule, so that the ∃-ext theorem can subsequently be applied.

An example proof which illustrates the process of reasoning represented by
these extended meta-theorems about satisfaction is given in Section 6.3.7 of the
case study discussed in Chapter 6.

4.2 Abstraction between Models

The type of abstraction discussed in preceding sections of this chapter is called
abstraction ‘within’ a model because it takes place within the context of a fixed
choice of formal specifications for the constituent parts of a device. A formal
specification is written for each different kind of primitive component used in
the design of the device to be verified. A design model is then constructed by
applying the operations of composition and hiding to instances of these primitives,
and a correctness statement is proved which relates this design model to a more
abstract specification of required behaviour. This correctness statement expresses
relationship of abstraction between the design model for the device in question
and an appropriate abstract specification of required behaviour.

In this section, a brief overview is given of the formalization in logic of a
different type of abstraction relationship—abstraction between models. Here, the
concern is not with expressing the correctness of an individual design, but with the
relationship between two formal models for the primitive hardware components
from which designs are built. In Chapter 7, a detailed example is given to show
how this second type of abstraction relationship can be expressed formally in
higher order logic. Only a brief overview of the basic idea of abstraction between
models is therefore given here.

In logic, a model of hardware behaviour—in the sense of a formal basis for
describing the behaviour of any particular hardware device—is just a collection of
logical terms that describe the primitive components from which hardware designs
are constructed. An example is the simple model of CMOS transistor behaviour
defined in Chapter 3, consisting of the primitive specifications for power, ground,
and N-type and P-type transistors which were defined in Section 3.4.2. The idea
of a relationship of abstraction between two such models, both of which describe
the same collection of primitive hardware components, can be expressed formally
in logic as an assertion about the correctness results that can be proved about
individual design descriptions constructed using the two models.

Suppose, for example, that Pc={Pc
1, . . . , Pc

n} and Pa={Pa
1, . . . , Pa

n} are two sets
of formal specifications for the primitive components used in hardware designs,
i.e. two models of hardware behaviour in general. Informally, the model Pa is
an abstraction of the model Pc if the primitive specifications that constitute Pa

are, in some sense, abstractions or simplifications of the primitive specifications
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that constitute Pc. In this case, the abstract model of hardware behaviour Pa

will capture only some of the aspects of device behaviour which are modelled
by the more detailed primitives Pa. This means that there will be correctness
statements—i.e. assertions about the behaviour of particular hardware designs—
which can be formulated using the detailed primitives Pc, but which cannot be
expressed the more abstract primitives Pa. A formalization of the abstraction
relationship between these two models of hardware behaviour must therefore be
based on correctness statements which can be expressed in both models.

Furthermore, because the abstract primitives Pa are simpler than the detailed
primitives Pc, they are also likely to be less ‘accurate’ formal descriptions of the
way actual primitive devices behave. In general, inaccuracy in a formal model
of hardware behaviour is manifested by the ability to prove the correctness of
hardware devices with respect to specifications that do not reflect the actual
behaviour of the physical device itself. This means that there will be correctness
theorems which can be proved in the abstract model of hardware behaviour given
by the abstract primitives Pa, but which cannot be proved using the more detailed
model given by the detailed primitives Pc. That is, Pc will be a more accurate
formal model of hardware than Pa. For some devices, it may be possible to prove
correctness results in both models. But there will also be circuit designs which
can be proved correct in the abstract model Pa, but which, according to the
more detailed model Pc, are in fact incorrect. A formal characterization of the
abstraction relationship between these two models reflects this difference between
the relative accuracy of the two models of hardware behaviour.

These ideas can be expressed formally in higher order logic as follows. Let the
term ‘Ma[a1, . . . , an]’ be an arbitrary design model constructed from the abstract
primitive specifications in the set Pa. The most general form of a correctness
theorem for such a model is a behavioural abstraction of the form:

1: Ma[a1, . . . , an] sat
I

S[a1, . . . , an]

since any correctness statement for the model Ma[a1, . . . , an] which is based on
data or temporal abstraction can be expressed by logical implication. Suppose
that the term Mc[c1, . . . , cn] is a formal model of the same design, constructed
using the detailed primitive specifications in the set Pc. A proposition which
asserts the correctness of this more detailed design model with respect to the
same specification as used in the behavioural abstraction shown above will have
the general form:

2: � C[c1, . . . , cn] ⊃ Mc[c1, . . . , cn] sat
F

S[a1, . . . , an]

where C[c1, . . . , cn] and F are an appropriate validity condition and an appropriate
abstraction function, respectively. An abstraction function is needed here because
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the model in this correctness statement is more detailed than the model in the
behavioural abstraction shown above. A validity condition may be necessary for
the same reason.

These two propositions express the same (or, at least, equivalent) correctness
assertion about the design of a particular device modelled using the two sets of
primitive specifications Pc and Pa. Proposition 1 asserts the correctness of the
design modelled using the abstract primitives Pa with respect to the specification
S[a1, . . . , an]. Proposition 2 is a translation of this correctness assertion into the
‘language’ of the more detailed formal model of hardware behaviour given by the
primitives Pc. For clarity, the two correctness statements can be abbreviated by:

1: Ma sat
I

S and 2: C ⊃ Mc sat
F

S

Given this translation from an arbitrary correctness assertion formulated in the
abstract model of hardware behaviour Pc into an equivalent correctness assertion
expressed in the more detailed model Pc, the abstraction relationship between
these two models can be characterized formally as follows. The idea that the
Pa is an abstraction of Pc can be expressed formally by the assertion that any
correctness statement which is (1) expressible in both models, and (2) provable
in the detailed model of hardware behaviour given by Pc, is also provable in the
more abstract model of hardware behaviour given by Pa. That is, for an arbitrary
design modelled by Mc and Ma and an arbitrary specification S:

if � C ⊃ Mc sat
F

S then � Ma sat
I

S

The idea that the abstract model Pa may be less accurate than the detailed model
Pc can be expressed formally by the assertion that the converse implication holds
for only some designs. That is, for only some pairs of design models Mc and Ma

will the converse implication:

if � Ma sat
I

S then � C ⊃ Mc sat
F

S

hold for all specifications S. For these designs, every correctness result obtained
using the abstract (i.e. simple) formal model of behaviour also provable using the
more detailed (but also more complex) model. Proving this converse implication
shows that if only certain correctness assertions are of interest, then the abstract
model of hardware behaviour given by the abstract primitives Pa is a sound basis
for reasoning about the class of designs for which this implication holds.

This section has given only a general overview of how the idea of an abstraction
relationship between two models of hardware can be expressed formally in logic.
A detailed example is given in Chapter 7.
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4.3 Related Work

The idea of proving correctness with respect to abstract specifications is well
known in software verification, and many of the ideas presented in this chapter
have analogues in formal methods for reasoning about program correctness. In
particular, the idea of using abstraction functions to relate formal specifications
at two different levels of abstraction was inspired by the approach to reason-
ing about the correctness of software data representations originally proposed by
Hoare in [50].

The idea of expressing the correctness of hardware designs by theorems similar
in form to those discussed in Section 4.1 is reasonably well-known. Correctness
theorems for particular hardware devices based on all three types of abstraction
relationship discussed in Section 4.1 are presented in a number of papers in the
hardware verification literature (expressed, perhaps, in a slightly different form).
The aim of this chapter, however, was not to give particular examples of abstrac-
tion, but to provide a motivated and general account of some basic techniques
for expressing certain abstraction relationships in higher order logic. Again, the
basic idea of hierarchical verification is, of course, not new. But the general rules
for putting hierarchical proofs together presented in Sections 4.1.8.2 and 4.1.8.3
have not been stated explicitly in previous work.

Interpretation of Theories in First Order Logic

One other researcher who has concentrated on the role of abstraction in hardware
verification is Hans Eveking, whose basic approach to verification was described in
Chapter 3. In an early work [23], Eveking discusses three abstraction mechanisms
for suppressing detail in formal descriptions of hardware behaviour. The first of
these is a form of ‘structural’ abstraction, in which the values on internal wires
are hidden from abstract specifications. The second abstraction mechanism uses
CONLAN assertions—logical assumptions on which proofs are based—to express
behavioural abstraction. A form of temporal abstraction is provided by the third
of Eveking’s abstraction mechanisms. He calls this mechanism ‘partially defined
behaviour in the time-dimension’ and gives an example in which he abstracts
from a timing level flip flop description to a register transfer level description of
a conditional transfer device.

In [24], Eveking shows how abstraction can be expressed by interpreting one
first order theory in another. An interpretation of a theory T2 in a theory T1 is
a syntactic translation of the axioms of T2 such that each translated axiom is a
provable theorem of T1. In [24], Eveking shows how this concept can be used to
express the correctness of a simple clocked synchronous device with respect to a
temporally abstract specification.

75



Chapter 5

Data Abstraction

To make effective use of data abstraction in higher order logic, it is generally
necessary to define special-purpose logical types for use in both models of hardware
designs and formal specifications of required behaviour, since the formal properties
which these types are required to have will depend on the kind of behaviour being
specified, on the level of abstraction at which the devices are described, and on
how accurate the specifications are intended to be.

This means that no fixed collection of logical types is likely to be an adequate
basis for specifying all devices. The basic logical types bool and num→bool, for
example, are sufficient for specifying hardware behaviour at the level of abstraction
where the devices used are flip flops and combinational logic gates. But at the
level of abstraction where the primitive components are transistors, an accurate
model of behaviour has to account for more kinds of values on the wires of a
device than can be represented by the boolean truth-values T and F. It may
be necessary to represent electrical signals of several different strengths, or to
represent ‘undefined’ or ‘floating’ values. The types bool and num→bool are also
insufficient for specifications at the register-transfer level of abstraction, where
it is often necessary to specify behaviour not in terms of the values on single
wires but in terms of vectors of bits and arithmetical operations on fixed-width
binary words. And at the architecture level, concise specifications may require
comparatively complex abstract data types, such as stacks and queues.

In the formulation of higher order logic used here, a new type can be introduced
into the logic only by defining it using the type definition mechanism described in
Chapter 2. An appropriate representation must be found for the values of the new
type, and an abstract characterization for the new type must be derived from its
definition. This can involve a significant amount of formal proof. To facilitate the
introduction of special-purpose logical types for describing hardware at various
different levels of data abstraction, a method was developed to automate the
formal definitions of certain types in the HOL system. This chapter provides an
overview of the class of types definable by this method, and gives two examples
to show how these types can be used to support formal reasoning about hardware
behaviour where data abstraction is involved.
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5.1 Defining Concrete Types in Logic

Many of the sorts of values which arise naturally in specifications of hardware
behaviour—especially at lower levels of abstraction—can be represented by the
values of what are commonly called ‘concrete data types’. These are types whose
values are generated by a set of constructors (i.e. functions) which yield concrete
representations for these values. Examples include types which denote finite sets
of atomic values (enumerated types), types which denote sets of structured values
(record types) or finite disjoint unions of structured values (variant records), and
types which denote sets of recursive data structures (recursive types).

To make types of this kind readily available in logic, a method was developed
for defining an arbitrary, possibly recursive, concrete type automatically in the
HOL system. This method is based on the two-step process for introducing a
new logical type explained in Section 2.1.7.2. First, the required type is defined
formally using the primitive rule for type definitions described in Section 2.1.7.1.
An abstract ‘axiomatization’ for the newly-defined type is then derived by formal
proof from its definition. This consists of a single theorem of higher order logic
which provides a complete and abstract characterization of the newly-defined type,
and forms the basis for all further proofs about it.

Full details of the logical basis for this mechanization of type definitions in
HOL are given in Appendix A. The sections that follow provide an overview of
the class of types definable by this method, the form of the abstract axioms1

used to characterize these types in logic, and some fundamental properties which
follow from these axioms. In Section 5.1.1, a preliminary example is provided to
illustrate the general approach. Concrete types in general are then discussed in
Section 5.1.2. A brief account is then given in Section 5.1.3 of the mechanization
in the HOL system of the method by which these types are defined.

5.1.1 An Example: A Type of Lists

A simple example of a recursive concrete type is the type of finite, homogeneous
lists. This type can be described informally2 by the equation shown below.

list :: = Nil | Cons α list (5.1)

This equation is an informal recursive ‘definition’ of the set of all finite-length lists
of values of type α. The symbols Nil and Cons are the usual constructors by which
list values are formed. The symbol Nil stands for the empty list, and the symbol

1In referring to these theorems as ‘axioms’, quotation marks will henceforth be omitted—it
being understood that they are not axioms , in the sense of having been postulated without proof,
but are derived abstract characterizations of the corresponding defined logical types.

2Here, and in what follows, informally means not in the language of higher order logic.
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Cons stands for the operation which constructs a list of length n+1 by adding
a value of type α onto the front of a list of length n. The set of values defined
informally by this recursive equation consists of the smallest set that contains the
list denoted by Nil and is closed under the list-forming operation denoted by Cons.

5.1.1.1 Characterizing Lists in Logic

To make the set of values described informally by the recursive equation shown
above into a logical type, a definition for a non-primitive type expression ‘(α)list’
must be introduced formally by means of the type definition mechanism explained
in Chapter 3. The details of this definition will not be discussed here (for this, see
Appendix A) but once the type (α)list has been defined, its definition can be used
to prove the abstract characterization of lists consisting of the single theorem of
higher order logic shown below.

� ∀e f. ∃!fn. (fn Nil = e) ∧ (∀h t. fn(Cons h t) = f (fn t) h t) (5.2)

This theorem, which captures the essential properties of the defined type (α)list
and therefore amounts to an axiomatization of finite-length lists, is analogous to
the primitive recursion theorem for natural numbers discussed in Section 2.1.6.1.
It asserts that a function fn:(α)list→β can be defined uniquely by ‘primitive
recursion’ on lists—i.e. by giving a value e to define fn Nil, and a function f to
define fn(Cons h t) in terms of (fn t), h, and t.

5.1.1.2 Theorems about Lists

All the usual properties of lists follow from theorem (5.2) above. In particular, it is
possible to derive from this abstract characterization of lists the three fundamental
properties of lists shown below.

� ∀h t.¬(Nil = Cons h t)
� ∀h1 h2 t1 t2. (Cons h1 t1 = Cons h2 t2) ⊃ ((h1 = h2) ∧ (t1 = t2))
� ∀P. (P Nil ∧ ∀t. P t ⊃ ∀h. P (Cons h t)) ⊃ ∀l. P l

These three theorems about lists are analogous to Peano’s postulates for the
natural numbers. The first two theorems state that Nil and Cons yield distinct
values of type (α)list and that Cons is one-to-one. The third theorem states the
validity of structural induction on lists, and provides the formal means for proving
properties of lists by structural induction. It also follows from this induction
theorem that every value of type (α)list is either equal to Nil, or is constructed
from Nil by finitely many applications of the function Cons.
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5.1.1.3 Recursive Function Definitions on Lists

In addition to the three basic properties of lists discussed above, defining equations
for primitive recursive functions on lists can also be derived from theorem (5.2).
As was discussed in Chapter 2, function constants that satisfy recursive equations
are not directly definable in higher order logic by the primitive rule for constant
definitions. To define a constant which denotes a recursive function—indeed to
‘obtain’ such a function, whether denoted by a constant or not—one must prove
that the desired recursive equation is in fact satisfiable. It follows immediately
from theorem (5.2), however, that any primitive recursive function definition on
lists can be satisfied by a (unique) total function. This provides a direct means for
constructing such functions in logic, and for justifying the introduction of function
constants which denote them.

For example, given theorem (5.2) it is straightforward to define a constant which
denotes a primitive recursive length function on lists. Specializing the variables e

and f in a suitably type-instantiated version of theorem (5.2) so that e = 0 and
f = λx y x. x+1 yields (after some simplification) the theorem shown below.

� ∃!fn. (fn Nil = 0) ∧ (∀h t. fn(Cons h t) = (fn t)+1)

This asserts the (unique) existence of a function which satisfies the usual primitive
recursive definition of the length of a list. Given this theorem, a constant ‘Length’
can then be introduced to denote the function whose existence it asserts. This
can be done formally by an appropriate non-recursive definition involving the
primitive constant ε, as was explained in Section 2.1.6. The result is a pair of
theorems, which constitute the usual primitive recursive ‘definition’ of the length
of a list:

� Length Nil = 0
� Length (Cons h t) = (Length t) + 1

Any function constant which satisfies a primitive recursive definition on lists
can be defined formally in a similar way—i.e. by first specializing the variables
e and f in theorem (5.2) to obtain a theorem which asserts the existence of the
desired function, and then introducing a constant to name this function by a
non-recursive definition involving ε. This method for defining primitive recursive
functions on lists is completely analogous to the method for justifying primitive
recursive definitions on the natural numbers which was discussed in Section 2.3.

5.1.2 Concrete Types in General

The type of lists discussed in the preceding sections is a simple instance of the
general class of concrete types which can be defined automatically using the HOL
implementation of the method explained in Appendix A. Every type which can
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be defined by this method can be described ‘informally’ by an equation which is
similar in form to the equation (5.1) for lists shown on page 77. The general form
of such an equation is shown below.

rty :: = C1 ty . . . ty | · · · | Cn ty . . . ty (5.3)

An equation of this kind is an informal ‘definition’ of a logical type rty with n

different constructors: C1, C2, . . . , Cn. The symbol rty on the left-hand side of
the equation is the name of the type (or type operator) being defined. Each type
ty which occurs on the right-hand side of the equation must be either a type
expression already present in the logic or the name rty itself. In any equation of
this kind, at least one of the expressions Ci ty . . . ty on the right-hand side of the
equation must contain ty’s which are all existing types of the logic, rather than
the type rty being defined.

An equation of this kind is similar to a ‘datatype’ declaration in Standard
ML [46]. It simply states the names of the constructors for the type it describes
and the types of their arguments. When rty occurs somewhere among the ty’s
on the right-hand side of the equation shown above, the type rty denotes a set
of recursively-defined structures (essentially a set of trees). When the symbol rty

occurs nowhere among the ty’s on the right-hand side of the equation, the type
described by the equation denotes a disjoint union of n different kinds of ‘records’,
each one of which is represented by one of the constructors C1, C2, . . . , Cn.

5.1.2.1 Characterizing Concrete Types in Logic

Any type described informally by an equation of the form shown above can be
characterized formally in logic by a single theorem of the form:

� ∀f1 f2 . . . fn. ∃!fn:rty→α.
∀x1 . . . xi. fn(C1 x1 . . . xi) = f1 (fn x1) . . . (fn xi) x1 . . . xi ∧
∀x1 . . . xj. fn(C2 x1 . . . xj) = f2 (fn x1) . . . (fn xj) x1 . . . xj ∧

... (5.4)

∀x1 . . . xk. fn(Cn x1 . . . xk) = fn (fn x1) . . . (fn xk) x1 . . . xk

where the right-hand sides of the equations include recursive applications ‘fn x’
only for variables x of type rty. (See, for example, theorem (5.2) above.) A
theorem of this form asserts the unique existence of primitive recursive functions
defined by cases on the constructors C1, C2, . . . , Cn. This is a slight extension of
the initiality property by which structures of this kind are characterized in the
‘initial algebra’ approach to specifying abstract data types [28]. This property
provides an abstract characterization of the type rty which is both succinct and
complete, in the sense that it completely determines the structure of the values
of rty up to isomorphism.
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A major practical advantage of this characterization is its uniform treatment of
all concrete types. Every type which can be described informally by an equation
of the kind given by (5.3) is characterized by a single theorem of the same general
form. This uniformity is the basis for the efficient automation in HOL of the
process of defining these types and proving abstract axioms for them. Because
the same form of derived axiomatization is used for every type, the axiom for any
particular type can be inferred relatively easily from a pre-proved theorem stating
that the property given by (5.4) holds for all concrete types. This is explained in
more detail in Appendix A.

5.1.2.2 Theorems about Concrete Types

A further advantage of characterizing concrete types by theorems of the kind
shown above is that many useful standard properties follow from these theorems
in a uniform way, with relatively short formal proofs.

For example, from a theorem of the form given by (5.4) it is straightforward
to prove an alternative characterization of the type rty which is analogous to the
conventional axiomatization of the natural numbers given by Peano’s postulates.
For the type rty described by theorem-scheme (5.4), this characterization consists
of the following fundamental properties: (1) the constructors C1, C2, . . . , Cn yield
distinct values of type rty; (2) each constructor which is not a constant is one-
to-one; and (3) the principle of structural induction holds for rty. The three
theorems about lists discussed in Section 5.1.1.2 show how these properties are
stated formally for the type (α)list. Similar theorems hold for any concrete type
which can be described by an equation of the general form given by equation (5.3).

5.1.2.3 Recursive Function Definitions on Concrete Types

Another important property of the characterization of rty given by theorem-
scheme (5.4) is that a theorem of this form provides a formal means for defining
a wide class of useful functions on rty. When rty is a recursive type, a theorem
of the form given by (5.4) can be used to prove the existence of any primitive
recursive function on rty and to define constants which denote such functions.
This is illustrated by the method for defining primitive recursive functions on
lists explained in Section 5.1.1.3. Primitive recursive definitions of functions on
any concrete recursive type can be justified by a process of reasoning which is
similar to that illustrated by the example given in this section. When rty is a
non-recursive type, the characterization given by the theorem-scheme (5.4) also
provides a means for defining functions. In this case, the characterizing theorem
for rty states the unique existence of functions defined by cases on its constructors,
and this provides a simple and direct way of constructing particular instances of
these functions. This is illustrated by an example given in Section 5.2.4.3.
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5.1.3 Mechanization in HOL

To provide mechanized support for reasoning about concrete types of the kind
described in the preceding sections, a collection of automatic theorem-proving
tools was implemented in the HOL system. These tools were used in the HOL
proofs of the theorems about hardware discussed in later sections of this chapter.

The main component of these tools is an ML procedure which carries out all the
logical inferences which are necessary to define an arbitrary concrete type in higher
order logic and to prove an abstract axiomatization for it. The user input to this
programmed proof rule is an ‘informal’ specification of the logical type which is to
be defined, in the form of an equation of the kind discussed above in Section 5.1.2.
The output is an abstract characterization of the required logical type, in the form
of an instance of theorem-scheme (5.4). This theorem is proved automatically, by
purely logical inference, from an automatically-constructed formal definition of
the particular concrete type requested by the user.

The theorem-proving tools implemented in HOL also include procedures for
proving the ‘standard’ properties of concrete types discussed in Section 5.1.2.2.
A procedure is provided, for example, for proving a structural induction theorem
for any concrete type. The justification of arbitrary primitive recursive definitions
on concrete recursive types was also automated. An example HOL session which
shows how these tools are used in practice is given in Appendix B.

5.2 Example: A Transistor Model

This section shows how a simple instance of the class of concrete types discussed
above can be used to formulate a CMOS transistor model which is more realistic
than the one used in Chapter 3. An example is also given to show how a proof
of correctness involving data abstraction can be done based on a circuit model
defined in terms of this concrete type. The section begins with a discussion of the
inadequacies of the simple transistor model defined in Chapter 3.

5.2.1 Inadequacies of the Switch Model

In the simple transistor model defined in Chapter 3, transistors are modelled
as ideal switches which are controlled by the boolean logic level present on their
gates. For example, the formal specification for an N-type transistor in this model
describes this device as an ideal switch which is closed when its gate has the value
T and open when its gate has the value F. Although this very simple switch model
of transistor behaviour can be useful for some purposes, it clearly fails to capture
many important aspects of the way real CMOS devices behave.

One of these aspects is the fact that the switching behaviour of a real CMOS
transistor does not depend simply on the ‘logic level’ present on its gate, but
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on the magnitude of the gate-to-source voltage Vgs, compared to some non-zero
threshold voltage Vt. This means that a transistor does not behave like an ideal
switch which can transmit both logic levels equally well. An N-type transistor, for
example, transmits logic low well, but transmits logic high poorly. In the switch
model, however, the specifications for N-type and P-type transistors do not reflect
this important aspect of transistor behaviour—transistors are modelled as if they
can transmit both logic levels equally well.

This simplification makes it possible to prove, using the switch model, the
‘correctness’ of certain CMOS circuits which do not work in practice. An example
is the simple device shown below, where the value on the input in is transmitted
through an N-type transistor to drive a capacitative load at the output out:

�
�in out

p � (∃p. Pwr p ∧ Ntran(p, in, out)) = (out = in)

This circuit is simply an N-type transistor with its gate connected directly to
power. In the switch model, this circuit is equivalent to a wire which connects the
output directly to the input. This is stated formally by the correctness theorem
shown on the right, which asserts that a formal model of this circuit, constructed
using the switch model primitives defined in Chapter 3, is logically equivalent to
the specification ‘out = in’. In reality, however, the circuit shown above does
not behave like a direct connection between out and in. If the output drives a
capacitative load, and the input is at logic level high, then the voltage at out will
only reach a level which is the threshold voltage Vt less than VDD. This voltage
may be too low to drive the gate of another transistor, so it must be treated as
distinct from the logic level high. The switch model correctness statement shown
above is therefore misleading, for it asserts that an N-type transistor with its gate
wired to VDD provides a completely transparent connection between out and in.

5.2.2 A Three-valued Logical Type

The fundamental problem with the switch model is that it specifies the behaviour
of transistors using a logical type with only two values. In this very simple model,
each wire in a circuit must have either the value high (modelled by T) or the value
low (modelled by F). The physical phenomenon of a ‘degraded’ logic level—a logic
level which is distinct from both these values, and which cannot be used to drive
the gate of a transistor—is not even a possibility in this model.

To overcome this problem, a type with more than two values is needed. The
simplest solution is to use a defined logical type with exactly three distinct values.
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Using the informal notation introduced in Section 5.1.2, an appropriate logical
type ‘tri’ is defined by the equation shown below.

tri :: = Hi | Lo | X

This informal definition of the type tri states that it denotes a set which contains
exactly three distinct values—namely Hi, Lo, and X. The corresponding abstract
axiomatization for this three-valued type consists of the following single theorem
of higher order logic.

� ∀a b c. ∃!fn:tri→α. (fn Hi = a) ∧ (fn Lo = b) ∧ (fn X = c) (5.5)

This theorem—which can be proved automatically by the HOL mechanization
of type definitions discussed in Section 5.1.3—provides a complete and abstract
characterization of the defined logical type tri. This characterization takes the
form of a degenerate ‘primitive recursion’ theorem for the concrete type tri. Since
tri is an enumerated type with no recursive constructors, the theorem simply
states that any function defined by cases on the three constants Hi, Lo, and X

exists and is uniquely defined.
It follows immediately from this theorem that the type constant tri denotes a

set containing exactly three values: the fact that fn always exists implies that the
constants Hi, Lo, and X denote distinct values of type tri, and the fact that fn is
uniquely determined by its values for Hi, Lo, and X implies that these constants
denote the only values of type tri. These two properties of the type tri are stated
formally by the theorems shown below.

� ¬(Hi = X) ∧ ¬(Lo = X) ∧ ¬(Hi = Lo) (5.6)

� ∀P. (P Hi ∧ P Lo ∧ P X) ⊃ ∀t:tri. P t (5.7)

These theorems correspond to two of the ‘standard’ properties of concrete types
discussed in Section 5.1.2.2. The first theorem is the statement for the particular
type tri of the general property that the constructors of a concrete type yield
distinct values. The second theorem is a ‘degenerate’ example of the structural
induction theorem which holds of every concrete type. Both these theorems can
be proved automatically by the HOL tools mentioned in Section 5.1.3.

5.2.3 A Threshold Switching Model3

Once the type tri has been defined—and the properties discussed above have been
proved—this three-valued logical type can be used as the basis for a transistor
model which at least partly captures the threshold switching behaviour of real

3The transistor model defined in this section is based on a suggestion made by M. Fourman at
the workshop on Theoretical Aspects of VLSI Architectures at the University of Leeds in 1986.
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�
s d

g
� Ptran(g, s, d) = ((g = Lo) ⊃ ((d = Hi) = (s = Hi)))

s d

g
� Ntran(g, s, d) = ((g = Hi) ⊃ ((d = Lo) = (s = Lo)))

g
� Gnd g = (g = Lo)

p

�
� Pwr p = (p = Hi)

Figure 5.1: A Threshold Switching Model.

CMOS devices. The basic idea of this model is to represent the strongly-driven
logic levels high and low by the values Hi and Lo, and to represent all degraded
logic levels, which cannot reliably drive the gates of transistors, by the value X.

The formal specifications shown in Figure 5.1 constitute a threshold switching
model of CMOS transistor behaviour based on this representation of logic levels.
The specifications Pwr p and Gnd g model VDD and VSS as constant sources of
Hi and Lo respectively. The specifications for N-type and P-type transistors are
intended to reflect the fact that these devices do not transmit both logic levels
equally well. For example, it follows from the specification for an N-type transistor
Ntran(g, s, d) that when the gate g has the value Hi and the source s has the value
Lo (i.e. when the gate-to-source voltage is large) then the drain d must also have
value Lo. This reflects the fact that the logic level modelled by Lo is transmitted
unchanged through an N-type transistor. But when both g and s have the value
Hi, then the value of d may be either Hi or X. The specification ‘Ntran(g, s, d)’ is
satisfied in both cases. This reflects the fact that the value Hi can be degraded
to X when it is transmitted through an N-type transistor. The specification for a
P-type transistor is similar. In this case, when g and s are both Lo the value of
d can be either Lo or X, reflecting the fact that the logic level modelled by Lo is
only imperfectly transmitted through a P-type transistor.

5.2.4 An Example of Data Abstraction

This section shows how the CMOS inverter proof which was done in Chapter 3
using the switch model of transistors can be redone using the more accurate
threshold switching model. The aim of this section is to provide a simple example
which illustrates the approach to data abstraction introduced in Chapter 4. Here,
data abstraction is used to relate a model defined in terms of the three-valued
type tri to a specification written in terms of the primitive type bool.
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5.2.4.1 The Specification

One of the simplest possible formal specifications for a CMOS inverter is the one
used in the correctness proof given in Chapter 3:

� Not(i, o) = (o = ¬i)

Here, the values on the external wires of the device are modelled by booleans, and
the variables i and o have logical type bool. This simple specification will also be
used in the threshold model proof given here.

5.2.4.2 The Model

Given the threshold switching primitives defined above in Section 5.2.3, a formal
model of an inverter can be defined as shown below.

� Inv(i:tri, o:tri) = ∃g p. Pwr p ∧ Gnd g ∧ Ntran(i, g, o) ∧ Ptran(i, p, o)

The structure of this definition is identical to the one given in Chapter 2, where
the switch model primitives are used. In the model defined here, however, the
terms Pwr p, Gnd g, Ntran(i, g, o) and Ptran(i, p, o) are instances of the threshold
switching primitives shown in Figure 5.1, rather than the similarly-named switch
model primitives defined in Chapter 3.

5.2.4.3 Defining the Data Abstraction Function

To formulate a correctness statement which relates the model Inv(i, o) to the more
abstract specification Not(i, o), a data abstraction function is needed to relate
values of type tri in the model to values of type bool in the specification. In the
model, the two strongly-driven logic levels high and low are represented by the
two values Hi and Lo. In the specification, these two logic levels correspond to
the two boolean values T and F. The required data abstraction function must
therefore map the value Hi to T and the value Lo to F.

Given theorem (5.5), it is trivial to define a constant ‘abs’ which denotes the
required function. Taking an instance of this theorem in which the type bool

is substituted for the type variable α, and specializing the universally-quantified
variables a and b to T and F respectively, yields the following theorem.

� ∀c. ∃!fn. (fn Hi = T) ∧ (fn Lo = F) ∧ (fn X = c)

This theorem asserts the unique existence of a function which has at least the
properties which are needed for an appropriate data abstraction function from tri
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to bool. From this, one can immediately infer the existence of a function which
has precisely the desired properties:

� ∃fn. (fn Hi = T) ∧ (fn Lo = F)

Using the technique for defining constants explained in Section 2.1.5, a constant
‘abs’ can be introduced to denote the function whose existence is guaranteed by
the theorem shown above. The result is the following theorem about abs:

� (abs Hi = T) ∧ (abs Lo = F)

This theorem states that the function abs maps the value Hi to T and the value
Lo to F, as required. A fully formal proof of this theorem (the details of which
are not relevant here) can be done completely automatically in the HOL system
using the mechanized theorem-proving tools mentioned in Section 5.1.3.

5.2.4.4 A Note about the Definition of abs

There is one important formal consequence of the definition of abs given above
which may not be immediately obvious. In higher order logic, all functions of
type tri→bool are total functions, and the data abstraction function abs:tri→bool

therefore yields some boolean value when applied to X. But with the definition
given above, the constant abs is defined so that it is impossible to prove which
boolean value is denoted by the application ‘abs X’. That is, neither ‘abs X = T’
nor ‘abs X = F’ is a formal theorem of the logic. One of these two equations must
be ‘true’, but neither of them can be proved to be true.

This is a consequence of the way in which the constant abs is defined using the
primitive constant ε. The underlying definition for abs—which was not shown the
derivation given above—is in fact the following equation.

� abs = ε (λfn. (fn Hi = T) ∧ (fn Lo = F))

All that can be proved from this definition is that the constant function abs

satisfies the predicate ‘λfn. (fn Hi = T) ∧ (fn Lo = F)’. That there is a function
which satisfies this predicate was proved in the previous section. It follows from
this, and from the axiom for ε discussed in Section 2.1.5, that abs in fact has the
property expressed by this predicate. That is, it follows that:

� (abs Hi = T) ∧ (abs Lo = F) (5.8)

But this is the only significant fact that can be proved about abs, since the single
axiom for ε shown in Section 2.1.5 is the only property of ε made available by the
primitive basis of the logic. (See Section 2.1.5 for further discussion of this point.)
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The reason that the function abs is defined in this way is to make it impossible
to prove certain misleading correctness statements, which if abs were otherwise
defined would be provable, but which in fact give a false assurance of correctness.
Suppose, for example, that instead of being defined as shown above, the constant
abs is defined such that the formal theorem � abs X = T can be derived from its
definition, in addition to theorem (5.8). If abs is defined in this way, then it is
also possible to prove the theorem shown below.

� (∃p. Pwr p ∧ Ntran(p, in, out)) ⊃ (abs out = abs in)

But this theorem is a ‘correctness’ statement for the simple CMOS device shown
above on page 83. It asserts that an N-type transistor with its gate connected
directly to power can be viewed, at a higher level of data abstraction, as a direct
connection between in and out. This formal theorem—which is exactly the sort
of correctness statement that the threshold model is designed to eliminate—can
be proved only if � abs X = T can be derived from the definition of abs. So when
abs is defined formally as shown in Section 5.2.4.3, this fallacious correctness
statement is not in fact a theorem of higher order logic and cannot be proved.

5.2.4.5 The Proof of Correctness

Once the function abs is defined, it is straightforward to formulate a correctness
statement for the inverter which uses data abstraction to relate the model Inv(i, o)
to the more abstract specification Not(i, o).

This correctness statement must be qualified by a validity condition which
restricts the range of values on the input of the inverter to the strongly-driven
logic levels represented by Hi and Lo. This condition is necessary because the
specification Not(i, o) represents a valid abstract view of an inverter only when
the device is used in an environment in which the input i is always strongly-driven.

A correctness statement which includes the required validity condition can be
formulated in logic as shown below.

� ¬(i = X) ⊃ Inv(i, o) ⊃ Not(abs i, abs o)

This correctness theorem states that if the circuit modelled by Inv(i, o) is used in
an environment in which its input is always strongly driven, then it will behave as
required by the specification Not(i, o). The function abs is used in this theorem to
translate values of type tri in the model to the corresponding values of type bool in
the more abstract specification. The term ‘¬(i = X)’ is a validity condition on the
abstraction relationship between the model and the specification. This condition
limits the correctness statement to the assertion that the inverter circuit will
behave as required only if the value on its input is not ‘X’.

88



The proof of the correctness theorem shown above is simple. The ‘induction’
theorem for tri shown on page 84 allows the proof to be done by case analysis
on the value of input i. When i = X, the validity condition is false, and the
implication is therefore vacuously true. When i = Hi or i = Lo, it follows from
theorem (5.6) that the validity condition ‘¬(i = X)’ is true. The proof therefore
reduces to showing that the implication

Inv(i, o) ⊃ Not(abs i, abs o) (5.9)

holds for i = Hi and i = Lo. By a simple derivation which is similar to the first
few steps in the switch model proof shown on page 41, it follows that:

� Inv(i, o) = ((i = Hi) ⊃ (o = Lo)) ∧ ((i = Lo) ⊃ (o = Hi))

So proving that (5.9) holds for i = Hi and i = Lo reduces to proving:

� Not(abs Hi, abs Lo) and � Not(abs Lo, abs Hi).

These two theorems follow immediately from the definition of Not and the defining
equations for abs given by the theorem � (abs Hi = T) ∧ (abs Lo = F).

5.2.5 Summary and Discussion

This section has shown how a simple instance of the general class of concrete
types introduced earlier in this chapter can be used to formulate a transistor
model which at least partly captures the threshold switching behaviour of real
CMOS devices. By modelling the range of values which can appear on the wires
of a circuit using the special-purpose concrete type tri, instead of the primitive
type bool, this threshold switching model reflects the actual behaviour of CMOS
transistors more accurately than the simpler switch model of transistors defined in
Chapter 3. Design errors are therefore less likely to escape discovery if correctness
proofs are based on the threshold switching model instead of the switch model,
since a circuit which can be proved correct using the switch model may in fact
be incorrect according to the more accurate threshold switching model. The
relationship between these two transistor models is examined in more detail in
Chapter 7.

In addition to providing a straightforward example of data abstraction, the
inverter correctness proof given in this section also illustrates two general aspects
of the approach taken here to formalizing data types and data abstraction in
higher order logic. These are discussed in the two sections that follow.
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5.2.5.1 Data Abstraction without Partial Functions

The first general point illustrated by the inverter example is that in using data
abstraction to formulate correctness it is possible to avoid dealing explicitly with
data abstraction functions which are also, properly speaking, partial functions.

