
Technical Report
Number 149

Computer Laboratory

UCAM-CL-TR-149
ISSN 1476-2986

Improving security and
performance for capability systems

Paul Ashley Karger

October 1988

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

https://www.cl.cam.ac.uk/

c© 1988 Paul Ashley Karger

This technical report is based on a dissertation submitted
March 1988 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Improving Security and Performance for

Capability Systems

Paul Ashley Karger

Wolfson College

Dissertation submitted for the degree of Doctor of Philosophy

in the University of Cambridge, 30 March 1988.

Copyright

c

1988 by Paul Ashley Karger.

Contents

Acknowledgements 12

Summary 14

I Background 15

1 Introduction 17

1.1 History of the Project : 17

1.2 What is SCAP? : 18

1.3 Overview of Experimental Environment : : : : : : : : : : : : 18

1.4 Plan of the Dissertation : 19

2 The Need for Security 21

2.1 Classes of Vulnerabilities : 21

2.1.1 Browsing : 21

2.1.2 Unauthorized Acts of Authorized Individuals : : : : : 22

2.1.3 Direct Penetration : : : : : : : : : : : : : : : : : : : 22

2.1.4 Trap-Door and Trojan-Horse Attacks : : : : : : : : : 23

2.2 Development of Secure Systems : : : : : : : : : : : : : : : : 25

2.2.1 Access-Control-List Systems : : : : : : : : : : : : : : 26

2.2.2 Capability systems : : : : : : : : : : : : : : : : : : : 26

2.2.3 Security Kernels : 27

2.3 Assumptions : 28

3 Models of Security 31

3.1 Preventing Information Disclosure : : : : : : : : : : : : : : : 31

3.1.1 Discretionary Access Controls : : : : : : : : : : : : : 32

3.1.2 Non-Discretionary Access Controls : : : : : : : : : : 32

3.1.2.1 Elements of the Lattice Model : : : : : : : : 33

3.1.2.2 Defeating Trojan Horses : : : : : : : : : : : 34

3.1.3 Retro�tting Non-discretionary Security : : : : : : : : 34

3.1.3.1 Incremental Addition of Features : : : : : : 35

3.1.3.2 Kernel/Emulator Approach : : : : : : : : : 35

3.2 Preventing Tampering and Sabotage : : : : : : : : : : : : : 36

3.2.1 Biba Integrity Model : : : : : : : : : : : : : : : : : : 37

3.2.2 Lipner Commercial Integrity Model : : : : : : : : : : 37

1

3.2.3 Clark and Wilson Commercial Integrity Model : : : : 37

3.3 Preventing Denial of Service : : : : : : : : : : : : : : : : : : 39

4 Principles of Capability Systems 41

4.1 What is a Capability? : 41

4.2 Capability Storage : 42

4.3 Need for Protected Subsystems : : : : : : : : : : : : : : : : 43

4.4 Type Managers and Sealing : : : : : : : : : : : : : : : : : : 45

II SCAP Architecture 47

5 Overview of the SCAP Architecture 49

5.1 SCAP Processor Architecture : : : : : : : : : : : : : : : : : 49

5.2 SCAP Operating System : 50

6 SCAP Domain Model 53

6.1 Scheduling Entities : 53

6.1.1 Jobs : 53

6.1.2 Processes : 53

6.2 Address Space Entities : 54

6.2.1 Protected Subsystems : : : : : : : : : : : : : : : : : : 54

6.2.2 Domains : 55

6.3 A Simple Example : 55

6.4 Cross-Domain Calls : 57

6.5 Comparison with Reed's Scheduler : : : : : : : : : : : : : : 57

6.6 Non-Discretionary Controls for Processes and Domains : : : 58

6.7 Creation and Initialization : : : : : : : : : : : : : : : : : : : 59

6.7.1 Jobs : 59

6.7.2 Processes : 61

6.7.3 Protected Subsystems : : : : : : : : : : : : : : : : : : 61

6.7.4 Domains : 62

6.8 Message Passing and Procedure Calls : : : : : : : : : : : : : 63

III Improving Security 65

7 Solving the Con�nement Problem 67

7.1 Attempts with Traditional Capabilities : : : : : : : : : : : : 68

7.1.1 HYDRA : 68

7.1.2 PSOS : 69

7.2 The Secure Capability Architecture : : : : : : : : : : : : : : 69

7.3 Non-Discretionary Security : : : : : : : : : : : : : : : : : : : 70

7.4 Comparison With Other Systems : : : : : : : : : : : : : : : 72

7.4.1 System/38 : 72

7.4.2 SWARD : 73

7.4.3 Monash Password-Capability System : : : : : : : : : 73

2

7.4.4 Honeywell Secure Ada Target (SAT) : : : : : : : : : 74

7.4.5 KeyKOS : 75

7.4.6 Flex : 75

7.5 Kain and Landwehr's Taxonomy : : : : : : : : : : : : : : : : 76

8 Traceability of Access Problems 79

8.1 Asymmetric Views of Security : : : : : : : : : : : : : : : : : 79

8.2 Discretionary Security with SCAP : : : : : : : : : : : : : : : 80

9 Discretionary Trojan Horses 83

9.1 Directory Management : 83

9.2 Name-Checking Protected Subsystem : : : : : : : : : : : : : 85

9.3 Name Translation in Batch Jobs : : : : : : : : : : : : : : : : 88

9.3.1 Special Directory Trees : : : : : : : : : : : : : : : : : 88

9.3.2 Pre-Compiled Batch Jobs : : : : : : : : : : : : : : : : 88

9.3.3 Additional Approaches : : : : : : : : : : : : : : : : : 89

9.3.3.1 Wildcard Authorization : : : : : : : : : : : 89

9.3.3.2 Post-Authorization : : : : : : : : : : : : : : 90

9.4 Access-Control-List Systems : : : : : : : : : : : : : : : : : : 90

9.5 Alternate Strategies : 90

9.5.1 Strict Need-to-Know Policy : : : : : : : : : : : : : : 91

9.5.2 Enhanced Linker : 91

9.5.3 Flex Cartouches : 91

9.6 Limitations of the Technique : : : : : : : : : : : : : : : : : : 92

10 Implementing Commercial Integrity 95

10.1 Implementation : 95

10.1.1 Certi�cation Di�culties : : : : : : : : : : : : : : : : 95

10.1.2 Crucial Role of the Audit Trail : : : : : : : : : : : : 96

10.1.3 Implementing with Secure Capabilities : : : : : : : : 97

10.1.4 Handling Groups of Users : : : : : : : : : : : : : : : 99

10.1.5 Security Policy, Auditing, and Recovery Management 100

10.2 Related Work : 100

10.2.1 AAS : 101

10.2.2 RSS : 101

10.2.3 Cascaded Network Connections : : : : : : : : : : : : 101

10.2.4 Program-Integrity Policy : : : : : : : : : : : : : : : : 102

10.2.5 Secure Committees : : : : : : : : : : : : : : : : : : : 103

10.2.6 Assured Pipelines : 103

10.2.7 Enforcing Clark and Wilson with Integrity Categories 103

10.3 Trojan-Horse Problems : 104

10.4 Performance Problems : 105

10.5 Retrospective : 105

3

11 Improved Revocation Algorithms 107

11.1 Need for Revocation : 107

11.2 Revocation Di�culties : 109

11.2.1 Multics Revocation with Back Pointers : : : : : : : : 109

11.2.2 Redell's Revocation with Indirection : : : : : : : : : 111

11.3 Revocation with Eventcounts : : : : : : : : : : : : : : : : : : 113

11.4 Revocation by Chaining : 115

12 Secure Garbage Collection 117

12.1 Source of the Problems : 117

12.2 Solutions that Do Not Work : : : : : : : : : : : : : : : : : : 118

12.3 Quota Management : 118

12.3.1 Multics Quota Problem : : : : : : : : : : : : : : : : : 119

12.3.2 Quota Cells : 120

12.4 Payment Systems : 120

IV Improving Performance 123

13 Performance Overview 125

13.1 Performance Problems : 125

13.2 Applying RISC Technology : : : : : : : : : : : : : : : : : : : 126

14 Programming Generality 129

14.1 Costs of Programming Generality : : : : : : : : : : : : : : : 129

14.1.1 Argument Validation : : : : : : : : : : : : : : : : : : 129

14.1.2 Procedure Calls in the Intel 432 : : : : : : : : : : : : 131

14.2 Costs of Capability Re�nements : : : : : : : : : : : : : : : : 132

14.2.1 Uses of Re�nements : : : : : : : : : : : : : : : : : : : 133

14.2.2 Restricting Re�nements : : : : : : : : : : : : : : : : 134

15 Translation Bu�ers 137

15.1 Hardware-Visible Segmentation : : : : : : : : : : : : : : : : 137

15.1.1 Segment Descriptors in the Translation Bu�er : : : : 138

15.1.2 Segment Descriptors in Software Only : : : : : : : : : 138

15.2 Context Switching : 139

15.2.1 Flushing : 139

15.2.2 Translation-Bu�er Swapping : : : : : : : : : : : : : : 140

15.2.3 Address Space Numbers (ASNs) : : : : : : : : : : : : 140

15.2.4 Unique-ID Addressing : : : : : : : : : : : : : : : : : 141

15.3 TB Fill in Software or Hardware : : : : : : : : : : : : : : : : 142

15.4 Shared-Memory Multiprocessors : : : : : : : : : : : : : : : : 143

15.4.1 Flush with Interprocessor Interrupts : : : : : : : : : : 143

15.4.2 Snoopy Translation Bu�ers : : : : : : : : : : : : : : : 144

4

16 Hashed Page Tables 147

16.1 Implementing a Hashed Page Table : : : : : : : : : : : : : : 147

16.2 Probability of Collisions : 149

16.3 Hash Function Costs : 149

16.4 Number of Memory References : : : : : : : : : : : : : : : : : 150

16.5 Revocation by Chaining : 152

16.6 Hashing Experiment : 153

16.6.1 Structure of the Hashed Page Table : : : : : : : : : : 153

16.6.2 Hashing Algorithm : : : : : : : : : : : : : : : : : : : 154

16.6.3 Address-Space-Number Management : : : : : : : : : 156

16.6.4 Invalidating PTEs in the Hash Table : : : : : : : : : 157

16.6.5 Hashing Results : 158

17 Cross-Domain Call Optimization 161

17.1 Performance of Cross-Domain Calls : : : : : : : : : : : : : : 161

17.2 Multiple Register Sets : 162

17.3 Argument Passing : 163

17.4 Categories of Trust : 164

17.5 Register Optimization Based on Trust : : : : : : : : : : : : : 165

17.6 Capability-Argument Optimization : : : : : : : : : : : : : : 166

17.6.1 Avoiding Clearing : 168

17.6.2 Avoiding Probing : 169

17.7 Implementing the Optimizations : : : : : : : : : : : : : : : : 169

17.7.1 Trusted Linker : 169

17.7.2 Microcoded Cross-Domain Call : : : : : : : : : : : : 170

17.7.3 RISC Cross-Domain Call : : : : : : : : : : : : : : : : 175

17.8 Minimizing Argument Clearing : : : : : : : : : : : : : : : : 177

17.9 Optimizing With Long Returns : : : : : : : : : : : : : : : : 180

17.10 Bene�ts : 181

18 Cross-Domain-Call Performance Experiments 183

18.1 Experimental Results : 184

18.2 Comments on the Performance Results : : : : : : : : : : : : 187

19 Real-Time Issues 189

19.1 Idealized Interrupt Handling : : : : : : : : : : : : : : : : : : 189

19.2 SCAP Hardware Interrupt Handling : : : : : : : : : : : : : : 190

19.3 Cross-Domain Calls at Elevated IPL : : : : : : : : : : : : : : 190

19.4 Software Interrupts and ASTs : : : : : : : : : : : : : : : : : 191

19.5 Operation of the Scheduler : : : : : : : : : : : : : : : : : : : 192

19.5.1 Scheduling Due to Interrupts : : : : : : : : : : : : : : 192

19.5.2 Scheduling Due to Explicit Calls : : : : : : : : : : : : 193

19.6 Summary of Stack Usage : 193

19.7 Real-Time Processing : 194

5

20 Conclusions 195

20.1 Major Research Results : 195

20.2 Problem Resolution : 196

20.3 The Next Step : 196

References 197

Appendices

A Computer Security Evaluation Criteria 217

B Tutorial on Paging 219

B.1 Atlas : 219

B.2 Multics : 220

B.3 VAX : 220

B.4 Additional Levels of Page Tables : : : : : : : : : : : : : : : : 221

C Translation Bu�er Associativity 223

C.1 Fully Associative : 223

C.2 Direct Mapped : 224

C.3 Set Associative : 226

D VAX Processor Architecture 229

D.1 Data Types : 229

D.2 Registers : 229

D.2.1 Programmer Visible Registers : : : : : : : : : : : : : 229

D.2.2 Internal-Processor Registers : : : : : : : : : : : : : : 232

D.3 Instruction Formats : 233

D.4 Memory Management : 233

D.5 Protection : 233

D.6 Interrupts and Exceptions : : : : : : : : : : : : : : : : : : : 234

E Microarchitecture of the VAX-11/730 237

E.1 System Overview : 237

E.2 CPU Description : 239

E.2.1 Memory Controller (MCT) : : : : : : : : : : : : : : : 239

E.2.2 Writable-Control Store (WCS) : : : : : : : : : : : : : 239

E.2.3 CPU Data Path (DAP) : : : : : : : : : : : : : : : : : 241

E.2.4 Micro Instruction Set : : : : : : : : : : : : : : : : : : 241

E.3 Microprogram Organization : : : : : : : : : : : : : : : : : : 242

E.4 Microprogramming Tools : 243

F Interrupt Handling in Capability Systems 245

F.1 CAP : 245

F.2 Intel 432 : 246

F.3 IBM System/38 : 246

F.4 Honeywell DPS 88 : 246

F.5 Plessey System 250 : 247

6

G Possible Kernel Design 249

G.1 The Major Type Managers : : : : : : : : : : : : : : : : : : : 249

G.2 Performance Considerations : : : : : : : : : : : : : : : : : : 253

H SCAP Software Compatibility 255

H.1 General Issues : 255

H.2 Replacing Setuid : 256

H.2.1 Setuid Protected Subsystems : : : : : : : : : : : : : : 256

H.2.2 SCAP Protected Subsystems in UNIX : : : : : : : : 257

H.3 A Virtual Machine Monitor for SCAP : : : : : : : : : : : : : 257

I Annotated Code Sequences 259

I.1 Call with JSB : 259

I.2 Cross-Domain Call with SVPCTX : : : : : : : : : : : : : : : 260

I.3 Microcode Invoker : 263

I.4 Cross-Domain Call Microcode : : : : : : : : : : : : : : : : : 263

Index 277

7

8

List of Figures

2.1 Lampson's Access Matrix : 26

3.1 Kernel/Emulator Approach : : : : : : : : : : : : : : : : : : : 36

4.1 DBMS Protected Subsystem Example : : : : : : : : : : : : : 44

6.1 Protected Subsystems, Domains, and Processes : : : : : : : : 56

6.2 Domains and Non-Discretionary Controls : : : : : : : : : : : 60

7.1 Non-discretionary Limited Capabilities : : : : : : : : : : : : 70

8.1 Access-Control-List Limited Capabilities : : : : : : : : : : : 80

9.1 Trojan Horse in Action : 84

9.2 Trojan Horse Blocked : 87

9.3 Example of Cartouches in a Flex ed�le : : : : : : : : : : : : 92

11.1 Quota Causing Storage Channel Problem : : : : : : : : : : : 108

11.2 Multics Revocation Scheme : : : : : : : : : : : : : : : : : : : 110

11.3 Redell's Revocation Scheme : : : : : : : : : : : : : : : : : : 112

11.4 Recursive Redell Revocation : : : : : : : : : : : : : : : : : : 113

11.5 Revocation with Eventcounts : : : : : : : : : : : : : : : : : : 114

11.6 Chained Page-Table Entries : : : : : : : : : : : : : : : : : : 116

12.1 Multics Quota Example : 119

14.1 Simple Re�nement Example : : : : : : : : : : : : : : : : : : 132

16.1 IBM System/38 Hashed Address Translation : : : : : : : : : 148

16.2 Hashed Address Translation with Open Addressing : : : : : 151

16.3 Hashed Address Translation with Shared Page Chains : : : : 152

16.4 Hashed-Page-Table Entry Format : : : : : : : : : : : : : : : 154

16.5 Hashing Algorithm : 155

16.6 Microcode to Compute Hash Function : : : : : : : : : : : : 156

17.1 Format of Cross-Domain Linkage Table Entry : : : : : : : : 171

17.2 Format of C-stack Frame : 171

17.3 Format of Domain Control Block (DCB) : : : : : : : : : : : 172

17.4 Microcode to Save and Clear Registers Unconditionally : : : 173

17.5 Microcode to Save and Clear Registers Using Masks : : : : : 174

9

17.6 RISC Optimized Cross-Domain Call : : : : : : : : : : : : : : 175

17.7 C-stack Frame Usage : 178

17.8 Format of Revised C-stack Frame : : : : : : : : : : : : : : : 179

B.1 Atlas Page Table : 219

B.2 Multics Address Translation : : : : : : : : : : : : : : : : : : 220

B.3 VAX Address Space Mapping : : : : : : : : : : : : : : : : : 221

C.1 Fields of a Virtual Address : : : : : : : : : : : : : : : : : : : 223

C.2 Fully-Associative Translation Bu�er : : : : : : : : : : : : : : 224

C.3 Direct-Mapped Translation Bu�er : : : : : : : : : : : : : : : 225

C.4 Two-Way Set-Associative Translation Bu�er : : : : : : : : : 226

E.1 VAX-11/730 System : 238

E.2 KA730 Block Diagram : 240

E.3 Data Path Block Diagram : : : : : : : : : : : : : : : : : : : 241

G.1 Lower-Level Type Managers for SCAP Security Kernel : : : 251

I.1 JSB Measurement Code : 259

I.2 SVPCTX/LDPCTX Measurement Code, Part 1 : : : : : : : 261

I.3 SVPCTX/LDPCTX Measurement Code, Part 2 : : : : : : : 262

I.4 Microcode Invoker : 263

10

List of Tables

2.1 Published Penetration Successes : : : : : : : : : : : : : : : : : 22

17.1 Register Usage on Cross-Domain Call : : : : : : : : : : : : : : 167

17.2 Register Usage on Cross-Domain Return : : : : : : : : : : : : 168

18.1 Cross-Domain-Call/Return Performance Results : : : : : : : : 184

D.1 VAX Data Types : 230

D.2 Processor Status Longword Fields : : : : : : : : : : : : : : : : 231

D.3 Architecturally De�ned Internal Processor Registers (IPRs) : : 232

D.4 PTE Protection Codes : 234

E.1 VAX-11/730 Microcode Shifts and Rotates : : : : : : : : : : : 242

E.2 VAX-11/730 Microprogram Modules : : : : : : : : : : : : : : 243

11

ACKNOWLEDGEMENTS

There are many people that I must thank for help during the long and some-

times di�cult process of Ph.D. research. Foremost are Andrew J. Herbert, my

thesis supervisor and Steven B. Lipner, my supervisor at Digital. They have

spent many hours discussing my work and guiding it in proper directions.

The research might not have started at all, without the crucial questions

that Prof. Maurice Wilkes and Dr. William Strecker asked concerning secure

capabilities and performance. Prof. Roger Needham and Prof. David Wheeler

reviewed many of my interim reports and provided much useful guidance. Tim

Leonard taught me about the VAX-11/730 microcode, and we had many useful

discussions on processor architecture and on process structuring.

A number of people must be thanked for technical discussions and/or review-

ing some of my early design notes and drafts of this dissertation. They include

Jean Bacon, Mike Burrows, Martyn Johnson, John Line, Mark Lomas, Nick

Maclaren, and Julian Pardoe at Cambridge, Sape Mullender at Cambridge and

the Centre for Mathematics and Computer Science at Amsterdam, and Dileep

Bhandarkar, Morrie Gasser, Judy Hall, B. J. Herbison, Marty Hurley, Cli� Kahn,

Alan Kotok, Drew Mason, Simon Steeley, and Joe Tardo at Digital. Richard

Jordan particularly helped in the presentation of the cross-domain call optimiza-

tion. Beverly Elliott and Martha Moore, librarians at Digital, and Ann Clocksin,

librarian at the Computer Laboratory, deserve particular thanks for help with

literature searching and ordering very obscure technical reports and articles from

all over the world.

The Digital Equipment Corporation was most generous in funding my re-

search under its Graduate Engineering Education Program (GEEP). I must

thank Shirley Stahl, the manager of GEEP, for making it possible for me to

come to Cambridge, and Dolores Miller and Terry Sarandrea for all their help

in handling the various crises that happen to someone working several thousand

miles away. Digital's o�ce in Newmarket was most generous to provide comput-

ing and technical support for network communications. Particular thanks must

go to Martin Black, Kim Burgess, Pete Darby, and Terry Young.

Finally, I must thank my wife, Carol-Lynn, for her constant support through-

out my research and for enduring several transatlantic moves. She also provided

editorial and technical assistance throughout my research. In particular, she

made extensive modi�cations to the T

E

Xindex program that produced the index

to this dissertation, designed a METAFONT version of the Digital logo, drew several

of the �gures in the dissertation, and extensively reviewed and commented on

the text.

The dissertation was prepared using Leslie Lamport's document preparation

system, L

a

T

E

X. Several of the �gures were drawn with T

E

Xdraw, a line drawing

package written by Tom Taylor, a student of Hank Levy's, at the University of

Washington. The index was generated with T

E

Xindex, originally implemented

by Terry Winograd, Bill Paxton, Skip Montanaro, and Charles Karney, and

signi�cantly improved by Carol-Lynn Covitt Karger.

12

DECLARATION

I hereby declare that this dissertation is not substantially the same as any that

I have submitted for a degree or diploma or other quali�cation at any other

University. I further state that no part of this dissertation has already been or is

being concurrently submitted for any such degree, diploma or other quali�cation.

This dissertation is the result of my own work and includes nothing which is the

outcome of work done in collaboration.

DISCLAIMER

This dissertation presents the opinions of its author, which are not necessarily

those of the Digital Equipment Corporation. Opinions expressed in this disser-

tation must not be construed to imply any product commitment on the part of

the Digital Equipment Corporation.

TRADEMARKS

METAFONT is a trademark of Addison Wesley Publishing Company.

T

E

X is a trademark of the American Mathematical Society.

UNIX is a registered trademark of the American Telephone and Telegraph Company.

AT&T is a trademark of the American Telephone and Telegraph Company.

CRAY is a registered trademark of CRAY Research, Inc.

CLIPPER is a trademark of Fairchild Semiconductor Corporation.

Gould and UTX/32S are trademarks of Gould, Inc.

IBM is a registered trademark of the International Business Machines Corporation.

Intel is a registered trademark of the Intel Corporation.

KeyKOS is a trademark of Key Logic, Inc.

Microsoft is a registered trademark of the Microsoft Corporation.

XENIX is a trademark of the Microsoft Corporation.

UNIVAC is a registered trademark of the Sperry Corporation.

SunOS is a registered trademark of Sun Microsystems, Inc.

Ada is a registered trademark of the U.S. Government Ada Joint Program O�ce.

Zilog is a registered trademark of Zilog, Inc.

Z8000 is a trademark of Zilog, Inc.

The following are trademarks of the Digital Equipment Corporation:

DATATRIEVE MicroVAX PDP-11 VAX VAX-11/785

DEC MicroVAX-II PDP-11/45 VMS VAX 8550

DEC/MMS PDP ULTRIX VAX/VMS VAX 8600

DECtape PDP-1 ULTRIX-32 VAX-11/730 VAX 8800

DECtape II PDP-10 UNIBUS VAX-11/780 DIGITAL

13

SUMMARY

This dissertation examines two major limitations of capability systems: an

inability to support security policies that enforce con�nement and a reputation

for relatively poor performance when compared with non-capability systems.

The dissertation examines why conventional capability systems cannot en-

force con�nement and proposes a new secure capability architecture, called

SCAP, in which con�nement can be enforced. SCAP is based on the earlier

Cambridge Capability System, CAP. The dissertation shows how a non-discre-

tionary security policy can be implemented on the new architecture, and how the

new architecture can also be used to improve traceability of access and revocation

of access.

The dissertation also examines how capability systems are vulnerable to dis-

cretionary Trojan horse attacks and proposes a defence based on rules built into

the command-language interpreter. System-wide garbage collection, commonly

used in most capability systems, is examined in the light of the non-discretion-

ary security policies and found to be fundamentally insecure. The dissertation

proposes alternative approaches to storage management to provide at least some

of the bene�ts of system-wide garbage collection, but without the accompanying

security problems.

Performance of capability systems is improved by two major techniques.

First, the doctrine of programming generality is addressed as one major cause of

poor performance. Protection domains should be allocated only for genuine se-

curity reasons, rather than at every subroutine boundary. Compilers can better

enforce modularity and good programming style without adding the expense of

security enforcement to every subroutine call. Second, the ideas of reduced in-

struction set computers (RISC) can be applied to capability systems to simplify

the operations required. The dissertation identi�es a minimum set of hardware

functions needed to obtain good performance for a capability system. This set

is much smaller than previous research had indicated necessary.

A prototype implementation of some of the capability features is described.

The prototype was implemented on a re-microprogrammed VAX-11/730 com-

puter. The dissertation examines the performance and software compatibility

implications of the new capability architecture, both in the context of conven-

tional computers, such as the VAX, and in the context of RISC processors.

14

Part I

Background

15

Chapter 1

Introduction

1.1 History of the Project

There has been a long-standing debate in the computer security community over

the relative merits of capability-based systems and access-control-list systems.

This dissertation has evolved from a particular incident that occurred in late

1981 when Prof. Maurice V. Wilkes arranged a meeting between Dr. Andrew

Herbert and myself to discuss whether one could make capability-based sys-

tems adequately secure.

1

At the time, I was squarely in the access-control-list

camp, based on my experiences designing security kernels and non-discretion-

ary controls. (See Section 3.1.2 for a de�nition of non-discretionary controls.)

Prof. Wilkes and Dr. Herbert were in the capability camp, based on their work

in the design of the Cambridge Capability System (CAP). I entered the meeting

concerned that capabilities could not adequately solve the con�nement problem,

described in Section 7, while Dr. Herbert entered the meeting convinced that ca-

pabilities were su�ciently powerful to model whatever was needed. We left the

meeting agreeing that conventional capability systems did have serious weak-

nesses, but that a new secure capability architecture was possible that would

solve not only the con�nement problem, but also many other problems of au-

ditability and performance. The immediate result of the meeting was a paper

that we jointly published [119] in 1984, and the long term result was that I came

to the University of Cambridge to do research on the detailed design of a system

to implement the new capability scheme, with Dr. Herbert as my supervisor.

This dissertation is the result of that research.

The principal goal of the dissertation is to describe the implementation of

a modi�ed capability architecture that can achieve much higher levels of secu-

rity than had been possible with conventional capability systems. The resulting

1

The meeting was held in Digital Equipment Corporation's Corporate Research Group,

where Prof. Wilkes and I worked, he having joined Digital upon retiring from the University

of Cambridge.

17

system should be capable of achieving at least an A1 security rating from the

National Computer Security Center [59]. Indeed, the use of capabilities and pro-

tection domains should help in achieving ratings beyond the current maximum

A1. (Appendix A contains a brief summary of the computer security evaluation

criteria.)

The second goal of the dissertation is to show how the new capability ar-

chitecture achieves an acceptable level of speed. This goal was also inspired by

Prof. Wilkes, who asked me why I expected a secure capability architecture to

perform any better than previous capability systems that had a reputation for

poor performance. This dissertation will show how the use of reduced instruction

set computer (RISC) technology will aid in not only making the system more

secure, but also in providing a much higher level of performance than was pos-

sible in previous capability architectures. Related to the issue of performance

improvement is the question of how much hardware support is needed for a

capability-based system. The dissertation argues that much less hardware sup-

port is needed than was previously assumed. The principal need is for hardware

support for fast context switching and little else.

1.2 What is SCAP?

The new secure capability architecture is called SCAP, because it is a secure

derivative from the Cambridge CAP system. The basic di�erence between SCAP

and a conventional capability system is that in a conventional system, a capability

is necessary and su�cient to gain access to an object, while in SCAP, a capability

is necessary but not su�cient to gain access to an object. By this simple change

in the de�nition of a capability, SCAP can achieve much higher levels of security

and, in particular, solve the con�nement problem, as de�ned in Section 3.1.1,

that has always been a major di�culty for capability systems.

The dissertation examines SCAP in two contexts, a description of the SCAP

architecture, and an implementation of SCAP on a VAX computer. The ar-

chitecture of SCAP is based on the current theories of reduced instruction set

computers (RISC), while the VAX implementation is particularly aimed at pre-

serving software compatibility with existing operating systems.

1.3 Overview of Experimental Environment

I have used the VAX-11/730 processor as a tool to measure the performance of

some of the enhancements described in this dissertation. The VAX-11/730 is

attractive for this purpose, because many of the enhancements must be imple-

mented in microcode, and the VAX-11/730 is particularly easy to microcode.

As described in more detail in Appendix E, the VAX-11/730 CPU (called the

18

KA730) is vertically microprogrammed and the microcode executes from a writ-

able-control store (WCS) that can be easily reloaded from tape. Thus, it was

relatively easy to microcode the two major experiments described in this disser-

tation: hashed page tables and cross-domain-call optimizations.

Two di�erent VAX-11/730 systems were actually used for the experiments:

one in the University of Cambridge Computer Laboratory, and the other in

Digital's Secure Systems Development Group. The hashing experiments of Sec-

tion 16.6 were run at Digital's facility, and the cross-domain-call experiments

of Chapter 18 were run at the University of Cambridge Computer Laboratory.

Certain of the cross-domain-call experiments were also run on a VAX 8550 at

Digital's facility.

1.4 Plan of the Dissertation

The dissertation is broken into four parts. Part I is background material, cov-

ering the need for computer security, a survey of computer security models, and

the principles of capability systems. Part II is a summary of the major fea-

tures of the SCAP architecture and detailed de�nition of how SCAP deals with

protected subsystems, domains, and processes. Part III addresses improving se-

curity in capability systems. It describes how the SCAP architecture solves the

con�nement problem and then looks in general at traceability of access discre-

tionary Trojan horses, commercial data-integrity models, and revocation, secure

garbage collection. Part IV focuses on performance and addresses the prob-

lems of programming generality, translation-bu�er design, page-table structures,

optimization of cross-domain calls, and fault and interrupt handling. Finally,

the dissertation concludes with a number of appendices that contain tutorial

and supplemental material on a number of topics covered in the main body of

the dissertation. The last three appendices present design sketches for future

research on SCAP and annotated code listings.

19

20

Chapter 2

The Need for Security

At this stage in the development of the computer industry, there is little disagree-

ment that security and protection of information are essential to many computer

systems. The popular press is �lled with reports of computer break-ins, and,

with the publication of beginners' handbooks [46, 133], the techniques of system

penetration are widely accessible. Breaches of computer security have also been

a popular topic in �ction, the earliest example being a 1953 short story by Poul

Anderson [8].

2.1 Classes of Vulnerabilities

Computer security systems have many forms of vulnerabilities. This section

summarizes the major types of vulnerabilities that will be discussed in the dis-

sertation.

2.1.1 Browsing

The simplest and most common threat is browsing. Browsing is an unauthorized

user experimenting with a computer system to see what information can be

retrieved by simply asking. For example, a user may attempt to read other

users' �les to see what they contain. An unauthorized individual might try

to guess passwords by connecting over a dial-up line or through a computer

network. A wiretapper might attempt to listen to on-going communications

either to terminals or other computers in a local or wide area network.

Most of the published \hacker" incidents have been based on browsing.

Browsing attacks can be countered with techniques such as �le system controls,

good password management, and encryption of communications lines. Conse-

quently, this dissertation will not address such attacks, but will assume that

good password management is in place, that all communications lines are prop-

erly encrypted, and that all users have been properly identi�ed to the system.

21

2.1.2 Unauthorized Acts of Authorized Individuals

The largest computer security losses today occur due to unauthorized actions of

properly authorized individuals, that is, when insiders exploit a computer system

for their own gain. The insider will have access to some set of computer functions

as part of his or her job. However, the insider may enter false information

into the computer in such a way that he or she can pro�t from the results.

Poul Anderson's [8] earliest example of computer security penetration in �ction

described an insider penetration.

It is di�cult to distinguish between authorized and unauthorized actions of

legitimate users, but there are some attempts at developing commercial data-

integrity models to deal with this problem. This area will be discussed in detail

in Chapter 10.

2.1.3 Direct Penetration

Direct penetration exploits aws that may be present in either the hardware

or software implementation of a computer-security system. If a penetrator can

locate a aw in the implementation, then the penetrator can exploit that aw to

gain access to sensitive information. Jim Anderson developed one of the earliest

taxonomies of direct penetrations in the now-classic 1972 Air Force computer-

security-panel report [6]. Direct penetrations of most major computer systems

have been reported in the literature, as shown in Table 2.1.

1

Computer Operating System Citation

Burroughs B6700 MCP [232]

DEC PDP-10 BBN Tenex [1]

DEC VAX VAX/VMS [47, pp. 113{114]

Honeywell H6000 GCOS [6, 186]

Honeywell H645/H6180 Multics [121, 38]

IBM System/360 OS/360 [1]

IBM System/370 MVS [170]

IBM System/370 VM/370 [10]

IBM System/370 MTS [90]

IBM System/38 System/38 OS [148]

Sperry 1100 1100 Series OS [1]

various AT&T UNIX [82]

Table 2.1: Published Penetration Successes

1

Systems not mentioned in the table should not be assumed to be invulnerable to direct

penetration. Rather, reports of their penetrations have simply not been published in the open

literature.

22

It is interesting to note that the extensive literature on reported computer

crimes includes almost no cases in which the penetrator used a direct penetration

of the operating system.

2

This is not because direct penetrations do not exist or

direct penetrations are terribly di�cult to �nd, but rather because the existing

procedural security controls in most systems are so ine�ective that simple brows-

ing attacks will su�ce in most cases. Likewise, application controls are generally

so weak that authorized individuals can easily take unauthorized actions with

legitimate programs, rather than resorting to a technically sophisticated direct

penetration. As the simpler attack paths are closed, the direct penetration of

the operating system will be more commonly exploited.

The primary defence against direct penetrations is the use of security kernel

technology to give some assurance that the operating system security controls are

in fact implemented correctly. Security kernels will be discussed in Section 2.2.3.

A principal goal of this dissertation is the use of capability-based systems to

support the implementation of security kernels.

It is frequently argued that direct penetrations can be avoided by preventing

most on-line programming and restricting users to a simpli�ed higher level lan-

guage or to a simple query-based transaction system. However, Jim Anderson [6]

showed the vulnerability of even highly restricted languages in a penetration of

the Honeywell H635/GCOS III Time Sharing System. He was restricted to a

minimal subset of FORTRAN IV that barred the use of subroutines and all I/O

statements. However, Anderson gained illegal access to the system password �le,

using only FORTRAN IV arithmetic-assignment statements and ASSIGNED

GOTO statements.

A query-only transaction system would not be vulnerable to Anderson's use

of ASSIGNED GOTO, but it could be attacked through the clandestine software

modi�cation attacks described in the next section.

