Technical Report R

Number 168

Computer Laboratory

Distributed computing
with a processor bank

J.M. Bacon, I.M. Leslie, R.M. Needham

April 1989

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1989 J.M. Bacon, .M. Leslie, R.M. Needham

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Distributed Computing with a Processor Bank

J M Bacon, I M Leslie and R M Needham

University of Cambridge Computer Laboratory,
New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK

The Cambridge Distributed Computing System (CDCS) was designed some

ten years ago and was in everyday use at the Computer Laboratory until

December 1988. An overview of the basic design of CDCS is given, an

outline of its evolution and a description of the distributed systems

research projects that were based on it. Experience has shown that a

design based on a processor bank leads to a flexible and extensible
distributed system.

1. The Cambridge Distributed Computing System

CDCS [Needham82] was designed some ten years ago and wasin everyday use, as the main
research environment at the Computer Laboratory, over many years. It is based on the
Cambridge Ring (CR) local area network and employs the “pool of processors” approach to
distributed computing. CDCS provides a number of common services such as file storage
and printing, which may be invoked from the heterogeneous systems running in processor
bank machines. It also provides a naming and authorisation infrastructure and

management of the processor bank,

Typical usage of CDCS is for a user, via a terminal server, to ask the Resource Manager for
a processor from the processor bank. The user specifies a software system to be loaded into
the acquired processor, is authenticated to this system and to CDCS and then runs
applications on this single machine. Although the user is free to acquire more than one
machine, CDCS originally provided virtually no support for users to spread a task across a
number of machines. Processor bank machines may be loaded with public operating
systems, which may be used to run public utilities, or private research systems.

1.1. Evolution of CDCS

CDCS was initially implemented on a single Cambridge Ring and was extended to operate
over three bridged Cambridge Rings on two sites. Project Universe [Leslie 84] further
extended the basic system design to CR-based systems connected by satellite over a wide

area,

The program development environment provided through the processor bank and file
server, which for practical reasons were small research systems, was augmented by two
Vax Unix™ systems, with local discs, and a number of Ethernet-based MicroVax2s. Sun
and Xerox distributed systems also use the Ethernet [figurel]. The recent development of
the Cambridge Fast Ring (CFR) gives potential for systems research based on an order of
magnitude increase in LAN speed.

CDCS was originally programmed in an ad-hoc way and in 1982 the Mayflower project was
set up to develope a language and environment for programming distributed services and

“applications. A concurrent programming language Concurrent CLU (CCLU) including a
language level remote procedure call (RPC) facility was produced and used for development
of a number of services, tools and applications.

2. CDCS Design Overview

2.1 LAN Medium and Protocol Hierarchy

The Cambridge Ring is a slotted, 10Mbps ring with anti-hogging and indication of success
- or failure of delivery at the lowest (minipacket) level [Wilkes 79]. The recent Cambridge
Fast Ring, designed to operate at 100Mbps follows this tradition but with a larger packet
size [Hopper 88]. A protocol hierarchy was designed for CDCS with a Basic Block protocol
above the CR and a choice of a Single Shot (request-response or transaction) Protocol and a
Byte Stream Protocol at the next level. Above this, specialised application protocols were
developed for sevice bootstrapping, file service and garbage collection, above SSP and for
terminal connections above BSP. CDCS was an early example of the use of lightweight
protocols in a reliable, high speed, high bandwidth LAN environment.

