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1 Introduction

This report describes the formal specification and verification of a class of sliding window
protocols using higher order logic. It is proved that a model for implementations of the
protocol logically implies safety and liveness invariants and that these invariants in turn
imply an abstract specification of the protocol. The specification states that a sequence
of data is transferred from one computer in a network to another after some elapsed time.
The implementation model is an interpretation of the behaviour, over time, of the variables
of a Pascal program for a sliding window protocol. Real time is modelled explicitly. This
means that timeouts, channel delays, response times and retransmission limits can be
expressed directly and real protocol implementations can be modelled. All levels of the
protocol model and proof are expressed in higher order logic, and proofs are checked by
the HOL proof assistant. My aim is to demonstrate, by use of a non-trivial example, the
feasibility of protocol verification using formal methods and computer checked deductive
proofs,

The specification and implementation models used in the proof are based on techniques
developed for hardware verification in HOL at Cambridge [4,8,11]. The physical structure
of a protocol and its environment is reflected in the structure of the logical predicates
which model it. Variables of the protocol’s programs are modelled as functions of time. I
have proved the total correctness - that is safety and liveness - of a general model for a
class of protocols, This model and proof will eventually be used as the basis for a more
general sliding window protocol model and for correctness proofs for real implementations
of specific sliding window protocols.

1.1 Program Correctness

Verifying that a computer system is correct means showing that an implementation of the
system satisfies its specification. This process is often done informally when a computer
program is written. A specification for the program is given in English, and from that a
programmer produces executable computer code, Informal methods are prone to errors
and misunderstandings. Formal verification, however, uses formal languages for speci-
fication and implementation models, and a mathematical framework for correctness. A
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formal programming language semantics can be used as the model for implementations.
The programmer aims to prove that an implementation satisfies its specification.

Two techniques for protocol verification are model checking and deductive proof.
Model checking involves showing that a specification will be satisfied by all possible models
of a protocol implementation, where the model represents all execution states which may
be reached by the protocol. Verification by model checking is a form of proof by exhaus-
tion. It has the advantage that the model checking can be performed automatically by
a computer, but there is the disadvantage that the state space for realistic protocols will
be very large, perhaps making exhaustive search infeasible. Deductive proofs for various
logics, which do not involve exhaustive model checking, may avoid this problem. Some of
the advantages of automated model checking proofs can be retained if a computer is used
to check, assist with, and manage the proofs written by a human verifier. The use of the
HOL theorem prover for higher order logic in such a role is described in this report.

Formal methods can be used to verify that an implementation satisfies its specification,
but there remain a number of other ways in which computer systems may not be correct.
For example, a formal specification may contain errors; it may not specify what the de-
signer intended or may not correctly model the environment with which the program must
interact. Tools are needed to help designers check that their formal specifications actually
model their intentions. A model for an implementation is a mathematical model of a real
physical entity (a computer running a program) and, like all models, may incorrectly model
some aspects of that entity. Experience with formal models for real systems and compar-
isons between models and their real counterparts should gradually improve our ability to
model computer systems. Only the first problem, verifying that an implementation model
satisfies its specification, will be considered here.

1.2 A Framework for Protocol Verification

I shall distinguish between algorithms, implementations, and specifications. A specifi-
cation for a protocol, for example, defines what the protocol must do without defining
how to achieve it. An algorithm defines how the specification could be achieved, but in
general terms, and an implementation is a realization of an algorithm. An implementa-
tion is expressed in terms of particular computer programming languages, compilers and
computer hardware. A description of an algorithm, by contrast, should have sufficient
information from which to derive an implementation, but be sufficiently general to lead
to many different implementations for different computers, programming languages and
environments.

A sliding window protocol may be described at many different levels of abstraction;
from computer hardware, at the lowest level, to a logical description of its data transfer
function at the highest level. A long term aim of the work reported here is to show that a
programming language description of a protocol satisfies a high level specification of the
protocol’s function and that the hardware and compiler which realize the programming
language code correctly implement the semantics of that programming language.

I contend that it is important to develop methods for the verification of protocol imple-
mentations rather than algorithms. This is because, at least for the class of data transfer
protocols, although the algorithms are well known, experience shows that writing correct
implementations of these algorithms is a difficult task. I have chosen to work with the
most general high level specification possible., At the highest level, an abstract specifica-
tion should be satisfied by any protocol from the class of sliding window protocols. This




report describes the verification of a protocol model which is somewhere between a general
algorithm and an implementation. Work is in progress to develop good implementation
models. '

There are many different styles of protocol specification for different requirements at
various levels of abstraction. Specifications can be classified into those which provide an
outside view of the protocol and those giving an inside view. From an outside view, a
protocol’s programs and communication channel are treated as a black box which consumes
input and produces output. Such a specification would be used to implement different
protocols which perform the same task. An inside view of a protocol defines what services
the protocol provides. This type of specification would be used to implement a protocol
which needs to communicate with other protocols written using the same specification.
Either style of specification may be written as logical assertions using the notation of
mathematics or as procedural descriptions in, say, pseudo program code.

I have used an outside view style of specification to express the relationship between the
input and output data streams of a sliding window protocol. Time is the only other variable
used in the specification. This specification defines the function of any sliding window
protocol without details of its implementation, Both safety and liveness requirements for
an implementation are encapsulated in the specification. Other protocol properties such
as performance characteristics and inside view specifications can be defined separately.

An implementation is a physical entity and so in order to prove formal properties of
that implementation a mathematical model must be developed for the implementation. An
important problem is deciding how much detail should be modelled, and in what manner.
Formal programming language semantics define an interpretation for the parts of an imple-
mentation written in programming language code. Alternatively, programming language
compilers and computer hardware can be modelled. The latter choice provides a concrete
interpretation of program code and the network environment. The performance proper-
ties of operating systems, computer load, network activity and various timing models for
hardware could also be taken into account in an implementation model.