Why such functions might seem to be appropriate, or even necessary, can be
explained by considering how ‘data’ is represented in the example given above.
Two logical types are used in this example to represent data: the three-valued
type tri and the two-valued type bool. In addition to the values Hi and Lo, which
correspond to the two boolean values T and F, the type tri also has a third
value: ‘X’. In circuit models based on the threshold switching primitives, this
value represents the physical phenomenon of a ‘degenerate’ logic level. This kind
of logic level, however, is not represented in a specification of required behaviour
based on the two-valued type bool. It is therefore undesirable (as was noted above
in Section 5.2.4.4) for a data abstraction function from tri to bool to assign a
particular boolean value to X, since the physical phenomenon modelled by X is
not even represented in specifications based on the primitive type bool. It might
seem natural, then, to make the data abstraction function from tri to bool a
partial function—a function which is in fact undefined when applied to X.

The method used in this example to define the function abs, however, avoids
the need to develop a full theory of partial functions in higher order logic. Instead,
abs is a total function, but is defined (using ε) so that nothing definite can be
proved about the boolean value denoted by ‘abs X’. This avoids the possibility of
proving misleading correctness theorems (like the one shown on page 88) which
might otherwise be provable simply because the boolean value given by ‘abs X’
just happens to satisfy the specification of required behaviour which is involved.

Although the data abstraction function abs is a total function, the validity
condition used in the correctness statement for the inverter effectively restricts its
domain to only those values of type tri for which a partial function would in fact
be defined. The net effect is to ‘simulate’ a partial data abstraction function by the
combination of a total function (abs) and a predicate which restricts the range of
this total function (the validity condition). This is a natural (and obvious) general
technique for representing partial functions by total functions. The same method
can be used whenever the representation of data in a model is richer than the
representation of data in a specification, and it is therefore necessary to restrict
the range of a data abstraction function to only a subset of the values that can
arise in the model.

5.2.5.2 Defining Data Abstraction Functions

The method used in this example to define the data abstraction function abs

illustrates one of the pragmatic advantages of the approach taken here to the
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characterization of concrete types in logic. Every concrete type is characterized
by a theorem which asserts the existence of a wide class of functions from the
type itself to any other type. This provides a direct means for defining data
abstraction functions from the concrete types used in models to the higher-level
types used in specifications. In the example given above, the model was based on
the three-valued concrete type tri. This type is characterized by a theorem which
asserts the existence of an arbitrary function defined by cases on Hi, Lo, and X. It
was therefore trivial to define a data abstraction function by cases on Hi and Lo.

This particular example is, of course, very simple. But when more complex
recursive types are used in models of hardware behaviour, the way in which these
types are characterized in logic provides a direct and powerful means for defining
data abstraction functions on the values of these types by primitive recursion.
One application in which such recursive data abstraction functions arise naturally
is in reasoning about hardware devices that operate on vectors of bits—i.e. finite
sequences of binary digits. This application is considered in the next section.

5.3 Example: Bit Vectors

In reasoning about the correctness of devices that operate on vectors of bits, a
commonly used technique is to prove a single correctness theorem for the entire
class of all n-bit wide implementations of such a device [11,34,53,78]. An example
to which this technique has often been applied is the class of all n-bit ripple-carry
binary adders. The recursive structure of this class of devices (an n+1 bit adder
is just a 1-bit adder connected to an n-bit adder) makes it straightforward to
formulate and prove a single correctness theorem which states the correctness of
every n-bit adder. The correctness of a 16-bit adder, or an adder of any other
particular size, can then be inferred directly from this more general correctness
result for the class of all n-bit adders.

An important advantage of this approach is that it makes it unnecessary to
prove a correctness theorem from first principles for any particular instance of an
entire class of related devices. Instead, a single theorem is proved which states
the correctness of every device in the class, and the correctness of any particular
device can then be inferred from this more general result. A further advantage is
that this approach often makes proofs simpler than would otherwise be possible.
For example, a direct proof of correctness for a 16-bit adder is likely to involve
the manipulation of large algebraic expressions which define the relationships that
hold among the individual binary digits in the design.4 But a correctness theorem
for the class of all n-bit adders (which directly implies a correctness theorem for
the 16-bit adder) is much simpler to prove, since it can be proved by induction.

4In fact, this is how the correctness of a 16-bit adder would be proved automatically by Barrow’s
VERIFY system [3], which does not support proofs of correctness for a class of n-bit devices.
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To support this approach to reasoning about a class of n-bit devices in higher
order logic, a logical type is needed to model the set of all bit vectors, or n-bit
binary words. Gordon [34] describes a representation for n-bit words based on
the logical type num→bool, the type of total functions from the natural numbers
to the booleans. Adopting this representation of n-bit words has the advantage
of making it unnecessary to define a special-purpose type to model bit vectors
in logic,5 but there is also a problem with this representation that can lead to
unnecessary complexity in specifying and reasoning about the behaviour of a class
of n-bit devices. This problem, and an alternative representation of bit vectors
based on the concrete type of lists introduced earlier in this chapter, are discussed
in the sections that follow.

In addition to a representation for n-bit words, two other things are needed in
order to support formal reasoning about a class of n-bit devices in higher order
logic. The first is a method for constructing a model for an entire class of n-bit
circuit designs. The second is a method for defining data abstraction functions
on n-bit words. These two requirements are also discussed, in the context of the
representation for bit vectors proposed here, in the sections that follow.

5.3.1 Representing Bit Vectors by num→bool

The type num→bool was proposed as a representation for bit vectors (n-bit words)
in higher order logic by Gordon in [34], and has been used by Camilleri in [10,11]
and adapted for vectors of other values by Joyce in [55] . The idea of this rep-
resentation is that each bit vector is modelled by a function of type num→bool

which maps bit positions (represented by natural numbers) to bits (represented
by booleans).

The n bit-positions in a bit vector of length n are numbered from 0 to n−1.
When a bit vector is interpreted as n-bit binary number, the least significant bit
occurs at position 0, and the most significant bit occurs at position n−1. Following
this convention, a bit vector of length n is represented by a function f :num→bool

that maps each bit position (i.e. each number from 0 to n−1) to a corresponding
boolean value. For example, the sequence of booleans ‘TFTT’, which represents
to the 4-bit binary number ‘1101’, would be modelled by a function f , where
f(0)=T, f(1)=F, f(2)=T, and f(3)=T.

5.3.1.1 Defining Models based on num→bool

Associated with the representation of bit vectors described above is a method6 for
defining a ‘parameterized’ model to represent a class of n-bit designs. This method

5Of course, the type num is not a primitive type of the logic, but it is so fundamental that it
can hardly be considered ‘special-purpose’.

6again, originally due to Gordon [34], and subsequently adopted by others [10,11,55].
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is based on primitive recursion on the natural numbers, and is best explained by
considering an example. A one-bit multiplexer, which selects one of two inputs,
a or b, depending on the value of a control input c, can be modelled in logic by
the term ‘Mux1(c, a, b, out)’, defined as shown below.

Mux1

out

a c b

� Mux1(c, a, b, out) = (out = (c ⇒ a | b))

Each of the free variables a, b, c, and out in this definition has type bool, and
corresponds to a single external wire of the device. The device modelled by the
term defined above is a ‘one-bit’ multiplexer, a device whose inputs and output
are each one bit wide.

An (n+1)-bit multiplexer can be built by placing n+1 instances of this one-bit
multiplexer in parallel, as shown by the diagram in Figure 5.2. To describe the
behaviour of the entire class of n+1 bit wide devices represented by this diagram,
it is necessary to define a model in which composition (‘∧’) is applied to n+1
instances of the specification for a one-bit multiplexer shown above. This is done
by using primitive recursion on the natural numbers to define a model which is
paramaterized by the size n of the multiplexer design it represents. The primitive
recursive defining equations for this model are as follows.

� Mux 0 (c, a, b, out) = Mux1(c, (a 0), (b 0), (out 0))
� Mux (n+1) (c, a, b, out) = Mux1(c, a(n+1), b(n+1), out(n+1)) ∧

Mux n (c, a, b, out)

These equations define a term ‘Mux n (c, a, b, out)’ to model the behaviour of the
(n+1)-bit multiplexer structure shown in Figure 5.2. The variable n in this term
stands for the size of the multiplexer whose behaviour it models. When n is equal
to 0, the device modelled by this term consists of a single one-bit multiplexer.
When n is greater than 0, the device consists of a one-bit multiplexer connected
in parallel to an (n−1)-bit multiplexer.

Mux1 � � � Mux1 Mux1

c

out n out 1 out 0

a n b n a 1 b 1 a 0 b 0

Figure 5.2: An n+1 Bit Multiplexer.
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The variables a, b, and out in this definition range over functions of type
num→bool, and represent the (n+1)-bit words which appear on the inputs and
the output of an (n+1)-bit multiplexer. The recursive definition shown above
simply applies the composition operation ‘∧’ to n+1 instances of the specification
for a one-bit multiplexer. Each of these iterated specifications constrains one of
the n+1 bit-positions numbered from 0 to n in the three bit vectors represented by
the functions a, b and out. When n=3, for example, the model defined recursively
by the equations shown above imposes the following constraint on the values of
the functions c, a, b, and out.

� Mux 3 (c, a, b, out) = ∀n. (n ≤ 3) ⊃ Mux1(c, (a n), (b n), (out n))

This models the effect of placing four instances of a one-bit multiplexer in parallel,
to obtain a multiplexer that operates on 4-bit words. These 4-bit words are
represented by functions of type num→bool, as discussed above.

5.3.1.2 The Problem

The problem with using num→bool to represent bit vectors can be illustrated
by considering the parameterized model Mux n (c, a, b, out) defined above. This
model does not determine a unique representation for the combinations of bit
vectors which can appear on the external wires of the class of devices which it is
intended to describe. This means that certain assertions which one might want to
prove about this class of devices cannot be stated in the most direct and natural
way—as a simple constraint on the variables a, b, c, and out.

Suppose, for example, that n=3, and the control wire c has the value T. One
might want to prove a theorem which states that the 4-bit word on the input a

is, in this case, selected by the multiplexer and appears on the output out:

Mux 3 (T, a, b, out) ⊃ (out = a) (5.10)

This implication, however, is not true. The term ‘Mux 3 (T, a, b, out)’ implies only
that the values out n and a n are equal for 0 ≤ n ≤ 3. It does not imply that
these two values are equal for all n, and therefore that the two functions out and
a are themselves equal. Similarly, the parameterized model Mux n (c, a, b, out)
does not satisfy the following natural formulation of correctness for the class of
all multiplexer designs:

∀n. Mux n (c, a, b, out) ⊃ (out = (c ⇒ a | b))

This correctness statement cannot be proved, since there are functions a, b, and
out which satisfy the term on the left hand side of the implication, but do not
satisfy the term on the right hand side.
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The source of the problem is that each bit vector is not uniquely represented
by a single function of type num→bool. In the implication (5.10) shown above,
for example, the functions a and out are intended to model 4-bit words, and the
term Mux 3 (T, a, b, out) is expected to imply that these 4-bit words are equal.
But there are an infinite number of different representations in num→bool for any
particular 4-bit word, and the constraint imposed by this term on the functions
a and out does not ensure that these functions are equal representations for the
same 4-bit word.

There are several ad hoc solutions to this problem. One of these is to include
the size parameter n in any assertions which are to be proved about the behaviour
of the class of devices modelled by Mux n (c, a, b, out). For example, one could
prove (by induction on n) the following correctness theorem for the class of all
multiplexer designs.

� ∀n. Mux n (c, a, b, out) = ∀i. i ≤ n ⊃ (out i = (c ⇒ a i | b i))

But this means having to retain the size parameter n in future reasoning based
on this correctness statement—for example, in a hierarchical correctness proof in
which the specification in this correctness theorem is used as a model at a higher
level in the hierarchy. Another solution is to strengthen the constraint imposed
by the model on the functions a, b, and out in such a way as to ensure that each
bit vector of fixed length n is represented by a unique function. But a better
solution is to model bit vectors by a more appropriate logical type, in which each
n-bit word already has a unique representation.

5.3.2 A Better Representation

The concrete recursive type of lists discussed earlier in this chapter provides a
representation for bit vectors in which each finite sequence of bits is modelled by
exactly one value. This type was defined informally by the equation:

list :: = Nil | Cons α list

A substitution instance of the polymorphic type defined by this equation is the
type (bool)list, the type of finite-length lists of booleans. Each bit vector can be
represented by a value of this type constructed using the two constants Nil and
Cons. The 4-bit word corresponding to the sequence of boolean values ‘TTFT’,
for example, can be represented by the term shown below.

Cons T (Cons T (Cons F (Cons T Nil)))

Any finite sequence of bits can be represented by a value of type (bool)list in a
similar way. The empty bit vector can be represented by the empty list Nil, and
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a non-empty vector of n boolean values b1, . . . , bn can be represented by the list
‘Cons b1 (Cons b2 . . . (Cons bn Nil) . . .))’.

The advantage of using lists to model bit vectors is that it provides a unique
representation in logic for each possible finite sequence of bits. Each bit vector
corresponds to precisely one list, and every list corresponds to a vector of bits.
This follows from the properties of the defined type (bool)list stated formally by
the three theorems about lists discussed Section 5.1.1.2:

� ∀h t.¬(Nil = Cons h t)
� ∀h1 h2 t1 t2. (Cons h1 t1 = Cons h2 t2) ⊃ ((h1 = h2) ∧ (t1 = t2))
� ∀P. (P Nil ∧ ∀t. P t ⊃ ∀h. P (Cons h t)) ⊃ ∀l. P l

The first two theorems shown above imply that two lists constructed using Nil

and Cons are equal if and only if they represent exactly the same sequence of
values. In other words, two lists are equal if and only if they model the same bit
vector. The third theorem (induction) implies that every value of type (bool)list
is either equal to Nil or is constructed from Nil by finitely many applications of the
function Cons. This means that the set denoted by (bool)list contains only values
that represent vectors of bits: there are no ‘extra’ values. Thus, the concrete
recursive type (bool)list has precisely the logical properties needed to provide an
unambiguous formal representation of bit vectors in higher order logic.

5.3.2.1 Notational Abbreviations for Lists

In the next section, it is shown how a model for a class of n-bit circuit designs can
be based on the representation of bit-vectors introduced above. The metalinguistic
abbreviations shown in the following table will be used in this section to make list
expressions more readable.

Abbreviations for Lists

Term Abbreviation
Nil [ ]
Cons b t [h | t]
Cons b1 (Cons b2 . . . (Cons bn Nil) . . .)) [b1; b2; . . . ; bn]

These abbreviations introduce a notation for lists in higher order logic which is
similar to the syntax for lists in Prolog [15]. The notation introduced by the third
abbreviation in the table shown above, however, does not include ‘nested’ list
expressions like ‘[x; [b; c]]’, which are allowed in Prolog but cannot be represented
in higher order logic by well-typed terms constructed using Nil and Cons.
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5.3.2.2 Defining Models based on (bool)list

When bit vectors are represented by lists, an explicitly-stated size parameter ‘n’
is not needed to define a model of a class of n-bit circuit designs. Models can
instead be defined by primitive recursion on the lists which represent bit vectors
in a circuit design. The size of the design represented by such a model is then
implicitly determined by the values of the variables which represent the n-bit
inputs and outputs of the design itself.

Consider, for example, the multiplexer design shown in the diagram on page 93.
The class of n-bit circuit designs represented by this diagram can be modelled in
logic by the term ‘Mux(c, a, b, out)’ defined by primitive recursion as follows:

� Mux(c, a, b, [ ]) = (a = [ ]) ∧ (b = [ ])

� Mux(c, a, b, [ho | to]) = ∃ha hb ta tb. (a = [ha | ta]) ∧ (b = [hb | tb]) ∧
Mux1(c, ha, hb, ho) ∧Mux(c, ta, tb, to)

These two equations define a model Mux(c, a, b, out) in which the variables a, b,
and out represent bit vectors on the inputs and output of a multiplexer by values
of type (bool)list. The definition is done by primitive recursion on the output list
out, and simply applies the constraint imposed by the specification of a one-bit
multiplexer to the appropriate triples of bits taken from the three lists a, b, and
out. As was discussed in Section 5.1.1.3, the validity of this primitive recursive
definition follows directly from the abstract characterization of (α)list given by
theorem (5.2).

The defining equations shown above are slightly complicated by the fact that
it is necessary to ensure that the resulting model Mux(c, a, b, out) is satisfied only
if the three lists a, b, and out represent bit vectors of the same length. A less
cluttered picture of the essence of this recursive definition is given by the two
theorems shown below.

� Mux(c, [ ], [ ], [ ]) = T

� Mux(c, [ha | ta], [hb | tb], [ho | to]) = Mux1(c, ha, hb, ho) ∧ Mux(c, ta, tb, to)

These two equations, which follow immediately from the more complex primitive
recursive definition given above, define the model Mux(c, a, b, out) for lists a, b,
and out of equal length. The first equation defines a ‘0-bit’ multiplexer. This
does not correspond, of course, to any real physical device; it merely provides a
‘zero’ (namely T) for the binary operation on models of composition (‘∧’). The
second equation is recursive: it defines an (n+1)-bit multiplexer to be a one-bit
multiplexer connected in parallel an with n-bit multiplexer.
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The correctness of the class of multiplexers modelled by Mux(c, a, b, out) can be
stated with respect to a very simple and clear specification of required behaviour.
An explicit size parameter n is not needed in the specification, and correctness
can be stated simply by:

� Mux(c, a, b, out) = (out = (c ⇒ a | b))

This theorem is straightforward to prove by structural induction on the list out,
using the induction theorem for the defined concrete type (α)list.

5.3.2.3 Discussion

The main advantage of using lists to represent bit vectors is that it provides a
direct and unambiguous representation for each finite sequence of bits. When
bit vectors are represented by functions, there are an infinite number of possible
representations for each fixed-length bit vector. And this means that either the
lengths of bit vectors must be mentioned explicitly, by including a size parameter
‘n’ in both models and specifications, or a standard representation must somehow
be chosen for each bit vector, perhaps by strengthening the constraint imposed
by a model. But when bit vectors are modelled by lists, it is not necessary to
impose extra constraints to obtain a unique representation.

The concrete type of lists provides not only a unique representation for each
bit vector, but also a structured one. This allows a model for a regular class
of n-bit circuit designs to be defined recursively on the structure of the lists
which represent data in the design itself, rather than on an explicitly stated size
parameter n. Such a model is implicitly parameterized by size, in the sense that
a model for a device of any fixed size n can be obtained from it by taking its free
variables to be particular lists of length n.

This implicit form of parameterization helps to keep specifications of required
behaviour clear and simple, as was illustrated by the example given above. It
also, however, tends to make the definitions of models more complex than the
definitions of explicitly-parameterized models based on num→bool (this is also
illustrated by the example given above). Furthermore, it is only possible when
there is a straightforward correspondence between structure of a list (or lists) in
the model and the structure (usually linear) of the class of circuit designs which
the model represents.

This is not the case in the example considered in the next section, where a
different technique is developed in order to model (and prove correct) a class of
tree-shaped circuit designs with n-bit inputs. In this example, a design cannot be
‘indexed’ by the size of the bit vector on its input, since the class of devices to be
modelled includes many alternative designs for each possible size of input vector.
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5.3.3 An Example

Many devices can be implemented in hardware by tree-shaped structures. The
example given in this section shows how concrete recursive types can be used to
support formal reasoning about devices of this kind in higher order logic. The
basic idea is to construct a model for a class of tree-structured circuit designs
using a recursive type whose values have the same sort of structure as the devices
themselves. In the example given here, a recursive type of binary trees is used to
define a model for a simple class of n-bit test-for-zero devices constructed using a
tree of 2-input OR-gates.

This example also shows how data abstraction can be used to formulate the
correctness of a class of n-bit circuit designs. The inputs to the devices considered
in this section are n-bit binary words, and these are represented in the model
using the recursive type (bool)list discussed above. A recursively-defined data
abstraction function is used to relate this model to a more abstract specification
of required behaviour in which the value on the input of the device is represented
by a natural number of type num.

5.3.3.1 The Class of Devices

An n-bit test-for-zero device can be implemented in hardware by a tree of 2-input
OR-gates connected to an inverter. Figure 5.3 shows two correct implementations
of this kind for a 6-bit test-for-zero device. Each of these devices takes a 6-bit
binary word on its input wires. The output of each device is a boolean value
which is true if the binary number represented by its 6-bit input is zero, and is
false otherwise.

Both of the circuits shown in Figure 5.3 are functionally correct. The circuit
on the right (circuit b), however, is an optimal tree-shaped implementation for a
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Figure 5.3: Two 6-bit Test-for-zero Circuits.
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6-bit device, in the sense that the length of the path from inputs to output is the
shortest possible, and the gate delay through the device is therefore minimal. On
the other hand, the structure of circuit (a) is that of a ‘degenerate’ binary tree:
it’s structure is essentially that of a linear list. If the criterion by which circuits
are judged is that of minimising delay, this structure is the worst implementation
of a 6-bit test-for-zero device.

In general, the best implementation of an n-bit test-for-zero device using a
binary tree of 2-input OR-gates will be a tree of height � log2 n�, and the worst
implementation will be a degenerate tree of height n−1. The class of all n-bit
devices of the latter kind (i.e. the set containing only the degenerate tree-shaped
circuits) is straightforward to model in logic using the techniques explained in the
previous sections; a model for this class of devices can be constructed by primitive
recursion on the list which represents the n-bit input of the device. But a model
for the class of all n-bit test-for-zero devices cannot be constructed in this way,
since there are many possible OR-gate trees for each input vector size. To define
a model for the class of all n-bit tree-shaped devices, another technique is needed.

5.3.3.2 A Type of Binary Trees

The technique proposed here is to use a concrete recursive type of binary trees to
represent the structure of tree shaped circuits. Using the notation introduced in
Section 5.1.2, this type can be described informally by the following equation.

btree :: = Leaf | Node btree btree

The type btree defined by this equation has two constructors: Leaf:btree, and
Node:btree→btree→btree. The constant Leaf denotes the trivial tree consisting of
a single leaf node. The function Node is used to build binary trees from smaller
binary trees; if t1 and t2 are trees, then the term ‘(Node t1 t2)’ denotes the binary
tree with left subtree t1 and right subtree t2.

The abstract axiomatization for the type informally defined by the equation
shown above is the following theorem.

� ∀e f. ∃!fn. ∀n. (fn Leaf = e) ∧ (∀t1 t2. fn (Node t1 t2) = f (fn t1) (fn t2) t1 t2)

This theorem states the validity of primitive recursive definitions on binary trees,
and can be proved from an automatically-constructed formal type definition for
the type constant btree, using the method explained in Appendix A. The usual
‘standard properties’ of a concrete type (see Section 5.1.2.2) follow from this
abstract characterization of binary trees (e.g. a structural induction theorem). As
was discussed in Section 5.1.2.3, a characterization of binary trees stated in this
form can also be used to justify the introduction of function constants defined by
primitive recursion on trees. These facts are used in the sections that follow.
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5.3.3.3 Defining the Model

Given the recursive type btree defined above, it is straightforward to define a term
‘Tfztree t (in, out)’ which models the class of all tree-shaped implementations of
an n-bit test-for-zero device. The variables in and out in this model represent the
n-bit input and boolean output of the device. The variable t ranges over values
of type btree, and represents the shape of the tree of OR-gates in the device.
The possible values of this variable have the same kind of structure as the trees
of 2-input OR-gates in the class of circuit designs which are represented by this
model, and for each value t of type btree the model Tfztree t (in, out) describes
the tree-shaped test-for-zero device whose internal structure is the same as the
binary tree denoted by t. Since the variable t ranges over the set of all binary
trees, this parameterized model describes the class of all such circuits.

The first step in the formal definition of this model, is to define an infix append
function ‘++’ on lists. This function can be defined in logic by primitive recursion
on lists as follows:

� [ ] ++ l = l

� [h | t] ++ l = [h | (t ++ l)]

These two equations are just the usual recursive definition of the concatenation
of two lists. They can be proved formally from the abstract characterization of
(α)list given by theorem (5.2).

Given this infix function on lists, a model ‘Ortree t (in, o)’ can be defined to
represent the tree of OR-gates in an n-bit test-for-zero device. The variable t

in this model has type btree, and its value determines the shape of the tree of
OR-gates which the model represents. Each internal node in the binary tree t

corresponds to a 2-input OR-gate in the circuit being modelled. Each leaf node
in the tree t corresponds to one of the input wires which make up the bit-vector
input in. The model is defined by primitive recursion on the tree t, as follows:

� Ortree Leaf (in, o) = (in = [o])
� Ortree (Node t1 t2) (in, o) = ∃i1 i2 o1 o2. (in=i1 ++ i2) ∧Or(o1, o2, o) ∧

Ortree t1 (i1, o1) ∧Ortree t2 (i2, o2)

When the tree t is a leaf node, model Ortree t (in, o) simply represents a wire
which connects the input in (which must be a bit-vector of length one) directly to
the output o. In the recursive case, when t is an internal node with two subtrees
t1 and t2, the bit vector modelled by the list in is split into two sublists i1 and i2
by the expression ‘in = i1 ++ i2’. These become the inputs to the two OR-gate
trees constructed recursively from the subtrees t1 and t2. The outputs o1 and o2

of these two recursively constructed OR-gate trees are also the inputs of a single
OR-gate at the root of the entire tree. The output o of this single OR-gate is
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the output of the entire tree of gates. The OR-gate specification given by the
predicate Or is the obvious combinational one, and its definition is omitted.

The model ‘Tfztree t (in, out)’ itself is defined simply by composing the model
defined above and the model of an inverter:

Tfztree t (in, out) = ∃o. Ortree t (in, o) ∧ Not(o, out)

The internal wire represented by o simply connects the tree of OR-gates modelled
by Ortree t (in, o) to the inverter modelled by Not(o, out).

5.3.3.4 Consistency of the Model

The term ‘Tfztree t (in, out)’ defined above models the class of all tree-shaped
test-for-zero devices, both for all possible shapes of the internal tree of OR-gates
and for all possible lengths (except 0) of the input bit-vector in. Before basing
a correctness proof on this model, however, it is worth checking that the model
Tfztree t (in, out) is not inconsistent, and can in fact be satisfied for reasonable
combinations of values for the variables t and in.

To formulate what is meant by ‘reasonable’, a recursive function is needed which
computes the number of leaf nodes in a binary tree. An appropriate function
Leaves:tree→num is straightforward to define by primitive recursion on trees:

� Leaves Leaf = 1
� Leaves (Node t1 t2) = (Leaves t1) + (Leaves t2)

The validity of this definition follows directly from the abstract characterization
of the concrete recursive type btree.

Given this function, and the Length function on lists defined in Section 5.1.1.3,
a theorem can be proved which asserts that the model defined in the previous
section is consistent for all appropriate combinations of in and t:

� ∀t in.¬(in = [ ] ) ⊃ ((∃out. Tfztree t (in, out)) = (Leaves t = Length in))

This theorem states that the model Tfztree t (in, out) can be satisfied by some
value for the variable out exactly when the number of leaves in the tree t matches
the length of the input word in. This means that the model at least represents
some ‘circuit’ for every value of the parameter t. The proof of this theorem can
be done by structural induction on the variable t ranging over trees. As was
mentioned above, the principle of structural induction on trees follows formally
from the abstract characterization of the recursive type btree.
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5.3.3.5 The Specification

An abstract specification of required behaviour for the class of devices modelled
by Tfz t (in, out) is given by the definition shown below:

Tfz

out

in

� Tfz(in, out) = (out = (in = 0))

This specification simply states that the boolean output out is true if and only
if the numerical value present on the input in is equal to zero. The behaviour
stipulated by this specification is a data abstraction of the behaviour given by
the model defined above, and a data abstraction function is therefore needed in
the formulation of correctness for the class of all n-bit test-for-zero devices with
respect to this abstract specification.

5.3.3.6 Defining the Data Abstraction Function

In the model Tfztree t (in, out), the input in is an n-bit binary word, and is
represented by a variable ranging over values of type (bool)list. In the abstract
specification, however, this input is simply represented by a number: the free
variable in in the term ‘Tfz(in, out)’ defined above has type num.

In order to translate the bit vector representation of data in the model to
the numerical representation in the specification, a data abstraction function
Val:(bool)list→num is defined. This function, which maps n-bit binary numbers
to natural numbers, is defined by primitive recursion on lists as follows:

� Val [ ] = 0

� Val [b | l] = (2× (Val l)) + (b ⇒ 1 | 0)

It is assumed in this definition that an n-bit binary word is represented by a
list of booleans which is ordered from least significant bit (at the start of the
list) to most significant bit (at the end of the list).7 The list ‘[T; T; F; T]’, for
example, is assumed to represent the binary number ‘1011’. The equations for
Val shown above compute the natural number corresponding to the unsigned
binary representation given by the sequence of bits in any list of boolean values.
For example, it follows from these two equations that � Val [T; T; F; T] = 11.

Again, these primitive recursive defining equations can be proved directly (and
automatically) from the characterization of the concrete recursive type (α)list
given by theorem (5.2). As was mentioned in Section 5.2.5.2, this is one of the
major pragmatic advantages of the approach taken here to the characterization

7In the test-for-zero example, of course, it does not matter.
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of concrete recursive data types in higher order logic: recursively-defined data
abstraction functions on concrete types are immediately justified by the theorems
which characterize these types in logic.

5.3.3.7 The Correctness Proof

It remains to show that every device in the class of circuit designs modelled by
Tfztree t (in, out) is functionally correct with respect to the abstract specification
of required behaviour. The correctness statement is the theorem shown below:

� ∀t. Tfztree t (in, out) ⊃ Tfz((Val in), out)

This theorem follows easily by structural induction on the binary tree t. It states
that every implementation for an n-bit test-for-zero device constructed from an
appropriate binary tree t of OR-gates exhibits the functional behaviour stipulated
by the relation Tfz. The model is parameterized by the variable t of type btree, and
this effectively ‘quantifies’ over all possible shapes that the circuit can have. The
correctness statement therefore asserts that every circuit is functionally correct
with respect to the abstract specification of required behaviour. This theorem
also asserts the correctness of these designs for every possible size of the n-bit
input in. Finally, the recursively-defined data abstraction function Val is used in
this formulation of correctness to relate values of type (bool)list in the model to
values of type num in the more abstract specification.

5.4 Summary and Discussion

A fundamental requirement for the effective use of data abstraction in reasoning
about hardware behaviour is, of course, a formal representation of data. This
chapter has shown how a wide class of concrete data types can be characterized
formally in higher order logic, and has given two examples to show how these
types can be used to support reasoning about hardware behaviour.

A common theme of these examples is the importance of an appropriate choice
of types in defining models. In Section 5.2, the simple enumerated type tri was
used to formulate a CMOS transistor model which is slightly more ‘accurate’ than
the switch model defined in Chapter 3. In Section 5.3, the recursive type (α)list
was used to provide a direct and unambiguous formal representation in logic of
bit vectors. A new technique was also developed in this section for modelling a
class of tree-shaped circuit designs using a concrete type of binary trees.

Two correctness proofs were also given in this chapter to illustrate the approach
to data abstraction introduced in Chapter 4. The data abstraction functions in
both examples were very simple, and the basic idea behind the data abstraction
function Val, in particular, is not new—functions similar to Val have been defined
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by (for example) Gordon [34], Camilleri [10], Hunt [53], and Joyce [57]. The main
aim of this chapter, however, was not to give examples of complex data abstraction
functions, but to describe a general approach to the formal characterization in
logic of data types, these being an essential prerequisite for the specification of
hardware behaviour at various different levels of data abstraction.

The logical basis for all the work discussed in this chapter is the systematic
method for defining concrete types explained in Appendix A. This method has
been automated in the HOL system, and can be used to construct a completely
rigorous and formal definition for any instance of the general class of concrete
types discussed in this chapter. Other tools which were implemented in HOL
include programs for proving a structural induction theorem for any concrete
type and for defining arbitrary primitive recursive functions on these types. An
interactive HOL session which illustrates the use of these tools in proving some of
the theorems in this chapter can be found in Appendix B.

The examples given in this chapter do not, of course, exhaust the possible
applications for concrete data types in hardware verification. These examples have
emphasized the use of special-purpose concrete types in defining models, but many
applications for concrete data types can also be found in abstract specifications
of required behaviour. Some kinds of data which arise naturally at higher levels
of data abstraction are, however, more appropriately represented formally in logic
by abstract data types, and the method described in Appendix A applies to only
concrete types. The automation in HOL of formal definitions for abstract types is
an important area for future work.

Certain abstract data types, however, can be given straightforward concrete
representations in logic using types of the kind discussed in this chapter. The
integers are a simple example. A formal representation for the integers in higher
order logic is given by the concrete type ‘int’ defined by:

int :: = Neg num | Zero | Pos num

The concrete type int defined by this equation provides a representation for the
integers in which the negative integers {−1,−2, . . .} correspond to the values
{Neg 0, Neg 1, . . .}, the integer 0 corresponds to the value Zero, and the positive
integers {+1, +2, . . .} correspond to the values {Pos 0, Pos 1, . . .}. Once this type
has been defined, it is straightforward (but tedious) to develop integer arithmetic
in logic by defining appropriate operations (e.g. addition, subtraction, etc.) on
values of type int. The concrete type int, together with the operations which have
been defined on it, can then be used as an abstract type of integers in specifications
of hardware behaviour.

A final point must be mentioned here concerning the type (α)list. This type
is used as a logical ‘building block’ in the general method for defining concrete
types explained in Appendix A, and is therefore given an ad hoc (but, of course,
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completely formal) definition in Section A.3.2 of the appendix. The reason for this
is that the type (α)list is used to formulate and prove a key general theorem about
the class of all concrete type. (See the appendix for details). For the purposes of
the present chapter, however, this can be regarded as an accidental feature of the
particular method by which concrete types are defined, and the type (α)list can
be considered to be simply an example of the general class of types definable by
this method.

5.5 Related Work

In most of the published work based on the HOL formulation of higher order logic,
only the type constants num and bool and the type operators → and × are used to
construct formal representations of data for reasoning about hardware behaviour.
A notable exception is Dhingra’s use of a four-valued type in [21] to define a
CMOS transistor model. (A minor modification of this model, based on the same
four-valued type, is also used by Joyce in [55].) But prior to the implementation
in the HOL system of the method for defining concrete types reported in this
dissertation, substantial and rigorous built-in theories were provided in HOL for
only the basic types mentioned above, and many of the proofs about hardware
done in the system have been based on only these types.

Early versions of the HOL system, however, had a collection of built-in types
for modelling fixed-width binary words and memories (e.g. a type ‘word4’ of the
set of all 4-bit words). These types were used extensively in the Viper correctness
proof [16,17], and were also used by Joyce in [56] and by Camilleri in [10]. But
these special-purpose ‘wordn’ types (which were inherited from LCF LSM [32])
were never formally defined in HOL. Instead, they were characterized by a built-
in collection of constants, axioms, and ad hoc inference rules—none of which were
given a firm logical foundation in terms of the primitive basis of higher order logic.

The first release of HOL also had a built-in theory of lists. Recursive definitions
and induction on lists, however, were not supported by the system, and the type
of lists itself was axiomatized8 rather than defined. In a comparative case study
of theorem provers for hardware verification [78], the lack of tools for induction
and recursive definitions on lists (‘bit vectors’) is cited as a serious deficiency of
the HOL system. The HOL tools for reasoning about concrete types mentioned
in Section 5.1.3 address precisely this problem, and allow induction and recursive
definitions to be done easily in HOL on lists or any other concrete type. These
tools were installed in the 1988/89 release of the public-domain HOL software.

Reasoning about recursive types has been mechanized in a number of other
theorem-proving systems. Milner developed a package in LCF for automating the

8incompletely, but not, in fact, by the inconsistent axioms in [29,30] (cf. note 1 on page 26).
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construction of lazy recursive types and the derivation of structural induction [69].
This package was later extended by Monahan [70]. The structural induction tools
in Cambridge LCF [74] are another development of Milner’s package. The HOL
system is based on the LCF approach to mechanized theorem proving, and the
present author’s mechanization of type definitions and (in particular) structural
induction in HOL in some ways resembles that of the LCF tools mentioned above.
But the purely logical details differ considerably, since the two systems are based
on different formalisms. The most important difference is that the HOL tools are
based on the highly restrictive primitive rule for type definitions in higher order
logic. The LCF type constructions are more axiomatic in flavour (consistency of
the axioms is justified by domain theory).

The Boyer-Moore theorem prover includes an axiom-scheme, called the shell
principle, which allows the user to axiomatize recursive structures in the Boyer-
Moore logic [9]. This was used by Hunt to introduce several recursive data types
in the correctness proof of the FM8501 microprocessor [53], including a recursive
type of lists used to represent bit-vectors. Other types axiomatized for the FM8501
proof include the natural numbers and a concrete representation of the integers.
The difference between Hunt’s work and the approach presented in this chapter
is that the shell principle introduces a type simply by postulating a Peano-like
axiomatization for it. In higher order logic, however, a type must be defined
and an abstract characterization of the type derived by formal proof. The main
contribution of the present work is the automation of this process.

