Technical Report ANy

Number 157

Computer Laboratory

Introducing a priority operator to CCS

Juanito Camilleri

January 1989

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1989 Juanito Camilleri

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Introducing a Priority Operator to CCS

Juanito Camilleri
University of Cambridge,
Computer Laboratory, New Museum Site,
Pembroke Street,
Cambridge CB2 3QG.

January 9, 1989

Abstract

In this paper we augment the syntax of CCS by introducing a priority

operator. We present a syntax directed operational semantics of the language

" as a labelled transition system. A new equivalence relation which is based

on Milner’s strong observational equivalence [11] is defined and proved to be

a congruence, We also give some examples which illustrate the use of the

operator and emphasise the novelty of the approach used to introduce the
notion of priority to process algebras.

1 Introduction

In retrospect, we see many attempts to define the semantics of communicating
processes with the hope that this would yield theories that help us gain a better
understanding of the behaviour of such processes. Many semantic theories that
have been developed with this aim [e.g., CCS, CSP, SCCS] are operational in
nature; the semantics of the languages underlying these theories can be defined
using labelled transition systems [13]. In most existing theories of communicating
processes, it is assumed that all actions performed by a process, have equal impor-
tance. This is clearly not satisfactory because there are many applications le.g.,
the handling of interrupts] in which some actions performed by a process have a
greater importance than others.

There have been a few attempts at defining an operational semantics for an
algebraic theory of concurrency that includes a notion of priority [1] [5]. Not with-
standing this, it is not clear which approach is the most appealing and generally
applicable. In this paper we propose another attempt at including priority in a
process algebra. The approach suggested by Baeten et al., [1], does not include
an operational semantics or a behavioural equivalence that underlies the theory
that is presented. Our approach is closer in style to that adopted by Cleaveland

1

and Hennessy [5]. Nonetheless, it differs in the fact that we give a syntax directed
operational semantics to a priority operator 4 which is used to define certain sit-
uations in which an action has a higher priority than another action. Therefore
we do not preassign priorities to actions by a partial ordering on the alphabet of
actions. The ideas adopted in this paper have evolved from work done on defining
the operational semantics of priority alternation [4] which is one of the constructs
of occam [10].

The remainder of this paper has been divided into the following sections. In
section 2 we introduce the language to be used and define its operational semantics.
In section 3 we give some examples to illustrate the operation of the priority
operator in certain situations. In Section 4 we compare our method of introducing
the notion of priority to a process algebra, to other approaches presented in the
literature. Section 5 deals with a new behavioural equivalence based on strong
observational equivalence [11]. We prove that this equivalence relation is in fact a
congruence and in Section 6, we state some results. Finally in section 7 we discuss
the work and outline our conclusions.

2 The Language

The syntax of our language is basically that of pure CCS with the addition of a
priority operator 4. Let A be the set of names ranged over by «,8,7. We use
A = {@ | a € A} to denote the set of conames which is disjoint from A and is
in bijection with it, under the map a + @. Let A = A UZA be the set of labels
ranged over by A then Act = AU {r} is the set of actions ranged over by u. We
use 0 to denote a relabelling; a mapping from Act to Act such that 0(r) = 7. We
define our language of terms as follows. Let ¢t € Terms, then

ta=nd | opd | ot | t\X | t[6] | t+t | t4t | fiz(z.t)

Before attempting to formalise the semantics of the 4 operator let us try to
build an intuitive understanding of its operation. Consider the construct ¢ =
a.to4yB.t;. The construct ¢ describes a situation where an a-action is required to
have a higher priority than a f-action. Therefore ¢ can perform an a-action and
become %, without any constraints, but, ¢ can only perform a fS-action to become
t1 provided the parallel context of ¢ isn’t willing to perform an @-action. In other
words, if ¢ is executing in parallel with ¢' (i.e., ' is the parallel context of t) then
t can perform a f-action to become t; provided t' refuses to perform an @-action.
On the other hand if ¢’ can perform an @-action then this guarantees that ¢ will
not perform a f-action.

It is evident that we have to formalise the notion of a term refusing to perform
some actions and accepting to perform others. In the following sections we define
the refusal and acceptance sets.

2.1 The Refusal Set

Informally, a refusal set of a term ¢ can be described as some set of actions which
does not include any action that can take place next in ¢. For example, if ¢t =
a.to+B.t; then ¢ refuses any set R provided o, # € R. Let ref C Terms X Pg, (Act)
be defined by rules (¢)*-(viii)®. If ¢ ref R holds we say t refuses R and we call R
a refusal set of ¢. (Note Ps(Act) denotes the finite powerset of actions Act).

(1) nilref R ()" u.tref R provided u & R.
(s7)° __ (1v)°
tref R—{))} t ref R
t \A refR t|6] ref R|[6]
C
v)® CON
toref R tref R lbref R tref R
to+ t; ref R o+t ref R
(vie)® (i)
toref Rt ref R t|fiz(z.t)/z] ref R
to|t, ref R fiz(z.t) ref R

Lemma 1 If p ref R, then for R' C R, p ref R'.