My implementation model consists of a set of assertions in higher order logic which
define the behaviour of the protocol’s programs and the channel through which they com-
municate. The program model defines the changing values of the variables of Pascal style
programs. The communication channel is modelled in a similar manner. The relationship
between the program code and the model is an informal one at present. However, for-
mal models such as an operational semantics for the programming language will be used
eventually.

This section has introduced a method for defining an implementation and specification
for a protocol as assertions in higher order logic which describe the same physical system
at different levels of abstraction. An implementation model satisfies its specification if the
former logically implies the latter.

1.3 Related Work

The work presented in this report combines ideas from the fields of protocol specification
and verification and theorem proving using higher order logic. Specifically, this report
investigates :

e the verification of total correctness (that is, safety and liveness properties) of proto-
cols [6,10,12,15]



e models for real-time properties of protocols (8,10,12,15]
e modular specifications and proofs [4,6,8,10,11,12,14,18,19]
e computer aided theorem proving [1,4,8,12,17,18,19)]

o the verification of a non-trivial example: a sliding window protocol with cyclic se-
quence numbers [1,3,13] (see also [6,9,16,19])

e the use of higher order logic for specificaton and verification [4,8,10,11]

e proofs that a protocol implementation model satisfies a high level functional specifi-
cation rather than proving that protocol algorithms satisfy their specifications [1,6]

Hailpern and Owicki [6] used Floyd-Hoare verification techniques to prove safety and
liveness properties of Stenning’s data transfer protocol (a sliding window protocol with-
out cyclic sequence numbers). Temporal logic was used to describe liveness properties,
auxilliary history variables were used to simplify verification proofs, and pre-, post- and
liveness assertions about small parts of a protocol were combined to verify larger parts.
Hailpern’s method has many of the same goals as mine. However, the use of temporal logic
to express liveness rather than modelling real time precludes the proofs of correctness of
specific implementations since these rely on the correct setting of timeout, delay, response
time and retransmission intervals. Hailpern’s implementation model is written in pro-
gramming language code, but his liveness commitments rely on assumptions that events
enabled infinitely often will eventually occur, whereas I have chosen to model protocol
implementations with explicit real-time bounds.

Shankar and Lam have developed methods for verifying safety, liveness and real time
properties of protocols [14,13,15]. Shankar has modelled a protocol with a set of assertions
representing guarded events which may be performed by the protocol. Events are guarded
(or enabled) by predicates on state variables. An event may occur at any time at which
the state variables satisfy its predicate guard. An event may cause messages to be trans-
mitted, state variables to be updated and timers to be updated. Timing properties such as
timeouts are modelled by counter events which increment a counter subject to assertions
controlling the time differences between local clocks, Modular proofs can be written using
image protocols [14] in which only a subset of the total state variable space is considered
at any time. Proofs were not checked automatically, but hand proofs of various protocol
properties have been reported. For example, safety properties of a sliding window proto-
col algorithm with cyclic sequence numbers, given real-time constraints, were verified in
[13] and safety properties of the HDLC sliding window protocol in [14]. Safety, liveness
and real-time properties of alternating bit protocols (a simple case of the general sliding
window protocol) were proved in [15]. Shankar and Lam’s event model does not attempt
to model programming language code, but rather an algorithm for the protocol.

Sunshine [17] has reported on a project to investigate the use of the AFFIRM theorem
prover for protocol verification in which he has modelled protocols as extended finite state
machines., These in turn were modelled in AFFIRM as abstract data structures. For
example, an AFFIRM data structure for a two state machine contains a state type of
possible states (say A and B) and defines the operations allowed on variables of that type
(say transitions from A to B and B to A). The protocol machines are ‘extended’ in that
state variables may be used to store values such as the current state of a communication
channel, or a counter variable. Verification work cited in [17] included proofs of safety,
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liveness and performance properties for a wide range of protocols. As with Shankar’s work,
the implementation model of [17] does not model programming language code, and inside
view specifications were used instead of outside view or black box specifications.

DiVito [18,19] verified the safety of a sliding window protocol (without cyclic sequence
numbers) using the Boyer Moore theorem prover. His process model uses buffers, message
histories and guarded events on state variables. Proofs of liveness or real-time properties
were not attempted. Brand [1] proved safety properties of a sliding window protocol
with cyclic sequence numbers using automatic symbolic execution but, again, the model
reported cannot be used to prove liveness properties. Brand proved the correctness of a
sliding window protocol implementation while DiVito proved the correctness of a protocol
algorithm.

Crocker’s state delta formalism has been applied to alternating bit protocols by Over-
man and Crocker [12]. Their proof model uses symbolic execution (see also [1]) for the
automatic proof of safety, liveness and real time properties and also supports modular
specifications. To miy knowledge, these methods have not been applied to more general
implementations such as the generalised sliding window protocol described in this report.

Finally, work on the use of higher order logic and the HOL theorem prover for higher
order logic for verifying hardware [4,11,8] and real time distributed systems [10] has influ-
enced the protocol verification style proposed here. A number of abstraction mechanisms
have been developed for hardware verification with higher order logic [11]. Joyce [8] used
HOL to verify a hardware version of a handshaking protocol. MacEwen [10] combined the
structural abstraction methods of [4] with event occurrence functions to develop a theory
for the verification of hard real time algorithms. I do not know of any examples of the use
of MacEwen’s theory for practical verification examples. '

2 Sliding Window Protocols
2.1 A Definition

A protocol is a program for communication between machines in a computer network.
Sliding window protocols are a class of protocols which transfer an ordered stream of data
from one computer to another. The term sliding window protocol is used in the literature
to describe a wide range of specific protocols as well as classes of protocols. I shall use the
following class definition.

A sliding window protocol transfers an ordered sequence of data messages between
two computers via an unreliable channel. In the literature, assumptions about the nature
of the unreliable channel vary. I shall assume that the communication channel carries
messages in both directions but may lose, garble, reorder or duplicate them. Message
delivery time is bounded but variable within that bound. How data is transferred in this
environment is defined in Section 2.3 which outlines an implementation model for this
protocol.