Veritas is also a typed higher order logic, and types play an important role
in the Veritas approach to hardware specification and verification [43]. The
Veritas logic (as used in [43]) does not have an explicitly-stated rule of def-
inition for the introduction of new types. New types are instead introduced
axiomatically—i.e. by postulating axioms that ascribe properties to them. But
there seems to be no reason (in principle) why a restriction to axioms of a defini-
tional kind could not also be imposed in Veritas.9

Finally, it must be mentioned that the basic idea behind the representation for
bit vectors proposed in this chapter is, of course, not new. Lists are a natural
representation for bit vectors, and have been used to represent them both in the
Boyer-Moore logic [53] (as mentioned above) and in Interval Temporal Logic [72].
Chin et al. [13] have also used lists to represent bit vectors in HOL.10

9Indeed, this has been done in a recent development of Veritas called ‘Veritas+’ [45].
10This work was done using an early prototype of the present author’s implementation in HOL

of the theory of lists and related tools for induction and recursive definitions on lists. These are
now superseded by the HOL tools for the general class of concrete types.
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Chapter 6

Temporal Abstraction

Temporal abstraction, as was discussed in Chapter 4, involves relating formal
specifications that describe hardware behaviour using different notions of discrete
time. This type of abstraction is used when the formal model of a device gives
more detail about how it behaves over time than the abstract specification of its
required behaviour. With the mechanism of temporal abstraction, information
about a device’s behaviour at moments of time that are not of interest can be
hidden from the abstract specification, allowing the specification to concentrate
on how the device behaves at only significant or interesting points of time.

6.1 Temporal Abstraction by Sampling

The idea behind temporal abstraction by sampling was introduced in Chapter 4.
With this type of temporal abstraction, the abstract specification for a device
simply describes its externally observable behaviour at fewer points of time than
the formal model of its design. The grain of discrete time used in the specification
is ‘coarser’ than the grain of discrete time used in the model, and each unit of
discrete time at the abstract level of description corresponds to an interval of time
at the more detailed level of description.

To express this abstraction relationship formally in logic, the idea of a mapping
between time-scales was introduced in Chapter 4. A mapping of this kind specifies
a correspondence between successive points of time on an abstract time-scale
and selected points of time on a concrete time-scale. Given an appropriate time
mapping f, a correctness statement based on temporal abstraction by sampling is
formulated in logic as shown below:

� M [c1, . . . , cn] ⊃ S[c1 ◦ f, . . . , cn ◦ f]

The model M [c1, . . . , cn] in this correctness theorem describes the values that
appear on each external wire ci at points of fine-grained or concrete time. The
abstract specification is a constraint of the form S[a1, . . . , an], and specifies the
desired behaviour in terms of the values allowed on its external wires at points
of coarse-grained or abstract time. The time mapping f defines the intervals of
concrete time that correspond to each unit of abstract time. The correctness
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theorem states that whenever a sequences of values denoted by ci satisfies the
temporally detailed model, the subsequence ci ◦ f, obtained by sampling ci at
the points of concrete time specified by f, will satisfy the temporally abstract
specification of required behaviour. Proving a correctness statement of this form
involves showing that if the sequences c1, . . . , cn take on the intermediate values
defined by model, then the values of these sequences the selected points of time
specified by the time mapping f will satisfy the abstract specification.

This correctness relationship is formulated as an implication, rather than an
equivalence, because there may be several non-equivalent ways of implementing
behaviour specified by the abstract constraint S[a1, . . . , an]. The implementation
in which the sequences c1, . . . , cn take on the intermediate values defined by the
model M [c1, . . . , cn] is only one such method. In the example given above, every
sequence ci in the model (every ‘signal ’) is sampled using the same time mapping
f. In general, however, it is not necessary that the same time mapping be used
for every signal. For example, some signals may be sampled at points of time
corresponding to the rising edges of a clock, while others are sampled at points of
time corresponding to the falling edges of a clock. Examples of this kind occur in
the T-ring case study discussed below in Section 6.3.

Any correspondence between successive units of abstract time and contiguous
intervals of concrete time can be specified formally in logic by a time mapping of
the kind used in the correctness statement shown above. Such a mapping is just a
function f of type num→num that assigns a particular point of concrete time to
each point of abstract time, as shown in Figure 6.1. Not every function of logical
type num→num, however, specifies a valid correspondence between time-scales.
A mapping from abstract to concrete time must be a strictly increasing function
on the natural numbers. This requirement on a time mapping f can be expressed
formally by the predicate Incr defined as follows.

� Incr f = ∀ t1 t2. (t1 < t2) ⊃ (f t1 < f t2)

This ensures that if time t1 comes before time t2 on the abstract time-scale, then
this relationship also holds between the corresponding points of time f t1 and f t2
on the concrete time-scale.
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f f f

concrete time tc:

abstract time ta:

Figure 6.1: A Typical Mapping between Time-scales.
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6.1.1 Constructing Mappings between Time Scales

The first step in the formulation of a correctness statement that involves temporal
abstraction by sampling is to define an appropriate mapping from the abstract
time-scale used in the specification to the concrete time-scale used in the model.
In general, the points of concrete time that correspond to points of abstract time
may depend on the behaviour of the device itself. In this case, a fixed mapping
from abstract time to concrete time—for example a function that maps successive
points of abstract time to every tenth point of concrete time—is not possible.

Consider, for example the correspondence between time-scales shown below
in Figure 6.2. Here, successive points of abstract time correspond to the points
of concrete time at which there is a rising edge of the clock signal ck. The
precise correspondence between concrete time and abstract time depends on the
behaviour of this clock signal, and the mapping f must be defined in such a way as
to reflect this dependence. This can be done formally by constructing the function
f shown in Figure 6.2 from the predicate ‘Rise ck’, which identifies those points of
time on the concrete time-scale at which the rising edges of the clock ck occur.

In general, any time mapping can be defined formally by means of a predicate
that specifies which points of time on the concrete time-scale are to correspond
to points of time on the abstract time-scale. The idea is to define this predicate
such that it is true of precisely those selected points of concrete time which are
to be in the image of the mapping from abstract time to concrete time. The free
variables in the model can themselves be used as parameters to this predicate.
In synchronous systems, for example, the appropriate points of concrete time can
often be identified by the value of a clock signal ck. (In asynchronous systems,
handshaking signals might be used for the same purpose.) The required time
mapping can then be constructed from the values given by this predicate on
concrete time. This allows the mapping from abstract time to concrete time used
in a correctness statement to reflect the time-dependent behaviour of the device
itself (as described by the model). The time mapping does not assign a fixed point
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concrete time tc:
� � �

f f f

abstract time ta:

Figure 6.2: A Time Mapping which Depends on a Clock ck.
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abstract time ta:

Figure 6.3: Constructing a Time Mapping fp from a Predicate p.

of concrete time to each point of abstract time, but establishes a correspondence
between time-scales that covers the entire range of time-dependent behaviour
described by the model.

To construct a time mapping in this way, it sufficient to define a predicate
p:num→bool that is true of precisely those points of concrete time which are to
correspond to points of abstract time. Given such a predicate p, it is possible to
construct a mapping fp which assigns each point of abstract time n to the nth
point of concrete time at which p is true, as shown in Figure 6.3 above. If for
any predicate p and abstract time n the term ‘Timeof p n’ denotes the point of
concrete time at which p is true for the nth time, then the mapping between
time-scales fp shown in this diagram can be defined by:

� fp n = Timeof p n (i.e. � fp = Timeof p)

It remains to define the function Timeof formally in higher order logic.

6.1.2 Defining the Function Timeof

The term ‘Timeof p n’, as informally described above, may in fact be undefined
for some values of p and n. If the predicate p true at only a finite number of points
of concrete time, then there will be some number N such that for all n > N there
is no concrete time at which p is true for the nth time. The value of Timeof p n

is therefore ‘undefined’ for these values of n, and the function Timeof p is itself a
partial function.

In higher order logic, however, all functions must be total functions. The higher
order function Timeof will therefore be defined to be a total function whose value
is only partially specified. This will be done by using the primitive constant ε to
define Timeof such that ‘Timeof p’ denotes the required mapping between time-
scales when the predicate p is true infinitely often, and denotes a mapping about
which nothing can be proved when p is true only finitely often.
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6.1.2.1 The Relation Istimeof

The formal definition of Timeof is based on a relation Istimeof, defined such that
the term ‘Istimeof p n t’ has the meaning ‘p is true for the nth time at time t’. The
definition of this relation is done by primitive recursion on the natural number n.
When n is zero, the defining equation is:

� Istimeof p 0 t = p t ∧ ∀t′. t′ < t ⊃ ¬(p t′)

That is, the predicate p is true for the first (i.e. the 0th) time at concrete time
t if p is true at time t and false at every point of time prior to time t. For the
(n+1)th time at which p is true, the defining equation is:

� Istimeof p (Suc n) t = ∃t′. Istimeof p n t′ ∧ Next t′ t p

where the auxiliary predicate Next is defined by:

� Next t1 t2 p = t1 < t2 ∧ p t2 ∧ ∀t. (t1 < t ∧ t < t2) ⊃ ¬p t

In this case, the defining equation for Istimeof states that p is true for the (n+1)th
time at concrete time t if there exists a point of concrete time t′ prior to time t

at which p is true for the nth time, and t is the next time after t′ at which p is
true. To summarize, the primitive recursive definition of the relation Istimeof is
given by the two theorems shown below.

� Istimeof p 0 t = p t ∧ ∀t′. t′ < t ⊃ ¬p t′

� Istimeof p (Suc n) t = ∃t′. Istimeof n p t′ ∧ Next t′ t p

The formal justification for this recursive definition follows from the primitive
recursion theorem for the natural numbers, using the method of deriving recursive
defining equations discussed in Section 2.1.6 of Chapter 2.

6.1.2.2 A Theorem about Istimeof

This primitive recursive definition of Istimeof p n t captures the idea that the
predicate p is true for the nth time at concrete time t. There is no guarantee,
however, that such a time t exists for all values of p and n. In order to use the
relation Istimeof to define the function Timeof, it is necessary to show that if the
predicate p is true infinitely often, then for all n there is a unique time t at which
p is true for the nth time. That is, if p is true infinitely often, then the relation
Istimeof p n t defines a unique value t for each value of n, and therefore in fact
represents well-defined total function that maps p and n to t.

The condition that p must be true at an infinite number of points of concrete
time is stated formally by the predicate Inf defined below.
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� Inf p = ∀t. ∃ t′. t′ > t ∧ p t′

Given this predicate, it is straightforward to show that if p is true infinitely often,
then for all n there exists a unique time t at which p is true for the nth time:

� Inf p ⊃ ∀n. ∃! t. Istimeof p n t (6.1)

The formal proof of this theorem proceeds by proving the existence and uniqueness
parts separately. The existence of t follows by induction on n, using the well
ordering property of natural numbers:

� ∀p. ∃t.p t ⊃ ∃t. p t ∧ ∀t′.t′ < t ⊃ ¬p t′

to infer from the assumption Inf p that there is always a smallest next time at
which the predicate p is true. The uniqueness of t also follows by induction on n.

6.1.2.3 Using Istimeof to Define Timeof

Given theorem (6.1), the relation Istimeof can be used to define the function
Timeof as follows. Using the primitive constant ε, the function Timeof can be
defined formally by the equation shown below.

� Timeof p n = ε (Istimeof p n)

This equation defines the term Timeof p n to denote some time, t say, such that
Istimeof p n t is true. If no such time exists, then Timeof p n denotes an arbitrary
natural number. Using the primitive constant ε, this definition makes the term
‘Timeof p’ always denote a total function. The term ‘Timeof p n’ denotes some
natural number for all values of n and p, even when the predicate p is true at only
a finite number of points of concrete time.

If, however, the predicate p is true infinitely often, then for all n there will
exist a unique time t such that Istimeof p n t is true. Thus, if Inf p holds, then
Timeof p n will in fact denote the unique time at which p is true for the nth
time, as desired. More formally, an immediate consequence of the existence part
of theorem (6.1) is:

� Inf p ⊃ Istimeof p n (Timeof p n)

from which it follows immediately that:

� Inf p ⊃ p(Timeof p n)
� Inf p ⊃ ∀t. (t < (Timeof p 0)) ⊃ ¬p t
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That is, if the predicate p is true infinitely often, then Timeof p n always denotes
a point of concrete time at which p is in fact true, and Timeof p maps 0 to the
first time at which p is true. From the uniqueness part of theorem (6.1) it also
follows that Timeof p denotes an increasing function from abstract to concrete
time, and that this function does not skip any points of concrete time identified
by the predicate p:

� Inf p ⊃ ∀n. (Timeof p n) < (Timeof p (n+1))
� Inf p ⊃ ∀n t. (Timeof p n) < t ∧ t < (Timeof p (n+1)) ⊃ ¬p t

These lemmas about Timeof show that if the predicate p is true infinitely often,
then the term ‘Timeof p’ is a well defined total function and denotes the desired
mapping from abstract time to selected points of concrete time. The function
Timeof p maps each point of abstract time n to the point of concrete time at
which p is true for the nth time, as required.

6.1.3 Using Timeof to Formulate Correctness

Having formally defined the function Timeof, and shown that it constructs a
well defined time mapping for any predicate p that is true at an infinite number
of points of concrete time, it is possible to use Timeof to formulate correctness
theorems based on temporal abstraction by sampling. The time mapping required
for such a correctness theorem just an increasing function f of type num→num.
Any such function can be defined using Timeof and an appropriate predicate p

which indicates the points of concrete time that are to correspond to points of
abstract time. Formally, the property that a function f is strictly increasing is
logically equivalent to the assertion that f can be constructed from a predicate p

for which Inf p holds:

� ∀f. Incr f = ∃ p. Inf p ∧ f=Timeof p

This theorem follows from the definition of the constant Incr and the properties
of Timeof discussed above in Section 6.1.2.3.

If p is an appropriate predicate that indicates which points of concrete time
correspond to points of abstract time, then a correctness theorem that relates a
detailed design model M [c1, . . . , cn] to an abstract specification S[a1, . . . , an] can
be formulated in logic as shown below:

� M [c1, . . . , cn] ⊃ S[c1 ◦ (Timeof p), . . . , cn ◦ (Timeof p)]

This correctness theorem states that whenever the signals c1 . . . , cn satisfy the
model, the abstract signals constructed by sampling c1, . . . , cn when the predicate
p is true will satisfy the temporally abstract specification. In the general case, the
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predicate p can be defined in terms of the variables c1, . . . , cn, in order to make
the times at which the values in the model are sampled depend on the behaviour
of the device itself.

If when1 is an infix constant defined formally as follows:

� s when p = s ◦ (Timeof p)

then this correctness statement can be written:

� M [c1, . . . , cn] ⊃ S[c1 when p, . . . , cn when p]

Since every mapping from abstract to concrete time can be constructed using
‘Timeof’ from an appropriate predicate p, any correctness relationship based on
temporal abstraction by sampling can be expressed in this form.

The example given in the next section shows how the when operator defined
above can be used to formulate the correctness of a D-type flip flop with respect
to the abstract specification of one-bit unit delay register.

6.2 A Simple Example

A commonly used register-transfer level device is the unit delay, described formally
by the specification shown below.

Del
i o � Del(i, o) = ∀t. o(t+1) = i t

This specification simply states that the value on the output o is equal to the
value on the input i delayed by one unit of discrete time.

The unit delay device described by this specification is an abstraction—there
are many circuits that can implement the abstract behaviour described by the
specification Del(i, o). One possible implementation is the rising edge triggered
D-type flip flop discussed in Chapter 3. The sequential behaviour of this device
is modelled in logic by the term Dtype(ck, d, q) defined below:

Dtype

�
d

ck

q

� Dtype(ck, d, q) = ∀t. q(t+1) = (Rise ck t ⇒ d t | q t)

� Rise ck t = ¬ck(t) ∧ ck(t+1)

1In an early account of this work, the function when was called ‘ABS’ [62]. The mnemonically
superior name ‘when’ was suggested by the LUSTRE operator of the same name [38].
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Informally, the D-type device shown above implements a unit delay by sampling
the input value d when the clock rises and holding this value on the output q until
the next rise of the clock. In this way the D-type delays by one clock period the
sequence of values consisting of the values present on the input d at successive
rising edges of the clock ck. This suggests that the time mapping used to relate the
model Dtype(ck, d, q) to the abstract specification Del(i, o) should map successive
points of abstract time to the points of concrete time at which the clock rises.

Using the constant Rise, the required time mapping is given by the term
‘Timeof (Rise ck)’. Given the mapping between time-scales denoted by this term,
a correctness statement that relates the D-type model to the unit delay specifica-
tion can then formulated as shown below:

� Inf(Rise ck) ⊃ (Dtype(ck, d, q) ⊃ Del(d when (Rise ck), q when (Rise ck)))

This correctness theorem states that if the sequences given by the variables ck, d,
and q satisfy the model, then the abstract sequences obtained by sampling d and
q at successive rising edges of the clock ck will satisfy the abstract specification
for a unit delay device. Here, there is a family of sampling functions used to relate
the model to the abstract specification. For each value of the clock ck, the term
Rise ck denotes an appropriate predicate that identifies the points of concrete time
which at which the clock rises. The infix when operator is then used to sample
the sequences d and q whenever this predicate is true.

The assumption that the clock rises infinitely often is a validity condition on
the abstraction relationship expressed by this correctness statement. The theorem
asserts that the specification represents a valid abstract view of the behaviour of a
D-type device only if the validity condition ‘Inf(Rise ck)’ is satisfied. This validity
condition on the clock must be met by the environment in which the D-type flip
flop is placed. The condition itself is as unrestrictive as possible: the clock ck

is not required to be regular or have a minimum period. The liveness condition
on the clock input expressed by Inf(Rise ck) is sufficient for the D-type device to
function correctly as specified by Del(i, o)

The proof of this correctness theorem is straightforward. The main step is
an induction on the number of time steps between adjacent rises of the clock,
showing that the value on the input d that is sampled at each rising edge of
the clock ck is held on the output q until the next rising edge. The correctness
theorem then follows easily from this result and the properties of Timeof proved
above in Section 6.1.2.3.

This proof provides a very simple example of a common type of temporal
abstraction, where contiguous intervals of concrete time correspond to successive
units of abstract time. Examples involving detailed timing information or several
different time mappings in the same correctness statement are typically much
more complex than the simple example given here. But—as far as the abstraction
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relationship itself is concerned—more complex examples of temporal abstraction
by sampling involve the same general approach as illustrated by this example.

6.3 The T-ring: A Case Study

The T-ring is a very simple ring communication network, designed and built by
D. Gaubatz and M. Burrows at the University of Cambridge [27]. It was designed
to provide a simplified ring network which could be specified and proved correct
as a prelude to attempting the much more difficult formal verification of the
Cambridge Fast Ring network [52]. (The verification of the Cambridge Fast Ring
network was never actually attempted, but an ECL chip used as a part of the
Fast Ring network was verified by Herbert in [48].) The T-ring was also used by
members of the hardware verification group in Cambridge to explore timing and
documentation issues.

This section outlines the main results in a proof of correctness for the design
of the T-ring, in which the constructs for defining time mappings discussed in the
preceding sections are used. All the lemmas and intermediate correctness results
concerned with temporal abstraction in this correctness proof for the T-ring were
proved formally using the HOL theorem prover. The top-level correctness theorem
stated in Section 6.3.6, however, was proved manually. But neither the details of
the HOL proofs done for this example (which take over 3000 lines of ML source code
to generate) nor the details of the additional proofs which were done by hand will
be given here. The aim of this section is to give an overview of relatively complex
example of temporal abstraction, without burdening the reader with the details
of the highly intricate (but generally shallow) formal proofs in higher order logic
that were involved.

6.3.1 Informal Description of the T-ring

The T-ring has three major components: the transmitter, the receiver, and the
monitor. These components are connected together to form a data transmission
network in the shape of circular ring, as shown in Figure 6.4. The transmitter
sends messages (clockwise) around the ring to the receiver. Each message sent
by the transmitter contains only one bit of information. No source or destination
address is included in a message, since in the T-ring network there is only one
transmitter and one receiver.

Storage for messages in a ring network is normally provided by delay in the
transmission wires which run between the devices connected to it. In the TTL
implementation of T-ring, however, these transmission wires are very short, and
they impose virtually no delay between the components connected to the ring.
Storage is therefore ‘artificially’ supplied in the T-ring by three delay devices
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Figure 6.4: The T-ring.

inserted between each pair of the other three components in the ring. These are
labelled Del in Figure 6.4. Each of these delay devices is simply a shift register
which imposes 8 bits of delay between its input and its output. Together, these
shift registers supply the T-ring network with the storage for circulating messages
which in a more realistic ring network is provided by delay in the transmission
wires. The transmitter, receiver, and monitor themselves contribute no delay to
the ring, so the T-ring network has a total of 24 bits of storage.

F F F F F F F F F F F F F F F F F F F F F FdT

� �

SOP
data

︸ ︷︷ ︸
gap

Figure 6.5: The T-ring Slot Structure.

Messages are transmitted serially around the ring encoded in a simple format
called a packet. A packet consists of only two bits: a start-of-packet (SOP) bit
followed by a data bit. The start-of-packet bit is always a boolean T. There is only
one such packet circulating in the ring at any time. The other 22 bits of storage
in the ring constitute a gap, each bit of which has the value F. This pattern of
bits—a single packet followed by 22 bits of gap—is called the slot structure of the
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ring (see Figure 6.5). The circulating packet is a slot in the circular bit pattern,
where data can be inserted into the ring and read from the ring. The devices
connected to the ring detect the presence of the packet by sensing a transition
from F (the end of the gap) to T (the SOP bit).

The monitor is used to create the slot structure of the T-ring. The monitor
has two inputs: zero and pkt. When the zero input is activated, a boolean F is
inserted into the bit pattern on the ring at the monitor’s output. The first step
in creating the slot structure is to activate zero long enough to set each bit in the
ring to F. The pkt input is then activated once, and a single start-of-packet bit is
inserted into the bit pattern on the ring. This creates one packet on the ring, and
completes the creation of the T-ring slot structure.

Once the slot structure exists, the ring is ready to carry one-bit messages from
the transmitter to the receiver. The transmitter has two inputs: req and data. A
request to transmit data is made by activating the req input. Once a request has
been made, subsequent requests are ignored until the pending request has been
serviced. When there is a pending request to transmit data, the transmitter waits
until the circulating packet arrives on its input from the ring, and then inserts
the bit which is currently on the data input into the packet just after the SOP
bit. Because the data input is not read until the packet arrives at the transmitter,
the data bit which is sent to the receiver will not necessarily be the value on the
data line at the time of the request. The receiver simply reads the data bit in the
circulating packet each time it comes around, and makes this value available on
the output wire out.

6.3.2 The Specification

To write a formal specification of the T-ring behaviour informally described above,
the two auxiliary predicates During and After are used to express conditions that
must be satisfied by the T-ring inputs pkt and zero in order to initialize the slot
structure of the ring. These two predicates have the formal definitions shown
below:

� During t1 t2 v w = ∀t. (t1 ≤ t ∧ t ≤ t2) ⊃ w t = v

� After t w v = ∀t′. (t < t′) ⊃ w t′ = v

The predicate During expresses the condition that an input wire w has a constant
value v during an interval of time from time t1 to time t2 (inclusive). The predicate
After expresses the condition that an input wire w has a constant value v after a
given time t1.

Using these two predicates, a formal specification that describes the behaviour
of the T-ring network is given by the term ‘Tring zero pkt data req out’ defined
below:
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� Tring zero pkt data req out =
During t (t+26+n+m) F pkt ∧
During t (t+25+n) F zero ∧
pkt(t+27+n+m) ∧
After(t+28+n+m) F pkt ∧
After(t+29+n+m) T zero ⊃
∀t′. t′ ≥ (t+21+n+m) ∧ req t′ ⊃

∃n. (0 ≤ n ∧ n ≤ 24) ∧ out(t′+17+n) = data(t′+n+1)

The specification is stated in the form of an implication. The antecedent of the
implication describes the sequences of values that must appear on the monitor
inputs pkt and zero in order to create the T-ring slot structure described in the
previous section. The consequent of the implication describes the transmission
of data through the T-ring network once the slot structure have been initialized.
These two parts of the specification are explained briefly in the next two sections.

6.3.2.1 Initialization

The initialization sequence described by the T-ring specification defined above
consists of the following steps:

1. Starting at some time t, activate the zero input for at least 25 units of
time in order to clear the entire bit pattern in the ring. While clearing the
ring, do not activate the pkt input. After the bit pattern in the ring has
been cleared, the pkt input can remain inactive as long as desired. The
zero input is active low and the pkt input is active high, so the required
input sequence is given by:

During t (t+25+n) F zero ∧ During t (t+26+n+m) F pkt

2. Activate the pkt input once to create a single a packet in the circulating
bit pattern in the ring. This creates the T-ring slot structure. The pkt

input can be activated any time after the ring has been cleared:

pkt(t+27+n+m)

3. Do not activate the pkt and zero inputs again after the T-ring slot struc-
ture has been created:

After(t+28+n+m) F pkt ∧ After(t+29+n+m) T zero

The particular numerical constants which appear in this initialization sequence
(e.g. ‘25’ and ‘26’ in step 1) were derived in the course of the correctness proof for
the design of the T-ring. These numbers represent the shortest periods of time for
which the pkt and zero inputs must have the required values to initialize the ring.
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The variable n stands for an arbitrarily long (but, of course, finite) additional
period of time during which the zero input can remain active once the ring is
cleared. Likewise, the variable m stands for an arbitrarily long period of time
between the time at which the ring is cleared and the time at which the pkt input
is activated.

6.3.2.2 Data Transmission

The consequent of the formal specification shown above describes the transfer of
data from the transmitter to the receiver once the T-ring has been initialized.
The ring is able to receive requests on the req input to transmit data as early as
6 time units before the packet is inserted during the initialization sequence (time
(t+21+n+m) in the specification). If req input is activated at some time t′ on or
after this time, the value on the data input will be read within 24 time units of
time t′ and this value will appear on the output out 16 time units after it is read.
Formally, if req is true at time t′, then the following relationship will hold:

∃n. (0 ≤ n ∧ n ≤ 24) ∧ out(t′+17+n) = data(t′+n+1)

That is, the data bit present on the transmitter data input will be sent to the
receiver output out. The transmission delay is 16 bits between data and out.

The formal specification defined above is only a partial specification of the
behaviour of the T-ring. It leaves unspecified, for example, the behaviour of the
T-ring when uninitialized. Furthermore, it covers only the most basic requirement
for the correct operation of the device—namely, the ability to transmit one bit
of data from the receiver to the transmitter whenever requested to do so. This
specification therefore represents a behavioural abstraction of the more detailed
behaviour given by the T-ring design model.

The correctness results which were proved to show that the T-ring design model
satisfies the abstract specification defined above are discussed in the sections that
follow. The proof was structured into a two-level hierarchy of correctness results.
These are considered in ‘bottom up’ order in the following sections. At the lower
level of the hierarchy—the timing level—a correctness theorem is proved for each
of the four kinds of components in the T-ring network: the delay devices, the
receiver, the transmitter, and the monitor. The circuit designs for these compo-
nents, and the correctness result for each designs, are discussed in Section 6.3.5.
The next level of the proof is the register-transfer level, at which the abstract
specifications for each component are composed to obtain a model for the entire
T-ring, and this model verified with respect to the top-level T-ring specification
discussed above. The correctness result at this level of the proof is discussed in
Section 6.3.6. Finally, in Section 6.3.7, a correctness theorem that relates the
timing level design to the top-level specification is derived from the correctness
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results obtained at each of the two levels of the proof. The discussion begins with
an overview of the timing scheme for the TTL implementation of T-ring network,
and a description of the primitive hardware components used in the design of the
T-ring.

6.3.3 T-ring Timing

The T-ring is a synchronous TTL system driven by a single master clock. Values on
the ring change on the falling edge of the clock and are sampled by the transmitter,
receiver and monitor on the rising edge of the clock. The idea of this timing scheme
is to ensure that the value on the ring is sampled by the transmitter, the receiver,
and the monitor when it is most likely to be stable—half-way between two falling
edges of the clock. This timing scheme is implemented by having the primitive
components that read from the ring triggered on the rising edges of the clock
and the components that write to the ring triggered on the falling edges of the
clock. A consequence of this approach is that the T-ring correctness proof involves
temporal abstraction by sampling on both rising and falling edges of the clock.

Ring:

Clock:

�� �� �� �� �� �� �� �� ���� �� �� �� �� �� �� �� ��

� �

sample on rising edges

change on falling edges

Figure 6.6: T-ring Timing.

6.3.4 Specifications of the Primitives

There are three combinational primitives used in the T-ring: the inverter, the
AND-gate, and the NAND-gate. Their specifications in logic are simple, and are
shown in Figure 6.7. The only primitive device with state which is used in the
T-ring is the rising edge triggered D-type flop flop with asynchronous clear, also
shown in Figure 6.7. The formal specification of this device is similar to that of
the D-type discussed earlier in this chapter. The only differences are the addition
of an active-low ‘clear’ input clr, and an inverted output qbar.

The D-type flip flop shown in Figure 6.7 is sometimes used with the clr input
disabled. When this asynchronous clear input is not used, it is driven by the
power source defined below:
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��� � oi � Not(i, o) = ∀t. o t = ¬(i t)

��oi1
i2

� And(i1, i2, o) = ∀t. o t = (i1 t ∧ i2 t)

��� oi1
i2

� Nand(i1, i2, o) = ∀t. o t = ¬(i1 t ∧ i2 t)

�
d

ck
q

qbar

clr

� Dtype(ck, clr, d, q, qbar) =
∀t. q(t+1) = (clr(t+1) ⇒ (Rise ck t ⇒ d t | q t) | F) ∧
∀t. qbar t = ¬(q t)

Figure 6.7: Primitive Devices used in the T-ring.

� Pwr p = ∀t. p t = T

In this case, the D-type specification simplifies to:

� (∃p. Pwr p ∧ Dtype(ck, p, d, q, qbar)) =
∀t. q(t+1) = (Rise ck t ⇒ d t | q t) ∧ ∀t. qbar t = ¬(q t)

For clarity, the clr inputs of D-type flip flops will not be shown in circuit diagrams
when they are disabled in this way. Similarly, if the qbar output of a flip flop is not
used, it will also be omitted. The power source defined above is sometimes used
to drive other internal wires in the design of the T-ring. This will be indicated in
the circuit diagrams shown in the following sections by writing ‘T’ beside these
wires.

6.3.5 Correctness of the T-ring Components

In the next four sections, the circuit design for each of the four components in the
T-ring is described, the abstract specification device is defined, and an overview
is given of the correctness results proved for each T-ring component.

6.3.5.1 The Delay Devices

The simplest devices in the T-ring are the shift registers inserted between the
other three components connected to the ring. These provide data storage for the
ring by imposing a delay of 8 bits between their inputs and outputs. The register
transfer level specification for these devices is shown below.

Del
rin rout � Del rin rout = ∀t. rout(t+8) = rin t
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Each of the three delay devices used in the T-ring is implemented by a shift
register composed of eight flip flops driven by an inverted clock signal, as shown
in Figure 6.8. A model ‘Delay ck rin rout’ that describes this 8-bit shift register is
straightforward to define using the primitives defined above in Section 6.3.4. The
model is constructed in the usual way, by applying the operations of composition
(‘∧’) and hiding (‘∃’) to the primitive components in the design, and the formal
definition of the model need not be given here.

Once the model given by Delay has been defined, it is possible to show that the
shift register shown in Figure 6.8 correctly implements the abstract specification
for the 8-bit delay device:

� Inf(Rise ck) ⊃
Delay ck rin rout ⊃
Del (rin when (Fall ck)) (rout when (Fall ck))

Here, the input and output values rin and rout are sampled on falling edges of
the clock ck. The correctness theorem states that these sampled values satisfy
the temporally abstract specification for an 8-bit delay device. The function Fall,
used to construct the time mapping in this theorem, is analogous to the function
Rise. Its formal definition is shown below.

� Fall ck t = ck(t) ∧ ¬ck(t+1)

The proof of the correctness theorem for the delay device follows by induction
on the length of the interval of concrete time between successive falling edges of
the clock, in much the same way as unit delay correctness theorem discussed in
Section 6.2 is proved by induction on the number of time steps between two rising
edges.

Although the correctness theorem shown above relates the 8-bit shift register
model to the abstract specification for an 8-bit delay, it is not an appropriate
correctness statement for the delay devices used in the T-ring. The transmitter,
the receiver, and the monitor sample their inputs from the ring on the rising
edge of the clock. The register transfer level abstractions of these inputs will

� � �

���
��� �

� � �
� � �ck

rin rout

Figure 6.8: Design of the Delay Device.
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therefore be sampled sequences of the form ‘in when (Rise ck)’. These inputs
are driven by the outputs of the delay devices connected to them, and in the
correctness theorem shown above the output of a delay device is a sampled signal
of the form ‘routwhen (Fall ck)’. But when the delay devices are connected to the
other components of the T-ring, the abstractions must correspond. It is therefore
necessary to sample the output of the delay device on the rising edges of the clock,
rather than the falling edges.

The correctness theorem for the 8-bit delay devices used in the T-ring should
therefore have the form shown below.

Inf(Rise ck) ⊃
Delay ck rin rout ⊃
Del (rin when (Fall ck)) (rout when (Rise ck))

Here, the input rin is sampled on the falling edges of the clock, and the output
rout is sampled on the rising edges of the clock. The sampled delay device out-
put rout when (Rise ck) will therefore match the abstract inputs of the receiver,
transmitter, and monitor that are driven by this output.

The implication shown above, however, does not hold. Because rout is driven
by a D-type device, it is possible to show (by induction) that it remains stable
until just after each fall of the clock. The value of this output at the time of the
nth rise of the clock is therefore the same as its value at the time of the next fall
of the clock after the nth rise. But because the clock may start out either high or
low at time ‘0’, it is not known if this next fall of the clock will be the nth falling
edge or the (n+1)th falling edge.2 If the next fall is the nth, then the output of
a delay device is the same when sampled on the either the rising or the falling
edges of the clock:

rout(Timeof (Rise ck) n) = rout(Timeof (Fall ck) n)

In this case, the implication shown above holds. But if the next falling edge after
the nth rise is the (n+1)th, then it follows that:

rout(Timeof (Rise ck) n) = rout(Timeof (Fall ck) (n+1))

in which case the implication proposed as a correctness statement for the delay
device will not be true for all values of rout.

To get around this problem, it is sufficient to ensure that the output rout is
sampled on those falling edges of the clock which are preceded by rising clock edges.
This can be done simply by ‘choosing the origin’ of time such that the clock starts
out low at time 0. Imposing the condition that ¬(ck 0) holds of the clock makes
it possible to show that the nth falling edge occurs after the nth rising edge:

2This is a major inconvenience associated with modelling time by the natural numbers.
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� Inf(Rise ck) ∧ ¬(ck 0) ⊃ Timeof (Rise ck) n < Timeof (Fall ck) n

� Inf(Rise ck) ∧ ¬(ck 0) ⊃ Timeof (Fall ck) n < Timeof (Rise ck) (n+1)

Because the last D-type flip flop in the delay device keeps the output rout stable
between falling edges of the clock, it follows from these two theorems that:

� Inf(Rise ck) ∧ ¬(ck 0) ⊃
Delay ck rin rout ⊃
rout when (Fall ck) = rout when (Rise ck)

From this, a correctness theorem for the delay devices can be proved in which
the time mapping on the output rout will match the abstraction used on the
inputs of the other components to which this output will be connected:

� Inf(Rise ck) ∧ ¬(ck 0) ⊃
Delay ck rin rout ⊃
Del (rin when (Fall ck)) (rout when (Rise ck))

(6.2)

This is the final form of correctness for the 8-bit shift registers in the T-ring.

6.3.5.2 The Receiver

At the register transfer level, the receiver looks like:

Rec

◦ sop
rin rout

out

and the abstract specification for the receiver is given by:

� Rec sop rin rout out =
∀t. sop(t+1) = (rin(t+1) ∧ ¬sop t) ∧
∀t. rout(t+1) = rin(t+1) ∧
∀t. out(t+1) = (sop t ⇒ rin(t+1) | out t)

This specification describes the receiver as a device with one boolean input rin

and three boolean outputs rout, out, and sop. The value on each output at time
t+1 is specified in terms of the input at time t+1 and the outputs at time t.

The variables rin and rout model the input from the ring and the output to
the ring respectively. The receiver does not change the value on the ring, and
there is no delay between the ring input rin and the ring output rout. The rela-
tionship between rin and rout at time 0 is unimportant to the correct operation
of the T-ring, and is left unspecified by the equation for rout. The input-output
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relationship at time 0 could be specified here, but it is instead left unspecified in
order to simplify the proof of correctness.

The variable sop represents an output that indicates whether the bit currently
on the ring input rin is the start-of-packet bit. The equation for sop specifies
that if the value currently being read from the ring is T and bit on the ring at
the previous point of time was not the SOP bit, then the current input bit is the
start-of-packet bit.

The variable out represents the data output of the receiver. The equation for
out specifies that if the bit on the ring at the previous moment of time was the
SOP bit, then the data output out becomes the bit currently being read from the
ring. If the previous bit in the ring input was not the SOP bit, then value on the
output out stays unchanged.

The circuit diagram for the receiver is shown in Figure 6.9. The device contains
two D-type flip flops, which are used as registers to store the sop and out values
between clock cycles. The sop flip flop (the D-type flip flop on the left in the
diagram) is driven by the clock signal ck, and is therefore triggered by the rising
edges of the clock. The output flip flip, however, is not driven by the clock signal
ck, but by the inverted sop signal. This flop flop therefore samples the data present
on the ring input rin whenever there is a falling edge of the sop signal. A formal
model ‘Receiver sop ck out rin rout’ which describes the receiver circuit shown in
Figure 6.9 is straightforward to define in the usual way. Its formal definition will
therefore not be given here.

The correctness statement for the receiver involves the concept of the value on
a wire being stable during the interval of time between two falling edges of the
clock. To express this in logic, the predicate Stable is defined as follows.

� Stable w ck =
∀n t. ((Timeof n (Fall ck)) < t ∧ t ≤ (Timeof (n+1) (Fall ck))) ⊃

w t = w(Timeof (n+1) (Fall ck)))

This definition states that the value on a wire w is stable between each pair of
adjacent falling edges of the clock ck. The outputs of D-type flip flops in the

� �

��
rin

ck
sop out

rout

Figure 6.9: Design of the Receiver.
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T-ring that are clocked on the falling edges of the clock (i.e. the D-type devices in
the shift registers) are stable in the way stipulated by the Stable predicate defined
above. The values on these outputs change just after a falling edge of the clock,
and remain stable until the next falling edge.

