
A Formulation of the Simple Theory of Types

(for Isabelle)

Lawrence C. Paulson
Computer Laboratory, University of Cambridge

Pembroke Street, Cambridge CB2 3QG, England

2 August 1989

Abstract

Simple type theory is formulated for use with the generic theorem prover
Isabelle. This requires explicit type inference rules. There are function, prod-
uct, and subset types, which may be empty. Descriptions (the η-operator)
introduce the Axiom of Choice. Higher-order logic is obtained through reflec-
tion between formulae and terms of type bool . Recursive types and functions
can be formally constructed.

Isabelle proof procedures are described. The logic appears suitable for
general mathematics as well as computational problems.

Copyright c© 1989 by Lawrence C. Paulson

Contents

1 Introduction 3

2 Overview of Isabelle 4

3 A brief history of type theory 4

4 Fundamental issues in type theory 5

4.1 Types as sets . 5

4.2 Variable binding and substitution . 6

5 Subtypes 7

6 Descriptions 8

6.1 Descriptions in Principia Mathematica 8

6.2 The Axiom of Choice and classical logic 9

7 Empty types 10

7.1 Church’s formulation of quantifiers 10

7.2 Quantifier rules admitting empty types 10

7.3 Descriptions and empty types . 11

7.4 Alternative formulations . 11

8 Polymorphism 12

8.1 Functions . 12

8.2 Products . 12

8.3 Sums . 13

8.4 Comparison with other type systems 13

9 Higher-order reasoning 14

10 Recursive data types 15

11 The formulation of simple type theory 16

11.1 Equality . 17

11.2 Types . 17

11.3 Logic . 19

11.4 Definitions of types . 21

11.5 Class Theory . 22

1

12 Sample proofs in Isabelle 22

12.1 Simple proof procedures . 22

12.2 Well-founded induction and recursion 23

13 Conclusions 24

References 25

A Appendix: The Isabelle Rule File 28

2

1 Introduction

Isabelle is a theorem prover for various logics, including several first-order logics,

Martin-Löf’s Type Theory, and Zermelo-Fraenkel set theory [30, 31]. Each new

logic is formalized within Isabelle’s meta-logic. New types and constants express

the syntax of the logic, while new axioms express its inference rules.

The present formulation of simple type theory (also called higher-order logic)

may interest logicians. It also illustrates Isabelle applied to an area where hard

choices must be made. The simple theory of types is too simple; it can be enriched

in numerous ways, as hinted by Church [5]. The traditional formalization, with

implicit type constraints, goes beyond Isabelle’s view of syntax. Isabelle supports

ML-style type inference with unification; the formulation offers a limited degree of

polymorphism.

There are several reasons for implementing higher-order logic in Isabelle.

Gordon and others have used higher-order logic, with great success, for hardware

verification [6, 14]. They have developed a theorem prover called hol, based on lcf.

Another implementation of higher-order logic is tps [2]. How well does Isabelle

perform against specialized systems like these?

Zermelo-Fraenkel set theory [36] is intended as a foundation of mathematics, but

is inconvenient for formal proof — even set theorists use intuition and diagrams.

Yet set theory is the basis of the Z specification language [35]. Philippe Noël has

conducted extensive set theory proofs in Isabelle [25]. Type theory is also intended

as a foundation for mathematics, and seems nearly as powerful. How does it compare

with set theory as a practical formal language?

Isabelle’s meta-logic is a fragment of Church’s version of type theory [30]. It is

natural to ask whether the meta-logic can be formalized in itself. Actually, the object

version of higher-order logic has to be much larger than the meta-logic because it is

intended for expressing all kinds of mathematics. The meta-logic only has to express

other formal systems.

The Isabelle implementation is definitely not intended for teaching Church’s

notation. Here tps is the champion, with a special character set for Church’s sub-

scripted Greek letters. However, most modern authors write x : α and α→ β rather

than xα and βα. Church’s axiom system is now antiquated, largely dating back to

Principia Mathematica. There are improved formulations but most use the Hilbert

style. Natural deduction is far superior for automated proof.

Sections 2 and 3 of the paper introduce Isabelle and the theory of types. Sec-

tions 4 to 10 discusses some issues in the Isabelle formulation, while Section 11

presents the formulation itself. The remaining sections describe proof procedures

3

and offer some conclusions. The computer file containing the rules is included as an

appendix.

2 Overview of Isabelle

Isabelle represents its object-logics within a fragment of intuitionistic higher-order

logic including implication, universal quantifiers, and equality [30]. The implication

φ =⇒ ψ means ‘φ implies ψ’, and expresses logical entailment. The quantification∧
x . φ means ‘φ is true for all x’, where x has a fixed type, and expresses generality

in object-rules and axiom schemes. The equality a ≡ b means ‘a equals b’, and

expresses definitions.

The meta-logic includes the typed λ-calculus, which is convenient for formalizing

the syntax of object-logics, particularly variable binding. Provisos of quantifier rules

(of the sort ‘x not free in the assumptions’) are enforced by meta-level quantification.

Like in lcf [29], backwards proofs are developed using tactics and tacticals,

which are implemented using Standard ml. But an inference rule in lcf is a function

from the premises to the conclusion, while in Isabelle it is an axiom in the meta-logic

stating that the premises imply the conclusion.

Since Isabelle axioms are essentially Horn clauses, the proof techniques draw

ideas from prolog. Huet’s higher-order unification procedure [18] takes account

of α, β, and η-conversions during unification. Higher-order unification can return

multiple or infinitely many results. While the general problem is undecidable, the

procedure works well in Isabelle.

3 A brief history of type theory

Bertrand Russell invented the theory of types to resolve the paradoxes in the foun-

dations of mathematics.

One pillar of type theory is that functions differ from individuals. There are

also functions of functions, etc., giving a hierarchy of types. To start, there is a

type of individuals (Church’s ι) and a type of propositions (Church’s o). If α and

β are types then so is α → β, the type of functions from α to β. A statement is

meaningless unless it obeys the type constraints: a function of type α→ β can only

be applied an object of type α. The logical constants are functions over the type of

propositions. In ∀x and ∃x the variable x must range over some type.

Russell’s other pillar was the vicious circle principle, which concerned statements

like ‘all propositions are either true or false’ [37, page 37]. If this were itself a

4

proposition then it would refer to itself, a possibly dangerous circularity. The vicious

circle principle forbade such ‘impredicative propositions’ through a system of orders.

A statement about all propositions of order n was itself a proposition of order n+ 1.

Whitehead and Russell showed how this ramified type theory resolved the paradoxes,

but it was too weak to justify classical mathematics. They were forced to assume

the Axiom of Reducibility, squashing the orders down to one.

Simple type theory remains when the vicious circle principle is abandoned. Al-

though sets must be introduced in a strict hierarchy, propositions need not be. The

idea of orders appears today in the universes of Martin-Löf’s Type Theory [22],

where propositions are represented by types. The terminology persists: simple type

theory is called higher-order logic because it permits unrestricted quantification over

propositions of all orders.

The main achievement of Church [5] is a precise formulation of the syntax. (Gödel

calls the vague syntax in Principia ‘a considerable step backwards as compared with

Frege’ [13, page 448].) Church formalizes syntax, including quantifiers, in the typed

λ-calculus. His technique is now standard in generic theorem proving.