2.2 A Sliding Window Protocol Specification

Let the input sequence for a sliding window protocol be called the source. The source is
available on one computer and the output sequence, which is called the sink, is produced
on another computer. Since the sink data list is dynamic it will not be available until
some time after the protocol has begun and it is modelled as a function from time to finite



time (0 < #;) 0 4
source || [1,2,3] | [1,2,3]
sink | (1,2,3]

Figure 1: An Unrealistic System Satisfying the Specification

time (0 <t < tz) 0 t te
source | [1,2,3] | [1,2,3] | [1,2,3]
message sent 1 2 3

message received 1 2 3
cumulative sink | [1] [1,2] | [1,2,3]

Figure 2: Messages transmitted one by one, but with 0 delay

output data lists. Time starts at time O and extends infinitely into the future in discrete
time steps. Thus sink(t) refers to the value of the ouput sequence, sink, at time ¢ where
t > 0. The source data list is a static variable, its value is determined outside the protocol
model and never changed by the model, so source is just modelled as a finite list of data
messages and does not have a time parameter. The specification for a sliding window
protocol can be described mathematically by Equation 1.

3t : time. sink(t) = source (1)

Figure 1 shows an example of the behaviour of a system which satisfies Equation 1.

In practice, the list of data to be transferred will usually be too large to be sent in
one operation. Instead, items are transmitted one at a time. Figure 2 illustrates how,
with the unrealistic assumption that the delivery time for messages is 0, Figure 1 would
be realised.

Another unrealistic assumption of Figure 1 is that the channel reliably delivers mes-
sages. In fact, the channel which transfers data between the computers is unreliable and
may lose or garble transmitted messages. Thus, messages may need to be transmitted sev-
eral times before they are correctly received. This is illustrated for message 2 in Figure 3,
where the symbol ‘-’ represents a lost or garbled message.

Finally, the unrealistic assumption of 0 delay is dropped. There will be a variable but
bounded delay, introduced by the channel, between sending a message and either receiving

time (0 L e L t() 0 ty to tg ty
source || 11,2,3] | 11,2,3] | 1L,2,3] | [1,2,3] | [L,2,3]

message sent || © 1 2 2 2 3

channel 1 2 2 2 3

message received 1 - - 2 3
cumulative sink || [1] [1] [1] [1,2] |[1,2,3]

Figure 3: System where messages may be lost, but still 0 delay
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time (0 <...< t7) Oty |22 |ls | ts ts tg ty
source (S=[1,23])|S| S | S |S | S| S S S
messagesent || 1| - | 2 | - | 2 - 3 -
chanpel j 1| - | 2 | - | 2 - 3 -

1
]
1
N
'
2]

message received 1
cumulative sink || [ | [1] | (1) | [1]) | [1] | [1,2] | [1,2] | [1,2,3]

Figure 4: Sample Execution with Lost and Delayed Messages

bidirectional

channel computer B

computer A

dataS R dataR
source— | SENDER RECEIVER — sink
ackS ackR

Y

Figure 5: Physical environment for a sliding window protocol

it, or the message being garbled or lost. The symbol ‘-’ is used in Figure 4 to represent
no message as well as a garbled or lost message.

The specification of Equation 1 expresses an outside view of the protocol at a high
level of abstraction. At this level the programs implementing the protocol and the channel
connecting them are treated as a black box in which the source is consumed and the sink
produced. I shall now describe how an implementation achieves this specification.

2.3 A Sliding Window Protocol Implementation

Figure 5 shows the type of environment in which the sliding window protocol would be
executed. Two computers are connected by a bidirectional communication channel. One
program, the sender, is executed on the computer which stores the source data and another
program, the receiver, accepts and outputs the data on another computer.. The two
programs run concurrently. The network which contains the computers, including the
wire between them, provides a hard real time environment with which the programs must
interact. That is, the programs are unable to control some aspects of their environment
and actions must be taken in real time. For example, the channel may lose packets (which
is beyond the control of the programs) and the programs should respond to an incoming
message before another arrives,



— ACTIONS ORDERED IN TIME —
SENDER CHANNEL RECEIVER

send message 1

message lost
resend message 1
message delivered
message 1 received and output
send ack 1

ack lost
resend message 1
message delivered
duplicate message 1 not ouput

send ack 1
message delivered
ack 1 received

Figure 6: Lost data and acknowledgement messages in a typical transaction

2.3.1 Positive Acknowledgement

The technique used by a sliding window protocol to achieve reliable data transmission over
an unreliable channel is called positive acknowledgement. Every data message transmitted
by a sender carries a label which distinguishes it from other transmitted messages. The
label provides a receiver with sufficient information to output messages in their source
order and to discard duplicated messages. A label, message pair is called a packet. For
each data packet received the receiver returns an acknowledgement packet to the sender.
An acknowledgement packet contains a copy of the message packet’s label signifying a
particular data message has been received.

Since packets may be lost or garbled the sender and receiver may need to retransmit
packets (see Figure 4). The sender retransmits a packet for which it does not receive
an acknowledgement within a certain time. The receiver reads the label of each incoming
packet and, if the label is in order, outputs the packet’s message to the sink. Otherwise, the
packet is discarded. The receiver does, however, send an acknowledgement for the latest
correctly received packet on reception of any incoming packet lest earlier acknowledge-
ments have been lost. An example of a typical transaction which uses this retransmission
strategy is illustrated in Figure 6.

2.3.2 Sliding Windows

The windows of a sliding window protocol determine how much of the input or output data
sequences are visible to a sender or receiver. Windows may be implemented as message
buffers. The windows slide because once the data in the window has been acknowledged
(for the sender) or output (for the receiver), the window slides up to reveal new input
messages or space for output messages. Window size is a parameter of an implementation.
For example, the alternating bit protocol has both sender and receiver window size 1,
while the HDLC protocol has sender window size 7 or, in extended mode, 127.

At one extreme, when the sender’s window size is unlimited, the sender uses all of the
input data at once, transmitting any message at any time. At the other extreme, sender
window size one, messages are transmitted one at a time and the sender always waits for
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an acknowledgement before transmitting the next message. The sender window always
contains data messages which have been (or may be) transmitted and have not yet been
acknowledged.