2.1.4 Trap-Door and Trojan-Horse Attacks

Much more insidious than the direct penetrations are the trap-door and Trojan-

horse attacks that involve clandestine software (or hardware) modi�cations. In

a direct penetration, an attacker must discover a aw in the security system and

then must �nd a way to exploit the aw. With a trap door or a Trojan horse, the

attacker uses a custom-designed aw that was previously installed in the system.

The distinction between traps doors and Trojan horses is subtle and not of great

importance|a trap door is a modi�cation to system supplied software, perhaps

introduced by the computer system developers. A Trojan horse is a modi�cation

to software that the user of a system borrows or purchases to add on to his

existing system.

2

Probably the only exception is a very recent incident involving VAX/VMS systems [47,

pp. 113{114].

23

The term Trojan horse was �rst used in a computer security context by

Dan Edwards [6]. Schell and I [121] demonstrated the feasibility of trap-door

insertion by surreptitiously introducing a benign trap door into the standard

Multics operating system. The normal Multics distribution system then delivered

the trap door to actual customer sites. We also hypothesized the existence of

compiler trap doors that could install operating system trap doors and preserve

their existence across re-compilations of the operating system or the compilers

themselves. In his Turing Award Lecture, Thompson [210] discussed an actual

trap door in the UNIX C compiler that would preserve its own existence and

would plant a trap door in the UNIX operating system.

3

An even more dangerous form of Trojan horse is the self-replicating virus.

The virus [43] is a clandestine software modi�cation that installs copies of itself

on other machines and thus spreads itself, much as real viruses do. The virus lies

dormant in a computer system, hidden in an applications program or a utility.

Whenever the infected program is run, the virus inspects its environment to see

if it can spread itself. For example, if the virus notices a new disk mounted

on the system, it might copy itself there. If the virus is run by a privileged

user on a time-sharing system, the virus might copy itself from an unprivileged

applications program into a privileged portion of the operating system.

Desmedt [60] has hypothesized the existence of viruses in hardware that

are propagated by software viruses in the CAD programs used to design chips.

While interesting, such CAD-based viruses seem less feasible than Thompson's

C-compiler trap door, because unlike an operating system, a particular chip is

only run through a CAD program a relatively few times. Then, the masks are

created and the chips are produced. Planting a Trojan horse requires advance

knowledge of the design of the target, be it a chip or an operating system. Be-

cause the chip is run through the CAD system less frequently than an operating

system is recompiled, the window of opportunity to plant the Trojan horse is

much larger for the operating system.

Because they are custom-designed security penetrations, Trojan horses can

easily defeat the security of even restricted query-only systems. For example, a

Trojan horse or a trap door located in the terminal-input routine of an operating

system could wait for a particularly unlikely sequence of characters to be typed

and then accept arbitrary commands from the terminal. Similarly, a network-

driver routine could scan incoming packets for a particular bit pattern. When

the pattern was located, the network driver (which runs in the most privileged

part of most operating systems) would treat the remainder of the packet as

binary machine code and begin executing it. Thus, the Trojan horse would

function as a password-protected bootstrap loader that would allow a penetrator

arbitrary access to the target system, no matter how restricted the applications

3

The \unknown Air Force document" that Thompson cites is by Karger and Schell [121].

24

were supposed to be. Schell and I [121, Appendix C] demonstrated that such a

bootstrapping Trojan horse would require no more than a ten-word modi�cation

to the object code of an operating system.

Until recently, the threat of Trojan-horse attack had remained a hypothesis

of security researchers and authors of thriller novels [30], but no real attacks

had occurred. Recently, however, there have been numerous incidents of actual

Trojan-horse and viral attacks on public-domain microcomputer software [152],

and articles in computer journals intended for the general reader [235] have con-

tained extremely detailed instructions on how to build self-replicating Trojan

horses and viruses. Very recently, a commercial software package was found to

have been infected by a virus [175]. Thus, the hypothetical threat of Trojan

horses in commercial software that Schell and I demonstrated in 1973 [121] has

become the reality of 1988. The Trojan-horse threat can no longer be dismissed

as a concern of only the most sensitive system managers.

One of the primary goals of this dissertation is to demonstrate how to deal

with the Trojan horse threat in a capability-based system. I will show how

traditional capability-based systems are vulnerable to Trojan horse attacks, and

how a modi�ed capability architecture can deal with both non-discretionary (in

Chapter 7) and discretionary (in Chapter 9) Trojan horses.

2.2 Development of Secure Systems

Most security models are based on Lampson's access matrix [132] in which the

rows of the matrix represent the active entities or subjects

4

of the system, and

in which the columns of the matrix represent the passive information-containing

objects of the system. Figure 2.1 shows a typical access matrix. The rights that

a subject holds to an object can be found at the intersection of the row and

column belonging to the subject and object. Thus in the example, Subject 1 has

read and write permission to Object 2, but Subject 2 has only read permission,

and Subject N has no permission at all to Object 2.

Lampson's matrix appears quite simple, but in practice its interpretation

can be quite complex, because the categories of objects must often include the

subjects and the access-matrix entries, themselves. This complexity comes from

the desire to control not just access to �les, but also access rights to control jobs

and processes and access rights to change other access rights. Furthermore, in

any real system, the access matrix would be very sparse, as most objects fall into

two classes: private and accessible by only one or a small number of subjects,

or public and accessible to everyone. Thus in practice, computer systems do not

4

Lampson actually used the term domain rather than subject. The term subject was �rst

used in this context by Graham and Denning [81].

25

Object 1 Object 2 � � � Object M

Subject 1 R RW � � � null

Subject 2 null R � � � RW

.

.

.

Subject N RW null � � � R

Figure 2.1: Lampson's Access Matrix

store their access rights in matrix form. Instead, they use some form of access

control list or capability representation.

2.2.1 Access-Control-List Systems

Access-control-list (ACL) systems view Lampson's access matrix by columns.

An access control list is attached to each object and consists of a list of subjects

and their associated access rights. When a subject wishes to gain access to an

object, the system must look up the subject in the access control list to determine

whether or not to grant access. Most systems compress the ACL by assuming

that a subject who is not mentioned gets no access rights, and by providing a

mechanism to name groups of users in a single entry. Group names also make

it easy to add or remove a user from the ACL's of many objects in a single

operation, avoiding the need to scan many objects. Full access control lists were

�rst implemented for Multics [49] and for the Titan multi-access system [12].

In one way or another, an access-control-list system must check the ACL on

every reference to an object. Obviously, such continuous checking could be ex-

tremely slow, unless some form of caching were provided. The Multics approach

is to cache the results of an ACL check in the protection bits of a segment de-

scriptor word (SDW). The hardware then performs the required protection check

on every memory reference. By contrast, the UNIX approach is to check the ACL

at the time a �le is opened and to record the permissions in a software table of

open �les. That table is then checked on every disk I/O operation.

2.2.2 Capability systems

Capability systems view Lampson's access matrix by rows. Each subject possesses

a list of objects to which the subject has access. The entries in the list are called

capabilities. Each capability names the object and describes where the object is

stored and what access rights are to be granted to the possessor of this capability.

In a conventional capability system, possession of a capability is both necessary

and su�cient to gain access to an object.

26

Capabilities closely resemble tickets or keys in the physical world. A capabil-

ity can be passed from one subject to another, and copies may be made of the

capability. However, the system must ensure that capabilities cannot be forged

or tampered with. Dennis and Van Horn [58] originally proposed the concept of

capabilities in 1966. Since that time, a number of software capability systems

have been implemented, including the MIT PDP-1 time-sharing system [3], CAL

for the CDC 6400 [130], and HYDRA for the C.mmp multiprocessor [238]. The

early software implementations of capabilities had serious performance problems,

principally because of either a total lack of virtual address translation hardware

or too small a virtual address space. A number of hardware capability systems

also have been implemented, including the Plessey System 250 [48], the Cam-

bridge CAP computer [231], the IBM System/38 [104], the Intel 432 [169], and

Flex [72]. See Chapter 4 for a brief tutorial on capability systems.

2.2.3 Security Kernels

The history of direct penetrations and Trojan-horse attacks, described in Sec-

tions 2.1.3 and 2.1.4, makes it evident that simply implementing an access-

control-list system or a capability system is not su�cient to support a high

level of security. The U.S. Air Force sponsored a Computer Security Technology

Planning Study in 1972 to examine the construction of highly secure computer

systems. The principal result [6] was the recommendation of a new style of secure

operating system, called a security kernel.

The panel identi�ed three requirements for a security kernel:

� The kernel must mediate all references to data.

� The kernel must protect itself against tampering.

� The kernel must be simple enough that independent evaluators can assess

whether it will operate correctly.

The �rst requirement can be met by completely virtualizing all references to

objects, that is, by making all references to objects indirect.

5

Virtual memory

particularly helps by making protection checks possible on all memory references

at relatively low performance cost. Resistance to tampering can be achieved by

isolating the kernel in its own protection domain. Smith [200] and Tangney [207]

have suggested that the CPU support a minimum of three protection domains,

one for the kernel, one for the rest of the operating system, and one for user code.

Finally, assurance of correct operation can be aided by making the security kernel

much smaller and simpler than conventional operating systems and by applying

5

Prof. David Wheeler has suggested that most problems in computing can be solved by

adding a level of indirection.

27

the best techniques of modular design and formal speci�cation and veri�cation

to assist in the design and implementation assurance.

The �nal requirement, that the security kernel be simple enough to assess

correctness, is the hardest to achieve. Although security kernels are supposed to

be small and simple, in practice they have been quite large [185]. Implementing

the security kernel as a collection of small protection domains would provide

better structuring and provide additional con�dence in its e�ectiveness. Each

of those domains could be analyzed independently, making the overall analysis

of the reference monitor easier. Janson [108] originally suggested implementing

a security kernel as a set of type managers in separate protection domains. At

least two kernels have been developed using levels of abstraction within a single

protection domain [187, 120]. These kernels have not had adequate protection

between the levels of abstraction. A particular level that malfunctioned could

arbitrarily destroy or subvert other levels. Placing the di�erent levels of the

security kernel in separate protection domains [166, 28, 119] can achieve two

things. First, the separation of levels can limit the spread of damage caused by

a kernel malfunction. Second and more important, separating the levels should

make assurance of correct implementation easier by limiting the amount of code

that must be proven or manually inspected at any one time.

This dissertation examines how a capability-based architecture that supports

protected subsystems can be used to assist in the construction of security kernels.

Section G examines how a security kernel could be subdivided into a collection of

protected subsystems, to limit damage propagation if a part of the kernel should

fail and to assist in the formal veri�cation of the kernel's implementation.

2.3 Assumptions

The remainder of this dissertation is based on a number of security assumptions

stated here. These assumptions limit the scope of the dissertation to certain

interesting problems. However, they are not unreasonable for practical secure

systems in use today.

1. Users connect to systems via terminals or networks, and there is adequate

physical security for CPUs and disk drives, etc. O�ce workstations in-

troduce serious physical security problems that are not addressed in this

dissertation.

2. Computer hardware is su�ciently reliable that the chance of random fail-

ures leading to security problems is negligible.

3. Communications lines are either physically protected or encrypted to pre-

vent any kind of tapping or tampering.

4. User authentication techniques, whether based on passwords or physical

characteristics, are adequate to correctly identify users.

28

5. Systems management and operations sta� are fully trustworthy.

6

6. Each user can be assumed trustworthy to some speci�ed level.

7. Security kernel software can be developed and distributed in a tamper-

resistant manner.

8. Other software may be subject to unauthorized tampering.

Thus, the focus of the dissertation is on internal software security of systems,

rather than on physical, communications, or procedural security.

6

The trustworthiness of systems management and operations sta� is the least credible of

the assumptions. The Clark and Wilson commercial-integrity model, discussed in Section 3.2.3

provides a little help, but this area remains a fundamentally unsolved problem.

29

30

Chapter 3

Models of Security

A formal model of security is essential when reasoning about the security of

a system. Without an unambiguous de�nition of what security means, it is

impossible to say whether a system is secure. Security models can be broken

down into three major categories, listed in order of complexity:

� models that protect against unauthorized disclosure of information,

� models that protect against unauthorized tampering or sabotage, and

� models that protect against denial of service.

Protection against disclosure of information has been understood the longest

and has the simplest models. Protection against tampering or sabotage has been

less well understood and appropriate models are only now under development.

Protection against denial of service is not well understood today, and there may

be Turing-machine halting arguments against ever solving denial of service. This

chapter briey summarizes the security models that are used throughout the

remainder of the dissertation and discusses why the particular models have been

chosen.

3.1 Preventing Information Disclosure

The �rst requirement of most security systems is preventing unauthorized dis-

closure of information. Indeed, the basic point of Lampson's access matrix and

the various access-control-list and capability-based systems that have been im-

plemented is to control who may have access to which objects. This section

examines two classes of mechanisms: discretionary access controls and non-dis-

cretionary access controls.

31

3.1.1 Discretionary Access Controls

Discretionary access controls are the commonly available security controls based

on the fully general Lampson access matrix. They are called discretionary, be-

cause the access rights to an object may be determined at the discretion of the

owner or controller of the object. Both access-control-list and capability systems

are examples of discretionary access controls. The presence of Trojan horses

in the system can cause great di�culties with discretionary controls, because

a Trojan horse could surreptitiously change the access rights on an object or

could make a copy of protected information and give that copy to some unau-

thorized user. All forms of discretionary controls are vulnerable to this type of

Trojan-horse attack. A Trojan horse in an access-control-list system could sur-

reptitiously change the ACL of an object. A Trojan horse in a capability system

could make a copy of a capability for a protected object and then store that

capability in some other object to which a penetrator would have read access.

In both cases, the information is disclosed to an unauthorized recipient.

Lampson [131] has de�ned the con�nement problem as determining whether

there exists a series of operations in a security system that will ultimately leak

some information to some unauthorized individual. Harrison, Ruzzo, and Ull-

man [89] have shown that there is no solution to the con�nement problem

for fully-general, discretionary access controls, such as either a general access-

control-list or capability system. Their argument is based on modelling the state

transitions of the access matrix as the state transitions of a Turing machine.

They show that solving the con�nement problem is equivalent to solving the

Turing-machine halting problem.

The paths over which a Trojan horse leaks information are called covert chan-

nels. Covert channels can be divided into two major categories: storage channels

and timing channels. Information can be leaked through a storage channel by

changing the values of any of the state variables of the system. Thus, contents of

�les, names of �les, and amount of disk space used are all examples of potential

storage channels. A Trojan horse can leak information through a storage channel

in a purely asynchronous fashion. There are no timing dependencies.

By contrast, information can be leaked through a timing channel by modifying

the length of time that system functions take to complete. For example, a Trojan

horse could encode information into deliberate modi�cations of the system page-

fault rate. Timing channels all use synchronous communication and require some

form of external clocking.

3.1.2 Non-Discretionary Access Controls

Non-discretionary access controls have been developed to deal with the Trojan

horse problems of discretionary access controls. The distinguishing feature of

non-discretionary access controls is that the system manager or security o�cer

32

may constrain the owner of an object in determining who may have access rights

to that object.

Lipner [143] and Denning [56] have shown that for lattice security models,

unlike for fully general access matrices, it is possible to solve the con�nement

problem. All non-discretionary controls, to date, have been based on lattice

security models.

3.1.2.1 Elements of the Lattice Model

A lattice security model consists of a set of access classes that form a partial

ordering. Any two access classes may be less than, greater than, equal to, or not

ordered with respect to one another. Two access classes that are not ordered

are called disjoint. Furthermore, there exists a lowest access class, called system

low, such that system low is less than or equal to all other access classes, and

there exists a highest access class, called system high, such that all other access

classes are less than or equal to system high.

A very simple lattice might consist of two access classes: LOW and HIGH.

LOW is less than HIGH. LOW is system low, and HIGH is system high. A

slightly more complex example might be a list of sensitivity levels, such as UN-

CLASSIFIED, CONFIDENTIAL, SECRET, and TOP SECRET. Each level in

the list represents data of increasing sensitivity.

There is no requirement for a strict hierarchical relationship between access

classes. The U.S. military services use a set of access classes that have two parts:

a sensitivity level and a set of categories. Categories represent compartments of

information for which an individual must be specially cleared. To gain access to

information in a category, an individual must be cleared, not only for the sensi-

tivity level of the information, but also for the speci�c category. For example,

if there were a category NUCLEAR, and some information classi�ed SECRET{

NUCLEAR, then an individual with a TOP SECRET clearance would not be

allowed to see that information, unless the individual were speci�cally authorized

for the NUCLEAR category.

Information can belong to more than one category, and category comparison

is done using subsets. Thus, in the military lattice model, for access class A to

be less than or equal to access class B, the sensitivity level of A must be less

than or equal to the sensitivity level of B, and the category set of A must be

an improper subset of the category set of B. Since two category sets may be

disjoint, the complete set of access classes has only a partial ordering. There

is a lowest access class, fUNCLASSIFIED{no categoriesg, and a highest access

class, fTOP SECRET{all categoriesg. The access classes made up of levels and

category sets form a lattice.

33

Many other security policies also form lattices. One could de�ne other lattices

that model commercial security requirements. Section 3.2.2 describes one such

commercial security lattice.

The remainder of this dissertation assumes the use of the military lattice,

whenever non-discretionary controls are mentioned, unless the use of other lat-

tices is explicitly noted.

3.1.2.2 Defeating Trojan Horses

Lattice models were �rst developed at the MITRE Corporation by Bell and

LaPadula [15, 16, 17] and at Case Western Reserve University by Walter [225]

to formalize the military security model and to develop techniques for dealing

with Trojan horses that attempt to leak information.

1

At the time, no one knew

how to deal with Trojan horses at all, and it came as quite a surprise that two

quite simple properties could prevent a Trojan horse from compromising sensitive

information.

First, the simple security property says that if a subject wishes to gain read

access to an object, the access class of the object must be less than or equal to the

access of the subject. This is just a formalization of military-security-clearance

procedures that one may not read a document unless one is properly cleared.

Second, the con�nement property

2

requires that if a subject wishes to gain

write access to an object, the access class of the subject must be less than or

equal to the access class of the object. The net e�ect of enforcing the con�ne-

ment property is that any Trojan horse that attempts to steal information from a

particular access class cannot store that information anywhere except in objects

that are classi�ed at an access class at least as high as the source of the infor-

mation. Thus, the Trojan horse could tamper with the information, but it could

not disclose the information to any unauthorized individual. A more detailed

discussion of the con�nement property and its interpretation in the context of a

practical time-sharing system can be found in [14]. A survey on formal security

models in general can be found in [134].

3.1.3 Retro�tting Non-discretionary Security

Adding non-discretionary controls to existing operating systems has been the

topic of much research and development since 1973. Over the years, two basic

1

The non-discretionary models were based on earlier work on the ADEPT{50 operating

system [227] and on the security enhancements to the WWMCCS-GCOS operating system [146,

pages 147{148]. Neither of those systems could solve the Trojan-horse problem, although

ADEPT{50 contained a partial solution.

2

The con�nement property was called the

*

{property in [16]. It was so named as a place

holder until a better name could be found. No better name was found prior to publication,

so

*

{property was used, and much of the literature on non-discretionary controls continues to

use the name

*

{property.

34

approaches have been taken that result in relatively secure systems that retain

a high level of compatibility with existing code. These approaches are the incre-

mental addition of features and the kernel/emulator approach.

3.1.3.1 Incremental Addition of Features

Incremental addition of features is simply evolving the existing operating system

to add non-discretionary security controls. Such modi�cations may be relatively

easy or di�cult, depending on how well the operating system virtualizes the real

resources. The extent to which resources are not virtualized is usually a good

predictor of where a system might have signi�cant storage-channel problems.

The drawback of incremental addition of features is that one can never achieve

a high level of assurance that the features are correctly implemented, because

existing operating systems are so large and complex (typically millions of lines

of code). As a result, incremental addition of features can only get an operating

system up to a B2 security rating [59].

The classic example of incremental addition of security features is the Multics

Access Isolation Mechanism (AIM) [229] that has received a B2 rating. More

recent e�orts at incremental addition of security features include the VAX/VMS

security enhancements [23] targeted for a possible B1 rating. There have been

several e�orts to incrementally add security features to the UNIX operating

system, including Linus IV [129], the IBM Secure XENIX system [79], and Sun's

Secure SunOS [4]. The incremental improvements to UNIX are typically aimed

at a B1 or B2 rating, at most.

3.1.3.2 Kernel/Emulator Approach

The kernel/emulator approach to adding non-discretionary security is aimed at

a much higher level of security, typically a B3 or A1 security rating from the

National Computer Security Center. The kernel/emulator approach depends on

there being a large quantity of code that is not security relevant in the most

privileged domain of most operating systems. The operating system is replaced

by a security kernel that runs in the most privileged domain and an operating-

system emulator that runs in a less-privileged domain than the security kernel,

but which is still protected from user programs. Figure 3.1 shows a typical

kernel/emulator system.

Just as the Multics AIM system is the classic example of incremental ad-

dition of security, the Multics Guardian project is the classic example of a ker-

nel/emulator design [190]. Funding limitations never permitted completion of the

Multics kernel design. The kernel/emulator approach has been used with vary-

ing degrees of success for several secure-UNIX systems, including the MITRE

Secure UNIX [236], UCLA Secure UNIX [174], and KSOS [153]. Note that the

35

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
.
..
..
..
...
...
....
..............

....
...
..
..
..
..
..
.
..
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
..
..
..
..
..
...
....
................

....
...
..
..
..
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.

..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
..
.
.
..
.
..
.
..
..
.
..
..
..
..
..
...
..
...
...
....
....
.......

................
.......

....
....
...
...
..
..
...
..
..
..
.
..
..
.
..
.
..
.
..
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
..
.
.
..
.
..
.
..
.
..
..
.
..
..
..
..
...
..
...
...
...
.....
.....
.....................

.....
.....
...
...
...
..
...
..
..
..
..
.
..
..
.
..
..
.
.
..
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.

.

.

.
.
.

.

.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
..
.
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
..
..
.
..
..
..
..
..
...
..
..
...
...
...
...
...
....
.....
......

.........
..............

.........
......

.....
....
...
....
..
...
...
..
..
...
..
..
..
..
..
.
..
..
..
.
..
.
..
..
.
.
..
.
..
.
.
..
.
.
..
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.

.

.
.
.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
..
.
.
..
.
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
..
...
..
...
...
...
...
....
....
......
........
....................

........
......
....
....
...
...
...
...
..
...
..
..
..
..
..
..
..
..
..
.
..
..
.
..
.
..
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

.

.
.
.
.
.

.
.
.
.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Security

Kernel

O/S Emulator

User Programs

Figure 3.1: Kernel/Emulator Approach

kernel/emulator secure-UNIX systems were able to achieve a signi�cantly higher

security rating than the incremental-addition systems, listed in Section 3.1.3.1.

All of the kernel/emulator designs have su�ered from two problems. First,

the introduction of a security boundary between the emulator and the kernel

can badly a�ect performance. Second, and perhaps more crucial, the design

and implementation of an operating-system emulator is as large and complex

a task as building the operating system itself. If the non-secure version of the

operating system continues to evolve, the emulator must track new versions of

the operating system. The software-development resources required to build and

maintain such an emulator can be prohibitively large.

3.2 Preventing Tampering and Sabotage

The military's emphasis on the lattice security models, as typi�ed by the require-

ments of the National Computer Security Center's evaluation criteria [59], has

often been criticized as neglecting the issues of information tampering. However,

the history of the development of the lattice security model shows that the mil-

itary services have always been concerned both with unauthorized release and

tampering. When the original work on the lattice security model was done at

the MITRE Corporation [15] and at Case Western Reserve University [225], no

one knew how to make formal statements about security policy. Indeed, protec-

tion against Trojan horses was considered an unsolvable problem at the time,

and security researchers (including this author) were all quite surprised when

the

*

{property made it possible to formalize Trojan horse protection. The later

emphasis on protecting against unauthorized release was because no one knew

how to protect against tampering but protection against unauthorized release

was understood.

36

3.2.1 Biba Integrity Model

Biba [18] later developed a model of non-discretionary integrity that is a math-

ematical dual of the Bell and LaPadula non-discretionary-security model. Biba

de�nes a set of integrity access classes that are analogous to security access

classes and de�nes simple-integrity and integrity-con�nement properties that are

analogous to the simple-security and con�nement properties. The di�erence be-

tween integrity and security is that the direction of the less-than signs are all

reversed, so that a program of high integrity is prevented from reading or execut-

ing low integrity objects that could be the source of tampering or sabotage. The

principal di�culty with the Biba integrity model is that it does not model any

practical system. Unlike the security models that developed from existing mili-

tary security systems, the Biba integrity model developed from a mathematical

analysis of the security models.

3.2.2 Lipner Commercial Integrity Model

Lipner developed a commercial integrity model [144] that uses both the non-dis-

cretionary security and non-discretionary integrity models to represent a software

development environment in a bank. It tied the integrity modeling much closer

to reality than the Biba model did, but it was still quite complex. No e�ort has

been made to actually implement the Lipner commercial integrity model.

3.2.3 Clark and Wilson Commercial Integrity Model

The most recent development in preventing tampering and sabotage is the Clark

and Wilson commercial integrity model [40]. They have proposed a model of

data integrity that they assert more accurately describes the needs of a commer-

cial application than the Bell and LaPadula lattice security model [14]. Clark

and Wilson's model focuses on two notions: well-formed transactions and sepa-

ration of duties. Separation of duties is commonly used in commercial organi-

zations to protect against fraud.

3

Clark and Wilson contrasted their work with

Lipner's commercial security interpretation of the lattice security and integrity

models [144] and concluded that Lipner's commercial model does not adequately

deal with limiting data manipulation to speci�c programs to implement the well-

formed transactions.

The Clark and Wilson model consists of a set of certi�cation and enforcement

rules to be applied to a computer system. Several entities in the system must be

de�ned.

3

Separation of duties is also a familiar concept to the military. Launch of nuclear weapons

is done under a concept of two-person control in which no one individual can ever launch a

nuclear weapon. Two separate individuals must turn separate keys simultaneously. The keys

are placed such that it is physically impossible for one person to perform the necessary actions.

37

Data is stored in two classes of objects: constrained data items (CDIs) and

unconstrained data items (UDIs). CDIs are the objects to be protected by the

Clark and Wilson model. UDIs are conventional objects whose integrity is not

assured by the model. Simple data input is a good example of UDIs.

Operations on CDIs are performed by two classes of procedures: integrity ver-

i�cation procedures (IVPs) and transformation procedures (TPs). The purpose

of IVPs is to assure that all CDIs conform to some application-speci�c model of

integrity and consistency. The purpose of the TPs is to change the set of CDIs

from one consistent state to another. The TPs must implement the notion of

well-formed transactions.

The certi�cation and enforcement rules that follow are directly quoted from

Clark and Wilson's paper [40]. (Clark and Wilson's paper gives a detailed justi-

�cation for the rules.)

C1: All IVPs must properly ensure that all CDIs are in a valid state

at the time the IVP is run.

C2: All TPs must be certi�ed to be valid. That is, they must take a

CDI to a valid �nal state, given that it is in a valid state to begin

with. For each TP, and each set of CDIs that it may manipulate,

the security o�cer must specify a \relation," which de�nes that

execution. A relation is thus of the form: (TPi, (CDIa, CDIb,

CDIc, . . .)), where the list of CDIs de�nes a particular set of

arguments for which the TP has been certi�ed.

E1: The system must maintain the list of relations speci�ed in rule

C2, and must ensure that the only manipulation of any CDI is

by a TP, where the TP is operating on the CDI as speci�ed in

some relation.

E2: The system must maintain a list of relations of the form: (User-

ID, TPi, (CDIa, CDIb, CDIc, . . .)), which relates a user, a TP,

and the data objects that TP may reference on behalf of that

user. It must ensure that only executions described in one of

the relations are performed.

C3: The list of relations in E2 must be certi�ed to meet the separa-

tion of duty requirement.

38

E3: The system must authenticate the identity of each user attempt-

ing to execute a TP.

C4: All TPs must be certi�ed to write to an append-only CDI (the

log) all information necessary to permit the nature of the oper-

ation to be reconstructed.

C5: Any TP that takes a UDI as an input value must be certi�ed to

perform only valid transformations, or else no transformations,

for any possible value of the UDI. The transformation should

take the input from a UDI to a CDI, or the UDI is rejected.

Typically, this is an edit program.

E4: Only the agent permitted to certify entities may change the list

of such entities associated with other entities: speci�cally, the

list of TPs associated with a CDI and the list of users associated

with a TP. An agent that can certify an entity may not have

any execute rights with respect to that entity.

Section 10.1 proposes an implementation of Clark and Wilson's commercial

security model using the SCAP architecture and shows how the restricted ca-

pability model combined with the lattice security model can aid in that imple-

mentation. It also discusses why Clark and Wilson's security model may present

much more di�cult problems than the relatively simple lattice security mod-

els. In the implementation, audit trails take a much more active role in security

enforcement than in previous systems. In particular, access-control decisions

are based on historical information retrieved from the audit trail, as well as on

descriptive rules of who may have access to what.

3.3 Preventing Denial of Service

The most di�cult problem of security enforcement is preventing denial-of-service

attacks. This is because there is no good de�nition of what denial of service

actually means. Furthermore, it can be argued informally that detecting and

preventing a malicious denial-of-service attack may be equivalent to solving the

Turing-machine halting problem.

4

Various systems have been devised for allocating quotas and limiting resource

expenditures in computer systems, but none of these have dealt with malicious

denial-of-service attacks that might be implemented in the form of Trojan horses

4

The argument is based on a very broad de�nition of denial-of-service attack that a Trojan

horse could deny service by entering an in�nite loop at a critical point. Since the Trojan horse

could be hidden anywhere, detecting and preventing such a denial-of-service attack might be

equivalent to the halting problem. Certainly, more restrictive de�nitions of the denial-of-service

problem would not be equivalent to the halting problem.

39

or trap doors. While the integrity models, described in Chapter 10, could provide

some assistance, denial of service remains a major unsolved problem in computer

security. This dissertation does not address denial-of-service problems, except as

they relate to security or integrity solutions.

40

Chapter 4

Principles of Capability Systems

This chapter provides a brief tutorial on capability systems and highlights their

most attractive features. More complete tutorials can be found in Saltzer and

Schroeder's [182] and Fabry's [67] papers and in the books by Levy [139] and

Gehringer [76]. In this chapter and throughout the remainder of the disserta-

tion, the focus is on capabilities within a single computer or a tightly-coupled

multiprocessor. Networked capability systems are not addressed, except where

explicitly mentioned.

4.1 What is a Capability?

A capability is both the name for an object and a ticket granting access to the

object. It de�nes the type of the object, what access rights the holder may

exercise, and in some systems, the object's location and size. Possession of

the capability (at least in traditional capability systems) is both necessary and

su�cient to gain access to the object. Furthermore, the holder of a capability

may make copies of the capability and store them in the �le system or pass them

to others as subroutine parameters. When copying a capability, the holder may

restrict the access rights or may shrink the size (from either end) of the object.

A capability that either restricts the rights or shrinks the size (or both) is called

a re�nement.

It is essential that capabilities be protected against unauthorized modi�ca-

tion or forgery. If a user could change the contents of a capability, then the

user could gain arbitrary access to any object in the system. (The password-

capability systems, described below, are an exception to this rule. They depend

on probabilistic detection of modi�cation, rather than outright prohibition.)

41

4.2 Capability Storage

Capabilities can be stored and used in many ways, depending on the system

implementation. The simplest capability implementations use special capability

registers. To use a capability, the programmer must explicitly load it into a

capability register. The Plessey System 250 [48] is an example of a capability-

register machine.

Capabilities can be stored in special capability segments and mapped auto-

matically into the address space on use. Instead of capability registers, some kind

of slave store or capability cache can automatically load the capabilities. Such a

slave store makes management of a large, virtual-address space much simpler for

the programmer. The capability cache is the direct analogue of the translation

bu�er in a conventional, virtual-memory machine. The CAP system [231] is a

good example of an early capability machine with such a slave store.

Capabilities in both the Plessey System 250 and the CAP are stored in ca-

pability segments. To prevent unauthorized tampering, the capability segments

are protected against modi�cation. Only special capability loading, storing, and

moving instructions are allowed to operate on capability segments.

Capability segments have the drawback that the capabilities must be kept

separate from the rest of the programmer's data structures. Such separation

could be inconvenient. Tagged capability machines solve this restriction by as-

sociating one or more tag bits with each location of memory. The tags identify

the data type of the location. In the simplest case of a 1-bit tag, the type is

either capability or data. In more complex machines, such as the Burroughs

B6700 [167, 62], the tag could be several bits long and actually identify the type

of the data as integer or oating point, etc. The IBM System/38 is an example

of a tagged capability machine with a 1-bit tag for each 32 bits of memory. The

Burroughs B6700 is not a capability machine, although it does use a 3-bit tag

for each 48 bits of memory. Obviously, tagging can signi�cantly increase mem-

ory usage. Gehringer [76, Section 6.2.2] has developed an alternative to tagged

memory that he calls typed memory. Essentially, typed memory allows one to

specify a type �eld for a larger block of memory than a single machine word, yet

still maintain security.

Finally, there are new, distributed, capability systems that protect their ca-

pabilities with passwords. The capabilities may be stored anywhere in memory,

and the user programs are allowed to arbitrarily modify them. Each capabil-

ity includes a large (typically 64-bit) password. When a capability is presented

for use, the contents of the capability and the password are checked against a

master copy. If the password does not match or if the access rights or other,

critical �elds have been modi�ed, then the operation is rejected. The Cam-

bridge File Server [165, chapter 4] was the �rst to use password capabilities, and

42

Amoeba [162] and the Monash University password-capability system [7] have

continued and extended the concept.

4.3 Need for Protected Subsystems

One of the principal reasons for having a capability-based system is to support

protected subsystems. A protected subsystem is a piece of software that, together

with its associated data, is encapsulated within a protection domain to prevent

tampering. A protection domain is a separate and distinct address space in which

the code of the protected subsystem may execute. The address space is de�ned

by the union of the set of capabilities that make up the protected subsystem

and the set of capabilities passed as arguments when the domain is called. The

users of a protected subsystem are restricted to calling speci�ed entry points

and are prevented from direct access to the encapsulated data. The restrictions

are implemented by granting only a so-called enter capability to the user of the

protected subsystem. The enter capability de�nes the type of calls that may

be made on the domain. An enter capability is invoked by executing a cross-

domain call instruction, also called an ENTER instruction. The cross-domain

call switches the address space of the CPU to that of the called domain, and

transfers control to the address starting address speci�ed by the enter capability.

A caller of a domain cannot transfer to any address, except that speci�ed in the

enter capability.

Protected subsystems are useful for securing applications packages, such as

electronic mail, database management, and transaction processing. Protected

subsystem mechanisms enable the applications package to enforce some

application-speci�c security policy that the operating system does not provide.

For example, the electronic-mail system may wish to allow a user to write a mes-

sage into another user's mailbox, but not to allow the sender to overwrite other

messages that are already in the mailbox. A database management system may

wish to enforce a security policy on individual records or �elds of records.

An example of a database management system (DBMS), implemented as a

protected subsystem, is shown in Figure 4.1. The user has an enter capabil-

ity for the DBMS and can invoke the DBMS by executing a cross-domain call

instruction, providing the enter capability as an argument. The cross-domain

call transfers control into the DBMS, taking on the capabilities of the protected

subsystem, while simultaneously discarding the capabilities of the caller. Thus,

the caller and the DBMS protected subsystem are prevented from tampering

with each other's data, meeting the requirements for mutual suspicion, de�ned

by Schroeder [189].