Proof

We proceed by induction on the structure of derivations that for all R, R, if
p ref R and R' C R then this implies that p ref R’ We proceed by performing a
case analysis on p.

1. When p = nil or p = 7.t the proof is trivial,

2.p=A.t
By rule (#t)°, A.t ref R for any R provided A ¢ R. Since R' C R then
A& R'. Hence).t ref R'.

3.p=t\A

Suppose t\ X ref R, then by shorter inference, ¢ ref R—{),A}. Now R' C R,
therefore R’ — {},A} € R — {)\,A}. Hence ¢ \ A ref R'. A similar argument
can be used when p = t[f].

4. p = bt
Let f+4)t; ref R, then by shorter inference one can say that , ref R and
t1 ref-R. Applying the induction hypothesis on # and ¢, yields ¢, ref R',
ty ref R'. Therefore by rule (vi)®, to4}t, ref R'. A similar argument can be
used for p =t + t; and p = fo|ty.

5. p = fiz(z.t) y
Let fiz(z.t) ref R, then by shorter inference t[fiz(z.t)/z] ref R. Therefore
t|fiz(z.t)/z] ref R'. Hence by rule (viii)® fiz(z.t) ref R'.

] : P

2.2 The Acceptance Set

Informally, the acceptance set of a term ¢ can be described as the set of comple-
ments of actions which can take place next in ¢. For example if ¢ = a..to+4.1;, then
the acceptance set of t should be {&,§}. Let * be a special symbol correspond-
ing to idling which is viewed as a complement to 7. We use the notation 7 = .
Therefore the acceptance set of 7.4 + f.t; which should be {*, 5}, is denoted by

{r,8}.
Let acc C Terms X Ppa(Act U {+}) be defined by rules (¢)> — (viit)? below. If
t acc A holds then we say ¢ accepts A and we call A the acceptance set of £.

Ok nil ace O,

t acc A

(5)° .t ace {u) (i)’ t\ X acc A—{)2}

(iv)® (v)

tacc 4 tp acc Ap t; acc A;
t[6] acc A[f] to+ t; ace Ao U 4,

(vi)? “(vir)®
o acc Ap t ace Ay th acc Ap ¢t acc A,
tg-{'}tl acc Ao U Al tolt1 acce Ao U A1

(visy)®
tlfiz(z.t)/z] acc A
fiz(z.t) acec A

2.3 The Semantics of the Language

Processes are interpreted using labelled transition systems. These are triples of
the form (P, —, Act) where P is the set of closed terms, Act is the set of actions
and — C FPpa(Act) X P X Act X P is a relation defining the behaviour of processes

as shown by rules (1) — (zi%)°. Let kg t, —+ t} denote #, performs u to yield t
provided the following condition is satisfied; if there is any process # executing in
parallel with #, then t, must refuse R.

(i)c Fp u.t LI

(i1)° (s11)°

Frt 5 ¢ , - Frt -2 ¢!
N if 1A ——
Frt\A -2 ¢\ e t8] 24 0]
(sv)° (v)°
Fr to = 85 tref R Fr ti 5 t] toref R

Fr tolts — |t Fr tolts = to|t}

(v) |
}—Ro to LN té, to ref Ry F‘R! t LN t{ t; ref Ry
Froumy tolts — #|t]

(vis)® (viss)*
"Rto-ﬁ-)t(') I‘Rtl—ﬁ-)t]'_
Fr tot+ts - 8 Fr o+t - ¢
(iz)° (z)°
Froto 2 ¢ Fr 1 £ ¢ tgaccA‘.ngR
Fr ot > 4 e ottt 5 4
(21)° (i)t
o ! o '
Fr t(fiz(z.t)/z] — ¢ Frt — ¢ f RCS
br fiz(z.t) 5 o kst 5 v

'Rule (z11)° is required in the proof of Part (ii) of Lemma 2 and Case 4 of Lemma 3.1.

5

3 Examples

3.1 Example 1
Frigure 1

- C INT { shut-down

A

T
down

The aim of this first example is to juétify the need for the notion of I;riority in a
process algebra such as CCS. The system illustrated in Figure 1 [5], describes a
component C which acts as a counter, while INT is designed to halt C as soon
as the environment issues a shut-down request. In the following description of the
behaviour of the above system, we use some standard syntactic sugar which can
be translated easily to our original language of Terms.