Given the predicate Stable, the correctness statement for the receiver circuit
shown in Figure 6.9 is written as follows:

� Inf(Rise ck) ∧ ¬(ck 0) ∧ Stable rin ck ⊃
Receiver sop ck out rin rout ⊃
Rec (sop when (Fall ck))

(out when (Fall ck))
(rin when (Rise ck))
(rout when (Fall ck))

This theorem expresses a relationship of temporal abstraction between the design
model for the receiver and its abstract specification. The outputs sop, rout, and
out are sampled on the falling edges of the clock. The input rin is sampled on the
rising edges of the clock, in agreement with the T-ring timing scheme explained
in Section 6.3.3. The validity conditions Inf(Rise ck) and ¬(ck 0) are the same as
those in the correctness theorem for the shift registers discussed in the previous
section. The additional validity condition on the input rin expressed by the Stable

predicate is needed allow the output rout that drives the ring to be sampled on
the falling edges of the clock. In the receiver circuit, this output is wired directly
to the input rin, and the input-output relationship stipulated by the abstract
specification for the receiver is:

∀t. (rout when (Fall ck)) (t+1) = (rin when (Rise ck)) (t+1)

The stability condition on the input rin ensures that this equation holds when rin

is sampled on the rising edges of the clock and rout (which is directly connected
to rin) is sampled on the falling edges of the clock. This stability assumption
can be seen as a timing condition which must hold for the temporal abstraction
expressed by the correctness statement shown above to be valid. The environment
in which the receiver is placed is expected to satisfy this condition.

Full details of the formal proof of the correctness theorem shown above will not
be given here. One of the main steps in the proof is again an induction on the
length of a clock cycle between two rising edges of the clock. The fact that the
two D-type devices in the receiver keep their outputs stable between rising edges
is used to shift output values sampled on rising edges to output values sampled
on falling edges, to obtain the abstraction relationship shown above. The proof is
complicated by the somewhat tricky clocking arrangement whereby the right hand
D-type flip flop shown in Figure 6.9 is triggered by the inverted sop signal. This
makes it the impossible to consider each of the two D-type devices in the receiver
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separately during the proof—for example, by showing that each one implements
an abstract device with unit delay, and then composing the two devices at the
more abstract level.

6.3.5.3 The Transmitter

At the abstract level, the transmitter looks like:

Trans

◦ sop
◦ ur

rin rout

datareq

The abstract specification for the transmitter is defined below:

� Trans sop ur data req rin rout =
∀t. sop(t+1) = (rin(t+1) ∧ ¬sop t) ∧
∀t. ur(t+1) = ((sop t ∧ ur t) ⇒ F | (req t ⇒ T | ur t)) ∧
∀t. rout(t+1) = ((sop t ∧ ur t) ⇒ data(t+1) | rin(t+1))

Like the receiver, the transmitter has an sop output that indicate the presence
of the start-of-packet bit. The defining equation for this output is the same as
that used in the abstract specification for the receiver.

The variable ur represents a state which is true when there is a pending user
request to transmit data. The state equation for ur specifies that if there is a
pending request at time t and the SOP bit arrives at time t, then ur will become
false at time t+1, indicating that the request has been serviced by the incoming
packet. Otherwise, the next state of ur depends on the value of the request input
req. If there is a request to transmit data at time t, then ur becomes true at time
t+1. If there is no request, then the value of ur remains the same.

The equation for the output rout specifies how data from the data input is
inserted into data part of the packet on the ring. If there is a pending request
to transmit data when the SOP bit arrives at some time t, then the value on the
data input will be passed to the ring output rout at time t+1, replacing the data
bit of the incoming packet. When there is no pending request to transmit data,
or the packet has not yet arrived at the transmitter, the output value on rout is
the same as the input value on rin.

The design of the transmitter is shown in Figure 6.10. The transmitter circuit
is considerably more complex than the receiver circuit discussed in the previous
section. The circuitry used to detect the start-of-packet bit is the same as in
the receiver. But the output flip flop (the D-type on the right at the top) in the
transmitter drives a multiplexer, which selects between the data and rin inputs.
Furthermore, this output D-type is clocked by an inverted clock signal. The

129



��
�

���

�

������
���

���
��� �

soprin

ck

req

data

rin

rout

ur‘T’

Figure 6.10: Design of the Transmitter.

request input req drives the clock input of the lower D-type flip flop, which is
used to generate and store the pending request signal ur. The lower D-type is
cleared on the falling edge of the clock, by a signal coming from the qbar output
of the D-type on the right. This tricky style of TTL design caused considerable
difficulties in the formal correctness proof for this device. The intricate temporal
relationships between events in this circuit made the proof intricate as well, and—
as was also the case in the receiver proof—the circuit could not easily be broken
down into several parts that could be verified separately.

The most interesting aspect of the transmitter correctness proof, however, is
that it requires a new kind of temporal abstraction. The request wire req drives
the clock input of the lower D-type shown in Figure 6.10. This means that a
request to transmit data in fact consists of a rising edge on the input req. This
rising edge on the req input may occur asynchronously—at any time during a
clock cycle, so the sampling operator when cannot be used to construct a register
transfer level abstraction of the req input. A new abstraction operator, between,
is therefore defined to deal with this problem.

The between operator has the following formal definition:

� (s between p) n = ∃t. (Timeof n p) ≤ t ∧ t < (Timeof (n+1) p) ∧ s t

The predicate p in this definition identifies points of detailed time which are
of interest at the abstract level—in the same way that the predicate p is used
in the sampling construct ‘s when p’. As in temporal abstraction by sampling,
this predicate defines the sequence of contiguous intervals of concrete time that
correspond to successive units of abstract time. The variable s in this definition
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stands for a sequence of values num→bool at the concrete level of abstraction
from which the abstract signal s between p is constructed. The definition states
that the abstract signal s between p will be true at some abstract time n if the
signal s is true at some intermediate point of detailed time between the nth and
the (n+1)th time p is true. This ‘synchronizes’ the asynchronous signal s with
the abstract time-scale.

For the request input req of the transmitter, an appropriate abstract signal
constructed using the between operator is given by:

(Rise req) between (Fall ck)

This abstract request signal is true at some abstract time n if there is a rising
edge on the signal req at any time during the nth clock cycle—that is, at any
time between the nth falling edge of the clock and the (n + 1)th falling edge of
the clock. Thus, a request to transmit data at the abstract level corresponds to
the event of a rising edge on the physical req input at any intermediate point of
time during an interval of concrete time between falling edges of the clock.

Using the new kind of temporal abstraction expressed by between, it is possible
to state the correctness of the transmitter design as follows:

� Inf(Rise ck) ∧ ¬(ck 0) ∧ Stable rin ck ⊃
Transmitter ck sop ur req data rin rout ⊃
Trans (sop when (Fall ck))

(ur when (Fall ck))
(data when (Fall ck))
((Rise req) between (Fall ck))
(rin when (Rise ck))
(rout when (Fall ck))

The validity conditions are the same as those in the receiver correctness statement.
In particular, the stability condition on the ring input rin is again needed, since
the rin value is sometimes passed transparently through the output multiplexer
to the output rout, which is itself sampled in the falling edges of the clock. The
ring input rin is again sampled on the rising edges of the clock, and all the other
signals except the request signal req are sampled on the falling edges of the clock.
The abstract request signal is constructed using the between operator introduced
above. The model of the transmitter design given by the function Transmitter is
defined in the usual way.

The formal proof of this correctness theorem is (as was mentioned above) com-
plicated by the tightly-linked relationships between events that occur in the cir-
cuit. As with all the correctness proofs of the T-ring components, induction on
the duration of a clock cycle is a major component of the proof. But there is also
much intricate reasoning about the timing of events by symbolic manipulation of
the expressions that define the values of both internal and external wires of the
design at rising and falling edges of the clock.
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6.3.5.4 The Monitor

The monitor is very similar to the transmitter:

Monit

◦ sop
◦ ur

rin rout

zeropkt

and has a similar, but slightly more complex, abstract specification:

� Monit sop ur zero pkt rin rout =
∀t. sop(t+1) = (rin(t+1) ∧ ¬sop t) ∧
∀t. ur(t+1) = ((¬sop t ∧ ur t) ⇒ F | (pkt t ⇒ T | ur t)) ∧
∀t. rout(t+1) = ((¬sop t ∧ ur t) ⇒ T | (¬zero(t+1) ⇒ F | rin(t+1)))

The sop output for the monitor is defined in the same way as the sop outputs
of the transmitter and receiver.

Like the transmitter, the monitor also has a ur output that indicates if there is
a pending request from the user. In the monitor, however, this indicates a request
to insert a start-of-packet bit into the ring. If a start-of-packet bit is not present
on the ring input rin at time t, and there is a pending request to insert an SOP
onto the ring, then a start-of-packet bit will be inserted at time t+1. The ur flag
will therefore be cleared at time t+1. Otherwise, the next state of ur depends on
the value on the pkt input. If the pkt is true at time t, then there is a request
to create a packet on the ring, and ur becomes true at time t+1. If there is no
request on pkt, the value of ur stays the same.

The equation for the output to the ring rout shows that a start-of-packet bit
will be inserted into the bit pattern in the ring when the previous incoming bit
was not an SOP bit and there is a pending request. If an SOP bit is not being
inserted onto the ring, then the zero input can be activated to clear the ring. (The
fact that a pending request on ur blocks the zero input explains the first step in
the initialization sequence discussed on page 6.3.2.1.) When the zero is low, the
ring output has the boolean value F. Otherwise, the output value rout will be
the same as that of the ring input rin. The complexity of the monitor suggests
that it was intended to allow the creation of a T-ring slot structure with several
packets. It can be seen from this equation for rout, however, that the monitor
cannot reliably create a new packet on the ring without the danger of overwriting
the data bit of an already existing packet.

The monitor circuit design, shown in Figure 6.11, is a minor variation on the
design of the transmitter. Again, the request input (in this case pkt) is used to
trigger a D-type flip flop, and the pending request flag ur, which is generated by
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Figure 6.11: Design of the Monitor.

this flip flop, is cleared via its asynchronous clear input. The main differences are
the addition of an AND-gate to implement the active-low clear input zero, and
the presence of ‘T’ on the upper input of the multiplexer that drives the ring, to
implement the insertion of an SOP bit into the bit-pattern on the ring.

The correctness theorem for the monitor also similar to the correctness state-
ment for the transmitter:

� Inf (Rise ck) ∧ ¬(ck 0) ∧ Stable rin ck ⊃
Monitor ck sop ur pkt zero rin rout ⊃
Monit (sop when (Fall ck))

(ur when (Fall ck))
(zero when (Fall ck))
((Rise pkt) between (Fall ck))
(rin when (Rise ck))
(rout when (Fall ck))

Again, the input rin is sampled on the rising edges of the clock, the abstract
request signal is constructed using the between operator, and all other values are
sampled on the falling edges of the clock. The proof of this correctness theorem
is similar to the proof of correctness for the transmitter.

6.3.6 Correctness of the Register Transfer Design

Having completed the correctness proofs for each of the four different kinds of
components used the design of the T-ring—the delay devices, the receiver, the
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transmitter, and the monitor—the next step in the T-ring correctness proof is to
the use the abstract specifications for these devices to verify the correctness of
entire system with respect to the top-level specification described in Section 6.3.2.

Formal proofs of all the correctness results presented in the previous sections
have been done in the HOL system. The correctness statement for the next level
of the proof, however, has not been proved formally in the HOL system, but was
proved manually (i.e. ‘on paper’). The following sections give a very brief overview
of the correctness result for the T-ring at this level.

6.3.6.1 The Model

The top-level correctness proof begins with a definition of a model of the entire
T-ring network at the register transfer level of abstraction. This model describes
the network shown in Figure 6.4, is defined formally in logic as follows:

� TringRt zero pkt data req out =
∃sop1 sop2 sop3 ur1 ur2 l1 l2 l3 l4 l5 l6.

Trans sop1 ur1 data req l6 l1 ∧ Del l1 l2 ∧
Monit sop2 ur2 zero pkt l2 l3 ∧Del l3 l4 ∧
Rec sop3 out l4 l5 ∧Del l5 l6

The model is constructed from the abstract specifications of the six components in
the T-ring network, rather than from the models that describe the designs of these
components. It is this concise model of the entire ring that is to be proved correct
with respect to the top level specification. The correctness theorem based on this
abstract model of the T-ring will later be combined with the correctness results
for the each of the six components in the ring to obtain a correctness theorem for
the completely ‘concrete’ T-ring design.

6.3.6.2 The Correctness Statement

The top-level correctness statement for the T-ring is simple:

� TringRt zero pkt data req out ⊃ Tring zero pkt data req out (6.3)

This correctness theorem simply states that the T-ring specification defined in
Section 6.3.2 is a behavioural abstraction of the model defined in Section 6.3.6.1.

The proof of this top-level correctness statement will not be given here. It
involves showing that the circulating bit pattern created by setting up the slot
structure using the initialization sequence explained in Section 6.3.2 can be used
to store a packet in the ring for an indefinite period of time between data trans-
mission requests. This is done essentially by ‘simulating’ the transmission of a
packet through one complete cycle around the ring, and thereby obtaining an
assertion about the values on the transmission wires which is invariant every 24
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units of time. The data transmission part of the correctness statement then fol-
lows from this assertion, together with some simple facts about modulo arithmetic.
The proof has been done in enough detail that it should be straightforward (but
tedious) to conduct a fully formal proof using the HOL system.

6.3.7 Putting the Proof Together

In the preceding sections, the verification of the T-ring was structured into a two-
level hierarchy of correctness results. In Section 6.3.5, correctness theorems for
each of the T-ring components were discussed. And in Section 6.3.6, a correctness
theorem was given for the entire T-ring network—based on the abstract specifica-
tions of its components. In order to complete the proof, it is necessary to put these
results together to show that the T-ring circuit design at the timing level—i.e. a
model of the entire T-ring constructed from the primitive specifications for gates
and flip flops—is correct with respect to the top level specification. This must
be done to justify using only the abstract specifications of the T-ring components
when proving that the top-level specification is satisfied.

The complete T-ring design is described formally by the predicate TringIMP

defined by the equation shown below:

� TringIMP ck zero pkt data req out =
∃sop1 sop2 sop3 ur1 ur2 l1 l2 l3 l4 l5 l6.

Transmitter ck sop1 ur1 req data l6 l1 ∧
Delay ck l1 l2 ∧
Monitor ck sop2 ur2 pkt zero l2 l3 ∧
Delay ck l3 l4 ∧
Receiver sop3 ck out l4 l5 ∧
Delay ck l5 l6

In this definition, the timing level models for the transmitter, the monitor, the
receiver, and the three delay devices are simply combined using composition (‘∧’)
to obtain a model of the entire design. The data transmission wires l1, . . . , l6 that
connect these components together into a ring are treated as internal wires to the
design, and are therefore hidden (‘∃’). The three start-of-packet state variables
sop1, sop2, and sop3 are also hidden from the external environment, as are the
two user request flags ur1 and ur2.

Using the correctness theorems shown in the previous sections, and the rules for
putting together hierarchical proofs discussed in Chapter 4, it is straightforward
to derive a correctness statement for this concrete design model of the entire T-
ring system. The first step is to use the rule ∧-mono discussed in Chapter 4
to combine the correctness theorems for each of the six components used in the
design of the T-ring together into one correctness theorem for the composition of
these components. This yields the theorem shown below:
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� Inf (Rise ck) ∧ ¬(ck 0) ⊃
Transmitter ck sop1 ur1 req data l6 l1 ∧ Delay ck l1 l2 ∧
Monitor ck sop2 ur2 req zero l2 l3 ∧ Delay ck l3 l4 ∧
Receiver sop3 ck out l4 l5 ∧ Delay ck l5 l6 ⊃
(Stable l6 ck ∧ Stable l2 ck ∧ Stable l4 ck) ⊃
Trans (sop when (Fall ck))

(ur when (Fall ck))
(data when (Fall ck))
((Rise req) between (Fall ck))
(l6 when (Rise ck))
(l1 when (Fall ck)) ∧

Del (l1 when (Fall ck)) (l2 when (Rise ck)) ∧
Monit (sop when (Fall ck))

(ur when (Fall ck))
(zero when (Fall ck))
((Rise pkt) between (Fall ck))
(l2 when (Rise ck))
(l3 when (Fall ck)) ∧

Del (l3 when (Fall ck)) (l4 when (Rise ck)) ∧
Rec (sop when (Fall ck))

(out when (Fall ck))
(l4 when (Rise ck))
(l5 when (Fall ck)) ∧

Del (l5 when (Fall ck)) (l6 when (Rise ck))

The stability conditions on the wires l6, l2 and l4 are in fact satisfied by the Delay

devices which drive them. That is, it is possible to prove (again by induction on
the time between rising edges of the clock) that:

� Inf (Rise ck) ∧ ¬(ck 0) ⊃ Delay ck in out ⊃ Stable out ck

This theorem allows the stability conditions on l6, l2 and l4 in the large theorem
shown above to be dropped, since these conditions are already ensured by the
delay devices which drive these wires.

The next step is to existentially quantify the hidden wires in the both the
antecedent and the consequent of the correctness theorem shown above, using the
rule ∃-ext. Abbreviating the resulting theorem using the definitions of TringRt

and TringIMP yields:

� Inf (Rise ck) ∧ ¬(ck 0) ⊃
TringIMP ck zero pkt data req out ⊃
TringRt (zero when (Fall ck))

((Rise pkt) between(Fall ck))
(data when (Fall ck))
((Rise req) between (Fall ck))
(out when (Fall ck))
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Using the transitivity of implication (i.e. the rule sat-trans) this theorem and
the top-level correctness theorem (6.3), give a correctness statement for the entire
T-ring design:

� Inf (Rise ck) ∧ ¬(ck 0) ⊃
TringIMP ck zero pkt data req out ⊃
Tring (zero when (Fall ck))

((Rise pkt) between (Fall ck))
(data when (Fall ck))
((Rise req) between (Fall ck))
(out when (Fall ck))

This completes the T-ring verification.

6.4 Related Work

Temporal Abstraction in LCF LSM

Gordon’s LCF LSM formalism [32] includes a special-purpose inference rule for
temporal abstraction by sampling. Gordon defines an operator on state machines
which merges state transitions, yielding a machine which runs at a ‘coarser’ grain
of discrete time. The operator uses a predicate on the outputs of a state machine
to mark which sequences of state transition are to be coalesced into single state
transitions. Starting in a particular state, subsequent state transitions are merged
until this predicate becomes true of the state machine’s output values. There is
an implicit assumption that all inputs remain stable during the merged cycles.
The temporal abstraction mechanism provided by this operator was implemented
in the LCF LSM theorem prover and used in the formal verification of a simple
microcoded computer [33]. The mechanized version of the inference rule for this
operator requires a device to have a ‘done’ output to mark the end of a sequence
of merged state transitions.

Projection in Interval Temporal Logic

Moszkowski [72], writing on future research directions for interval temporal logic,
defines a projection operator for describing the behaviour of digital hardware over
intervals of time consisting of only selected points of time. Predicates containing
‘marker’ variables are used to identify the states, or points of time, which are of
interest. The role of these predicates is analogous to the role of the predicate p

in the sampling construct ‘s when p’ defined in this chapter. In Tempura [71], the
projection operator is given a slightly different definition, in which the predicates
mentioned above describe a series of consecutive subintervals of time. This version
of the ITL projection operator can executed by the Tempura interpreter. The dual
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of this executable projection operator (which is not itself executable) can be used
to describe the behaviour of a device over subintervals of time corresponding to a
series of clock cycles. The main emphasis of the discussion of temporal projection
given by Moszkowski in [72,71] is the abstract description of device behaviour at
selected points of time, rather than the formal verification of a detailed design
model with respect to such a description.

Temporal projection in ITL and Tempura is also discussed by Hale in [39,40].
In [39], Hale shows how the T-ring network discussed in this chapter can be spec-
ified formally in ITL, and shows how the ITL specification of the T-ring can be
executed in Tempura to simulate the operation of T-ring network. The formula-
tion of a correctness statement in ITL for the receiver node of the T-ring is also
discussed. The Tempura version of the temporal projection operator is used to
state the correctness of the receiver with respect to a specification at a higher level
of temporal abstraction. The receiver circuit design in this correctness statement
differs from the receiver circuit verified in this chapter. In particular, Hale avoids
the complexity introduced by the timing scheme discussed above in Section 6.3.3
by having values on the ring change on the rising edges of the clock, rather than
on the falling edges of the clock. The correctness of the monitor and transmitter
designs are not considered in [39].

Higher Order Logic: HOL

The work most closely related to the particular formulation of temporal abstrac-
tion by sampling developed in this chapter is the work on temporal abstraction
reported by Herbert in [48]. Herbert defines a higher order predicate ‘UP OF ck n t’
which is equivalent to the following instance of the more general Istimeof predicate
defined above in Section 6.1.2.1: ‘Istimeof(Rise ck) n t’. Herbert also defines a
sampling function ABS by the equation:

� ABS select sig n = sig(ε λt. select n t)

and uses this function to construct an abstract signal ‘ABS(UP OF ck) sig’ by
sampling the detailed signal sig on the rising edges of the clock ck. This is
construction is equivalent to sampling the signal sig using the when operator
defined in Section 6.1.3 as follows: ‘sig when (Rise ck)’.

The main difference between these two formulations is that all the constructs
for temporal abstraction by sampling defined in this chapter (e.g. s when p) are
parameterized by a predicate p that identifies the points of time at which a signal
is to be sampled, while the UP OF construct which forms the basis of Herbert’s
work is a specialized predicate for sampling on only the rising edges of a clock.
Herbert mentions [48, page 128] that constructs analogous to UP OF can be de-
fined for sampling on the falling edges of a clock, but considers only examples in
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which sampling in fact occurs on the rising edges of a clock. (In the examples
presented by Herbert, every flip flop is triggered on the rising edges of a global
clock.) In short: the two approaches are very similar, but the constructs for
temporal abstraction defined in the present work (Timeof, when, etc.) are more
general than those defined by Herbert in [48]. Furthermore, temporal abstraction
relationship of the kind involving the between operator defined Section 6.3.5.3 are
not considered in Herbert’s work.

There are also differences of emphasis between the examples given by Herbert
in [48] and the T-ring example presented in this chapter. The examples presented
by Herbert involve a detailed analysis of the timing conditions that must hold
for a temporal abstraction to be valid (e.g. conditions on clock periods, set-up
and hold times, etc.). A formal approach to timing analysis is one of the main
contributions of Herbert’s work. By contrast, details about system timing were for
the most part ignored in the T-ring example. The emphasis of the present work
is on finding general and widely applicable constructs (e.g. ‘when’) for relating
signals at different levels temporal abstraction, rather than on detailed timing
analysis. The aim of the T-ring example was to show how these constructs can be
used when an abstraction relationship involves more than just sampling on one
kind of event (e.g. rising edges of the clock).

The when operator and the associated functions Istimeof and Timeof defined in
this chapter have been adopted in the work on hardware verification using higher
order logic discussed by Dhingra in [21] and by Joyce in (for example) [54,56].
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Chapter 7

Abstraction between Models

In this chapter, an example is given to illustrate the idea of a relationship of
abstraction between two models of hardware behaviour which was introduced in
Section 4.2 of Chapter 4. The two models considered in this example are the
threshold switching model of transistor behaviour defined in Chapter 5 and the
simpler switch model of transistor behaviour defined in Chapter 2.

Both of these formal models of the behaviour of CMOS circuit designs are,
of course, abstractions of the physical reality they represent, and both models
are therefore bound to be inaccurate in some respects. But the switch model of
transistor behaviour is also an abstraction of the threshold switching model, in the
sense that both models describe the same set of primitive components—power,
ground, N-type and P-type transistors—but the switch model presents a more
abstract view of the behaviour of these components than the threshold switching
model. The threshold switching model reflects the fact that real CMOS transistors
do not pass both logic levels equally well. But in the more abstract (and therefore
simpler) switch model, this aspect of transistor behaviour is ignored: transistors
are modelled as if they were ideal boolean switches.

The switch model is therefore a less accurate formal model of CMOS behaviour
than the threshold switching model. A circuit that can be proved correct using the
switch model may in fact be incorrect according to the more accurate threshold
switching model. For certain circuits, however, the two models are effectively
equivalent. For these circuits, a proof of correctness in the switch model amounts
to a proof of correctness in the threshold switching model; the switch model is
an adequate basis for verification of these circuits, and the extra accuracy of the
more complex threshold switching model is not needed.

In this chapter, the abstraction relationship between these two formal models
of CMOS circuit behaviour is formalized in logic by means of semantic functions
defined on a concrete recursive type circ. This recursive type is an instance of
the general class of concrete types discussed in Chapter 5, and can be defined
formally (and automatically) using the method for defining types explained in
Appendix A. The type circ is used to formulate a theorem that describes the
conditions under which correctness results obtained in the simple switch model of
transistor behaviour are effectively equivalent to correctness results obtained in
the more complex threshold model of transistor behaviour.
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7.1 Representing the Structure of MOS Circuits

In this section, a specially-defined recursive type ‘circ’ is introduced to provide
an explicit representation in logic for the structure of the class of all CMOS circuit
designs. The motivation for introducing this recursive type is that it makes it
possible for assertions about the abstraction relationship between the two CMOS
transistor models considered in this chapter to be stated and proved as theorems of
higher order logic, rather than meta-theorems about provability in the logic. The
advantage of this approach is that it allows the formal proofs of these theorems
to be checked mechanically using the HOL theorem prover—all the theorems in
this chapter have been proved completely formally using the HOL system.

Formally, a transistor model is just set of logical terms, each of which is intended
to describe one of the primitive components from which CMOS circuits are built.
The model of any particular circuit design is also a logical term, constructed by
applying the syntactic operations of composition ∧ and hiding ∃ to instances of
these primitives. The syntactic structure of such a model mirrors the structure of
CMOS circuit it describes: where the circuit contains two parts wired together, the
model contains a subterm of the form ‘tm1 ∧ tm2’; and where the circuit contains
an internal wire, the model contains a subterm of the form ‘∃w. tm’.

The set of all CMOS design models is a set of logical terms—i.e. a subset of the
formal language of terms in higher order logic. For example, the set of all design
models constructed from the switch model primitives defined in Chapter 2 is the
smallest set of logical terms T such that: T contains every instance of the primitive
specifications ‘Pwr p’, ‘Gnd g’, ‘Ntran(g, s, d)’ and ‘Ptran(g, s, d)’, and T is closed
under the syntactic operations of conjunction ‘∧’ and existential quantification
‘∃’. Similarly, the set of all design models in the threshold switching model of
CMOS behaviour is the smallest set of logical terms that can be built up using ∧
and ∃ from instances of the threshold switching primitives defined in Chapter 5.

The idea proposed in this chapter is to use a specially-defined concrete recursive
type circ to embed the syntax of these subsets of higher order logic within the logic
itself. This allows metalinguistic quantification over the set of all design models
to be replaced by explicit quantification within the logic over values of type circ.
The set of values denoted by circ provides formal representation in logic of the
syntax of a language of circuit terms, whose expressions describe how circuits
are built up from their constituent parts.1 A circuit term is either a primitive
expression that denotes a basic component (i.e. power, ground, an N-type or P-
type transistor), or a composite expression that denotes a circuit built up by the
operations of composition and hiding. The concrete recursive type circ defined
below denotes the set of all such circuit terms.

1The type circ defined in this section is a formalization in higher order logic of the algebraic
approach used by Cardelli [12] and Winskel [86] to model circuit designs.
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7.1.1 The Type of Ascii Character Strings

With the direct approach to modelling hardware behaviour in logic, where the
model of a hardware design is just a boolean-valued logical term, the external
wires of a circuit design are simply represented by free variables in the model
of its behaviour. The first step in the formal definition of the type circ, which
embeds the syntax of design models as a set of values within the logic, is to define
a type of ascii character strings to represent the names of the wires in a CMOS
device. This type is a straightforward instance of the class of concrete recursive
types discussed in Chapter 5, and can be defined as follows.

Using the notation for describing concrete types introduced in Section 5.1.2 of
Chapter 5, a logical type ascii which denotes the set of all 7-bit ascii character
codes can be defined (informally) by the equation shown below.

ascii :: = Ascii bool bool bool bool bool bool bool

The type ascii described by this equation provides a formal representation in logic
for the set of all 7-bit ascii character codes. Each character is represented by a
value of type ascii obtained by applying the function Ascii to the seven boolean
values in its ascii character code. The letter ‘a’, for example, has the 7-bit ascii
code ‘1100001’ and is represented formally by the term ‘Ascii T T F F F F T’. The
7-bit ascii code for any other ascii character can likewise be represented in logic
by a value of type ascii constructed using the function Ascii.

Given this representation of 7-bit ascii character codes, a logical type of ascii
character strings can be defined informally by the equation shown below.

str :: = Empty | String ascii str

The concrete recursive type str described by this equation is similar to the type
of finite lists discussed in Chapter 5. Every value of type str consists of a finite
sequence of ascii character codes constructed using the function String from the
empty string represented by the constant Empty. For example, the character
string ‘ab’ is represented by the term:

String (Ascii T T F F F F T) (String (Ascii T T F F F T F) Empty)

Any finite-length string of ascii characters can be represented formally in logic by
a value of type str constructed using the functions String, Ascii, and the constant
Empty in a similar way.

To provide a concise notation for writing terms that represent ascii character
strings, the following notation for string constants is introduced. A string constant
is a constant of type str written between single quotes as follows: 'c1 . . . cn'. Such
a constant should be regarded as an object language abbreviation for the value
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of type str that represents the ascii character string ‘c1 . . . cn’. String constants
written in this notation are simply defined constants introduced to abbreviate
logical terms of type str constructed using the boolean constants T and F, and
the constructors String, Ascii, and Empty. For example, the string constant 'ab'

is defined by:

� 'ab' = String (Ascii T T F F F F T) (String (Ascii T T F F F T F) Empty)

and abbreviates the term of type str which represents the string ‘ab’.
The theorems of higher order logic which characterize the defined types ascii

and str have the form discussed in Section 5.1.2 of Chapter 5:

� ∀f. ∃!fn. ∀b7 b6 b5 b4 b3 b2 b1. fn(Ascii b7 b6 b5 b4 b3 b2 b1) = f b7 b6 b5 b4 b3 b2 b1

� ∀e f. ∃!fn. (fn Empty = e) ∧ (∀c s. fn(String c s) = f (fn s) c s)

These theorems can be derived from appropriate formal definitions of the type
constants ascii and tri using the method explained in Appendix A. (In the HOL
implementation of this method, these theorems are proved automatically.) The
standard properties discussed in Section 5.1.2.2 of Chapter 5 follow from these
abstract characterizations of the types ascii and str. In particular, it follows
from the two theorems shown above that the functions Ascii and String are one-
to-one, and that every value of type str can be obtained using these functions and
the constant Empty. Two values of type str are therefore equal exactly when they
represent the same finite sequence of ascii characters. This property was used in
the formal proofs of the theorems about particular CMOS circuit designs given in
subsequent sections of this chapter.

7.1.2 The Type of Circuit Terms

Given the type str defined above, the syntax of circuit terms can be represented
formally in logic by the recursive type circ defined (using the informal notation
introduced in Chapter 5) by the following equation:

circ :: = Pwr str | Gnd str | Ntran str str str |
Ptran str str str | Join circ circ | Hide str circ

This equation defines a recursive type circ with six constructors, corresponding
to the six different syntactic constructs in the abstract syntax of the language
it represents. The first four constructors represent the primitive CMOS devices
power, ground, N-type transistors, and P-type transistors. These four constructors
are simply functions that map wire names (modelled by strings) to values of type
circ. The constructor Pwr:str→circ, for example, maps a value s of type str to
a circuit term ‘Pwr s’ which represents a power node. Similarly, the constructor
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for N-type transistors, Ntran:str→str→str→circ, maps three strings to a value of
type circ that represents an N-type transistor. For example, a circuit term of the
form ‘Ntran g s d’ stands for an N-type transistor with gate labelled by the string
g, source labelled by the string s, and drain labelled by the string d.

The other two constructors, Join and Hide, represent composition and hiding
operations which are used to construct circuit terms that model composite CMOS
circuit designs. These two constructors are recursive functions that map values of
type circ to values of type circ. The function Join:circ→circ→circ represents the
composition operation on circuit terms. If c1 and c2 are two values of type circ,
then the circuit term ‘Join c1 c2’ represents the composition of the two circuits
represented by c1 and c2. The function Hide:str→circ→circ represents the hiding
operation on circuit terms. If c is a circuit term and s is a string, then the circuit
term ‘Hide s c’ represents the circuit obtained by hiding the wire labelled s in the
circuit represented by c.

The recursive type circ provides an explicit representation in logic for the
structure of the class of all CMOS circuit designs. A circuit term that models the
structure of any particular circuit can built up using the six constructors discussed
above. For example, a circuit term Inv which models the structure of the CMOS
inverter considered in Chapter 3 can be defined formally in logic as shown in
Figure 7.1. The circuit term shown in this diagram is structurally isomorphic to
the logical terms used to model the CMOS inverter design in Chapters 3 and 5.
The input and output wires of the inverter circuit are modelled by the strings 'i'
and 'o', and the two internal wires are modelled by the strings 'p' and 'g'. The
circuit term denoted by Inv is built up from the circuit terms for the primitive
components in the inverter design using the constructors Join and Hide. The
circuit term for any other CMOS design can also be constructed (in the obvious
way) using the functions Pwr, Gnd, Ntran, Ptran, Join, and Hide.

As was discussed in Section 5.1.2 of Chapter 5, the logical type circ described
informally by the equation shown above can be defined formally in higher order
logic (and automatically in HOL) using the method for defining concrete types

�
�

'i' 'o'

'p'

'g'

� Inv = Hide 'p' (Hide 'g'
(Join (Join (Pwr 'p') (Ntran 'i' 'g' 'o'))

(Join (Gnd 'g') (Ptran 'i' 'p' 'o'))))

Figure 7.1: The Circuit Term for a CMOS Inverter.
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explained in Appendix A. The abstract characterization for the concrete recursive
type circ derived by this method is a primitive recursion theorem of the kind
discussed in Chapter 5:

� ∀f1 f2 f3 f4 f5 f6. ∃!fn.
∀p. fn(Pwr p) = f1 p ∧
∀g. fn(Gnd g) = f2 g ∧
∀g s d. fn(Ntran g s d) = f3 g s d ∧
∀g s d. fn(Ptran g s d) = f4 g s d ∧
∀c1 c2. fn(Join c1 c2) = f5 (fn c1) (fn c2) c1 c2 ∧
∀s c. fn(Hide s c) = f6 (fn c) s c

(7.1)

This theorem asserts the unique existence any primitive recursive function defined
by cases on the six constructors of the concrete recursive type circ. As was
discussed in Chapter 5, this property can be used to justify the introduction of
function constants that denote primitive recursive functions on circ. The principle
of structural induction on circ also follows formally from this theorem. These
properties are used in the formal proofs of the theorems discussed in the sections
that follow.

7.2 Defining the Semantics of CMOS Circuits

The recursive type circ defined in the previous section denotes a set of values
whose structure mirrors the way in which CMOS circuits are built up from their
primitive components. This provides an embedded language of circuit terms in
higher order logic for modelling the purely structural aspect of the class of all
CMOS circuit designs. The following sections show how the behaviour of this class
of circuit designs can also be modelled in logic, by defining a formal semantics for
this language. The semantics of circuit terms will be defined in two different ways.
One of these corresponds to the switch model of transistor behaviour defined
in Chapter 3, and the other corresponds to the threshold switching model of
transistor behaviour defined in Chapter 5.

For both transistor models, the semantics of circuit terms will be based on the
idea of an environment. An environment is a function e:str→ty that maps wire
names (modelled by strings) to values. Such a function assigns a value ‘es’ to every
external wire s of a device, and thus describes a possible pattern of communication
with the ‘environment’ in which a device operates. In the switch model, values on
the wires of a device are represented by booleans. An environment in this model
is therefore a function e:str→bool which assigns a value ‘e s’ of type bool to every
wire name s. This associates a boolean logic level with every external wire of a
CMOS device. In threshold switching model, the values present on the wires of
a device are modelled by the three-valued type tri introduced in Section 5.2.2 of
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Chapter 5. In this model, an environment is a function of type str→tri, which
assigns a value of type tri to each external wire of a device.

Using this idea of an environment, a denotational semantics can be given to
circuit terms by defining by a ‘meaning’ function M that maps circuit terms to
predicates on environments. The precise definition of this function will depend
on the model of transistor behaviour which is used, but the basic idea is to define
a function M such that for every circuit term c, the application ‘M c’ denotes a
predicate which is satisfied by only those environments that represent allowable
configurations of values on the wires of the circuit represented by c. For any
environment e, the expression M c e will then be true exactly when e represents a
configuration of externally observable values that could occur on the wires of the
CMOS circuit represented by the circuit term c.

7.2.1 The Switch Model Semantics

The semantic function Sm for the switch model is defined by primitive recursion
on circuit terms. This function has logical type circ→((str→bool)→bool). When
applied to a circuit term c, it yields a predicate Sm c on environments of type
str→bool. The primitive recursive definition of Sm is:

� Sm (Pwr p) e = (e p = T)
� Sm (Gnd g) e = (e g = F)
� Sm (Ntran g s d) e = e g ⊃ (e d = e s)
� Sm (Ptran g s d) e = ¬(e g) ⊃ (e d = e s)
� Sm (Join c1 c2) e = Sm c1 e ∧ Sm c2 e
� Sm (Hide s c) e = ∃b. Sm c λst. (st=s ⇒ b | e st)

The validity of this primitive recursive definition is justified formally by the
characterization of the defined type circ given by theorem (7.1) on page 145.