The receiver window size determines which messages may be accepted and possibly
output to the sink. The choice is made on the basis of incoming message labels. If the
receiver window has size one then only messages which can be output immediately are
accepted. If the window has a size greater than one then some messages can be buffered
to be output in the future.

The size of sender and receiver windows affects the choice of labels. Informally, a
label can only be reused once any old message carrying that label is guaranteed to be
out of the system. Let the sender’s window size be SW, the receiver’s window size RW
and the range of labels be marseq. Message labels are natural numbers in the range
0,...,mazseq — 1 called sequence numbers and the sender selects labels in the cycle
0,1,2,... ,mazseq — 1,0,1,....

In this report, I consider a sliding window protocol with receiver window size one. For
this case, the range of distinguishable labels must be at least one greater than the sender’s

window size :
(mazseqg > SW +1) A (RW =1)

The reason for this restriction is best illustrated with an example. Suppose that the above
constraint on SW is not met because SW = mazseq. Then the sender may transmit
messages 0...mazseq — 1 before acknowledgements for any of those messages have been
received. Suppose the receiver does, in fact, receive all messages and sends the appropriate
acknowledgement message but this acknowledgement is lost. Then when the sender resends
messages 0. ..mazseq — 1, the receiver will not know whether its acknowledgement packet
has been correctly received and these messages are new ones, reusing the old sequence
numbers, or whether the messages are a retransmission of the first mazseq messages.
Thus the receiver would be unable to correctly deliver messages to its sink. However, for
SW < magzseq it can be shown that the receiver will always be able to distinguish between
new and duplicate messages on the basis of their sequence numbers.

In the more general case, where the receiver’s window is greater than one, the range
of sequence numbers required is

mazseq > 2 X RW A SW = RW

Ideas for modelling this more general protocol are discussed in Section 6.4.

Usually, window sizes are chosen to maximize the efficient use of a protocol’s com-
munication channel. For example, SW should be large enough to ensure the sender
is continuously transmitting data while waiting for acknowledgements. However, if the
channel delay between sending and receiving a message is much larger than the time for
a program to put that message onto the channel, then the previous strategy could result
in unreasonable demands for a window’s buffer space and a smaller window size might be
chosen (see Section 6.3).

2.3.3 A Pascal Implementation

The Pascal code of Figure 7 is an example of the program code which would be executed by
the sender and receiver programs of Figure 5. The programs show how the mechanisms of
positive acknowledgement and sliding windows are combined in a sliding window protocol.
The protocol illustrated uses the go-back-n retransmission strategy. The sender’s window
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size in this example is 7, the receiver’s window size 1, and mazsegq is 8, so the sender may
transmit up to 7 packets before it receives an acknowledgement for the first packet. Since
the receiver’s window size is 1, it can only accept packets in order and has no buffer space
for out of order packets.

The protocol’s communication channel is represented by the four variables datas,
dataR, ackR, ackS corresponding to the same variable names in Figure 5. The predefined
procedures SEND and RECV transmit and receive the packets assigned to dataS, ackR and
dataR, ackS respectively. The procedure RECV returns a dummy packet if no incoming
packet is available on the channel. The behaviour of the network and the channel will be
stated directly in higher order logic in the full proof.

The program also uses the predefined proceure IN_WINDOW which checks whether a
valid packet, i.e. not a dummy packet, has been received and if so whether its label is
within the sender or receiver’s window. Executing (IN_WINDOW P bw ws maxseq) checks
that packet P is not a dummy packet and then that its label is between the bottom of
the window, bw, and its top, ((bw+ws) mod maxseq) where ws is the window size, and
maxseq the range of sequence numbers used as labels.

Since acknowledgements may be lost, the sender may miss some low acknowledgements
(acks) but receive higher ones. For example, messages 0 to 6 are transmitted but acks
0,1,2,3 are lost and only acks 4,5 and 6 are received. From this the sender can deduce that
messages 0,1,2,3 have been received too because the receiver only updates its acknowl-
edgement number when it accepts packets in order. The loop (while s<>stop) in the
SENDER program manages this situation. The functions choosei and headi find the next
message within the sender’s window to be transmitted.

3 Verification in Higher Order Logic

3.1 An Introduction to Higher Order Logic

The HOL system is a theorem prover for higher order logic derived from LCF [5]. The
version of higher order logic used here is based on [2] and an introduction to the HOL
system can be found in [4]. Higher order logic contains all the terms of first order logic and
also contains higher order terms : predicates or functions with predicates and functions
as parameters. HOL is a typed logic so each term has a well defined type. Figure 8
summarises the subset of HOL which will be used in this report.

3.2 Modelling Structure with HOL

The technique of modelling hardware devices as HOL predicates which describe the be-
haviour of those devices is well established [4,7,8,11]. Parameters of predicates are used to
model physical connections or other shared information and local, existentially quantified
variables are used for local or hidden information. The conjunction of predicates is used to
model concurrent behaviour. These techniques are also suitable for protocol verification.
For example, in a simplified model of the sliding window protocol consisting of transmis-
sion and reception devices (computer programs) and a wire device (the channel between
them) the protocol’s structure can be modelled by :

IMPL inseq outseq = 3C : channel.
(TRANS inseq C) A (WIRE C) A (RECP outseq C)

The internal structure of each of these predicates can be defined in a similar manner.
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program SENDER;

{external variables}
source : input list of data
ackS : input from channel via ackR
dete§ : output to channel

const maxseq = 8; {for example}
SW = 7; {SENDER window}

type data = num;

program RECEIVER;

{external variables}
sink ! output list of data
ackR : output to channel
dataR : input from channel via dataS

{constants and types as SENDER}
RV = §; {RECEIVER window}

{or char or integer or record etc.}

sequence = [0..maxseq-1] <{messege labels}

var rem : list of data;
s, stop, 1: sequence;

begin
rem:=source;
8:=0;
while not (NULL rem) do begin

{receive rck packet}
RECV( ackS ) ;
if IN_WINDOW(ackS,s,SW,maxseq)
then begin
stop:={1ebel{acks)+1) MOD maxseq;
while s<>stop do begin
rem:=tail(rem);
s;= (8+1) MOD maxseq;
end; {while}
end {if};

{transmit data}
i:=choosei (8W);
dataS:=((s+i) MOD mexseq,
headi(i,rem));
SEND( dataS )
end {wbile};
end {program}.

var r : sequence;
dummy : data;

begin
sink:=[];
r:=0;
vhile TRUE do begin

'{raceive data packet}

RECV( dataR ) ;
if IN_WINDOW(dataR,r RW,maxseq)
then begin

sink:=append{sink, dataR);
r:;= (r+1) MOD maxseq;
end {if};
{transmit ack}
ackR:=((r-1) MOD mexseq, dummy);
SEND({ ackR )

end {while};
end {program}.