(Ch | INT)\:’

SYsS =

INT — shut-down.s.nil

Co D= up.Cy + fonil

Chr11 = up.Cpi2 + down.C, + t.nil
Ciim = down.Cypm—y + t.nil

The system described above can perform a series of up or down actions. It can
only perform a finite number of consecutive up actions which is determined by the
value assigned to lim (Similarly for down actions). Let us assume that lim is a
finitely large number. It is evident that for 0 < n < Iim, down up shut-down down
up ... is a sequence of actions which may take place in SYS. In this case although
the action shut-down is performed, C, may choose to ignore indefinitely the offer
of communication from INT along channel s. Since we require that SYS halts as
soon as the environment issues a shut-down request, we conclude that the above
definition is not satisfactory. The situation described above is typical of interrupts,
time-outs in communication protocols and various other real time applications
where it is vital that in certain situations some actions take priority over others
thus avoiding the risk of being ignored indefinitely. The + operator is therefore
unsatisfactory to describe real time applications such as the one above because an
urgent action might be ignored until it is too late and perhaps indefinitely. We
have introduced a new operator 4} which can be used to solve our problem as
follows:

SYS <= (C|INT)\{

INT == shut-down.s .nil

Co = t.nsl 4 up.Cy

Cr+1 <= t.nil 4 (up.Crye + down.C,)
Ciim <= t.nil 4y down.Clyn_q

The semantics of the 4} operator is defined to ensure that actions on the right
hand side of the operator can only take place provided none of the actions on the
left hand side can take place. Therefore C, can only perform an up or down action
provided the environment hasn’t issued a shut-down request. Once a shut-down
request is issued, no more up or down actions are possible in C,.

Proposition 1

In the construct C = (C; | INT) \ ¢, neither an up action nor a down action can
take place once a shut-down action has been issued.

Outline of Proof

There is a proof tree to support any transition that can take place in a transition
system. By definition C; = ¢.nil+} (up.Cs + down.C;). We can build a proof tree
for Fg (Co|INT) \ i "=%" (Cy[F.nil) \ i using rules (i¥)?, (iv)°, (5z)°, (§)° and
(5¥)°. We proceed to prove proposition 1 by arguing that a proof tree cannot be
constructed for an up or down action as the next transtion in the execution of the
construct (C’z[?.nil) \t.

Consider ((f.nil4}(up.Cs + down.Cy))[f.nsl) \ {. According to rule (z)° an up
action or a down action can take place provided {f} = A C R where {.nil acc
A. By definition f.nsl ref R provided ¥ ¢ R. Therefore we have a contradiction;
rule (z)° is only possible provided {i} C R, but, rule (w) (v)° can only be
matched provided ¢.nil ref R, which in turn requires 1 & R. Hence we cannot
construct proof trees for up or down actions from (Cy|f.nil)\ ¢{. In other words,
once shut-down is issued the only possible action which can be justified by a proof
tree is a communication via channel {. The proof tree of this transition illustrated
in Figure 2 was constructed using rules (#)°, (v1)°, (1) together with rules (v)e,
(v)® and (57)°. '

]

It is interesting that Proposition 1 does not hold if one considers INT <= shut-
down.r.f.nil in an interleaving semantics which need not be fair. In this case,
an infinite number of up and down actions may occur after a shut-down request.
Therefore 7 never occurs and § is never enabled. In order to solve this problem
one can adopt the ideas on fairness presented by Costa and Stirling [6].

Figure 2
Fr, f.nsl = nil up, down, i & R, T¢R,

bR, (5.nsl4) (up.Cs + down.Cy)) = nil Cz ref R, Fr, t.nil = nil t.nil ref Ro

Frour, (f.nil4} (up.Cs + down.C1)) | T.nil — nil

~

Froury, (C2|tmsl)\ ¢ — nil

3.2 Example 2

The aim of this example is to emphasise the care needed when using the 4} oper-
ator. Since our approach is syntax directed, the onus is on the person writing an
expression to ensure that no conflict occurs in the priority of actions. Consider
the construct C = ((a.y.nil4yB.¢.nil)|(B.6.nil4y@.n.nil)) \ @\ B. This construct
describes a situation where an a-action has a higher priority than a #-action and
a B-action has a higher priority than an @-action. The situation described by C is
an example of an erroneous definition.

Proposition 2: Construct C deadlocks.

Proof

Let us denote (a.y.nil4}f8.¢.nil) by Co and (B.6.nil4y@.n.nil) by C;. Suppose
Fr Co|Ci —— (v.nsl)|(n.n#l), then according to rule (vf) there exists an Ry, Ry
such that Ry U By = R and kg, Co — (vy.nil), kg, Cy =, (n.nil), Co ref Ry,
Cy ref Ry. Now kg, C) —=» (n.nil) is true provided kg, @.n.nil = (y.nil) and
B.6.nsl acc {B} such that {8} C R;. On the other hand (a.y.nil 4 B.¢.nil) ref Ry
and therefore by shorter inference (a.7.nil) ref Ry, (8.¢.nil) ref R;. Now by rule
()%, (a.v.nil) ref R, for any R, provided a & Ry and (B.4.nil) ref R; for any R,
provided 8 ¢ R;. Therefore (o.v.nil4yB.¢.nil) ref Ry provided o, ¢ R;. Hence
we have a contradiction, one condition requires {8} C R, (i.e. 8 € R;) while the
other requires that § ¢ Ry. This implies that we cannot construct a proof tree
for Fr Co|C1 —+ (7.nil)|(n.nil) and therefore conclude that this transition cannot
take place. We can follow a similar argument for kg Co|Cp — (¢.nil)|(6.nil).
Therefore we can conclude that there isn’t any action that can take place in C.
Hence we have deadlock.

a

4 Putting Things into Perspective

There have been other attempts to introduce the notion of priority to process
algebras. In this section we present a resume of two attempts that have influenced
' the development of the method outlined in this paper.