An implementation of protected subsystems using just a protection-ring arch-

itecture [192] could not provide adequate support. Protection rings de�ne a set of

hierarchically ordered domains of protection, in which more privileged domains

43

Enter

Calling Domain's

Capability List

RW

RE

RE

DBMS Domain's

Capability List

�

�

�

�

�

�1

Database

DBMS

Program # 1

DBMS

Program # 2

@

@

@

@

@

@R

-

�

�

�

�

�

��

Figure 4.1: DBMS Protected Subsystem Example

take on all the rights of the less privileged domains. Rings are a generalization of

the user/supervisor mode protections schemes, developed in the early 1960s. The

strict hierarchical nature of rings forces one to make decisions as to whether, for

example, an electronic-mail subsystem is more or less privileged than a database

management subsystem. Since such subsystems are generally autonomous, a hi-

erarchical ordering is not suitable. Furthermore, typical protection-ring machines

have only a small number of protection rings. For example, the VAX architec-

ture [138] supports only four protection rings; the Multics architecture [192]

supports eight protection rings.

1

With only a small number of protection rings,

some subsystems necessarily will become over-privileged. For example, the VAX

DBMS product [214] runs in executive mode, because it must be protected from

supervisor mode and user mode code. However, since executive mode in the

VAX/VMS operating system has unlimited access rights within the operating

system, the VAX DBMS product is over-privileged, and malfunctions in VAX

DBMS could cause operating-system failures, rather than just DBMS failures.

Pure, access-control-list systems cannot be discounted in the support of pro-

tected subsystems. Data General has built a machine [52, 29] that supports

protected subsystems using a pure, access-control-list approach that may have

overcome some of the di�culties described above. The Data General scheme is

based in part on Schroeder's work on mutually-suspicious subsystems. The sig-

1

The original Multics design supported sixty-four rings in software, but the later hardware

implementations only supported 8 rings.

44

ni�cant issue that must be resolved is how to represent a software package as a

principal in an access control list. The little, published literature on the machine

implies that they have worked on this problem beyond the simple proposal in

Schroeder's dissertation [189, p. 149], but Data General's results are not made

clear, as the machine has never been marketed.

Other, more restrictive protected-subsystem mechanisms have been built in-

cluding the Titan Multiple-Access user-control system [73] and the UNIX setuid

mechanism. Setuid is discussed in detail in Section H.2.

4.4 Type Managers and Sealing

Capabilities and protected subsystems can also be used to provide abstract data

types and object-oriented programming by encapsulating abstract type managers

within protected subsystems and passing sealed capabilities for abstract objects.

A user can pass the sealed capabilities around, but cannot use them to examine

the contents of the abstract objects. Only the type manager can unseal the ca-

pability and get access to the internal structure of the abstract object. This type

of capability sealing was �rst proposed by Redell [179] and was �rst implemented

in the CAP-III system by Herbert [95].

Sealing can be implemented by the addition of a type-id �eld to the capability.

Each type manager is assigned a unique type-id. When a capability is sealed,

the type-id of the requesting type manager is copied into the capability. Once

sealed, the capability can only be copied or passed as a parameter. The unsealing

operation is restricted to the type manager that possesses a type-id that matches

the value stored in the capability. If the type-id values do not match, then the

attempt to unseal would fail.

45

46

Part II

SCAP Architecture

47

Chapter 5

Overview of the SCAP

Architecture

This chapter contains an overview of the SCAP secure capability architecture,

including both hardware and software components. The description highlights

the major features of SCAP and indicates which portions have been designed in

detail, which have experimental implementations, and which have yet to be de-

signed. Little rationale or supporting information is included here. Instead, each

major feature is cross-referenced to the appropriate portion of the dissertation

where the issues are covered in detail.

5.1 SCAP Processor Architecture

The SCAP processor architecture has three major variants. The preferred variant

is based on reduced instruction set computer (RISC) design principles and makes

no concessions to compatibility with existing systems. The second variant is

based on abstract extensions to the VAX architecture and represents hardware on

which SCAP could run and also preserve VAX-compatibility. The third variant is

based on a VAX-11/730 CPU, with microcode changes but no hardware changes

permitted. Only the VAX-11/730 variant has been implemented, as the other

variants would have required extensive hardware work beyond the scope of this

dissertation.

� SCAP on a RISC

The RISC variant of SCAP uses a very simple processor with a pure

load/store architecture, to minimize complexity both in the memory man-

agement hardware and in the page-fault handlers in the software. (See

Section 13.2.) The processor has a large register �le and dedicates portions

of the register �le as distinct register sets for di�erent address spaces. (See

Section 17.2.)

49

The processor has a large, paged, linear virtual-address space. (See Sec-

tion 15.1.) The translation bu�er supports address space numbers (ASNs),

so that entries from more than one address space can be stored simulta-

neously. (See Section 15.2.3.) Furthermore, translation-bu�er misses are

handled in software, rather than by the processor hardware or microcode.

(See Section 15.3.)

� SCAP on a Modi�ed VAX Processor

The preferred VAX processor for SCAP is similar to the RISC proces-

sor in some respects. The principal di�erence is that the VAX processor

would support the VAX instruction set rather than a simple load/store

architecture. Supporting the VAX instruction set would permit software

compatibility with existing VAX operating systems, as discussed in Ap-

pendix H.

The memory management of the preferred VAX processor for SCAP is very

similar to the RISC variant, described above. The process has a 32-bit lin-

ear address space, and a translation bu�er that supports ASNs and software

handling of translation bu�er misses. Such a memory-management unit is

quite di�erent from that of any existing VAX processor.

The preferred VAX processor for SCAP also supports special microcode to

optimize the performance of cross-domain calls and returns, as described

in Section 17.7.2.

� SCAP on a Re-Microprogrammed VAX-11/730

A VAX-11/730 with microcode changes only cannot support all of the fea-

tures of the preferred VAX-architecture for SCAP. Speci�cally, the trans-

lation bu�er hardware cannot support ASNs, and translation bu�er misses

are most easily handled in microcode, rather than software. The modi�ed

microcode does implement the hashed page tables that would otherwise

be implemented in software. (See Section 16.6.) The modi�ed microcode

also supports the optimized cross-domain calls and returns, described in

Section 17.7.2.

5.2 SCAP Operating System

Because the SCAP processor hardware was kept deliberately simple, most of the

capability and security features are implemented in the SCAP operating system.

Except where otherwise indicated, the design of the features is shown in this

dissertation, but full implementation has not been done, because the work would

be well beyond the scope of a single Ph.D. dissertation.

50

� The SCAP operating system is capability-based, with capabilities handled

entirely in software. To achieve adequate performance, however, the ef-

fective access rights from capabilities for primary-memory segments are

recorded in page tables and enforced by the translation-bu�er hardware

of the processor. (See Sections 14.2 and 15.1.) Abstract data types are

implemented with seal and unseal operations, similarly to CAP-III. (See

Section 4.4.)

� Secure capabilities are the central feature of SCAP. A secure capability, as

de�ned in Chapter 7, is designed to solve the con�nement problem. Secure

capabilities, as distinct from conventional capabilities, are necessary to

gain access to an object, but are not su�cient in themselves. Before a

secure capability can be used, the SCAP operating system also checks

the non-discretionary access controls and the access control list associated

with the object in question. With secure capabilities, the SCAP operating

system can enforce both the Bell and LaPadula security model (de�ned in

Section 3.1.2) and the Clark and Wilson commercial-integrity model. (See

Section 3.2.3 and Chapter 10.) Furthermore, the SCAP operating system

can meet traceability-of-access requirements using the access control lists

described in Chapter 8.

� The SCAP model of domains and processes is designed to support tightly-

coupled multiprocessors, with large numbers of CPUs. SCAP processes are

light-weight processes, so that it should be relatively easy to distribute a

computation across many processors. (See Chapter 6.)

� The SCAP operating system will be implemented as a layered security

kernel. Each layer will reside in a separate domain of protection to limit

error propagation and aid in formal veri�cation. Appendix G contains a

preliminary sketch of the lower layers of the SCAP security kernel. Detailed

design of the kernel is beyond the scope of this dissertation.

� SCAP protection domains will primarily be used to implement major lay-

ered products, such as database-management systems or electronic-mail

systems. Protection domains will only be used to enforce security require-

ments. Compilers will be expected to enforce data-type safety by generat-

ing proper code, rather than by relying on operating system or hardware

constructs. Chapter 14 discusses why the use of protection domains will be

limited and what impact excessive programming generality has on overall

system performance.

� SCAP provides immediate revocation of access rights on all objects using

one of two new revocation algorithms. If implemented on a processor with

51

shared page tables, such as Multics, SCAP uses revocation with event-

counts, as described in Section 11.3. All of the preferred SCAP processors,

described above in Section 5.1, use unshared page tables. For these pro-

cessors SCAP uses revocation by chaining, as described in Sections 11.4

and 16.5.

� The SCAP operating system does not support a system-wide garbage col-

lector, because of the storage channels inherent in such a scheme. Instead,

it supports storage quotas, combined with a rent collection mechanism

to provide automatic, storage-channel-free management of resources. (See

Chapter 12.)

� To deal with discretionary-Trojan-horse attacks, the SCAP command-

language interpreter incorporates a name-checking protected subsystem.

The name-checking subsystem ensures that programs do not reference or

modify objects that are not de�ned in advance in a database of expected

references. Potential security violations are referred to a human being for

ultimate resolution. (See Chapter 9.)

� The SCAP architecture includes several microcode and software techniques

to optimize the performance of cross-domain calls, described in Chapter 17.

An experimental implementation, described in Chapter 18, shows that the

SCAP optimizations lead to cross-domain calls that, when compared to

simple instructions, are signi�cantly faster than in previous capability-

based systems.

� The SCAP architecture provides a mechanism for fast handling of hardware

interrupts. As described in Chapter 19, interrupts are initially handled in

a system-wide trusted domain that is part of the security kernel. SCAP,

however, provides a mechanism so that the interrupt handler can make

cross-domain calls at elevated interrupt priority levels (IPLs). This mech-

anism is intended to improve response times to hardware interrupts, while

still using small domains of protection to isolate portions of the security

kernel.

� The SCAP architecture, when implemented on a VAX processor, can pro-

vide some levels of software compatibility with both the VAX/VMS and

ULTRIX-32 operating systems. Appendix H contains sketches of how such

compatibility might be achieved.

52

Chapter 6

SCAP Domain Model

This chapter de�nes the basic notions of processes, domains, and protected sub-

systems as they will be used in SCAP. These de�nitions are di�erent from those

used in the literature, and the di�erences are highlighted. The de�nitions are

based on the assumption that the underlying con�guration could be a single

processor in either a workstation or a large time-shared system, or a multi-

processor implementation with at least some memory shared among processors.

The chapter also discusses performance optimizations in light of the duality of

message-oriented and procedure-oriented systems which was proposed by Lauer

and Needham [135].

6.1 Scheduling Entities

Two classes of scheduling entities are de�ned: jobs and processes. Each has its

own protection implications, as outlined below.

6.1.1 Jobs

When a user logs into the system, a job is created that will exist until the user

ultimately logs out. A job may contain many points of execution, but each of the

points of execution is operating on behalf of the particular human being, called

the principal, who owns the job. Jobs may be initiated either from interactive

terminals or from batch queues. (There may also be network-initiated jobs and

jobs that function on behalf of the system itself.) Jobs are intended to be similar

to VAX/VMS jobs or CAP sessions.

6.1.2 Processes

A process is an execution point with an associated set of machine registers and a

cross-domain call stack, called the C-stack. The C-stack is the activation record

for cross-domain calls. It behaves much like an ordinary subroutine-call stack,

53

but is protected against access from any of the domains. Each C-stack frame

contains any registers that may have been saved and any capability arguments

that have been passed as part of the current cross-domain call. The CAP-I

C-stack is described in [231, p. 11], and Section 17.7.2 shows the detailed design

of the C-stack for a microcoded implementation of SCAP.

Every job must have at least one process. SCAP processes are very di�erent

from the processes in other operating systems, such as the VAX/VMS or UNIX

operating systems, because SCAP processes do not have a single associated ad-

dress space. At any particular point in time, a SCAP process must be executing

in some address space, called a domain (de�ned in Section 6.2.2). Many SCAP

processes may share a single address space, and there may be address spaces with

no processes currently executing in them at all. Unlike processes in VAX/VMS,

SCAP processes do not carry �xed discretionary access rights. The discretionary

access rights of a SCAP process can vary as execution moves from one domain

to another. However, SCAP processes do carry non-discretionary access rights,

as discussed in Section 6.6.

SCAP processes are similar to the light-weight processes that are found in

systems such as Mach [2]. SCAP processes do not have address spaces, so the

costs of creating and scheduling them should be signi�cantly lower than that of

VAX/VMS or UNIX processes.

1

6.2 Address Space Entities

SCAP supports two types of address space entities: protected subsystems and

domains.

6.2.1 Protected Subsystems

A protected subsystem is a way of encapsulating a set of objects and ensuring

that those objects can be manipulated only by particular programs. A protected

subsystem is a collection of programs and capabilities for protected objects. A

protected subsystem is not an entity that can execute on a CPU. Examples of

1

SCAP processes are potentially still more expensive than one might need, because every

SCAP process has a C-stack for making cross-domain calls. If one is writing an application for

a system with a large number of processors, even the cost of the C-stacks could prove exces-

sive. Therefore, SCAP could also support an even less expensive scheduling construct, called

a thread. A thread is simply a process with no C-stack. As a result, a thread would be barred

from making cross-domain calls or even calls on the security kernel itself. A thread communi-

cates with other threads or processes in the same domain through shared memory constructs.

The concept of thread is completely optional to the rest of the SCAP architecture, and its

implementation is not recommended. Threads are included solely as a possible performance

optimization if the cost of C-stacks proves too high. Depending on the precise implementation

of the security kernel, certain kernel calls or scheduling primitives may have to be provided by

some ad hoc mechanism, for use even without the presence of a C-stack.

54

protected subsystems are a database and its associated manager or an electronic-

mail system. The CAP-I counterpart of a SCAP protected subsystem is a pro-

cedure control block [91, Section 3.2.3].

6.2.2 Domains

A domain is an invocation of a protected subsystem. Figure 4.1 on page 44

in Chapter 4 showed a domain invocation of a typical protected subsystem. A

SCAP process is like the execution point of a VAX/VMS process, and a SCAP

domain is like the address space of a VAX/VMS process. There may be several,

distinct domains simultaneously invoked from a single protected subsystem. The

code of the programs that run in those domains must synchronize with the other

invocations, using locking primitives and shared memory. The actual techniques

for invocation are discussed in Sections 6.4 and 6.7.4.

Several di�erent jobs may wish to use the services of a particular protected

subsystem. Depending on the application's design, there might be a single do-

main serving all requests, or each job (or process) might create its own domain

to provide the services.

All domains invoked from a particular protected subsystem share a common

set of protected objects. Di�erent domains might have di�erent access rights to

those objects, but the objects remain shared. Thus, a particular database would

be encapsulated in a particular protected subsystem. Various domain invocations

from that protected subsystem would receive capabilities with varying access

rights to that database. A di�erent database would be encapsulated in a di�erent

protected subsystem. However, both protected subsystems might share the code

of the common database manager programs.

6.3 A Simple Example

Figure 6.1 contains a simple example of a job with several processes, protected

subsystems, and domains. User pak has a job active in the system, and that job

has two processes. Two domains have been activated from protected subsystems

A and B shown in the �le system on disk. Note that process 1 has started

executing in domain pak.A, and then issued a cross-domain call to domain pak.B.

Process 2 is shown executing simultaneously in domain pak.B. While executing

in pak.B, both processes share the same address space, so the code of the domain

must include synchronization to prevent conicts on shared variables. (Of course,

a di�erent example could have shown two distinct invocations of B with distinct

address spaces, both belonging to the job owned by pak. Section 6.7.4 shows

how to create distinct invocations.)

55

JOB

owner: pak

�

�

�

�

��

A

A

A

A

AU

Process 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
...
..
....
...............

....
...
..
..
..
..
.
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
.
..
..
..
...
...
.....
.........
.....
....
..
..
..
..
..
..
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?

Domain

pak.A

?

6

Process 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.

.

.

.

.

.

.

.

.
.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
...
..
....
...............

....
...
..
..
..
..
.
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
..
.
.
..
..
.
..
..
..
...
...
.....
.........
.....
....
..
..
..
..
..
..
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?

Domain

pak.B

?

6

?

6

Run Time

Library

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
..
.
..
.
..
..
.
..
..
..
...
..
..
...
..
...
...
...
....
...
....
....
....
.....
.....
.....

......
.......

.......
..........

............
...

............
.........

........
.......

......
.....

.....
.....
....
....
....
...
....
...
...
..
...
...
..
..
..
...
..
.
..
..
..
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
..
...
..
...
..
...
...
....
...
...
....
....
.....
....
.....
......
......
.......
.........
..........

...............
...

...............
..........

........
.......
.......
.....
.....
.....
....
....
....
....
...
...
...
...
...
...
..
..
...
..
..
..
..
.
..
..
.
..
.
.
.
..
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
..
..
...
..
...
...
...
...
...
....
....
....
....
....
.....
......
......
.......
........
..........

.............
...

.............
..........

........
.......
......
.....
.....
.....
....
....
....
....
...
...
...
...
...
..
...
..
..
..
..
..
..
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.
..
.
.
.
..
.
..
.
..
..
..
..
..
..
..
...
..
...
...
...
...
...
...
....
....
....
.....
....
......
.....
.......
.......
.........
............

....................
.........................

....................
............

........
........
......
......
......
....
.....
....
....
....
...
...
...
...
...
...
..
...
..
..
..
..
..
..
..
.
..
.
..
.
.
.
.
..
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
..
.
.
..
.
.
..
..
..
..
.
...
..
..
..
...
..
...
...
...
...
....
...
....
....
.....
....
......
.....
.......
.......
........
...........

.................
.....................................

.................
..........
.........
.......
.......
.....
......
....
.....
....
....
...
....
...
...
...
...
..
...
..
..
..
..
..
..
..
..
.
..
.
..
.
.
..
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
..
.
..
.
..
.
..
..
..
..
...
..
..
...
..
...
...
...
....
...
....
....
....
....
.....

......
......

......
........

..........
..

.

.

.

.

.

.

.

.

.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
..
..
..
..
...
..
...
...
...
...
...
...
....
....
....
.....
....
......

......
......

........
........

.....

.

.

.

.

.

.

.

.

.
.
.
.
.
..
.
.
..
.
.
..
..
..
..
.
...
..
..
..
...
..
...
...
...
...
....
...
....
....
.....

....
......

.....
.......

.......
.........

......

.

.

.

.

.

.

.

.

.
.
.
.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
..
...
..
...
..
...
...
....
...
....
...
....
.....
....
......

.....
......

.......
.........

........

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
..
..
...
..
...
...
...
...
...
....
....
....
....
....
.....
......

......
.......

........
..........

.

.

.

.

.

.
.
.
.

..
.
.
.
.
.
..
.
..
.
..
.
..
..
..
..
..

.

.

.

.

.

.
.

.

.

.

.
.
..
.
.
.
..
.
..
.
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.
.
.
..
.
.
..
.
.
..
..
..
.
..
..
...

.

.

.

.

.

.

.

.

.

.

.
.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
.

.

.

.

.

.

.
.
.
.

..
.
.
.
.
.
..
.
..
.
..
.
..
..
..
..
..

.

.

.

.

.

.
.

.

.

.

.
.
..
.
.
.
..
.
..
.
..
..
..
..
..
..
..
...
..
...
...
...
...
...
...
....
....
....
.....
....
......
......
......
........
........
.....

.

.

.

.

.

.

.

.

.

.

.
.
.
..
.
.
..
.
.
..
..
..
..
.
...
..
..
..
...
..
...
...
...
...
....
...
....
....
.....
....
......
.....
.......
.......
........
.......

.

.

.

.

.

.

.

.

.

.

.
.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
..
...
..
...
..
...
...
....
...
....
...
....
.....
....
......
.....
......
.......
.........
........

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
..
..
...
..
...
...
...
...
...
....
....
....
....
....
.....
......
......
.......
........
..........

.

.

.

.

.

.
.
.
.

..
.
.
.
.
.
..
.
..
.
..
.
..
..
..
..
...
..
..
...
..
...
...
...
....
...
....
....
....
....
.....
......
......
......
........
.........
...

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
..
.
..
.
..
.
..
..
..
..
..

.

.

.

.

.

.

.

.

.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.
.
.
.
.
..
.
.
..
.
.
..
..
..
.
..
..
...

.

.

.

.

.

.

.

.

.
.
.
.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
..
.
..
.
..
.
..
..
..
..
..

File System

Protected

Subsystem

A

Protected

Subsystem

B

Figure 6.1: Protected Subsystems, Domains, and Processes

56

The �gure also shows that domain pak.B makes calls on a run-time-library

domain. Other domains, such as pak.A, would probably make similar calls, but

those calls are omitted for clarity.

6.4 Cross-Domain Calls

A process transfers control from one domain to another by making a cross-domain

call, possibly passing capabilities as arguments. Cross-domain calls are quite

similar to remote procedure calls [21] and could easily be extended to transfer

control to other domains running on other processors in a network. The right to

make a cross-domain call is determined by the possession of an enter capability

for the domain in question. Access to the capability will be constrained, of

course, as de�ned in Chapter 7.

Arguments are passed in a cross-domain call in one of two ways. A small

number of small arguments may be passed by value in the machine registers. For

arguments that cannot �t in the registers or that must be passed by reference,

capabilities may be passed as arguments on the C-stack. The receiving domain

will then map those capabilities into its address space.

When a capability for a memory segment is passed to a new domain, that

memory segment must be mapped into the called domain's address space. By

contrast, capabilities for abstract data types need not be mapped and can there-

fore be passed at lower cost. Register parameters can be passed at still lower

cost, as no security checking is required. As discussed in Chapter 17, the vast

majority of cross-domain-call parameters can be passed in registers, so the pro-

tocol will be optimized for register parameters only. Thus, the cost of capability

parameters will be paid only for those calls that require them.

When a process enters a domain, it takes on the entire address space of that

domain, including any argument capabilities that may have been passed to the

domain by simultaneous cross-domain calls from other processes. Similarly, if

a process maps in some argument capabilities, then other processes that are

simultaneously executing in that domain will gain access to those arguments. Of

course, two processes executing in a single domain will have to synchronize their

references to shared objects, including the argument capabilities. Section 6.7.4

shows how two processes can execute in the same protected subsystem, but in

di�erent domain invocations and therefore di�erent address spaces.

6.5 Comparison with Reed's Scheduler

It is useful to compare SCAP processes with the virtual processors of Reed's

two-level scheduler [180], because Reed's scheduler design has been used in other

security kernel implementations, such as Schell's multiprocessor kernel [187].

57

Reed's scheduler de�nes two kinds of virtual processors: level one virtual

processors (vp1s) that provide primitive processes for use in the kernel and level

two virtual processors (vp2s) that are user-level processes with address spaces.

Reed implements the scheduler as two abstract type managers: the lower level

scheduler that binds vp1s to actual CPUs and the higher level scheduler that

binds vp2s to vp1s. In this way, Reed decouples the issues of micro-scheduling to

keep physical CPUs busy, from macro-scheduling to implement swapping policies.

The SCAP scheduler entities have loose analogues in Reed's model. A SCAP

process is somewhat like Reed's level one virtual processor (vp1), in that it is

a primitive execution point without an address space. However, SCAP pro-

cesses are user visible, unlike Reed's vp1s. A SCAP domain is somewhat like

Reed's level two virtual processor (vp2) in that it is an address space and SCAP

processes can enter or leave it. Thus, a cross-domain call is analogous to the

operation of binding a vp2 and a vp1. Many di�erent SCAP processes may be

present in a single domain simultaneously, while Reed makes the vp2{vp1 bind-

ing one-to-one. The essence of the di�erence is that Reed's design reserved the

low-cost processes for use by only the kernel, whereas the SCAP design allows

low-cost processes to be used by untrusted user code as well.

2

6.6 Non-Discretionary Controls for Processes

and Domains

Although di�erent domains called by the same process may have di�erent access

rights, all domains called by a process must have the same non-discretionary

access class. This is because the cross-domain call constitutes a write operation

from the calling domain to the called domain, and the cross-domain return con-

stitutes a write operation from the called domain back to the calling domain.

Because the domains can each write information to the other, the Bell and La-

Padula security model [14] requires them to be at the same non-discretionary ac-

cess class. Therefore, each process and each domain will have a non-discretionary

access class assigned to it, and a process will only be able to call domains that

are at a matching access class.

Although a domain must be at a �xed access class, di�erent domains invoked

from the same protected subsystem may be at di�erent access classes. Of course,

the non-discretionary access rights of those domains would be di�erent, even

though they might inherit the same capabilities from the protected subsystem.

There is also no requirement that all processes within a single job be at the

same access class. A user could have processes at many di�erent access classes

2

For completeness, note that SCAP threads are analogous to vp1s permanently bound to a

single vp2.

58

operating simultaneously on his or her behalf during a single login session. When

the user �rst logs in, the system would create a secure-server process as the �rst

process in the job. From the secure-server process (which runs trusted code,

considered part of the security kernel), the user could then control multiple

processes at multiple access classes, switching among them at will.

Figure 6.2 shows how jobs, processes, protected subsystems, and domains

interact in the presence of non-discretionary controls. A user named pak has

a job running on the system. That job has a secure-server process that is exe-

cuting trusted code in a secure-server domain. From the secure server, pak has

created four processes. Processes 1 and 2 are running at the non-discretionary

access-class Public; processes 3 and 4 are running at the access-class Secret. The

�le system contains two protected subsystems, A and B, that consist of program

code, data �les, and capabilities for data. In the �gure, each of the protected

subsystems has been activated twice, once at each of the two access classes.

Process 1 is executing in the domain pak.A at access class Public, and issues

cross-domain calls to domain pak.B, also public. Process 2, by contrast, started

execution in domain pak.B, so the code of protected subsystem B must imple-

ment appropriate mutual-exclusion algorithms to synchronize access to its data.

Domain pak.B can be seen making cross-domain calls to a domain containing a

run time library.

Processes 3 and 4 are running at access class Secret, but they also wish to

invoke the protected subsystems A and B. Therefore, they get distinct domains

with di�erent access rights to data stored within those domains, all in accordance

with the non-discretionary security model. The �gure also shows an invocation

of the run-time library in a domain at access class Secret. Although not shown in

the �gure, other users would have their own jobs and processes and, ordinarily,

their own instances of the domains. It is also possible to set up a job and its

domains as a server to handle cross-domain calls from processes belonging to

many di�erent jobs. Such a server might implement a line-printer service or an

electronic-mail queuing facility. Servers of this kind would require veri�cation, if

they handled material from di�erent non-discretionary access classes.

6.7 Creation and Initialization

This section describes how jobs, processes, protected subsystems, and domains

are created and initialized.

6.7.1 Jobs

Jobs are created in one of two ways. If the user logs into the system from a local

terminal or from a network connection, a secure server process will be started,

as described above in Section 6.6 and shown in Figure 6.2.

59

JOB

owner: pak

�

�

�

�

�

�

�

�

�

��

�

�

�

�

��

A

A

A

A

AU

Q

Q

Q

Q

Q

Q

Q

Qs

H

H

H

H

H

H

H

H

H

Hj

Secure

Server

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
..
...
....
...............

....
...
..
..
..
..
.
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
.
..
..
..
...
...
.....
.........
.....
....
..
..
..
..
..
.
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?

Secure

Server

Domain

Process 1

Public

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
..
...
....
...............

....
...
..
..
..
..
.
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
.
..
..
..
...
...
.....
.........
.....
....
..
..
..
..
..
.
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?

Domain

pak.A

Public

?

6

Process 2

Public

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
..
...
....
...............

....
...
..
..
..
..
.
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
.
..
..
..
...
...
.....
.........
.....
....
..
..
..
..
..
.
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?

Domain

pak.B

Public

?

6

?

6

Run-Time

Library Domain

Public

Process 3

Secret

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
..
...
....
...............

....
...
..
..
..
..
.
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
.
..
..
..
...
...
.....
.........
.....
....
..
..
..
..
..
.
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Process 4

Secret

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
..
.
..
..
..
..
...
....
...............

....
...
..
..
..
..
.
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
.
..
..
..
...
...
.....
.........
.....
....
..
..
..
..
..
.
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A

A

A

A

AU

�

�

�

�

��

Domain

pak.A

Secret

?

6

?

6

Domain

pak.B

Secret

?

6

?

6

Run-Time

Library Domain

Secret

.

.

.

.

.

.

.
.
.

..
.
.
.
.
.
..
.
..
.
..
.
..
..
..
..
...
..
..
...
..
...
...
...
....
...
....
....
....
.....

....
......

......
.......

.......
..........

............
...

............
..........

.......
.......

......
.....
.....

.....
....
....
....
...
....
...
...
...
..
...
..
..
...
..
..
..
.
..
..
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
..
...
..
...
..
...
...
....
...
....
...
....
.....
....
......
.....
......
........
........
..........

...............
...

...............
..........

........
.......
.......
.....
.....
.....
....
....
....
....
...
...
...
...
...
...
..
..
...
..
..
..
..
.
..
..
.
..
.
.
.
..
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
..
..
...
..
...
...
...
...
...
....
....
....
....
.....
.....
.....
......
.......
........
..........

..............
...

..............
..........

........
.......
......
.....
.....
.....
....
....
....
....
...
...
...
...
...
..
...
..
..
..
..
..
..
..
.
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
..
.
..
.
..
..
..
..
..
..
..
...
..
...
...
...
...
...
...
....
....
....
.....
....
......
......
......
........
.........
...........

.....................
.......................

.....................
...........

.........
........
......
......
.....
.....
.....
....
....
...
....
...
...
...
...
...
..
...
..
..
..
..
..
..
..
.
..
.
.
..
.
.
.
..
.
.
.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
..
.
.
..
.
.
..
..
..
..
..
..
..
..
..
...
..
...
...
...
...
....
...
....
....
.....
....
......
.....
.......
.......
.........
...........

.................
...................................

.................
...........

.........
.......
.......
.....
.....
.....
.....
....
....
...
....
...
...
...
...
..
...
..
..
..
..
..
..
..
..
.
..
.
..
.
.
.
..
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
.
..
..
..
...
..
..
...
..
...
...
...
....
...
....
....
....
.....

.....
.....
......

.......
.......

..........
..

.

.

.

.

.

.

.

.

.

.

.
..
.
.
.
.
..
.
..
.
..
..
..
..
..
..
..
...
..
...
...
...
...
...
...
....
....
....
.....
.....
.....
......

......
........

.........
....

.

.

.

.

.

.

.
.
.
.
.
.
.
..
.
.
..
.
.
..
..
..
..
..
..
..
..
..
...
..
...
...
...
...
....
...
....
....
.....
....
......

.....
.......

.......
.........

......

.

.

.

.

.

.

.
.
.
.
.
.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
..
...
..
...
...
..
...
....
...
....
...
....
.....

....
......

.....
......

........
........

........

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
..
..
...
..
...
...
...
...
...
....
....
....
....
.....
.....

.....
......

.......
........

..........

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
..
.
..
.
..
..
.
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
..
.
..
.
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.
.
..
.
.
..
.
.
..
..
..
..
.
...
..

.

.

.

.

.

.

.

.

.

.

.

.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
..
.
..
.
..
..
.
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
..
.
..
.
..
..
..
..
..
..
..
...
..
...
...
...
...
...
...
....
....
....
.....
....
......
......
......
........
.........
....

.

.

.

.

.

.

.

.

.

.

.

.
.
..
.
.
..
.
.
..
..
..
..
..
..
..
..
..
...
..
...
...
...
...
....
...
....
....
.....
....
......
.....
.......
.......
.........
......

.

.

.

.

.

.

.

.

.

.

.

.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
..
...
..
...
...
..
...
....
...
....
...
....
.....
....
......
.....
......
........
........
........

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
..
..
...
..
...
...
...
...
...
....
....
....
....
.....
.....
.....
......
.......
........
..........

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
..
.
..
.
..
..
.
..
..
..
...
..
..
...
..
...
...
...
....
...
....
....
....
.....
....
......
......
.......
.......
..........
..

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
.
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.
..
.
.
.
.
..
.
..
.
..
..
..
..
..
..

.

.

.

.

.

.

.
.
.
.
.
.
.
..
.
.
..
.
.
..
..
..
..
.
...
..

.

.

.

.

.

.

.
.
.
.
.
.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
.
..
..
..
..

Protected

Subsystem

A

Protected

Subsystem

B

Figure 6.2: Domains and Non-Discretionary Controls

60

Jobs can also be created from the batch queues. A batch job does not need

a secure-server process, since there is, by de�nition, no human being with whom

to communicate. Therefore, a batch job can be started with a process running

in a command-language-interpreter domain at the access class at which the job

was submitted.

6.7.2 Processes

Processes are created using a mechanism similar to the fork(2) system call [213,

p. 2-45] of the UNIX operating system [211]. Unlike fork(2), the SCAP process

creation call does not copy the address space of the parent process. Instead,

both the parent and child processes �nd themselves running in the same, shared

address space. The only di�erence between the parent and child is that the

parent process will have the same C-stack as it had immediately prior to the

process-creation call, while the child process will have a new C-stack with no

prior domains to which the child could return. The new C-stack will be allocated

from space reserved by the security kernel speci�cally for C-stacks. Each job will

have a quota of processes that can be created at any access class, to prevent

malicious process forking either from running the kernel out of C-stack space

or from using C-stack allocation as a storage channel. The process-creation

call should always be encapsulated in a language run-time-library routine that

allocates a new local-variable stack for the child process. The child process, of

course, could be scheduled to run on a di�erent processor in a tightly-coupled

multiprocessor system.

3

Once created, the child process runs in the same domain as the parent and

at the same non-discretionary access class. The secure-server domain, as part of

the security kernel, will have the privilege to create processes at di�erent access

classes, so that job creation can be performed as described in Section 6.7.1.

4

6.7.3 Protected Subsystems

Protected subsystems are static entities that exist in the �le system. They con-

tain programs, data, and capabilities for the stored data. Once a protected sub-

system has been created by the trusted linker, a user's program can only copy,

move, or delete it in the �le system, or invoke it with a protected-subsystem

3

The process created has been described as a child of the creating process. There is no

inherent security reason, however, to force processes into a hierarchy. All processes of a job

could be treated as co-equal, or they could be treated as a hierarchy, as is done in UNIX. I

have left that choice to the ultimate implementors of a SCAP security kernel.

4

For completeness, thread creation would be exactly the same as process creation, except

that the child thread would not have a C-stack. The C-stack pointer register of the child thread

would be set to an invalid value, so that any attempt to perform a cross-domain call or return

would fail. The C-stack is described in detail in Chapter 17.

61

enter capability. Invoking a protected subsystem is actually the act of creating

a domain, and is discussed in Section 6.7.4.

6.7.4 Domains

A domain is created by executing a cross-domain call with a protected-subsystem

enter capability. An address space for the domain is created and the domain is

started at its initialization entry point.

5

The domain invocation is at the ac-

cess class of the process that executed the cross-domain call on the protected-

subsystem enter capability. In a similar way to the CAP-I LINKER [91, Sec-

tion 3.2.3], the SCAP operating system replaces the protected-subsystem enter

capability with a domain enter capability at the time of the �rst call.