See Hatcher [16] and Gödel [13] for further discussion of the history of these type

theories, and Andrews [1] for the formal development.

4 Fundamental issues in type theory

The following sections discuss basic issues in type theory: subtypes, description op-

erators, empty types, polymorphism, and higher-order reasoning. Here, we consider

the semantics and syntax.

We begin with basic notation and conventions for syntactic variables:

• types are Greek letters α, β, γ, . . .

• bound variables are x, y, z

• terms are a, b, c, d, . . . ; the ordered pair of a and b is 〈a, b〉; the relation a : α

means ‘a has type α’

• formulae are P , Q, R, . . . ; the true formula is >; the false formula is ⊥

4.1 Types as sets

Type theory is intended as the foundation of mathematics, but it has a simple

interpretation in set theory. Types denote sets, abstractions denote set-theoretic

5

functions, and the typing relation denotes set membership. The present formulation

retains this semantics. There is no clear alternative: most mathematical reasoning

involves sets.

Many theorem provers perform type checking with parsing, but Isabelle cannot

do this for its object-logics. Type errors are detected much later: during proofs.

Proofs must include explicit type checking using type inference rules, like in Martin-

Löf’s Type Theory. Type symbols appear as extra arguments to constants.

Ill-typed terms can be written. Their value can vary among models because it

is not determined by the axioms. There is no special ‘undefined’ value. Similarly,

an ill-typed formula has some truth value. If this seems unsatisfactory, observe that

a traditional theory of Peano arithmetic specifies no value for division by zero, yet

the term a/0 denotes some number in each model, for each a.

Of course, there are alternative semantics. Fourman and Scott [11, 33] can rea-

son about whether a/b exists, but their existence predicate involves some complexity.

Their logic has a topos semantics, which is a categorical generalization of set the-

ory. Martin-Löf’s Type Theory [22] has a constructive, operational semantics. An

ambitious type theory can even be based on classical sets: Borzyszkowski et al. for-

malize general products, some domain theory, and types of types [10]. If the present

logic seems pedestrian compared with these, remember that it claims to express the

Simple Theory of Types.

4.2 Variable binding and substitution

Isabelle has a typed λ-calculus at the meta-level to deal with operators, variable

binding, and substitution uniformly.1 All forms of variable binding — abstraction,

quantifiers, descriptions — are expressed through meta-level abstraction. Com-

pound expressions like fst(a) and P & Q are expressed through meta-level applica-

tion. Further details are discussed elsewhere [30]. It may be simpler to regard all

compound forms, variable-binding or not, as primitive. When a term is written as

b(x), this can be regarded as setting off the occurrences of x, so that b(a) nearby

indicates substitution. In fact, b(x) is a meta-level application, and substitution

takes place by meta-level β-reduction.

Church represents syntax in the object-level typed λ-calculus. His formulation

defines λ-abstraction and application, then uses these to express quantifiers and

descriptions.

Meta-abstraction works better than object-abstraction in Isabelle. It is also more

modular. With meta-abstraction always available, different fragments of the logic

1This works like Martin-Löf’s system of arities [26].

6

can be understood independently of its internal notion of function.

A meta-level function may not correspond to any object-level function. For

example, the pairing function is defined for all values of all types. It is defined over

the whole object-level domain. It cannot be an object-level function, but could be

represented by a family of object-level functions of various types. This must be

borne in mind when comparing the present formulation with Church’s.

Notation for object-level functions. Abstraction is written λx : α . b(x). Ap-

plication is written with the explicit ‘apply’ operator (‘), as in f ‘ a. The apply

operator is not used in general discussions of simple type theory.

5 Subtypes

A subtype is a collection of the elements of a type that share some common prop-

erty. Typically, a subtype defines an abstract type from a type of representations.

The abstract type contains just the elements that represent abstract objects. Any

predicate P (x) over a type α defines a subtype {x : α . P (x)}. Subtypes usually

make type checking undecidable, for checking whether a belongs to {x : α . P (x)}
requires proving P (a).

Consider defining the sum type α+β. The left injection of a can be represented

by the pair of abstractions

〈(λx : α . a = x), (λy : β .⊥)〉

while the right injection of b can be represented by

〈(λx : α .⊥), (λy : β . b = y)〉

If formulae are terms of type bool , both injections have type (α→ bool)×(β → bool).

The subtype containing just the injections is the sum type α + β.

Because a subtype may depend upon bound variables, we must consider in-

troducing dependent types: general products and sums. These cause no semantic

difficulties, but seem unnecessary (see also Dana Scott [33]). The term

λz : α . λy : {x : α . R(z, x)} . y

has no legal type. Its type could be
∏
z:α .{x : α.R(z, x)} → α if we added dependent

types. However

λz : α . ∃y : {x : α . R(z, x)} . P (y)

7

has type α→ bool because the body of the abstraction is a formula.

Traditionally a term has a unique type, but each element of a subtype also

belongs to its parent type. Gödel [13, page 466] describes uniqueness of types as a

suspect principle, noting that it precludes reasoning about types. Such reasoning

is a necessity for Isabelle. Allowing types to overlap causes no difficulty in the

set-theoretic semantics.

Gordon’s hol has a different treatment of subtypes (see Melham [23]). To keep

uniqueness of types and decidable type checking, conversion functions distinguish

elements of a subtype from elements of the parent type. Determining that the

conversion functions are applied correctly still requires theorem proving. Subtypes

are defined by top-level commands, so there is no question of dependent types.

Subtypes must be non-empty.

6 Descriptions

Descriptions, present in type theory from the beginning, name an object by a defin-

ing property. The unique description ιx : α . P (x) means ‘the x satisfying P (x)’.

For example,
√
a is ιx : nat . x2 = a. The inference rule verifies that there exists a

unique value that satisfies P (x):

∃x : α . P (x) & (∀y : α . P (y)→ y = x)

P (ιx : α . P (x))

Descriptions can also embody the Axiom of Choice. Hilbert’s ε-operator, written

εx : α . P (x), means ‘some x satisfying P (x)’. The rule drops the requirement of

uniqueness.
∃x : α . P (x)

P (εx : α . P (x))

Replacing the premise ∃x : α . P (x) by the two premises a : α and P (a) would

impose the stronger requirement (especially in classical logic) of exhibiting the term

a.

Gordon’s hol uses Hilbert’s ε-operator, while Church [5] formalizes both forms

of description. See Leisenring [21] for a full discussion of Hilbert’s ε-operator.

6.1 Descriptions in Principia Mathematica

Whitehead and Russell (in Chapter III of Principia) argue that descriptions are

meaningless by themselves. They give translations to eliminate descriptions from

statements. In their view The author of Waverley was a poet means Waverley was

8

written by some poet, not that Sir Walter Scott was a poet. This is because if The

author of Waverley denotes Sir Walter Scott, then Scott is the author of Waverley

means the same as Scott is Scott, which cannot be intended. Girard calls this

the question of sense vs denotation [12]. The question applies broadly, not just to

descriptions: does 2 + 2 = 4 mean simply 4 = 4?

If there is no object meeting the description, its meaning is problematical. To

Whitehead and Russell, a statement like The present King of France is bald is simply

false, while the meaning of The present King of France is not bald depends upon

the scope of the not.

The modern view is that a description denotes some object satisfying the given

property, if there is one. Otherwise it is undefined — however we understand this.