J.C.M.Baeten et al. [1], introduced a priority operator 6 to ACP (The Algebra
of Communicating Processes). They define 6 in an axiomatic way by assigning
priorities to actions and by defining the operator ¢ in such a way as to model
the preassigned priorities as explained hereafter. In order to define the § operator
they define an auxiliary operator <: P x P — P where P ranges over the set of
processes.

z < y is pronounced z unless y where
Pla<db=a ifnot(a<b)
P2a<db=6 ifa<d

Note 6 denotes deadlock.
So @ 4 b is equal to a unless b has a higher priority over a.

For example, if a < ¢ and b < ¢ then (az + by + ¢)de=6+6+¢c =c.

They go on to augment ACP with rules P1-P6 and TH1-THS3 thus defining
algebra ACP,.

P3xdyz=xqy
Padza(y+2)=(zdy)dz2
CPSzydz=(zq2)y

P8 (z+y)dz=z<dz+ydz

TH1 6(a) = a
TH2 0(zy) = 6(z).6(y)
TH3 6(z+y) =0(z) < y+0(y) d =

The following example illustrates how the above rules in ACP; capture the notion
of priority. Suppose one preassigns the ordering b<a on actions a, b, then

bla+d)=0(a)<tb + 6(l)da=a<db + bda=a+b=a

Intuitively, in a context where b has a lower priority ‘then a, 0(a+b) =a (ie., a
takes precedence over b).

Cleaveland and Hennessy (5], define an operational semantics for an algebraic
theory of concurrency which incorporates priority in the definition of the execution
of actions. For simplicity they assume a two level hierarchy of priorities; an action
is either prioritized or unprioritized. If A is the set of actions then A4 is the set
of prioritized actions such that A = {a | @ € A}. They define the operational
semantics of priority in CCS in two stages. In the first stage they present an a
priors semantics; i.e., the operational semantics of CCS. In the second stage they
define the relations —> representing the actions which are actually possible when
introducing the notion of priority. These relations are defined by:

1. ifp—'aqthenp—%bq_

2. if p = ¢ and for no q’,gdoesp——g;rq'thenp-—a-b q.

Intuitively, prioritized actions are unconstrained while unprioritized actions can
only happen if unprioritized actions are possible. Cleaveland and Hennessy go on
to apply the definition of a bisimulation [12] to the transition system (P, —b>, Act)
thus obtaining a new equivalence ~,. Unfortunately ~, is not a congruence.
Therefore they define another transition system based on a new arrow >—i>.

They say that p is patient if p — ¢ for no ¢, and then define >—4> by:

a
1. ifp—g—>qthenp>——l>q

2. if p = ¢ and p is patient, then P > q.

As before prioritized actions are not constrained. However unprioritized actions
are prempted by 7; i.e., they can only take place provided a communication cannot
occur as a result of a handshaking between two complementary prioritized actions.
The intuition as described above, is very closely related to that adopted in this
report where we only allow a low priority action to take place provided at that
point in the execution sequence, the parallel context is not ready to handshake
with an action which has a higher priority.

Our approach differs from the ones described above in the fact that we give a
syntax directed operational semantics to a priority operator 4+ which is used to
define certain situations in which an action has a higher priority to another action.
Therefore we do not have to preassign priorities to actions by a partial ordering
on the alphabet of actions (as in [1] [5]), nor do we have to introduce operators to
explicitly prioritize and deprioritize actions (as in [5]).

10

5 The Behavioural Equivalence

So far we have defined a labelled transition system (P,—, Act) where P is the
set of closed terms.

Definition 1: Given the labelled transition system (P, —, Act), a bisimulation
S C P x P is a symmetric relation satisfying (p,q) € S and for all R, g p - p
implies that there exists some ¢' such that b ¢ %+ ¢’ and (', ¢') € S.

One can use similar arguments as shown by Milner [12], to conclude that the
largest such bisimulation (denoted by ~,) exists and is in fact an equivalence
relation. We would like to prove a theorem that states that ~, is a congruence.
(ie. p ~, q implies that Clp] ~, C[q] for all contexts C). Before attempting
to prove this, we need to sort out the proofs of some lemmas whose results are
required in proving the theorem.

Lemma 2: p ref {a} <= VS.~3q.(rsp - g)

Proof

Part(i) (=)

We construct the proof by induction on the structure of derivations that for all
a, p ref o implies that VS.~3¢.(Fs p — ¢). We proceed by performing a case
analysis on p. : :

l.p=u.d
Suppose p.t ref {a}, therefore y # . Hence VS.~3 ¢.(Fs p.t — gq).