6

The re-

placement occurs in the capability list of the calling domain, so that future calls

will execute more rapidly. This provides transparent dynamic linking to the ma-

jority of programs that merely wish to invoke a single domain as an instance of

a single protected subsystem.

Just as in Birrell's design for cross-domain calls for CAP-I [20, Section 3.1],

the �rst cross-domain call into a domain executes both language-provided and

user-written initialization code. Thereafter, any further cross-domain calls into

the domain will be implemented as co-routines.

Calls with domain enter capabilities are much more e�cient than those with

protected-subsystem enter capabilities, because the work of address-space cre-

ation and initialization is done only once. Domain enter capabilities can be

copied and used by many di�erent processes, as long as the code for the domain is

properly synchronized. This is important to make e�ective use of tightly-coupled

multiprocessor systems. While domain enter capabilities can be preserved inde�-

nitely, the domains to which they point may be deactivated. Such a deactivation

would be equivalent to a revocation of the domain enter capability, and the caller

would have to again use the protected-subsystem enter capability to create a new

invocation.

A small number of callers may wish to activate multiple domains from a single

protected subsystem. Those callers should preserve a copy of the protected-

subsystem enter capability elsewhere, and then perform another cross-domain

call on the protected subsystem capability, rather than on the newly created

domain enter capability.

The secure-server domain will have the privilege to invoke domains at any

non-discretionary access class, so that job creation can be performed. Speci�cally,

5

A domain may have multiple entry points, but each entry point will have its own enter

capability.

6

Thus, SCAP protected-subsystem enter capabilities and domain enter capabilities are

somewhat analogous to CAP-I outform and inform enter capabilities, respectively. However,

SCAP allows multiple processes to execute in the same domain, simultaneously.

62

as described in Section 6.7.1, a command-interpreter domain will be required at

the access class of each process that the user may start. Those domains, of course,

would share any read-only code, but would have distinct stacks and local data

areas to prevent any information leakage. Note that the command-interpreter

domains are not trusted to enforce non-discretionary controls.

7

6.8 Message Passing and Procedure Calls

Lauer and Needham [135] make a strong case that message-oriented systems and

procedure-oriented systems are equivalent, that programs in either system will

closely resemble each other, and that the performance of comparable programs,

measured by queue lengths, waiting times, and service rates, etc. will be identical.

This section examines the duality of message passing and procedure calls and

argues that in the case of a cross-domain call that does not require locking, it

is easier to optimize performance with the procedure-call model than with the

message-passing model.

Lauer and Needham speci�cally compare programs that synchronize by mes-

sage passing and programs that synchronize with monitors from the Mesa pro-

gramming language [156]. They note that simple textual changes can automat-

ically convert a message-passing program to a monitor program or vice versa.

Based on this concept of duality, Herbert's CAP-III operating system [93, 95]

combines domains and processes into a single abstraction and implements the

cross-domain call as a message sending and receiving function. Mach [2] likewise

provides only message passing as a way to implement cross-domain calls. Wat-

son's CAP2 system [226] took advantage of the duality in a quite di�erent form.

Watson allowed a domain to be called, either as a procedure or as a process.

Both types of calls passed arguments in a capability segment, like the CAP-I

ENTER instruction [231], but the process form only allowed a single call to be

outstanding at a time. Thus, Watson's CAP2 lacked the message-queuing fa-

cilities of Herbert's CAP-III. By contrast, SCAP allows multiple processes to

execute in a domain simultaneously, thus avoiding the CAP2 restriction.

Lauer and Needham made a strong argument that the performance of a

message-passing system should be the same as the corresponding procedure-

oriented system. If one carefully examines the performance of cross-domain calls,

one �nds that the predicted duality of performance is not always present. Specif-

ically, Lauer and Needham compared Mesa monitors with a message-passing sys-

tem, and Mesa monitors include a locking operation, complete with a queuing

mechanism to wait for the lock. A simple cross-domain call has no such lock and

7

To implement discretionary Trojan-horse protection, as described in Chapter 9, the

command-interpreter domain would require some trust, but would still be subject to non-

discretionary controls.

63

queuing mechanism and requires signi�cantly fewer machine cycles to implement.

If all cross-domain calls required a lock and queuing mechanism, then the du-

ality of performance argument would hold, but in fact, there are many, useful

cross-domain calls that require no such locks. Should such calls be executed very

frequently, as could easily occur in the implementation of a domain-structured

operating system, then the overhead could become prohibitive.

8

There is a partial dual of the non-locking cross-domain call in the message

passing system of the GEC 41XX series of machines [75]. The GEC 41XX

supports a microprogrammed message-passing system that supports not only

a queued-message system, but also a �xed-message system. The �xed-message

system allocates precisely one message bu�er for a particular process-to-process

channel and does no locking. Thus, �xed-message passing gains some of the

performance advantages of a non-locking cross-domain call. Even when passing

a �xed message, the scheduler code must still run to check for higher priority

messages. A cross-domain call would not invoke the scheduler and would there-

fore execute more quickly. If the �xed-message-passing mechanism transferred

control directly to the target process, then it would be an exact dual of the

non-locking cross-domain call. There are hazards in using �xed-message pass-

ing, because there is nothing to prevent the sending process from overwriting a

message with a second message, if the receiver has not yet been scheduled. As a

result, GEC [75, Section 3.4.3] recommends against using �xed-message passing

for most applications.

The fact that additional performance gains are possible with non-locking

cross-domain calls in no way diminishes the results of Lauer and Needham. Their

primary point was that a procedure-based system, using monitors, could achieve

the same results as a message-passing system. With that result, it was then

possible to develop the concept of remote procedure calls [21]. My point is that

a procedure-based system not only will achieve the same results as a message-

passing system, but will also perform better.

8

The argument in this section is based on the author's personal experiences in implementing

a layered security kernel, described in [145]. The details of that kernel design have not been

published, but the kernel included a layer that could be treated as a domain that required

no locking. The layer in question was on a critical performance path and locking or message

passing would have been prohibitively expensive.

64

Part III

Improving Security

65

Chapter 7

Solving the Con�nement

Problem

A major problem for capability systems is a fundamental inability to solve the

con�nement problem, de�ned in Section 3.1.1. The problem arises, because

the basic de�nition of a capability says that possession of a capability is both

necessary and su�cient to gain access to an object. Furthermore, capabilities

can be passed from one protection domain to another, either as arguments, or

through storage in shared objects. By contrast, an access-control-list system

requires that the access control list be checked prior to granting access to the

object, and the addition of a non-discretionary check is quite natural.

A simple example of the problem is a protected subsystem containing a Trojan

horse. Surreptitiously, the Trojan horse can obtain a capability granting write

permission to a low-access-class object. How could the Trojan horse get such

a capability? Since capabilities can be stored anywhere in the system, there

are various possibilities. The capability might have been stored as part of the

protected subsystem, or it might have been stored in some object that has public

read permission. Storing a write-capability for a low-access-class object in a place

that is readable by anyone is not a violation of security. When the protected

subsystem is passed a capability to a high-access-class object, the Trojan horse

copies the high-access-class data into the low-access-class object, to be later

retrieved by an agent who lacks authorization for high-access-class data.

This chapter

1

�rst examines attempts to support the lattice model with tra-

ditional capability systems. It then introduces the new, secure capability archi-

tecture (SCAP) that solves the con�nement problem in a very clean and simple

way. Finally, the chapter contrasts the SCAP architecture with other, similar,

modi�ed capability architectures. The SCAP architecture is the driving force

behind most of the ideas in this dissertation. It will appear again, most sig-

1

This chapter is based, in part, on a paper [119] presented at the 1984 IEEE Symposium

on Security and Privacy.

67

ni�cantly in the upcoming chapters on traceability of access (Chapter 8) and

revocation (Chapter 11).

7.1 Attempts with Traditional Capabilities

Incorporating the lattice security model into an access-control-list system, such

as Multics [168], is relatively straightforward, because all protection rights are

associated with objects, and because rights cannot pass from subject to subject

without operating-system intervention. When the operating system intervenes,

the lattice-security rules can be enforced. By contrast, capability-based systems

normally allow unrestricted ow of access rights from subject to subject as part

of procedure calls. Two traditional capability systems, HYDRA and PSOS, have

proposed support for the lattice model. Each of these approaches has drawbacks

(discussed below) that are overcome in the new, secure-capability scheme.

7.1.1 HYDRA

HYDRA [238] was a capability-based system developed at Carnegie-Mellon Uni-

versity to study both capability systems and tightly-coupled multiprocessors.

HYDRA attempted to solve the con�nement problem by introducing a special

right called uncon�ned rights or UncfRts to limit the propagation of capabilities.

A domain in HYDRA is con�ned if it is called without UncfRts. Such a con�ned

domain loses the right to store capabilities or information into any inherited (and

potentially shared) objects. The con�ned domain may create new objects, but

cannot share those new objects with any other domains. The con�ned domain

is limited to modifying the arguments with which it was called.

Unfortunately, the HYDRA solution to the con�nement problem is both

overly restrictive and not well-suited to protected subsystems outside the se-

curity kernel. In HYDRA, a con�ned domain loses the right to store into any

inherited objects, even into objects where the lattice security model would have

permitted storage. As a result, software that was written for an uncon�ned envi-

ronment will probably not work when run in a con�ned environment, even when

all operations are at a single access class and no security violations in fact take

place. Furthermore, these restrictions on storing mean that system programs

such as the �ling system, command-language interpreters, compilers, and editors

cannot be con�ned. For example, an editor might maintain a checkpoint facility

using inherited objects. Such an inherited checkpoint �le would be banned in a

con�ned domain. Since formal veri�cation of software is very di�cult in prac-

tice, most software a user runs (including these utilities) must be untrusted and

run in a con�ned environment, so that only a small security kernel remains to

be veri�ed. Under these assumptions, the HYDRA solution to the con�nement

problem becomes unworkable.

68

7.1.2 PSOS

PSOS, the Provably Secure Operating System, is a design for a capability-based

system with proven strong security properties. The basic PSOS design does not

support the lattice model. Instead, PSOS contains an optional secure object

manager layered above the basic elements. The secure object manager imple-

ments objects called secure documents, and it enforces con�nement by ensuring

that capabilities with write permission are never stored into secure documents.

Thus, improper propagation of write permissions in violation of the con�nement

property is barred. PSOS prevents improper propagation by a complex set of

rights that separately determines whether a write capability can be stored.

PSOS has never been implemented and remains only a design concept.

2

The

design as presented in [166] appears to be overly restrictive about capability

propagation and could have di�culties when a user wished to transport software

from a PSOS that did not use the secure object manager to one that did. In par-

ticular, such software might make explicit calls on modules that were concealed

by the secure object manager. In addition, such software could not function with

the secure object manager if it stored write capabilities into objects. Even if the

software attempted no security violations, the secure object manager would pre-

vent the storing of write capabilities and thus cause the software to malfunction.

7.2 The Secure Capability Architecture

SCAP contains a table of descriptions of objects, and capabilities refer to entries

in this table. The exact implementation of this table is not important here, save

to say that all capabilities for a given object will point at the same entry. To be

practical, a capability system must cache the results of evaluating capabilities in

a hardware lookup table, so that e�ciency shall not su�er greatly. The table is

structured so that it is possible to ush all entries in the cache derived from a

given entry in the central object table.

3

Further, the cache provides an associative

search or direct lookup so that the overhead of capability evaluation is not unduly

expensive. To avoid the obvious storage channels, the central object table is only

be inspected by the security kernel, and the indices into the central object table

(that must be stored in capabilities) are not be visible to the user. Chapter 15

discusses speci�c implementations of capability caches with emphasis on their

performance implications.

2

The Honeywell Secure Ada Target described in Section 7.4.4 evolved from the PSOS design.

3

Flushing of this sort is available in the capability unit, i.e., capability cache, of the Cam-

bridge CAP computer [231]. Section 15.2 discusses SCAP's management of the capability

cache in much greater detail.

69

7.3 Non-Discretionary Security

Figure 7.1 illustrates the mechanisms of SCAP with an example of a user U

invoking a missile-trajectory-analysis subsystem M from a process U. U will

have logged into the system at some authorized access class A (e.g. unclassi�ed,

con�dential, secret, top secret) and owns a �le called D that contains information

at this level about trajectories to be analyzed.

Subsystem M contains two embedded capabilities for �les Y and Z. Files Y

and Z are both classi�ed at access class Low, where Low is less than access class

A. The embedded capabilities grant read and read/write permission to the two

�les, respectively, but the non-discretionary rules would be violated, if M were

allowed to write into �le Z.

E�ective

Access: R

E�ective

Access: R

??

File Z

Access

Class

Low

File Y

Access

Class

Low

Embedded

RW Capability

Embedded

R Capability

Missile Trajectory

Subsystem M

Data D

Access

Class

A

?

Invokes

Passing D

�

�

�

�

�

�

�

�

�

�/

E�ective

Access: RW

RW Capability

Process U

Access Class A

-

Figure 7.1: Non-discretionary Limited Capabilities

The problem being addressed is that of non-discretionary security: to prevent

the ow of material in one access class to a lower access class. The Bell and

LaPadula requirements state that a process may read information from an object

of lower or equal access class and may write information to an object of equal or

greater access class. In the example in Figure 7.1, the process acting for U will

be labelled as running in access class A. Therefore a capability granting read

access to an object must only be successfully evaluated if the object is marked

as belonging to access class A or lower. Capabilities granting write access must

only be successfully evaluated if the object is marked as belonging to access class

A or higher. Initially, let us assume that the access class of the object and the

70

access class of the process are directly available to the capability unit of the CPU.

Enforcement of the Bell and LaPadula rules then becomes trivial. There are two

major drawbacks to making such information directly available to the capability

unit. First, it needlessly adds complexity to the capability unit. The capability

unit would need hardware logic to compare sensitivity levels and category-set

bit-masks. Not only would such logic be very complex, but it would be on one

of the most critical performance paths in the entire CPU. Second, it restricts

the CPU to supporting only the Bell and LaPadula lattice model, and not some

other, incompatible security model that might be devised in the future.

The caching property of the system will allow the lattice model to be imple-

mented more e�ectively. If the processor does not automatically load capabilities

into the cache, but instead causes a fault or trap to the most privileged software

domain (called the security-kernel domain), then the security-kernel domain can

evaluate whether the lattice model permits the capability to be used. The CPU

hardware and microcode need not understand the lattice model. They need only

ensure that capabilities are loaded into the cache only upon command of the

security-kernel domain.

How would a protected subsystem operate under the lattice model? Suppose

that all writable objects in M belonged to the highest access class and all readable

objects to the lowest class. In that case, M could be run by any process at any

access class, although no objects in M would be simultaneously readable and

writable. In practice, the objects of M will not be so simply classi�ed, and

any reduction in classi�cation of writable objects, or increase in classi�cation

of readable objects reduces the access classes at which M can be run. For this

reason, a subsystem will have some a priori set of access classes in which it can

run without hindrance. To this purpose, it should be possible for a program to

inspect the access class in which it is run so that it can elect to retire gracefully,

rather than being forcibly prevented from accessing objects outside its domain

of protection.

This leaves some questions about data preserved between runs of the subsys-

tem, such as accounting records. At what access class should they be classi�ed?

Either they should be classi�ed in the highest access class to enable writing up,

or else the domain should have a separate account �le classi�ed at each access

class and the subsystem must choose on the basis of the access class of the caller.

In this respect, the restriction of use of objects by a domain should be applied

dynamically, so that a domain may contain embedded capabilities for objects

inaccessible in the present access class and may continue running, provided that

no attempt is made to use these capabilities. Figure 7.1 shows that subsystem

M contains two embedded capabilities, one for a read-only �le Y at access class

Low (Low < A) and one for a read-write �le Z at access class Low. However, the

augmented capability architecture will ensure that if M is operating on behalf

of U at access class A, M's e�ective access to Z will be restricted to read-only.

71

Thus, even if M contains a Trojan horse, M will be unable to violate the Bell

and LaPadula security model and compromise the data D.

To implement non-discretionary security then, it is necessary to label every

process with the access class of the user logged in to it and to label each object

with the access class to which it belongs. It is then possible to implement the Bell

and LaPadula read down and write up rules to prevent information ow between

access classes. These rules will be applied uniformly to all objects in which

data can be stored, namely, �les, data segments, capability lists, �ling system

directories, and inter-process communication objects. Uniform enforcement is

possible, because a capability must be present in the cache before a process can

perform any action, and because loading capabilities into the cache is controlled

by the security-kernel domain.

The security-kernel domain could grant certain other domains exemptions

from the lattice security model. Such domains might be used to implement

portions of the security kernel itself, to implement a sanitization or downgrading

facility, to enforce the lattice model on �ner grained objects, such as database

records, or to structure a monolithic kernel domain into a collection of smaller

domains. Such privileged domains are the analog of the trusted processes that

can be found in many existing security kernel implementations [153, 80]. Such

trusted domains must be veri�ed, just as the security kernel domain must be. The

use of a capability architecture to limit the access of even privileged domains may

make the security veri�cation of the code of the domain easier. (It is beyond the

scope of this dissertation to discuss security veri�cation. The interested reader

may �nd a useful treatment of the subject in [36].)

7.4 Comparison With Other Systems

This sections contrasts the SCAP secure capability architecture with a number

of other capability-based systems. These systems were chosen, either because

of their similarity to some aspect of SCAP, or because they are more recent

attempts to solve the capability-con�nement problem.

7.4.1 System/38

The IBM System/38 supports a concept of authorized and unauthorized pointers

that is similar to the secure capabilities of SCAP.

4

In the System/38, unautho-

rized pointers cannot be used without �rst checking an access control list (called

a user pro�le in the System/38 documentation). For e�ciency, the owner of an

object or anyone with create-authorized-pointer rights to an object may create

4

Hank Levy pointed out this similarity.

72

an authorized pointer that carries access rights to the object within itself and

does not require checking of the access control list.

If the System/38 had only unauthorized pointers, it could support the SCAP

architecture. Because the System/38 permits a user to create, store, and pass

an authorized pointer, an implementation of the lattice security model could be

bypassed. The System/38 manuals recommend that the user avoid the use of

authorized pointers, because \a user can pass them to other users who have not

been explicitly authorized to use an object." [102, p. 2{53] However, the creator

of an object can always create an authorized pointer to that object, leading to

the potential for a lattice-security-model violation.

7.4.2 SWARD

The IBM SWARD system [164] also has some similarity to SCAP.

5

The SWARD

operating system [31] de�nes access sets to control inter-user sharing. Access sets

are similar to access control lists. SWARD also contains a primitive control over

the propagation of capabilities, in that a SWARD capability cannot be copied

unless the capability itself grants copy permission. This type of propagation

control seems similar to that in PSOS, but SWARD has not attempted to support

the lattice model, and it is unclear from the available documentation whether

con�nement is possible.

7.4.3 Monash Password-Capability System

The Monash University password-capability system [7] o�ers a solution to the

con�nement problem that is equivalent to SCAP's, although implemented in a

completely di�erent fashion.

The Monash capabilities are stored as normal values in a user's memory

space, with no tagging or capability segments. Instead, each capability consists

of two 64-bit �elds. One �eld contains the name of the object, and the other

�eld contains a randomly generated password for the object. The security of the

system depends on the extremely low probability of guessing a correct password

and trusts possessors of capabilities never to allow them to appear in objects

that are readable to unauthorized individuals.

Clearly, such a system is extremely vulnerable to a Trojan horse attack, since

the Trojan horse need only expose the value of the secret password to leak access

to an object. The Monash system claims to solve the con�nement problem

by encrypting the passwords of capabilities that grant write permission. Every

process in the Monash system has an operating-system maintained lockword equal

in size to the password. The value of the lockword must not be known by the

executing process. If a process wishes to use a capability that grants write

5

Dorothy Denning pointed out this similarity.

73

permission, the operating system will �rst exclusive OR the password P of the

capability with the lockword L, giving an encrypted password Q, such that Q =

P �L. Passwords that grant only read permission are not modi�ed. If a process

P1 with lockword L1 wishes to run a potentially Trojan-horse-laden package,

it creates a new process P2 and speci�es a lock value V to be used by P2. As

opposed to lockwords, lock values are speci�ed by the process. P2 is created with

a lockword L2, such that L2 = L1 � V . P1 now passes capabilities to P2. For

those that grant write permission, P1 must �rst exclusive OR the passwords with

V . Since the password has already been exclusive ORed with L1, the result is a

password that P2 can use for write permission. However, if P2 gets a password

with write permission from any source other than P1, that password will not be

properly exclusive ORed with L1�V and will therefore not work. Thus, P2 can

be con�ned to only write into objects that P1 has approved. The Monash paper

shows how P2 can pass capabilities on to subordinates P3, etc. without violating

the con�nement property.

To support the lattice security model, the process P1 would have to be the

creator of all the subsidiary untrusted processes. Prior to passing any capability,

P1 would check the non-discretionary access classes and check any access control

lists. P1 is thus the analog of the SCAP security kernel.

The important similarity between SCAP and the Monash password-capabil-

ity system is that the use of lockwords makes capabilities necessary but not

su�cient to gain access to an object, just as in SCAP. The di�erence between

the Monash system and SCAP is that the Monash system makes its decisions

at the time the capability is passed, rather than at the time it is used. If the

Monash operating system simply did the security checks at the time of use (and

cached the results), then the notion of lockwords and encryption of passwords

would be superuous.

7.4.4 Honeywell Secure Ada Target (SAT)

Shortly after publication of the initial paper on the SCAP architecture, Boe-

bert similarly pointed out the con�nement problems of conventional capability

architectures [24]. His work has led to Honeywell's Secure Ada Target (SAT)

machine [28, 27] that implements a security strategy quite similar to SCAP.

Essentially, a SAT capability is not made available for actual use until both

non-discretionary and access-control-list checks have been made. SAT, however,

uses a quite complex hardware coprocessor, called the Tagged Object Proces-

sor

6

(TOP). By comparison, SCAP can be implemented on unmodi�ed RISC

processors or on a VAX processor with small microcode changes.

6

The SAT program evolved from PSOS and has since be renamed the LOCK program. The

Tagged Object Processor has been renamed SIDEARM [184].

74

7.4.5 KeyKOS

KeyKOS [177] is a capability-based operating system for the IBM System/370.

7

KeyKOS achieves con�nement by a mechanism called factories. Essentially, a

factory is a mechanism for creating new instances of protected subsystems. The

factory mechanism provides a way to inspect the newly created domain to ensure

that it contains only those capabilities, called keys in KeyKOS, that it is supposed

to contain and none that a Trojan horse could exploit.

It appears that KeyKOS achieves con�nement at a signi�cant cost in per-

formance. The factory mechanism provides total isolation by not only ensuring

that a newly created domain has no capabilities to allow writing information

from a higher access class to a lower access class, but also ensuring that the new

domain has no capabilities that allow reading information of a lower access class.

To permit such sharing of low level information, a �lter must be implemented

that executes a trusted program in a separate domain [105, pp. 18{19]. Thus, for

a high-access-class domain to read low-access-class information, it must execute

two cross-domain calls and returns. By contrast, SCAP simply provides a capa-

bility with read permission to a low-access-class memory segment, so such sharing

occurs as fast as any other instruction references. Furthermore, a cross-domain

call in KeyKOS is described [105, p. 25] as requiring \about 200 instruction cy-

cles for a typical invocation." This language is ambiguous, and if an instruction

cycle is a microcode cycle, then the KeyKOS cross-domain call performance is

very impressive. If, however, an instruction cycle is the time for a typical IBM

System/370 machine instruction and an invocation is a cross-domain call, not

including a cross-domain return, then a KeyKOS cross-domain call seems to be

relatively more expensive than a CAP-I cross-domain call.

8

Furthermore, the

SCAP cross-domain call optimizations, described in Chapters 17 and 18, achieve

better performance ratios than CAP-I.

7.4.6 Flex

The Royal Signals and Radar Establishment has developed a capability-based

system called Flex. Although Flex was not originally designed to address the

con�nement problem, Wiseman [234] is developing classes of trusted type man-

agers that can enforce non-discretionary security controls. Wiseman's prelimi-

7

KeyKOS was originally developed by the Tymshare Corporation under the name GNO-

SIS [111]. KeyKOS is now sold by Key Logic, Inc., a company formed speci�cally to develop

and market KeyKOS.

8

Cook [45] reports a cross-domain call and return requiring the equivalent of approximately

114 instructions. Cook measured the cost of both a call and return, while KeyKos measured

the cost of just a call. Assuming that call and return are roughly equal in cost, this makes

the ratio 200:57 or 3.5:1. This type of comparison is highly suspect, because the benchmarks

that were run were quite di�erent in character. The only safe conclusion is that KeyKOS

cross-domain calls appear to be relatively more expensive than CAP cross-domain calls.

75

nary design seems to rely on the creation of a secure type manager for classi�ed

objects. The only way one can make use of a capability for a classi�ed object is

by actually calling the classi�ed object manager. It is not clear from his paper

whether the classi�ed object manager will interpret all references or whether ca-

pabilities to the underlying objects will actually be released. In the latter case, it

is not entirely clear how those capabilities will be con�ned. In some respects, the

Flex design appears to resemble the PSOS secure document manager, and might

su�er from some of the same problems. However, only a preliminary design of

the Flex con�nement solutions has been published thus far, so it is premature to

make any judgements. Flex also has a number of interesting features, discussed

in Section 9.5.3, for dealing with discretionary Trojan horses.

7.5 Kain and Landwehr's Taxonomy

Kain and Landwehr [113] have developed a taxonomy of capability-based systems

to better understand why some can easily support non-discretionary controls,

while others seem to have great di�culty. Their taxonomy is based on considering

the following sequence of six questions about the life of a memory segment that

is to be addressed through a capability.

1. What happens when a capability is created?

(a) No access rights are inserted.

(b) Access rights are inserted.

2. What happens to the prepared-for-access capabilities that describe a seg-

ment, if the security attributes of that segment are modi�ed?

(a) Access rights are not changed.

(b) Capability is agged for future change.

(c) Access rights are updated immediately.

3. What happens to the stored-in-memory capabilities that describe a seg-

ment, if the security attributes of that segment are modi�ed?

(a) Access rights are not changed.

(b) Capability is agged for future change.

(c) Access rights are updated immediately.

4. What happens when a capability is copied?

(a) Access rights are not changed.

(b) Access rights are further restricted by context rules.

(c) Access rights are set to the maximum consistent with policy.

76

(d) Access rights are are updated properly by trusted software.

5. What happens when a capability is prepared for use?

(a) Access rights are not changed.

(b) Access rights are restricted by policy.

(c) Access rights are set to the maximum consistent with policy.

6. What happens when the processor attempts to use the capability?

(a) No checks are made.

(b) The reference is checked against available rights.

(c) The reference is checked against maximum possible rights.

The answers to these questions determine how well or poorly the capability

system can enforce the con�nement property. In particular, question one is most

critical in determining the ease of enforcing non-discretionary rules. Essentially,

question one asks whether binding of access rights to a capability occurs at the

time of creation or whether binding is delayed until the capability is actually

used. Delayed binding of access rights is the strategy used by both SCAP and

SAT to implement the lattice security models.

Questions two and three deal with immediate revocation. If access rights in a

capability are not changed when the security attributes of the object change, then

revocation is impossible. The choice between agging and immediate update is

a question of performance. Flagging for future change usually will give better

performance, as many of the capabilities that exist may never be used.

Question four examines how capabilities are copied from domain to domain.

Restrictions on copying can be used to enforce con�nement, but they have all

the problems described above in Section 7.1.2.

The answers to questions �ve and six are directly related to the answer to

question one. If access rights are bound at creation time, then no access rights

changes are required, either at time of preparation for use or at time of use. If

access-rights binding is delayed, however, then the access rights must be modi�ed

at time of preparation or at time of use.

Applying the taxonomy, a conventional capability system, such as CAP-I or

the Plessey System 250 is baaaab or badaab, while a system like PSOS is baadab.

By contrast, the SAT is aaaacb, and SCAP is abbabb. (Kain and Landwehr [113]

incorrectly categorized the SCAP system as identical to SAT, although the con-

clusions that they drew from the incorrect categorization were valid. The di�er-

ences between SCAP and SAT appear to be in revocation, rather than support of

non-discretionary controls. They based their characterization on the 1984 paper

on SCAP [119].

77

78

Chapter 8

Traceability of Access Problems

8.1 Asymmetric Views of Security

Capability and access-control-list systems have always been viewed as equivalent,

because they are simply alternate views on the same Lampson access matrix. In

practice, the two systems are not necessarily identical because of the di�erences

in representing privilege. Users frequently ask the follow two questions of an

access-control system:

� To which objects does a given subject have access?

� Which subjects have access to a given object?

The questions are symmetrical. In a capability system, the �rst is easily

answered by inspecting a single capability list, but the second requires a search

of all capability lists. For access-control-list systems, the second question is easily

answered by inspecting a single access control list, but the �rst requires a search

of all lists.

Expressing security policies with pure capability systems is less obvious than

with access-control-list systems, because the second question is asked much more

frequently than the �rst. In the world of security, one is concerned with who is to

be granted access to particular data. A security o�cer investigating an incident

needs to know who has access to a compromised object. It is much less common

for a user to want a list of all the objects to which he or she has access. As a

result, most actual commercial systems have been based on access control lists,

rather than capabilities.

The traceability-of-access problem is the problem of determining who has

access to a given object. This chapter will show how the SCAP architecture

that was designed to solve the capability-con�nement problem can also solve the

traceability-of-access problem and provide the bene�ts of both a capability-based

approach and an access-control-list-based approach.

79

8.2 Discretionary Security with SCAP

This section modi�es the example of a missile trajectory subsystem from Fig-

ure 7.1 on page 70 by considering discretionary security controls. Suppose in this

new example shown in Figure 8.1 that the subsystem M was written by a user

V who wishes to steal a capability for the data D passed to M by U and that

V can work in the same access class as U. V's strategy might be to cause M to

store a copy of the capability for D in �le F and then subsequently to run M

himself and cause it to give him a copy of the capability. If there is a revocation

scheme for disabling argument capabilities after completion of a domain call, V

might try to subvert the revocation by running another, parallel instance of M in

his own process and passing the capability via a shared capability list common

to both instances. A brute-force solution to these copying problems is to insist

that all capability lists in a domain that are shared between instances cannot be

writable, but this is a rather restrictive view and limits the utility of protection

domains.

�

E�ective Access: Null

�

�

�

�

�7

Retrieves

Capability

for D

?

Stores

Capability

for D

?

E�ective

Access: RW

�

�

�

�

�

�

�

�

�

�

�

�

�

E�ective

Access: RW

-

Invokes

Passing D

Process U

RW Capability

Missile Trajectory

Subsystem M

Embedded

RW Capability

Process V

Retrieved

RW Capability

Data D

File F

Access Control List

U: RW

V: Null

Figure 8.1: Access-Control-List Limited Capabilities

The full solution is to include access-control-list inspection as part of the ba-

sic, capability-evaluation mechanisms. Suppose each object description includes

some representation of its access control list. Further, make the user name of the

user logged into a process available to the capability machinery. Discretionary

80

controls can then be applied if the rules are imposed that the access control list

should be checked as part of capability evaluation and that capabilities from

a shared capability list in di�erent instances of a domain are held at di�erent

places in the capability cache. (The capability unit of the Cambridge CAP com-

puter has exactly this property.) Then, the �rst time a domain comes to use

a capability, the access control list will be checked. In the example above, the

instance of M run by V will not be able to use a capability for D stored in �le

F, because V is not in the access control list for D.

Using the hardware and microcode of the system to handle access control

lists would make the capability unit needlessly complex and restrict the system

to a particular style of security policy. The same caching strategy that was used

for non-discretionary controls can also support access control lists. Note that

the access control list need only be checked the �rst time a capability is used

by an instance of a domain; thereafter the cached copy is su�cient. Therefore,

the security-kernel domain can evaluate the access control list at the time that

it loads the capability into the cache and can refuse to load the capability, if the

access control list so directs. So, by a simple change to the capability mechanisms

that support intervention during the evaluation of capabilities, the system can

support arbitrary non-discretionary and discretionary security policies. This type

of intervention is analogous to missing-segment-fault processing in Multics [168]

and similar operating systems. Given a large enough cache to prevent excessive

re-evaluation of capabilities, the performance cost should not be excessive.

In the context of discretionary security, there is another line of attack by

which V can acquire a copy of the data D. The technique is simply to make a copy

to another object within M. (It should be noted that D cannot be overwritten

by this route, but only stolen.) The access control list on the second object

must indicate that the object is writable by U so that M can make the copy and

readable by V so that the data may be read out subsequently. It is precisely this

problem, inherent to any discretionary policy, that motivates practical security

systems to employ non-discretionary and discretionary policies in conjunction.

By varying the access classes of U and V appropriately, the con�nement property

can be relied upon to restrict information ow from D to the second object.

The security manager in a protected system needs to engage in operations

such as modifying the access class of information and setting up group access

control lists. These privileges can themselves be represented as capabilities that

are recognized by the security kernel, and the mechanisms outlined to allow them

to be kept in the �ling system and treated as bona �de capabilities or privileges.

It is also possible to cope with immediate revocation in the scheme without

resorting to the complication of indirection through special, revoker capabilities

found in other capability systems [179]. If an access control list is modi�ed for a

particular object, all entries in the cache for that object must be ushed. This

will cause all capabilities for the object to be evaluated afresh, and any changes

81

in discretionary policy will be noted directly.

1

Revocation is discussed further in

Chapter 11.

Thus, SCAP supports both discretionary and non-discretionary access con-

trols by augmenting a basic, capability mechanism. It is important to note that

the scheme relies on:

� carrying information about access classes and access control lists down to

the most primitive parts of the kernel, and

� taking some care in the rules for leaving evaluated capabilities in a capa-

bility cache.

The basic rule is that when a capability is �rst used in an instance of a

domain it must be subject to both access-control-list checking and non-discre-

tionary checking. Such a scheme is easy to implement on a variety of machine

architectures. In the Cambridge CAP Computer, it could be built into the

microcode that loads capabilities into the capability unit. In either a RISC

implementation or in the VAX-11/730 implementation of SCAP, the rule could

be built into the page fault handler of the operating system.

Furthermore, SCAP provides the lattice security model and traceability-of-

access transparently to most applications programs. That is, a software module

can be encapsulated as a protection domain, and as long as it operates at a single

access class and makes no security violations, all of its capability operations will

work correctly.

In most capability machines, the creation of domains and organization of

capabilities are done by language compilers, and the user is quite unaware of

the underlying machinery until his program commits some transgression. This

combined transparency is especially important, because not all software devel-

opers and users may run the lattice security model or a capability system and

may not design software to be constrained in such ways. However, users of the

lattice security model will want to run such software, albeit in properly con�ned

domains of protection.

1

The use of the capability cache in the revocation procedure is certainly a form of indirection.

However, the Redell revocation scheme uses a similar cache and requires more indirection.

82

Chapter 9

Discretionary Trojan Horses

The notions of non-discretionary controls were developed to deal with Trojan

horse attacks. All of the non-discretionary security models deal with Trojan

horses by subdividing information into a set of access classes. Only Trojan horse

attacks between access classes are prevented. These non-discretionary models

have dealt well with a large class of problems in the military and also can be

used for some commercial applications [144]. Many applications, however, still

wish to use discretionary access controls, such as capability lists or access control

lists (ACLs), to implement their security policies. Since discretionary controls

are inherently vulnerable to Trojan horse attacks, there is growing concern [63]

that some form of Trojan horse protection be developed for pure, discretionary

environments.