6.2 The Axiom of Choice and classical logic

In higher-order logic, the Axiom of Choice implies the excluded middle. The argu-

ment, due to Diaconescu, is sketched by D. Scott [33]. Let two be the type whose

values are 0 and 1. To derive P ∨ ¬P for some formula P , define type set as the

following subtype of two → bool :

set ≡ {q : two → bool . ∃x : two . q(x) & ((∀x : two . q(x))↔ P)}

Note that q0 and q1 belong to type set , where

q0 ≡ λx : two . (x = 0) ∨ P
q1 ≡ λx : two . (x = 1) ∨ P

Informally, q0 and q1 correspond to the sets {0, 1?} and {1, 0?}, where 0? and 1? are

included just if P holds. Each element of set contains some x : two. By the Axiom

of Choice (Hilbert’s ε-operator) there is a corresponding function f : set → two:

f ≡ λq : set . εx : two . q(x)

Whether f(q0) = f(q1) holds or not is decidable, for it is an equality between natural

numbers. And this equality decides P :

• If f(q0) = f(q1) then P . By the rule for descriptions, both q0(f(q0)) and

q1(f(q1)) hold, namely (f(q0) = 0) ∨ P and (f(q1) = 1) ∨ P . There are four

subcases, of which three imply P and one implies 0 = 1.

• If f(q0) 6= f(q1) then ¬P . Assuming that P holds implies q0 = λx : two .> =

q1, and so f(q0) = f(q1), contradiction.

9

7 Empty types

Traditional formulations of higher-order logic require that all types are non-empty.

This hardly matters for Church, who has only two basic types (propositions and

individuals). With many basic types, the requirement becomes unnatural. If the

subtype {x : α . P (x)} depends on free variables, it could sometimes be empty.

Empty types require careful formulation of quantifiers and descriptions.

Isabelle’s meta-logic uses implicit type checking and does not admit empty meta-

types. Empty types are not needed at the meta-level.

7.1 Church’s formulation of quantifiers

Church postulates a supply of variables xα, yα, zα, . . . for each type α. Typical

quantifier rules are (with the usual variable restrictions)

P (xα)

∀xα . P (xα)
∀-intr

∀xα . P (xα)

P (aα)
∀-elim

P (aα)

∃xα . P (xα)
∃-intr

∃xα . P (xα)
[P (xα)]

Q

Q
∃-elim

In the ∀-intr rule xα is a variable of type α. In the ∀-elim rule, aα is any term of

type α, even a variable. This rule and ∃-intr are unsound if α is empty, with many

false consequences:

¬(∀xα .⊥) ∃xα .> (∀xα . P (xα))→ (∃xα . P (xα))

These look like trivial theorems of first-order logic, but a first-order domain may

not be empty.

7.2 Quantifier rules admitting empty types

Explicit type checking admits empty types — almost by accident. The quantifier

rules are

[x : α]

P (x)

∀x : α . P (x)
∀-intr

∀x : α . P (x) a : α

P (a)
∀-elim

P (a) a : α

∃x : α . P (x)
∃-intr

∃x : α . P (x)
[x : α, P (x)]

Q

Q
∃-elim

10

There is no supply of typed variables; instead, ∀-intr and ∃-elim discharge the as-

sumption x : α. The rules ∀-elim and ∃-intr demand a proof of a : α; if a is some

variable y, the proof will depend on the assumption y : α. If there is no closed term

of type α then ∃x : α .> has no proof, but ∀y : α . ∃x : α .> does:

> [y : α]

∃x : α .>
∀y : α . ∃x : α .>

7.3 Descriptions and empty types

Because it is always defined, Hilbert’s ε-operator gives every type α the element

εx : α . >. Another form of description, the η-operator, permits empty types. If

there is no x : α satisfying P (x) then ηx : α .P (x) is undefined — its value and type

are unspecified. This typing rule for descriptions makes type checking undecidable.

Hilbert’s ε-operator can express the quantifiers: for example, ∃x : α . P (x) as

P (εx : α . P (x)). This does not work with the η-operator, for if ∃x : α . P (x) is false

then P (ηx : α . P (x)) is meaningless.

The ε-operator can be defined through the η-operator if α is non-empty, because

Q → ∃x : α . P (x) implies ∃x : α . Q → P (x) under classical logic.2 Putting

∃y : α . P (y) for Q, the body of the η can always be satisfied:

εx : α . P (x) ≡ ηx : α . (∃y : α . P (y))→ P (x)

7.4 Alternative formulations

The above quantifier and description rules are adopted for the present formulation

of simple type theory. Here are two other ways — both based on topos theory — of

admitting empty types.

• Fourman [11] and Dana Scott [33] formalize the notion of existence: a term

can have a valid type and yet be undefined. A type is empty if it has no defined

elements. The ∀-elimination rule can only be applied to a defined term. The

description ιx : α . P (x) exists only if P (x) is satisfied by a unique value, but

always has type α.

• Lambek and P. J. Scott [20, page 130] present quantifier rules that maintain

a list of the typed variables on which the conclusion depends.

2Classical logic obtains by Diaconescu’s argument, for η implies the Axiom of Choice.

11

8 Polymorphism

The ‘typical ambiguity’ in Principia is a form of polymorphism where type symbols

in expressions are simply not shown. Type checking in ml is a formal version of

the same thing: types are inferred but not shown. Isabelle does not (at present)

allow any hiding of syntax. This calls for another kind of polymorphism, where

certain constants have no type symbols at all. Let us consider how to minimize type

symbols in elements of function, product, and sum types. To do this safely, we must

remember the semantics.

8.1 Functions

The notation for abstraction could have type symbols for the function’s domain and

range:

λα,βx . b(x) : α→ β

where b(x) : β for x : α.

The type symbol α is essential. Functions like λx . 0 and λx . x cannot be

interpreted as sets without specifying the set of values x may take. In domain

theory a function can be defined over the universal domain. But we are in set

theory, where an operation ‘on everything’ is not a function. An element of α→ β

may (hereditarily) contain all the elements of α and β, so these must be sets.

The type symbol β is superfluous, however, by set theory’s Axiom of Replace-

ment. If α denotes a set then {b(x) | x : α} is also a set. Deleting β improves the

notation:

λx : α . b(x) : α→ β

Martin-Löf’s Type Theory has polymorphic functions like λx.x, but its semantics

is operational: its functions are algorithms, not graphs. Nor can we omit the type

symbols as a syntactic convenience, hoping they could be replaced in principle.

Anne Salvesen [32] presents proofs in Martin-Löf’s Type Theory that fail when type

symbols are added. Her arguments are general, and should apply here as well.

Note that only the ‘contravariant’ aspect of functions — the domain of applica-

tion — requires a type label. Product and sum types do not need any type labels.

8.2 Products

For products, a pairing constructor with type symbols is

Pairα,β(a)(b) : α× β (a : α, b : β)

12

This could abbreviate the abstraction

λx : α . λy : β . (x = a) & (y = b) : α→ β → bool

which contains the type symbols α and β. But pairs need not carry type symbols.

In set theory, pairs formed by the operation 〈a, b〉 = {{a}, {a, b}} do not depend on

what sets contain a and b. The Isabelle formulation includes a polymorphic pairing

operator 〈a, b〉.
Many other authors, for various reasons, take pairing as a primitive of the typed

λ-calculus [12, 20, 33].