2. The cases for p = nil, p = t[f], p = (¢ \ A) are straight forward.

3. p= to -+ t1
Suppose t + t; ref {a}, therefore by shorter inference t, ref {a} and t; ref
{a}. Applying the induction hypothesis we have V S.— 3 ¢.(Fs to = g) and
V8.~ 3g.(Fs t1 = ¢). Hence one cannot deduce that 35, q. s to+1; =+ ¢
because neither rule (vit)° nor (viif)° can ever be applied. Similarly for

D= to—ﬁ-tl and D= t0|t1~

4. p = fiz(z.t)
Let fiz(z.t) ref {a} then by shorter inference, t[fiz(z.t)/z] ref {a}. Apply-
ing the induction hypothesis we can say that VS.-3 ¢.(Fs t[fiz(z.t)/z] —
g). Hence since rule (zr)° always fails to apply, VS.— 3 ¢.(Fs fiz(z.t) = g).

11

Part(ii) (<=)

We prove Va.(VS.~3¢.(Fs p — ¢q) => p ref {a}) by attempting to prove
Va.(~(p ref {a}) =>385,¢.(Fs p = ¢)). We construct the proof by induction
on the structure of derivations that for all e, =(p ref a) implies that VS.~3 ¢.(-s
p — ¢)). We proceed by performing a case analysis on p.

0

lL.p=u.d

Sui)pose =(u .t ref {a}), then this implies that 4 = . Therefore there exist
an 8, q such that Fg .t - q.

2. The cases for p = m'l,';) = t[f], p = (¢t \)) are straight forward.

I p=bh+th e
Suppose (i + t; ref {a}), then either —(t ref {a}) or —(# ref {a}) or
both. If ~(t, ref {a}), then by applying the induction hypothesis there exist
an S, g such that b5 o — ¢. Therefore by rule (vit)°, ks # + #t; - q.
Similarly for the remaining sub-cases. A similar argument can be applied
when p = tlt. ‘

4. p =ttt

Suppose —(to}t; ref {a}), then either ~(t ref {a}) or —(t; ref {a}) or
both. If —~(ref {a}), then by applying the induction hypothesis there
exist an S, ¢ such that 5 ¢p — ¢. Therefore by rule (iz)°, ks tot+t; - q.
On the other hand suppose —(t; ref {a}), then by the induction hypothesis,
there exists ¢ for some S such that 5 ¢; — ¢.We cannot guarantee that if
to acc A then A C S. Therefore unless we have rule (zif)° we cannot prove in
general that for all @, ~(to4}t;) ref {a} implies that 3, q. k5 tot; — ¢.
Nonetheless if we consider A such that # acc A, and let R = AU S, then by
rule (zt4)° Fg -+ ¢, and we also know that #, acc A and 4 C R. Hence
by rule (z)° kg totyt; — q.

5. p = fiz(z.t)
Suppose —(fix(x.t) ref {a}) then —(t{fix(x.t) / x] ref {a}). Applying the
induction hypothesis we can say that 35, ¢.(Fs t[fiz(z.t)/z] - ¢). Hence
by rule (zf)° we can deduce that 5 fiz(z.t) - gq.

Lemma 8.1: (paccAAa@c€ A)=135,q.(Fs p—— q)

Proof

We construct the proof by induction on the structure of derivations that for all o,
if p acc A and @ € A then this implies that 33, ¢.(Fs p = ¢). We proceed by
performing a case analysis on p.

12

(]

l.p=put
Suppose p.t acc A and @€ A, then 4 = c and 4 = {@}. Hence we can say
that there exist S, ¢ such that Fg p.t -2 g.

2. The cases for p = nil, p = t[f], p =t \ X are straight forward.

3. p=bh+ty

Suppose t + t; acc A and @ € A, then if #, ace Ao and t; ace Ay such
that A = Ap U Ay, this implies that either @ € Ay or @ € A; or both.
Consider the case when @ € Ay; applying the induction hypothesis we can
say that 3, ¢.(Fs to — ¢) and therefore by rule (vi%)¢ we can deduce that
Fs to + t1 — ¢. Similarly for the other two cases. We can use a similar
argument when p = ty|t;.

4. p=toht

Suppose %1}t acc A and @ € A, then if # acc 4y and # acc A, such
that A = Ao U A;, this implies that either @ € 4y or @ € A; or both.
Consider the case when @ € Ay; applying the induction hypothesis we can
say that 35, ¢.(Fs to — ¢) and therefore by rule (vi¥)° we can deduce that
s to#rty — ¢. Now consider the case when @ € Ajy; applying the induction
hypothesis we can say that 39, ¢.(Fs t, — ¢). Using a similar argument
as the one used in the proof of the second part of Lemma 2,let R=SU A,
then by rule (zi¥)° kg ¢ty — ¢, hence by rule (z)° Fp to4t; %+ ¢g. The
remaining case is a combination of the previous two cases.