It is has been claimed [238, page 107] that a capability-based system can

alleviate discretionary Trojan horse problems, because a suspect program could

be run in a separate domain of protection and could be granted capabilities only

to the particular �les that are required to perform its function.

This chapter

1

shows that conventional capability systems cannot solve this

problem for practical applications. A solution based on the secure server tech-

niques developed for non-discretionary protection appears to solve many of the

discretionary Trojan horse problems both for SCAP and for conventional access-

control-list (ACL) systems.

9.1 Directory Management

A discretionary Trojan horse can gain access to all of a user's �les, because the

operating system provides a directory manager that translates human-readable

�le names. The Trojan horse need only quote a selected �le name, and the

directory manager will provide access, if the unsuspecting user of the Trojan

1

This chapter is a revised version of a paper [117] presented at the 1987 IEEE Symposium

on Security and Privacy.

83

horse has the appropriate access rights. Figure 9.1 shows a Trojan horse in the

FORTRAN compiler that surreptitiously modi�es a user's LOGIN.COM �le, while

compiling the user's program.

XYZ.FOR XYZ.OBJ LOGIN.COM

.

.

.

.

.

.

.

.

.

.

.
.
.
..
.
.
.
..
.
..
.
..
..
..
..
...
..
...
...
....
....
.....
........

........................
........

.....
....
....
...
...
..
...
..
..
..
.
..
..
.
..
.
.
.
.
.
..

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
.
...
..
..
...
...
...
....
....
......
........
....................

........
......
....
....
...
...
...
..
..
..
..
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
..
.
.
.
..
.
..
.
..
..
..
..
...
..
...
...
....
....
.....
........

........................
........

.....
....
....
...
...
..
...
..
..
..
.
..
..
.
..
.
.
.
.
.
..

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
.
...
..
..
...
...
...
....
....
......
........
....................

........
......
....
....
...
...
...
..
..
..
..
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
...
...
..
....
...
....
....
.....
.....
.......

..........
.................................

..........
.......

.....
.....

....
....
...
...
...
...
..
...
..
..
..
.
..
..
.
..
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
..
.
.
.
..
.
..
..
.
..
..
..
...
..
...
...
...
...
....
.....
.....
.....
........
...........

..........................
...........

........
......
.....
....
....
...
...
...
...
..
...
..
..
..
..
.
..
..
.
.
..
.
.
.
.
.
.
.

.

.

.

.

.

FORTRAN

Compiler

Trojan

Horse

? ? ?

Reads Writes Writes

Command-Language

Interpreter

?

?

User

$ FORTRAN XYZ

Figure 9.1: Trojan Horse in Action

As mentioned above, it is frequently claimed that a capability-based system

can alleviate this class of discretionary Trojan horse problem, because the suspect

program could be run in a separate domain of protection and could be granted

capabilities to only the particular �les required to perform its function. Close

examination of the directory management reveals the problem.

In a capability-based system, the directory manager is responsible for storing

capabilities to various objects, associating human-readable names with these

stored capabilities, and returning capabilities to the user when the appropriate

name is requested. In the simplest case, there would be a directory for each user,

storing that user's capabilities. However, it is clearly unreasonable to require

that each user have a private capability for objects that are shared by many

users. For example, it would be far too expensive and cumbersome to store one

capability for each potential user of the FORTRAN compiler. Instead, a single

capability for the compiler could be stored in a public directory of all compilers,

and all users would possess a capability for that public directory.

Many capability directory managers represent di�erent access rights for dif-

ferent users by associating with the object something similar to an access control

list to describe who may retrieve a capability for an object, given that the user

84

in question already possesses a capability for the containing directory.

2

For ex-

ample, the CAP-I Operating System [231, chapter 4] uses an access matrix to

encode who may retrieve a capability for an object.

Name-to-capability translations by a directory manager reintroduces a secu-

rity problem that capability systems were attempting to remedy. The capability

system was supposed to limit a domain to only those objects to which it either

had embedded capabilities or for which capabilities were passed as arguments.

For example, if a user runs a text editor in an access-control-list system to mod-

ify a �le, the editor can open any other �le to which the user may have access.

Ostensibly, a capability system allows the user to encapsulate the editor and only

allows the editor access to the speci�ed �le. However, most text editors allow

the user to enter �le names while the editor is running, instead of requiring that

the names be speci�ed when the editor is called. The editor must have access to

the user's directory, and even in a system like the CAP-I operating system, the

editor could retrieve capabilities for �les that the user did not intend.

The problem here is not inherent in the design of capability systems. If the

capabilities were used properly, the discretionary Trojan horse would not suc-

ceed. The problem is that using a capability system properly requires extreme

discipline on the part of the software authors and imposes limitations on the hu-

man interface. Most authors and users are unwilling to accept those limitations,

and as a result, even the CAP-I text editor proved vulnerable to the discretionary

Trojan horse attack.

The CAL operating system [205, page 57] addressed the problem by de�ning

two search lists: one for commands entered by the user from a terminal and one

for all other programs. Each search list consisted of a set of directory capabilities

that allowed the program to retrieve and/or create �les. The second search list

usually contained much less powerful capabilities. While this solution limited

the problem, a malicious system command could still gain access to objects not

intended by the user.

9.2 Name-Checking Protected Subsystem

A better solution is to use the command interpreter's knowledge about the com-

mands that are to be invoked by interposing a special, name-checking protected

subsystem between the suspect program and the directory manager. The pur-

pose of the protected subsystem is to inspect all requests for name-to-capability

translations and compare them with the requests actually typed by the user and

with the behaviour patterns expected of the program in question.

2

Saltzer and Schroeder [182] discuss in more detail the need for directories to support

capability sharing.

85

The name-checking subsystem uses the same command-de�nition tables as

the command interpreter, itself.

3

Commands and user programs obtain their

parameters by explicitly calling the name-checking protected subsystem, rather

than receiving the parameters on the stack. This method of obtaining parame-

ters is analogous to the use of the PARMS protected subsystem in CAP-I [231,

page 44] or the CLI-callback mechanism in VAX/VMS. Furthermore, a program

will be able to translate a name to a capability only by calling the same name-

checking subsystem. Direct access to the directory manager will be forbidden.

Thus, a program or system command can only retrieve a capability from the

directory manager by calling the name-checking subsystem, so the program's re-

quests for objects can be checked. For system commands, the command-language

database de�nes what types of objects are required. The name-checking subsys-

tem knows that the FORTRAN compiler required read access to the source code

in a �le with a user-supplied name having a su�x of .FOR. Likewise, the name-

checking subsystem knows that the compiler created new �les with the same

user-supplied name, but su�xes of .OBJ and .LIS to store the object code and

the compiler listing, respectively. However, if the compiler attempts to create or

to write into a �le named LOGIN.COM, the name-checking subsystem will recognize

that such a �le name is not usual for the FORTRAN compiler.

Given an unexpected name, the name-checking subsystem has two choices.

It could simply return an error to the compiler, but such a strategy is overly

restrictive. A better approach is to query the user about the request. Queries

are particularly appropriate for programs that are not in the command-language

database. The query would inform the user of the �le name and the access mode

requested. Any actual implementation should support a user-settable option to

control whether to query or to abort. The user could also specify new rules for

name checking, just as a user of VAX/VMS can specify new command tables.

4

Figure 9.2 shows the Trojan horse in the FORTRAN compiler blocked by a

name-checking protected subsystem that queries the user when the Trojan horse

attempts to write into LOGIN.COM.

The implementation of the name checking must be in a protected subsystem

to ensure that the right to retrieve capabilities from directories is not abused.

The name-checking subsystem must be able to guarantee that input came from

a human being and not from some program masquerading as a human being.

In this, the name-checking subsystem requires a trusted path to the user,

5

much

3

The VAX/VMS Command De�nition Utility [220] uses such tables.

4

An obvious drawback to querying the user is that the user may always answer \yes",

regardless of the content of the query. User apathy can only be resolved by frequent security

training and by auditing all responses to queries.

5

The need for a trusted path between the user and the secure operating system was �rst

identi�ed by Bell, Fiske, Gasser, and Tasker [13] in early 1972. The trusted path provides

guaranteed communication between the human being and secure software, complete with two-

way authentication.

86

XYZ.FOR XYZ.OBJ LOGIN.COM

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
..
.
.
..
..
.
..
..
..
..
...
...
...
...
....
....
......

...........
............

...........
......

....
....
...
...
...
...
..
..
..
..
.
..
.
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
...
..
...
....
....
.....
......
.............................

.......
.....
....
...
....
..
...
..
..
..
..
..
.
..
.
..
.
.
..
.
.
.
.
.

.
.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
..
.
.
..
..
.
..
..
..
..
...
...
...
...
....
....
......

...........
............

...........
......

....
....
...
...
...
...
..
..
..
..
.
..
.
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
..
.
.
..
.
..
..
..
..
..
..
...
..
...
....
....
.....
......
.............................

.......
.....
....
...
....
..
...
..
..
..
..
..
.
..
.
..
.
.
..
.
.
.
.
.

.
.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.
.
..
.
..
.
..
..
..
..
..
...
..
...
...
...
....
....
....
.....
......

........
...............

...............
..............

........
.......

.....
....
....
....
...
...
...
..
...
..
..
..
..
.
..
.
..
.
..
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
..
.
.
..
..
.
..
..
..
...
..
...
..
...
....
...
.....
....
.....
.......
.........
......................................

.........
.......
.....
.....
....
...
....
...
...
..
...
..
..
..
..
..
.
..
.
..
.
.
.
.
.
.
.
.
.
.

.

.

.

.

? ?

Query

�

OK OK

X

Name-Checking

Protected Subsystem

FORTRAN

Compiler

Trojan

Horse

? ? ?

Reads Writes Writes

Command-Language

Interpreter

?

?

User

$ FORTRAN XYZ

Figure 9.2: Trojan Horse Blocked

like the secure server of a security kernel. However, unlike the secure server, the

name-checking subsystem is only enforcing discretionary access controls.

6

The example above showed how the name-checking subsystem might be used

from a compiler that makes very stereotypical object references. A text editor, by

contrast, may reference arbitrary objects based on user input to the text-editor's

command stream, rather than to the command-language interpreter. This could

result in a bad human interface, if the user typed a command to the text editor,

and the editor then called the name-checking subsystem to query the user if the

�le name were correct. A better solution is to change the text editor to not

query the user directly for the �le name, but rather to ask the name-checking

subsystem to query the user. The name-checking subsystem can assure itself

6

Since the name-checking subsystem does not enforce non-discretionary controls, it need

not be formally speci�ed or veri�ed to meet the A1 requirements of the National Computer

Security Center [59]. Since formal veri�cation of the full command interpreter would likely be

very di�cult, it is quite important to not require such veri�cation for an A1 rating. The name-

checking subsystem must also control installation of new command tables through the trusted

path. Otherwise, a Trojan horse could attack the system by �rst installing new name-checking

rules in a new command table and then later taking advantage of those new rules.

87

that the human being (and not a Trojan horse) actually speci�ed the �le name,

and the human being only has to reply to a single query, rather than two.

7

The name-checking subsystem must also support the use of scratch �les. The

simplest solution is to force such �les into special, temporary directories, as

suggested in [79] for securing the UNIX /tmp directory.

9.3 Name Translation in Batch Jobs

The strategy described thus far appears suitable for programs that run interac-

tively with a human being present at a terminal. However, the strategy breaks

down when one considers large batch jobs that may reference many di�erent ob-

jects. In particular, if we consider the UNIX make(1) command [212, pp. 1-244 {

1-246] or DEC/MMS (Module Management System) [215], we can see that a

human being may issue a single command that references hundreds or thousands

of distinct �les. The user would be quite unwilling to run such jobs interactively,

because they may take many hours of CPU time. Instead, there must be a fa-

cility to ensure that such large batch jobs do not gain access to �les that were

not intended by the user. There are several possible solutions to the problem of

large batch jobs, each appropriate in di�erent situations.

9.3.1 Special Directory Trees

The �rst solution is to construct a special directory tree containing only objects

that are to be operated upon by the batch job. Then grant a capability for

the root of that directory tree that allows the batch job to retrieve capabilities

directly. This solution is straightforward to implement, but requires that the

user carefully construct directory trees that contain only objects on which the

batch job is allowed to operate. This solution can also be used for interactive

applications, but requires that the user plan ahead even more. Special directory

trees are likely to already be used in large software development projects.

9.3.2 Pre-Compiled Batch Jobs

The second solution is to have a special protected subsystem that will compile

the batch job or the make �le into an intermediate form. The compilation pro-

7

The human interface of the name-checking subsystem can be simpler than that of a secure

server. A human being must depress a secure attention key to provide two-way authentication

of the human to the secure server and the secure server to the human. Two-way authentication

is needed, because the user may type secret information (such as a password) to the secure

server. However, the name-checking subsystem will never require secret information from the

user that must be kept secret from the applications program. Therefore, although the name-

checking system will require an assured path to the human (and not to a Trojan horse), the

user will not require the assurance of the secure attention key.

88

cedure will examine each command that is to be executed and will record in the

intermediate form what capabilities it will need. The compilation will be done

interactively, and the user can be queried (just as for an interactive command) if

the batch job appears to reference unexpected objects. The intermediate form of

the batch command procedure must be stored as a protected object, so that un-

trusted code cannot modify it. Essentially, the compilation of the batch �le and

the later interpretation of the intermediate form are additional functions of the

PARMS protected subsystem discussed in Section 9.2. It should be noted that

compilation of large batch jobs and make �les can have signi�cant performance

advantages, because a large percentage of a batch job's execution time may go

into parsing and interpreting command procedures. The Burroughs B6700 Work

Flow Language (WFL) [228] is an example of a compiled batch command pro-

cessor.

Clearly, the special, directory-tree solution is much simpler than pre-compiled

batch jobs. The principal drawback of special directory trees is that they require

considerable advance planning on the part of the user, and any error in that

advance planning could provide an opportunity to a discretionary Trojan horse.

While pre-compilation is a complex procedure, it is much less prone to user error.

9.3.3 Additional Approaches

Pre-compiled batch jobs su�er from two serious problems. First, a compiler

is needed, not just for the command language and the make utility, but also

for other utilities that have complex command languages that could run in

batch, such as VAX DATATRIEVE or an SQL relational database language.

Pre-compilation may not be possible at all for complex user-written utilities.

Second, the compilation process could easily generate hundreds of �le names to

be authorized, and the typical user would quickly become bored and probably

miss the one Trojan horse attack amongst the hundreds of valid references.

Two alternatives to pre-compiled batch jobs have been suggested recently:

wildcard authorization and post authorization. Neither of these ideas have been

studied in depth, as yet, but both look promising for future research in preventing

discretionary Trojan horses.

9.3.3.1 Wildcard Authorization

Kahn [112] has suggested a scheme of wildcard authorization, in which the user

authorizes entire classes of �le references, prior to starting the batch job. For

example, the user might issue the command:

$ AUTHORIZE WRITE DUA0:[KAHN.WORK]*.OBJ;*

This command would authorize the batch job to write into any �le of type

.OBJ in Kahn's WORK subdirectory. In a sense, wildcard authorizations are a

89

better method of specifying special directory trees. Of course, the AUTHORIZE

command would have to be issued through the trusted, name-checking subsystem

to avoid Trojan-horse attacks.

9.3.3.2 Post-Authorization

Lomas [147] has suggested a method of post-authorization in which a batch job

is allowed to modify or create any �les it wishes. However, any modi�cations

to existing �les would be made to new versions of the �les, rather than the

existing versions, and all the �les, whether modi�ed or created, would be marked

inaccessible. Similar steps would be taken for operations such as �le deletion,

access control list changes, etc. At some time later, the user would return and

authorize the new �les through the trusted, name-checking subsystem. The

advantage of Lomas' scheme is that no pre-compilation is required, and only those

�les that are actually modi�ed or created require authorization. Files mentioned

in the batch job, but not actually touched, would not require authorization.

8

9.4 Access-Control-List Systems

Thus far, this chapter has examined the discretionary Trojan horse problem in

the context of a capability-based system, but recognizing expected �le names can

also be applied in an access-control-list (ACL) system. For interactive sessions,

the approach is the same. The command interpreter knows what �le names to

expect, based on information from the command-de�nition tables and on the

information typed by the user. If the program requests an unexpected �le name,

the user is queried about the legitimacy of the operation.

For batch jobs, however, only the pre-compiled batch job strategy will work.

The special directory-tree approach depends on the ability to grant a capability

to a particular batch job and not to all batch jobs that may be run by that user.

Conventional, access-control-list systems cannot express such selective granting

of access rights.

9.5 Alternate Strategies

This section contrasts the approach for a name-checking protected subsystem

with other attempts to deal with the discretionary Trojan-horse problem.

8

Post-authorization could become quite complex in the case of �les referenced remotely over

a network. In principle, one could construct a network post-authorization protocol, but the

details and synchronization requirements are likely to be di�cult.

90

9.5.1 Strict Need-to-Know Policy

One of the earliest solutions proposed for the discretionary Trojan-horse problem

was in the Case Western Reserve University's non-discretionary security model

by Walter [225]. The Case model suggested implementing a strict need-to-know

policy in which a process is not allowed to copy information from one object

r to another object r

0

, unless all of the users authorized to read r

0

were also

authorized to read r. An analogous policy could be constructed for strict need-

to-modify. However, Case found the security scheme \much too rigid to be of any

use, except perhaps in the special case of a small environment." [225, page 15]

They found the complexity prohibitive for even such simple cases as adding a

new user to the list of users authorized access to some particular object.

9.5.2 Enhanced Linker

Boebert and Ferguson [25] have proposed an enhanced dynamic linker as a partial

solution to the discretionary Trojan-horse problem. Their solution (developed

concurrently with and independently from the proposals in this chapter) sim-

ilarly interposes a protected subsystem between the suspect program and the

actual �le system. Boebert and Ferguson force all �le references to go through

a trusted dynamic linker that compares the name of the user who invoked the

program, the name of the originator of the program, and the name of the owner

of any data �les. If the user invokes a program owned by someone else, and that

program contains a discretionary Trojan horse that attempts to tamper with the

user's �les, the dynamic linker will recognize the name mismatch and raise the

appropriate alarms.

The primary di�erence between Boebert and Ferguson's proposal and this

proposal is that the dynamic linker bases its decisions solely on the name of

the user and the name of the originator of the program. If I use a borrowed

FORTRAN compiler, I want that compiler to read my source �le and produce

an object �le. The name-checking subsystem uses the knowledge built into the

command-de�nition tables to recognize expected and unexpected actions of the

suspect program. Thus, the false alarm rate should be lower using the name-

checking protected subsystem. The mechanism of interposing a name-checking

subsystem is the same in both proposals. Only the decision-making process

di�ers.

9.5.3 Flex Cartouches

The Royal Signals and Radar Establishment's capability computer [234], called

Flex, has a unique way of representing capabilities that are stored within more

complex data structures. [201] (Flex uses a tagged capability architecture and

permits capabilities to be intermingled with data.) When an object is displayed

91

on the screen, the Flex editor distinguishes between ordinary text and capabilities

by displaying the capability in a cartouche, or box. Anything displayed in a

cartouche is a value, pointed to by a capability; while anything not displayed in

a cartouche is simply text. Figure 9.3 shows a very simple example of what Flex

calls an ed�le. The ed�le contains text, a capability to an object containing an

integer and a capability to another ed�le.

This is the �rst line of the ed�le.

This line contains an integer 35 , with value 35.

This line contains a capability to another ed�le another-�le .

This line is just text.

Figure 9.3: Example of Cartouches in a Flex ed�le

The important thing about cartouches is that they represent the capabili-

ties, themselves, and the user can manipulate the capabilities directly, using a

window-based editor with a mouse.

9

As a result, many objects require no names

at all, and the opportunities for discretionary Trojan horses to exploit name-

to-capability translation are nearly non-existent. Flex has not been designed

particularly to deal with Trojan-horse problems, and it does not appear to have

a mechanism to prevent the display of a bogus cartouche. However, the hu-

man interface of Flex, with its direct manipulation of capabilities, presents an

intriguing possibility for future approaches to limiting the damage potential of

Trojan horses. The author's lack of direct access to a Flex computer prevents

further exploration of the use of cartouches in this dissertation. However, there

seem to be quite promising opportunities for future research on the use of a se-

cure window manager to limit the damage potential of both discretionary and

non-discretionary Trojan horses.

9.6 Limitations of the Technique

Recognizing unexpected �le requests appears to be an e�ective technique to

limit the damage that a discretionary Trojan horse can do. The technique ap-

pears most e�ective against unauthorized tampering or sabotage, because all

unexpected �le requests can receive human review and audit. Of course, this

technique does nothing to stop a Trojan-horse-laden program from tampering

with the �les that it is supposed to process. The �les could be destroyed, or

the program could simply give wrong answers in certain cases. Since such tam-

9

Flex is currently implemented on re-microprogrammed ICL Perq workstations.

92

pering often cannot be distinguished from non-malicious program bugs, security

techniques will not be useful here.

Recognizing unexpected �le requests is of less use in preventing unauthorized

release of information, because the Trojan horse could surreptitiously encode

sensitive information in its legitimate output �les, using any of the usual storage-

channel techniques for communication. This result should not be surprising,

given Harrison, Ruzzo, and Ullman's results [89] that the con�nement problem

is undecidable for generalized access matrices, such as most discretionary access-

control systems.

The reason the technique can work at all is that computer systems are used

in extremely stylized ways. By codifying that information into the command-

de�nition tables, we can build simple, protected subsystems that can detect when

a discretionary Trojan horse violates those patterns of normal use. The user must

adjudicate whether violation of the normal patterns is legitimate or malicious,

but because the detection system is table-driven, the frequency of user queries

can be kept to a minimum.

93

94

Chapter 10

Implementing Commercial

Integrity

The Clark and Wilson commercial integrity model [40] was introduced in Sec-

tion 3.2.3. This chapter

1

presents how the SCAP architecture can be used to

implement the Clark and Wilson model and contrasts that design with other

proposed implementations.

The model contains two classes of objects: constrained data items (CDIs)

and unconstrained data items (UDIs). CDIs are the objects to be protected, and

UDIs are used for simple data input. The model de�nes two classes of procedures

to operate on CDIs: integrity veri�cation procedures (IVPs) that check the CDIs

for integrity and consistency and transformation procedures (TPs) that change

the set of CDIs from one consistent state to another.

The model contains a set of �ve certi�cation rules, called C1 to C5, and four

enforcement rules, called E1 to E4. The rules are de�ned on page 38.

10.1 Implementation

Examination of the Clark and Wilson model immediately suggests an implemen-

tation based on protected subsystems. CDIs can be built out of abstract data

types with TPs as the operations of the type manager. Sealed capabilities, de-

scribed in Section 4.4 appear su�cient to support the enforcement rule E1. It

was lack of support for E1 that Clark and Wilson most criticized in both the

Biba integrity model [18] and the Lipner commercial integrity model [144].

10.1.1 Certi�cation Di�culties

Supporting E1, however, is critically tied to certi�cation rule C2 that requires

that all TPs be certi�ed valid. Not only must the TPs be certi�ed to take CDIs

1

A paper [115] based on this chapter is scheduled for presentation in April 1988.

95

from valid states to other valid states, they must also be certi�ed not to pass

their access rights for the CDIs to other non-certi�ed procedures. The problem is

that certi�cation of TPs is extremely di�cult. One would initially be tempted to

use software correctness proof techniques, but these techniques are notoriously

di�cult to apply

2

. The Bell and LaPadula lattice security model went to great

e�ort to minimize the portion of any system that would require certi�cation. The

primary purpose of their con�nement property is to con�ne any applications code

that could not e�ectively be certi�ed.

Thus, the Clark and Wilson model should be implemented in such a way

that inspecting and proving things about the security properties of the system

are easy, without requiring full correctness proofs of the TPs. Even with full

correctness proofs of the TPs

3

, separation of the security issues from the basic

algorithmic correctness issues would be helpful, because one would like to change

the list of who may run a particular TP without having to reprove the code of the

TP. Therefore, the relations discussed in rules C2 and E2 must be implemented

as part of the security kernel of the system, rather than as part of the code of

the TPs themselves.

10.1.2 Crucial Role of the Audit Trail

Clark and Wilson call for the maintenance of an audit log in rule C4. As with

most other security models, however, they do not recognize the critical role that

the audit trail must play. In particular, the separation-of-duty rule, C3, can

only be enforced by using information about past actions. The audit trail is the

primary source of such information.

More generally, permission to execute certain transactions or to modify cer-

tain CDIs can only be granted if certain previous transactions have been executed

by speci�c individuals. Any system that supports such a dependency rule must

deal with possible violations of that rule. For example, if user A executed some

transaction TP1 that in turn made it possible for user B to execute transaction

TP2 exactly once, user B might maliciously attempt to execute TP2 more than

once. If user A executing TP1 grants user B permission to execute TP2, TP3,

and TP4, each exactly once, the system must ensure that B does not maliciously

execute TP2 three times instead.

Since dependencies on previous transactions can be made arbitrarily complex

by applications designers, any system to enforce such dependencies must make

2

See De Millo, Lipton, and Perlis' classic paper [54] on the social processes involved in

formal veri�cation.

3

IBM's Hursley Laboratory together with the Oxford University Programming Research

Group have done some work on formal speci�cation of IBM's CICS transaction processing

system [237]. However, full correctness proofs of arbitrary user-written TPs remain impractical,

today.

96

the audit history available to the access-control software. This is in direct con-

trast with almost all previous security systems that have viewed the audit trail

as a subsidiary function for determining what may have happened after the fact.

The role of the audit trail in determining access policy was recognized by

Fern�andez, Summers, and Wood [69, pp. 62 and 91]. Their notion of history-

dependent control is primarily aimed at the statistical-inference problems in

databases, rather than at separation of duty. They do recognize the need to

record past actions on the database and to make future requests conditional on

those past actions.

10.1.3 Implementing with Secure Capabilities

One can limit the need for certi�cation of the TPs and make inspection easier by

using the properties of SCAP's secure capabilities. Capabilities in SCAP are nec-

essary to gain access to a protected object, but are not su�cient by themselves.

Therefore, one can use sealing to implement the abstract-type-management fa-

cilities required for rule E1. SCAP can also intercept attempts to exercise enter

capabilities for the TPs and require that special access-control-list checks be

made to enforce the separation-of-duty requirements. Such an access control list

(ACL) for a TP would contain the relations from rule E2.

The kernel itself audits all invocations of TPs and modi�cations of CDIs.

The audit records include information on who performed the operation, what

TP was invoked, and what authorization information was used to grant access.

To deal with the separation-of-duty requirements of rule C3, one could simply

make use of this information. The audit trail is a very large and complex data

structure, however, and the cost of searching it on every invocation of a TP

would be prohibitive.

Instead, a special kind of capability is added to be used as a token that a

particular TP has been executed. Although they take the form of capabilities to

prevent unauthorized tampering, token capabilities are in fact copies of individual

audit records. Making separate copies of the audit records and passing them

around as capabilities is solely a performance improvement to clarify exactly

which audit record authorizes a future transaction.

Assume that running TP1 is prerequisite to running TP2. The access control

list on the entry to TP2 would specify that the caller must be a speci�c person

who possesses a token capability for TP1. Token capabilities record both the

name of the transaction and the name of the user who executed the transaction.

The user's name must be recorded, so that one could ensure that TP1 and

TP2 were executed by di�erent people, if required. Executing a particular TP

may grant a user the right to execute several other TPs. The system must

ensure, however, that each TP is executed the proper number of times, and that

tokens authorizing the execution of two di�erent TPs, each exactly once, are

97

not instead used to execute one of the subsequent TPs twice. To prevent this

abuse, token capabilities also contain the name of the TP that they authorize,

and a token capability can be used only once.

4

Once used, the token capability

is marked to prevent further use. Note that the token capability is not revoked

or destroyed upon use. A bit within its internal state is set to record that it has

been used. Since there may be a large number of token capabilities in use at any

time, revocation upon use could impose an excessive performance burden on the

system. Instead, the used token capability is left in the user's capability list, for

deletion at some later more convenient time.

It is important to realize that token capabilities do not carry any more in-

formation than is already recorded in the audit trail. They simply provide a

mechanism for making the proper audit records available for integrity policy

decisions on a timely basis with minimal overhead for searching.

Entries in a separation-of-duty ACL must be more complex than the simple

ACLs that were supported in systems such as Multics. Each entry must consist

of a boolean expression in which the �rst term is the name of the user who

proposes to execute the transaction, and the other terms are token capabilities for

required predecessor transactions. The boolean expressions support the following

operators:

� + for logical and,

� j for logical or,

� � for logical negation,

� ! for a separation-of-duty wildcard in which the userID is allowed to be any

value except that used in any of the other terms of the expression.

5

Three examples of separation-of-duty ACLs follow. The �rst ACL contains

a single entry that speci�es that Smith may execute the TP, but only if JONES

has previously executed TP1.

(IDENTIFIER=SMITH+JONES.TP1,ACCESS=EXECUTE)

The second example shows an ACL with two entries in which either SMITH

or JONES may execute the transaction, but only if JONES previously executed

TP4 and SMITH previously executed TP7.

(IDENTIFIER=JONES+JONES.TP4+SMITH.TP7,ACCESS=EXECUTE)

(IDENTIFIER=SMITH+JONES.TP4+SMITH.TP7,ACCESS=EXECUTE)

4

In principle, one could de�ne token capabilities that could be used a speci�c number of

times. Lacking a speci�c requirement for that level of complexity, this proposal restricts tokens

to one-time use, although nothing in the design precludes reusable tokens.

5

The VAX/VMS operating system uses the character � for wildcarding portions of a numeric

form user identi�cation code. See [86, Section 4.3.4.1] for details.

98

The third ACL is an example requiring true separation of duties. JONES is

allowed to execute the transaction, but only if he holds token capabilities proving

that TP4 and TP7 have been previously executed and that TP4 and TP7 were

executed by two people other than JONES and di�erent from each other.

(IDENTIFIER=JONES+!.TP4+!.TP7,ACCESS=EXECUTE)

The syntax used in these three examples is based on the syntax for access-

control-list entries (ACEs) used in the VAX/VMS operating system [86].

6

Entries in the ACL of a TP must not be modi�ed in arbitrary fashions. Rather

than allowing modi�cation based on a control-permission bit in the ACL itself

or allowing modi�cation by the \owner" of the TP, one must treat the ACL of a

TP as a CDI itself and apply the same levels of enforcement and certi�cation to

the TPs that are allowed to modify the ACLs of other TPs.

10.1.4 Handling Groups of Users

The simple token capabilities of Section 10.1.3 do not e�ciently describe many of

the real requirements that could be present in a commercial separation-of-duty

system. For example, it may be su�cient that two TPs are executed by any

two people in a department as long as they are di�erent people. The simple

scheme described thus far would require listing on the access control list all the

combinations of people in that department. Management of such lists would

quickly become impossible.

Access control lists in systems like the VAX/VMS operating system already

support a mechanism to describe groups of users by allowing three kinds of

identi�ers in an access-control-list entry. There are UIC (user identi�cation code)

identi�ers that correspond to individual users; there are general identi�ers that

identify groups of users; and there are system identi�ers that tag jobs as BATCH,

INTERACTIVE, or NETWORK, etc. A given process in the system may hold

several of these identi�ers.

7

One would like to be able to require that a TP may

not be invoked unless some other transaction had been invoked by anyone who

holds some general group identi�er.

Therefore, when the ACL is checked and the transaction �eld of a token

capability matches, but the user �eld does not, one must check to see what other

identi�ers that user may hold. The protection checking routine compares each

identi�er against those required in the ACE. If a match is found, then that token

capability satis�es that term of the boolean expression in the ACE.

6

For this dissertation, I have extended the syntax to support the boolean expressions re-

quired for separation of duty. The actual VAX/VMS operating system does not have such

extensions.

7

The VAX/VMS operating system constrains the names of identi�ers to be unique. Thus,

there can never be confusion between a user identi�er and a group identi�er.

99

To support separation of duties, just as an ! is a wildcard matching any

UIC that does not appear in a di�erent term of the ACE, an ! followed by

a group identi�er means anyone who holds that particular group identi�er, but

does not appear in a di�erent term of the ACE. Thus, this ACE speci�es that the

TP may be executed by JONES, but only if someone in the PHYSICS group has

previously executed TP4 and someone in the CHEMISTRY group has previously

executed TP7. JONES, the person in PHYSICS, and the person in CHEMISTRY

must be three di�erent people.

8

(IDENTIFIER=JONES+!PHYSICS.TP4+!CHEMISTRY.TP7,ACCESS=EXECUTE)

10.1.5 Security Policy, Auditing, and Recovery Manage-

ment

The audit trail described above is not just for security use. The same record

of transactions is required to implement the two-phase commit protocols that

are needed to provide database integrity in the presence of system crashes. As

described by Gray [83], the two-phase commit protocol requires log records of all

transactions to ensure that any transaction either completely succeeds or does

not occur at all. These log records are exactly the records needed for security-

policy decisions and for after-the-fact security audits.

9

10.2 Related Work

There has been a variety of work related to commercial data integrity and sep-

aration of duties, besides the Biba [18] integrity model and the Lipner [144]

8

Actually, they must hold three di�erent UICs. A system manager could grant three UICs

to the same human being, and the computer could not tell the di�erence. However, such

assignment of multiple UICs to a single person is unwise, and the documentation for the

system manager should advise against such practice. A user who must take on di�erent roles

at di�erent times should be assigned additional identi�ers that represent those roles, rather

than multiple UICs.

9

Integrating security policy with auditing and the two-phase commit protocols provides yet

another bene�t. One can use the two-phase commit protocol to assist in solving the secure

readers{writers problem. The secure readers{writers problem derives from lattice security

models, in which a shared database is read by processes at a high security level and written by

processes at a low security level. All references to the database must read and write consistent

data, but it is a violation of security policy to allow the low-level writers to know when the

high-level readers are reading. The problem has been solved by Hinke and Schaefer [99] and by

Reed and Kanodia [181] using eventcounts to time stamp updates to the database. A reader

may read inconsistent data, but learns upon completion if a writer has interfered with the

read. At that point, the reader must back up and retry the operation. It is the back-up-and-

retry mechanism that the two-phase commit protocol already provides. The case of a writer

interfering is merely another kind of event that requires retrying the transaction. Steve Lipner

�rst suggested that two-phase commit could be used in conjunction with eventcount locking

to make implementing retry easier.

100

commercial integrity model. Other authors have explored the Clark and Wilson

model in ways somewhat di�erent from those proposed in this chapter. This

section reviews that related work and contrasts it with my proposals.

10.2.1 AAS

During the late 1960s, IBM Corporation developed an Advanced Administrative

System (AAS) [233] to automate their order-entry systems. AAS incorporates

an interesting approach [163] to the separation-of-duties problem in a very large

commercial, transaction-processing environment. The problem facing the AAS

implementors was that the system included a very large and changing number of

TPs, and that the central administrators could not easily decide what separations

of duties were actually required.

AAS solves this problem by implementing a conict matrix to record separa-

tion-of-duty requirements. Each application, consisting of a number of TPs, has

an owner. The owners are all required to identify which other TPs conict with

their TPs. For any given pair of TPs, TP

i

and TP

j

, if either owner reports a

conict, then no user will ever be authorized to run both TP

i

and TP

j

.