The first four equations in this recursive definition of the semantic function Sm

define the semantics of primitive devices: power, ground, N-type transistors, and
P-type transistors. Each equation states what must be true of an environment
in which the corresponding component is operating. The equation for Ntran,
for example, states what must be true in any environment in which an N-type
transistor with gate g, source s, and drain d is placed. This equation imposes the
constraint that any environment e which assigns the value T to g must also assign
equal values to d and s. The three other equations define the semantics of power,
ground, and P-type transistors in a similar way.

The last two equations shown above define the semantics of composition and
hiding. The semantic equation for the constructor Join states that an environment
e is a possible assignment of values to the wires in a composition of two circuits
exactly when it is a possible assignment of values to the wires of both subcircuits.
The equation for Hide uses existential quantification to isolate the hidden wire
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from the environment. It states that e is a possible environment for the circuit
represented by ‘Hide s c’ exactly when there exists some environment which is
allowed by the semantics of c and which differs from e only in the boolean value
it assigns to the string s.

The theorems shown above define the value of the semantic function Sm for
any circuit term c and environment e, and thereby constitute a semantics for the
class of all CMOS circuit design. The switch model semantics of any particular
circuit design can derived formally using these recursive defining equations for
the function Sm. For example, one can prove the following theorem about the
semantics of the circuit term Inv defined above in Figure 7.1:

� Sm Inv e = (e 'o' = ¬(e 'i'))

This theorem is exactly analogous to the inverter correctness theorem proved
in Section 3.4.4 of Chapter 3. It can be proved by first computing the switch
model semantics of Inv using the defining equations for Sm, and then deriving the
correctness result by a sequence of steps which are very similar to those used in
the proof given in Chapter 3. The theorem states that in the switch model of
CMOS behaviour given by the meaning function Sm, the behaviour of the circuit
design represented by the circuit term Inv is indeed that of an inverter—in every
environment e, the boolean value on the output 'o' is the negation of the boolean
value on the input 'i'.

7.2.2 The Threshold Model Semantics

In the threshold switching model, signals on circuit nodes are modelled by values of
type tri. The semantics of circ for the threshold switching model will therefore be
given by a function Tm from circ to predicates on environments of type str→tri.
The function Tm is defined by primitive recursion as follows:

� Tm (Pwr p) e = (e p = Hi)
� Tm (Gnd g) e = (e g = Lo)
� Tm (Ntran g s d) e = (e g = Hi) ⊃ ((e d = Lo) = (e s = Lo))
� Tm (Ptran g s d) e = (e g = Lo) ⊃ ((e d = Hi) = (e s = Hi))
� Tm (Join c1 c2) e = Tm c1 e ∧ Tm c2 e
� Tm (Hide s c) e = ∃v. Tm c λst. (st=s ⇒ v | e st)

This definition is similar to the recursive definition of the semantic function for
the switch model semantic of circuit terms. The difference is that the function
Tm defined here is defined for environments of type str→tri, and the threshold
switching model of CMOS behaviour is used in the defining equations for the
primitive devices Pwr, Gnd, Ntran, and Ptran. The semantics of composition and
hiding are the same as in the switch model.
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Like the defining equations for the semantic function Sm, the equations shown
above for the semantic function Tm can be used to derive assertions about the
behaviour of any CMOS circuit design. For example, one can prove from the
defining equations for Tm that the inverter circuit represented by the circuit term
Inv has the threshold model semantics given by the following theorem:

� Tm Inv e = ((e 'i' = Hi) ⊃ (e 'o' = Lo)) ∧ ((e 'i' = Lo) ⊃ (e 'o' = Hi))

Here, the model of CMOS circuit behaviour used is the threshold switching model
discussed in Chapter 5. The theorem shows that in any environment e in which
the input 'i' has either the value Hi or the value Lo, the output 'o' must have the
value Lo or the value Hi, respectively.

7.3 Defining Satisfaction

Given the two semantic functions defined in the preceding sections, it is possible
to formulate an assertion in the logic that describes the conditions under which
a correctness result obtained in the switch model of CMOS designs amount to a
correctness correctness result in the threshold switching model of CMOS designs.
The first step in formulating this assertion is to define what it means for a circuit
design to satisfy a specification of required behaviour in a given transistor model.

In the following definition of satisfaction, c is a circuit term representing a
CMOS circuit design, M stands for a semantic function on circuit terms, S is an
abstract specification of required behaviour, a is a data abstraction function, and
C is a validity condition on the abstraction relationship between the semantics of
the circuit design given by ‘M c’ and the abstract specification S:

� Sat M c C a S = ∀e:str→α. C e ⊃ (M c e ⊃ S(a ◦ e)) (7.2)

This definition formalizes correctness as a relationship of data abstraction between
the design model for the CMOS circuit represented by the circuit term c and the
abstract specification of required behaviour S. Expressed in the notation used in
Chapter 4, an abstraction relationship of this kind would be written:

� C[c1, . . . , cn] ⊃ M [c1, . . . , cn] sat
F

S[a1, . . . , an] where F = a

The type variable α in definition (7.2) stands for the type used to model the
values on the wires of a circuit. This type would be bool in the switch model
semantics given by Sm and tri in the threshold switching semantics given by Tm.
The variable S stands for an abstract specification of intended behaviour, and
ranges over predicates on environments of type str→β. The variable a:α→β is
a data abstraction function that maps values of the concrete type α used in the
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model of circuit behaviour to values of the abstract type β. The variable C is a
predicate on environments of type str→α, and represents a validity condition on
the correctness relationship expressed by definition (7.2).

The definition of Sat states that in a transistor model M , the CMOS circuit c is
correct with respect to an abstract specification S if for every environment e that
is allowed by the semantics M c and satisfies the validity condition C, the abstract
environment a ◦ e satisfies the abstract specification S. Composition on the left
with the data abstraction function translates an environment e of type str→α,
which assigns a concrete value e s of type α to each string s, into a corresponding
environment a ◦ e of type str→β, which assigns the corresponding abstract value
a(e s) to each string.

7.4 Correctness in the two Models

In the switch model, a specification of required behaviour is simply predicate on
environments of type str→bool. A formal specification Not for the inverter circuit
discussed above, for example, can be defined by the equation shown below.

� Not e = (e 'o' = ¬(e 'i'))

Here, the function Not is simply a predicate on switch model environments which
describes what must hold of the environment e of correctly functioning inverter
with input 'i' and output 'o'. Using the satisfaction relation Sat defined in
the previous section, a switch model correctness theorem for the inverter circuit
represented the circuit term Inv defined on page 144 can be written:

� Sat Sm Inv true id Not where � true e = T and � id b = b

Here, the validity condition true is simply the condition which is true of every
switch model environment e, and the data abstraction function id is simply the
identity function on bool. The correctness theorem shown above simply states
that the inverter circuit Inv is correct in the switch model Sm with respect to the
specification Not. The data abstraction function and validity condition are trivial,
and the correctness theorem is in fact equivalent to the assertion:

� ∀e. Sm Inv e ⊃ (e 'o' = ¬(e 'i'))

In the analysing the formal relationship between the switch model defined by Sm

and the threshold switching model defined by Tm, only switch model correctness
results of the kind illustrated by this example will be considered, where correctness
is stated using the identity data abstraction function id and the trivially-satisfied
validity condition true.
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In the threshold model, a specification of required behaviour is predicate on
environments of type str→tri. To formulate the relationship between the two
transistor models, correctness results in the switch model must be related to
equivalent correctness results in the threshold switching model. This can be done
by using the threshold model validity condition def and the data abstraction
function abs defined formally by the equations shown below.

� def e = ∀s.¬(e s = X)
� (abs Hi = T) ∧ (abs Lo = F)

The validity condition def states that a threshold switching model environment
e:str→tri assigns only the strongly-driven value Hi or the strongly-driven value
Lo to every string s. That is, no wire s in the environment e has the degenerate
logic level modelled by the third value ‘X’ of type tri. The function abs:tri→bool

is the data abstraction function defined formally in Chapter 5.
Using these two constants, any switch model correctness result of the kind

discussed above can be reformulated as a correctness result with respect to an
abstract specification in the threshold switching model. Consider, for example,
the switch model correctness result for the inverter circuit discussed above. The
correctness of the inverter circuit represented by Inv with respect to the abstract
specification Not can be expressed in the threshold model Tm by the theorem
shown below.

� Sat Tm Inv def abs Not

Expanding this theorem with the definitions of the satisfaction relation Sat, the
validity condition def, and the specification of required behaviour Not gives the
following equivalent threshold model correctness theorem:

� ∀e. (∀s.¬(e s = X)) ⊃ (Tm Inv e ⊃ (abs(e 'o') = ¬(abs(e 'i'))))

This theorem states that in a well-behaved environment e, where no external wire
has the degenerate value X, the inverter circuit modelled by Inv is correct with
respect to the abstract specification of intended behaviour for an inverter.

In general, any switch model correctness assertion ‘Sat Sm c true id S’, where
c:circ is a circuit term and S:(str→bool)→bool is a switch model specification
of required behaviour, can be expressed in the threshold model by a correctness
assertion of the form ‘Sat Tm c def abs S’, where S is treated as an abstract
specification of required behaviour. This translation of switch model correctness
statements into equivalent threshold model correctness statements is the basis for
the formulation of the abstraction relationship between the two models discussed
in the sections that follow.
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7.5 Relating the Models

Using the formalization of satisfaction and correctness introduced above, it is
possible to formulate assertions about the abstraction relationship between the
two CMOS transistor models defined by the semantic functions Sm and Tm. In
particular, it is possible to express the idea that for some condition on circuit
terms Wb, the two models of transistor behaviour agree on the correctness results
that can be proved about circuits that satisfy this condition:

� ∀c. Wb c ⊃ ∀S. Sat Sm c true id S = Sat Tm c def abs S (7.3)

Informally, this theorem states if circuit term c satisfies the condition Wb, then
for any specification S, the CMOS circuit design represented by c is correct with
respect to S in the switch model exactly when it is correct with respect to S in
the threshold model. The simple switch model is therefore an adequate basis for
correctness proofs of circuits which satisfy the condition Wb. For these circuits,
there is no point in using the more complex threshold switching model, since the
two models agree on the abstract specifications that these circuits satisfy.

Theorem (7.3) is an explicit and rigorous formulation in higher order logic of
the notion that the switch model of CMOS behaviour introduced in Chapter 2 is
an abstraction of the threshold switching model of CMOS behaviour introduced
in Chapter 5. That the switch model is an abstraction (i.e. a simplification) of
the threshold model is expressed formally by the fact that the theorem shown
above asserts only that some of the correctness results provable in the detailed
threshold model—namely correctness theorems based on the data abstraction
function abs and qualified by the validity condition def—are also provable in the
more abstract switch model. The predicate Wb expresses a validity condition on
this abstraction relationship between the two models. For circuits that satisfy
this validity condition, any proposition about correctness in the switch model is
equivalent to the corresponding proposition about correctness in the threshold
model. For the class of circuits that satisfy the condition Wb, the switch model
is a valid abstraction of the more detailed threshold model, in the sense that it
cannot be used to prove a correctness result that does not also hold in the more
accurate threshold model.

The formal definition of the validity condition Wb in theorem (7.3) and an
overview of the formal proof of this theorem are given in the two sections that
follow. The proof is done in two parts. It is first shown in Section 7.5.1 that for
any CMOS circuit design, a correctness result in the threshold model implies a
correctness result in the simpler switch model. The conditional equivalence given
by theorem (7.3) is then derived in Section 7.5.2 by defining the condition Wb and
proving that the converse implication holds for circuits that satisfy this condition.
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7.5.1 Correctness in Tm implies Correctness in Sm

Theorem (7.3) states that propositions about correctness in the two models of
CMOS behaviour are equivalent for the class of circuit designs that satisfy the
condition on circuit terms Wb. In fact, for any circuit term c, a correctness result
in the threshold model of CMOS behaviour implies a correctness result in the
simpler switch model of CMOS behaviour:

� ∀c S. Sat Tm c def abs S ⊃ Sat Sm c true id S (7.4)

It is only necessary to impose the condition Wb on circuit terms in order to prove
the converse implication. This result is exactly what one would expect. If a circuit
can be proved correct using the detailed threshold model, then it must also be
correct according to the more abstract—but less accurate—switch model. The
problem comes in proving the converse implication: that correctness in the simple
switch model implies correctness in the more accurate threshold model. Because
the switch model ignores threshold effects, the converse of implication (7.4) does
hold for every circuit term c, and it is therefore necessary to impose the condition
Wb on circuit terms in order to make the models agree on correctness. This is
considered in Section 7.5.2.

The first step in the formal proof theorem (7.4) is to define a representation
function which is the right inverse of the data abstraction function abs. The
required function rep:bool→tri is straightforward to define by cases on bool such
that it has the following property:

� (rep T = Hi) ∧ (rep F = Lo)

Given this representation function, it is possible to formulate the following key
lemma about the satisfaction of an abstract specification S in the threshold model
of CMOS behaviour given by Tm:

� Sat Tm c def abs S = ∀e. Tm c (rep ◦ e) ⊃ S e (7.5)

This lemma shows that satisfaction of an abstract specification S in the threshold
model is equivalent to the assertion that for every threshold model representation
‘rep ◦ e’ of a switch model environment ‘e’, if ‘rep ◦ e’ is allowed by the threshold
model semantics, then the switch model environment e is also allowed by the
abstract specification S. The proof of this lemma is straightforward, and follows
immediately from the fact that the data representation and abstraction functions
abs and rep have the following properties:

� def(rep ◦ e) � abs ◦ rep ◦ e = e � def e ⊃ rep ◦ abs ◦ e = e

These theorems about abs and rep show that there is an isomorphism between
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abstract environments of type str→bool and the set of all concrete environments
of type str→tri that satisfy the validity condition def. Satisfaction of an abstract
specification S in the threshold model qualified by the validity condition def is
therefore equivalent to satisfaction of S by an abstract environment e for which
the corresponding concrete environment rep ◦ e is allowed by the threshold model
semantics.

Given this lemma, the formal proof of theorem (7.4) reduces to proving the
following equivalent theorem about the relationship between satisfaction in the
threshold model and satisfaction in the switch model:

� ∀c S. (∀e. Tm c (rep ◦ e) ⊃ S e) ⊃ (∀e. Sm c e ⊃ S e)

The variable S in this theorem stands for an arbitrary predicate on switch model
environments of type str→bool. It is straightforward to show that it is sufficient
to consider only the strongest predicate that satisfies the left hand side of the
implication—namely the predicate denoted by λe. Tm c (rep ◦ e). The proof of
theorem (7.4) can therefore be further reduced to proving the equivalent assertion:

� ∀c e. Sm c e ⊃ Tm c (rep ◦ e) (7.6)

This theorem states that for every environment e which is allowed by switch model
semantics, the corresponding environment rep ◦ e in which the boolean values T

and F are represented by the values Hi and Lo, is allowed by the threshold model
semantics. This final lemma follows easily by structural induction on the circuit
term c, and completes the formal proof of theorem (7.4).

7.5.2 Conditional Equivalence of the two Models

The preceding section has shown that a correctness result in the threshold model
implies a correctness result in the simpler switch model. The converse implication,
however, does not always hold. Some CMOS circuit designs which can be proved
correct with respect to a specification S in the switch model are not correct with
respect to S in the threshold switching model. Formally, one can prove that:

� ¬∀c S. Sat Sm c true id S ⊃ Sat Tm c def abs S (7.7)

The CMOS circuit shown Figure 7.2 on page 154 provides a counterexample
by which this negative result can be proved. This circuit is intended to be an
implementation of the one-bit comparator specified by:

Cmp
'b'
'a'

'o' � Cmp e = (e 'out' = (e 'a' = e 'b'))

This specification describes a device with two boolean inputs 'a' and 'b' and one
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� Cmpr = Hide 'w' (Join Xor (Inv 'w' 'o'))

� Xor = Hide 'i' (Join (Inv 'a' 'i')
(Join (Ptran 'a' 'b' 'w')

(Ntran 'i' 'b' 'w')))

� Inv i o = Hide 'p' (Hide 'g'
(Join (Join (Pwr 'p') (Ntran i 'g' o))

(Join (Gnd 'g') (Ptran i 'p' o))))

�
�

�

'w'
'b'

'a'

'i'


 �

�

'o'

Figure 7.2: An Incorrect CMOS Comparator.

boolean output 'o'. The device compares the values on the input wires 'a' and
'b'. If these input values are equal, then the value on the output 'o' is true.
Otherwise the value on the output 'o' is false.

The CMOS circuit shown in Figure 7.2 is intended to implement the comparator
behaviour specified by the predicate Cmp defined above, but is in fact composed
of an incorrect exclusive-or gate Xor connected to an inverter by the internal wire
'w'. The exclusive-or circuit modelled by the circuit term Xor shown in this
diagram is given in [11] as an example of a CMOS design which can be proved
correct using the switch model of transistors, but which is in fact incorrect due
to the threshold switching behaviour of its transistors.

According to the simple switch model of CMOS circuit behaviour, the circuit
shown in Figure 7.2 a correct implementation of the one-bit comparator specified
by the predicate Cmp defined above. It is straightforward to prove the following
correctness result for this circuit in the switch model:

� Sat Sm Cmpr true id Cmp

This theorem states that the circuit modelled by the circuit term Cmpr is correct
with respect to the specification Cmp. According to the more accurate threshold
switching model, however, the circuit represented by Cmpr is not correct with
respect to the abstract specification Cmp. Formally:

� ¬Sat Tm Cmpr def abs Cmp

That is, the circuit design represented by the circuit term Cmpr does not satisfy
the abstract specification Cmp under the validity condition def.

The problem with the comparator circuit is that, for certain input values,
the value on the internal wire 'w' can be the degraded logic level X because of
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threshold effects. If the input 'a' is Lo and the input 'b' is Hi then the value
on the hidden wire 'w' can be either Hi or X. This means that the voltage on
'w' may be too low to drive the gates of the transistors in the output inverter.
In the threshold model, the output 'o' is not forced to be the correct value Lo

in this case, and the circuit therefore fails to satisfy the abstract specification of
required behaviour given by Cmp. The problem is, of course, completely invisible
to the switch model of CMOS behaviour, and the device is (incorrectly) regarded
as correct in this simpler model.

The problem with the incorrect comparator circuit shown in Figure 7.2 can
be detected in the threshold model because there is an environment e which
satisfies the validity condition def e and the constraint Tm Cmpr e, but which does
not satisfy the constraint Cmp (abs ◦ e) imposed by the specification of required
behaviour. In particular, there is a threshold model environment e that satisfies
both the validity condition and the model, and makes the following assignment
of values to the external wires of the device:

e 'a' = Lo, e 'b' = Hi, and e 'o' = Hi.

For this environment, it is not only the case that the threshold model semantics
allows the internal wire 'w' to have the value X, but that the threshold model
semantics forces the internal wire 'w' to have the value X.

This observation motivates the following recursive definition of a predicate on
circuit terms which rules out circuits with internal wires that can be forced to
have the value X, and therefore expresses a condition which is sufficient to make
the two transistor models agree on correctness results. For the circuit terms that
model primitive devices, and for circuit terms constructed using the function Join,
the defining equations for the condition Wb are:

� Wb (Pwr p) = T
� Wb (Gnd p) = T
� Wb (Ntran g so dr) = T
� Wb (Ptran g so dr) = T
� Wb (Join c1 c2) = Wb c1 ∧Wb c2

These equations simply state that the primitive devices satisfy the condition Wb,
and that a composite circuit design satisfies Wb if its subcomponents do. To
rule out internal wires whose value must be X for some external environment, the
defining equation for Wb is:

� Wb (Hide s c) = Wb c ∧ ∀e. (Tm c e ∧ ∀st.¬(st=s) ⊃ ¬(e st=X)) ⊃
∃v.¬(v=X) ∧ Tm c (λst. (st=s ⇒ v | e st))

This equation states that for a circuit ‘Hide s c’ to satisfy the condition Wb it must
be the case that the circuit c satisfies Wb, and whenever c is in an environment in
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which every external wire except for s does not have the value X, it is possible for
the wire s not to have the value X as well. In other words, there is no well-behaved
external environment e that satisfies the validity condition ‘def e’ but forces the
internal wire s to have the degenerate value X.

If the condition Wb is defined as shown above, then the following theorem
about satisfaction in the two models of transistor behaviour can be proved:

� ∀c. Wb c ⊃ ∀S. Sat Sm c true id S ⊃ Sat Tm c def abs S (7.8)

This theorem states that for circuit terms c that satisfy Wb, a correctness result
proved in the simple switch model implies an equivalent correctness result in the
more complex threshold switching model. This expresses the fact that the simple
switch model is a valid abstraction of the more detailed threshold model only for
a particular class of circuit designs.

Given the lemmas about satisfaction in the threshold model discussed in Sec-
tion 7.5.1 and the primitive recursive defining equations shown above for the con-
dition Wb, the formal proof of theorem (7.8) is straightforward. By lemma (7.5),
the proof of this theorem reduces to showing that:

� ∀c. Wb c ⊃ ∀S. (∀e. Sm c e ⊃ S e) ⊃ (∀e. Tm c (rep ◦ e) ⊃ S e)

Again, it is sufficient to consider the strongest specification S that satisfies the
left hand side of the implication. So the proof of theorem (7.8) further reduces to
proving the simpler theorem:

� ∀c. Wb c ⊃ ∀e. Tm c (rep ◦ e) ⊃ Sm c e (7.9)

This theorem can be proved by structural induction on circuit terms c. Only the
step case for the constructor Hide is at all difficult. When the circuit term c has
the form Hide s c, the defining equation for Wb(Hide s c) is needed to ensure that
the hidden wire s is not forced to be the value X. If this is the case, then there
is always a boolean internal values in the switch model such that the implication
stated in theorem (7.9) holds. The defining equation for Wb(Hide s c) was in fact
discovered during the proof of the step case for hiding in the proof of theorem (7.9)
by structural induction.

From theorem (7.8) above, and theorem (7.4) proved in Section 7.5.1, it follows
immediately that correctness results in the two transistor models formalized by
the semantic functions Tm and Sm are effectively equivalent for circuit terms that
satisfy the condition Wb, as stated formally by theorem (7.3). The predicate Wb

therefore states a condition on circuit terms which is sufficient to ensure that the
two models of CMOS design behaviour agree on correctness. For circuit designs
that satisfy Wb, the simple switch model is an adequate basis for verification,
since the threshold switching model can not be used to detect design errors in
these circuits which will not also be found by using the simpler switch model.
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7.6 Summary and Discussion

This chapter has shown how a specially-defined concrete recursive type circ can be
used to formulate and prove assertions about the relative accuracy of two formal
models of hardware behaviour. These assertions are essentially statement about
the class of all design models built up using the alternative primitive specifications
in each model of hardware behaviour. Using the recursive type circ to embed the
syntax of these design models within the logic itself allows these assertions to be
formulated as theorems of the logic, and therefore proved formally using the HOL
theorem prover for higher order logic.

The aim of this chapter was both to demonstrate the feasibility of this approach
to formal reasoning about a class of circuit designs, and to give a simple example of
the idea of a relationship of abstraction between two formal models of hardware
behaviour. There are two ways in which the particular result obtained in this
chapter about the formal relationship between the threshold model and the switch
model might be improved. These are briefly discussed below.

A Syntactic Condition to Replace Wb

The predicate Wb defined in Section 7.5.2 is a condition on CMOS circuit designs
which is sufficient to ensure that they can be verified using the simple switch model
rather than the more accurate (but also more complex) threshold model. The
predicate Wb, however, was not defined in a way that makes it useful in practice
for determining when the simpler switch model can be used. In the defining
equations for Wb, the semantic function Tm is used to state the condition that
hidden wires are not forced to have the value X. This means that for any particular
circuit term c it is necessary to carry out a proof in the threshold model of CMOS
behaviour in order to determine if the condition ‘Wb c’ holds. But this may be
(and, in the author’s experience, typically is) just as much work as simply proving
a threshold model correctness theorem for the circuit represented by c. For an
equivalence result of the kind stated by theorem (7.3) to be useful in practice, a
condition is needed that can be checked purely syntactically .

A syntactic condition on circuit terms that makes the two transistor models
agree on correctness could be seen as a ‘design rule’ for CMOS circuits which
ensures that they are verifiable using the simple switch model. One example of
such a syntactic condition might be a predicate FC which is true of a circuit term
c exactly when c represents a fully complementary CMOS circuit design. If such
a predicate is defined formally and shown to satisfy the implication:

∀c. FC c ⊃ ∀S. Sat Sm c true id S = Sat Tm c def abs S

then a correctness proof for any circuit that satisfies the syntactic condition FC can
be safely done using the simpler switch model semantics. A result of this kind
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would show that the switch model is adequate for fully complementary CMOS
logic, and if circuits are designed using this conservative CMOS design style, the
extra complexity of the threshold switching model is not needed to model them.
Furthermore, if FC is a purely syntactic condition on circuit terms—i.e. a condition
that describes only the structure of fully complementary circuit designs—then
checking whether the simple switch model can be used for the correctness proof
of any particular circuit design can be done without having to reason about its
behaviour in the more complex threshold model.

Weakening the Validity Condition def

A second way in which the result proved in this chapter could be improved is
by weakening the validity condition def introduced in Section 7.4. This condition
was defined in order to translate an arbitrary switch model correctness statement
of the form ‘∀e. Sm c e ⊃ S e’ into an equivalent threshold model correctness
statement of the form:

∀e. def e ⊃ (Tm c e ⊃ S (abs ◦ e))

The problem with a correctness statement of this kind is that the constraint
imposed on the environment e by the validity condition ‘def e’ is too strong. The
predicate def was defined in Section 7.4 by the equation:

� def e = ∀s.¬(e s = X)

This means that in a threshold model correctness statement of the general form
shown above it is assumed that the environment e assigns only a strongly-driven
value (i.e. either Hi or Lo) to every external wire of the CMOS circuit represented
by the circuit term c. In particular, the validity condition ‘def e’ not only ensures
that the input wires of the circuit represented by c are strongly-driven, but also
makes the assumption that the degenerate value X will never appear on the output
wires of the device represented by c.

The effect of making this assumption is that a threshold model correctness
statement of the form given by the implication shown above fails to distinguish
between circuits whose output wires are always strongly driven and circuits that
can have the degraded logic level X on their output wires. A correctness theorem
provable in the switch model may therefore be translated into a threshold model
correctness statement which is also provable—but only by virtue of the assumption
that all the values that appear on the outputs of a device are strongly driven. For
example, the threshold model correctness statement

� ∀e. def e ⊃ (Tm Xor e ⊃ (abs(e 'w') = ¬(abs( e'a') = abs(e 'b'))))

states the correctness of the incorrect exclusive-or circuit shown in Figure 7.2,
and can be proved in the threshold model even though the exclusive-or circuit
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whose behaviour is modelled by ‘Tm Xor’ does not itself ensure that the output
wire 'w' is strongly driven for all input values. The threshold switching problems
with the exclusive-or circuit represented by the circuit term Xor become apparent
only when the output wire 'w' is hidden—as in the comparator circuit discussed
above in Section 7.5.2, for example.

To overcome this problem, it is necessary to weaken the validity condition used
to express threshold model correctness statements, so that it constrains only the
inputs of a CMOS circuit to have the strongly-driven values Hi and Lo. This would
improve the translation of switch model correctness statements into corresponding
threshold model correctness statements by removing the built-in assumption that
only strongly-driven values appear on the output wires of a device.

One way of formulating such a validity condition is to define a condition ‘def c e’
which is parameterized by a circuit term c and has the meaning ‘the environment
e assigns only strongly-driven values to the external wires of c which are directly
connected to the gates of transistors’. A formal definition of this validity condition
is given by the following primitive recursive definition on circuit terms.

� def (Pwr p) e = T
� def (Gnd g) e = T
� def (Ntran g s d) e = ¬(e g = X)
� def (Ptran g s d) e = ¬(e g = X)
� def (Join c1 c2) e = def c1 e ∧ def c2 e
� def (Hide s c) e = def c λst. (st=s ⇒ Hi | e st)

For every circuit term c, these equations define a validity condition on threshold
model environments ‘def c. The defining equations make the condition def c e

impose the constraint that that all the externally driven inputs connected to the
gates of N-type and P-type transistor in the circuit represented by c must be
strongly driven by the environment e. This expresses a validity condition which
constrains the values only on external wires that are known to be inputs to the
circuit represented by the circuit term c.

For example, one can prove from this definition the following theorem:

� def Xor e = ¬(e 'a' = X) ∧ ¬(e 'b' = X)

This theorem shows that the new validity condition for the exclusive-or circuit
discussed above constrains only the input wires 'a' and 'b' to be strongly driven.
In this case, the validity condition does not constrain the value that appears on
the output wire 'w', and therefore does not make the unjustified assumption that
this value is not X. With this new validity condition, it is not possible to prove
the correctness of the incorrect exclusive-or gate in the threshold switching model.
This overcomes the problem with the simpler (and provable) threshold switching
model correctness statement for the Xor circuit discussed above—the correctness
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statement for Xor no longer begs the question by being based on the assumption
that the output 'w' has either the value Hi or the value Lo.

Given this new validity condition for expressing correctness statements in the
threshold switching model, an assertion can be formulated about the equivalence
of correctness results in the two models of transistor behaviour which does not
contain the built-in assumption that only the values Hi and Lo will be present on
the output wires of a device—unlike the conditional equivalence between the two
models expressed by theorem (7.3). This assertion would have the form:

∀c. Wb c ⊃ ((∀e. Sm c e ⊃ S e) = (∀e. def c e ⊃ (Tm c e ⊃ S (abs ◦ e))))

for some condition on circuit terms Wb. This condition on circuit terms would
have to be stronger than the predicate Wb defined above in Section 7.5.2, since
CMOS circuits whose outputs are not strongly driven would now (correctly) be
considered incorrect in the threshold switching model. A theorem of this kind
would give an improved statement of the abstraction relationship between the
simple switch model of CMOS behaviour and the more detailed threshold switching
model of CMOS behaviour.

7.7 Related Work

The general approach taken to the formalization of abstraction between models
in this chapter is strongly influenced by the categorical ideas used by Winskel
in [86] to relate two formal models of CMOS transistor behaviour. Winskel uses
the notion of adjunction between partial order categories to relate his static-
configuration model of CMOS behaviour [85] to the switch model of transistor
behaviour described by Camilleri et al. in [11]. This categorical approach provided
the basic framework for organization of the proof of theorem (7.3) given in this
chapter. In particular, lemma (7.5) discussed in Section 7.5.1 was inspired by the
adjunction between satisfaction in the two models described by Winskel in [86].

160



Chapter 8

Conclusions and Future Work

This chapter provides a summary of the main contributions of the work reported in
this dissertation and suggests some areas for future development of this research.

8.1 Summary

One of the main aims of this dissertation was to give a motivated account of the
role and importance of abstraction in hardware verification, to give a reasonably
general account of the use of abstraction in reasoning about hardware correctness
and assessing the accuracy of formal models of hardware behaviour, and to explain
some fundamental techniques for expressing certain abstraction relationships in
higher order logic. In addition to providing this general account of basic principles,
this dissertation has also given detailed examples to show how these principles can
be applied in practice.

Chapter 1 began with a general account of the importance of abstraction to
hardware verification, motivated by a discussion of some fundamental limitations
to the scope of hardware verification by formal proof. The logical formalism
and associated hardware verification methodology adopted in this work were then
introduced in Chapters 2 and 3. The formalization in higher order logic of two
fundamental kinds of abstraction was then discussed in Chapter 4. In Section 4.1,
it was shown how correctness can be expressed formally in higher order logic by
using abstraction mechanisms to relate detailed design models to more abstract
specifications of required behaviour. Three fundamental types of abstraction were
discussed: behavioural abstraction, data abstraction, and temporal abstraction.
Some general issues having to do with abstraction were discussed in this section,
and an account was given of the role of abstraction in hierarchical verification.
Section 4.2 then introduced the idea of a relationship of abstraction between
models of hardware behaviour, which was further developed and illustrated by a
worked example presented in Chapter 7.

The remaining chapters provided concrete examples to illustrate the ideas
about abstraction which were introduced in general terms in Chapters 1 and 4.
Detailed examples of the use of data and temporal abstraction in reasoning about
hardware correctness were given in Chapters 5 and 6, and an example of an
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abstraction relationship between two models of CMOS transistor behaviour was
given in Chapter 7. A summary of the main specific contributions of the research
reported in Chapters 6–7 is given below:

• Chapter 5 showed how any instance of a wide class of concrete recursive data
types can be characterized formally in higher order logic and gave an overview
of some basic formal properties of these types.

• An example was then given to show how a simple three-valued enumerated type
could be used to formulate a threshold switching model of CMOS transistor
behaviour which is more slightly more accurate than the simple switch model
described in Chapter 3. An example was given to show how a data abstraction
function could be used to relate a simple CMOS circuit description based on
this model to an abstract specification of required behaviour. The example
was used to illustrate some basic issues relating to the formalization of data
abstraction in higher order logic.

• A second application of concrete types was then given in Section 5.3, where
the use of a special-purpose recursive type of lists to provide an unambiguous
formal representation in logic for bit-vectors was discussed. It was shown how
this special-purpose defined type avoids certain problems associated with a
commonly-used representation of bit-vectors based on the type num→bool.

• An example of data abstraction was then given in which a class of tree-shaped
circuit designs with n-bit inputs was proved correct with respect to an abstract
specification. The example illustrated a new technique for representing the
structure of circuit designs using a concrete recursive type of binary trees. It
also showed a practical application of the facility for defining primitive recursive
functions provided by the theorems used to characterize concrete recursive
types in higher order logic.

• In Chapter 6, three functions were defined for expressing correctness in logic by
relationships of temporal abstraction: Timeof, when, and between. The Timeof

function allows a time mapping to be defined from any predicate that identifies
points of time at which the behaviour expressed by a detailed design model is
also of interest at a more abstract level of description. The when and between

functions can be used to abstract away from irrelevant details about time-
dependent behaviour by relating temporally detailed signals to more abstract
ones.

• A case study was then presented in which these general-purpose operators were
used to relate two different levels of temporal abstraction in a hierarchically-
structured correctness proof for the design of a simple ring communication
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network. The T-ring case study showed some of the complexities that can
arise in a reasonably realistic example. In particular, it showed that the formal
verification of a hardware device can become complex when tricky clocking
strategies are used, but that temporal abstraction can help to control this
complexity.

• In Chapter 7, a new technique was developed for modelling the behaviour of
CMOS circuits by means of semantic functions defined on a concrete recursive
type circ. By providing an explicit representation in logic for the structure of
the class of all CMOS circuit designs, this recursive type made it possible to
formulate assertions about the abstraction relationship between two different
transistor models as theorems of the logic, rather than meta-theorems. These
assertions could therefore be proved formally using the HOL theorem prover.

• The example given in Chapter 7 showed how the abstract switch model of
transistor behaviour could be related formally to the more detailed threshold
switching model. A theorem was derived which states a condition under which
correctness results obtained in the two models are equivalent.

The logical basis for all the work on abstraction discussed in Chapters 5 and 7
is the systematic method for defining arbitrary concrete types explained in detail
in Appendix A. One of the main practical contributions of this research is the
automation of this method in the HOL theorem prover. The mechanized theorem
proving tools developed in HOL for defining recursive types allow a user of the
system to introduce new types quickly and easily. Neither a fully detailed account
of this HOL implementation of recursive type definitions nor an account of the
associated tools developed to support formal reasoning about recursive types using
the HOL system are not given in this thesis. But a brief overview of these tools is
given in Appendix B, together with an example that shows how they were used
to prove one of the theorems about hardware discussed in Chapter 5.

8.2 Future Work

The following sections outline some directions for future research suggested by
aspects of work discussed in this dissertation.

8.2.1 Type Definitions

The method for automating formal type definitions in higher order logic could
be extended in a number useful ways. One possibility is to extend the method
for defining concrete recursive types to include mutually recursive concrete types.
Given the basis for constructing representations provided by the logical type of
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labelled trees defined in Section A.4.2 of Appendix A, it should be straightforward
to develop a systematic method for defining mutually recursive types in logic. The
automation of such a method in the HOL theorem prover would proceed very much
along the lines of the present implementation of type definitions in HOL.

A more complex task would be to extend the method and associated HOL tools
to deal with the formal definition in logic of abstract types specified by equational
constraints. This extension would be of significant practical value, since there are
many natural applications for abstract types in describing hardware behaviour at
higher levels of data abstraction. At present, type definitions for any abstract
types that may be needed to specify hardware behaviour must be done manually
in the HOL system. Again, the automation of a method for defining abstract
types could follow the lines of the present HOL tools for automating the formal
definitions of concrete types. Abstract types described informally as a set of
named operations together with some equational constraints on the values given
by these operations could be defined formally in higher order logic by taking
quotients of the existing representations for concrete types.

8.2.2 Combining Forms for Defining Models

One disappointing feature of the approach to representing bit-vectors developed
in Chapter 5 is the complexity of the formal definitions for the models of n-bit
circuit designs based on this representation. This was illustrated by the models
defined in both the multiplexer and the test-for-zero examples given in Chapter 5.
In both cases, it was necessary to include what was essentially explicit wiring
information in the formal definitions of models. A more elegant approach might
be to define models using a collection of higher-order ‘combining forms’ of the
kind used to construct models in Sheeran’s design language Ruby [77]. This
would require a somewhat more elaborate formal representation for bit-vectors
than the straightforward list representation proposed in Chapter 5, but would
also make the definitions of models much simpler.

8.2.3 Higher-level Rules for Reasoning about Timing

Although a few general properties of the when and between functions defined in
Chapter 6 were derived for the correctness proofs for the T-ring components, more
work needs to be done to provide higher-level rules for reasoning about timing
relationships using these functions. Because of the tricky clocking schemes used
in the T-ring, the formal verification of this device was not an ideal vehicle for the
discovery of generally applicable properties the when and between operators. In
many of the formal proofs in the T-ring verification, for example, intricate proofs
by induction on the lengths of intervals of time at the detailed level of description
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were necessary to derive appropriate relationships between the values which were
to be sampled using the when operator.