5. p = fiz(z.t)

Suppose fiz(z.t) acc A then by shorter inference, t[fiz(z.t)/z] acc 4. As-
suming @ € A we can apply the induction hypothesis, therefore’3S v q.(Fs
t[fiz(z.t)/z] — ¢). Hence by rule (z)°, Fs fiz(z.t) - q.

Lemma 3.2: (38,¢.(Fsp - q) A(p acc 4)) = wec A

Proof .

We construct the proof by induction on the structure of derivations that for all o
if there exists S, q such that 5 p ~%» g and p acc A then this implies that @ € A

L.p=u.t
Suppose 35, ¢.(Fs u.t — g) and u.t acc A then g = o and A = {a}.

2. The cases for p = nil, p = ¢[6], p = (¢ \ \) are straight forward.

13

3. p=tlh+ 1
Suppose 35, ¢.(Fs to + 81 — ¢) and & + #; acc A such that ¢, acc A,
and #; acc A; and A = Ay U 4. Since 35, ¢.(Fs % + t1 — g), then either
Fs to — q or k5 t; -2+ ¢. Consider the case when kg t; — ¢; applying
the induction hypothesis we have @ € Aq, therefore @ € A. Similarly for the
case when g t; — ¢. A similar argument can be used when p = to|ty and

p =ttt
4. p = fiz(z.1)

Suppose3 S, ¢. ks fiz(z.t) = g, then by shorter inference -5 t[fiz(z.t)/z]
g. Suppose also that fiz(z.t) acc 4, then by shorter inference t|fiz(z.t)/z]
acc A. Applying the induction hypothesis @ € A.
D -
Lemma 4: (p ref RAp ~, ¢) => gref R.
Proof
Let us start by attempting to prove (p ref {a} Ap ~, ¢) = K ref {a}. Let
p ref {o}, then by lemma 2 we can say that VS.=3p'.(ks p — p'). Suppose
there exists q , ' such that F&» ¢ — ¢'. Since p ~p q we expect to have p' such
that s+ p == p'. Clearly this is a contradiction.Therefore if P ref {a}, then
VS8.~3p'.(ks p == p') and if p ~, ¢ then VS.~3 ¢ (Fs ¢ = ¢'). Hence by
lemma 2, ¢ ref {a}. If p ref R and p ~, ¢, then the argument above can be
repeated for each member of R.
O

Lemma 5: (p acc AAp ~, ¢g) = ¢ acc A.

Proof

Let us attempt to prove the above lemma by proving that for all 4, 4', p ace 4
and ¢ acc A' and p ~p ¢ implies that 4 = A’ Let @ € A, then by lemma 3.1,
38,p'.(Fs p = p'). Since p ~, ¢ then 5 ¢ %+ ¢' and p' ~p ¢', therefore by
lemma 3.2, @ € A'. The same argument can be applied for all elements of A.
Therefore A C A'. Conversely let @ € A, then by lemma 3.1 385, ¢'.(Fs ¢ — ¢').
Since p ~, ¢ then k5 p —= p' and p' ~, ¢', therefore by lemma 3.2 @ € A. The
same argument can be applied for all elements of A'. Therefore A' C A. Hence we
can conclude that (p acc AAp ~, ¢) = q dcc A.

a

Lemma 6: If p ~, ¢ then for all u € Act, u.p ~p fb.q.
Proof
Let T = {{(p.p',p.¢")| p' ~p ¢, p € Act} U {{(p',¢')| p' ~, ¢'}. We want to show

that T is a bxslmulatxon, therefore it is sufficient to show that if Fp u.p -——-> p

then Sq (Fr p.q R ¢') and {p',¢') € T. The only case to consider is when
u = ', The proof is trivial.

0

14

Lemma 7: If p ~, ¢ then for all s € P, pls ~, q|s.

Proof

Let T = {{p'|s,q'|s)] p' ~5 ¢', 8 € P}. Clearly T is symmetric; we want to
show that T is a bisimulation. It is sufficient to show that if (p'|s, ¢'|s) € T and
Fr p'|s < p" then there exists ¢ such that k5 ¢' ls £ ¢" and (p", ¢") € T. Let
us consider the following cases:

1. Let kg p'|s SN p"|s. By shorter inference g p' £, p" and s ref R. We
know that p' ~, ¢/, therefore there exists ¢" such that Fp ¢' = ¢" and

p" ~, ¢". Clearly kg ¢'|s <= ¢"|s and by construction (p"|s,q"|s) € T.

2. Let g p'ls - p'|s'. By shorter inference bp s —+ s' and p' ref R. We

know that p' ~, ¢', therefore by lemma 4 ¢' ref R. Hence bz ¢'|s - ¢'|¢,
and by construction (p'|s', ¢'|s') € T.

3. Let g p'|s LN p"|s'. In this case 4 = 7 and therefore by shorter inference,

there exists o such that kg, p' -+ p™, g, 8 = &', p' ref By, s ref R, for
any Ry, Ry such that Ry U Ry = R. Now if kg, p' — p" and p' ~, ¢' this
implies that there exists ¢" such that g, ¢' — ¢" and p" ~, ¢". Since
p' ~p ¢’ and p' ref R, then by lemma 4, ¢' ref R;. Therefore we can say

that b5 ¢'|s' — ¢"|s' and that (p"|s', ¢"|s') € T.