Figure 7: Pascal Programs for a Sliding Window Protocol
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SYMBOL
T

F

-p

PAg

pVye
p=4q
P(z) or Pz
Vz.P z
Jz.P z

T=Y

a=blc
z<y,z=<Y

bool

num

one

*

list

hd, ti, NIL, []

NULL I

APPEND I3 I3

tyy — ty2

ty; X tys
FST, SND

tyr +tys
INL, INR

OUTL, OUTR
ISL, ISR

MEANING

Truth

Falsity

not p

pandq

porgq

p implies q

Property P of x

for all x, property P x is true

there exists at least one x such that P x is true
polymorphic equality : x and y have the same
type and same value

if a then b else ¢
x is less than y, x is less than or equal to y

boolean type : T and F

natural number type : 0,1,2,3,...

the type with only one element: one
polymorphic type: # is a type variable

list type : [1,2,3] is a list

list operators: head, tail, and two notations
for the empty list

NULL [ is true if [ is the empty list and false
otherwise

APPEND returns a list which is the concate-
nation of two lists of the same type, 1 and
Iy

type of function with domain ty; and range
tyz

cartesian product type

FST(z,y) = z, SND(z,y) = ¢

disjoint union type. Use this type with the
following functions :

Injections for inserting elements into a vari-
able of the sum type.

Projections out of the sum

Test whether an element of a sum is the left
or right summand

Figure 8: HOL syntax
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3.3 Modelling Behaviour and Time with HOL

A protocol can be described by the changing values of all the data it manipulates. This
may be modelled in higher order logic as functions representing the program variables of
an implementation from time to their values.

Time is modelled by the natural numbers. Time steps are discrete, and time is defined
from a starting time, 0, into an infinite future. The same time scale is shared by all parts
of the protocol model, and any assertion can refer to time explicitly using variables of the
time type.

As an example of the use of this time model consider a counter, C' : time — num,
which is updated whenever some condition P : time — bool is true or a timeout occurs,
A timeout occurs if C has not been updated in the last maz time steps. The following
assertion models C where Cy means C(t).

Co=0 A Vt.(Pg \% (Cg_m, =Ci At > max)) = Cy1=0Cr+1 l Ci1 =C

This assertion means that the counter is initially set to O and at each time step C takes
on a new value which may be its old value, or its old value plus one. The counter is
incremented if either P is true at time ¢, or if C has not been incremented in the last maz
time steps. The latter case is recognised when the current value of C is the same as its
value maz time steps earlier.

The time model described above is very simple. Possible extensions include the ad-
dition of local time scales and interrupt events. Local clocks, which may run at slightly
different rates, could be modelled in a mannar similar to that of [15]. Interrupts could be
modelled by event functions from time to bool which are true whenever the interrupt they
represent occurs and false otherwise.

4 Specification of the Sliding Window Protocol in HOL

This section describes a model for the Pascal program of Figure 7 using higher order
logic. The correspondence between the logic and the program code is that each variable
of the Pascal program is modelled by a function from time to its value type. Eventually
the logical model will be formally derived from program code. It should be noted that
the model presented here is more general than the Pascal code of Figure 7 because it
generalizes a class of sliding window protocols, of which the given Pascal program is one
example.

4.1 Structure of a Sliding Window Protocol

The structure of my implementation model is illustrated in Figure 9. Each box in the
diagram represents a predicate of higher order logic which defines how and when variables
are updated. The full implementation model is the conjunction of all the predicates in
this diagram.

The model of Figure 9 contains predicates representing 2 SENDER, a RECEIVER and
the CHANNEL between them. The SENDER and RECEIVER transmit data packets and
acknowledgements over an unreliable channel. Each is described by transmission and re-
ception predicates for their behaviour over time: AckRecv and DataTrans describe the
SENDER and DataRecv and AckTrans the RECEIVER. In addition the predicate INIT de-
scribes the initial state of SENDER and RECEIVER variables and ABORT monitors the
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Figure 9: HOL Sliding Window Protocol Model

real time progress of the SENDER. The CHANNEL predicate defines the behaviour of an
unreliable channel. The two logical channels used in this sliding window protocol are de-
fined by (CHANNEL dataS dataR) and (CHANNEL ackR ackS). In practice, the physical
realisation of these logical channels is a single channel such as a coaxial cable, telephone
circuit, optical fibre, or satellite channel.

4.2 Behaviour of a Sliding Window Protocol

This section describes a model for the behaviour of a sliding window protocol as defined
using the HOL system. The values of functions of time, say C, at time ¢ will be denoted
by C; to improve readability.

4.2.1 Preliminary Definitions

Data messages are modelled by a polymorphic type data which might be instantiated to
characters, integers, bits or records by a particular implementation. Sequence numbers
are modelled by a sequence type which is equivalent to the natural numbers. Data and
acknowledgement packets may be of two types:

e a sequence number, data message pair, or

¢ a lost or garbled packet.