8.3 Sums

The disjoint sum has left and right injections:

Inlα,β(a) : α + β (a : α)

Inrα,β(b) : α + β (b : β)

The type symbols are again unnecessary. In set theory, the injections Inl(a) =

〈{a}, ∅〉 and Inr(b) = 〈∅, {b}〉 depend only on the values of a and b, not on the sets

that contain them.

In the current version of the logic, a monomorphic (type labelled) disjoint sum

is derived as shown in Section 5. Taking polymorphic injections as primitive seems

to be needless extra complexity, for it does not greatly improve the notation.

8.4 Comparison with other type systems

The Edinburgh Logical Framework, a type theory for representing formal systems,

can express the implicit type checking of Church’s higher-order logic [15]. In this

case all constants are fully decorated with type symbols, and terms contain much

redundant type information.

Gordon’s hol system, like lcf, uses polymorphic type checking. Its type vari-

ables, written *, **, etc., are syntactic variables ranging over types. The identity

combinator I might have the polymorphic type

I : * -> *

Because a constant’s type is part of its name, the hol constant I stands for a family

of constants Iα, satisfying the schematic typing

Iα : α→ α

13

For example, I(I) abbreviates I(α→α)→(α→α)(Iα→α). This is not self-application: it

involves two different instances of I.

Under the set-theoretic semantics, an identity function on all types could not

exist. Coquand [8] has shown that polymorphic higher-order logic is inconsistent.

A constant like Iα : α → α is here called monomorphic (following Salvesen [32])

because of its type label.

9 Higher-order reasoning

Quantification over propositions is what makes simple type theory ‘higher-order’.

First-order logic allows quantification over individuals; second-order logic allows

quantification over properties of individuals; third-order logic allows quantification

over properties of properties of individuals; and so forth. Higher-order (or ω-order)

logic allows all these quantifications. A formula is simply a term of type bool .

The logic programming language λProlog, though based on higher-order logic,

forbids quantification over bool [24]. So it is really first-order logic extended with

typed λ-expressions. The meta-logic of Isabelle avoids quantification over bool to

simplify the theory, but this restriction is not enforced.

Quantification over propositions permits many different formulations of higher-

order logic. Absurdity (⊥) is definable as ∀p : bool . p, the proposition that implies

all propositions. Conjunction and disjunction are definable by

P &Q ≡ ∀r : bool . (P → (Q→ r))→ r

P ∨Q ≡ ∀r : bool . (P → r)→ ((Q→ r)→ r)

Andrews [1] presents a formulation based on equality. For example, the universal

quantifier is defined in terms of truth (>) as

∀x : α . P (x) ≡ (λx : α . P (x)) = (λx : α .>)

Representing formulae by terms of type bool is inconvenient in Isabelle. Explicit

type inference (to ensure that all theorems have type bool) encumbers proofs. Type

checking can be minimized by formulating each rule such that the conclusion is

well-typed provided its premises are. Then type checking only takes place when

assumptions are discharged. In a trial implementation, even this much checking was

inefficient.

Now formulae are a separate syntactic class. The present formulation defines

first-order logic. It then adds reflection — isomorphisms between formulae and

terms of type bool — to obtain higher-order logic.

14

• term(P) is a term (of type bool) if P is a formula

• form(b) is a formula if b is a term

A predicate (or class) on α is just a function of type α→ bool . Class formation is

λ-abstraction over a formula, while the membership predicate is function application.

Let us introduce some class-theoretic notation:

{|x : α . P (x)|} ≡ λx : α . term(P (x))

a ∈ S ≡ form(S ‘ a)

Class theory is the main vehicle for mathematical reasoning in Principia.

The higher-order logic of Fourman and D. Scott [11, 33] also distinguishes be-

tween terms and formulae. The primitive types are products and powersets; func-

tions are represented by their graphs, like in set theory. Reflection functions can be

defined through class abstraction and the membership predicate: abstraction creates

a class (a term) from a formula, while membership in a class is a formula.

10 Recursive data types

Recursive types, like the natural numbers, lists, and trees, are an active research

area. The wellordering types of Martin-Löf’s Type Theory are general transfinite

trees [22]. The Nuprl system, although largely based on Martin-Löf, uses positive

recursive type definitions [7]. Boyer and Moore’s ‘shell principle’ introduces recursive

structures [4]. lcf can define recursive types using domain theory [29]. Recursive

types can also be constructed in simple type theory.

The natural numbers can be constructed in various ways, assuming an Axiom of

Infinity. In Principia, the number 2 is the class of all pairs of some type α. In Church,

2 is λf : α→ α.λx : α.f(fx). Both definitions are cumbersome and entail different

types of natural numbers for each type α. The Isabelle formulation postulates a

type nat of natural numbers satisfying induction and primitive recursion.

Melham [23] describes one treatment of recursive types, defining lists in terms

of natural numbers, and trees in terms of lists. He has implemented this in Gor-

don’s hol system, which uses Church’s logic.

The Isabelle formulation uses a different treatment inspired by Huet [19]. For a

given set of constructors it involves two steps:

1. Find a type rich enough to represent all possible constructions.

2. Restrict to the subtype inductively generated by the constructors.

15

Let us define list(α), the type of lists over α. The representing type is nat×α→
bool , where the list [x0, x1, . . . , xn] is represented by the class of pairs

{|〈0, x0〉, 〈1, x1〉, . . . , 〈n, xn〉|}

The constructors are nilα and consα(a, l). (They must be labelled with type α

because classes have type labels.) The empty list is represented by the empty class.

To put an element in front of a list, consα(a, l) increments m in all pairs 〈m,x〉 in l,

then adds the pair 〈0, a〉.

nilα ≡ {|u : nat × α .⊥|}
consα(a, l) ≡ {|u : nat × α . u = 〈0, a〉

∨ (∃m : nat . ∃x : α . 〈m,x〉 ∈ l & u = 〈Succ(m), x〉)|}

The representing type includes many non-lists. Tarski’s theorem (see Huet [19]),

which asserts that every monotone function over a complete lattice has a least fixed

point, can be used to define the subtype of lists. The monotone function takes a

class F of lists and returns the class of all lists obtained by a further application of

the constructors:

{|l : nat × α→ bool . l = nilα

∨ (∃x : α . ∃l′ : nat × α→ bool . l′ ∈ F & l = consα(x, l′))|}

Trees with labelled edges can also be represented by classes of pairs. For lists,

the number in each pair gives the position of an element. The position of an element

in a tree can be given by a list of edges. If the trees have countable branching, the

representing type could be list(nat)× α. Trees are sometimes represented like this

in set theory.

Tarski’s theorem also handles recursively defined classes. For example, the re-

flexive/transitive closure of the relation R is inductively generated from the identity

relation by composition with R. This too is the least fixed point of a monotone

function.

11 The formulation of simple type theory

Because of type inference there are two forms of judgement: ‘formula P is true’,

written simply P , and ‘term a has type α’, written a : α. Type assertions cannot be

combined by logical connectives — which would not be in the spirit of type theory

— because a : α is not a formula.

Appendix A is the Isabelle rule file, including a few uninteresting rules omitted

below.