2.2 Software System Structure

A processor bank may contain heterogeneous hardware which may be loaded with
heterogeneous software systems. Each system may have its own implementation of
naming, protection, reliability, etc. An aim of CDCS was to allow such systems to share
common services such as printing and disc storage and common utilities such as electronic
mail.,

Fthernet % %

uVax2 uVaxz2 _@ CAP lFile Serverl TripOS
o : Filing
new Machine
Plocessor I tuvax2 _@
(10-15) gate Cambridge
TCP/ 1P Ring
- BSP
uVax2 |
bridge —
1 TC*10 ‘ e
Firefly -]
Processor
] Bank
4(-10) Tc (mostly
multiprocessors 11 68000's)
° @
@
Firefly <}
bridge @
% Vax/ |
Unix
host
Name Server
Vax/ /
Unix
host Resource Manager
@
(25) o ~
® Authorisation Server
PDP/11 p—
Xerox P

University
Data

Network

X.25

IP gateway

68020 *6

Cambridge

IP gateway Fast Ring

ARM *3(5-10)

Sun

FIGURE 1. Part of the Distributed Computing Research Environment (to
December 88). The Cambridge (old) Ring world is now being dismantled.

The basic model of CDCS software is client-server, for invocation of system-provided
services. Initially, a simple transaction protocol was used for service invocation (SSP),
comparable with other Distributed Systems developed at the time [Shrivastava 82,
Mullender 86]. The Mayflower project went on to provide language level service
invocation, CCLU with RPC, with compile time type checking and run time consistency
checking of RPC arguments, which may include user-defined types.

2.3 Naming of Services

The system infrastructure supports the naming of services in the form of flat text names
which are mapped to network address (ring station) and port number. As with otherearly
systems [Tanenbaum 85] there is no provision for a set of servers at different network
addresses cooperating to offer a service. A name server at a well known address, a fixed
station number for any CR in a system, provides the mapping. In principle, name server
lookup is part of every interaction to avoid embedding network addresses in programs..In
practice, the result of a name server lookup is cached and used as a hint for subsequent
invocations of a service. The name server approach was used successfully in Project
Universe [Leslie 84] for a number of CR based LANSs linked by satellite.

The name server is small and holds name to address mappings of system services which
change very infrequently. Its use was not extended to support the more dynamic
requirements of binding RPC calls associated with for example, distributed services being
developed, utilities such asmail or distributed compilers, or distributed applications.

2.4 Naming and Protection of Objects in the Cambridge File Server (CFS)

The file storage service (CFS) is the major CDCS service concerned with object
management. This “universal file server” [Birrell 80, Dion 80,81] is designed to be used by
any number of different clients' file directory servers, each with its own text naming
conventions and access control policies. It does however support existence control and
concurrency control. Its major client in practice was the Tripos Operating System
[Richards 79], designed as a single user system and appropriate for loading into processor
bank machines. The CAP file system was also replaced by CFS.

CFS thus provides a low level storage service. It supports the primitive types byte and id
and the single type constructor sequence. A file is a sequence of bytes and an index is a
sequence of id's. Every file and every index has an id. Indexes may be used by clients to
mirror their directory structures. The CFS interface is such that creation of an object is
combined with storing its id in an index. The CFS existence control policy, that an object

exists while it is reachable from the root, is supported by a garbage collection mechanism
which CFS initiates to run asynchronously in a processor bank machine.

CFS was designed to support filing systems as its clients. It may also be used directly by
services or utilities and an evaluation of its design for this style of use is given in the

references cited in section 3 .

Mandatory concurrency control, typically multiple reader single writer locks on whole files,
is often argued to be inappropriate at the lowest level of distributed systems, since clients
will often be multiple instances of the same program, able to synchronise their access to
shared objects at a higher level. A more flexible approach is to provide a separate lock
primitive and possibly to support finer grained concurrent write sharing [Burrows 881.

The Tripos directory service was initially provided as part of the Tripos system loaded into
processor bank machines. Such systems cannot be trusted to carry out access control. The
Tripos Filing Machine [Richardson 83,84] was developed to function both as a trusted
directory server for Tripos systems and as a caching machine to improve the performance of

the file service.

2.5 Authorisation for Service Use

Each processor bank operating system carries out its own user authentication but must
register its current user with a CDCS authorisation server, the Active Object Table
manager (AOT). AOT issues a session key, with a random component, which, together
with information on the category of the user, functions as a capability for servicé use, in
that a server may check with AOT that a request comes from an authenticated user. Users
loading private software systems into processor bank machines must also be authorised to

use public services by registering with AOT.