The management and procedural aspects of any security system cannot be

minimized, and it appears that a conict matrix of this type can be quite helpful

in the enforcement of rule E2. For example, an IVP could be run whenever

separation-of-duty access control lists were changed, speci�cally comparing the

ACL entries with a conict matrix. Other strategies may also be possible.

10.2.2 RSS

Herbert and Needham [97] proposed a registration-and-sequencing server (RSS)

to provide a mechanism for ordering the ow of transactions in a local area

network. The server would enforce a state-machine de�nition of the ordering of

transactions and could enforce a policy much like Clark and Wilson's separation

of duty. State transitions in RSS were controlled by capabilities, to ensure that

transactions were not invoked by the wrong people or out of order. RSS was

designed as a separate server, primarily to deal with the problem that many

servers in the network may not have an inherently secure system. However, the

RSS design did not preclude implementation using access control lists (ACLs)

on individual objects, as proposed in this chapter.

10.2.3 Cascaded Network Connections

I proposed a mechanism [114] for forwarding authentication information between

nodes in a network, using a central authentication server, such as Girling's [78],

combined with a proxy-login mechanism. Essentially, the central authentication

server would release token capabilities, much like those in Section 10.1.3. The

101

proxy-login mechanism, combined with an extended access-control-list mecha-

nism provided secure access to network services. The authentication-forwarding

mechanism particularly dealt with what I called cascaded network connections. A

cascaded network connection occurred when a user invoked some network server,

P, and in order to provide its service, P then invoked some other networked server,

Q. The authentication information of the original user had to be passed along

from P to Q to enforce security controls. Estrin [66] has developed a scheme for

inter-organizational network security that similarly deals with cascaded network

connections, using Biba's non-discretionary integrity model to limit information

ows.

The Clark and Wilson model of separation of duties is clearly more pow-

erful than protection based on cascaded network connections. Unifying the

transaction-integrity model with network authentication forwarding should pro-

duce a simpler and at the same time more powerful tool for secure distributed

processing. That uni�cation is outside the scope of this dissertation, but should

be an interesting area for future research when SCAP is integrated into a dis-

tributed environment.

10.2.4 Program-Integrity Policy

Shirley and Schell [195, 194] proposed a program-integrity policy that appears

to address Clark and Wilson's rules E1 and C5. Program integrity requires

enforcement of two conditions:

Simple Program-Integrity Condition: If a subject has modify access to an

object, then the program integrity of the subject is greater than or equal

to the program integrity of the object.

Program-Integrity Con�nement Property: If a subject has execute access

to an object then the program integrity of the object is greater than or

equal to the program integrity of the subject.

Simple program integrity seems to address the issue of transforming UDIs into

CDIs in a protected fashion. Program integrity con�nement deals with assuring

that CDIs are only operated on by TPs and that TPs are protected. Shirley and

Schell used program integrity to provide a formal basis for the use of protection

rings to support a security kernel. They showed how protection rings provide a

program-integrity policy and how that program-integrity policy allows a security

kernel to enforce the lattice security model.

Shockley [196] has carried the program-integrity work forward and proposes

a scheme using integrity categories and special trusted subjects to support the

requirements of the Clark and Wilson model. Shockley's design is discussed in

Section 10.2.7, together with a similar design by Lee.

102

10.2.5 Secure Committees

Rabin and Tygar [176] have proposed a mechanism they call secure committees to

implement separation of duties. They use Shamir's cryptographic secret-sharing

algorithm [193] to require that a minimum quorum of committee members agree

on certain actions. The di�culty which this approach shares with most crypto-

graphic operating-system security techniques is that the software to implement

the cryptographic protection must be penetration resistant. Furthermore, the

information must appear in plaintext at some time in order to be used, and ef-

fective operating system protection must be available at those times. Making all

of that software penetration resistant is comparable in di�culty to constructing

a secure kernel that can protect the data without the performance impacts of

cryptographic algorithms.

10.2.6 Assured Pipelines

In 1985, Boebert and Kain [26] proposed an alternate to the Biba integrity model

using the concept of assured pipelines in the Honeywell Secure Ada Target (SAT)

machine.

10

The SAT processor implements a form of secure capabilities, simi-

lar to those in the SCAP secure capability architecture [119]. Assured pipelines

provide a mechanism for ensuring that data of particular types can only be han-

dled by speci�c trusted software. The SAT contains Domain De�nition Tables

(DDTs) and Domain Transition Tables (DTTs) that de�ne the allowed opera-

tions of the assured pipelines. The DDT and DTT are de�ned to be static in

the initial version of SAT, but dynamic forms could be equivalent to the token

capabilities and separation-of-duty ACLs in this chapter.

10.2.7 Enforcing Clark and Wilson with Integrity

Categories

Independently, Lee [136] and Shockley [196] (See Section 10.2.4.) have developed

formulations of the Clark and Wilson model using Biba integrity categories and

a mechanism that Lee calls partially-trusted subjects. A partially-trusted subject

is allowed to transform data within some limited range of integrity access classes.

By marking each class of CDI with a distinct integrity category and implementing

TPs as partially-trusted subjects, both Lee and Shockley achieve the Clark and

Wilson goals with purely a lattice model. Lipner anticipated this use of integrity

categories in his 1982 paper [144], but his downgrading techniques were cruder.

The partially trusted subjects are very similar to the protection domains of SCAP

and of SAT. The only distinctions appear to be in implementation details.

10

The SAT project has since been renamed the Logical Coprocessor Kernel (LOCK) [184].

103

A major di�culty with using integrity categories to protect CDIs and TPs

is management. A large system, like IBM's AAS, may have thousands of dis-

tinct TPs, while most lattice model designs to date have considered sixty-four

categories to be a large number. Furthermore, categories tend to be managed

centrally by a single security authority, while the security policy in commer-

cial transaction system probably needs to be more decentralized, with individual

applications managers creating TPs and granting authorizations. My separation-

of-duty ACLs are aimed at providing that level of management exibility.

Managing a large number of categories is a di�cult problem, but one might

take advantage of the fact that relatively few category combinations are used,

and the categories could be stored in a list format (much like an access control

list), rather than in a bit-mask format as is usually done. See [116] for more

detail.

10.3 Trojan-Horse Problems

As discussed in Section 10.1.1, formal veri�cation of all the TPs and IVPs is very

di�cult and expensive. If a TP contained a Trojan horse (or even just a bug),

then it could either process a transaction improperly or, more subtly, it could

attempt to pass a capability for a CDI to someone else in the system who could

then tamper with the CDI.

The capability-passing problem is precisely that with which the lattice secu-

rity models and the secure-capability architecture of SCAP are designed to deal.

The simplest solution is to run the TPs of a particular application in a separate

security category (similar to the suggestions of Lipner's commercial integrity

model [144]). The lattice model would prevent the TPs from directly passing

capabilities (or indeed any other data) to applications that are not authorized

that particular category. One particular TP in the application would be granted

the right to sanitize information by removing the category. Thus, the proofs of

con�nement could be limited to a particular TP, rather than all the TPs of the

application. The di�culty with assigning a category to each application is that

most systems implement a relatively small number of categories. This is the same

problem that Lee and Shockley would have in managing integrity categories and

similar solutions would apply.

The issue of correctly processing the transaction itself remains one of proof

of program correctness, but separating the security questions should simplify the

proof process. In commercial environments, where TPs would be certi�ed on

basis of test results only, separating the security questions is even more crucial.

The security questions are dealt with in the proofs of the security kernel. The

separation-of-duty questions can be answered by inspecting the access control

lists and category assignments. If the separation-of-duties requirements are sim-

ple, then the inspection may be possible by hand. Otherwise, IVPs would have

104

to automate the inspection, and those IVPs would themselves require certi�ca-

tion. Even if the inspection requires automated certi�ed procedures, it should

be possible to separate the proofs of algorithmic correctness of the TPs from the

proofs of inspection and from the running of the IVPs. This should simply the

proofs by removing interdependencies.

11

10.4 Performance Problems

While the design outlined so far is secure and meets Clark and Wilson's goals,

it has one potentially severe problem|performance. The mechanisms proposed

in [119] provided for capabilities whose use was limited by additional checks

for access control lists and lattice-model constraints. The performance costs of

those additional checks were considered minimal, because the checks would be

performed only once. Thereafter, the fully authorized capability could be cached

and used for most memory references. The commercial-integrity policy requires

checking the access control lists and the token capabilities for every transaction.

Such costs could easily become unacceptable.

The use of token capabilities to encapsulate the precise audit record required

for a check eliminates the need for searching the audit trail to �nd the previous

authorizing transactions. Such a search would have required examining all audit

records of the system in reverse order and would have been very expensive.

Token capabilities reduce the performance cost of the security checks, but

they still do not provide the level of caching that was suggested in [119]. How-

ever, the security mechanisms in existing database management systems require

similar recomputation of access checks on each transaction.

12

Such checks on each

transaction should not be a major concern, because they are overwhelmed by the

performance costs associated with the database queries, themselves. Query opti-

mization [50, Chapter 16] by compiling database requests into machine code and

heuristically selecting optimal retrieval strategies is a major issue in database

design. By comparison, the costs of security checks should be quite small.

10.5 Retrospective

This chapter has shown how the Clark and Wilson integrity model can be imple-

mented using the secure capability architecture of SCAP. The Clark and Wilson

11

It is possible that some application might require such a complex separation-of-duty policy

that it could not be implemented with just token capabilities and access-control-list entries and

would require special code in the TPs. Such a level of complexity would break down the proof

separation. However, there is no evidence, to date, that such complex applications actually

exist.

12

Fern�andez, Summers, and Wood [69] and Date [51, Chapter 4] provide good tutorial in-

troductions to database security systems.

105

model is of particular signi�cance, because it is the �rst attempt to formalize the

requirements of commercial security that appears to accurately model the real

requirements. Earlier e�orts, such as Biba's and Lipner's, while moving in the

correct direction, did not completely describe the commercial needs.

The use of the audit trail as input to the access-authorization decision is a

critical part of the model and is what most signi�cantly di�erentiates the Clark

and Wilson model from previous security models. The notion of token capabili-

ties as an optimized way of referencing the audit-trail information appears to be

critical to an e�cient implementation.

It is most important to recognize that Clark and Wilson are solving a dif-

ferent security problem from that addressed by the lattice security models. The

lattice models deal with protecting information from unauthorized release. The

Clark and Wilson model deals with protecting information from unauthorized

tampering.

There is one serious concern with the implementation strategy of token capa-

bilities proposed in this chapter. The complexity of the mechanism, particularly

when group identi�ers are used in conjunction with separation-of-duty require-

ments, makes user errors quite likely. Simplicity of security mechanism is always

very important to reduce the chance of human errors and to make audit analysis

easier. The mechanism proposed here is quite complex, and a simpler one would

be desirable.

The integrity category formulations do not appear any less complex to use.

Indeed, some might argue they are more complex, given the di�culties of man-

aging large numbers of categories. There remains a great deal of research to be

done in this area before practical systems are implemented.

The Clark and Wilson model is at the same point with protection against

tampering that the lattice models were in early 1973 with protection against

leakage. The next few years of security modeling and implementation will show

whether the model is strong enough to meet security requirements and can be

implemented in a su�ciently simple manner to allow average users to comprehend

it.

106

Chapter 11

Improved Revocation

Algorithms

This chapter examines the need for immediate revocation, and then shows two

new algorithms for implementing revocation that are much simpler and more

e�cient than existing algorithms. The two algorithms are appropriate for shared

and unshared page tables, respectively. Although the prefered implementation

of SCAP is with unshared page tables, both strategies are presented, so that

SCAP could be implemented with either organization.

11.1 Need for Revocation

There is a frequent debate in operating system design about whether it is better

to implement immediate revocation of access rights, interrupting current users

of an object, or to apply changes in access rights only to new users who activate

an object after revocation has happened. Immediate revocation has its bene-

�ts in removing an unauthorized user as soon as possible. However, immediate

revocation has been complex to implement within the operating system, and

it forces applications programs to include code to handle the case of suddenly

losing access to data. Multics is one of the very few operating systems to ac-

tually implement immediate revocation. This chapter presents new algorithms

for revocation that make implementation completely straightforward and that

eliminate the complexity argument against immediate revocation.

Close examination of the interactions of storage-quota mechanisms and non-

discretionary controls shows that immediate deletion of objects is essential to

avoid certain types of storage channels [118, Section 8.2.4]. Immediate revoca-

tion is a prerequisite for immediate deletion, so a secure operating system must

implement some form of immediate revocation.

Assume that storage quotas are used to limit the amount of on-line storage

(presumably disk space) consumed by each user. A user may have many subjects

107

operating on his or her behalf at di�erent access classes. The user may create

objects at di�erent access classes and therefore must have storage quotas at

di�erent access classes. In particular, an object at a given access class must be

charged against a storage-quota account at the same access class, because when

the size of the object changes, the storage-quota account must be both read (to

determine if additional space is available) and written (to record the use of the

space).

Domain GAMMA

Access Class High

Category B

R Capability

Domain ALPHA

Access Class Low

No Categories

RW Capability

Domain BETA

Access Class High

Category A

R Capability

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.
.
.
.
.
.

.

.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
..
.
.
..
.
..
.
..
..
.
..
..
..
.
..
..
...
..
..
...
...
...
...
....
....
.....

.......
.........................

.......
.....

....
....
...
...
...
...
..
..
...
..
..
..
.
..
..
..
.
..
.
..
.
..
.
.
..
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
..
.
.
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
...
..
...
...
...
....
....
.....
......
.............................

.......
....
....
....
...
...
...
..
...
..
..
..
..
..
..
..
.
..
..
.
..
.
..
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

File DELTA

Access Class Low

No Categories

&%

'$

Quota

Account

Low

H

H

H

H

H

H

H

H

H

H

H

H

Hj

�

�

�

�

�

�

�

�

�

�

�

�

��?

-

Charges

to

Figure 11.1: Quota Causing Storage Channel Problem

Figure 11.1 shows a simple example of the need for immediate deletion. File

DELTA is classi�ed at access class Low, with no categories. There are capabilities

for the �le held by three domains, ALPHA, BETA, and GAMMA. The three

domains are at di�erent access classes, such that the access classes of BETA and

GAMMA are both higher than the access class of the �le DELTA. Because they

have di�erent categories, the access classes of BETA and GAMMA are disjoint.

Furthermore, �le DELTA charges its disk space to a quota account at the low

access class. (The quota account must be at the same access class as the �le,

because anyone who can either extend or truncate the �le must be able to modify

the quota account.) If domain ALPHA deletes its low-access-class capability to

�le DELTA, intending that the storage of DELTA be reclaimed, the problem

arises. ALPHA is not allowed to know of the existence of the capabilities held by

BETA and GAMMA, yet ALPHA can observe the value of the low-access-class,

quota account. (For simplicity, assume that no other objects are charged to that

quota account.) If the system did not immediately delete the �le DELTA and

reduce the charging to the quota account, then ALPHA could infer the existence

of at least one other capability. A carefully arranged Trojan horse could use

108

this path to infer the existence of higher-access-class capabilities, by ensuring

that �le DELTA is private to the Trojan horse running at the high access class

and the spy running at the low access class. The system could not upgrade the

�le DELTA to the level of the higher-access-class capabilities, as the remaining

capabilities are disjoint. It cannot upgrade to the least common subset of the

higher-access-class capabilities, namely access class High, no categories, because

that would still leak information.

The system could eliminate the information ow by charging the storage us-

age of �le DELTA, not to a single quota account at access class Low, but rather to

a quota account for every existing capability at the access classes of those capa-

bilities. Such a quota system would indeed eliminate the illegal information ow.

It would also make the quota system useless for its intended purpose, accounting

for the usage of available storage space. Further, if the sum of all allowed quotas

were larger than the total available space, then the undesired information ow

would reappear, not as changes in the values of the quota accounts, but as visible

occurrences when the disk runs out of space.

Thus, immediate deletion of objects and therefore immediate revocation are

required for an operating system to support both non-discretionary controls and

storage-quota mechanisms. Whether immediate revocation is actually o�ered as

a system feature is a question of marketing and user requirements. The operating

system support must be present in order to avoid the illegal information ows.

11.2 Revocation Di�culties

Immediate revocation of access has always been viewed as a complex feature

to implement in an operating system, and particularly in a capability system.

Because capabilities for an object can be copied and stored in other objects,

one cannot easily search for and invalidate all capabilities that grant access to a

particular object. Even in a small system, a search of the entire �le system would

be very time consuming (neglecting any security implications of the search itself).

If the system is distributed over a network, and capabilities could be held on other

machines, then the search becomes totally impractical. Redell developed the �rst

practical scheme for capability revocation through indirection [179]. This section

will examine the complexity of the existing schemes for revocation as background

to the new proposal for revocation with eventcounts.

11.2.1 Multics Revocation with Back Pointers

Multics implements revocation by maintaining a set of back pointers appended

to the end of the active segment table as shown in Figure 11.2. The active

segment table is a system-wide table that contains the page tables for each object

currently active in the system. Whenever a process activates an object, the

109

process's segment descriptor for the object must be set to point to the correct

page table in the active segment table. At the same time, Multics keeps a set of

back pointers associated with each of the page tables, with one back pointer for

each process that has a segment descriptor pointing to that page table.

Segment

Descriptor

Descriptors

for User 1

Page Table

Back Pointer

Back Pointer

� � �

Active

Segment

Table

Segment

Descriptor

Descriptors

for User 2

�

�

�

��

-

A

A

A

A

A

AK

Figure 11.2: Multics Revocation Scheme

When access to a segment is revoked, the operating system goes to the ac-

tive segment table entry and follows each of the back pointers, setting missing-

segment faults in the appropriate segment descriptors. As soon as a process

attempts to reference the segment, it will take a missing-segment fault. The

missing-segment-fault handler will attempt to recompute the access rights of the

object, and if access for this process has been revoked, then the process will re-

ceive an access-violation fault. Thus, the revoking process need only follow the

back pointers and set fault bits. All other processes will recompute their access

rights individually upon each process's next reference to the segment in question.

Since Montgomery [157] has shown that the frequency of sharing is very low, the

cost of setting fault bits and recomputing access rights will be quite low.

The di�culty with maintaining back pointers is that the operating system

has no way of knowing how many processes may be have a given object in use.

110

As a result, the back pointers must be allocated dynamically from a pool of so-

called trailer records. Managing the trailer-record pool can be complex, because

it is possible to run out of trailer records before the active segment table is full.

Running out of trailer records can cause a system crash and must be avoided.

Further, running out of trailer records can constitute a storage channel in a

security kernel.

It is certainly feasible to manage trailer records by forcing the deactivation of

objects when the trailer-record space becomes full. However, a perverse program

that activates the same object many times with di�erent segment numbers could

use all of the trailer-record space, even with no other objects available to be

deactivated. A security kernel must handle even such perverse cases to avoid the

possibility of a storage channel and to reduce the opportunity to deny service.

The security kernel could implement a trailer-record quota for each user.

Then, each user would run out of trailers independently, avoiding both storage

channels and system crashes. Such a quota mechanism would require administra-

tive support to determine how many trailer records should be allocated for each

user. Relating the usage of the quota to actual program behaviour would be very

di�cult, even for very sophisticated users, and would be nearly impossible for

na��ve users. The VAX/VMS operating system has already shown this di�culty

with its large number of rather obscure, per-user quotas. While such quotas solve

serious allocation problems in the operating system and prevent system crashes

due to resource exhaustion, it is very di�cult to explain to a user why his or her

FORTRAN program requires more active-segment-table trailer-record quota or

more bu�ered-I/O-byte-count quota.

11.2.2 Redell's Revocation with Indirection

Redell [179] introduced the concept of a revoker capability whose purpose was

to support revocation of access.

1

Initially, the owner of an object would have a

normal capability to the object. The owner could copy that capability and pass

it to other users and would have no ability to later revoke access. However, if the

owner of a capability creates a revoker capability to the object, then the owner

could pass capabilities that point to the revoker capability, rather than directly

to the object. The capabilities that the owner passes point indirectly through

the revoker capability, before getting to the object itself. Then, the owner could

revoke the capabilities that had been passed to other users by destroying the

revoker capability through which the users are required to go to gain access.

Figure 11.3 shows an example of how Redell's scheme operates. The owner

of an object has a capability for that object and wishes to grant capabilities to

User 1 and User 2. Therefore, the owner creates two revoker capabilities for the

1

Herbert implemented Redell's revoker capabilities in CAP-III [95, Section 10.4].

111

object, and two capabilities that point to the revoker capabilities. The owner

gives those capabilities to User 1 and User 2. The owner must create two di�erent

revoker capabilities to be able to separately revoke access to User 1 and User 2.

If the owner had created only one revoker capability, then revoking access to one

user would revoke access to the other, as well.

Owner

Capability

Object

-

User 1

Capability

Revoker

Capability

A

A

A

A

A

AU -

User 2

Capability

Revoker

Capability

- -

Figure 11.3: Redell's Revocation Scheme

Redell's revocation scheme can be applied recursively. Figure 11.4 shows how

User 1 could then decide to grant a capability to User 3 for the same object as

before. User 1 creates a revoker capability and grants User 3 a capability that

points to the revoker capability. Now, User 1 can revoke User 3's rights to the

object, and the object's owner can revoke User 1's rights as well as User 3's

rights. Indeed, the owner may not even know of User 3's existence.

Redell's scheme su�ers from two problems. First, the indirection through a

large number of revoker capabilities could adversely a�ect system performance.

A properly designed translation bu�er, however, could cache the results of the

capability indirections and make most references go quickly. The translation

bu�er would have to be cleared whenever a capability was revoked, but such

revocations are quite infrequent. Second, Redell's scheme is complex, because

it requires di�erent kinds of capabilities (normal and revoker capabilities). It

also requires applications to plan ahead about revocation and be sure to grant

only the proper kinds of capabilities. This level of complexity appears in the

applications programs themselves, and is likely to result in subtle security errors

when those programs are implemented by other than security professionals. Run-

112

Owner

Capability

Object

-

User 1

Capability

Revoker

Capability

A

A

A

A

A

AU -

User 2

Capability

Revoker

Capability

- -

User 3

Capability

Revoker

Capability

A

A

A

A

A

AU -

Figure 11.4: Recursive Redell Revocation

time libraries could hide some of the complexity, but a simpler scheme with less

indirection would be preferable.

11.3 Revocation with Eventcounts

I have developed a new scheme, called revocation with eventcounts, that avoids

both the complexity of Multics' back pointers and the complexity and indirection

of Redell's revoker capabilities. Instead, the new scheme uses Reed and Kanodia's

eventcounts [181] to identify activation instances of an object. Revocation with

eventcounts is most appropriate for systems in which one set of page tables is

shared among all users of a shared object. This is the type of paging used in

Multics, as described in Section B.2.

Objects that are currently in use are called active objects, and the page tables

for the active objects are stored in an operating system data structure called the

active object table (AOT).

2

There is one AOT entry for each active object. Each

AOT entry contains the page table of the object and an eventcount for the

revocation algorithm. All the capabilities for an object contain pointers to the

single AOT entry for that object. Each time an object is activated or when the

object's access rights are changed, the eventcount in the object's AOT entry will

be incremented.

Each capability for an object contains a copy of an eventcount value. When

the capability is �rst used, the eventcount value from the active object table

2

The active object table (AOT) is the counterpart of the Multics active segment table.

113

AOT Entry

Page

Table

Eventcount

Eventcount

Value

Capability

-

Eventcount

Value

Capability

-

Object

-

Figure 11.5: Revocation with Eventcounts

entry is copied into the capability. Note that the eventcount value is stored in

the capability, but is not loaded into the translation bu�er. When the access

rights of an object are changed or the object is to be deactivated, the system

increments the eventcount in the AOT entry and ushes the translation bu�ers

of all processors in the system.

When the processor takes a translation bu�er miss, it compares the event-

count values in the capability list and in the AOT and notices that either the

object has been deactivated or that access rights must be recomputed. Recom-

putation must be done by every process sharing the object, but Montgomery's

results [157] show that the frequency of actual sharing is quite low. Therefore,

the actual number of recomputations required is small.

Comparing eventcount values in every translation bu�er miss can be expen-

sive, because translation bu�er misses are very frequent events. However, the

comparison need only be made on segment descriptor misses. Segment descriptor

misses occur much less frequently than page descriptor misses. The eventcount

comparison could be done in processor microcode, but would be easier to imple-

ment with a software TB miss handler. See Section 15.3 for a detailed discussion

of �lling the TB from software.

Adding eventcounts to each capability also increases the memory usage for

capability lists. Because memory costs are declining much more rapidly than

processor costs, this tradeo� of increased space for reduced complexity should be

114

worthwhile. Since the eventcounts are not needed in the translation bu�er, the

only cost is increased usage of primary memory.

The net e�ect of this new revocation strategy is to achieve Multics-style

revocation with signi�cantly less operating system complexity.

11.4 Revocation by Chaining

The strategy of revocation with eventcounts depends on there being a single page

table for an object, even if that object is shared among several users. Multics is

a good example of a system with shared page tables. However, if the page tables

are not shared, as in the VAX [138] or the System/38, then the eventcount scheme

will not work. For this type of processor, the operating system must know where

each of the page table entries that maps a particular page is located, so that

page can be removed from memory.

In VAX/VMS, shared pages are allocated in a special software structure,

called the global page table [124, Section 14.3], that contains pointers to all the

page table entries that map a particular shared page. These pointers are anal-

ogous to the trailer records in Multics, and are just as di�cult to manage. In

particular, shared memory must be specially declared by the programmer, and

quotas limit how many shared pages may be used, so as to limit the number of

pointers.

Revocation by chaining is the new scheme for revocation with unshared page

tables. It avoids the complexity of both the Multics trailer records and the

VAX/VMS global page tables, although at the cost of increased memory usage.

Revocation by chaining is implemented by logically extending each page-table

entry to add a chain �eld. The chain �elds link together all page-table entries

(PTEs) that map the same physical page. The chain �elds are set up in a circular

queue, such that the last PTE's chain �eld points to the �rst PTE in the queue.

When a page is �rst brought in, it is not shared, and the chain �eld is set to

point to the PTE itself. Each subsequent time the page is mapped, the chain

�eld of the previous PTE is set to point to the new PTE, and the chain �eld of

the new PTE is set to point to the �rst PTE. Thus, given any PTE that maps

a page, the operating system can quickly �nd all other PTEs that map that

same page, simply by following the chain. Since most pages are never shared,

most chains will contain only one entry. Figure 11.6 shows four PTEs chained

together. The PTEs might be in page tables for di�erent address spaces or some

or all of them might be in the same page table, if the page had been mapped

to several di�erent virtual addresses. (The multiple mappings could occur if a

capability were copied or re�ned, in preparation for passing as an argument.)

The drawback of revocation by chaining is that it can double the size of the

page tables. For example, PTEs in the VAX architecture are 32 bits long, and

the chain �eld would have to be another 32 bits. On a machine with a large

115

AOT entry
X

X

X

X

X

Xz

PTE chain

S

S

S

S

S

Sw

PTE chain

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�)

PTE chain

6

PTE chain

�

�

�

�

�

��

Figure 11.6: Chained Page-Table Entries

virtual address space and a small page size, such as the VAX, this growth in

the page table size could be unacceptable. Memory costs are declining, however,

and with larger page sizes, revocation by chaining might be quite acceptable.

More signi�cantly, if the processor used a hashed page table, then revocation by

chaining becomes very attractive. Chapter 16 discusses how unshared, hashed

page tables are preferred for SCAP, and Section 16.5 speci�cally covers revocation

by chaining in a hashed page table.

116

Chapter 12

Secure Garbage Collection

This chapter shows how the system-wide garbage collection schemes that most

capability systems implement cause fundamental problems with the lattice se-

curity models. After examining and rejecting several unacceptable solutions, I

show how a payment-for-resources scheme, such as provided by the Monash Uni-

versity password-capability system or the Amoeba system, can provide secure,

automatic storage management for SCAP. None of these techniques is new.

What is new is combining non-discretionary quota cells with rent collection to

solve the security problems present in garbage collection.

12.1 Source of the Problems

Most existing capability systems support some kind of system-wide garbage col-

lection system to delete unreachable objects automatically. Such garbage col-

lection can greatly simplify the programmer's job by eliminating the need to

explicitly delete objects. This section shows, however, that system-wide garbage

collection cannot be securely implemented in a system that also supports non-

discretionary access controls and on-line storage quotas.

In systems that implement the lattice security model, it is common to �nd

low-access-class objects that are shared by many users of the system. For ex-

ample, compilers and text editors are objects that are shared by all users. As

a result, domains at many di�erent access classes may hold capabilities for the

shared objects. Any object's disk space must be charged against an on-line stor-

age quota of the same access class as the object. Otherwise, a writer of the object

who extended the length of the object would have a storage channel available for

illicit communications.

If there is an object with many capabilities at high access classes, but only

one capability for the object at the low access class, and if a low-access-class

subject deletes the capability for the object, then the low-access-class subject

can determine if the garbage collector later deletes the object by watching the

on-line storage-quota account to which the object is charged. When the account

117

value changes, the object has been deleted. (To avoid complications, a malicious

user could arrange that no other objects are charged to that account.)

Changes to the storage-quota-account values can be caused, not just by the

actions of the low-access-class subject, but by the actions of high-access-class

subjects that may also have capabilities for the object. As long as those high-

access-class capabilities exist, the garbage collector cannot delete the object. As

a result, an information ow exists from the high-access-class subject to the low-

access-class subject that is in violation of the non-discretionary controls. That

ow exists even if the garbage collector is guaranteed to be correct and Trojan

horse free.

The garbage-collection problem is closely related to the revocation problem.

However, the garbage-collection problem appears insoluble in its stated form,

while the revocation problem is one of complexity and performance. Section 12.4

discusses alternatives to system-wide garbage collection that can be made secure,

but that vary in how many of the bene�ts of garbage collection can be preserved.

12.2 Solutions that Do Not Work

The information ow might be avoided by upgrading the object when the last

capability at the access class of the object were deleted. However, just as in

the revocation case in Section 11.1, if the remaining capabilities for the object

are from incomparable access classes, then there is no way to select a class to

which to upgrade the object without creating an information ow between the

two incomparable access classes.

Thus, based on these arguments, it appears impossible to simultaneously

implement a system-wide garbage collector, an on-line storage quota system,

and non-discretionary security controls. Since both non-discretionary controls

and storage quotas are essential to SCAP, the system-wide garbage collection

must be omitted. The next sections will examine alternatives to system-wide

garbage collection that retain at least some of the bene�ts of garbage collection.

It is essential to note, however, that only system-wide garbage collection that

crosses non-discretionary access-class boundaries is ruled out. Applications that

function entirely within a single access class (such as a LISP implementation)

may freely implement garbage collection. Only system-wide garbage collection

creates the security problem.

12.3 Quota Management

The most obvious solution to the garbage-collection security problem is not to

implement system-wide garbage collection, but to simply to rely on the disk-

quota mechanism. This solution has the obvious drawbacks that the user must

118

explicitly delete objects that are no longer required and that objects can be-

come lost. Furthermore, unless carefully designed, the disk-quota mechanisms

themselves can have information ow problems.

12.3.1 Multics Quota Problem

The Multics, disk-quota mechanism is a good example of how information-ow

problems can occur. Multics disk quota is allocated to directories in the �le

system. Segments charge their disk usage to their parent directory's quota. A

directory may have either a terminal or a non-terminal quota. A terminal quota

on a directory means that the quota charges against this directory are charged

here. A non-terminal quota on a directory means that any quota charged to this

directory should actually be charged to its parent directory. Thus in Figure 12.1,

the disk usage for segments D, E, and F are all charged to directory A.

A

Terminal Quota

B

Non-Terminal

Quota

C

Non-Terminal

Quota

�

�

�

�/

S

S

S

Sw

&%

'$

D

&%

'$

E

&%

'$

F

�

�

�

��

A

A

A

AU ?

Figure 12.1: Multics Quota Example

The security problem arises if the non-discretionary access classes are not all

identical. If the access class of directory C is higher than the access class of its

parent directory A, then disk usage by any of the children of C (such as F) will

be visible at the access class of A, and an illegal information ow will occur.

(Note that by the compatibility property of the Multics �le system, the access

class of the children of a directory must be greater than or equal to the access

class of the directory.) In Multics, any directory whose access class was strictly

greater than the access class of its parent was called an upgraded directory. The

Multics Access Isolation Mechanism (AIM) solved the information ow problem

by requiring that upgraded directories must always have terminal quotas and

by strictly controlling how quota was allocated to upgraded directories. (See

119

Whitmore [229] for details of the AIM disk quota solution.) The drawback of this

solution is that managing quota for upgraded directories becomes signi�cantly

more complex for the user.

12.3.2 Quota Cells

Mason [151] proposed a new quota system for Multics, in which each segment

charges its quota usage to a distinct quota cell. Quota cells were not necessarily

tied to the directory structure, and both available quota and usage charges could

be moved from one quota cell to another. The storage channels in Multics quota

can be completely eliminated by assigning access classes to particular quota

accounts and by charging the quota usage of a segment to a quota cell of the

same access class.

The VAX/VMS operating system handles disk quota very similarly to Ma-

son's proposal. It stores the name of a disk-quota cell in the �le header of every

�le, rather than tying disk quota to the directory hierarchy. VAX/VMS currently

assigns one quota cell per physical device to each user. If each user were given

a quota cell for each access class in which the user held �les, then the quota

charging would have no information ow problems. Speci�cally, the user would

only have to allocate quota to access classes, through a secure server mechanism

to avoid any remaining storage channels, but such allocations would not have to

be done frequently.

12.4 Payment Systems

The only solutions to the garbage-collection, information-ow problem discussed

thus far involve elimination of garbage collection and are therefore satisfying only

to security fanatics who are unconcerned with usability requirements. However,

the Monash University password-capability system [7] implements an alternative

to garbage collection, called rent collection that maintains many of the bene�ts

of garbage collection, yet can be made storage-channel free.

The Monash system de�nes a notion of virtual money that is used to pay for

resource usage. Objects in the Monash �le system must contain a capability for

an account of money. Periodically, a rent collector inspects all the objects in the

�le system and deducts the rent from the each object's accounts. Any object

whose account has gone to zero is considered garbage and may be deleted.

The Monash system designed rent collection as a convenient way of achieving

automatic object deletion without having to �nd all references to objects or

having to maintain reference counts. Instead, the user of an object is expected

120

to keep paying the rent, as long as he or she is interested in retaining that object.

1

(Rent could either be paid in advance or in response to a low-money interrupt.)

As a result, the Monash rent collector is much simpler than a typical garbage

collector, particularly in a distributed environment.

Rent collection has one other advantage that its designers did not anticipate.

When combined with the secure, quota-cell system, it provides a storage-channel-

free mechanism for automatic reclamation of storage. An object would charge its

rent against an account of money at the same access class as the object. When

the account went to zero, the object would be automatically deleted. If some

other user were interested in using the object, that other user could pay extra

virtual money into the account from a process at the level of the object. The

user could then use the object from a process at a higher access class, without

fear that the object would be deleted and without creating any information ow

problems.

2

Mullender has further examined the ideas of virtual money in his design

for the Amoeba bank service [162, Chapter 7]. His proposals for virtual bank

accounts and virtual currencies (with virtual exchange rates) seem compatible

with the Monash rent collection and with assigning a distinct access class to each

virtual bank account. The next research step (not part of this dissertation) will

be to actually implement a system using rent collection to see if the user interface

will be acceptable, even with the complication of multiple access classes.