The HOL model for this is the disjoint union, or sum, type. The following definition
means that a packet is either a sequence number, data message pair, or an element of type
one. Type one is the type with only one element one which is used to represent a lost or
garbled packet in this context. The main types used in the proof are :

time = num

data = #

sequence = num

NonPacket = one

packet = (sequence X data) + NonPacket
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The four variables which represent the bidirectional channel between the SENDER and
RECEIVER programs are modelled by the channel type. A channel is a function from
time to packet which returns the value of the packet being transmitted or received on the

channel at any instant of time.
channel = time — packet

The next two definitions are simply to improve the readability of HOL specifications
for packet operations. The first constant is for assigning the value ‘lost or garbled’ to
a packet variable. The second function checks that the packet, p, which is passed as a
parameter, is not a lost or garbled packet.

SetNonPacket = INR(one)
GoodPacket(p : packet) = (ISL p)

A new packet is created from a label and a message using NewPacket.
NewPacket(ss : sequence)(dd : data) = INL(ss, dd)

Those fields can be extracted from an incoming packet using label and message.

label(p: packet) = FST(OUTL p)
message(p: packet) = SND(OUTL p)

The symbols @ and © are used to represent functions which perform addition and subtrac-
tion modulo mazseq, the range of sequence numbers used by a specific implementation.
The functions HD! and TLI return the head or tail of a list starting from a given position
within the list.

4.2.2 Top Level Definitions
The complete sliding window protocol is represented by the following HOL predicate:

IMPL

source : data list maxseq : sequence rem : time — data list
s : time — sequence SW : sequence
p : time — sequence — bool 1§ : time — sequence

aborted : time — bool c¢: time — num mazT : num

stnk : time — data list
r : time — sequence RW : sequence g : time — bool

dataS : channel dataR : channel

ackS : channel ackR: channel =

INIT source mazseq rem s SW sink r RW A
SENDER mazseq SW rem s p ¢ dataS ackS A
ABORT ¢ aborted maxT mazseq SW s rem ackS A
CHANNEL dataS dataR A

RECEIVER mazseq RW sink r q ackR dataR A
CHANNEL ackR ackS

where
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SENDER mazseq SW rem s p § dataS ackS =
DataTrans rem s SW mazseq p { dataS A
AckRecv ackS SW mazseq rem s

and

RECEIVER magzseq RW sink r q ackR dataR =

AckTrans r mazseq g ackR A
DataRecv dataR RW mazseq sink r

From now on the types of predicate parameters will not be given: they are the same
as those given above for IMPL.

4.2.3 Middle Level Definitions

The starting state of the protocol i given by the INIT predicate. In a network environment
an agreement protocol would be used to establish these initial values but a sliding window
protocol may assume that the values have already been agreed upon.

INIT source mazseq rem 8 sinkr =
1< mazseq A remg=source A 8=0 A sinkg=NIL A ro=0

DataTrans chooses any packet from the SENDER window to transmit. The SENDER’s
window consists of the first SW elements of rem;. The message chosen is the i-th element of
rem, HDI §; remy, for iy < SW. Its sequence number is s; ®#; (that is 8;+4¢ mod mazseq)
where s; is the true sequence number of the first element of rem;. The choice function p
guarantees that f; is within the window and that there are at least §; data messages avail-
able in rem;. If p; is false then a non-packet is transmitted instead. With the intention of
making this implementation model as general as possible, only the minimum information
needed about p, its type, is given at this stage. Later, different implementations can be
defined by more fully defining such parameters. For example, in Section 6 it is shown how
this general definition of p and ¢ can be strengthened to define an efficient retransmission
strategy. The conjunct ~NULLrem; is included in DataTrans so that, after all data has
been transmitted, non-packets are transmitted forever. That is, the program never termi-
nates although the protocol will reach a stable state once transmission of source data is
completed.

DataTrans rem s SW mazseq p § dataS =
SW = mazseg—1 A
Vt: time.
(pgt-g = - NULL (TL' 13 remg) A 14 <SW ) A
(pefe A = NULL remy)
= dataS; = NewPacket (s; & 1;) (HDI 1y remy)
| dataS; = SetNonPacket

The packet, dataS;, which is produced by DataTrans is then transferred by the channel
(CHANNEL dataS dataR) to dataR;. '

A zero delay channel either copies its input to its output or loses or garbles it. The
latter is modelled by outputing a non-packet. The copy or loss operation occurs oh each
tick of the global clock.
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CHANNEL A : channel B : channel =
Vt : time. (By = A:)V (B = SetNonPacket)

The resulting packet in dataR is read by DataRecv. If dataR is acceptable then the
state variables for the RECEIVER window, r, and output list, sink, are updated, otherwise
their old values are maintained. The DataRecv predicate shown is designed for a RECEIVER
window of size 1.

For any packet, p, (InWindow p b ws mazseq) tests whether p is inside the window by
testing whether label p is less than window-size, ws, sequence numbers from the bottom

edge of the window, b.

InWindow p b ws mazseq =
GoodPacket p A ((label p) © b) < ws

DataRecv dataR RW mazseq sink r =
RW =1 A
Vt: time.
InWindow dataR; ry RW mazseq
= (rH.l =r® 1) A
(stnker1 = APPEND sink; [message dataR;))
| rier =1 A sinkyy = sink,

The variables updated in DataRecv are used in the next acknowledgement packet. Since
r is the value of the next sequence number expected, the acknowledgement sequence is one
less than r to represent the sequence number of the last message correctly received. The
boolean function q is like p in DataTrans. An acknowledgement packet is only transmitted
at times when ¢; is true. The data field of an acknowledgement packet is never used, and
can be filled with any dummy data message.

AckTrans r mazseq ¢ ackR =
Y t: time. Y dummy: data.
gt = ackR; = NewPacket (r; ©1) (dummy)
| ackR; = SetNonPacket

Finally, ackR is transmitted by the return channel, (CHANNEL ackR ackS), to ackS
and is checked by AckRecv

AckRecv ackS SW mazseq rem 8 =
Y t: time.
InWindow ackS; s SW mazseq
= 841 = (label ackSt) &1 A
remgyy = TLI (5t+1 S 8;) rem
| Stp1 =81 A rempyy = remy

4.2.4 Monitoring Progress

The liveness, or progress, of the sliding window protocol is monitored by the ABORT
predicate which would be part of the sender’s program code in an implementation. The
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ABORT predicate counts the lengths of times during which no valid acknowledgement
arrives. If any such waiting period exceeds mazT then aborted is set to true and remains
so. It is up to the program which is using the protocol to decide what action to take. The
aborted variable is needed for the verification of liveness because it can be proved that
the protocol will eventually deliver all its data as long as aborted remains false. Note that
aborted will be always false once all source data has been delivered (NULL rem;).