2.6 Reliability

Each service may take its own independent approach to reliability, for example, CFS
provides atomic transactions on special files, typically used for client file system metadata.

The infrastructure was designed for rapid rebooting through the boot server. The network
interfaces and node software provide facilities for remote control and debugging.

A dead man's handle technique is used to monitor allocated processor bank systems.

The CCLU RPC system is a communications facility and is not concerned with application
level issues such as orphan extermination and server restart. The default RPC semantics
are at most once but an option may be specified which offers exactly once semantics in the

absence of server crashes and prolonged network failure.

3. CCLU and the Mayflower Project

The Mayflower project was set up in 1982 to provide an environment for developing and
running distributed applications and services. It comprises a language, CCLU, a
communications protocol, RPC, integrated into the language system, and an operating
system, the Mayflower supervisor. Details are given in [Hamilton 84] and [Bacon 87].

3.1 Sequential CLU

CLU [Liskov81] was selected and extended by the Mayflower group. CLU is object
orientated in style and provides procedures for procedural abstraction, iterators for cdntrol
abstraction and clusters for data abstraction. It is strongly typed and supports user defined
abstract types. It has separate compilation facilities and the compiler generates and checks
interface specifications. Parameterised clusters go some way towards providing the

facilities usually associated with a polymorphic typing system.
3.2 Concurrency Features in CCLU

CLU was extended with a fork primitive to support the dynamic creation of lightweight
processes sharing an address space, allowing the construction of high performance services
with internal concurrency (multi-threaded servers). Semaphores and monitors were added
for process synchronisation. It was found, in a systems environment, that classical
monitors unduly restrict concurrency in large systems [Cooper 85] and a critical region
construct, with programmer specified locking, was added. This allowed the critical code to
be kept to a minimum while modular structure was maintained by the use of clusters.

3.3 CCLURPC

CCLU RPC is a type-checked, type-safe, language-level construct incorporating dynamic
binding under program control. Arbitrarily complex objects of practically any type in the
CLU language, including user-defined abstract types, can be passed in arguments to RPCs.
The philosophy of Mayflower RPC is not to hide from the programmer that certain
processing is remote and the peculiar semantics and overhead of remote operations are
made explicit. The language was therefore modified to add new syntax for the definition
and call of remote procedures, rather than using the method of preprocessing and stub
generation often associated with transparent RPC [Birrell 84]. The programmer may use
the default communications semantics of at most once or may select reliable exactly once
semantics in the absence of node crashes and prolonged network failure. CCLU RPC
operates through bridges and across a ring-ethernet gateway.

Target Systems

Dedicated Server (acquired from Processor Bank)
service client client
processes processes processes
O O <RPC> OOO <RPC> O O

Mayflower Mayflower Mayflower

Cambridge Ring

Vax/Unix CDCS
timeshared Filing
host Machine
4
A 7/
A4
editing r—\—/— - ==
compiling Llofiﬂogtﬂe_j
linking
debugging

FIGURE 2. Mayflower on CDCS

3.4 The Mayflower “Lightweight” Kernel

The Mayflower kernel was designed for implementing high performance services for
distributed systems. It supports lightweight processes running in a shared address space
(a Mayflower domain) hence supporting what are often called multi-threaded servers.
Resources are allocated to a domain and are shared by all processes therein. Multiple
domains per node may be used but inter-domain communication is by (expensive) RPC.

System development is carried out in CCLU on (Micro)Vaxes under Unix and target code
runs on processor bank MC68000s under the Mayflower kernel and, for preliminary
testing, on Vaxes under Unix. CDCS infrastructure, services and applications can be
written in CCLU to run under Mayflower and have RPC interfaces [figure 2]. The CDCS
authorisation server AOT was reimplemented and a new processor bank manager was
designed [Craft 85].