There are, however, many natural applications for the functions when and
between in expressing relationships between various different levels of temporal
abstraction. Dhingra, for example, in his work on formalizing a circuit design style
in higher order logic [21] used the version of the when operator published in [63]
to formulate correctness statements for devices driven by a 2-phase clock. The
version of when defined in [63] was also used by Joyce [56] to express relationships
between timing at the microcode level and timing at the macroinstruction level
in reasoning about the correctness of a simple microprocessor.1 Some general
principles for reasoning about timing relationships using the when and between

functions would therefore be widely applicable in hardware verification. Some
preliminary work has already been done on this, but more examples need to be
considered to develop a widely-applicable collection of general theorems about the
properties of when and between.

8.2.4 Abstraction between Models

Some suggestions for future development of the research reported in Chapter 7
have already been discussed in Section 7.6.

8.2.5 Synthesis

Abstraction mechanisms of the kind discussed in this dissertation may have a role
to play in the development of formal methods for the synthesis of designs. This
work has concentrated on the use of abstraction mechanisms to relate detailed
formal descriptions of existing hardware designs to more abstract specifications.
In essence, the process of abstraction is used here to suppress detailed information
about hardware designs. Synthesis involves the opposite process—adding detail to
formal specifications until an implementable design description is obtained. The
possibility of a relationship between the abstraction mechanisms used here for
post-design verification and heuristics for hardware design synthesis from formal
specifications should be investigated.

1In fact, Joyce used ‘Timeof’—i.e. the definition of when—in [56].
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Appendix A

Defining Concrete Types

This appendix describes a systematic method for defining an arbitrary concrete
recursive type1 in higher order logic. A full implementation of this method has
been done in the HOL system. The automatic theorem-proving tools based on the
work described in this appendix are included in the 1988–89 release of the HOL
system (‘HOL88’). The concrete types used in the hardware verification examples
in Chapters 5 and 7 were defined formally in the HOL system using these tools.

Outline of the Appendix

The main aim of the work reported in this appendix was to provide a practical tool
for defining types automatically in the HOL system. It was therefore considered
essential for this tool to be reasonably efficient. The strategy used to achieve
this aim was to develop a method which reduced to a minimum the amount of
inference that had to be done to define an arbitrary concrete type formally in logic.
This was done by: (1) defining a collection of basic types which could be used to
construct an appropriate representation for an arbitrary concrete recursive type,
and (2) proving a general theorem which states that any type whose representation
is constructed from these basic types is characterized by an abstract ‘axiom’ of
the desired form. This allowed the process of defining a concrete recursive type
and proving an abstract ‘axiomatization’ for it to be done automatically, without
the system having to do much inference at ‘run time’. (For a general discussion
of this efficiency strategy, see Section 2.2.3.)

This appendix, which gives full details of the logical basis for this approach
to automating type definitions, is divided into two main parts. The first part
consists of Sections A.2–A.4, in which formal definitions are given for all the
types used as ‘building blocks’ to construct representations for the values of an
arbitrary concrete recursive type. The second part (Sections A.5–A.6) describes
the method for defining concrete recursive types in general and provides a very
brief overview of the HOL theorem-proving tools based on this method.

1The types definable by the method described here will be referred to as ‘concrete recursive
types’, or just ‘concrete types’. Use of the former term is not intended to exclude non-recursive
examples, but merely to emphasize that this class of types includes recursive ones.
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A.1 Representation and Abstraction Functions

This section provides an overview of some preliminary definitions which are used
in every type definition done in later parts of this appendix.

The primitive rule of definition which allows new types to be introduced in
higher order logic was explained in Section 2.1.7.1. This rule allows a new type
to be defined by postulating a type definition axiom of the general form shown
below.

� ∃f :tyP→ty. (∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. P r = (∃a. r = f a))

An axiom of this form defines a new type tyP by asserting that there exists an
isomorphism f between tyP and the subset of an existing type ty defined by the
predicate P . A type definition axiom of this form merely asserts the existence of
such an isomorphism—to formulate abstract axioms for a new type, it is necessary
to have constants which actually denote such an isomorphism and its inverse.
These constants are needed to make it possible to define operations on the values
of a new type in terms of operations on values of the representing type.

A constant which denotes an isomorphism between a defined type and the
subset of an existing type which represents it can be defined as follows. A type
definition axiom asserts the existence of a function f which maps each value of
the defined type tyP to a corresponding value of type ty. By the method described
in Section 2.1.5 of Chapter 2, the primitive constant ε can be used to define a
constant REP:tyP→ty which denotes this function. Using ε, the constant REP can
be defined such that:

� ∀a1 a2. REP a1 = REP a2 ⊃ a1 = a2 ∧ ∀r. P r = (∃a. r = REP a)

The resulting theorem has the same form as the type definition axiom for tyP ;
all that has been done is to give the name ‘REP’ to the function which the type
definition axiom asserts to exist. This constant is called a representation function,
and the theorem shown above asserts that it is one-to-one and onto the subset of
ty given by P . That is, the constant REP denotes an isomorphism between the
new type tyP and the representing subset of ty.

Once REP has been defined, the primitive constant ε can be used to define an
inverse abstraction function: ABS:ty→tyP . The formal definition of this function
is shown below.

� ABS r = (ε λa. r = REP a).

It is straightforward to prove that the function defined by this equation is one-to-
one (for the values of type ty that satisfy P ) and onto the new type tyP . These
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two properties are stated formally by the two theorems shown below.

� ∀r1 r2. P r1 ⊃ (P r2 ⊃ (ABS r1 = ABS r2 ⊃ r1 = r2))
� ∀a. ∃r. (a = ABS r) ∧ P r

It also follows from the definitions shown above that the abstraction function
ABS is the left inverse of the representation function REP. For values of type
ty that satisfy P , it also follows that REP is the left inverse of ABS. These two
properties are stated formally by:

� ∀a. ABS(REP a) = a

� ∀r. P r = (REP(ABS r) = r)

Abstraction and representation functions of this kind are used in every type
definition described in later sections of this appendix. These functions are always
defined in the way outlined above, and details of their definitions will therefore
be omitted. Theorems corresponding to those shown above for ABS and REP are
used in the proofs of abstract axioms for each new type defined, but the proofs of
these theorems will not be given.

A.2 Three Simple Type Definitions

Three examples are given in this section which illustrate the general approach to
defining new types discussed in Section 2.1.7.2 of Chapter 2. In each example,
a logical type is defined, and its properties axiomatized, in three distinct steps.
In the first step, an appropriate subset of an existing type is found to represent
the values of the new type, and a predicate is defined to specify this subset. The
second step is to postulate a type definition axiom for the new type, and define
abstraction and representation functions of the kind described in Section A.1.
Finally, an abstract axiomatization is formulated for the new type, and derived
by formal proof from the properties of its definition. This axiomatization describes
the essential properties of the newly-defined type, but does so without reference
to the way it is represented and defined. In the examples given below, some
basic theorems about the types which are defined are proved from their abstract
axiomatizations.

The three simple types defined below are used as basic ‘building blocks’ in the
general method explained in Section A.5.3 for finding appropriate representations
for arbitrary concrete recursive types.

A.2.1 The Type Constant one

This section describes the definition and axiomatization of the simplest (and the
smallest) type possible in higher order logic: a type constant one, which denotes
a set having exactly one element.
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A.2.1.1 The Representation

To represent the type one, any singleton subset of an existing type will do. In the
type definition given below, the subset of bool containing only the truth-value T

will be used. This subset can be specified by the predicate λb:bool. b, which denotes
the identity function on bool. The set of booleans satisfying this predicate clearly
has the property that the new type one is expected to have, namely the property
of having exactly one element.

A.2.1.2 The Type Definition

As was discussed in Chapter 2, the primitive rule for type definitions requires
the representing subset for a new type to be non-empty, and a theorem which
states this must be proved before a definition for the type one can be made. In
the present case, the representing subset is specified by the predicate λb. b, and
it is trivial to prove that this predicate specifies a non-empty set of booleans.
The theorem � ∃x. (λb.b)x follows immediately from � (λb.b)T, which is itself
equivalent to � T.

Once it has been shown that λb.b specifies a non-empty set of booleans, the
type constant one can be defined by postulating the type definition axiom shown
below.

� ∃f :one→bool. (∀a1 a2.f a1=f a2 ⊃ a1=a2) ∧ (∀r. (λb.b) r=(∃a. r=f a))

Using this axiom for one, a representation function REP one:one→bool can be
defined by the method outlined in Section A.1. This representation function is
one-to-one:

� ∀a1 a2. REP one a1 = REP one a2 ⊃ a1 = a2 (A.1)

and onto the subset of bool defined by λb.b:

� ∀r. (λb.b) r = (∃a. r = REP one a)

This theorem can be simplified by performing the β-reduction � (λb.b) r = r.
This immediately yields the theorem shown below.

� ∀r. r = (∃a. r = REP one a) (A.2)

The theorems (A.1) and (A.2) about REP one:one→bool are used in the proof
given in the following section of the abstract axiomatization of one. An inverse
abstraction function ABS one:bool→one is not needed in this simple example.2

2In fact, the axiomatization of one can be derived directly from its definition. The constant
REP one is defined here merely to simplify the presentation of the proof that follows.
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A.2.1.3 Deriving the Axiomatization of one

The axiomatization of the type one will consist of the following single theorem:

� ∀f :α→one. ∀g:α→one. (f = g)

This theorem states that any two functions f and g mapping values of type α to
values of type one are equal. From this, it follows that there is only one value
of type one, since if there were more than one such value it would be possible
to define two different functions of type α→one. This theorem is therefore an
abstract characterization of the type one; it expresses the essential properties of
this type, but does so without reference to the way it is defined.

The abstract axiom for one shown above follows from the properties of REP one

given by theorems (A.1) and (A.2). Specializing the variable r in (A.2) to the term
REP one(f x) yields:

� REP one(f x) = (∃a. REP one(f x) = REP one a)

The right hand side of this equation is equal to T, and it can therefore be simplified
to � REP one(f x). Similar reasoning yields the theorem � REP one(g x), from
which it follows that:

� REP one(f x) = REP one(g x)

From this, and theorem (A.1) stating that the function REP one is one-to-one, it
follows that � f x = g x and therefore that � ∀f g. (f = g), as desired.

A.2.1.4 A Theorem about one

Once the axiom for one has been proved, it is straightforward to prove a theorem
which states explicitly that there is only one value of type one. This is done by
defining a constant one to denote the single value of type one. Using the primitive
constant ε, the constant one can be defined formally by:

� one = ε(λx:one. T)

From the axiom for one, it follows that � λx:α. v = λx:α. one. Applying both sides
of this equation to x:α, and doing a β-reduction, gives � v = one. Generalizing v

yields � ∀v:one. v = one, which states that every value v of type one is equal to
the constant one, i.e. there is only one value of type one.

A.2.2 The Type Operator prod

In this section, a binary type operator prod is defined to denote the cartesian
product operation on types. If ty1 and ty2 are types, then the type (ty1, ty2)prod

will be the type of ordered pairs whose first component is of type ty1 and whose
second component is of type ty2.
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A.2.2.1 The Representation

The type (α, β)prod can be represented by a subset of the polymorphic primitive
type α→β→bool. The idea is that an ordered pair 〈a:α, b:β〉 will be represented
by the function

λx y. (x=a) ∧ (y=b)

which yields the truth-value T when applied to the two components a and b of
the pair, and yields F when applied to any other two values of types α and β.

Every pair can be represented by a function of the form shown above, but
not every function of type α→β→bool represents a pair. The functions that do
represent pairs are those which satisfy the predicate Is pair REP defined by:

� Is pair REP f = ∃v1 v2. f = λx y. (x=v1) ∧ (y=v2),

i.e. those functions f which have the form λx y. (x=v1) ∧ (y=v2) for some pair
of values v1 and v2. This will be the subset predicate for the representation of
(α, β)prod. As will be shown below, the set of functions satisfying Is pair REP has
exactly the standard properties of the cartesian product of types α and β.

A.2.2.2 The Type Definition

To introduce a type definition axiom for prod, one must first show that the
predicate Is pair REP defines a non-empty subset of α→β→bool. This is easy,
since it is the case that � ∀a b. Is pair REP(λx y. (x=a) ∧ (y=b)) and therefore
� ∃f. Is pair REPf . Once this theorem has been proved, a type definition axiom
of the usual form can be introduced for the type operator prod:

� ∃f :(α, β)prod→(α→β→bool).
(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. Is pair REP r = (∃a. r = f a))

This defines the compound type (α, β)prod to be isomorphic to the subset of
α→β→bool defined by Is pair REP. Since the type variables α and β in this axiom
can be instantiated to any two types, it has the effect of giving a representation not
only for the particular type ‘(α, β)prod’, but also for the product of any two types.
For example, instantiating both α and β to bool yields a type definition axiom
for the cartesian product (bool, bool)prod. As will be shown below, the abstract
axiomatization of prod derived from the type definition axiom given above is also
formulated in terms of the compound type (α, β)prod. It therefore also holds for
any substitution instance of (α, β)prod—i.e. for the product of any two types.

171



The abstract axiomatization of prod derived in the following section will use
the abstraction and representation functions:

ABS pair:(α→β→bool)→(α, β)prod and
REP pair:(α, β)prod→(α→β→bool)

which relate pairs to the functions of type α→β→bool which represent them.
These representation and abstraction functions are defined formally as described
above in Section A.1. A set of theorems stating that Abs pair and Rep pair are
isomorphisms can also be proved as outlined in Section A.1. These theorems will
be used in the proof of the axiom for prod given in the next section.

For notational convenience, the infix type operator ‘×’ will now be used for
the product of two types. In what follows, a type expression of the form ty1 × ty2

should be read as a metalinguistic abbreviation for (ty1, ty2)prod.

A.2.2.3 Deriving the Axiomatization of prod

To formulate the axiomatization of (α× β), two constants will be defined:

Fst:(α× β)→α and Snd:(α× β)→β.

These denote the usual projection functions on pairs; the function Fst extracts the
first component of a pair, and the function Snd extracts the second component of
a pair. The definitions of these functions are:

� Fst p = ε λx. ∃y. (REP pair p) x y

� Snd p = ε λy. ∃x. (REP pair p) x y

These definitions first use the representation function REP pair to map a pair p

to the function which represents it. They then ‘select’ the required component of
the pair using ε. From the definitions of Fst and Snd, it is possible to show that

� Fst(ABS pair(λx y. (x=a) ∧ (y=b))) = a

� Snd(ABS pair(λx y. (x=a) ∧ (y=b))) = b
(A.3)

by using the fact that Rep pair is the left inverse of ABS pair for functions which
satisfy the subset predicate Is pair REP. Once these theorems have been proved,
the axiomatization of the cartesian product of two types can be derived without
further reference to the way Fst and Snd are defined.

Using the functions Fst and Snd, the axiomatization of the cartesian product of
two types can be formulated based on the categorical notion of a product . With
this approach, the following theorem will be the single axiom for the product of
two types:

� ∀f :γ→α. ∀g:γ→β. ∃! h:γ→(α× β). (Fst ◦ h = f) ∧ (Snd ◦ h = g)
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This theorem states that for all functions f and g, there is a unique function h

such that the diagram

(α× β)

γ

α β

� ������	







�

��������










h

SndFst

gf

is commutative—i.e. such that ∀x. Fst(h x)=f x and ∀x. Snd(h x)=g x. As noted
above, this theorem is proved for the polymorphic type (α × β). It therefore
characterizes the product of any two types, since the type variables α and β in
this theorem can be instantiated to any two types of the logic to yield an axiom
for their product.

An outline of the proof of the axiom shown above is as follows. Given two
functions f :γ→α and g:γ→β, define the function h:γ→(α× β) as follows:

h v = ABS pair(λx y. (x=f v) ∧ (y=g v))

Using the theorems (A.3) above, it follows that Fst o h = f and Snd ◦ h = g.
To show that h is unique, suppose that there is also a function h′ such that
Fst o h′ = f and Snd ◦ h′ = g. Suppose v is some value of type γ. Since ABS pair

is onto (α×β), there exist a and b such that h′ v = ABS pair(λx y. (x=a)∧(y=b)).
Thus,

f v = Fst(h′ v) = Fst(ABS pair(λx y. (x=a) ∧ (y=b))) = a and
g v = Snd(h′ v) = Snd(ABS pair(λx y. (x=a) ∧ (y=b))) = b

which means that

h′ v = ABS pair(λx y. (x=f v) ∧ (y=g v)) = h v

and therefore that h′ = h.

A.2.2.4 Theorems about prod

Using the axiom for products proved in the previous section, an infix operator ⊗
can be defined such that for all functions f :γ→α and g:γ→β the expression f ⊗ g

denotes the unique function of type γ→(α× β) which the axiom asserts to exist.
This operator can be defined using ε as follows:

� ∀f g. (f ⊗ g) = ε λh. (Fst ◦ h = f) ∧ (Snd ◦ h = g)
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It follows immediately from this definition and the derived abstract axiom for
products that (f ⊗ g) denotes a function which makes the diagram shown above
commute:

� Fst ◦ (f ⊗ g) = f and � Snd ◦ (f ⊗ g) = g.

It can also be shown that for all f and g, the term f ⊗ g denotes the unique
function with this property:

� ∀f g h. (Fst ◦ h = f) ∧ (Snd ◦ h = g) ⊃ (h = (f ⊗ g)).

Using the operator ⊗, an infix pairing function ‘,’ can be defined to give the
usual syntax for pairs, with (a, b) denoting the ordered pair having first component
a and second component b. The definition is:

� ∀a b.(a, b) = ((K a)⊗ I) b where K = λa b.a and I = λa.a.

With this definition of pairing, the three theorems about the cartesian product
type listed below, which were discussed in Section 2.1.7.2, can be proved.

� ∀a b. Fst(a, b) = a

� ∀a b. Snd(a, b) = b

� ∀p. p = (Fst p, Snd p)

The first two of these theorems follow from the definition of the infix pairing
operator ‘,’ and the fact that � Fst o ((K a)⊗ I) = K a and � Snd ◦ ((K a)⊗ I) = I.
The third theorem follows from the uniqueness of functions defined using ⊗.

A.2.3 The Type Operator sum

The final example in this section is the definition and axiomatization of a binary
type operator sum to denote the disjoint sum operation on types. The set that
will be denoted by the compound type (ty1, ty2)sum can be thought of as the
union of two disjoint sets: a copy of the set denoted by ty1, in which each element
is labelled as coming from ty1; and a copy of the set denoted by ty2, in which each
element is labelled as coming from ty2. Thus each value of type (ty1, ty2)sum will
correspond either to a value of type ty1 or to a value of type ty2. Furthermore,
each value of type ty1 and each value of type ty2 will correspond to a unique value
of type (ty1, ty2)sum.
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A.2.3.1 The Representation

One way of representing a value v of type (α, β)sum would be to use a triple
(a, b, f) of type α× β × bool, where f is a boolean ‘flag’ which indicates whether
v corresponds to the value a of type α or the value b of type β. With this
representation, each value a of type α would correspond to a triple (a, dβ, T) in
the representation, where dβ is some fixed ‘dummy’ value of type β. Likewise, each
value b of type β would have a corresponding triple (dα, b, F) in the representation,
where dα is a dummy value of type α. Using this representation, every value in
the representing subset of α×β× bool would correspond either to a value of type
α labelled by T or to a value of type β labelled by F.

The representation of values of type (α, β)sum can be both simplified and made
independent of the product type operator by noting that a triple (a, dβ, T), for
example, can itself be represented by the function:

λx y fl. (x=a) ∧ (y=dβ) ∧ (fl=T)

This function is true exactly when applied to the value a, the dummy value dβ

and the truth-value T. Every function of this form corresponds to unique value of
type α, and every value of type α corresponds to a function of this form.

This property, however, is shared by functions of a somewhat simpler form:

λx y fl. (x=a) ∧ (fl=T)

The dummy value dβ is therefore not necessary in representing the values of the
disjoint sum. A value of type (α, β)sum which corresponds to a value a of type α

can be represented by a function of the simpler form shown above. A value of type
(α, β)sum which corresponds to a value b of type β can likewise be represented
by a function of the form: λx y fl. (y=b) ∧ (fl=F).

The type (α, β)sum can therefore be represented by the subset of functions of
type α→β→bool→bool that satisfy the predicate Is sum REP defined by:

� Is sum REP f = (∃v1.f = λx y fl. (x=v1) ∧ (fl=T)) ∨
(∃v2.f = λx y fl. (y=v2) ∧ (fl=F))

The set of functions satisfying Is sum REP contains exactly one function for each
value of type α and exactly one function for each value of type β. It therefore
represents the disjoint sum of the set of values of type α and the set of values of
type β.
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A.2.3.2 The Type Definition

The type definition axiom for sum is introduced in exactly the same way as the
defining axioms for one and prod. The first step is to prove a theorem stating that
Is sum REP is true of at least one value in the representing set: � ∃f. Is sum REP f .
A type definition axiom of the usual form can then be introduced:

� ∃f :(α, β)sum→(α→β→bool).
(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. Is sum REP r = (∃a. r = f a))

and the abstraction and representation functions

ABS sum:(α→β→bool→bool)→(α, β)sum and
REP sum:(α, β)sum→(α→β→bool→bool)

defined in the usual way. As outlined in Section A.1, the definitions of Abs sum

and REP sum and the type definition axiom for sum yield the usual isomorphism
theorems about such abstraction and representation functions. These theorems
will be used in the derivation of the abstract axiom for sum.

For notational clarity, an infix type operator ‘+’ will now be used for the disjoint
sum of two types. In what follows, the metalinguistic abbreviation ty1 + ty2 will
be used to stand for (ty1, ty2)sum.

A.2.3.3 Deriving the Axiomatization of sum

The axiomatization of (α + β) will use two constants:

Inl:α→(α + β) and Inr:β→(α + β)

defined by:

� Inl a = ABS sum(λx y fl. (x=a) ∧ (fl=T))
� Inr b = ABS sum(λx y fl. (y=b) ∧ (fl=F))

The constants Inl and Inr denote the left and right injection functions for sums.
Every value of type (α + β) is either a left injection Inl a for some value a:α or a
right injection Inr b for some value b:β.

The form of the axiom for (α + β) is based on the categorical notion of a
coproduct . The axiom for (α + β) is:

� ∀f :α→γ. ∀g:β→γ. ∃! h:(α + β)→γ. (h ◦ Inl = f) ∧ (h ◦ Inr = g)

176



This theorem asserts that for all functions f and g there is a unique function h

such that the diagram shown below is commutative.

(α + β)

γ

α β

�
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�
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h

InrInl

gf

The proof of the axiom for sums is similar to the one outlined in the previous
section for products. The proof will therefore not be given in full here. The
existence of h follows simply by defining

h s = ((∃v1. x = Inl v1) ⇒ f(ε λv1. x = Inl v1) | g(ε λv2. x = Inr v2))

for given f and g. The uniqueness of h follows from the fact that Inl and Inr are
one-to-one, and from the fact that ABS sum is onto.

A.2.3.4 Theorems about sum

Using the axiom for sums, it is possible to define an operator ⊕ which is analogous
to the operator ⊗ defined above for products. The definition of ⊕ is:

� ∀f g. (f ⊕ g) = ε λh. (h ◦ Inl = f) ∧ (h ◦ Inr = g)

From the axiom for sums, it follows that for all functions f and g the term (f⊕g)
denotes a function that makes the diagram for sums commute:

� (f ⊕ g) ◦ Inl = f and � (f ⊕ g) ◦ Inr = g

and that (f ⊕ g) denotes the unique function with this property:

� ∀f g h. (h ◦ Inl = f) ∧ (h ◦ Inr = g) ⊃ (h = (f ⊕ g)).

Using ⊕, it is possible to define two discriminator functions Isl:(α + β)→bool

and Isr:(α + β)→bool as follows:

� Isl = (K T)⊕ (K F) and � Isr = (K F)⊕ (K T)

From these definitions, and the properties of ⊕ shown above, it follows that
every value of type (α + β) satisfies either Isl or Isr:

� ∀s:(α + β). Isl s ∨ Isr s
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and that Isl is true of left injections and Isr is true of right injections:

� ∀a. Isl(Inl a) � ∀b.¬Isl(Inr b)
� ∀b. Isr(Inr b) � ∀a.¬Isr(Inl a)

The operator ⊕ can also be used to define projection functions Outl:(α+β)→α

and Outr:(α + β)→β that map values of type (α + β) to the corresponding values
of type α or β. Their definitions are:

� Outl = I⊕ (K ε λb. F) and � Outr = (K ε λa. F)⊕ I

where ε λa. F and ε λb. F denote ‘arbitrary’ values of type α and β respectively.
From these definitions, it follows that the projection functions Outl and Outr have
the properties:

� ∀a. Outl(Inl a) = a � ∀s. Isl s ⊃ Inl(Outl s) = s

� ∀a. Outr(Inr a) = a � ∀s. Isr s ⊃ Inr(Outr s) = s

A.3 Two Recursive Types: Numbers and Lists

This section outlines the definition of two recursive types: num (the type natural
numbers) and (α)list (the polymorphic type of lists). Both num and (α)list are
simple examples of the kind of recursive types which can be defined using the
general method that will be described in Section A.5. Their definitions are given
here as examples to introduce the idea of defining recursive types in higher order
logic. They also provide examples of the general form of abstract axiomatization
that will be used in Section A.5 for such types.

Both num and (α)list will be used in Section A.4 to construct representations
for two logical types of trees. Along with the basic building blocks: one, prod

and sum, these types of trees will then be used in Section A.5.3 to construct
representations for arbitrary concrete recursive types.

A.3.1 The Natural Numbers

The construction of the natural numbers described in this section is based on the
definition of the type num outlined by Gordon in [29]. The type num of natural
numbers is defined using a subset of the primitive type ind of individuals. This
primitive type is characterized by a single axiom, the axiom of infinity shown
below:

� ∃f :ind→ind. (∀x1 x2. (f x1 = f x2) ⊃ (x1 = x2)) ∧ ¬(∀y. ∃x. y = fx)
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This theorem is one of the basic axioms of higher order logic. It asserts the
existence of a function f from ind to ind which is one-to-one but not onto.

From this axiom, it follows that there are at least a countably infinite number
of distinct values of type ind. Informally, this follows by observing that there is
at least one value of type ind which is not in the image of f . Call this value i0.
Now define i1 to be f(i0). Since i1 is in the image of the function f and i0 is not,
it follows that they are distinct values of type ind. Now, define i2 to be f(i1).
By the same argument as given above for i1, it is clear that i2 is not equal to i0.
Furthermore, i2 is also not equal to i1, since from the fact that f is one-to-one
it follows that if i2 = i1 then f(i1) = f(i0) and so i1 = i0. So i2 is distinct
from both i1 and i0. Defining i3 to be f(i2), i4 to be f(i3), etc. gives—by the
same reasoning—an infinite sequence of distinct values of type ind. This infinite
sequence can be used to represent the natural numbers.

A.3.1.1 The Representation and Type Definition

As was outlined informally above, it follows from the axiom of infinity that there
exists a function which can be used to ‘generate’ an infinite sequence of distinct
values of type ind. This axiom merely asserts the existence of such a function; the
first step in representing the natural numbers is to define a constant S:ind→ind

which in fact denotes this function. This can be done using ε, as discussed in
Section 2.1.5. The result is the following theorem about S:

� (∀x1 x2. (S x1 = S x2) ⊃ (x1 = x2)) ∧ ¬(∀y. ∃x. y = Sx)

Once S has been defined, a constant Z:ind can be defined which denotes a
value not in the image of S. From this value Z, an infinite sequence of distinct
individuals can then be generated by repeated application of S. The definition of
Z simply uses the primitive constant ε to choose an arbitrary value not in the
image of S:

� Z = ε λy:ind. ∀x.¬(y = S x)

From this definition of Z, and the theorem about S shown above, it follows that
Z is not in the image of S and that S is one-to-one. Formally:

� ∀i.¬(S i = Z)
� ∀i1 i2. (S i1 = S i2) ⊃ (i1 = i2)

(A.4)

By the informal argument given in the introduction to this section, these two
theorems imply that the individuals denoted by Z, S(Z), S(S(Z)), S(S(S(Z))), . . .
form an infinite sequence of distinct values, and can therefore be used to represent
the type num of natural numbers.
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To make a type definition for num, a predicate N:ind→bool must be defined
which is true of just those individuals in this infinite sequence. This can be done by
defining N to be true of the values of type ind in the smallest subset of individuals
which contains Z and is closed under S. The formal definition of N is:

� N i = ∀P :ind→bool. P Z ∧ (∀x. P x ⊃ P (S x)) ⊃ P i

This definition states that N is true of a value i:ind exactly when i is an element
of every subset of ind which contains Z and is closed under S. This means that
the subset of ind defined by N is the smallest such set and therefore contains just
those individuals obtainable from Z by zero or more applications of S.

From the definition of N, it is easy to prove the following three theorems:

� N Z

� ∀i. N i ⊃ N(S i)
� ∀P. (P Z ∧ ∀i. (P i ⊃ P (S i)) ⊃ ∀i. N i ⊃ P i

(A.5)

The first two of these theorems state that the subset of ind defined by N contains
Z and is closed under the function S. The third theorem states that the subset of
ind defined by N is the smallest such set. That is, any set of individuals containing
Z and closed under S has the set of individuals specified by N as a subset.

Using the predicate N, the type constant num can be defined by introducing
a type definition axiom of the usual form. From the theorem � N Z, it follows
immediately that � ∃i. N i. The following type definition axiom for the type num

can therefore be introduced:

� ∃f :num→ind.(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. N r = (∃a. r = f a))

and the usual abstraction and representation functions

ABS num:ind→num and REP num:num→ind

for mapping between values of type num and their representations of type ind

can defined as described in Section A.1.

A.3.1.2 Deriving the Axiomatization of num

The natural numbers are often axiomatized by the Peano’s postulates. The five
theorems labelled (A.4) and (A.5) in the previous section amount to a formulation
of Peano’s postulates for the natural numbers represented by individuals. It is
therefore straightforward to derive Peano’s postulates for the type num from
these corresponding theorems about the subset of ind specified by N.
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The first step in deriving the Peano postulates for num is to define the two
constants:

0:num and Suc:num→num,

which denote the number zero and the successor function on natural numbers.
Using the abstraction and representation functions ABS num and REP num, the
constants 0 and Suc can be defined as follows:

� 0 = ABS num Z

� Suc n = ABS num(S(REP num n))

From these definitions, the five theorems labelled (A.4) and (A.5), and the
fact that the abstraction and representation functions ABS num and REP num are
isomorphisms, it is easy to prove the abstract axiomatization of num, consisting
of the three Peano postulates shown below:

� ∀n.¬(Suc n = 0)
� ∀n1 n2. Suc n1 = Suc n2 ⊃ n1 = n2

� ∀P. (P 0 ∧ ∀n. P n ⊃ P (Suc n)) ⊃ ∀n. P n

The first of Peano’s postulates shown above states that zero is not the successor
of any natural number. This theorem follows immediately from the corresponding
theorem � ∀i.¬(S i = Z) derived in the previous section for the representing values
of type ind. Likewise, the second of Peano’s postulates, which states that Suc is
one-to-one, follows from the corresponding theorem about S. The third postulate
states the validity of mathematical induction on natural numbers; it follows from
the last of three theorems (A.5) derived in the previous section.

A.3.1.3 The Primitive Recursion Theorem

Once Peano’s postulates have been proved, all the usual properties of the natural
numbers can be derived from them. One important property is that functions can
be uniquely defined on the natural numbers by primitive recursion. This is stated
by the primitive recursion theorem, shown below:

� ∀xf. ∃!fn. (fn 0 = x) ∧ ∀n. fn (Suc n) = f (fn n) n (A.6)

This theorem states that a function fn:num→α can be uniquely defined by
primitive recursion—i.e. by specifying a value for x to define the value of fn(0)
and an expression f to define the value of fn(Suc n) recursively in terms of fn(n)
and n. The proof of this theorem will not be given here, but an outline of the
proof can be found in Gordon’s paper [29]. The proof of a similar theorem for a
logical type of trees is given in Section A.4.1.3.
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An important property of primitive recursion theorem is that it is equivalent
to Peano’s postulates for num. The single theorem (A.6) can therefore be used as
the abstract axiomatization of the defined type num, instead of the three separate
theorems expressing Peano’s postulates. In Section A.5.2, it will be shown how
any concrete recursive type can be axiomatized in higher order logic by a similar
‘primitive recursion’ theorem.

As discussed in Section 2.1.6.1 of Chapter 2, any function definition by primitive
recursion on the natural numbers can be justified formally in logic by appropriately
specializing the variables x and f in theorem (A.6).

A.3.2 Finite-length Lists

This section describes the definition of a recursive type (α)list of lists containing
values of type α. In principle, it is possible to represent this type by a subset of
some primitive compound type. In practice, however, it is easier to use the defined
type constant num and the type operator × (defined above in Section A.2.2). The
representation using num and × described below is based on the construction of
lists in [29].

A.3.2.1 The Representation and Type Definition

Lists are simply finite sequences of values, all of the same type. A list with n

values of type α will be represented by a pair (f, n), where f is a function of type
num→α and n is a value of type num. The idea is that the function f will give
the sequence of values in the list; f(0) will be the first value, f(1) will be the
second value, and so on. The second component of a pair (f, n) representing a
list will be a number n giving the length of the list represented.

The set of values used to represent lists can not be simply the set of all pairs
of type (num→α) × num. The pairs used must be restricted so that each list
has a unique representation. The one-element list ‘[42]’, for example, will be
represented by a pair (f, 1), where f(0)=42. But there are an infinite number of
different functions f :num→num that satisfy the equation f(0)=42. To make the
representation of ‘[42]’ unique, some ‘standard’ value must be chosen for the value
of f(m) when m > 0. The predicate Is list REP defined below uses the standard
value (ε λx:α.T) to specify a set of pairs which contains a unique representation
for each list:

� Is list REP(f, n) = ∀m. m ≥ n ⊃ (f m = ε λx:α.T)

With this representation, there is exactly one pair (f, n) for each finite-length list
of values of type α. If such a pair satisfies Is list REP, then for m < n the value
of f(m) will be the corresponding element of the list represented. For m ≥ n, the
value of f(m) will be the standard value (ε λx.T).
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It is easy to prove that � ∃f n. Is list REP(f, n), since Is list REP holds of the
pair ((λn. ελx.T), 0). A type definition axiom of the usual form can therefore be
introduced for the type (α)list:

� ∃f :(α)list→((num→α)× num).
(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. Is list REP r = (∃a. r = f a))

and the abstraction and representation functions:

ABS list:((num→α)× num)→(α)list and
REP list:(α)list→((num→α)× num)

can be defined based on the type definition axiom in the usual way.

A.3.2.2 Deriving the Axiomatization of (α)list

The abstract axiomatization of lists will be based on two constructors:

Nil : (α)list and Cons :α→(α)list→(α)list.

The constant Nil denotes the empty list. The function Cons constructs lists in the
usual way: if h is a value of type α and t is a list then Cons h t denotes the list
with head h and tail t. The definition of Nil is simple:

� Nil = ABS list((λn:num. ε λx:α. T), 0)

This equation simply defines Nil to be the list whose representation is the pair
(f, 0), where f(n) has the value (ε λx.T) for all n.

The constructor Cons can be defined by first defining a function Cons REP

which ‘implements’ the Cons-operation on list representations. The definition is:

� Cons REP h (f, n) = ((λm.(m=0 ⇒ h |f(m− 1))), n + 1)

The function Cons REP takes a value h and pair (f, n) representing a list and yields
the representation of the result of inserting ’h at the head of the represented list.
This result is a pair whose first component is a function yielding value h when
applied to 0 (the head of the resulting list) and the value given by f(m−1) when
applied to m for all m>0 (the tail of the resulting list). The second component
is the length n+1, one greater than the length of the input list representation.

Once Cons REP has been defined, it is easy to define Cons. The definition is:

� Cons h t = ABS list(Cons REP h (REP list t))

183



The function Cons defined by this equation simply takes a value h and a list t,
maps t to its representation, computes the representation of the desired result
using Cons REP, and then maps that result back to the corresponding abstract
list.

Once Nil and Cons have been defined, the following abstract axiom for lists can
be derived by formal proof:

� ∀x f. ∃!fn. (fn(Nil) = x) ∧ (∀h t. fn(Cons h t) = f (fn t) h t) (A.7)

This axiom is analogous to the primitive recursion theorem for natural numbers,
and is an example of the general form of the theorems which will be used in
Section A.5 to characterize all concrete recursive types. Once this theorem has
been derived from the type definition axiom for lists and the definitions of Cons

and Nil, all the usual properties of lists follow without further reference to the
way lists are defined.

The axiom (A.7) for lists follows from the type definition for (α)list. Full details
will not be given here, but the proof is comparatively simple. The existence of
the function fn in theorem (A.7) follows by demonstrating the existence of a
corresponding function on list representations. This function can be defined by
primitive recursion on the length component of the representation by using the
primitive recursion theorem (A.6) for natural numbers. The uniqueness of the
function fn in the abstract axiom for lists can then be proved by mathematical
induction on the length component of list representations.

A.3.2.3 Theorems about (α)list

Once the abstract axiom (A.7) for lists has been proved, the following theorems
about lists can be derived from it:

� ∀h t.¬(Nil = Cons h t)
� ∀h1 h2 t1 t2. (Cons h1 t1 = Cons h2 t2) ⊃ ((h1 = h2) ∧ (t1 = t2))
� ∀P. (P Nil ∧ ∀t. P t ⊃ ∀h. P (Cons h t)) ⊃ ∀l. P l

These three theorems are analogous to Peano’s postulates for the natural numbers,
which were derived in Section A.3.1.2. The first theorem states that Nil is not
equal to any list constructed by Cons; the second theorem states that Cons is
one-to-one; and the third theorem asserts the validity of structural induction on
lists.