16

11.1 Equality

The formula a =α b means that a and b are equal and have type α. There is no deep

reason for having a typed equality relation. A proof that a equals b must involve

showing that a and b have some type α, and this type information could be useful

later.3

The reflexivity, symmetry, and substitution rules are

a : α

a =α a

a =α b

b =α a

a =α b P (b)

P (a)

The type information can be extracted. If a = b then both terms have the

relevant type.
a =α b

a : α

a =α b

b : α

11.2 Types

Functions

These rules for abstraction and application are typical of type inference systems:

see Chapter 15 of Hindley and Seldin [17]. Applications are written with an explicit

operator: f ‘ a.

[x : α]

b(x) : β

(λx : α . b(x)) : α→ β

f : α→ β a : α

f ‘ a : β

We have β and η-conversion:

a : α
[x : α]

b(x) : β

(λx : α . b(x)) ‘ a =β b(a)

f : α→ β

λx : α . f ‘ x =α→β f

In η-conversion, variable x may not be free in f . All rules that discharge the as-

sumption x : α are subject to the proviso that x is not free in the conclusion or

other assumptions. This will be taken for granted below.

Finally, there is a rule for the construction of equal abstractions. It does not

follow from the substitution rule above because x is bound in the conclusion.

[x : α]

b(x) =β c(x)

(λx : α . b(x)) =α→β (λx : α . c(x))

3In Martin-Löf’s Type Theory, equality can only be understood with respect to some type, so
the relation is typed for semantic reasons.

17

Products

The pair of a and b is written 〈a, b〉; the projections are fst and snd. These constants

contain no type symbols.

Type assignment rules for pairing and the projections are

a : α b : β

〈a, b〉 : α× β
p : α× β
fst(p) : α

p : α× β
snd(p) : β

Conversion (equality) rules for pairing and the projections are

a : α b : β

fst(〈a, b〉) =α a

a : α b : β

snd(〈a, b〉) =β b

The elimination rule for products resembles a rule of Martin-Löf’s Type Theory:

p : α× β
[x : α, y : β]

Q(〈x, y〉)
Q(p)

It implies 〈fst(p), snd(p)〉 =α×β p for p : α× β.

Subtypes

The type checking of subtypes involves the truth of P (a) and is therefore undecid-

able.
a : α P (a)

a : {x : α . P (x)}
The elimination rules say that if a : {x : α . P (x)} then a : α and P (a).

a : {x : α . P (x)}
a : α

a : {x : α . P (x)}
P (a)

Natural numbers

The type of natural numbers is called nat . The Axiom of Infinity is expressed in

the most convenient form: through the existence of functions defined by primitive

recursion.

The typing rules for 0 and successor are

0 : nat
a : nat

Succ(a) : nat

The typing rule for rec is

a : nat b : β
[x : nat , y : β]

c(x, y) : β

rec(a, b, xy . c(x, y)) : β

18

The operator rec(a, b, xy . c(x, y)), where x and y are bound in c(x, y), expresses

primitive recursion. In the meta-level typed λ-calculus c is a function, so rec(a, b, xy.

c(x, y)) will henceforth be abbreviated to rec(a, b, c). The conversion rules for rec

are

b : β
[x : nat , y : β]

c(x, y) : β

rec(0, b, c) =β b

a : nat b : β
[x : nat , y : β]

c(x, y) : β

rec(Succ(a), b, c) =β c(a, rec(a, b, c))

Because rec binds variables, it requires its own substitution rule:

a =nat d b =β e
[x : nat , y : β]

c(x, y) =β f(x, y)

rec(a, b, c) =β rec(d, e, f)

The mathematical induction rule is

a : nat Q(0)
[x : nat , Q(x)]

Q(Succ(x))

Q(a)

11.3 Logic

Implication and universal quantification are taken as primitive; the other logical

constants are defined through them.

The rules for implication are

[P]

Q

P → Q

P → Q P

Q

The rules for universal quantification are

[x : α]

P (x)

∀x : α . P (x)

∀x : α . P (x) a : α

P (a)

The following rule gives classical logic (which follows anyway from the Axiom of

Choice).

[¬P]

P

P

19

Reflection

The operator term(P) maps a formula to a term of type bool , while form(a) maps

such a term to a formula. Since there is no way to decide whether a formula is true

or false, term(P) is non-constructive. The truth value of form(a) is specified only

where a has type bool .

The typing rule says that term(P) has type bool , even if P is ill-typed!

term(P) : bool

Isomorphism rules state that term and form preserve truth:

a : bool

term(form(a)) =bool a

P

form(term(P))

form(term(P))

P

Although form(a) is syntactically a formula for all terms a, it preserves truth only

if a has type bool .

Also, term and form preserve equivalence:

[P]

Q

[Q]

P

term(P) =bool term(Q)

The analogous property for form — that a =bool b and form(b) imply form(a) —

follows by substitution.

Definitions of other connectives

These definitions of other connectives yield their usual properties. The terms False

and True have type bool ; the absurdity formula (⊥) is form(False).

False ≡ term(∀p : bool . form(p))

True ≡ term(∀p : bool . form(p)→ form(p))

P &Q ≡ ∀r : bool . (P → Q→ form(r))→ form(r)

P ∨Q ≡ ∀r : bool . (P → form(r))→ (Q→ form(r))→ form(r)

∃x : α . P (x) ≡ ∀r : bool . (∀x : α . P (x)→ form(r))→ form(r)

¬P ≡ (P → form(False))

P ↔ Q ≡ (P → Q) & (Q→ P)

20

Descriptions

The η-operator is adopted, which assumes an Axiom of Choice and is only defined

if some suitable object exists.

∃x : α . P (x)

(ηx : α . P (x)) : α

∃x : α . P (x)

P (ηx : α . P (x))

Two descriptions are equal if they are defined and the formulae are equivalent.

The second premise ensures that the description is defined.

[x : α]

P (x)↔ Q(x)
∃x : α . P (x)

(ηx : α . P (x)) =α (ηx : α . Q(x))

11.4 Definitions of types

These include the empty type void , the singleton type unit , and the union type

α + β.

void ≡ {p : bool . form(False)} unit ≡ {p : bool . p =bool True}

The sum type consists of all left injections and right injections.

α + β ≡ {w : (α→ bool)× (β → bool). (∃x : α . w = Inl(α, β, x))

∨ (∃y : β . w = Inr(α, β, y))}

Injections are defined in a standard way as pairs of classes [33].4

Inl(α, β, a) ≡ 〈λx : α . term(a =α x), λy : β . False〉
Inr(α, β, b) ≡ 〈λx : α . False, λy : β . term(b =β y)〉

The operator when(α, β, γ, p, c, d) performs case analysis on a sum type, where c

and d are meta-level functions.5

when(α, β, γ, p, c, d) ≡ ηz : γ. (∀x : α . p =α+β Inl(α, β, x)→ z =γ c(x))

& (∀y : β . p =α+β Inr(α, β, y)→ z =γ d(y))

These operators have type labels because they are defined by terms containing type

symbols. All variables on the right side in a definition must be present on the left.

Basic laws like whenα,β,γ(Inlα,β(a), c, d) = c(a) are proved in the Isabelle theory.

The operator is computable despite being defined by description.

4The definition of α+ β used by Melham [23] does not work if either type is empty.
5Conventional notation is whenα,β,γ(p, x . c(x), y . d(y)), where x and y are bound variables.

21

11.5 Class Theory

Class theory includes the relations membership and subclass and the operations

union, intersection, and powerset. Union and intersection are also defined for a class

of classes. The class abstraction {|x : α . P (x)|} abbreviates λx : α . term(P (x)).