3.5 Multiple Transport Protocols

CDCS had started out with heterogeneity as a central design aim. The initial phase of
Mayflower produced a single language subsystem within CDCS; CCLU over the Mayflower
supervisor on 68000's. Recent work has extended the RPC system to allow interworking
between CCLU programs running on ring based 68000's over Mayflower and on Ethernet
based Microvaxes over UNIX. RPC runs over UDP (User Datagram Protocol) and IP
(Internet Protocol) on the Ethernet and over the Basic Block protocol on the Cambridge
Ring. ‘

The transport protocol required is selected at RPC bind time and the network address now

includes network type as well as a network specific address. RPC gateways can be written
in CCLU and other networks are easy to add.

3.6 Multiple Data Formats

Some interworking was also seen to be desirable between programs written in CCLU
running over Mayflower and programs running on Xerox or Sun workstations written to
use Xerox Courier RPC and Sun RPC respectively. It was found that a subset of the types
supported by CCLU RPC, the built in immutable types, are used in Sun XDR (eXternal
Data Representation standard) and the Courier data standard. CLU RPC was therefore

extended to allow selection of any one of these data representations.

CCLU clients can access existing Xerox and Sun services, UNIX and Xerox XDE (Xerox
Development Environment) and Interlisp clients can access CCLU servers and limited
support is provided for new multi language distributed applications.

4. Distributed Systems Research on CDCS
4.1 Processor Bank Management and Dynamic Software Configuration

In the original CDCS design each available system configuration was held as a single,
fully-linked load module in the file server and was loaded into processor bank machines
under the control of the Resource Manager (RM). This is reasonable for the small number of
system services originally available but is undesirable as a basis for research into
extensible, heterogeneous systems with dynamically loaded utilities and applications.
Craft's RM [Craft 83,85] proposes multi-level resources which may consist of several
software layers on a variety of hardware and which are configured dynamically when

requested. One or more processor bank machines with associated software may be
requested, or a session on a shared system such as a Unix system. Automatic preloading of

commonly used systems avoids delay to users.

Allocated resources are monitored by an Aliveness Server using a dead-man's handle
mechanism and interested parties are notified of any events in which they have registered
aninterest by an Event Notification Server,

4.2 A Debugger for Distributed Concurrent Programs [Cooper 87, 88]

A debugger supporting source level debugging of distributed CCLU prbgrams in the target
environment under real conditions of use was implemented in CCLU. Research issues
include the policies and mechanisms associated with breakpointing processes of a
distributed computation, determining the operating system and run-time library support
desirable for implementing this kind of debugger, and defining a more appropriate format
than flat files in which to store debugging information produced by compilers and linkers.

A small debug agent is included at every CCLU node (within the Mayflower kernel or
within the run-time system for CCLU on the Unix emulation of Mayflower) and a small
amount of statistical data, for example on the most recent RPC calls, is gathered. The
relevant agents are activated from a debugger machine acquired from the processor bank
when the program is to be debugged. The policy on breakpoints is that all processes of a
computation should be halted “instantly” when any breakpoint occurs.

Special emphasis is given to debugging system services, both before and after installation,
and to the fact that a program being debugged will be using shared services. A new service
or anew version of an existing service may be installed on a processor bank machine under
the control of the debugger. It may be tested, at first with an artificially generated test
load, and may subsequently be released to real clients. It is argued that services should be
written to compute the elapsed time of their clients excluding the time halted at

breakpoints.

4.3 A Distributed Mail System [Brooks 88]

The processor bank model is particularly suited to providing network services which have
very uneven resource requirements such as mail. The system load from mail has
infrequent peaks so that timesharing systems degrade when mail is being processed and
dedicated mail servers remain idle for substantial times. Users' private workstations
cannot be trusted to run mail since the software could be modified to allow confidential mail
to be read into the workstation or mail to be altered. The approach used in this research is

to have a small dedicated server as a permanent mail daemon augmented by processors

from the pool at times of high load. A mechanism for dynamically acquiring machines is
required for this type of application and, ideally, for releasing some if they are requested by
higher priority tasks. A processor bank machine, unlike a workstation, can be loaded with
trusted, unmodifiable software which provides the mail program interface.