A.4 Two Recursive Types of Trees

This section describes the formal definitions of two different logical types which
denote sets of trees. First, a type tree is defined which denotes the set of all trees
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whose nodes can branch any (finite) number of times. This type is then used to
define a second logical type of trees, (α)Tree, which denotes the set of labelled
trees. These have the same sort of structure as values of type tree, but they also
have a label of type α associated with each node.

The type (α)Tree defined in this section is of interest because each logical type
in the class of recursive types discussed in Section A.5 can be represented by some
subset of it. Once the type of labelled trees has been defined, it can be used (along
with the type one and the type operators × and +) to construct systematically a
representation for any concrete recursive type. This avoids the problem of having
to find an ad hoc representation for each recursive type, and so makes it possible
to mechanize efficiently the formal definition of such types.

A.4.1 The Type of Trees: tree

Values of the logical type tree defined in this section will be finite trees whose
internal nodes can branch any finite number of times. These trees will be ordered .
That is, the relative order of each node’s immediate subtrees will be important,
and two similar trees which differ only in the order of their subtrees will be
considered to be different trees.

A.4.1.1 The Representation and Type Definition

Trees will be represented by coding them as natural numbers; each tree will be
represented by a unique value of type num. The smallest possible tree consists
of a single leaf node with no subtrees; it will be represented by the number 0. To
represent a tree with one or more subtrees, a function node REP:(num)list→num

will be defined which computes the natural number representing such a tree from a
list of the numbers which represent its subtrees. The function node REP will take
as an argument a list l of numbers. If each of the numbers in the list represents
a tree, then node REP l will represent the tree whose subtrees are represented by
the numbers in l.

Consider, for example, a tree with three subtrees: t1, t2, and t3. Suppose that
the three subtrees t1, t2, and t3 are represented by the natural numbers i, j, and
k respectively:

�
�
�
�

�
�

�
t1

represented by i �
�
�
�

�
�

�
t2

represented by j �
�
�
�

�
�

�
t3

represented by k

The number representing the tree which has t1, t2, and t3 as subtrees will then be
denoted by node REP[i; j; k]:
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represented by node REP[i; j; k]

where the conventional list notation [i; j; k] is a syntactic abbreviation for the list
denoted by Cons i (Cons j (Cons k Nil)).

Since node REP takes a list of numbers as arguments, it can be used to compute
the code for a tree with any finite number of immediate subtrees. Thus, using
node REP, the natural number representing a tree of any shape can be computed
recursively from the natural numbers representing its subtrees. The only property
that node REP must have for this to work is the property of being a one-to-one
function on lists of numbers:

� ∀l1 l2. (node REP l1 = node REP l2) ⊃ (l1 = l2) (A.8)

This theorem asserts that if node REP computes the same natural number from
two lists l1 and l2, then these lists must be equal and therefore must consist of
the same finite sequence of numbers. If node REP has this property, then it can
be used to compute a unique numerical representation for every possible tree. It
remains to define the function node REP such that theorem (A.8) holds.

One way of formally defining node REP is to use the well-known coding function
(n, m) �−→ (2n + 1)× 2m which codes a pair of natural numbers by a single natural
number. Using this coding function, node REP can be defined by recursion on lists
such that the following two theorems hold:

� node REP Nil = 0
� node REP (Cons n t) = ((2× n) + 1)× (2 Exp (node REP t))

(A.9)

These two equations define the value of node REP l by ‘primitive recursion’ on the
list l. When l is the empty list Nil, the result is 0. When l is a non-empty list with
head n and tail t, the result is computed by coding as a single natural number the
pair consisting of n and the result of applying node REP recursively to t. Primitive
recursive definitions of this kind can be justified by formal proof using the abstract
axiom (A.7) for lists derived in Section A.3.2.2. The two theorems (A.9) can be
derived from an appropriate instance of this axiom and a non-recursive definition
of the constant node REP.

Theorem (A.8) stating that node REP is one-to-one can be derived from the
two theorems (A.9) which define node REP by primitive recursion. The proof is
done by structural induction on the lists l1 and l2 using the theorem shown in
Section A.3.2.3 stating the validity of proofs by induction on lists.
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The function node REP can be used to compute a natural number to represent
any finitely branching tree. To make a type definition for the type constant tree,
a predicate on natural numbers Is tree REP:num→bool must be defined which is
true of just those numbers representing trees. This predicate will be defined in
the same way as the corresponding predicate was defined in Section A.3.1.1 for
the representation of numbers by individuals: Is tree REP n will be true if the
number n is in the smallest set of natural numbers closed under node REP.

The formal definition of Is tree REP uses the auxiliary function Every, defined
recursively on lists as follows:

� Every P Nil = T

� Every P (Cons h t) = (P h) ∧ Every P t

These two theorems define Every P l to mean that the predicate P holds of every
element of the list l. Using Every, the predicate Is tree REP is defined as follows:

� Is tree REP n = ∀P. (∀tl. Every P tl ⊃ P (node REP tl)) ⊃ P n

This definition states that a number n represents a tree exactly when it is an
element of every subset of num which is closed under node REP. It follows that
the set of numbers for which Is tree REP is true is the smallest set closed under
node REP. This set contains just those natural numbers which can be computed
using node REP and therefore contains only those numbers which represent trees.

To use Is tree REP to define a new type, the theorem � ∃n. Is tree REP n must
first be proved. This theorem follows immediately from the fact that Is tree REP

is true of 0, i.e. the number denoted by node REP Nil. Once this theorem has
been proved, a type definition axiom of the usual form can be introduced:

� ∃f :tree→num.
(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. Is tree REP r = (∃a. r = f a))

along with the usual abstraction and representation functions:

ABS tree:num→tree and REP tree:tree→num.

A.4.1.2 The Axiomatization of tree

The abstract axiom for tree will be based on the constructor:

node:(tree)list→tree

The function node builds trees from smaller trees. If tl:(tree)list is a list of trees,
then the term node tl denotes the tree whose immediate subtrees are the trees in
the list tl. If tl is the empty list of trees, then node tl denotes the tree consisting
of a single leaf node. Using node, it is possible to construct a tree of any shape.
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For example, the tree:
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is denoted by the expression: node[node Nil; node Nil; node[node Nil; node Nil] ].
An auxiliary function Map will be used in the definition of the constructor

node. The function Map is the usual mapping function for lists; it takes a function
f :α→β and a list l:(α)list and yields the result of applying f to each member of
l in turn. The recursive definition of Map is:

� Map f Nil = Nil

� Map f (Cons h t) = Cons (f h) (Map f t)

Using Map and the function node REP:(num)list→num defined in the previous
section, the formal definition in logic of node is:

� node tl = (ABS tree(node REP(Map REP tree tl)))

The constructor node defined by this equation takes a list of trees tl, applies
node REP to the corresponding list of numbers representing the trees in tl, and
then maps the result to the corresponding abstract tree.

The following two important theorems follow from the formal definition of node

given above; they are analogous to the Peano postulates for the natural numbers,
and are used to prove the abstract axiom for the type tree:

� ∀tl1 tl2. (node tl1 = node tl2) ⊃ (tl1 = tl2)
� ∀P. (∀tl. Every P tl ⊃ P (node tl)) ⊃ ∀t. P t

The first of these theorems states that the constructor node is one-to-one. This
follows directly from theorem (A.8), which states that the corresponding function
node REP is one-to-one. The second theorem shown above asserts the validity
of induction on trees, and can be used to justify proving properties of trees by
structural induction. This theorem can be proved from the definitions of node and
Is tree REP and the fact that ABS tree and REP tree are isomorphisms relating
trees and the numbers that represent them.

The abstract axiomatization of the defined type tree consists of the single
theorem shown below:

� ∀f. ∃!fn. ∀tl. fn(node tl) = f (Map fn tl) tl (A.10)
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This theorem is analogous to the primitive recursion theorem (A.6) for natural
numbers and the abstract axiom (A.7) for lists. It asserts the unique existence
of functions defined recursively on trees. The universally quantified variable f

ranges over functions that map a list of values of type α and a list of trees to
a value of type α. For any such function, there is a unique function fn:tree→α

that satisfies the equation fn(node tl) = f (Map fn tl) tl. For any tree (node tl),
this equation defines the value of fn(node tl) recursively in terms of the result of
applying fn to each of the immediate subtrees in the list tl.

A.4.1.3 An Outline of the Proof of the Axiom for tree

It is straightforward to prove the uniqueness part of the abstract axiom for trees;
the uniqueness of the function fn in theorem (A.10) follows by structural induction
on trees using the induction theorem for the defined type tree. The existence
part of theorem (A.10) is considerably more difficult to prove. It follows from a
slightly weaker theorem in which the list of subtrees tl is not an argument to the
universally quantified function f :

� ∀f. ∃fn. ∀tl. fn(node tl) = f (Map fn tl) (A.11)

This weaker theorem can be proved by first defining a height function Ht on
trees and then proving that, for any number n, there exists a function fun which
satisfies the desired recursive equation for trees whose height is bounded by n:

� ∀f n. ∃fun. ∀tl. (Ht(node tl) ≤ n) ⊃ (fun(node tl) = f (Map fun tl))

The main step in the proof of this theorem is an induction on n.
This theorem can be used to define a higher order function fun which yields

approximations of the function fn whose existence is asserted by theorem (A.11).
For any n and f , the term (fun n f) denotes an approximation of fn which satisfies
the recursive equation in theorem (A.11) for trees whose height is no greater than
n. This is stated formally by the following theorem:

� ∀f n tl. (Ht(node tl) ≤ n) ⊃
(fun n f (node tl) = f (Map (fun n f) tl)) (A.12)

The approximations constructed by fun have the following important property:
for any two numbers n and m, the corresponding functions constructed by fun

behave the same for trees whose height is bounded by both n and m. This
property follows by structural induction on trees, and is stated formally by the
theorem shown below.

� ∀t n m f. (Ht t)<n ∧ (Ht t)<m ⊃ (fun n f t = fun m f t) (A.13)
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Theorem (A.11) asserts the existence of a function fn for any given f . The
higher order function fun can be used to construct this function explicitly from the
given function f . For any f , the term λt. fun (Ht(node [t])) f t denotes the function
which satisfies the desired recursive equation. An outline of the proof of this is as
follows. Specializing f , n, and tl in theorem (A.12) to f , Ht(node[node tl]), and
tl respectively yields the following implication:

� Ht(node tl) ≤ Ht(node[node tl]) ⊃
fun (Ht(node[node tl])) f (node tl) = f(Map (fun (Ht(node[node tl])) f) tl)

The height function Ht has the property: � ∀t. Ht t ≤ Ht(node [t]). The antecedent
of the implication shown above is therefore always true, and the theorem can be
simplified to:

� fun (Ht(node[node tl])) f (node tl) = f(Map (fun (Ht(node[node tl])) f) tl)

The property of fun expressed by theorem (A.13) implies that the above theorem
is equivalent to:

� fun (Ht(node[node tl])) f (node tl) = f(Map (λt. fun (Ht(node[t])) f t) tl)

which is itself equivalent (by β-reduction) to:

� (λt. fun (Ht(node[t]))f t)(node tl) = f(Map (λt. fun (Ht(node[t])) f t) tl)

Theorem (A.11) follows immediately from this last result. The slightly stronger
abstract axiom for tree, theorem (A.10), then follows from theorem (A.11) by a
relatively straightforward formal proof.

A.4.2 The Type of Labelled Trees: (α)Tree

This section outlines the definition of the type (α)Tree which denotes the set of
labelled trees. Labelled trees of the kind defined in this section have the same
sort of general structure as values of the logical type tree defined in the previous
section. The only difference is that a tree of type (α)Tree has a value or ‘label’
of type α associated with each of its nodes. It is therefore comparatively simple
to define the type (α)Tree, since the values of the structurally similar type tree

can be used in its representation.
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A.4.2.1 The Representation and Type Definition

The representation of a labelled tree of type (α)Tree will be a pair (t, l), where t

is a value of type tree giving the shape of the tree being represented and l is a list
of type (α)list containing the values associated with its nodes. The values in the
list l will occur in the sequence which corresponds to a preorder traversal of the
labelled tree being represented. Consider, for example, the labelled tree shown
below:
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This tree has a natural number associated with each node and can be represented
by a pair (t, l) of type tree × (num)list. The first component t of this pair will
be the value of type tree whose structure corresponds to the above picture. The
second component l will be a list of length eight containing the numbers associated
with the nodes of the corresponding labelled tree. The numbers in this list will
occur in the order [1; 2; 3; 4; 5; 6; 7; 8], corresponding to a preorder traversal of the
labelled tree being represented.

Any α-labelled tree can be similarly represented by a pair of type tree×(α)list,
but not every such pair represents a tree. For a pair (t, l) to represent a labelled
tree, the length of the list l must be the same as the number of nodes in the tree
t. This can be expressed in logic by defining two functions:

Length:(α)list→num and Size:tree→num

which compute the length of a list and the number of nodes in a tree, respectively.
The function Length can be defined recursively by using the abstract axiom (A.7)
for lists to derive the following two equations:

� Length Nil = 0
� Length (Cons h t) = (Length t) + 1

The function Size can be defined by first defining a recursive function on lists
Sum:(num)list→num which computes the sum of a list of natural numbers:

� Sum Nil = 0
� Sum (Cons n l) = n + (Sum l)

and then using the abstract axiom (A.10) for the defined type tree to derive the
following recursive definition of Size:
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� Size(node tl) = (Sum(Map Size tl)) + 1

Using the functions Length and Size, the values of type tree × (α)list that
represent labelled trees can be specified by the predicate Is Tree REP defined as
follows:

� Is Tree REP(t, l) = (Length l = Size t)

This predicate is true of just those pairs (t, l) where the number of nodes in the
tree t equals the length of the list l. It is therefore true of precisely those values
of type tree× (α)list which can be used to represent labelled trees.

For any value v:α, the predicate Is Tree REP holds of the pair: (node Nil, [v]).
From this, it immediately follows that � ∃p. Is Tree REP p. The following type
definition axiom can therefore be introduced to define (α)Tree:

� ∃f :(α)Tree→(tree× (α)list).
(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. Is Tree REP r = (∃a. r = f a))

The associated abstraction and representation functions:

ABS Tree:(tree× (α)list)→(α)Tree and
REP Tree:(α)Tree→(tree× (α)list)

can then be defined in the usual way (as described in Section A.1).

A.4.2.2 Deriving the Axiomatization of (α)Tree

The abstract axiom for (α)Tree is based on the constructor

Node:α→((α)Tree)list→(α)Tree

which is analogous to the constructor node for tree. If v is a value of type α, and l

is a list of labelled trees, then the term (Node v l) denotes the labelled tree whose
immediate subtrees are those occurring in l and whose root node is labelled by
the value v. The function Node can be used to construct labelled trees of any
shape. For example, the tree:
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is denoted by the term: Node 2 [Node 3 Nil; Node 5 Nil; Node 7 Nil].
The definition of Node uses an auxiliary function Flat:((α)list)list→(α)list,

which takes a list of lists and yields the result of appending them all together into
a single list. The recursive definition of Flat is:
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� Flat Nil = Nil

� Flat (Cons h t) = Append h (Flat t)

where Append is defined (also recursively) by:

� Append Nil l = l

� Append (Cons h l1) l2 = Cons h (Append l1 l2)

Using Flat, and the function Map defined above in Section A.4.1.2, the formal
definition of the constructor Node is given by the following theorem:

� Node v l = ABS Tree((node(Map (Fst o REP Tree) l)),
((Cons v (Flat(Map (Snd o REP Tree) l)))))

This definition uses REP Tree to obtain the representation of each labelled tree in
the list l. This yields a list of pairs representing labelled trees. The function node

is then used to construct a new tree whose subtrees are the tree components in this
list of pairs, and Flat is used to construct the corresponding list of node-values.
The result is then mapped back to an abstract labelled tree using the abstraction
function ABS Tree.

Using the constructor Node v l defined above, the abstract axiom for (α)Tree

can be written:

� ∀f. ∃!fn. ∀v tl. fn(Node v tl) = f (Map fn tl) v tl (A.14)

This theorem is of the same general form as theorem (A.10), the abstract axiom for
the defined type tree. It states the uniqueness of functions defined by ‘primitive
recursion’ on labelled trees. The proof of this theorem is straightforward, but
it requires some tricky (and uninteresting) lemmas involving the partitioning of
lists. Details of the proof will therefore not be given here. The general strategy of
the proof is to use the abstract axiom for values of type tree to define a recursive
function on representations which ‘implements’ the function fn asserted to exist
by the axiom (A.14).

A.5 Automating Recursive Type Definitions

This section outlines a method for formally defining any simple concrete recursive
type in higher order logic. This method has been used to implement an efficient
derived inference rule in HOL which defines such recursive types automatically.
The input to this derived rule is a user-supplied informal3 specification of the
recursive type to be defined. This type specification is written in a notation

3In this context, informal means not in the language of higher order logic.
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�

informal specification of rty

�

�

�

�
Construct a representation using
the defined logical types: one, ×,
+, and (α)Tree.

�

�� �� Subset predicate: All Prty�

�

�

�
Postulate a type definition axiom
for rty, and define ABS and REP.

�

�� �� � ∀a. ABS(REP a)=a
� ∀r. All Prty r = (REP(ABS r)=r)�

�
�
 Prove an abstract axiom for rty.

�
� abstract axiom for rty

Figure A.1: Defining a Recursive Type rty.

which resembles a data type declaration in functional programming languages like
Standard ML [46]. It simply states the names of the new type’s constructors and
the logical types of their arguments. The output is a theorem of higher order logic
which abstractly characterizes the properties of the desired recursive type—i.e. a
derived ‘abstract axiomatization’ of the type.

An overview of the algorithm used by this programmed inference rule to define
a recursive type is shown Figure A.1. A concrete recursive type rty is defined
and axiomatized by this algorithm in three steps. In the first step, an appropriate
representation is found for the values of the recursive type rty to be defined. This
representation is always some subset of a substitution instance of (α)Tree—i.e.
a subset of some type (ty)Tree of general trees labelled by values of type ty.
The type ty of labels for these trees is built up systematically using the type
constant one and the type operators × and +. The output of this stage is a
‘subset predicate’ which defines the set of labelled trees used to represent values
of the new type rty. This predicate has the standard form: ‘All Prty’, where Prty is
a predicate whose exact form is determined by the specification of the type to be
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defined. (The meaning of ‘All’ is explained below in Section A.5.3.2.) No logical
inference needs to be done in this step, so the ML code which implements it in
the HOL system is quite fast.

In the second step, a type definition axiom is introduced for the new type, based
on the subset predicate All Prty. The associated abstraction and representation
functions ABS and REP are then defined and proved to be isomorphisms between
the new type rty and the set of values specified by All Prty. The output of this
stage consists of the two theorems about ABS and REP shown in Figure A.1.
The proofs done in this step are easy and routine (see Section A.1), and their
mechanization in HOL is therefore efficient and straightforward.

In the final step, an abstract axiom for the new type rty is derived by formal
proof from the definition of the subset predicate All Prty and the two theorems
about ABS and REP proved in the previous stage. This is the only step in the
algorithm where a non-trivial amount of logical inference has to be done. The
ML implementation of this step therefore uses the ‘optimization’ strategy for HOL
derived inference rules discussed in Section 2.2.3: a pre-proved general theorem
about recursive types is used to reduce to a minimum the amount of inference
that has to be done at ‘run time’ to derive the desired result. This pre-proved
theorem has the form shown below:

� ∀P. · · · 〈β is isomorphic to ‘All P ’〉 ⊃ 〈abstract axiom for β〉

Informally, this theorem states that any type β which is represented by a set of
labelled trees ‘All P ’ satisfies an abstract axiomatization of the required form. By
specializing P in this theorem to the predicate Prty constructed in the first step,
the abstract axiom for rty follows simply by modus ponens (using the theorems
about ABS and REP derived in the second step) and a relatively small amount of
straightforward simplification.

A detailed description of the HOL implementation of this algorithm for defining
recursive types is beyond the scope of this appendix, but the sections which follow
give an overview of the logical basis for this implementation. In Section A.5.1,
the syntax of informal type specifications is described, and some simple examples
are given of type specifications written in this notation. Section A.5.2 describes
the general form of the abstract axioms that are derived by the system, and
Section A.5.3 explains how appropriate representations for these types can be
systematically constructed from their informal type specifications. Finally, in
Section A.5.4 a general theorem is given which states that any recursive type
represented in the way described in Section A.5.3 satisfies an abstract axiom of
the form shown in Section A.5.2. An example of the application of this theorem
is also given.
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A.5.1 Informal Type Specifications4

Every logical type which can be defined by the method outlined in the following
sections can be described informally by a type specification of the following general
form:

(α1, . . . , αn)rty :: = C1 ty1
1 . . . tyk1

1 | · · · | Cm ty1
m . . . tykm

m

where each tyj
i is either an existing logical type (not containing rty) or is the type

expression (α1, . . . , αn)rty itself. This equation specifies a type (α1, . . . , αn)rty
with n type variables α1, . . . , αn where n ≥ 0. If n = 0 then rty is a type
constant; otherwise rty is an n-ary type operator. The type specified has m

distinct constructors C1, . . . , Cm where m ≥ 1. Each constructor Ci takes ki

arguments, where ki ≥ 0; and the types of these arguments are given by the type
expressions tyj

i for 1 ≤ j ≤ ki. If one or more of the type expressions tyj
i is the

type (α1, . . . , αn)rty itself, then the equation specifies a recursive type. In any
specification of a recursive type, at least one constructor must be non-recursive—
i.e. all its arguments must have types which already exist in the logic.

The logical type specified by the equation shown above denotes the set of all
values which can be finitely generated using the constructors C1, . . . , Cm, where
each constructor is one-to-one and any two different constructors yield different
values. Every value of this logical type is denoted by some term of the form:

Ci x1
i . . . xki

i

where xj
i is a term of logical type tyj

i for 1 ≤ j ≤ ki. In addition, any two terms:

Ci x1
i . . . xki

i and Cj x1
j . . . x

kj

j

denote equal values exactly when their constructors are the same (i.e. i = j) and
these constructors are applied to equal arguments (i.e. xn

i = xn
j for 1 ≤ n ≤ ki).

A.5.1.1 Some Examples of Type Specifications

The two simple recursive types num and (α)list which were defined in Section A.3
are both examples of types that can be described by type specifications of the
general form described above.

The specification of the type num of natural numbers is the simple equation
shown below:

num ::= 0 | Suc num

4Some of the notation used in this section is adapted from Bird and Wadler’s clear description
of the syntax of type definitions in their excellent book [5] on functional programming.
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This equation specifies the type constant num to have two constructors: 0:num

and Suc:num→num. The type num which is described by this type specification
denotes the smallest set of values generated from the constant 0 by zero or more
applications of the constructor Suc—i.e. the set of values denoted by terms of the
form: 0, Suc(0), Suc(Suc(0)), . . . etc.

The type specification for the type (α)list of finite lists is similar to the one
given above for num. It is:

(α)list ::= Nil | Cons α (α)list

This equation states that the type (α)list denotes the set of all values generated
by the two constructors: Nil:(α)list and Cons:α→(α)list→(α)list.

A slightly more complex example is the recursive type btree, described by the
type specification shown below:

btree ::= Leaf num | Tree btree btree

This equation specifies a type of binary trees whose leaf nodes (but not internal
nodes) are labelled by natural numbers. When defined formally, this type will have
two constructors: Leaf:num→btree and Tree:btree→btree→btree. The function
Leaf constructs leaf nodes; if n is a value of type num, then (Leaf n) denotes a
leaf node labelled by n. The constructor Tree builds binary trees from smaller
binary trees; if t1 and t2 are binary trees then (Tree t1 t2) denotes the binary tree
with left subtree t1 and right subtree t2.

In addition to recursive types, simple enumerated and ‘record’ types can also
be specified by equations of the form described above. For example, the type
constant one and the two type operators prod and sum, whose formal definitions
were given in Section A.2, can be informally specified by the three equations
shown below:

one :: = one

(α, β)prod :: = pair α β

(α, β)sum :: = Inl α | Inr β

The first of these specifications simply states that one is the enumerated type with
exactly one value: the value denoted by the constant one. The second specification
states that every value of type (α, β)prod is denoted by some term of the form
(pair a b), i.e. an ordered pair with first component a:α and second component
b:β. The third equation states that every value of type (α, β)sum is either a left
injection constructed by Inl or a right injection constructed by Inr.

Many more examples of types—both recursive and non-recursive—which can
be specified by equations of the form discussed in this section can be found in
books on functional programming. (See, for example, Chapter 8 of [5].)
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A.5.2 Formulating Abstract Axioms for Recursive Types

The input to the HOL programmed inference rule which defines types is, in general,
an informal specification of the form:

(α1, . . . , αn)rty :: = C1 ty1
1 . . . tyk1

1 | · · · | Cm ty1
m . . . tykm

m

Each type (α1, . . . , αn)rty specified by an equation of this form can be abstractly
characterized by a single theorem of higher order logic. This theorem is the output
of the HOL derived rule for defining types and has the following general form:

� ∀f1 · · · fm. ∃!fn:(α1, . . . , αn)rty→β.

∀x1
1 · · · xk1

1 . fn(C1 x1
1 . . . xk1

1 ) = f1 (fn x1
1) . . . (fn xk1

1 ) x1
1 . . . xk1

1 ∧
... (A.15)

∀x1
m · · · xkm

m . fn(Cm x1
m . . . xkm

m ) = fm (fn x1
m) . . . (fn xkm

m ) x1
m . . . xkm

m

where the right hand sides of the equations include recursive applications (fn xj
i )

of the function fn only for variables xj
i of type (α1, . . . , αn)rty.

Theorem (A.15) states that for any m functions f1, . . . , fm there is a unique
function fn which satisfies the ‘primitive recursive’ definition whose exact form is
determined by the functions f1, . . . , fm. This is an abstract characterization of
the type (α1, . . . , αn)rty: it states the essential properties of the type, but does
so without reference to the way it is represented. It follows from this theorem
that every value of type (α1, . . . , αn)rty is constructed by one of the construc-
tors C1, . . . , Cm, that each of these constructors is one-to-one, and that different
constructors yield different values. The proof that theorem (A.15) implies these
properties of (α1, . . . , αn)rty and the constructors C1, . . . , Cm can be outlined as
follows.

The fact that every value of type (α1, . . . , αn)rty is constructed by one of the
functions C1, . . . , Cm follows from the uniqueness part of theorem (A.15). Suppose
there is some value, v say, such that v �= (Ci x1

i . . . xki
i ) for 1 ≤ i ≤ m. I.e. v is

not constructed by any Ci. One could then define two functions f and g of type
(α1, . . . , αn)rty→bool which yield the boolean T for all values constructed by any
constructor Ci:

∀x1
i · · · xki

i . f(Ci x1
i . . . xki

i ) = g(Ci x1
i . . . xki

i ) = T for 1 ≤ i ≤ m

and when applied to v yield different results: f v = T and g v = F. If f and g

are defined this way then f �= g, since f v �= g v. But from the uniqueness part
of theorem (A.15) it follows that if f and g have the property shown above, then
f = g. Therefore no such value v exists, and every value of type (α1, . . . , αn)rty
is constructed by some Ci.

The fact that the constructors C1, . . . , Cm are one-to-one can be proved by
using theorem (A.15) to define a ‘destructor’ function Di for each Ci such that:
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� Di(Ci x1
i . . . xki

i ) = (x1
i , . . . , x

ki
i )

For each constructor Ci, the corresponding destructor function Di can be defined
by appropriately specializing the quantified variable fi in theorem (A.15). From
the property of the destructor Di shown above, it is then easy to prove that:

� (Ci x1
i . . . xki

i ) = (Ci y1
i . . . yki

i ) ⊃ (x1
i = y1

i ∧ · · · ∧ xki
i = yki

i )

which states that Ci is one-to-one, as desired.
Finally, the fact that different constructors yield different values can be proved

by appropriately specializing the universally quantified functions f1, . . . , fm in
theorem (A.15) to obtain a theorem asserting the proposition shown below:

� ∃fn. ∀x1
i · · · xki

i . fn(Ci x1
i . . . xki

i ) = i for 1 ≤ i ≤ m

This states the existence of a function fn which yields the natural number i when
applied to values constructed by the ith constructor. This means that any two
different constructors Ci and Cj yield different values of type (α1, . . . , αn)rty, since
applying fn to these values gives different natural numbers.

Using theorems of the form illustrated by (A.15) to axiomatize recursive types
is closely related to the initial algebra approach to the theory of abstract data
types [28]. This approach is very elegant from a theoretical point of view, but it is
also of practical value in the HOL mechanization of recursive type definitions. Each
recursive type is characterized by a single theorem, and all the theorems which
characterize such types have the same general form. This uniform treatment
of recursive types is the basis for the efficient automation of their construction
in HOL. It allows the axiom for any recursive type to be quickly derived from
a pre-proved theorem stating that axioms of this kind hold for all such types.
Furthermore, it makes it possible to derive useful standard properties of recursive
types (e.g. structural induction) in a uniform way, with relatively short formal
proofs and therefore by efficient programmed inference rules.

A.5.3 Constructing Representations for Recursive Types

This section outlines a method by which a representation can be found for any
type specified informally by an equation of the form described in Section A.5.1.
Each representation is an appropriately-defined subset of a type constructed using
the type constant one, the type operators × and +, and the type (α)Tree. A
simple example is first given in Sections A.5.3.1 and A.5.3.2; the method for
finding representations in general is then outlined in Section A.5.3.3.
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A.5.3.1 An Example: the Representation of Binary Trees

Consider the type btree described above in Section A.5.1.1. This type was specified
informally by:

btree ::= Leaf num | Tree btree btree

The type btree specified by this equation can be represented in higher order logic
by a subset of the set denoted by the compound type (num + one)Tree. This
type denotes the set of all trees (of any shape) whose nodes are labelled either
by a value of type num or by the single value one of type one. The idea of
this representation is that each binary tree t of type btree is represented by a
corresponding tree of type (num + one)Tree which has both the same shape as t

and the same labels on its nodes as t.
Consider, for example, the binary tree (Leaf n), consisting of a single leaf node

labelled by the natural number n. This binary tree will be represented by a leaf
node of type (num + one)Tree labelled by the left injection (Inl n):

�Leaf n �Node (Inl n) Nil
�

represented by

A binary tree (Tree t1 t2) which is not a leaf node, but has two subtrees t1
and t2, will be represented by a tree of type (num + one)Tree which also has two
subtrees and is labelled by the right injection (Inr one):

Tree t1 t2�
�

�
�

�
�

��
�
�
�

�
�

�
t1

�
�
�
�

�
�

�
t2

Node (Inr one) [r1; r2]�
�

�
�

�
�

��
�
�
�

�
�

�
r1

�
�
�
�

�
�

�
r2

�
represented by

where r1 and r2 are the representations of the two binary trees t1 and t2. The
‘dummy’ value (Inr one) is used here to label the root node of the representation,
since the binary tree which is being represented has no value associated with its
root node.

A.5.3.2 Defining the Subset Predicate for btree

To introduce a type definition axiom for btree, a predicate Is btree REP must
first be defined which is true of just those values of type (num + one)Tree which
represent binary trees using the scheme outlined above. This predicate is defined
formally by building it up from two auxiliary predicates: Is Leaf and Is Tree. These
two auxiliary predicates correspond to the two kinds of binary trees which will
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be represented, and each one states what the representation of the corresponding
kind of binary tree looks like.

The predicates Is Leaf and Is Tree are defined as follows. Every value in the
representation is a tree of the form (Node v tl), where v is a label of logical
type (num + one) and tl is a list of subtrees. If such a tree represents a leaf
node (Leaf n), then the label v must be the value (Inl n) and the list tl must be
empty. These conditions are expressed formally by the predicate Is Leaf, defined
as follows:

� Is Leaf v tl = (∃n. v = Inl n ∧ Length tl = 0)

If (Node v tl) represents a binary tree (Tree t1 t2) with two subtrees, then the list
of subtrees tl must have length two, and the label v must be the value (Inr one).
The definition of Is Tree is therefore:

� Is Tree v tl = (v = Inr one ∧ Length tl = 2)

The two predicates Is Leaf and Is Tree state what kind of values v and tl must
be for the tree (Node v tl) to be the root node of legal binary-tree representation.
But if a general tree of type (num + one)Tree in fact represents a binary tree,
then not only its root node but every node it contains (i.e. all its subtrees) must
also satisfy either Is Leaf or Is Tree. This can be expressed formally in logic by
first defining a higher order function All recursively on trees as follows:

� All P (Node v tl) = P v tl ∧ Every (All P ) tl

Using All, the predicate Is btree REP can then be defined such that it is true of
a tree t exactly when the label and subtree list of every node in t satisfies either
Is Leaf or Is Tree. The definition of Is btree REP is simply:

� Is btree REP t = All (λv. λtl. Is Leaf v tl ∨ Is Tree v tl) t

This predicate exactly specifies the subset of (num + one)Tree whose values
represent binary trees, and can therefore be used to introduce a type definition
axiom for the new type btree in the usual way. All the predicates which specify
representations of recursive type are defined using All in exactly the way shown
above for Is btree REP.

A.5.3.3 Finding Representations in General

The representation of binary trees by a subset of (num+ one)Tree illustrates the
general method for finding representations of any type specified by an equation
of the form described in Section A.5.1. In general, a recursive type specified by
an equation of this kind denotes a set of labelled trees with a fixed number of
different kinds of nodes. Any such type can therefore be represented by a subset
of values denoted by some instance of the defined type (α)Tree of general trees.

201



︷ ︸︸ ︷
x1

i . . . xki
i︸ ︷︷ ︸Ci

�

�

!

"

pi arguments having
existing logical types

qi arguments of
type (α1, . . . , αn)rty

(∼,∼, . . . ,∼)

pi labels︷ ︸︸ ︷

�

︸ ︷︷ ︸
qi subtrees

������

�
�

�







�
�
�
�

�
�

�

�
�
�
�

�
�

�

�
�
�
�

�
�

�

� � �

Figure A.2: The Representation of a value Ci x1
i . . . xki

i .

Suppose, for example, that (α1, . . . , αn)rty is specified by:

(α1, . . . , αn)rty :: = C1 ty1
1 . . . tyk1

1 | · · · | Cm ty1
m . . . tykm

m

This equation specifies a type with m different kinds of values, corresponding to
the m constructors C1, . . . , Cm. When this type is defined formally in higher order
logic, each of its values will be denoted by some term of the form:

Ci x1
i . . . xki

i

where Ci is a constructor and each argument xj
i is a value of type tyj

i for 1 ≤ j ≤ ki.
In the general case of a recursive type, some of the ki arguments to Ci will have
existing logical types and some will have the type (α1, . . . , αn)rty itself. Let pi

be the number of arguments which have existing logical types and let qi be the
number of arguments which have type (α1, . . . , αn)rty, where ki = pi + qi. The
abstract value of type (α1, . . . , αn)rty denoted by Ci x1

i . . . xki
i can be represented

by a tree which has qi subtrees and pi values associated with its root node.

This representation scheme is illustrated the diagram shown in Figure A.2. In
the general case illustrated by this diagram, the tree representing Ci x1

i . . . xki
i

is labelled by pi-tuple of values. Each of these values is one of the pi arguments
to Ci which are not of type (α1, . . . , αn)rty but have types which already exist
in the logic. When pi = 0, the representing tree is labelled not by a tuple but
by the constant one (as was done for the constructor Tree of btree). And when
pi = 1 the representing tree is labelled simply by a single value of the appropriate
type (as was done for the constructor Leaf of btree). The qi subtrees shown in
the diagram are the representations of the arguments to Ci which have the type
(α1, . . . , αn)rty. If qi = 0 then the representing tree has no subtrees.

Each of the m kinds of values constructed by C1, . . . , Cm can be represented
by a tree using the scheme outlined above. In general, a value obtained using the
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ith constructor Ci will be represented by a tree labelled by a tuple of pi values.
The representing type for (α1, . . . , αn)rty will therefore be a type expression of
the form:

(

sum of m products︷ ︸︸ ︷
( ty × · · · × ty︸ ︷︷ ︸

product of p1 types

) + · · · + ( ty × · · · × ty︸ ︷︷ ︸
product of pm types

) )Tree

where the ty’s are the existing logical types occurring in the equation which spec-
ifies the new type (α1, . . . , αn)rty being defined.

Using this scheme, a predicate Is rty REP can be defined to specify a set of trees
to represent (α1, . . . , αn)rty in exactly the same way as the predicate Is btree REP

was defined for the representation of btree. The definition of Is rty REP will have
the form:

� Is rty REP t = All (λv. λtl. Is C1 v tl ∨ · · · ∨ Is Cm v tl) t

where each Is Ci is an auxiliary predicate specifying which trees represent values
constructed by the corresponding constructor Ci. The ith auxiliary predicate Is Ci

is defined as follows. When i �= m, the definition is:

� Is Ci v tl = ∃x1 . . .xpi
. v = Inl(Inr · · · (Inr︸ ︷︷ ︸

i−1 Inr’s

(x1, . . . , xpi
)) · · ·) ∧ Length tl = qi

where pi is the number of arguments to Ci which have existing logical types, and
qi is the number of arguments of type (α1, . . . , αn)rty. This definition states that
if a tree (Node v tl) represents a value Ci x1

i . . . xki
i then it must have the right

number subtrees in tl and its label v must be an appropriate injection of some
pi-tuple (of the right logical type, of course). When i = m, the definition is
similar:

� Is Cm v tl = ∃x1 . . .xpm . v = (Inr · · · (Inr︸ ︷︷ ︸
m−1 Inr’s

(x1, . . . , xpm)) · · ·) ∧ Length tl = qm

The only difference is that the last injection applied is Inr, not Inl.