1

In practice, the system would have to allow some grace period before actually deleting an

object. A user might have forgotten to pay the rent, or the system might have been down for

a lengthy period of time.

2

Having one user pay the disk usage bills of another user makes the actual accounting of

who is using what disk space more complex. However, the system managers only wish to limit

total disk usage to that which is available. In this case, the �rst user's ability to consume disk

space is reduced by exactly the amount transferred to the second user.

121

122

Part IV

Improving Performance

123

Chapter 13

Performance Overview

Part (IV) of this dissertation deals with obtaining acceptable performance from

SCAP. This chapter is a brief overview of what the performance problems are

and how they are addressed in Chapters 14 through 19.

13.1 Performance Problems

The principal reason that capability systems have not been widely successful is

that their performance has usually not been as good as that of non-capability

systems implemented with the same technology. While capability systems do

o�er certain signi�cant advantages over non-capability systems, such as support

for non-hierarchical protection domains, the market for those bene�ts has not

been large enough to overcome the performance disadvantages. Indeed, only one

capability-based system can be said to have achieved commercial success, the

IBM System/38. The System/38 is not sold as a capability system, but rather

as a small business machine to run programs written in the RPG III programming

language. The capability structure is used as an aid to implementing systems

programs and to support a single-level store incorporating a relational database

management system.

What is required is a tradeo� among the complexity of the implementation,

the performance of the implementation, and the actual requirements of real pro-

grams. Since real programs rarely use the more complex features, those features

can be safely implemented entirely in software, reserving hardware mechanisms

for assisting only the most performance-critical functions. Furthermore, non-

security sensitive mechanisms may be implemented at compile-time, rather than

at run-time, achieving still further performance gains.

The most dramatic example of performance problems in a capability-based

system has been the Intel 432 processor. Various benchmarks [88]

1

showed the In-

1

The methodology of the benchmarks in [88] has come under severe criticism [140] for

improper measurements of VAX-11/780 performance. In particular, the e�ects of compiler op-

125

tel 432 to perform much slower than the comparable, VLSI technology Intel 8086

processor.

2

Colwell undertook a major study [44] of the Intel 432 to determine where

the performance costs came from and to propose alternate implementations to

alleviate the problems. I have used Colwell's results and proposals to examine

how a secure capability-based system could be implemented to achieve maximum

performance.

13.2 Applying RISC Technology

Current CPU and memory technologies have led to a better cost/performance

ratio for CPUs implemented with relatively simple architectures. These simpler

architectures have been termed reduced instruction set computers or RISC ma-

chines [172]. RISC machines are typically characterized by simple, uniform-sized

instructions, larger register sets, and memory operations that are restricted to

loads and stores. RISC machines achieve their improved cost/performance ra-

tios over complex microcoded machines, because of the decline in cost of fast

memories [230]. It is possible, today, to build extremely fast primary memories

and cache memories that run at speeds that previously had to be restricted to

small microprogram stores. As a result, RISC architectures have user-accessible

instruction sets that are similar to microinstruction sets, and compilers that

generate such code directly.

However, much of the early work on RISC technology ignored the impact

of operating system issues, such as process switching, memory management,

and security, on the performance of the overall computer system. While the

more recent commercial RISC designs, such as the MIPS Computer Systems

chip [161], the Hewlett-Packard Spectrum [19], the IBM RT PC [98], the Acorn

RISC machine (ARM) [206, Section 4.3.3], and the Am29000 chip [110] have

considered operating system design issues, those considerations have largely been

limited to how best to implement a conventional operating system, such as UNIX.

The key contribution of this dissertation to improving capability-system per-

formance is the recognition that RISC technology can provide major perfor-

mance bene�ts to the SCAP architecture. While motivated by RISC technology,

this part of the dissertation also looks at how the performance of SCAP on

a CISC (Complex Instruction Set Computer) can be improved. Some of the

techniques apply to both classes of processors, and others apply only to RISC

timization (or lack thereof) were not factored out of the performance results. Indeed, Colwell's

later study of the Intel 432 [44] showed lack of compiler optimization to be one the major

causes of the poor performance.

2

The Intel 432 and the Intel 8086 were both implemented in Intel's HMOS process. The

Intel 8086 was a single chip with 29,000 transistors [122]. The Intel 432 was a three chip set

with approximately 100,000 transistors per chip [178].

126

machines. Chapter 15 discusses optimizations using improved translation-bu�er

design. Chapter 16 examines hashed page tables as a method to simplify demand

paging in conjunction with capability addressing. Chapter 17 discusses optimiza-

tion of cross-domain calls, both for CISC and RISC designs, with experimental

results shown in Chapter 18. Finally, Chapter 19 shows how the RISC optimiza-

tions for memory management and for cross-domain calls lead to an approach

for handling interrupts and exceptions for real-time processing.

127

128

Chapter 14

Programming Generality

14.1 Costs of Programming Generality

One of the major causes of poor performance both in capability-based systems

and in other advanced operating systems has been adherence to the doctrine

of programming generality when crossing protection boundaries. Programming

generality was �rst espoused by Dennis [57] as a means of achieving reusability

of software by de�ning strictly modular interfaces and ensuring that routines do

not depend on how they are called. In a sense, Dennis' programming generality

was an ancestor of today's ideas of modular programming and object-oriented

programming.

Schroeder and Saltzer [192, p. 158] extended Dennis' concept of programming

generality by adding the requirement that \it must be possible to change the

protection environment of a program or a group of programs without altering the

internal structure of the program or group." It seems logical that programming

generality should extend across protection boundaries. However, attempting to

provide such generality has caused severe performance and complexity problems

in a number of system designs, and worse still, has led to certain classes of

security vulnerabilities that might not have otherwise existed.

14.1.1 Argument Validation

The Multics argument-validation mechanism is an excellent example of program-

ming generality leading to trouble. Argument validation is used to counter a vari-

ety of penetration attacks in which a caller of a more privileged domain passes the

address of an argument. The address is supposed to point to memory locations

that belong to the caller, but the address actually points to memory locations

that are not accessible to the caller. As a result, the more privileged domain is

tricked into either revealing secret information, or improperly modifying its own

database, or both.

129

An example of an argument validation attack on the GE-645 version of Mul-

tics is shown in [121]. Multics included a complex and time-consuming argument

validation routine that was run on every supervisor call. That argument valida-

tor could be tricked by using some of the highly complex addressing modes of

the GE-645 that allowed in�nite indirection with auto-incrementing of any of the

indirect addresses.

Rather than eliminating the complex addressing modes, the next version of

the Multics processor, the Honeywell H6180, added a mechanism that checked

the origin of any pointer before allowing its use [192]. For a limited set of

constructs, an address passed to a domain would be checked against the access

rights of the caller, rather than the access rights of the called domain.

1

The H6180

hardware argument validation, however, su�ered from several drawbacks. First,

it added complexity to the hardware and slowed down every memory reference.

Second, pointers in memory and address registers had to be larger to contain the

ring numbers that were always checked. Third, it was not complete and did not

actually meet the requirements of programming generality. Programs still had to

perform argument validation checks, because a malicious caller could still attack

in a variety of ways that the Multics hardware did not check. Arguments that

consisted of complex data structures could be malformed, even if the pointers all

were legal. Worse still, the caller might asynchronously modify the arguments

after the called domain had checked them, but before they had actually been

used. Several attacks of this sort are described in [70]. The defence against such

attacks is to copy arguments to safe storage prior to validation.

Although the Multics argument validation mechanism added a great deal

of complexity to the processor and reduced the performance of every memory

reference, it did not achieve the stated goal of programming generality. Programs

that were the target of cross-ring calls had to be coded much more carefully

than ordinary programs. The expectation of programming generality led many

programmers to make serious mistakes, because they incorrectly expected that

complete argument validation was being done automatically.

By contrast, if each protection domain has its own unique address space,

and parameter pointers are passed only as capabilities, then argument validation

becomes much simpler. Incoming capabilities are mapped into di�erent locations

of the address space of a called domain. If the calling domain passes a parameter

for which the called domain already possesses a capability, those two capabilities

will appear at di�erent locations in the address space with di�erent access rights

associated. No special argument validation is required at all. Further, it is not

meaningful to embed a virtual address in a memory segment, because the calling

domain does not know where the argument will be mapped. Therefore, it is

simple to procedurally ban the passing of virtual addresses between protection

1

This checking worked even when the address was passed to a third domain.

130

domains. Instead, the interface speci�cations should call for passing arguments

either by value (in registers) or by abstract datatype reference, that is, by a

capability to a memory segment or domain.

Argument validation is made simpler and faster by ensuring that each do-

main's address space is distinct and forcing aliasing in the address of arguments.

This argues against unique-ID addressing, in which all protection domains run

in the same universal and extremely large address space. See Section 15.2.4 for

other security arguments against unique-ID addressing.

14.1.2 Procedure Calls in the Intel 432

The implementation of procedure calling in the Intel 432 is another example of

programming generality taken to extreme. The Intel 432 contains a cross-domain

call instruction that, while very powerful, is quite expensive to execute.

2

The

Ada compiler for the Intel 432 treats all procedure calls uniformly and always

generates the cross-domain call instruction. The di�culty with this is that most

procedure calls do not cross protection boundaries, but are to internal procedures

of the same protection domain (of the same package, in Ada terminology). Col-

well points out in [44, Section 4.2.1.3], however, that internal procedures do not

require the protection checking of a full cross-domain call, because the compiler

can perform the checking, either at compile time or in generated code. Thus, the

internal procedures could have been implemented assuming the same protection

domain, and the Ada compiler could have generated much less expensive call in-

structions, such as branch and adjust stack or branch intersegment, rather than

always generating the very expensive cross-domain-call instruction. Colwell's

benchmarks indicate that such a change could result in a performance improve-

ment of over 20%. Colwell concludes that this was simply an example of poor

compiler optimization. Organick [169, Section 4.4.2], however, describes the use

of the cross-domain-call instruction for all calls as a bene�t, because the con-

text records of all procedure invocations are uniform. Whether due to excessive

programming generality or insu�cient time or resources to do better compiler

optimizations, the result was to diminish performance.

3

2

Colwell [44] discusses where many of the machine cycles go in implementing the cross-

domain call instruction and suggests various ways to improve its performance. Chapter 17 will

discuss further performance improvements in the design of cross-domain calls.

3

The Multics procedure-call instruction was similarly very expensive, because it supported

crossing protection ring boundaries. However, the Multics PL/I compiler could optimize in-

ternal procedure calls, although it did not optimize calls to external procedures in the same

protection ring.

131

14.2 Costs of Capability Re�nements

Re�nement , as de�ned in Section 4.1, is very simple to implement in capability

systems that do not support demand paging. In a system like CAP [231], a

capability contains the physical address of base of the object in memory and the

length of the object. A re�nement operation simply builds another capability by

adding some value to the base �eld and subtracting some other value from the

limit �eld. The resulting re�ned capability is no more expensive to use than the

original capability. Figure 14.1 shows a simple example of a re�ned capability

for the middle portion of a large object. The re�ned capability also has had its

access rights restricted from read-write to read-only.

Capability

Access

RW

Base Limit

s

?

s

?

Object

Re�ned Capability

Access

R

Base Limit

s

6

s

6

Figure 14.1: Simple Re�nement Example

If the capability system supports demand paging, then the cost of re�nement

becomes signi�cant. A paging system (including those with both segmentation

and paging) does its address translation by splitting the virtual address into

several �elds and using those �elds as indices into the page tables. For example,

a VAX virtual address is 32 bits long. The two high-order bits are used to select

the address region: P0, P1, or S0. The middle 21 bits are used as the index into

132

the page table for the region, and the low 9 bits are used as the o�set within the

selected page. (See Appendix D for more details on the VAX architecture.)

By contrast, a system with segmentation but not paging (such as most capa-

bility systems) does its address translation by adding the virtual address to the

base �eld of the capability and comparing the virtual address against the length

�eld. Address translation in a system with segmentation, paging, and re�nement

requires adding the base, comparing with the length, and then all the �eld split-

ting and indexing as well. While some or all of the �eld splitting and indexing

can be done in parallel with the base and length checking, there will be at least

a cost in extra hardware complexity and chip area, if not actual performance

degradation on every memory reference. Bishop [22, Section 5.3] suggests one

scheme for implementing such a combination of objects that start on arbitrary

addresses with a linear demand-paged virtual memory. His scheme appears to al-

low the length check to be computed in parallel with the page-table lookups and

access-control checks. However, the complexity of his address-translation hard-

ware appears signi�cantly higher than that in VAX processors. Since Bishop's

design has never been implemented, no accurate assessment can be made of its

actual costs.

This apparent problem of excessive cost for re�nements comes from approach-

ing the problem with programming generality as a principal goal, that all ref-

erences to objects go through the same mechanism. The problem is that some

references, namely those that are properly page aligned, can be much less expen-

sive than other fully general references. Examining how re�nements are actually

used can o�er much more e�cient solutions to the problem

14.2.1 Uses of Re�nements

In existing capability systems, such as the CAP, re�nements are used for two

principal purposes: storage management and argument passing. The CAP oper-

ating system [198] allocated segments to users by mapping large pieces of primary

memory into a single segment and then computing a re�nement. SCAP does not

need re�nements for storage management, because there is an underlying pag-

ing mechanism. Indeed, it is the underlying paging mechanism that has led to

concerns over the costs of re�nements.

4

Re�nements are also important for securely passing arguments between mu-

tually-suspicious subsystems. When one domain wishes to pass a block of storage

to another domain, it wants to pass only those bytes that are to be used and no

4

It could be argued that with memory costs dropping so dramatically, perhaps there is no

longer a need for paging, and one could simply use segmentation. Certainly, if primary memory

were in�nite, then there would be no external fragmentation problems to avoid. However,

demand for address space seems to be increasing at a pace comparable with memory technology

advances, so the likelihood of external fragmentation disappearing is small. Certainly page sizes

need to increase signi�cantly, but �xed allocation units still appear advantageous.

133

others. Similarly, if a called domain returns a capability to a block of storage, the

calling domain should not gain access to any bytes other than those intended.

Forcing arguments to be aligned on page boundaries can result in unnecessary

argument copying. Further, there will be memory wasted due to internal frag-

mentation of the pages. Memory costs are coming down very rapidly, however,

so the wasted memory seems not to be serious.

The copying issue is more signi�cant, because most re�nements that are

passed as arguments in CAP are used for I/O purposes. If unaligned re�nements

were not supported, subsystems such as the VAX/VMSRecord Management Sys-

tem (RMS) would be unable to transfer records into the user's work space with

a single copy operation. Assuming that the user speci�ed a non-page-aligned

location in a READ statement, and assuming that the record retrieved from disk

was not page aligned (likely for variable-length-record �les), then RMS would

have to copy the record into a page-aligned data structure and then the user's

language-run-time system would have to copy the record again into the user's

variable. Further, it would be impossible to support RMS locate mode I/O [85,

Section 8.2.1], in which RMS returned a pointer to the actual bu�er, rather than

copying the record at all.

14.2.2 Restricting Re�nements

Ideally, the cost of re�nements should only be incurred when using a re�ned

object. Other references to objects should run at full speed. This goal can be

achieved by making re�ned objects a special data type and allowing only certain

special instructions. The SCAP processor supports the following instructions to

deal with re�nements: REFINE, EXTRACT, and INSERT.

The REFINE instruction takes four input arguments: a capability for a data

segment (which could itself be a re�nement), a base address, a length, and an

access speci�er (read-only, read-write, etc.). It returns a re�ned capability for

the sub-segment speci�ed by the base and length. REFINE checks that the

base and length lie within the existing segment. The re�ned capability gets the

requested access rights, restricted by the original rights, but has its data type

set to re�ned-data-segment, rather than data-segment. A re�ned-data-segment

capability is just like a data-segment capability, but the segment can only be

operated on by the REFINE, EXTRACT, and INSERT instructions. If the

beginning and end of the re�nement are page aligned, then REFINE will return

a normal capability.

5

The EXTRACT and INSERT instructions are very similar to the Move Char-

acter (MOVC) instruction in the VAX architecture. They copy bytes out of or

into a re�ned segment, starting at a speci�ed location for a speci�ed length. If

5

This implementation of REFINE requires that access rights be speci�ed on a per-page

basis.

134

the destination length is longer than the source, then a padding character is used

to �ll the remaining bytes of the destination. EXTRACT and INSERT check

the base and bounds �elds of the re�ned capability and refuse to read or modify

bytes that are outside the re�nement.

EXTRACT and INSERT can be implemented either in software or in mi-

crocode. In software, a re�ned capability is mapped into the address space with

no access in user mode, but full access in kernel mode. To actually reference

the re�ned object, kernel calls to the EXTRACT and INSERT operations must

be made. The EXTRACT and INSERT operations could be coded explicitly in

the application to gain maximum performance (after testing to see if the object

is a non-page-aligned re�nement, of course). Alternatively, non-paged-aligned

re�nements could be made completely transparent by implementing a handler

for access-violation faults that would invoke the EXTRACT and INSERT op-

erations on behalf of the application, just as MicroVAX systems include fault

handlers to emulate unimplemented instructions. The choice between explicit

coding and fault handling depends on the actual frequency of re�nements in the

particular application in question and both options should be made available to

the programmer.

If EXTRACT and INSERT are expected to be used a great deal, then the

cost of a standard kernel call may be excessive. In such a case, the instructions

could be implemented in microcode or in a highly optimized kernel call, such as

the extracode routines found on the Atlas [127].

135

136

Chapter 15

Translation Bu�ers

The address translation bu�er (TB) is the most performance-critical portion of

a memory management architecture. It remembers recently-used memory de-

scriptors, so that the CPU need not fetch segment and/or page table entries

repeatedly. Without a translation bu�er, a memory reference on a virtual mem-

ory machine could require from two to four memory cycles, compared to a single

reference on a non-virtual memory machine. With a good translation bu�er, miss

rates of 0.1% to 2.0% are possible [199], making the average number of memory

cycles required to complete a fetch only slightly more than one.

Many of the trade-o�s in the design of e�ective translation bu�ers are de-

pendent on the particular hardware technology used for implementation. As a

result, it is impossible to specify exactly which features of a translation bu�er are

essential to a high-performance, secure system. Instead, this chapter develops a

taxonomy of the various types of translation bu�ers and indicates the impact of

security on their design. Although very important to translation bu�er perfor-

mance, the level of associativity is not covered in this chapter, as the associativity

design choices have little bearing on security. However, Appendix C contains a

brief tutorial on the subject, as the level of associativity of the VAX-11/730

translation bu�er became an important issue in the prototype implementation,

described in Chapter 18.

15.1 Hardware-Visible Segmentation

Whether segmentation should be visible to the hardware is the �rst and most

signi�cant option in translation-bu�er design. Segments, in principle, must be

able to start and end on arbitrary boundaries and must be separately protected

from other segments. In a machine without paging, the translation bu�er would

simply contain segment descriptors, each consisting of a base address, a bounds

register, and a set of access rights. Address translation adds the base to the

virtual address, compares the virtual address against the limit, and checks the

access rights. These three operations can be performed in parallel, so the check

137

can be quite fast. Segmentation without paging can be very ine�cient, however,

due to external fragmentation and the need for frequent recompaction of physical

memory.

The translation bu�er can combine segmentation with paging in one of two

ways. Either the translation bu�er can store segment descriptor entries, as well

as page descriptors; or the translation bu�er can store only page descriptors,

with the operating system (or the microcode) arranging the page descriptors

to the segment-descriptor requirements. The former approach (with segment

descriptors in the translation bu�er) o�ers automatic limit checking on data

structures, while the latter approach (using only page descriptors) can only check

addresses to the granularity of the page size.

15.1.1 Segment Descriptors in the Translation Bu�er

Hardware array-bounds checking requires that segment descriptors be present in

the translation bu�er. Colwell [44, page 23] argues strongly that array-bounds

checking is an extremely useful function of a segmented memory, and that check-

ing to the granularity of pages is insu�cient. However, simple base-and-bounds

checking detects only a small fraction of possible addressing errors. For example,

if a segment consists of a linked list, the o�sets forming the forward and back-

ward links must not only lie within the bounds of the segment, but they must

also point to the beginning of valid entries in the list, rather than to the middle

of entries. The applications designer has two choices: either take object-oriented

programming to the limit and store each entry of the list in a separate segment,

or program in additional checks on the links. If list elements are small and

numerous, placing each list element in a separate segment could be extremely

expensive. By contrast, an object-oriented programming language can perform

some of the necessary checks at compile time and generate code to perform the

balance at run time.

15.1.2 Segment Descriptors in Software Only

If the translation bu�er holds only page descriptors, then the address-translation

function is much simpler and can be made faster. The translation bu�er simply

looks for an entry corresponding to the virtual address. Assuming that a match

is found, the physical page number is concatenated with the o�set within page

from the virtual address. Note that concatenating bit �elds is generally simpler

and executes faster than the addition and comparison needed for a base-and-

bounds check. Access permissions, of course, can be checked in parallel. If no

match is found, then the translation-bu�er �ll mechanism must be invoked, as

discussed in Section 15.3.

138

Bounds checking on data structures, as opposed to bounds checking required

for security, can better be done by the compiler, either by ow analysis on the

source code, proving that bounds violations cannot occur, or by including run-

time checks in the generated code. If the processor were pipelined with branch

prediction, the run-time bounds check could execute at least partially in parallel

with the references to the data.

Bounds-checking cost should not be paid as part of every memory reference.

Instead, memory references should run as fast as possible, and more complete

argument validation and reference checking should be included explicitly in the

code of the program and only where needed.

15.2 Context Switching

When the CPU must switch between one address space and another, the trans-

lation bu�er must ensure that entries from the old address space are not con-

fused with entries from the new address space. This section examines four

techniques for dealing with this context switching problem: translation-bu�er

ushing, translation-bu�er swapping, address space numbers, and unique-ID ad-

dressing.

15.2.1 Flushing

The simplest approach to the context switch problem is to ush the entire con-

tents of the translation bu�er on every context switch. Flushing on context

switch ensures that only entries from the new address space will be present in

the translation bu�er. There are two drawbacks to ushing the translation bu�er

frequently. First, the cost of ushing itself can be very considerable (hundreds

or thousands of CPU cycles), because the translation-bu�er hardware must be

optimized for access time speed rather than ushing speed. As a result, most

translation bu�ers do not have hardware for clearing entries, and ushes must be

implemented by microcode loops that write invalid entries into the translation

bu�er. The translation bu�er must be built from the highest performance mem-

ory available. The extra logic to automate ushing would likely be expensive to

implement and would likely introduce at least one extra gate delay in the most

performance-critical part of the entire CPU, the memory-access path.

The second drawback of ushing is that when the processor switches back to

the old address space, the translation-bu�er entries will have to be reloaded. De-

pending on the size of the translation bu�er and the mean number of instructions

between context switches, this reloading overhead can be considerable. Clark and

Emer report [41] a mean headway between context switches of 5,100 to 8,600 in-

structions for typical VAX-11/780 timesharing workloads. Their results indicate

that a signi�cant fraction of translation-bu�er misses are due solely to context

139

switching and that those misses cannot be reduced by simply increasing the size

or level of associativity of the translation bu�er. Similarly, Schroeder [191] re-

ports that over half the translation bu�er misses in Multics are due to complete

ushes.

1

Despite these costs, complete ushing of the bu�er remains the most

e�ective technique for many con�gurations, particularly if there are relatively

few translation-bu�er entries.

15.2.2 Translation-Bu�er Swapping

One could reduce the cost of re�lling the translation bu�er after a context switch

by saving and restoring all the bu�er entries as part of the context switch itself.

To make such swapping worthwhile, one would need special hardware to transfer

the entire translation-bu�er contents to and from primary memory in less than

the sum of all the normal re�ll times. The cost of such specialized, high-speed

hardware is likely to be prohibitive. Thus, translation-bu�er swapping is not

likely to be worthwhile, at least with present memory technologies.

15.2.3 Address Space Numbers (ASNs)

The cost of re�lling the translation bu�er after context switching can be reduced

by storing entries from more than one address space simultaneously. Essentially,

the tag in the translation bu�er would be extended by an address space number

(ASN) that would be assigned by the operating system to each distinct address

space.

2

The CPU would provide a current address space number on every search

of the translation bu�er. Assuming that the operating system switches from one

address space to another and then back to the �rst, entries could remain in the

translation bu�er to be re-used after the switch back. Of course, as Clark and

Emer point out [41], the translation bu�er must be quite large to make address

space numbers worthwhile. Declining memory costs, even of the very high-speed

memory chips, make such large translation bu�ers more feasible.

An address space number would be assigned dynamically to each process, as

it was scheduled to run. To prevent the tag in the translation bu�er from getting

too large, the number of ASN's must be limited. (A limit of 256 ASN's or an 8-bit

extension to the tag might be reasonable for current technology.) Since there can

only be a limited number of ASN's, the system will eventually run out of them.

If the translation bu�er supports selective ushing, then the operating system

could choose particular ASNs to be reassigned. Such selective-ush hardware

1

Multics ushes the translation bu�er after page faults as well as after context switches, so

this number is signi�cantly larger than for the VAX.

2

ASNs were used �rst in the University of Manchester MU5 computer [158, 159]. Both the

CAP-I [223, Section 5.4] and CAP-III systems [95, Section 12.5] use the CAP capability unit to

provide the equivalent of ASNs by storing capabilities from more than one protection domain

simultaneously.

140

requires parallel searching and is therefore likely to be expensive. Instead, the

operating system could completely ush the translation bu�er and recycle all the

ASNs. Such ushes would occur much less frequently than context switches.

3

15.2.4 Unique-ID Addressing

The address space numbers discussed in the previous section are invisible to the

user. They are assigned by the operating system and exist only in the translation

bu�er. Alternately, one could make the address space numbers visible to user

software by making segment numbers unique during the life-time of the system.

In this case, all users share a common address space, and pointers are universal.

Systems that use unique-ID addressing include the IBM System/38 [100] and a

Data General machine that has not been marketed [52, 29].

4

This technique of unique-ID addressing is attractive, because it eliminates

many problems of translating addresses from one context to another. It has

several drawbacks, however. First, if an object is shared between two users who

have di�erent access rights, the translation bu�er must di�erentiate between

those users, and a single TB entry for the object may not be su�cient.

Second, sequentially-assigned unique IDs can be used by a Trojan-horse pro-

gram as a storage channel to violate con�nement requirements [131, 143]. The

storage channel can be eliminated by encrypting the sequential IDs with a strong

encryption algorithm and a key known only to the operating system. Predicting

the next unique ID would then be equivalent to a known-plaintext attack on the

algorithm. Depending on performance needs, the operating system could either

use decryption or a hash table to locate the object corresponding to a given

encrypted unique ID.

5

Third, the use of unique ID addressing forces the processor to use a much

larger virtual address (128 bits or more), even though the actual address-space

requirements of user programs are much smaller. A wider virtual address makes

all of the addressing logic of the processor bigger, more costly, and slower.

6

While

address spaces larger than 32 bits are likely to be needed in the near term, a

jump to 128 bits, solely to provide unique addresses, does not seem justi�ed. For

3

Prof. David Wheeler has pointed out that the frequency of ushing could be reduced even

further if the operating system maintained a count of the number of TB entries currently

in use by any particular address space. Such a count could be maintained, either by the

translation bu�er load function returning the ASN of the entry that was replaced or by the

operating system duplicating the TB insertion algorithm and keeping a map of the TB in

primary memory. Of course, maintaining such counts would add to the cost of processing TB

misses, and that cost would have to be traded o� against the reduction in the frequency of TB

ushes.

4

The Data General processor that used unique-ID addressing appears to have been described

as the FHP machine in The Soul of a New Machine [125].

5

Prof. David Wheeler suggested encrypting sequentially-assigned unique IDs.

6

Fabry [67] describes how such addressing logic might be implemented.

141

example, the Data General unique-ID machine uses 160-bit addresses in its most

general addressing mode. These are shortened to 46-bit non-unique addresses

for most data paths through the processor.

Fourth, unique-ID addressing makes argument validation more di�cult. This

problem is covered in Section 14.1.1.

15.3 TB Fill in Software or Hardware

Most processors today implement translation-bu�er �lling in microcode or in

special hardware logic. However, some RISC architectures view a translation-

buffer miss as a fault to be handled by software, just as page faults are handled

by software.

7

Certainly, the logic to translate a virtual address is complex, and

the software instructions to implement that translation should run at close to

microcode speeds in a RISC machine. The frequency of translation-bu�er misses

is high enough that this hardware/software decision must be made carefully. The

MIPS Computer Systems designers argue strongly for software �lling.

The advantage is simpli�cation of bus interface, pipeline stall, and ex-

ception-handling, areas well-known to be troublesome. The chip area

saved o�ers more TLB

8

entries, and O.S. exibility is preserved for

both UNIX variants and non-UNIX systems. The price is a slightly

longer re�ll time than might be done by dedicated hardware. Since

the total TLB penalty is the product of miss penalty times miss rate,

it can be kept reasonable by lessening the miss rate [55, p. 143]

However, the IBM RT PC designers argue just as strongly for hardware re�ll.

Memory management units that depend on processor intervention are

much slower due to the overhead in passing control to the processor

which must then save and restore registers and return control to

the memory management unit in addition to the page table memory

lookup function. [222, p. 62]

Given these two conicting opinions, the choice between software and hard-

ware resolution of TB misses is not clear-cut. The page-table structures and the

size and structure of the translation bu�ers of the IBM RT PC and the MIPS

Computer Systems chip di�er greatly. Any of these factors could have accounted

for the di�erences between software and hardware TB-�ll performance seen in

the two processors. Furthermore, some of the costs of context switching that

IBM RT PC designers fear could be alleviated by dedicating a special register

set to the TB-miss handler.

7

Handling translation bu�er misses in software originated in the University of Manchester

Atlas computer. [126]

8

MIPS uses the term, translation lookaside bu�er(TLB) where I use translation bu�er(TB).

142

Software TB �ll does o�er signi�cantly more exibility to the operating sys-

tem designer, as the MU5 designers pointed out [159, p. 129]. The life of a typical

operating system is many years, and during that time, both changing software

requirements and changing hardware technology may make the operating sys-

tem designer wish to change the page-table structures. With hardware TB �ll,

the page-table structures are �xed by the processor architecture, and the oper-

ating system designer has no exibility. With software TB �ll, the operating

system designer can choose any page-table structure. Indeed, the same CPU

could support two di�erent operating systems with radically di�erent page-table

structures. A time-sharing system might use a multi-level-table approach, such

as described in Figure B.2. In contrast, a real-time control system might use a

single-level page table to minimise the contribution made by address translation

to interrupt latency times.

There is one further argument for software TB �ll. The revocation with

eventcounts algorithm described in Section 11.5 is much simpler to implement

if TB �lling is done in software. Note that revocation with eventcounts would

only be implemented on a machine with hardware segmentation and shared page

tables. On machines with unshared page tables, like the VAX, revocation would

be accomplished with chained page-table entries, as described in Section 16.5.

15.4 Shared-Memory Multiprocessors

The algorithms discussed so far in this chapter assumed a single processor system.

If the system consists of several symmetric multiprocessors with shared memory,

then certain changes are required. The paging databases will require locking to

prevent simultaneous updating of data structures. The design of such locking

strategies is beyond the scope of this dissertation.

More critical to the hardware design is the requirement for translation-bu�er

consistency across processors. If a page table entry is changed, not only must it

be ushed from the current processor's TB, but it must also be ushed from all

other processors' TBs.

This section presents the concept of a snoopy translation bu�er as an improved

method for multiprocessor-translation-bu�er management.

15.4.1 Flush with Interprocessor Interrupts

Multics solved the TB-consistency problem by completely ushing the TBs of

all processors whenever any entry was changed. Flushing was accomplished

by sending an interprocessor interrupt to all CPUs and waiting for a response.

While this approach assures consistency, it leads to many more TB ushes than

are required, because most pages are not shared [157]. Further, such frequent

ushing would likely make the address-space-number mechanism ine�ective.

143

Flushes can be reduced by using the VAX translation-bu�er-invalidate-single

(TBIS) function. When a page table entry is changed, the CPU does a TBIS,

and inserts the virtual address and address space number into a queue for other

CPUs. The �rst CPU then sends interprocessor interrupts to the other CPUs

which inspect the queue and perform the TBIS operations. A large number of in-

terprocessor interrupts are still required, even though most often, the translation

bu�ers on other CPUs do not contain the entry in question.

The number of interprocessor interrupts can be reduced for systems without

shared page tables. For such systems, a particular page table entry can only

appear in the translation bu�er of a particular CPU, if the process that owns

that page table entry has been recently scheduled on that CPU. If the scheduler

keeps a list associated with each process of on which processors the process

has run, then interprocessor interrupts need only be sent to those CPUs that

could possibly have the page table entry. In a system with a large number of

processors, such that any given process will only have run on a small fraction of

the processors, this strategy will signi�cantly reduce the number of interprocessor

interrupts. Note that the de�nition of recently scheduled is that the process has

been scheduled on a particular CPU since that CPU's translation bu�er has been

completely ushed. Complete ushes will occur when address space numbers are

periodically recycled, as discussed in Section 15.2.3.

15.4.2 Snoopy Translation Bu�ers

The interprocessor interrupt approaches, discussed in the previous section, all

potentially a�ect software performance, because many CPUs will have to handle

the interrupts, yet often the relevant page table entry may not be present in their

translation bu�ers. Thus, one CPU invalidating a single entry may cause a large

number of CPUs to take action.

A snoopy translation bu�er, analogous to the snoopy cache [123, 9, 208] that

has become popular in multiprocessor design, can avoid this interrupt tra�c.

Snoopy caches watch bus tra�c to detect writes to shared blocks. A snoopy

translation bu�er similarly watches bus tra�c for translation bu�er invalidations.

Each translation bu�er has a port connecting to the interprocessor bus. When

an entry is invalidated, the bu�er also broadcasts the virtual address and address

space number (ASN) to other translation bu�ers. When a translation bu�er

invalidate operation comes by on the bus, each translation bu�er performs an

invalidate cycle, using that virtual address and ASN. Note that for this strategy

to work, ASNs must be assigned on a system-wide basis, rather than separately

for each CPU.

The Fairchild CLIPPER 32-bit microprocessor implements a form of snoopy

translation bu�er on the CLIPPER bus [42, Sections 3.5.3 and 7.4.2.2]. A CPU

can ush a translation-bu�er entry for a speci�ed page, either within the local

144

CPU only or in the translation bu�ers of all CPUs attached to the bus. The

CLIPPER memory management units do not support ASNs, so the broadcasted

translation-bu�er invalidations would only be correct if all the processors were

running in the same address space. For a snoopy translation bu�er to be useful,

either the processors must support ASNs, or all processors must be in the same

address space.

145

146

Chapter 16

Hashed Page Tables

Capability-based systems, such as SCAP, tend to use their virtual address spaces

sparsely, as separately protected objects must be stored in separate segments.

Sparse use of the virtual address space can lead to extremely large page tables or

to multiple levels of pages, such as implemented in the Multics processor. This

chapter examines the use of hashed page tables (also called inverted page tables)

as a method for making the size of page tables a linear function of the amount of

physical memory, rather than a function of the amount of virtual address space

used. Hashed page tables were �rst used on the IBM System/38 computer.

1

This chapter �rst presents the design issues associated with hashed page ta-

bles and then presents my experimental results of implementing hashed page

tables in the microcode of the VAX-11/730. The chapter assumes basic famil-

iarity with the demand paging schemes of Multics and the VAX. Appendix B

contains a brief tutorial on those and other schemes.