The distributed mail service uses the CFS interface directly and this has provided useful
experience for the design of future network storage services. A read only capability is

required for mail objects, for example.

4.4 A Distributed Compilation System [Wei 89]

T+

A distributed compilation system was developed for CCLU in which compilation of separate
modules is assigned to individual processors under the direction of a controller server of
which there is one per active user. A library server maintains the interface specifications of
library clusters and of compilation units which are written by the compiler instances when
a unit is compiled. These specifications are read by the compiler instances when external
calls are being type checked. The library server must also ensure that the concurrent
compilations carried out by several users do not conflict, for exarnplve, when the
specification for 2 module is changed as it is being used in the compilation of other modules.

As well as contributing to research in distributed compilation this project provides an
example of the requirement for a minimum configuration of three machines but the
possibility of dynamically acquiring other free machines for both compilation servers and
library servers, and releasing them to higher priority tasks when requested.

4.5 A Distributed File Directory Service [Seaborne 88]

The provision of file naming and directory facilities for heterogeneous operating systems
connected by a LAN was investigated. A replicated and distributed directory service was
developed in prototype form in CCLU under Mayflower on processor bank machines. The
directory service is designed to function as a universal directory service and is located

above a low level file storage service such as CFS.

The design is based on a generalised directory structure and a generalised pathname
comprising a list of components. New directories may be created and attached to the
naming graph. A directory entry is a string, naming an inferior file or directory object
together with an access control list and a unique identifier for the object. The directory
service returns to the client the identifier of the file or directory named by the full
pathname specified in the request.

The service is implemented as a set of servers and a primary site cache management policy

is used for maintaining consistency of the directories cached by the service instances.

10

File servers hold the contents of files and the transfer of the contents only involves the

clients and the file servers.
4.6 Project Universe [Leslie 84]

In the Universities Extended Ring Satellite Experiments (Universe) project, 2 number of
CR based LANs running CDCS software were connected by a 1Mbit/s satellite broadcast

channel [figure 3].

Cambridge BTRL

Qf:k . >DO
> satellite S

GEC/Marconi Loughborough
NS
Logica UCL RAL
| S |

FIGURE 3. The Universe Network

To avoid delay in gateways and therefore to be able to regard the whole network as an
efficient distributed system, a single network rather than an internet was constructed.
Experiments included remote bootstrapping of trusted system software; use of the
Cambridge file servers as a remote storage service for multiple instances of Tripos Filing
Machines; and transfer of voice and video.

11

4.7 A Reliable, Distribuied Telephone Exchange [Want 88]

The ISLAND project at the laboratory studied the provision of integrated services on a local
area network. Transporting data, voice and video in the same network has the practical
advantage of minimising wiring and also allows applications to integrate these media. The
intended network medium for this work was the CFR but prototype systems were developed
on CDCS.

The control and management of a network telephone is in the domain of distributed
computing in such a system. The voice connections between telephones are virtual circuits.
Control and data information can be freely mixed with voice at a network interface. The
new problems that result are the management issues relating to the distributed control of
the real time media. Digital ring phones providing a number of novel services were built
and controlled from personal workstations and a reliable, distributed PABX was
implemented in CCLU over Mayflower on processor bank machines.

4.8 A Voice Storage and Editing Service [Calnan 88]

CCLU was also used for work under the ISLAND project concerning the storage and editing
of encoded voice, A voice storage service was designed, comprising a protocol and an
interface to CFS, which has sufficient performance to support real time working for
telephone conversations. A voice editor was also designed, implemented and tested.
Encoded voice is divided into phrases, delimited by “silences” (background noise) and each
phrase is stored as a file. Integration of text and voice is also supported.