ABORT ¢ aborted mazT mazseq SW 8 rem ackS =
co=0 Aabortedg=F A
Vt: time.
ce41 = ((InWindow ackS; sy SW mazseq) = 0| e +1) A
abortedyyy = ( (ct > mazT V aborted;) A -~ NULL rem; )

The above is a ‘real time’ interpretation of liveness and models the solution used in
most implementations. It can be contrasted with traditional liveness statements which say
that if an event is continuously enabled then it will eventually occur. Real time liveness is
a safety property: one that holds at all times. In fact real time liveness implies traditional
liveness, so it is a stronger property. The following example illustrates the difference
between them,

Let p : tfme — num be a non-decreasing function. Progress is said to have been made
if pr+1 > pi, otherwise pyry = p and no progress has been made. An example of a real
time liveness staternent is: ‘always, in MAX time steps from now, progress has been made
or the attempt abandoned’.

Vt’(pt+MAX > pg) \'% (abortedt+MAx)

The last statement may be contrasted with traditional liveness statements of the type:
Yif the choice between progress and non-progress is presented infinitely often, then there
exists some time in the future at which the progress choice will be chosen’.

(Ve (pear =PV pee1 > pi)) = (V2.3 (' > ) A (pe > p1))

5 Verification of the Sliding Window Protocol in HOL

I have proved that the sliding window protocol implementation as described above implies
its specification (see Equation 1). The proof uses several intermediate theorems: a safety
theorem about the relationship between the input and output lists, source and sink,
and the windows of the protocol and a liveness theorem about the progress made by an
implementation.

The following abbreviations will be used to describe the proof. Variables are universally
quantified unless otherwise indicated.

SPEC = 3t: time. sink(t) = source

IMPL = IMPL source mazseq rem s SW p i c aborted mazT
sink r RW q dataS dataR ackS ackR

Vit : time.
APPEND sink; (TLI r © 8¢ rem) = source

SAFETY

The main safety theorem is
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IMPL =—> SAFETY.

Its proof uses induction over time, case analysis and a number of lemmas. The most
important lemmas relate the contents of received packets to those of transmitted packets.

LEMMAI =
Vt: time.
AckTrans r mazseq ¢ ackR A
CHANNEL ackR ackS A
InWindow acksS; s; SW mazseq
=
label ackS; = (r:©1)

LEMMA2 =
Yi: time
DataTrans rem s SW mazseq p ¢ dataS A
CHANNEL dataS dataR A

RW =1 A

InWindow dataR; ry RW mazseq A

0 < mazseq

=

HDI (r; © &) rem¢ = message dataR; A

- NULL(TL' (f'g e Sg) remg) A
(re© &) + 1 < mazseq

This completes the safety part of the proof. Liveness is defined in terms of the time the
sender has been waiting for a good acknowledgement; one which will allow it to progress.
This definition of liveness avoids counting how many times a particular packet has been
transmitted, or specifying that repeatedly transmitted packets will eventually be delivered
as a result of fairness properties of the channel. All these types of liveness reasonably well
capture the property of real channels that they are unlikely to continuously not deliver
packets. The parameters mazT, p and ¢ can easily be chosen so that the definition of
liveness given below implies traditional liveness specifications based on fairness over a
range of transmissions.

The liveness proof requires only SENDER and ABORT definitions. The following pred-
icate describes the states of progress which the SENDER can reach. The disjuncts in the
conclusion of this theorem represent

e completion : the list of data still to send is now empty,
e progress : the list of data still to send has shortened,

e no progress : the protocol has been aborted.

LIVE_CHOICES =
INIT source mazseq rem s SW sink r RW A
SENDER mazxseq SW rem s p ¢ dataS ackS A
ABORT ¢ aborted mazT mazseq SW s rem ackS
=
Vi: time.
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(3 z: num. (remepmasr=TLIz rem) A (0<z)) V
aborteditmazT+1

Liveness is not a property which can be enforced, because a hard real time environment,
such as a computer network, imposes its own behaviour on protocol programs. Instead,
having proved that the protocol will either make progress or be aborted, assume that the
protocol is not aborted and work from there. Let LIVE-ASSUM be the assumption that

the protocol is not aborted.

LIVE-ASSUM =V t:time. (- abortediymazr+1)
It can now be proved that the protocol will reach a state where all the source data has
been correctly delivered. In fact, an upper bound can be given:

LIVENESS = reMypazTx LENGTH (remo) = NIL
and it is proven that the LIVE-CHOICES with LIVE-ASSUM implies LIVENESS,
Finally:

IMPL A LIVE-ASSUM => SAFETY A LIVENESS

and

SAFETY A LIVENESS =—> SPEC

5.1 Constructing the Proof

The proof described in the last section was written over several months. That time in-
cluded my learning HOL and much time spent remodelling the protocol and rewriting the
proofs. However, I would still expect a similar proof for a new class of protocols (such as
handshaking protocols) to take at least a month for modelling, and a month for the proof.
The main part of the definitions and theorems for the total correctness proof is a file of
approximately 1200 lines. This is supported by another 2700 lines of general definitions
and proofs (for example a theory of the integers and modulo arithmetic).

6 Discussion

This section describes ways in which the sliding window protocol model defined in this
report might be made more general. Some directions for longer term work are also sug-
gested.

6.1 Modelling Delay

The most unrealistic part of my protocol model is that channels deliver messages with
no delay. Some possible communication channel characteristics which occur in physical
media are :

1. Bounded but variable transmission delay with packets received, if at all, in sending
order.

2. Bounded but variable transmission delay with packets possibly reordered by the
transmission medium,
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3. Bounded but variable transmission delay with packets possibly spontaneously dupli-
cated by the transmission medium.