A.5.4 Deriving Abstract Axioms for Recursive Types

The uniform treatment of representations for recursive types makes it possible
to write an efficient HOL derived inference rule which proves abstract axioms for
them. Every representation is some subset ‘All P ’ of an instance of (α)Tree. A
general theorem can therefore be formulated stating that an abstract axiom of the
required form holds for any recursive type represented this way. This theorem
can then be simply ‘instantiated’ to obtain an abstract axiom for any particular
recursive type.

The theorem stating that every recursive type satisfies an abstract axiom of
the desired form is shown below:
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� ∀P. ∀Abs:(α)Tree→β. ∀Rep:β→(α)Tree.
(∀a. Abs(Rep a)=a ∧ ∀r. All P r = (Rep(Abs r)=r)) ⊃
∀f. ∃! fn. ∀v tl. P v (Map Rep tl) ⊃

fn(Abs(Node v (Map Rep tl))) = f (Map fn tl) v tl

(A.16)

Informally, this theorem states that any type β which is represented by (i.e. is
isomorphic to) a set ‘All P ’ of trees satisfies an abstract axiom of the form
described in Section A.5.2. Theorem A.16 makes this assertion in form of an
implication:

� ∀P. · · · 〈β is isomorphic to ‘All P ’〉 ⊃ 〈abstract axiom for β〉

where the antecedent of this implication is written formally as follows:

∀a. Abs(Rep a)=a ∧ ∀r. All P r = (Rep(Abs r)=r)

This simply says that β is isomorphic to the set of trees of type (α)Tree which
satisfy All P . The type variable β stands for the new recursive type which is
represented by All P , and the variables Abs and Rep are the abstraction and
representation functions for β.

The conclusion of theorem (A.16) states that functions can be uniquely defined
by ‘primitive recursion’ on the structure which β inherits from All P . That is, for
any f , there is a unique function fn:β→γ which satisfies the recursive equation:

fn(Abs(Node v (Map Rep tl))) = f (Map fn tl) v tl

whenever the condition P v (Map Rep tl) holds of v and tl. This condition
on v and tl restricts the recursive equation shown above to apply only to ‘well-
constructed’ values of type β. If P v (Map Rep tl) holds, then All P is true
of the value Node v (Map Rep tl) on the left hand side of the equation. The
corresponding abstract value, denoted by:

Abs(Node v (Map Rep tl)),

will then be a correctly-represented value of type β. The example which is given
in Section A.5.4.1 below shows how the form of the predicate P in the condition
P v (Map Rep tl) determines the final ‘shape’ of the resulting axiom.

Theorem (A.16) illustrates the expressive power which higher-order variables
and type polymorphism give to higher order logic. The variable P in this theorem
ranges (essentially) over all predicates on (α)Tree. And the two type variables
α and β can be instantiated to any two logical types. Theorem (A.16) therefore
asserts that an abstract axiom holds for any recursive type, since any such type is
isomorphic to an appropriate subset All P of some instance of (α)Tree. Because
general results like theorem (A.16) can be formulated as theorems in the logic,
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they can be used to make programmed inference rules in HOL efficient. Derived
inference rules can use such pre-proved general theorems to avoid having to do
costly ‘run time’ inference. Theorem (A.16) is used in this way by the derived
rule which automates recursive type definitions.

The example given in the following section shows how this derived rule uses
the general theorem (A.16) to prove the abstract axiom for a particular recursive
type.

A.5.4.1 Example: Deriving the Axiom for btree

The example given in this section is the proof of the abstract axiom for btree,
the type whose representation was described in Section A.5.3.2. The following is
the sequence of main steps which the HOL system carries out to define btree and
derive an abstract axiom for it:

(1) Define the subset predicate Is btree REP, introduce a type definition axiom
for btree, and define the associated abstraction and representation functions
ABS:(num + one)Tree→btree and REP:btree→(num + one)Tree.

This is done as outlined in Sections A.5.3.2 and A.1. The result of this step
is the two theorems shown below:

� ∀a. ABS(REP a) = a
� ∀r. All Is btree REP r = (REP(ABS r) = r)

These theorems simply state that the newly-introduced type constant btree

denotes a set of values which is isomorphic to the subset of (num+ one)Tree

defined by All Is btree REP.

(2) Use theorem (A.16) to obtain an (unsimplified) abstract axiom for btree.

If the type variables α and β in theorem (A.16) are instantiated to the types
(num + one) and btree respectively, then the universally quantified variables
P , Abs, and Rep can be specialized to the terms Is btree REP, ABS, and REP.
The resulting instance of theorem (A.16) is an implication whose antecedent
matches the two theorems about ABS and REP derived in the previous step.
The theorem shown below therefore follows simply by modus ponens (and
rewriting, with the definition of Is btree REP):

� ∀f. ∃!fn. ∀v tl. (Is Leaf v (Map REP tl) ∨ Is Tree v (Map REP tl)) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl

This theorem expresses the essence of the desired abstract axiom for btree.
The remaining steps carried out by the system are sequence of straightforward
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simplifications of this theorem which put it into the desired final form.

(3) Remove the disjunction: Is Leaf v (Map REP tl) ∨ Is Tree v (Map REP tl).

The theorem derived in the previous step contains a term which has the form
∀v tl. (P ∨ Q) ⊃ R. By a simple proof in predicate calculus, this term is
equivalent to the conjunction: (∀v tl. P ⊃ R) ∧ (∀v tl. Q ⊃ R). The theorem
derived in the previous step is therefore equivalent to:

� ∀f. ∃!fn. ∀v tl. Is Leaf v (Map REP tl) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl ∧

∀v tl. Is Tree v (Map REP tl) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl

In the general case of a type with m constructors, the subset predicate will
be a disjunction of the general form:

Is C1 v (Map Rep tl) ∨ · · · ∨ Is Cm v (Map Rep tl)

When this step is done, it will introduce a conjunction of m implications in
the body of the abstract axiom, each of which corresponds to one of the m

constructors C1, . . . , Cm.

(4) Rewrite with the definitions of Is Leaf and Is Tree. This yields:

� ∀f. ∃!fn. ∀v tl. (∃n. v = Inl n ∧ Length(Map REP tl) = 0) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl ∧

∀v tl. (v = Inr one ∧ Length(Map REP tl) = 2) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl

Note: In the HOL implementation, the predicates Is Leaf and Is Tree are not
actually defined as new constants; they are instead written using λ-terms.
This step therefore does not need to be done in the HOL implementation.

(5) Simplify terms of the form: Length(Map REP tl) = m.

A term of the form Length(Map REP tl) = m is equivalent to a simplified
term of the form Length tl = m. This in turn is equivalent to saying that tl is
equal to some list of m values: ∃t1 . . . tm. tl = [t1; . . . ; tm]. The terms involving
Length in the previous theorem can therefore be simplified, resulting in the
following theorem:
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� ∀f. ∃!fn. ∀v tl. (∃n. v = Inl n ∧ tl = Nil) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl ∧

∀v tl. (v = Inr one ∧ ∃t1 t2. tl = [t1; t2]) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl

This step introduces the variables t1 and t2. They range over values of type
btree and occur in the axiom for btree in its final form.

(6) Remove equations of the form: v = · · · and tl = · · · .

The antecedents of the two logical implications in the previous theorem both
contain equations giving values for v and tl. These can be removed by using
(a generalization of) the fact that in predicate calculus a term of the form
∀y. (∃x. y = tm1[x]) ⊃ tm2[y] is equivalent to ∀x. tm2[tm1[x]]. The result of
removing the equations for v and tl is:

� ∀f. ∃!fn. ∀n. fn(ABS(Node (Inl n)(Map REP Nil)))
= f (Map fn Nil) (Inl n) Nil ∧

∀t1 t2. fn(ABS(Node (Inr one) (Map REP [t1; t2])))
= f (Map fn [t1; t2]) (Inr one) [t1; t2]

The body of the theorem now consists of two equations. These define the
value of fn for the two different kinds of binary trees.

(7) Rewrite with the definition of Map. This yields:

� ∀f. ∃!fn. ∀n. fn(ABS(Node (Inl n) Nil))
= f Nil (Inl n) Nil ∧

∀t1 t2. fn(ABS(Node (Inr one) [REP t1; REP t2]))
= f [fn t1; fn t2] (Inr one) [t1; t2]

(8) Define the abstract constructors Leaf and Tree as follows:

� Leaf n = ABS(Node (Inl n) Nil)
� Tree t1 t2 = ABS(Node (Inr one) [REP t1; REP t2])

The constructors Leaf and Tree defined by these equations first use Node

to construct the representations of the required values and then use ABS to
obtain the corresponding values of type btree. Rewriting the theorem derived
in the previous step with these definitions yields:

� ∀f. ∃!fn. ∀n. fn(Leaf n) = f Nil (Inl n) Nil ∧
∀t1 t2. fn(Tree t1 t2) = f [fn t1; fn t2] (Inr one) [t1; t2]

(9) Introduce two functions f1 and f2 in place of f .
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With an appropriate choice of value for the universally quantified variable f ,
two functions f1 and f2 can be introduced for the right hand sides of the two
equations. These define the value of fn separately for the two constructors
Leaf and Tree. Specializing f to the appropriate function, and simplifying,
gives:

� ∀f1 f2. ∃!fn. ∀n. fn(Leaf n) = f1 n ∧
∀t1 t2. fn(Tree t1 t2) = f2 (fn t1) (fn t2) t1 t2

This theorem is the abstract axiom for btree—in its final form.

The HOL derived rule which automates recursive type definitions carries out the
sequence of steps shown above for each informal type specification entered by the
user. An appropriate instance of theorem (A.16) yields an ‘unsimplified’ abstract
axiom for the type being defined. This axiom is then systematically transformed
into the form described in Section A.5.2 by the sequence of simple equivalence-
preserving steps shown above. The amount of actual logical inference that must be
carried out is relatively small, and each step is a straightforward transformation
of the theorem derived in the previous step. The HOL implementation of this
procedure is therefore both efficient and robust.

A.6 Concluding Remarks

The method for defining recursive types described in this appendix is the logical
basis for a set of efficient theorem-proving tools which have been implemented
in the HOL system. In addition to the derived inference rule which automates
recursive type definitions, a number of related tools have been implemented in
HOL for generating proofs involving recursive types. These include:

1. a derived inference rule for proving the validity of structural induction
on concrete recursive types, and related tools for generating proofs by
structural induction (e.g. a general structural induction tactic),

2. a set of rules which automate the inference necessary to define functions
by ‘primitive recursion’ on recursive types,

3. derived rules which prove that the constructors of recursive types are
one-to-one and yield distinct values, and

4. tools for generating interactive proofs by case analysis on the constructors
of recursive types.

An example HOL session, which illustrates the use of these tools, is given in
Appendix B. Preliminary work is underway to extend these tools to deal with
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types defined by mutual recursion, and types with equational constraints (i.e.
simple ‘abstract’ data types).

Defining a logical type in HOL is rarely the primary goal of the user of the
system, but often a necessary part of some more interesting proof. The efficient
automation of type definitions in HOL is therefore of significant practical value,
since defining types ‘by hand’ in the system is tedious and tricky. The method
for automating type definitions described here allows new recursive types to be
introduced by the HOL user quickly and easily. This is made possible by the
systematic construction of representations for these types, the uniform treatment
of abstract axioms for them (using essentially the initial algebra approach to data
type specifications), and the expressive power of higher order logic itself.
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Appendix B

An Example HOL Session

This appendix contains an example interactive HOL session that shows how the
theorem proving tools developed for reasoning about concrete recursive types
can be used to prove some of the theorems about hardware given in Chapter 5.
Considerable knowledge of the HOL system is needed for a complete understanding
of this session, but a full explanation of HOL is not given here. The reader who
is interested in the details should consult [30] and the HOL manual.

The session has been edited slightly to help make it comprehensible to a reader
who is not familiar with the HOL system. In the machine-readable syntax for terms
used in HOL, for example, the universal and existential quantifiers are written ‘!’
and ‘?’ respectively. In the edited session given below, these ascii symbols for
quantifiers have been replaced by the usual non-alphabetic symbols ‘∀’ and ‘∃’.
Other changes made to the actual session conducted with the system are likewise
restricted to purely cosmetic matters.

The interactions with the HOL system that follow should be understood as
having taken place in sequence. Input typed by the user is preceded by the
prompt ‘#’ and terminated by two semicolons ‘;;’. The remaining lines show
the response from the system. Logical terms are enclosed within double quotes:
"<term>". Formal theorems generated during the session are preceded by the
turnstile symbol ‘|-’. The ML let construct is used to bind theorems and other
ML objects to variables for future use. For example, typing let v = "x < y";;

binds the ML variable v to the term "x < y". A brief commentary is given to
explain the interactions that occur with the system. The session itself begins on
the next page.
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Defining a concrete type automatically

The ML function for defining a concrete type automatically is define_type. This
function takes two ML strings as arguments. The first is just a name under which
the results of the definition are stored on disk. The second is a user-supplied
‘grammar’ for the logical type which is to be defined. In the example given
below, the type of binary trees discussed in Chapter 5 is defined automatically
using this function. The result returned by the call to define_type is an abstract
characterization for the defined type btree, in the form of a primitive recursion
theorem for the type of binary trees. This is proved automatically by define_type

from an automatically-constructed formal definition of the type constant btree.
The theorem is saved for future use by binding it to the ML variable btree_thm.

#let btree_thm = define_type ‘btree‘ ‘btree = LEAF | NODE btree btree‘;;
btree_thm =
|- ∀e f.

∃!fn. (fn LEAF = e) ∧ (∀b b’. fn(NODE b b’) = f(fn b)(fn b’)b b’)

The three-valued type used in Chapter 5 can also be defined automatically
using the ML function define_type:

#let tri_thm = define_type ‘tri‘ ‘tri = Hi | Lo | X‘;;
tri_thm =
|- ∀e0 e1 e2. ∃!fn. (fn Hi = e0) ∧ (fn Lo = e1) ∧ (fn X = e2)

Any instance of the class of concrete types discussed in Chapter 5 can be defined
automatically from a user-supplied ‘grammar’ in exactly the same way.

Proving a Peano-like ‘axiomatization’ for a concrete type

Given the theorem bound above to btree_thm, a Peano-like axiomatization for the
newly-defined type btree can be proved automatically as follows:

#let distinct = prove_constructors_distinct btree_thm;;
distinct = |- ∀b b’. ¬(LEAF = NODE b b’)

#let one_one = prove_constructors_one_one btree_thm;;
one_one =
|- ∀b b’ b’’ b’’’.

(NODE b b’ = NODE b’’ b’’’) = (b = b’’) ∧ (b’ = b’’’)

#let induction = prove_induction_thm btree_thm;;
induction =
|- ∀P. P LEAF ∧ (∀b b’. P b ∧ P b’ ⊃ P(NODE b b’)) ⊃ (∀b. P b)

The argument to each of the three ML functions used above is the primitive
recursion theorem for binary trees (‘btree_thm’). Each function proves one of the
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three theorems which make up a Peano-type ‘axiomatization’ for the recursive
type btree. What each function does is obvious from its name and the resulting
theorem it returns. These three ML functions generate their output theorems by
purely formal proof (as do all the functions used in this appendix). They can
be used to prove similar Peano-type axioms for any concrete type definable using
define_type. For example the two theorems about tri shown on page 84 can be
proved automatically, as follows:

#let tri_distinct = prove_constructors_distinct tri_thm;;
tri_distinct = |- ¬(Hi = Lo) ∧ ¬(Hi = X) ∧ ¬(Lo = X)

#let tri_induct = prove_induction_thm tri_thm;;
tri_induct = |- ∀P. P Hi ∧ P Lo ∧ P X ⊃ (∀t. P t)

Each of the constructors for tri is a constant, so there is no theorem stating that
these constructors are one-to-one.

Deriving a cases theorem for a concrete type

Given an induction theorem, the ML function prove_cases_theorem automatically
proves a ‘cases’ theorem for any concrete type. For example:

#let btree_cases = prove_cases_thm induction;;
btree_cases = |- ∀b. (b = LEAF) ∨ (∃b’’ b’. b = NODE b’’ b’)

#let tri_cases = prove_cases_thm tri_induct;;
tri_cases = |- ∀t. (t = Hi) ∨ (t = Lo) ∨ (t = X)

Each of the two theorems proved here states that every value of the corresponding
concrete type is obtainable using one of its constructors. This reasonably easy
consequence of induction, but weaker than it.

Defining functions on concrete types

The ML function new_recursive_definition automates the inferences necessary
to justify any given primitive recursive definition on a concrete recursive type. It
takes four arguments. The first is a boolean flag which indicates if the function to
be defined will be an infix. The second is the primitive recursion theorem for the
concrete type in question (i.e. a theorem obtained from define_type). The third
argument is a name under which the resulting definition will be saved on disk.
And the fourth argument is a term giving the desired primitive recursive definition.
The value returned by new_recursive_definition is a theorem which states the
primitive recursive definition requested by the user. This theorem is derived by
formal proof from an instance of the general primitive recursion theorem given as
the second argument.
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For example, the recursive function Leaves defined in Chapter 5 can be defined
in the HOL system as shown below:

#let Leaves =
new_recursive_definition false btree_thm ‘Leaves‘

"(Leaves LEAF = 1) ∧
(Leaves (NODE t1 t2) = (Leaves t1) + (Leaves t2))";;

Leaves =
|- (Leaves LEAF = 1) ∧

(∀t1 t2. Leaves(NODE t1 t2) = (Leaves t1) + (Leaves t2))

The result of the call to new_recursive_definition is a theorem which states that
the constant Leaves satisfies the primitive recursive defining equations requested
by the user. This theorem is derived automatically from an instance of the general
primitive recursion theorem for binary trees (btree_thm) and an appropriate non-
recursive definition of the constant Leaves.

The function new_recursive_definition can also be used to define functions
by cases on enumerated types. The data abstraction function abs discussed in
Chapter 5, for example, can be defined as follows:

#let abs =
new_recursive_definition false tri_thm ‘abs‘

"(abs Hi = T) ∧ (abs Lo = F)";;
abs = |- (abs Hi = T) ∧ (abs Lo = F)

As a final example, the recursively-defined model of an OR-gate tree defined in
Chapter 5 can be defined in the system as follows:

#let Ortree =
new_recursive_definition false btree ‘Ortree‘

"(Ortree LEAF in o = (in = [o])) ∧
(Ortree (NODE t1 t2) in o =

∃i1 i2 o1 o2. (in = i1 ++ i2) ∧ (o = o1 ∨ o2) ∧
Ortree t1 i1 o1 ∧ Ortree t2 i2 o2)";;

Ortree =
|- (∀in o. Ortree LEAF in o = (in = [o])) ∧

(∀t1 t2 in o.
Ortree(NODE t1 t2)in o =
(∃i1 i2 o1 o2.

(in = i1 ++ i2) ∧
(o = o1 ∨ o2) ∧
Ortree t1 i1 o1 ∧
Ortree t2 i2 o2))

It is assumed here that the infix append function ‘++’ has already been defined
(this is also done using the ML program new_recursive_definition).
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An example proof

The following interactions show a goal-directed proof of the consistency theorem
for the test-for-zero model in Chapter 5. The proof is done using Paulson’s inter-
active goal management package, which can be found described in [74]. Only very
brief comments are given to accompany the proof, as a full explanation would
also involve a detailed account of the HOL theorem prover. Again, the reader
unfamiliar with HOL is referred to [30], or the HOL system manual.

It is assumed that interactions which appear below are part of the same HOL
session as the preceding ones, and that the bindings to ML variables made above
are therefore still in force. It is furthermore assumed that the append function
++ and the length function Length have been defined recursively on lists, and are
bound to ML identifiers as shown below:

#Length;;
|- (Length[] = 0) ∧ (∀h t. Length(CONS h t) = (Length t) + 1)

#Append;;
|- (∀l. [] ++ l = l) ∧ (∀h t l. (CONS h t) ++ l = CONS h(t ++ l))

The first step is to define the test-for-zero model, set up to goal to be proved, and
immediately rewrite with the definition of the model.

#let Tfztree =
new_definition
(‘Tfztree‘, "Tfztree t in out = ∃o. Ortree t in o ∧ (out = ¬o)");;

Tfztree =
|- ∀t in out. Tfztree t in out = (∃o. Ortree t in o ∧ (out = ¬o))

#set_goal([],"∀t in. ¬(in = []) ⊃
((∃out. Tfztree t in out) = (Leaves t = Length in))");;

"∀t in.
¬(in = []) ⊃ ((∃out. Tfztree t in out) = (Leaves t = Length in))"

#expand(REWRITE_TAC [Tfztree]);;
OK..
"∀t in.
¬(in = []) ⊃
((∃out o. Ortree t in o ∧ (out = ¬o)) = (Leaves t = Length in))"

The system responds ‘OK..’ and reduces the goal to be proved to the proposition
shown above.
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The proof now proceeds by structural induction on the binary tree t, using the
induction theorem bound to induction. The tactic INDUCT_THEN takes an induc-
tion theorem for any concrete type and breaks a goal down into subgoals which
correspond to the base and step cases of a structural induction. The second argu-
ment to INDUCT_THEN indicates what is to be done with the induction hypotheses.
In the present case, they are made into assumptions using STRIP_ASSUME_TAC:

#expand(INDUCT_THEN induction STRIP_ASSUME_TAC);;
OK..
2 subgoals
"∀in.
¬(in = []) ⊃
((∃out o. Ortree(NODE t1 t2)in o ∧ (out = ¬o)) =
(Leaves(NODE t1 t2) = Length in))"
[ "∀in.

¬(in = []) ⊃
((∃out o. Ortree t1 in o ∧ (out=¬o))=(Leaves t1 = Length in))" ]

[ "∀in.
¬(in = []) ⊃
((∃out o. Ortree t2 in o ∧ (out = ¬o)) =
(Leaves t2 = Length in))" ]

"∀in.
¬(in = []) ⊃
((∃out o. Ortree LEAF in o ∧ (out = ¬o)) = (Leaves LEAF = Length in))"

There are now two subgoals, corresponding to the two possible cases t=LEAF

and t=NODE t1 t2. The second subgoal shown above (the base case in the induc-
tion) is the next one to prove, and the first step is to rewrite with the recursive
definitions of Ortree and Leaves:

#expand(REWRITE_TAC [Ortree;Leaves]);;
OK..
"∀in.
¬(in = []) ⊃ ((∃out o. (in = [o]) ∧ (out = ¬o)) = (1 = Length in))"

The proof of this subgoal now proceeds by case analysis on the list in. The
proof requires a ‘cases’ theorem for (boolean) lists, a theorem which states that
all lists constructed using CONS are distinct from the empty list [], and a theorem
which states that the function CONS is one-to-one:

list_cases;;
|- ∀l. (l = []) ∨ (∃t h. l = CONS h t)

#NOT_CONS_NIL;;
|- ∀h t. ¬(CONS h t = [])

#CONS_11;;
|- ∀h t h’ t’. (CONS h t = CONS h’ t’) = (h = h’) ∧ (t = t’)
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Using these theorems, the current subgoal can be reduced to a consideration of
the single case in=CONS h t, since the antecedent of the subgoal states that in is
not the empty list:

expand(GEN_TAC THEN
REPEAT_TCL STRIP_THM_THEN
SUBST1_TAC (SPEC "in" list_cases) THEN
REWRITE_TAC [NOT_CONS_NIL;CONS_11]);;

OK..
"(∃out o. ((h = o) ∧ (t = [])) ∧ (out = ¬o)) = (1 = Length(CONS h t))"

Using the definition of Length, the goal can be further reduced as follows:

#expand(REWRITE_TAC [Length]);;
OK..
"(∃out o. ((h = o) ∧ (t = [])) ∧ (out = ¬o)) = (1 = (Length t) + 1)"

The goal is now a boolean equation, which can be split up into two implications
using EQ_TAC:

#expand(EQ_TAC);;
OK..
2 subgoals
"(1 = (Length t) + 1) ⊃ (∃out o. ((h = o) ∧ (t = [])) ∧ (out = ¬o))"

"(∃out o. ((h = o) ∧ (t = [])) ∧ (out = ¬o)) ⊃ (1 = (Length t) + 1)"

The newly-generated current goal is straightforward to prove using the definition
of Length, the assumption that the list t is empty, and a few trivial facts about
addition (‘ADD_CLAUSES’):

#expand(STRIP_TAC THEN ASM_REWRITE_TAC [ADD_CLAUSES;Length]);;
OK..
goal proved
|- (∃out o. ((h = o) ∧ (t = [])) ∧ (out = ¬o)) ⊃

(1 = (Length t) + 1)

Previous subproof:
"(1 = (Length t) + 1) ⊃ (∃out o. ((h = o) ∧ (t = [])) ∧ (out = ¬o))"

The remaining subgoal is a bit more difficult, but it can be reduced by straight-
forward arithmetic (using some built-in theorems) to:

#expand(REWRITE_TAC [INV_SUC_EQ;ADD_CLAUSES;num_CONV "1"]);;
OK..
"(0 = Length t) ⊃ (∃out o. ((h = o) ∧ (t = [])) ∧ (out = ¬o))"
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The task is now to show that if the list t has length 0, then t=[]. Another case
split on the list t, rewriting with the definition of Length, and the use of some
elementary built-in arithmetic yields:

#expand(REPEAT_TCL STRIP_THM_THEN
SUBST1_TAC (SPEC "t" list_cases) THEN
REWRITE_TAC [Length;ADD_CLAUSES;num_CONV "1";

NOT_EQ_SYM (SPEC_ALL NOT_SUC)]);;
OK..
"∃out o. (h = o) ∧ (out = ¬o)"

The current subgoal is now trivial, and can be proved as follows:

#expand(MAP_EVERY EXISTS_TAC ["¬h";"h"] THEN
REWRITE_TAC []);;

OK..
goal proved
|- ∃out o. (h = o) ∧ (out = ¬o)

...
|- ∀in.

¬(in = []) ⊃
((∃out o. Ortree LEAF in o ∧ (out = ¬o)) =
(Leaves LEAF = Length in))

The system responds ‘Goal proved’ and prints a summary of the subgoals proved
on this branch of the goal tree (some of which are here omitted, being replaced by
dots). This completes the base case in the main induction on binary trees. But
there still remains the step case (t=NODE t1 t2). The system goes on to print the
remaining subgoal:

...
Previous subproof:
"∀in.
¬(in = []) ⊃
((∃out o. Ortree(NODE t1 t2)in o ∧ (out = ¬o)) =
(Leaves(NODE t1 t2) = Length in))"
[ "∀in.

¬(in = []) ⊃
((∃out o. Ortree t1 in o ∧ (out=¬o))=(Leaves t1 = Length in))" ]

[ "∀in.
¬(in = []) ⊃
((∃out o. Ortree t2 in o ∧ (out=¬o))=(Leaves t2 = Length in))" ]

The proof of this remaining subgoal is considerably longer than the proof of the
base case, and a fully commented proof will therefore not be given here. Only
some main lemmas needed to complete the proof will be shown.
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The first few lemmas needed to finish the proof concern the the infix append
function ++. These are all straightforward to prove by induction on lists:

#let Length_Append =
TAC_PROOF(([], "∀l1 l2. Length(l1++l2) = (Length l1)+(Length l2)"),

INDUCT_THEN list_INDUCT STRIP_ASSUME_TAC THEN
ASM_REWRITE_TAC [Length;Append;ADD_CLAUSES;num_CONV "1"]);;

Length_Append = |- ∀l1 l2. Length(l1 ++ l2) = (Length l1) + (Length l2)

#let Append_ASSOC =
TAC_PROOF(([], "∀l1 l2 l3. l1 ++ (l2 ++ l3) = ((l1 ++ l2) ++ l3)"),

LIST_INDUCT_TAC THEN ASM_REWRITE_TAC [Append]);;
Append_ASSOC = |- ∀l1 l2 l3. l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3

#let Append_Not_Nil =
TAC_PROOF(([],"∀l. ¬(l ++ [x] = [])"),

INDUCT_THEN list_INDUCT ASSUME_TAC THEN
REWRITE_TAC [Append;NOT_CONS_NIL]);;

Append_Not_Nil = |- ∀l. ¬(l ++ [x] = [])

#let Append_empty =
TAC_PROOF(([], "∀l1 l2. ([] = l1 ++ l2) = ((l1 = []) ∧ (l2 = []))"),

INDUCT_THEN list_INDUCT STRIP_ASSUME_TAC THEN
REWRITE_TAC [Append;NOT_CONS_NIL;NOT_NIL_CONS] THEN
GEN_TAC THEN MATCH_ACCEPT_TAC EQ_SYM_EQ);;

Append_empty = |- ∀l1 l2. ([] = l1 ++ l2) = (l1 = []) ∧ (l2 = [])

A slightly more complicated lemma about lists is also needed. This relates a list
of length n+2 to a list of length n+1:

#let list_Length2 =
TAC_PROOF(([],"∀l n. ((SUC(SUC n)) = Length l) =

(∃h:α. ∃l’. ((SUC n) = Length l’) ∧
(l = (CONS h l’)))"),

INDUCT_THEN list_INDUCT ASSUME_TAC THENL
[REWRITE_TAC [Length;INV_SUC_EQ;NOT_SUC;NOT_NIL_CONS];
REWRITE_TAC [Length;INV_SUC_EQ;CONS_11;

num_CONV "1";ADD_CLAUSES] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[EXISTS_TAC "h:α" THEN EXISTS_TAC "l:(α)list" THEN
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]]);;

list_Length2 =
|- ∀l n.

(SUC(SUC n) = Length l) =
(∃h l’. (SUC n = Length l’) ∧ (l = CONS h l’))

The main step is again an induction on lists.
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The following lemma about lists is also needed. It simply states that a list of
length n+1 cannot be empty:

#let Length_lemma =
TAC_PROOF(([], "∀l. (SUC n = Length l) ⊃ ¬(l = [])"),

INDUCT_THEN list_INDUCT ASSUME_TAC THEN
REWRITE_TAC [Length;NOT_CONS_NIL;ADD_CLAUSES;

num_CONV "1";NOT_SUC]);;
Length_lemma = |- ∀l. (SUC n = Length l) ⊃ ¬(l = [])

Another list which cannot be empty is the input to an OR-gate tree. The smallest
tree is a single inverter, with an input word of length 1. It therefore follows that:

#let Ortree_lemma =
TAC_PROOF(([], "Ortree t i o ⊃ ¬(i = [])"),

CONV_TAC (ONCE_DEPTH_CONV CONTRAPOS_CONV) THEN
REWRITE_TAC [] THEN
DISCH_THEN SUBST1_TAC THEN
SPEC_TAC ("o:bool","o:bool") THEN
SPEC_TAC ("t:btree","t:btree") THEN
INDUCT_THEN induction STRIP_ASSUME_TAC THEN
REWRITE_TAC [Ortree] THENL
[REWRITE_TAC [NOT_NIL_CONS];
REWRITE_TAC [Append_empty] THEN
REPEAT STRIP_TAC THEN
MAP_EVERY POP_ASSUM [MP_TAC;MP_TAC;K ALL_TAC] THEN
REPEAT (POP_ASSUM SUBST_ALL_TAC) THEN
ASM_REWRITE_TAC []]);;

Ortree_lemma = |- Ortree t i o ⊃ ¬(i = [])

Finally, it is necessary to prove that the function Leaves computes a non-zero
number for each tree:

#let Leaves_non_zero =
TAC_PROOF(([], "∀tr. ∃n. Leaves tr = SUC n"),

INDUCT_THEN induction STRIP_ASSUME_TAC THENL
[EXISTS_TAC "0" THEN REWRITE_TAC [Leaves;num_CONV "1"];
REWRITE_TAC [Leaves] THEN REPEAT (POP_ASSUM SUBST1_TAC) THEN
EXISTS_TAC "SUC (n+n’)" THEN REWRITE_TAC [ADD_CLAUSES]]);;

Leaves_non_zero = |- ∀tr. ∃n. Leaves tr = SUC n

This theorem is proved by structural induction on the tree t.
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The main lemma now needed to complete the proof is the following:

#let Main_lemma =
TAC_PROOF(([], "∀l t1 t2.

((Leaves t1) + (Leaves t2) = Length l) ⊃
∃l1 l2. (l = l1 ++ l2) ∧ ¬(l1 = []) ∧ ¬(l2 = []) ∧

(Leaves t1 = Length l1) ∧
(Leaves t2 = Length l2)"),

REPEAT GEN_TAC THEN
STRIP_THM_THEN SUBST1_TAC (SPEC "t1:btree" Leaves_non_zero) THEN
STRIP_THM_THEN SUBST1_TAC (SPEC "t2:btree" Leaves_non_zero) THEN
REWRITE_TAC [ADD_CLAUSES] THEN
MAP_EVERY (SPEC_TAC o (λt.t,t)) ["n’:num";"l:(α)list";"n:num"] THEN
INDUCT_TAC THEN REWRITE_TAC [ADD_CLAUSES] THENL
[INDUCT_THEN list_INDUCT ASSUME_TAC THENL
[REWRITE_TAC [Length;NOT_SUC];
REWRITE_TAC [Length;INV_SUC_EQ] THEN REPEAT STRIP_TAC THEN
MAP_EVERY EXISTS_TAC ["[h:α]";"l:(α)list"] THEN
POP_ASSUM MP_TAC THEN
REWRITE_TAC [Length;Append;num_CONV "1"] THEN
REWRITE_TAC [NOT_CONS_NIL;INV_SUC_EQ;ADD_CLAUSES] THEN
STRIP_TAC THEN IMP_RES_TAC lemma1 THEN ASM_REWRITE_TAC []];

PURE_ONCE_REWRITE_TAC [SYM(el 4 (CONJUNCTS ADD_CLAUSES))] THEN
REPEAT STRIP_TAC THEN RES_TAC THEN
POP_ASSUM (MP_TAC o REWRITE_RULE [list_Length2]) THEN
POP_ASSUM_LIST (K ALL_TAC) THEN REPEAT STRIP_TAC THEN
MAP_EVERY EXISTS_TAC ["l1 ++ [h:α]";"l’:(α)list"] THEN
ASM_REWRITE_TAC[Append;SYM(SPEC_ALL Append_ASSOC)] THEN
ASM_REWRITE_TAC[Length_Append;Length;ADD_CLAUSES;num_CONV "1"] THEN
IMP_RES_TAC lemma1 THEN ASM_REWRITE_TAC [Append_Not_Nil]]);;

Main_lemma =
|- ∀l t1 t2.

((Leaves t1) + (Leaves t2) = Length l) ⊃
(∃l1 l2.

(l = l1 ++ l2) ∧
¬(l1 = []) ∧
¬(l2 = []) ∧
(Leaves t1 = Length l1) ∧
(Leaves t2 = Length l2))

This theorem is used to ‘split’ the list l into two nonempty sublists l1 and l2. The
lengths of these sublists match the number of leaves in the two subtrees t1 and
t2. This allows the two induction hypotheses in the remaining subgoal (shown on
page 217) to be used.

220



Given Main_lemma, and some of the other lemmas proved above, the remaining
subgoal can be proved as follows:

#expand(REWRITE_TAC [Ortree;Leaves] THEN
REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
[ASM_REWRITE_TAC [Length_Append] THEN
SUBGOAL_THEN

"(Leaves t1 = Length (i1:(bool)list)) ∧
(Leaves t2 = Length (i2:(bool)list))"
(λth. REWRITE_TAC [th]) THEN

IMP_RES_TAC Ortree_lemma THEN RES_TAC THEN
STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THENL
[MAP_EVERY EXISTS_TAC ["¬o1:bool";"o1:bool"];
MAP_EVERY EXISTS_TAC ["¬o2:bool";"o2:bool"]] THEN
STRIP_TAC THEN (REFL_TAC ORELSE FIRST_ASSUM ACCEPT_TAC);
HOL_IMP_RES_THEN MP_TAC Main_lemma THEN
POP_ASSUM (K ALL_TAC) THEN POP_ASSUM (K ALL_TAC) THEN
REPEAT STRIP_TAC THEN POP_ASSUM MP_TAC THEN
POP_ASSUM MP_TAC THEN RES_TAC THEN
REPEAT (DISCH_THEN (ANTE_RES_THEN STRIP_ASSUME_TAC)) THEN
MAP_EVERY EXISTS_TAC ["¬(o ∨ o’)";"o ∨ o’"] THEN
CONJ_TAC THENL [ALL_TAC; REFL_TAC] THEN
MAP_EVERY EXISTS_TAC ["l1:(bool)list";"l2:(bool)list"] THEN
MAP_EVERY EXISTS_TAC ["o:bool";"o’:bool"] THEN
ASM_REWRITE_TAC []]);;

#OK..
goal proved
.. |- ∀in.

¬(in = []) ⊃
((∃out o. Ortree(NODE t1 t2)in o ∧ (out = ¬o)) =
(Leaves(NODE t1 t2) = Length in))

...
|- ∀t in.

¬(in = []) ⊃ ((∃out. Tfztree t in out) = (Leaves t = Length in))

Previous subproof:
goal proved

This finishes the proof of the last remaining subgoal. The system prints a trace of
the subgoals which have been proved. The final theorem is the desired consistency
theorem for the test-for-zero model:

|- ∀t in.
¬(in = []) ⊃ ((∃out. Tfztree t in out) = (Leaves t = Length in))

Q.E.D
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Summary: HOL tools for reasoning about concrete types

A summary of the main HOL tools developed by the author for reasoning about
concrete types is given in the table shown below.

Infix Abbreviations for Types

ML Function Description
define_type defines an arbitrary concrete type
prove_constructors_distinct proves constructors yield different values
prove_constructors_one_one proves that constructors are one-to-one
prove_induction_thm derives structural induction
prove_cases_thm proves a cases theorem
new_recursive_definition justifies primitive recursive definitions
INDUCT_THEN general structural induction tactic

The logical basis for all these tools is the method for defining concrete types
explained in Appendix A. Examples of the use of these programs were given in
the interactive session shown above.
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