The fact that a new, specialised storage service had to be used for real time performance
rather than existing file services is relevant to the design of future network storage

services.

Following experience in ISLAND and the UNISON project [Tennenhouse 87], the
Laboratory is about to carry out further research in multimedia systems, including video as

well as voice, based on the CFR.

5. Current Work, Summary and Conclusions

A major advantage of the processor bank approach is that new systems may be made
available to users as technology evolves without any change in the underlying system.
Also, the model of independently managed subsystems sharing common services is widely
applicable. Some ten years of experience with CDCS have shown that the two major

functions provided above the basic communications infrastructure, processor bank

12

management and support for service invocation by heterogeneous, independently managed
subsystems, form a good basis for distributed systern design.

Although single user, diskless systems were originally envisaged in the processor bank, a
range of configurations may be accommodated. Special purpose hardware may be included,
several systems may be acquired to run a parallel application and a range of operating
systems may be made available to users. A new processor bank would now include the DEC
Firefly shared memory multiprocessors, currently used as research systems. A system
model under investigation proposes a high quality graphics terminal per user, rather than
a conventional terminal or workstation, supported by processing resources available across
the network [Dixon 88].

CDCS had started out with heterogeneity as a central design aim. The Mayflower project
produced a single language subsystem within CDCS; CCLU over the Mayflower supervisor
on 68000’s, Subsequent work allowed a number of transport protocols and data formats to
be selected. Current distributed systems research is making use of CCLU but a new
lightweight kernel, capable of running on VAX architectures, including multiprocessors, as
well as M68000's is being developed.

After some years of experience with CCLU RPC we feel that non-transparent syntax best
reflects the realities of an environment comprising distributed programs. Finer control
over timeout and retry strategies than those provided may be desirable. A fully type
checked high level language facility is highly desirable. Extension of CCLU to experiment
with object mechanisms such as inheritance and dynamic linking is in progress [Hailes 88].

A number of research projects have used CCLU on CDCS and have illustrated that the
processor bank approach to distributed computing, supported by system and language level
mechanisms, provides a good basis for distributed computing. The processor bank provided
a testbed for research into distributed implementations of services and into the possibility
of acquiring extra machines dynamically in response to load on a particular service.

A new processor bank comprising Ethernet-based Microvaxes is now used. Various
-software systems are offered including Ultrix, VMS and Amoeba and a new lightweight
kernel is being developed. Distributed Systems simulation experiments are currently
being programmed in CCLU on the new processor bank [Dickman 88]. Other research
projects which follow directly from the experience gained in CDCS include the design of
network storage services [Thomson 87, Wilson 87], naming services [Ma 88] and
monitoring services [Lam 88]. For current large scale systems each service must be
designed as a set of servers and again, processor bank machines are being used to prototype

distributed service implementations.

13

Acknowledgements

This paper presents work of the Systems Group at the Computer Laboratory over many
years. Some individuals' work is referenced above and many others have contributed.

References

[Bacon 87] BacondJ M and Hamilton K G, “Distributed Computing with RPC: The
Cambridge Approach”, Proc IFIPS conference on Distributed Processing, eds.
Barton M et al. 355-369, North Holland 1988

[Birrell 80] Birrell AD and Needham R M, “A Universal File Server”
IEEE Trans SE, SE-6 (5), 450-453, Sept 80

[Birrell84] Birrell AD and Nelson B J, “Implementing Remote Procedure Call”
ACM Transactions on Computer Systems 2(1), 39-59, Feb 84

[Brooks 88] BrooksP M, “Distribution of Functions in Computer Networks”
University of Cambridge submitted PhD thesis, 1988

[Burrows 88] Burrows M, “Efficient Data Sharing”
University of Cambridge PhD thesis and TR 153, 1988

[Calnan 88] Calnan R, “ The Integration of Voice within a Digital Network”
University of Cambridge submitted PhD thesis, 1989

{Cheriton84] Cheriton D R, “The V Kernel: A Software Base for Distributed Systems”
IEEE Software, 1(2), April 84