Lemma 8: If p ~, g thenforall s € P, p+ 8 ~, ¢ +3s.

Proof

Let T = {(p'+ 8,4 +)| p' ~ ¢';s € PYU{{p',¢")| P’ ~, ¢'}. Clearly T is
symmetric; we want to show that T is a bisimulation. It is sufficient to show
that if (p' + s,¢' +5) € T and kg p' + s £+ p" then there exists ¢" such that

Fr ¢ +s L+ ¢" and (p", ¢") € T. Let us consider the following cases:

1. Let Fp p' + 8 -5 p", such that Fp p' -2 p". We know that p' ~, ¢,
therefore there exists ¢" such that g ¢' —"+ ¢", and p" ~, ¢". Clearly by

rule (vii)° kg ¢' + s -5 ¢" and by construction (p", ¢") € T.

2. Let kg p' + s -5 &', such that g s - §'. By rule (vit))*, Fr ¢ + s 25 &'
and by construction (s',s') € T.

15

Lemma 9: If p ~, ¢ then for all s € P, pi}s ~, qg4}s.
Proof
Let

T = {({p'ts,q'e),(syp's 641 ¢')| p' ~p ¢'s5 € PYU{(V', ¢")] p' ~; ¢'}.

* We want to show that T is a bisimulation. Therefore we have to show:

1. If (p'4s,¢"t¥s) € T and kg p'H8 -2 p" then there exists ¢" such that
ke ¢'4s — ¢" and (p",'q") € T.

2. If (s4yp',54+¢') € T and g s4yp' -2+ p" then there exists ¢" such that
Fr s-l-}q' LN qu and (p",q”) eT. ,

Proof of case (1)

1. Let kg p'4ys == p", such that kg p' —*+ p". We know that p' ~p g,
therefore there exists ¢" such that k5 ¢' -2 g", and p" ~, ¢". Clearly by
rule (iz)° -z ¢"4s > ¢ and by construction (g, ¢") € T.

2. Let Fp p'4+8 -5 &', such that Fp s -5 s' and p' acc A C R. We know that
p' ~p ¢', and by lemma 5 since p' acc A then ¢' acc A C R. Therefore by

rule (z)°, kg ¢'4s - &' and by construction (¢',8") e T.

Proof of case (1)

1. Let Fp s#4p' - p", such that Fp p' -5 p" and s acc A C R. We know
that p’ ~; ¢', therefore there exists ¢" such that g ¢’ —2 ¢™, and p" ~p q".

Therefore by rule (z)° kg 84y ¢' = ¢" and by construction (", ¢" e T.

2. Let kg s43p' - &', such that Fp s - &', Then by rule (iz)°, Fp s ¢'
&' and by construction (s',s') € T.

O

Lemma 10: If p ~, g then for all A\ € A, p\ X'~, g\ A.
Proof .
Let T = {{p'\), ¢'\N)] p' ~5 ¢', A € A}. We want to show that T is a bisimulation,

therefore it is sufficient to show that if (p'\ X, ¢'\A) € T and }-5 p' \ A £ p" then
there exists ¢" such that Fz ¢'\X -2+ ¢" and (p", ¢") € T. Let kg p'\X -5 p"\,
then by shorter inference Fr p' -2 p" and t # XX We know that P~ ¢,
therefore there exists ¢" such that Fp ¢ -+ ¢, and p" ~p ¢". Therefore by rule
(#)° Fr ¢\ A =5 ¢" \ X and by construction (p" \Ad"\X) eT.

(]

16

Lemma 11: If p ~, ¢ then for all relabellings 8, p[f] ~, q[d].
Proof
Let T = {{p'[6],¢'[6])| p' ~p ¢'s 0 : Act —> Act}). We want to show that if

{(p'[0], ¢'[0]) € T and kg p'[6] - p" then there exists ¢" such that Fp g6] 5 ¢
and (p",¢") € T. Let Fg p'[0] 2> p"[6], such that Fp p' -5 p". We know that
p' ~; ¢', therefore there exists ¢" such that p ¢' - ¢",and p" ~, ¢". Therefore
by rule (i%)°, kg ¢'[6] - ¢"[6] and by construction (p"[6], ¢") erT.

(]

Definition 2
Let z be a free variable in the terms ¢ and u, then we say ¢ ~, u if t[p/z] ~, u[p/z]
for all agents p.

Lemma 12: If t ~, u then fiz(z.t) ~, fiz(z.u).

Proof

Let T = {{G[fiz(z.t)/c], G|fiz(z.u)/z])| t ~, u,FV(G) C {z}}. We are going
to construct the proof by induction on the structure of derivations that if Fr

Glfiz(z.t)/z] = p then there exists g such that Fg G’[ﬁx(.’c u)/z] -+ ¢ and
(p,q) € T. We proceed by performing a case analysis on G.