4. Packets may be damaged during transmission but not lost i.e. something is received
for every packet transmitted.

5. Transmission delay is unbounded.

All of the above characteristics, except the last, are covered by the general delay
channel model proposed below. Case 5 will not be modelled because no protocol can
guarantee eventual delivery of a stream of data in this case.

The new channel predicate, DCHANNEL, uses a delay function which maps a time to
the period for which a packet transmitted at that time would be delayed in the network
channel. The time at which a packet is delivered is always later than' its transmission
time, but not more than mazd time units later. Within these boundaries, delivery time

is variable.
DCHANNEL In:channel Out: channel d: time — time mazd : time =

(Outy = Ing—g, V Outy = SetNonPacket) A (d¢>0Ad; < mazxd)

Originally, I intended to extend the zero delay channel model to one with delay by
showing that a delay channel was equivalent to a particular transmission strategy. That is,
delaying a packet in the channel is equivalent to delaying its transmission time. The latter
can be expressed by refining the definitions of p and ¢ in DataTrans and ¢ in AckTrans.
However, in a general sliding window protocol a delay channel introduces sequences of
events which could not occur with zero delay. For example, an acknowledgement for
a packet may arrive after that packet was retransmitted. Thus, in general, the timing
behaviour of a channel is too complex to be expressed simply as a type of transmission
strategy. This experience suggests that the time behaviour of a sliding window protocol
is fundamental to its correctness and that

6.2 An Efficient Transmission Strategy

In the generalised sliding window protocol neither of the time functions ¢ or p are fully
defined. Any data packet may be transmitted so long as it is within the sender’s window.
A typical transmission strategy for real implementations is to send all the data in the
window, from the bottom to the top, and then return to the bottom of the window to
retransmit any packets for which an acknowledgement has not arrived. This may be
defined as :

BottomToTop(p) =
Vi.pt A 5p=0A
i1 = ((:©8) = (50410 8) = 1 © (8419 8) + 1] 0)

6.3 Timeouts

If source data is not always available to send or if buffer space is not sufficient to allow data
to be continuously transmitted then timeouts should be used. A timeout is a retransmis-
sion strategy. For each packet transmitted, the transmission time and the time by which
an acknowledgement is expected are noted. If no acknowledgement arrives within this
time interval then the original packet is retransmitted.
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Timeouts could be added to the model by defining p and ¢ in DataTrans as follows :
if 84 = 8¢—timeout then pyiy = T Ady = 0. The test 8¢ = 81—simeout establishes whether any
progress has been made by the sender.

If timeouts are being used then p, { and ¢ should be defined so that packets are only
transmitted when an incoming packet is received or if no packet has been received for
some time:

piis = (GoodPacket(ackS:) V 8; = 8t—timeout)

= (GoodPacket(dataR;) V (VI'. (t — timeout < t' At < t) => —qp))

6.4 Extending the Receiver Window

When the receiver window has size 1, the loss of any packet in a transmitted sequence of
packets results in the retransmission of every packet in the sequence following the damaged
one. All packets will be retransmitted even if they were received intact. A more efficient
strategy is for the receiver to buffer packets which arrive out of order but may be needed
in the future. The receiver window defines which packets ‘may be needed in the future’.
Messages in the receiver’s window are passed on to the sink as they become available.

A predicate defining a receiver with window size greater than one can not easily be
added to the current model. This is because the extension would be more general than
the existing predicate. Ideally, the most general predicate should have been my starting
point, and a single window receiver predicate introduced as a particular case of this model.
However, since this protocol model was intended to test the feasibility of verifying protocols
in HOL, it was decided to avoid the extra complexity of a variable receiver window size
until it was known how difficult such verification proofs might be.

6.5 Negative Acknowledgement Packets

A new type of acknowledgement packet may be introduced to signal when an out of order
packet has arrived at the receiver. The sender can then react more quickly when packets
may have been lost than when using only a timeout strategy.

A NakTrans predicate similar to AckTrans could be defined which transmits acknowl-
edgements with a special data field (to distinguish them from normal acknowledgements)

whenever
GoodPacket(dataR;) A ~(InWindow dataR; ry RW mazseq)

6.6 Dynamic Source Data and Two-way data flow

Instead of assuming that the source data is a static list of data, as in the proof above,
source data may be modelled dynamically. This situation may arise if the receiver, or the
network, is imposing flow control on the sender, or if source data is being produced from
another computer or process while the protocol is running. A boolean function of time,
avatlable, is defined to be true whenever data is available, and false otherwise. A new
predicate could be defined to receive data and buffer it in rem as it becomes available. A
protocol with dynamic source data may be non-terminating, when new data may arrive at
any time, or may use a special message or signal to tell the sender that there is no more
data to come. In the non-terminating case, the specification should be modified to state
that for every time, ¢, there exists a time, t', such that t' > t and all the source data made
available by time ¢ has been delivered to the sink by time #'. -
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Two way data flow can be modelled by adding all the RECEIVER predicates to the
SENDER and vice versa and adding new logical channels for the reverse data flow and its
acknowledgements. The correctness proofs given above will hold for data transmitted in
either direction. Although the communication medium for the protocol is now modelled
by four logical channels, in an implementation data and acknowledgements will actually be
transmitted in the same packet (called piggybacking) and all messages will be transmitted
over one physical channel.

6.7 Future Work

My aim has been to demonstrate the feasibility of protocol verification using the HOL
proof assistant. Having established a feeling for the size of the task, I intend to extend
the protocol model reported here for a more general range of sliding window protocols
and to extend verification work to particular implementations of the protocol. In order
to generalize the protocol model I shall investigate a wider range of abstraction techniges
and further study sliding window protocols to establish properties common to all mem-
bers of the class. Verification issues which may be investigated include performance and
consistency. The techniques developed for sliding window protocols might then be used
for the verification of other protocol families such as three way handshake protocols and
other agreement protocols.
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