[Cooper 85] Cooper R C B and Hamilton K G “Preserving Abstraction in Concurrent
Programming” IEEE Trans SE, SE14(2), 258-262, Feb 88, and
University of Cambridge Computer Laboratory TR 76, August 1985

[Cooper 87] Cooper R C B, “Pilgrim: A Debugger for Distributed Systems”
Proc IEEE 7th ICDCS, Berlin 1987

[Craft 83] Craft D H, “Resource Management in a Decentralised System”
ACM SOSP9, Operating Systems Review 17(5), 11-19, Oct 1983

[Craft 85] Craft D H, “Resource Managementin a Decentralised‘System”
PhD thesis, University of Cambridge 1985, TR 73

[Dickman 88] Dickman P J, Thesis proposal 1988

[Dion 80] Dion J, “The Cambridge File Server”
ACM Operating Systems Review, 14(4), 26-35, Oct 80

[Dion 81] DiondJ, “Reliable Storage in a Local network”
University of Cambridge, PhD thesis, 1981

[Dixon 88] Dixon J, Thesis proposal 1988
[Hailes 88] HailesSM 'V, Thesis proposal 1988

[Hamilton 84} Hamilton K G, “A Remote Procedure Call System”
University of Cambridge PhD thesis, TR 70, 1984

14

[Hopper 88] Hopper A and Needham R M “The Cambridge Fast Ring Networking
System”. IEEE Trans on Computers Sept 88

[Lam 88] Lam K Y, Thesis proposal 1988

[Leslie 84] LeslieI M et al, “The Architecture of the Universe Network”,
Proc ACM Sigcomm 84, CCR 14(2), 2-9, June 84

[Liskov 81] LiskovBetal, "CLU Reference Manual”
Springer Verlag, LNCS 114, 1981

[Ma 88] Ma C, Thesis proposal 1988

[Mullender86] Mullender SJ and Tanenbaum A S,
"The Design of a Capability Based Distributed Operating System"
Computer Journal, 29(4), 289-300, March 86

[Needham 82] Needham R M and Herbert A H, “The Cambridge Distributed
Computing System” Addison Wesley 1982.’

[Richards 79] Richards M et al, “Tripos - A Portable, Real -time Operating System”
Software, Practice and Experience, 9, 513-526, 1979

[Richardson 83] Richardson M F and Needham R M, “The: Tripos Filing Machine”
ACM Operating Systems review, 17(5), 120-128, 1983

[Richardson 84] Richardson M F, “Filing System Services for Distributed Computer
Systems”, University of Cambridge PhD thesis, 1984

[Seaborne 87] Seaborne A F, “Filing in a Heterogeneous Network”
University of Cambridge PhD thesis, 1988

[Shrivastava 82] Shrivastava S and Panzieri F, “The Design of a Remote Procedure
Call Mechanism”, IEEE Trans Computers, 31(7), July 82

[Tanenbaum 85] Tanenbaum A S and van-Renesse R, “Distributed Operating
Systems” ACM Computing Surveys 17(4), 419-470, Dec 85

[Tennenhouse 87]Tennenhouse D L et al, “Exploiting Wideband ISDN's: The Unison
Exchange”, Proc IEEE Infocom 87, 1018 - 1026, 1987

[Thomson 87] Thomson S, Thesis proposal 1987

[Want 88] WantR, “ Reliable Management of Voice in a Distributed System”
University of Cambridge PhD thesis, and TR 141, 1988

[Wei 87] Wei M, “Distributed Compilation”
University of Cambridge PhD thesis in preparation, 1988

[Wilkes 79] Wilkes M V and Wheeler D J, “The Cambridge Digital Communication
Ring” Local Area Communications Network Symposium (sponsors MITRE
corp. & NBS), Boston, Mass. May 1979.

[Wilson 87] Wilson T D, Thesis proposal 1987

15

	tr-title-168.pdf
	168