Operators defined by class abstraction have the type label α as an extra argument,

so none of these are infix operators in Isabelle’s concrete syntax.

a ∈ S ≡ form(S ‘ a)

S ⊆α T ≡ ∀z : α . z ∈ S → z ∈ T
S ∪α T ≡ {|z : α . z ∈ S ∨ z ∈ T |}
S ∩α T ≡ {|z : α . z ∈ S & z ∈ T |}⋃

α F ≡ {|z : α . ∃S : α→ bool . S ∈ F & z ∈ S)|}⋂
α F ≡ {|z : α . ∀S : α→ bool . S ∈ F → z ∈ S)|}

Pα(S) ≡ {|T : α . T ⊆α S|}

12 Sample proofs in Isabelle

A logic is traditionally illustrated by sample proofs. Theorems proved using Isabelle

include basic facts, lemmas used in proof procedures, Tarski’s Theorem, and well-

founded recursion. Proof procedures exist for first-order logic, rewriting, and class

theory.

12.1 Simple proof procedures

The rewriting package is based on the one for Martin-Löf’s Type Theory, as are

the sample proofs in elementary number theory. Using rewriting and induction,

arithmetic is developed up to the theorem a mod b+ (a/b)× b = a.

Reflection works well in higher-order reasoning. Natural deduction rules for the

logical constants are easily derived from their higher-order definitions. A standard

example of higher-order logic is Cantor’s Theorem that every set has more subsets

than elements, which can be expressed as follows:

¬
(
∃g : α→ (α→ bool) . ∀f : α→ bool . ∃j : α . f = g ‘ j

)
(There is no onto function from α to α → bool .) While tps [2] can prove Cantor’s

Theorem automatically, Isabelle must be guided towards the proof.

The proof procedures for first-order logic work directly with the natural deduc-

tion rules, as sketched in Chapter 2 of my book [29]. Although none of the procedures

22

is complete or fast, they can prove many examples automatically:(
∃y : α.∀x : α.J(y, x)↔ ¬J(x, x)

)
→ ¬

(
∀x : α.∃y : α.∀z : α.J(z, y)↔ ¬J(z, x)

)
Similar proof procedures for class theory reason about unions, intersections, sub-

sets, etc. This example is proved automatically:

F : (α→ bool)→ bool G : (α→ bool)→ bool⋂
α(F ∪G) = (

⋂
α F) ∩ (

⋂
αG)

Classes are also used to construct a type of lists and derive structural induction.

12.2 Well-founded induction and recursion

Well-founded recursion is a general method of defining total recursive functions,

while well-founded induction reasons about functions so defined. These principles,

which hold for every well-founded relation, play a central role in the Boyer/Moore

logic [4]. They have been derived using Isabelle.

Given a relation R : α × α → bool , let us write y R x instead of 〈y, x〉 ∈ R and

abbreviate ‘R is well-founded’ as wfα(R). Classically, R is well-founded if there are

no infinite descending chains · · ·x3 R x2 R x1 R x0. The following definition is more

convenient:

wfα(R) ≡
(
∀x : α . (∀y : α . y R x→ y ∈ S)→ x ∈ S

)
→ (∀x : α . x ∈ S)

This easily yields well-founded induction:

wfα(R) a : α
[x : α]

∀y : α . y R x→ y ∈ P (x)

P (a)

A recursive function f is well-founded along R if f(x) depends only on f(y) such

that yRx. This condition can be stated using subtypes. Type αRx is the restriction

of α to predecessors of x under R.

αRx ≡ {y : α . y R x}

The body of the recursive function has the form H(x, f) where x : α is the

argument and f : αRx → β handles recursive calls. Type checking ensures that f is

only called below x. The resulting recursive function is applied to argument a by

wfrecα,β(R,H, a).

wfα(R) R : α× α→ bool a : α
[x : α, f : αRx → β]

H(x, f) : β

wfrecα,β(R,H, a) : β

23

Under the same premises, wfrec satisfies the recursion equation

wfrecα,β(R,H, a) =β H(a, λx : αRa . wfrecα,β(R,H, x))

Some observations: The variables x and f are subject to the usual ‘not free in’

conditions. The abstraction λx : αRa . wfrecα,β(R,H, x) restricts the function to

arguments below a. Here H is a meta-level function (wfrec binds variables); if we

had dependent types, H could be an object-function of type
∏
x:α(αRx → β)→ β.

Defined by a description, wfrec takes the union of all graphs of functions that

satisfy the recursion equation below some x : α. Its typing rule holds because this

union forms the graph of a function on α. Observe how type checking can involve

substantial proof. With the help of a few extra lemmas, the equality rule is then

proved.

This work follows Suppes’s treatment of transfinite recursion in set theory [36].

Operator wfrec is defined once and for all, and its properties proved, for all well-

founded relations in the logic. It is far stronger than my work in Martin-Löf’s Type

Theory [28], which considers certain ways of constructing well-founded relations and

their corresponding recursion operators.

13 Conclusions

Programs are typically verified within a special logic of computation. Although sev-

eral such logics have been successful, they sometimes restrict abstract mathematical

reasoning — needed even for computational proofs.

• The Logic for Computable Functions (lcf) embeds a typed λ-calculus, where

types denote domains, into first-order logic [29]. lcf is good for reasoning

about nonterminating processes, but termination proofs can become a chore

(in my opinion [27]). The restriction to domains and continuous functions has

serious consequences [34].

• Martin-Löf’s Type Theory is based on computation [22, 26]. By the inter-

pretation of propositions-as-types, a type can express a complete program

specification. Developments and applications are proceeding rapidly [3]. How-

ever, the theory does not admit classical set-theoretic arguments. Unwanted

proof objects in types cause complications [32].

• Boyer and Moore use quantifier-free first-order logic with well-founded induc-

tion and recursion [4]. Although this combination gives unique simplicity and

power, it is hard to do without quantifiers.

24

Simple type theory may be suitable for reasoning about computation. It offers a

rich collection of computable functions, including general recursive and higher-order

functions, but it is not restricted to computable functions. Subtypes and classes

can express program specifications. The main question is how to recognize when a

function is computable.

Some people will wonder whether classical logic is appropriate. Why not use

intuitionistic higher-order logic instead? Simply remove the double-negation law and

the Axiom of Choice (replacing the η-operator by ι). Although I have an interest

in constructive logic, this suggestion requires a stronger argument. Intuitionism is

a deep and evolving subject. There is little agreement about whether intuitionistic

higher-order logic, with its impredicative quantification, is constructive.

The Calculus of Constructions, by Coquand and Huet [9], is also intended for

reasoning about programs. In use it is very like simple type theory: the Isabelle

proof of Tarski’s theorem follows Huet’s [19]. However, it interprets propositions-

as-types and has a clear notion of computation. Experiments with the Calculus and

the Isabelle formulation of type theory will make an interesting comparison.

Acknowledgement. Isabelle was developed under grant GR/E 0355.7 from the

Science and Engineering Research Council. Mike Fourman made many valuable re-

marks, especially about descriptions. Thanks also to Thomas Melham, Dale Miller,

Philippe Noël, and Jan M. Smith for advice.

References

[1] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Academic Press, 1986.