1. G=z

Let G = z then by, fiz(z.t) — p', so by shorter inference 5 tlfiz(z.t)/z] £

p' and by induction kg t[fiz(z.u)/z] £+ ¢ with (p',¢') € T. By def-
inition 3, since ¢t ~, u, then t[fiz(z.u)/z] ~ u[ﬁz(z u)/z]. Therefore

there exists ¢" such that Fr u[fiz(z.u)/z] £+ ¢" and (p', ¢") € T. Now
G[fiz(z. u)/x] = fiz(z.u) when G = z and by the recursion rule (zf)°

Fr fiz(z.u) -£, ¢". Therefore we are done.

2. G=fiz(y.v),yZ=

By assumption we have Fp fiz(y.(v|fiz(z.t)/z])) < p', then by shorter
inference kg (v[fiz(z.t)/z]|G|fiz(z.t)/z]/y]) < p', which may be rewritten
as kg v[G/y]|fiz(z.t)/z] > p'. So by induction applied to the expression

o[G/v], we know that bz (v[G/y)lfie(z.u)/2]) £ ', with (#',¢) € T. By
manipuating substitutions and applying the recursion rule (zf)° we obtain

Fr Glfiz(z.u)/z] £ ¢ as required.

17

Theorem 1: ~, is a congruence with respect to the operators of our language.
Proof :
Lemmas 6 — 12 together make up this property.

]

6 Results

Figure 3 below shows some equivalence preserving syntactic transformations based
on the notion of strong bisimulation as presented in this paper.

P+Q~ Q+P P+(Q+R)~, (P+Q)+R
P+ P~, P P+nml~, P

P|Q ~, Q|P Plnil ~, P

P|(Q[R) ~, (P|Q)|R PlId) ~, P

Plf][f'] ~p Plf' o f] P4ynil ~, P

nil4y P ~, P Tbothty ~p 7ol

a.tg—I-)a.tl ~p a.ty .

All the laws shown above may be proved by exhibiting appropriate strong bisim-
ulations. The proofs are not included in this paper, but, they follow the same
arguments found in [8].

7 Conclusions

In this paper we have investigated an alternative approach to introducing the
notion of priority to process algebras. We do not claim that the approach presented
here is the best approach, but, we hope that it will lead to further discussion on
the subject. Further work needs to be done — we would like to axiomatize a
weak observational equivalence based on our semantics and investigate whether
our priority operator can be included in a synchronous calculus such as SCCS
[12].

8 Acknowledgements

I express my thanks to Prof. Glynn Winskel and Dr. Alan Myecroft for encouraging
me to work on the subject and for their advice and suggestions. I am also grateful
to Dr. Mike Gordon and Andy Gordon for their comments and feedback on the
work, Thanks are also due to Trinity College who are kindly supporting my stay
at Cambridge.

18

References

[1] Baeten, J.C.M, Bergstra J.A. and Klop J .W,. Syntax and Defining Equations
for an interrupt mechanism in Process Algebra. Report CS-R8503, Center for
Mathematics and Comp. Sci, Amsterdam, Feb. 1985,

[2] Bergstra J.A. and Klop J.W. Process Algebra for Synchronous Communica-
tion. Information and Control 60, 1984, pp. 109-137.

[3] G.Boudol, ILCastellani. Concurrency and Atomicity. INRIA SOPHIA-
ANTIPOLIS 06560 Valbonne, France.

[4] Juanito Camilleri. An operational semantics for occam, (EXTENDED VER-
SION). Computing Lab, University of Cambridge. Technical Report n°144.
August 1988,

[5] R.Cleaveland, M.Hennessy. Priorities in Process Algebras. Department of
Cemputer Science, University of Sussex. Report n°2 /88. March 1988.

[6] Costa, G., Stirling, C., Weak and strong fairness in CCS. Pp. 245-264, Mathe-
matical Foundations of Computer Science, ed. M.P. Chytil, V. Koubek, LNCS
176, Springer 1984.

[7] Edsger.W.Dijkstra. A Discipline of Programming. Prentice-Hall International
Series in Automatic Computation.

8] Hennessy. M and R. Milner. Algebraic Laws for Nondeterminism and Con-
currency. Journal of the ACM 32, n°1, January 1985, pp137-161.

[9] C.A.R.Hoare. Communicating Sequential Processes. Prentice-Hall Interna-
tional Series in Computer Science.

[10] INMOS Itd. occam Programming Manual. Prentice-Hall International Series
in Computer Science.

[11] Robin Milner. A Calculus of Communicating Systems. Lecture notes in Com-
puter Science. Springer-Verlag series n°92.

[12] Robin Milner. Calculi for Synchrony and Asynchrony. Department of Com-
puter Science, Edinburgh University. February 1982,

[13] Gordon.D.Plotkin. A Structural Approach to Operational Semantics. Depart-
ment of Computer Science, Aarhus University Denmark. Sept 1981.

19