[2] Peter B. Andrews, Dale A. Miller, Eve L. Cohen, and Frank Pfenning. Automating
higher-order logic. In W. W. Bledsoe and D. W. Loveland, editors, Automated
Theorem Proving: After 25 Years, pages 169–192. American Mathematical Society,
1984.

[3] Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saaman.
Do-it-yourself type theory. Formal Aspects of Computing, 1:19–84, 1989.

[4] Robert S. Boyer and J Strother Moore. A Computational Logic. Academic Press,
1979.

[5] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

25

[6] Avra J. Cohn. A proof of correctness of the VIPER microprocessor: The first level.
In Graham Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis, pages 27–71. Kluwer Academic Publishers, 1988.

[7] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, 1986.

[8] Thierry Coquand. An analysis of Girard’s paradox. In 1st Annual Symposium on
Logic in Computer Science, pages 227–236. ieee Computer Society Press, 1986.

[9] Thierry Coquand and Gèrard Huet. The calculus of constructions. Information and
Computation, 76:95–120, 1988.

[10] Andrzej Borzyszkowski et al. Towards a set-theoretic type theory. Technical report,
Polish Academy of Sciences, Institute of Computer Science, Gdańsk, 1988.

[11] Michael P. Fourman. The logic of topoi. In J. Barwise, editor, Handbook of
Mathematical Logic, pages 1053–1090. North-Holland, 1977.

[12] Jean-Yves Girard. Proofs and Types. Cambridge University Press, 1989. Translated
by Yves LaFont and Paul Taylor.

[13] Kurt Gödel. Russell’s mathematical logic. In Paul Benacerraf and Hilary Putnam,
editors, Philosophy of Mathematics: Selected Readings. Cambridge University Press,
2nd edition, 1983. Essay first published in 1944.

[14] Michael J. C. Gordon. HOL: A proof generating system for higher-order logic. In
Graham Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis, pages 73–128. Kluwer Academic Publishers, 1988.

[15] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
In 2nd Annual Symposium on Logic in Computer Science, pages 194–204. ieee

Computer Society Press, 1987.

[16] William S. Hatcher. The Logical Foundations of Mathematics. Pergammon, 1982.

[17] J. Roger Hindley and Jonathon P. Seldin. Introduction to Combinators and
λ-Calculus. Cambridge University Press, 1986.

[18] G. P. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

[19] Gérard Huet. Induction principles formalized in the Calculus of Constructions. In
Programming of Future Generation Computers, pages 205–216. Elsevier, 1988.

[20] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic.
Cambridge University Press, 1986.

26

[21] A. C. Leisenring. Mathematical Logic and Hilbert’s ε-Symbol. MacDonald, 1969.

[22] Per Martin-Löf. Constructive mathematics and computer programming. In C. A. R.
Hoare and J. C. Shepherdson, editors, Mathematical Logic and Programming
Languages, pages 167–184. Prentice-Hall, 1985.

[23] Thomas F. Melham. Automating recursive type definitions in higher order logic. In
Graham Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware
Verification and Automated Theorem Proving, pages 341–386. Springer, 1989.

[24] G. Nadathur. A Higher-Order Logic as the Basis for Logic Programming. PhD
thesis, University of Pennsylvania, 1987.

[25] Philippe Noël. Experimenting with Isabelle in ZF set theory. Journal of Automated
Reasoning, 10(1):15–58, 1993.

[26] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s
Type Theory. An Introduction. Oxford University Press, 1990.

[27] Lawrence C. Paulson. Verifying the unification algorithm in LCF. Science of
Computer Programming, 5:143–170, 1985.

[28] Lawrence C. Paulson. Constructing recursion operators in intuitionistic type theory.
Journal of Symbolic Computation, 2:325–355, 1986.

[29] Lawrence C. Paulson. Logic and Computation: Interactive proof with Cambridge
LCF. Cambridge University Press, 1987.

[30] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of
Automated Reasoning, 5(3):363–397, 1989.

[31] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361–386. Academic Press, 1990.

[32] Anne Salvesen. On Information Discharging and Retrieval in Martin-Löf ’s Type
Theory. PhD thesis, University of Oslo, 1989. Report 803, Norwegian Computing
Center, Oslo.

[33] Dana Scott. Identity and existence in intuitionistic logic. In M. P. Fourman, editor,
Applications of Sheaves, pages 660–696. Springer, 1979. Lecture Notes in
Mathematics 753.

[34] Stefan SokoÃlowski. Soundness of Hoare’s logic: An automatic proof using LCF.
ACM Transactions on Programming Languages and Systems, 9:100–120, 1987.

[35] J. M. Spivey. Understanding Z: A Specification Language and its Formal Semantics.
Cambridge University Press, 1988.

27

[36] Patrick Suppes. Axiomatic Set Theory. Dover, 1972.

[37] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge University
Press, 1962. Paperback edition to *56, abridged from the 2nd edition (1927).

A Appendix: The Isabelle Rule File
(* Title: HOL/ruleshell

Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1989 University of Cambridge

Rules of Higher-order Logic (Type Theory)

!!!After updating, rebuild ".rules.ML" by calling make-rulenames!!!
*)

signature HOL_RULE =
sig
structure Thm : THM
val sign: Thm.Sign.sg
val thy: Thm.theory

(*INSERT-RULESIG -- file produced by make-rulenames*)
end;

functor HOL_RuleFun (structure HOL_Syntax: HOL_SYNTAX and Thm: THM
sharing HOL_Syntax.Syntax = Thm.Sign.Syntax) : HOL_RULE =

struct
structure Thm = Thm;

val thy = Thm.enrich_theory Thm.pure_thy "HOL"
(["term","form","type"], HOL_Syntax.const_decs, HOL_Syntax.syn)

[
(*** Equality ***)

("refl", "[| a: A |] ==> [| [a = a : A] |]"),

("sym", "[| [a = b : A] |] ==> [| [b = a : A] |]"),

(*Equal terms are well typed -- all rules must enforce this! *)
("eq_type1", "[| [a = b : A] |] ==> [| a: A |]"),

("eq_type2", "[| [a = b : A] |] ==> [| b: A |]"),

("subst",
"[| [a = c : A] |] ==> [| P(c) |] ==> [| P(a) |]"),

(*** TYPES ***)

(** Functions **)

("Lambda_type",
"(!(x)[| x: A |] ==> [| b(x) : B |]) ==> \

\ [| lam x:A. b(x) : A->B |]"),

("Lambda_congr",
"(!(x)[| x: A |] ==> [| [b(x) = c(x) : B] |]) ==> \

\ [| [lam x:A. b(x) = lam x:A. c(x) : A->B] |]"),

("apply_type",
"[| f: A->B |] ==> [| a: A |] ==> [| f‘a : B |]"),

("beta_conv",

28

"[| a : A |] ==> (!(x)[| x: A |] ==> [| b(x) : B |]) ==> \
\ [| [(lam x:A.b(x)) ‘ a = b(a) : B] |]"),

("eta_conv", "[| f: A->B |] ==> [| [lam x:A. f‘x = f : A->B] |]"),

(** Products **)

("pair_type", "[| a: A |] ==> [| b: B |] ==> [| <a,b> : A*B |]"),

("prod_elim",
"[| p : A*B |] ==> \

\ (!(x,y)[| x: A |] ==> [| y: B |] ==> [| Q(<x,y>) |]) ==> \
\ [| Q(p) |]"),

("pair_inject",
"[| [<a,b> = <c,d> : A*B] |] ==> \

\ ([| [a = c : A] |] ==> [| [b = d : B] |] ==> [| R |]) ==> \
\ [| R |]"),

(*fst and snd could be defined using descriptions...they are not to avoid
excessive type labels -- which is the point of defining products here. *)

("fst_type", "[| p: A*B |] ==> [| fst(p) : A |]"),
("snd_type", "[| p: A*B |] ==> [| snd(p) : B |]"),

("fst_conv", "[| a: A |] ==> [| b: B |] ==> [| [fst(<a,b>) = a: A] |]"),
("snd_conv", "[| a: A |] ==> [| b: B |] ==> [| [snd(<a,b>) = b: B] |]"),

("split_def", "split(p,f) == f(fst(p), snd(p))"),

(** Subtypes **)

("subtype_intr", "[| a: A |] ==> [| P(a) |] ==> [| a : {x:A.P(x)} |]"),

("subtype_elim1", "[| a: {x:A.P(x)} |] ==> [| a:A |]"),
("subtype_elim2", "[| a: {x:A.P(x)} |] ==> [| P(a) |]"),

(** Natural numbers **)

("Zero_type", "[| 0: nat |]"),
("Succ_type", "[| a: nat |] ==> [| Succ(a) : nat |]"),

("rec_type",
"[| a : nat |] ==> \

\ [| b : C |] ==> \
\ (!(x,y)[| x: nat |] ==> [| y: C |] ==> [| c(x,y): C |]) ==> \
\ [| rec(a,b,c) : C |]"),

("rec_congr",
"[| [a = a’ : nat] |] ==> \

\ [| [b = b’ : C] |] ==> \
\ (!(x,y)[| x: nat |] ==> [| y: C |] ==> \
\ [| [c(x,y) = c’(x,y): C] |]) ==> \
\ [| [rec(a,b,c) = rec(a’,b’,c’) : C] |]"),

("rec_conv0",
"[| b: C |] ==> \

\ (!(x,y)[| x: nat |] ==> [| y: C |] ==> [| c(x,y): C |]) ==> \
\ [| [rec(0,b,c) = b : C] |]"),

("rec_conv1",
"[| a : nat |] ==> \

\ [| b : C |] ==> \
\ (!(x,y)[| x: nat |] ==> [| y: C |] ==> [| c(x,y): C |]) ==> \

29

\ [| [rec(Succ(a),b,c) = c(a, rec(a,b,c)) : C] |]"),

("nat_induct",
"[| a: nat |] ==> [| Q(0) |] ==> \

\ (!(x)[| x: nat |] ==> [| Q(x) |] ==> [| Q(Succ(x)) |]) ==> \
\ [| Q(a) |]"),

(*** Logic ***)

(** Implication and quantification *)

("classical", "([| ~P |] ==> [| P |]) ==> [| P |]"),

("imp_intr",
"([| P |] ==> [| Q |]) ==> [| P-->Q |]"),

("mp",
"[| P-->Q |] ==> [| P |] ==> [| Q |]"),

("all_intr",
"(!(x)[| x: A |] ==> [| P(x) |]) ==> [| ALL x:A.P(x) |]"),

("spec",
"[| ALL x:A.P(x) |] ==> [| a : A |] ==> [| P(a) |]"),

(** Reflection *)

("term_type", "[| term(P) : bool |]"),

("term_conv", "[| p: bool |] ==> [| [term(form(p)) = p : bool] |]"),

("form_intr", "[| P |] ==> [| form(term(P)) |]"),

("form_elim", "[| form(term(P)) |] ==> [| P |]"),

("term_congr",
"([| P |] ==> [| Q |]) ==> ([| Q |] ==> [| P |]) ==> \

\ [| [term(P) = term(Q) : bool] |]"),

(** Reduction predicate for simplification. *)

(*does not verify a:A! Sound because only trans_red uses a Reduce premise*)
("refl_red", "Reduce(a,a)"),

("red_if_equal", "[| [a = b : A] |] ==> Reduce(a,b)"),

("trans_red", "[| [a = b : A] |] ==> Reduce(b,c) ==> [| [a = c : A] |]"),

(** Definitions of other connectives*)

("False_def", "False == term(ALL p:bool.form(p))"),
("True_def", "True == term(ALL p:bool.form(p)-->form(p))"),
("conj_def", "P&Q == ALL r:bool. (P-->Q-->form(r)) --> form(r)"),

("disj_def",
"P|Q == ALL r:bool. (P-->form(r)) --> (Q-->form(r)) --> form(r)"),

("exists_def",
"(EXISTS x:A. P(x)) == ALL r:bool. (ALL x:A. P(x)-->form(r)) --> form(r)"),

("not_def", "~P == (P-->form(False))"),
("iff_def", "P<->Q == (P-->Q) & (Q-->P)"),

30

(** Conditionals *)

("cond_def", "cond(A,p,a,b) == PICK x:A.(form(p) & [x=a:A]) | \
\ (~form(p) & [x=b:A])"),

(** Descriptions *)

("Pick_type", "[| EXISTS x:A.P(x) |] ==> [| (PICK x:A.P(x)) : A |]"),

("Pick_congr",
"(!(x)[| x: A |] ==> [| P(x) <-> Q(x) |]) ==> \

\ [| EXISTS x:A.P(x) |] ==> [| [PICK x:A.P(x) = PICK x:A.Q(x) : A] |]"),

("Pick_intr", "[| EXISTS x:A.P(x) |] ==> [| P(PICK x:A.P(x)) |]"),

(** Definitions of Classes*)
("member_def", "a<:S == form(S‘a)"),
("subset_def", "subset(A,S,T) == ALL z:A. z<:S --> z<:T"),
("un_def", "un(A,S,T) == lam z:A. term(z<:S | z<:T)"),

("int_def", "int(A,S,T) == lam z:A. term(z<:S & z<:T)"),
("union_def",

"union(A,F) == lam z:A. term(EXISTS S:A->bool. S<:F & z<:S)"),
("inter_def",

"inter(A,F) == lam z:A. term(ALL S:A->bool. S<:F --> z<:S)"),
("pow_def",

"pow(A,S) == lam T:A. term(subset(A,T,S))"),

(** Definitions of types*)

(*the types "void" and "unit"*)
("void_def", "void == {p: bool. form(False)}"),
("unit_def", "unit == {p: bool. [p=True:bool]}"),

(*unions: the type A+B *)
("plus_def",

"A+B == {w: (A->bool) * (B->bool). \
\ (EXISTS x:A. [w = Inl(A,B,x) : (A->bool) * (B->bool)]) | \
\ (EXISTS y:B. [w = Inr(A,B,y) : (A->bool) * (B->bool)]) }"),

("Inl_def", "Inl(A,B,a) == <lam x:A.term([a = x : A]), lam y:B.False>"),
("Inr_def", "Inr(A,B,b) == <lam x:A.False, lam y:B.term([b = y : B])>"),
("when_def",

"when(A,B,C,p,c,d) == PICK z:C. \
\ (ALL x:A. [p = Inl(A,B,x) : A+B] --> [z = c(x) : C]) & \
\ (ALL y:B. [p = Inr(A,B,y) : A+B] --> [z = d(y) : C])")];
end;

31