16.1 Implementing a Hashed Page Table

The IBM System/38 [100] and the IBM RT PC [98] each support large, sparse

virtual-address spaces. The System/38 supports an address space of 2

48

bytes

with a page size of only 512 bytes. Instead of multiple levels of page tables, the

System/38 hashes the virtual address into a table whose size is proportional to

the amount of physical memory on the processor. The IBM RT PC uses a very

similar technique to map an address space of 2

40

bytes.

Figure 16.1 shows the data structures required to perform the following

address-translation algorithm: A hash function is computed on the virtual ad-

dress. The result of the hash is an index into a hash table. The hash table entry,

in turn, contains a pointer to the appropriate page table entry (PTE) in the

1

While the schemes discussed in this chapter all assume that the hash table is stored in

primary memory, Thakkar and Knowles have proposed [209] an all hardware implementation,

based on an extension of the University of Manchester MU6-G computer.

147

Virtual Address

?

Hash

Function

-

Hash Table

Page Table

Index

-

Inverted Page Table

Virtual

Address

Next

Entry

PTE

Virtual

Address

End of

Chain

PTE

?

Figure 16.1: IBM System/38 Hashed Address Translation

inverted page table (IPT). More than one virtual address could hash to the same

entry in the hash table. When a collision occurs, the additional PTE is stored at

some other location in the IPT, and a chain is constructed from the �rst entry

through all entries that hash to the same location in the hash table. The hash

table and the inverted page table are stored separately, so that it is easy to add

or delete entries without reorganising the hash table.

Performance of the hashed address translation depends on three things:

the probability of collisions (or equivalently, the average number of hash-table

lookups required to translate an address), the speed of the hash function compu-

tation, and the number of memory references required to translate an address,

assuming no collisions.

148

16.2 Probability of Collisions

Probability of collisions is the �rst determinant of hashing cost. Assuming that

the hash function produces uniformly distributed results and that in the steady

state, all pages of physical memory are in use, then, as derived by Morris [160],

the average number of probes, N , required for an IPT of size P , and a hash table

of size H is given by:

N = 1 +

1

2

H

P

Thus, if the hash table is twice the size of the IPT, the average number

of probes is 1.25. The number of entries in the IPT is exactly the number of

pages of physical memory. If the amount of memory devoted to page tables and

related data structures is to be kept to a �xed percentage of primary memory,

it is possible to derive how large the hash table can be. In the case of the VAX,

with a page size of 512 bytes, and a PTE size of four bytes, a hash-table entry

requires four bytes, and an IPT entry has an overhead of 8 bytes

2

in addition to

the PTE. Thus, if the hash table is twice the size of the IPT, each page uses 20

bytes, or 3.9% of primary memory. If the processor had a larger page size, then

the ratio would be much better. With a page size of 4,096 bytes, only 0.5% of

primary memory would be used for paging structures.

It is important to note that the amount of memory used for paging structures

in this system is a constant. There is no need to limit the size of a virtual address

space just to limit the amount of page tables required, as is commonly done in

both VAX/VMS and UNIX. Sparse use of virtual address space does not incur

penalties. The only limit on virtual-address-space size is the amount of disk

available for paging and/or swapping.

16.3 Hash Function Costs

The time required to compute the hash function is the second determinant of

hashing costs. Gehringer [76] suggests the use of polynomial division, as de-

scribed in [128, pp. 512-513]. Polynomial division, however, is complex to imple-

ment. The IBM System/38 uses a simpler hash function that divides the high

bits of the virtual address into three �elds, and computes the exclusive-or of the

two high �elds with the reverse of the low �eld.

3

This function should produce a

2

For the hashed page table to be actually used for all processes without the need for swap-

ping hash tables, the virtual-address �eld in the IPT must be extended by an address space

number (ASN), just as for the translation bu�er. (See Section 15.2.3.) At �rst glance, adding

an ASN �eld would increase the size of an IPT entry. The bits representing an o�set within a

page are not required in the IPT. Those bits can be used to store the ASN, instead.

3

The size of the �elds selected from the virtual address will determine the size of the hash

table. Varying the hash table size will requiring varying the size of the particular �elds used

in the hash algorithm.

149

uniform distribution, assuming a large number of small objects, or a small num-

ber of large objects, or a mixture of both. Reversing the bits of the low �eld can

be implemented in hardware at no cost in performance. In a processor lacking

such hardware, the reversal could be implemented by a table look-up or omitted

entirely.

16.4 Number of Memory References

The number of memory references required to translate an address, assuming

that no collisions occur, is the third determinant in the cost of hashing. The

IBM System/38 and the IBM RT PC both separate the inverted page table from

the hash table and resolve collisions by chaining. This strategy makes it easy to

invalidate entries when a page is removed from primary memory. Translating an

address, however, requires three memory references: one to read the page-table

index from the hash table, one to read the virtual address from the IPT, and one

to read the page-table entry from the IPT. While the two reads from the IPT

can probably be optimized into a single double-length read

4

, the read from the

hash table cannot be so optimized.

If the collisions were resolved using open addressing with linear probing [128,

pp. 518{521], then the number of memory references can be reduced. Figure 16.2

shows a simpler hashed page-table structure that requires only two memory

references for most translations. Just as before, a hash function is computed

on the virtual address. The result is an index into the hash table. Unlike

the chaining case, the hash-table entry contains the page-table entry (PTE)

directly. Assuming the virtual addresses match, the PTE can be immediately

loaded into the TB with no further memory references. Collisions are resolved by

incrementing the hash table index by one entry and trying the comparison again.

Because collisions are designed to be rare, the vast majority of TB misses can

be �lled by two memory reads. Because the two reads are for adjacent locations,

the memory controller can probably optimize the reference into a single double-

length read, just as in the chaining case.

The principal drawback of linear probing is that removing entries from the

hash table is much more di�cult. If several entries have collided, and one wishes

to remove one of them, then several entries may have to be shifted up. In the case

of a page table, however, removing entries from the table is much less frequent

than translation bu�er misses, so the extra time needed to remove entries should

not be excessive. Therefore, using a linear-probing scheme for collision resolution

4

For example, the VAX-11/730 [217, p. 6{46] can read a 32-bit longword from memory in

three microinstructions: one microinstruction to initiate the read, one unrelated instruction

while the memory controller performs its functions, and one to transfer the data. However, the

VAX-11/730 can read a 64-bit quadword in only four microinstructions, adding one microin-

struction at the end to transfer the second 32-bit longword.

150

Virtual Address

?

Hash

Function

-

Hash Table

Virtual

Address

PTE

Virtual

Address

PTE

Figure 16.2: Hashed Address Translation with Open Addressing

should give better overall performance than the chaining technique used in both

the IBM System/38 and the IBM RT PC.

Linear probing also has the disadvantage that as the table gets full, entries

tend to cluster around particular points, raising the collision rate above what is

predicted by the simple analysis in Section 16.2. Clustering is caused by a large

number of search keys that are grouped consecutively. Knuth [128, pp. 520{526]

suggests several possible solutions including incrementing the hash table index

not by one, but by a constant c that is relatively prime to the number of entries

in the table, or by using a second hashing algorithm to resolve collisions (called

double hashing). Fortunately, clustering only becomes a problem when the hash

table is nearly full, and the hashed page table will never be more than half-full.

Therefore, the added complexity of double hashing will not be needed.

Note that the linear-probing approach also uses less memory than the chain-

ing approach. Assuming that the virtual address and page table entry each

require four bytes and that the hash table has twice as many entries as there are

pages of physical memory, then only 16 bytes are used for each physical page,

compared with 20 bytes in Section 16.2. For a page size of 512 bytes, this means

that 3.1% of primary memory is used for the hashed page tables. For a page size

of 4,096 bytes, the ratio drops to 0.4%.

151

16.5 Revocation by Chaining

As discussed in section 11.4, the revocation-with-eventcounts strategy depends

on a shared page table to function. In a machine with inverted page tables access

rights are stored in the page-table entries. Therefore, two processes sharing the

same page cannot share the same page-table entry.

I introduced the strategy of revocation by chaining as a simple way to handle

revocation for unshared page tables, but the strategy had the serious de�ciency

that it could use a very large amount of memory, proportional to the size of

the virtual address space. That de�ciency vanishes in a system with an inverted

page table, because the space is proportional to the size of the physical address

space, rather than the virtual address space.

Virtual Address

?

Hash

Function

-

Hash Table

Virtual

Address

PTE Chain

Virtual

Address

PTE Chain

Figure 16.3: Hashed Address Translation with Shared Page Chains

The chaining pointer is allocated with each entry in the hash table. Using

these pointers, the operating system constructs a linked list of all page-table

entries that map to a particular physical page. Extra pointers in the hashed

page table are easy to manage, because they are allocated once, at system-

startup time. No special quotas or other mechanisms are needed, so the code

to manage them should be straightforward. Figure 16.3 shows hashed address

translation with open addressing, as in Figure 16.2, but with the chain pointers

added. Adding the chain pointers increases the hash table size to 24 bytes per

physical page. For a page size of 512 bytes, this means that 4.7% of primary

memory is used for hashed page tables. For a page size of 4,096 bytes, the ratio

drops to 0.6%.

152

16.6 Hashing Experiment

This section describes an experiment of implementing a hashed-page-table design

for SCAP on the VAX-11/730. The design supports hashing for process-space

pages (P0 and P1 spaces) and for capability extensions (S1 space). However,

system space (S0 space) is still handled with a system-space page table, just

as it is in a normal VAX. The rationale for not hashing S0-space addresses is

discussed below in Section 16.6.5.

16.6.1 Structure of the Hashed Page Table

There is only one hashed page table for the entire system. It contains page table

entries (PTEs) for all currently active domains. Each PTE is identi�ed by an

address space number (ASN) to distinguish it from PTEs belonging to other

domains. The hash table is located in contiguous physical memory. When the

processor detects a miss from the translation bu�er, the microcode computes the

hash function of the requested virtual address to give the entry number within

the hash table. The microcode then multiplies the hash-entry number by the

hash-entry size and adds the contents of the hash-table-base register. The result

is the physical address of the initial probe point.

The microcode next fetches the hash-table entry to check if the high 23 bits

of the virtual address and the ASN match the hash-table entry. If they do not

match, then a collision has occurred. Collisions are resolved by open addressing

with linear probing, as described in Section 16.2. The microcode adds the hash-

entry size to the physical address and tries again. The collision-resolution search

is terminated when the microcode �nds an entry containing a termination mark.

If the microcode reaches the end of the hash table during a collision-resolution

search, it wraps around to the beginning of the table. In the unlikely case

that a search completely wraps around and returns to the original probe point,

the search will terminate. When the collision resolution search terminates for

either reason, the microcode generates a translation-not-valid exception to the

operating system. (See Section 16.6.4 for a discussion of how entries are removed

from the hash table.)

Note that the number of entries in the hashed page table is determined by the

hashing function. The size of the hash table, however, must be a function of the

size of primary memory (Houdek and Mitchell [100] suggest twice as many hash

entries as pages of physical memory.) Thus, the hashing function must change

as the size of physical memory changes. For the SCAP experiments, a constant

size of physical memory is assumed.

This hashing algorithm assumes that one hash-table entry corresponds to one

page of physical memory. However, the performance of Berkeley 4.2bsd UNIX

was enhanced by simulating a larger page size of 1,024 bytes, compared with the

153

VAX hardware page size of 512 bytes [11]. Berkeley 4.2bsd UNIX achieves this

performance enhancement by mapping pairs of page-table entries. The SCAP

microcode takes advantage of this operating system behaviour by storing hash

table entries only for the �rst 512-byte page of a 1,024-byte pair. Since UNIX

always contiguously maps with identical page protection such pairs of pages, the

SCAP microcode can generate the translation-bu�er entry for the second page of

the pair by not using bit 9 of the virtual address in the hashing algorithm. After

locating the hash entry, the microcode sets the low bit of the PTE to match bit

9 of the virtual address.

High 22 bits of Bit 9 of Address

Virtual Address Virtual Address Space Number

31 10 9 8 0

Page Table Entry

31 0

Figure 16.4: Hashed-Page-Table Entry Format

This change cuts the size of the hashed page table in half, freeing considerable

memory for other use.

5

The resulting form of a hash table entry is shown in Fig-

ure 16.4. This tailoring of the microcode to the operating system's requirements

is an example of how the RISC technique of vectoring translation bu�er misses

to operating-system-supplied code can signi�cantly improve the performance of

a system. See Section 15.3 for a more complete discussion of software versus

hardware implementations of translation-bu�er-miss handlers.

16.6.2 Hashing Algorithm

The hashing algorithm itself must map 22 bits of virtual address into an index

into the hashed page tables. The hash must produce a uniform distribution to

minimize the number of collisions in the hash table itself. Since most domains

will use the same virtual addresses for the base of the code segment (page zero

of P0 space) and for the base of the stack (the high page of P1 space), the hash

function must include the address space number (ASN) to ensure that page zero

of each domain does not hash to the same location.

The hash must also be easy to compute, given the operations of the VAX-

11/730 microengine. Thus, an operation which reverses a set of bits, such as

suggested in [100] is not a good choice, because the VAX-11/730 has no such

5

Note that no matter how cheap memory parts become, the amount of memory dedicated

to page tables must be a �xed percentage of the physical memory present. This percentage

can be reduced only by using larger page sizes. The example here uses microcode to simulate

a larger page size, despite the translation bu�er hardware's use of a smaller page size.

154

operation. The VAX-11/730 microinstruction set is summarized in Appendix E

and is described in detail in [217] and in [218].

Given four megabytes of primary memory, there are 8,192 pages of 512 bytes

each. Assuming that pairs of physical pages are mapped as described above,

and assuming that the hash table should have twice as many entries as pages of

physical memory, then the hash table should have 8,192 entries of eight bytes

each, and the hashing function should map 22 bits into 13 bits.

One possible hash function, shown in Figure 16.5, is to exclusive-or bits 19{31

of the virtual address with bits 10{22 of the virtual address and exclusive-or that

result with the 9-bit ASN, left shifted by 4 bits. The ASN is left shifted, because

the initial versions of SCAP will have bits 30 and 31 of the virtual address almost

always 0. The bits will be 0, because S0 addresses will initially come out of the

separate system space page table, and S1 addresses are not yet used. Left shifting

the ASN assures some variability in the two high order bits.

6

Virtual Address

31 22 19 10 0

| {z }

| {z }

�

�

�

�

H

H

H

H

H

H

Hj

VA[31:19] VA[22:10]

- �

��

��

xor

?

ASN
000

�

��

��

xor

?

Hash Index

Figure 16.5: Hashing Algorithm

Figure 16.6 shows a VAX-11/730 microcode sequence to implement the hash-

ing function of Figure 16.5. The microcode assumes that the virtual address and

the address space number are stored in local store location LS[VA] and LS[ASN],

respectively. The sequence uses LS[TEMP] and working register 0 as scratch

6

Chang and Mergen [35] describe the hashing algorithm of the IBM RT PC as being the

exclusive-or of the segment number and the page-within-segment number. This simple a hash

function could have di�culties with uneven use of the hash table. If applications more fre-

quently use the lower-numbered pages of each segment, the result would be biased toward the

beginning of the hash table.

155

locations. It returns the value of the hash, multiplied by 8, in working regis-

ter 1. The hash is multiplied by 8, so that it can be used to index 8-byte hash

table entries. Note that the 9-bit right rotate operations require a delay be-

fore their results are available. Therefore, instructions are inserted between the

MEM REQ and MOV MEM.DATA instructions to avoid stalling the processor.

Finally, note that the masking operations are limited by the selection of constants

stored in local store at microcode-initialization time. The microengine has no

immediate-mode operands, so constants must be either computed and stored at

initialization time (using up valuable local store locations) or computed at run

time. The microcode in the �gure has been simpli�ed to illustrate how the hash

could be computed. The actual implementation has to be inserted in line with

other microcode. It uses di�erent working registers and local store locations.

MEM REQ [ROTATE.BYTE.RIGHT] ADRS[VA] DT[LONG]

; initiate the 9-bit right rotate

MOV LS[ASN] TO WR[0] ; move ASN to WR[0]

MOV MEM.DATA TO LS[TEMP] ; put shifted result in LS[TEMP]

MEM REQ [ROTATE.BYTE.RIGHT] ADRS[TEMP] DT[LONG]

; shift VA right another 9 bits

MOV LS[TEMP] TO WR[1] ; get VA[22:10] into WR[1][13:1]

MOV MEM.DATA TO LS[TEMP] ; double shifted result to LS[TEMP]

XOR LS[TEMP] TO WR[1] ; xor VA[31:19] with VA[22:10]

SHL2 WR[0] ; shift ASN left two bits

ASHL WR[0] ; shift ASN left another bit

XOR WR[0] TO WR[1] ; xor the ASN into the hash

SHL2 WR[1] ; shift result left two bits

AND LS[#FFFF] TO WR[1] ; clear high 16 bits

BIC LS[#8] TO WR[1] ; clear low 3 bits

Figure 16.6: Microcode to Compute Hash Function

16.6.3 Address-Space-Number Management

There may be many more domains than address space numbers (ASNs), because

ASNs are limited to the range 0 to 511. This means that the operating system

must multiplex the use of ASNs. This section describes the basic algorithms for

that multiplexing.

ASNs are assigned sequentially to newly created domains. One ASN (with

value 0) is reserved and never assigned to any domain. For each ASN, the kernel

keeps two state bits indicating whether the ASN has been assigned and whether

the ASN is stale. A stale ASN is one that has been assigned to a domain that is

156

no longer in memory. Stale ASNs may not be re-used, because their entries may

still be present in the hashed page tables (in the VAX-11/730 implementation)

or in the translation bu�er (in an ideal SCAP processor that implemented ASNs

in the translation bu�er). When a domain is killed or is swapped out, its ASN

is marked as stale. When a domain is swapped in, it must be assigned an ASN.

Eventually, the security kernel will run out of ASNs. At that time, the kernel

ushes the translation bu�er and the hashed page tables, marks all the ASNs

as free, and starts over. Section 15.2.3 discusses the performance implications

of running out of ASNs. Note that the complete ush of the hashed page table

can be optimized by preserving those entries that belong to currently active

domains. Currently active domains have their ASNs retained, and the page-

table-ush algorithm scans all entries, examining their ASNs. If the ASN is

marked in use, then the entry is left unmodi�ed. However, if the ASN is marked

free, then the ASN is replaced by the reserved ASN with value 0.

16.6.4 Invalidating PTEs in the Hash Table

Because the hashing algorithm uses open addressing with linear probing, invali-

dating entries in the hash table is not straightforward. The algorithm is designed

to make lookups as fast as possible, because the table will be searched much more

frequently than PTEs will be invalidated. The invalidation di�culty arises, be-

cause when collisions occur, an entry in the table may have been moved forward

into the slot belonging to some other virtual address. The invalidation algorithm

must be careful not to invalidate other entries that may have collided with the

entry to be invalidated. The SCAP experimental implementation, described in

Section 16.6.5 uses the following invalidation algorithm, based on deletion with

linear probing [128, pp. 526-527].

� Compute an initial hash-table index for the virtual address. Save that

index in a variable, INITIAL.

� Start at the INITIAL index and search for a match on the virtual address

and ASN.

� When a match is found, invalidate the PTE, and store the index of the

match in a variable, T.

� Continue searching forward, examining each hash entry until an entry is

found containing the ASN reserved to terminate searches. For each exam-

ined entry, compute the hash of the virtual address and ASN that is stored

to see if it resulted from a collision at the INITIAL location.

� If the entry was from a collision at the INITIAL location, then copy this

entry up to location T, and set T to the old index of the copied entry.

Invalidate the old copy, and continue searching forward.

157

� When an entry with the reserved ASN for termination is found, the pro-

cedure is �nished. (Of course, the search forward must be prepared to

wrap around at the end of the hash table and to terminate if the table is

completely full.)

For the vast majority of cases, the algorithm terminates very quickly, be-

cause collisions are rare, and the search usually �nds an exact match followed

immediately by a terminate entry. The code for moving entries up is executed

very rarely. However, the algorithm should handle even the rare cases in which

multiple chains of collisions that hash to di�erent locations actually overlap each

other in the hash table.

16.6.5 Hashing Results

Measuring the performance bene�ts of hashed page tables is very di�cult without

an operating system that uses them. Therefore, modi�cations were made to

Digital's experimental security kernel [145] to use hashed page tables, rather

than the conventional VAX page tables.

The experimental security kernel, however, uses the conventional interpreta-

tion of VAX system space, that it is identical and shared in all address spaces.

As a result, if S0 space were hashed as the process spaces were hashed, the page

table entries (PTEs) for S0 space would appear in the hash table once for each

address space, would waste a great deal of space, and would cause the hashing

algorithm to thrash. The proper solution would be to make the operating system

run in its own address space with its own ASN, but that level of modi�cation

was much too large to make to the experimental security kernel. Therefore, a

compromise was adapted, and, as mentioned above in Section 16.6, only P0 space

and P1 space were hashed, leaving S0 space to use the conventional page table.

A large benchmark of the experimental kernel to measure the performance

di�erences of hashing revealed, somewhat surprisingly, that the performance dif-

ferences were minimal. Hashing P0-space and P1-space page tables on a VAX-

11/730 ran at about the same speed as the conventional page tables. The hashed

tables did occupy somewhat less primary memory, but due to the form of the

modi�cations, the experimental security kernel was not able to take advantage

of the memory that was freed.

7

The experiment was very limited and did not measure many of the e�ects

that one might see in a hashed page table environment. Particularly, the e�ects

of the operating system behaviour were not measured, and those could com-

pletely dominate. However, as a �rst approximation, it appears that the choice

between conventional page tables and hashed page tables can be made entirely

7

Due to the proprietary nature of Digital's experimental kernel, details of the benchmark

results cannot be included, beyond noting that the di�erences were not signi�cant.

158

on the basis of memory usage and convenience to the operating system designer.

If the processor supports translation-bu�er-miss handling in software, then the

operating-system designer can make this choice and even switch between con-

ventional page tables and hashed page tables in di�erent releases of the system.

159

160

Chapter 17

Cross-Domain Call Optimization

17.1 Performance of Cross-Domain Calls

The performance of cross-domain calls is one of the most signi�cant factors in

determining the overall performance of a capability-based system. Gehringer and

Colwell [77] suggest improvements to the Intel 432 cross-domain call that they es-

timate would save up to 54% of the call time. They suggest the addition of extra

hardware-register sets to improve cross-domain-call performance. However, RISC

hardware and compiler designers have developed improved register-assignment

algorithms [34, 37] that can reduce the number of registers that must be saved

and restored on procedure calls. Gehringer and Colwell assert that such opti-

mizations cannot be used for separately compiled modules, but a generalization

of recent work by Wall [224] should provide signi�cant improvement in register

optimization in cross-domain calls.

Wall achieves signi�cant performance improvements (10% to 25%) by defer-

ring register assignments until link time, although still using the Chaitin register

allocation by graph colouring algorithms at compile time. Wall's approach saves

and restores only those registers that the caller requires after the call returns and

that the called procedure actually uses as intermediate values. Further, the al-

gorithms tend to minimize the overlap of registers used by the calling and called

procedures.

Wall's techniques assume that the calling and called procedures are in the

same protection domain and therefore trust each other. However, with the in-

formation that Wall's compiler saves about register usage, optimizing register

usage across cross-domain calls is also possible.

Optimization across cross-domain calls must be done very carefully. In partic-

ular, we must avoid the temptation to just leave values in registers, when the call-

ing sequence of another domain claims to not disturb those values. For example,

the CAP-I cross-domain call and return instructions [92] did not properly clear

registers when returning from a cross-domain call. As a result, Johnson [109] was

161

able to penetrate Herbert's implementation [96] of the game of MOO

1

by reading

values that were left in general registers after the MOO subsystem returned. In

another example, Sites [197] discusses how the cost of saving and restoring 640

registers on the CRAY-1 led the designers of the CRAY-1 operating system to

implement partial task switches, leaving values in some of these registers. Sites

suggests that such partial task switches may lead to potential security breaches.

17.2 Multiple Register Sets

Multiple register sets could be used to speed up switching between protection

domains. The earliest such use was on the Honeywell 800 processor [149] which

switched automatically between 8 programs by maintaining 8 complete register

sets. More recently, the S{1 computer from Lawrence Livermore Laboratory [154]

has been designed to support 16 register sets to optimize switching between

address spaces. Such multiple register sets allow the operating system to switch

between di�erent processes or protection domains very quickly without saving

or restoring any registers. While the total number of domains to be scheduled

might be larger than the number of register sets, the operating system could use

a least-recently-used algorithm to minimize the amount of register saving and

restoring.

If the multiple register sets were completely isolated, then no parameters

could be passed in registers. The Berkeley RISC machines [172] introduced the

notion of overlapping register sets (also called register windows) to optimize

passing parameters between procedures of the same protection domain. Not

only do overlapping register sets not help in passing parameters between di�erent

protection domains, but they also increase the number of registers to be saved and

restored when moving between protection domains. Wall's approach of global

register allocation at link time achieves much of the bene�ts of the overlapping

register sets, entirely in software.

The chip area reserved for the overlapping register sets can instead be used

for multiple register sets for each protection domain. Wall's techniques can be

used to optimize register assignments and parameter passing on normal proce-

dure calls, and the techniques proposed in this chapter can be used to optimize

cross-domain calls. The Am29000 microprocessor [33, 110] provides just such

an option. Its register �le may be used either as multiple register sets for each

address space, or as an overlapping-register-set scheme within a single address

space, but not both at once. Furthermore, the Am29000 provides some global

1

The game of MOO [5, 84] has become a classic example of a protected subsystem. The

user should be able to write a program to solve the game, but the calling program should not

be able to obtain the correct solution from the game's memory nor should the calling program

be able to tamper with the game's history of high scorers.

162

registers that could be used for parameter passing on cross-domain calls, if they

were managed as proposed here.

17.3 Argument Passing

There are three types of arguments that can be passed in a cross-domain call.

Optimizing cross-domain calls requires understanding the performance implica-

tions of all three.

� capabilities for memory segments,

� capabilities for abstract data types, and

� small values that �t in processor registers

Most previous capability architectures, including particularly the Intel 432,

passed arguments only by capability. Capabilities for abstract data types

2

are

relatively cheap to pass, because only the capability itself must be copied from

one domain to another. The called domain will either pass the abstractly-typed

object to yet another domain, or it will explicitly unseal the abstract type, to gain

access to its contents. In contrast, capabilities for memory segments are more

expensive to pass, because both the calling and called domains must be able to

address the contents of the segment. In the case of a paged machine, the cross-

domain call could entail signi�cant overhead in mapping the pages of the memory

segment into the new address space. Thus, if an argument must be passed

through several domains that do not all require access to the contents of the

argument, then using abstract types can signi�cantly improve the performance

of the cross-domain call. (Section 17.3 shows that such use of abstract types is

in fact common.)

A much greater performance gain can be achieved by passing small values in

the processor registers. Indeed, the CAP-I ENTER instruction [92, Section 3.3]

leaves the registers unmodi�ed when crossing domain boundaries, and the CAP-

I operating system passes many arguments in registers. As discussed in Sec-

tion 17.1, attacks were possible, because the CAP-I did not properly clear the

registers. CAP-I provided for up to 256 capability arguments on every ENTER

call (one full capability segment). As shown in Section 17.3, most actual ENTERs

passed a very small number of capabilities, making further savings possible.

The sources for Digital Equipment Corporation's research prototype secu-

rity kernel for VAX processors [145] gave a rough estimate of the cost of cross-

domain calls as a function of the number and types of arguments. This kernel

is structured as a strictly layered architecture, such as originally proposed by

2

Capabilities for abstract data types are implemented using sealing, as described in Sec-

tion 4.4.

163

Janson [108]. While all layers of the prototype kernel run in the same protection

domain, and layering is used only as a software-structuring tool, the relative fre-

quency of cross-layer calls can be used to estimate the frequency of cross-domain

calls, were the prototype kernel to be re-implemented on a capability machine. In

one large benchmark, the prototype kernel executed 150,363,618 cross-layer calls.

Although the kernel consisted of 10 layers and 168 distinct targets for cross-layer

calls, 80.5% of all calls were to only three target procedures. Fourteen target

procedures covered over 99% of all cross-layer calls. Of the three most frequently

called procedures, one took no input arguments at all, and the other two took

parameters that could be passed in registers plus one parameter each that was a

data segment of less than 512 bytes in length. Of the next eleven most popular

procedures, two took register parameters only, �ve took registers and capabilities

for abstract types only, and only three took data structures that would require

mapping. Again, all of these data structures were less than 512 bytes long.

A second estimate of the cost of cross-domain calls as a function of the number

and types of arguments comes from Cook's evaluation [45] of the CAP-I operating

system. Cook ran benchmarks that showed that calls on the spooled stream

protected procedure (SSPP)

3

completely dominated all other cross-domain calls.

The SSPP routines, described by Slinn in [198, page 106], take one or two integers

and (sometimes) a capability as parameters. Thus, the most frequent cross-

domain calls in the CAP-I operating system similarly pass most arguments in

registers, rather than as capabilities to be mapped into an address space.

As further con�rmation, Herbert's design of the CAP-III architecture pro-

vided the ability to pass up to �ve capabilities and four words of data [94, p. 24] in

each message-passing cross-domain call.

4

Pardoe's current implementation [171]

of an operating system for CAP-III typically passes only one capability argument

along with some small data values.

Thus, trading-o� performance of the relatively infrequent passing of capa-

bilities to memory segments in favour of the frequent passing of arguments in

registers should signi�cantly improve the overall performance of cross-domain

calls.

The remainder of this chapter will focus on argument passing to see what

performance gains are possible without compromising security.

17.4 Categories of Trust

This section classi�es the various types of procedure calls as a function of the

type and level of trust between the calling and the called domains, in order to se-

3

The spooled stream protected procedure (SSPP) provides a �le-I/O interface to segments

of virtual memory, much like the Multics �le DIM [68].

4

CAP-III actually implemented cross-domain calls as message-passing primitives and

mapped each domain into a separate process. That distinction is not relevant here.

164

curely optimize the register usage in cross-domain calls. The trust relationships

between two protection domains can be divided into two broad categories|trust

for security and trust for integrity. These categories are analogous to the two

principal models of non-discretionary access control|the Bell and LaPadula se-

curity model [14] and the Biba integrity model [18]. To trust a domain for secu-

rity means that you trust the domain not to release information to unauthorized

recipients. To trust a domain for integrity means that you trust the domain to

not improperly modify or sabotage data structures that you may make available

to the domain.

The calling domain and the called domain may trust each other for any di�er-

ent combination of security and integrity. For example, in a normal subroutine

call, the calling and the called domains trust each other for both security and

integrity, so no special protection is required between them. When a user pro-

gram issues a call to the operating system, as with a VAX change-mode-to-kernel

instruction, the caller trusts the operating system for both security and integrity.

However, the operating system does not trust the user's program for either secu-

rity or integrity and must take steps to protect itself. In a fault-tolerant system,

a calling routine may not be worried about unauthorized release of information,

but may be concerned that a called module could malfunction. That is an ex-

ample of trusting for security, but not for integrity. The most severe cases are

Schroeder's mutually-suspicious subsystems [189] in which neither the calling nor

the called domain trusts the other for either security or integrity.

The discussions here about a domain trusting another domain for security

or integrity only refer to trust in a discretionary sense. The register optimiza-

tions proposed in the next section are not su�cient to protect against Trojan

horses in a non-discretionary sense. As discussed in Chapter 7, a pair of calling

and called domains would have to execute at the same non-discretionary access

class, because just the act of calling and returning constitute storage channels,

regardless of what else the domains may do. The optimizations discussed here,

therefore, deal only with security and integrity within a single, non-discretionary

access class.

17.5 Register Optimization Based on Trust

Traditional subroutine calling sequences, such as the VAX procedure calling stan-

dard [106] typically require the called routine to save and restore those registers

that it modi�es. While this strategy is safe, it is far from optimal, since the

called routine may save and restore many values in registers that the calling

routine may never reference again. My optimization strategy divides the register

usage into several categories. Some registers are used to pass arguments to the

called domain. Those argument registers may be used for input only, for both

input and output, or may be used to only return output values. Some registers

165

contain values that the caller wishes preserved across the subroutine call. The

called domain may actually use some of these registers and not others. Finally,

some registers contain values that the caller does not need preserved. In the

optimal case with full mutual trust, the only registers that must be saved and

restored are those that both the calling domain requires be preserved and the

called domain actually modi�es.

Table 17.1 summarizes these classes of registers and shows which registers

must be either loaded with input values, cleared, saved, saved and cleared, or

left untouched as part of the calling sequence. (An entry consisting of just a

dash means the register is untouched during the call.) The minimum amount of

register saving occurs when the calling domain trusts the called domain for both

security and integrity. If the calling domain does not trust the called domain

for integrity, then more registers must be saved. If the calling domain does not

trust the called domain for security, then not only must registers be saved, but

all registers that are not used to pass input parameters must also be cleared to

prevent information leakage.

Returns from a cross-domain call must be analyzed as carefully as the calls.

Table 17.2 shows the treatment of registers for the various cases of trust. The

register categories are di�er from those in Table 17.1, because the only divisions

are between registers that the caller saved and registers the caller did not save.

For argument-passing registers, the scheme assumes that all output registers are

actually assigned values by the called domain.

17.6 Capability-Argument Optimization

Because the most frequently executed cross-domain calls pass either zero or one

capabilities as arguments, SCAP does not use the CAP-I approach of passing an

entire capability segment, but instead allows passing only a single capability. For

most calls, that capability either is null or points to the single argument that must

be passed as a capability. For the much less frequent calls that require more than

one capability argument, then that one capability points to a capability segment

that contains capabilities for the other arguments.

The capability argument is not automatically mapped into the address space

of the called domain. Instead, the called domain must explicitly request that

the capability be mapped, using a MAPARG instruction. This restriction,

compared with the CAP strategy of mapping the calling domain's argument-

passing segment (N-segment) into the called domain's argument-receiving seg-

ment (A-segment), exists to maximize the performance of cross-domain calls that

pass only register arguments. It also improves performance in infrequent cases

where a capability is passed to a domain, solely to be passed on to yet another

domain.

166

Does Caller Trust Callee for

Register Usage Security(S) and Integrity(I)?

S and I S only I only Neither

Argument Registers

Input Arguments Used loaded & loaded & loaded & loaded &

Later by Caller and saved saved saved saved

Modi�ed by Callee

Input Arguments Used loaded loaded & loaded loaded &

Later by Caller and saved saved

not Modi�ed by Callee

Input Arguments not loaded loaded loaded loaded

Used Later by Caller

Output Arguments | | cleared cleared

In/Out Arguments loaded loaded loaded loaded

Non-Argument Registers

Caller Uses Later and saved saved saved & saved &

Modi�ed by Callee cleared cleared

Caller Uses Later and | saved saved & saved &

not Modi�ed by Callee cleared cleared

Other Registers | | cleared cleared

Saved registers will be restored upon Cross-Domain Return.

Registers with entries marked with a dash are untouched.

Table 17.1: Register Usage on Cross-Domain Call

167

Does Callee Trust Caller for

Register Usage Security(S) and Integrity(I)?

S and I S only I only Neither

Output Arguments loaded loaded loaded loaded

In/Out Arguments loaded loaded loaded loaded

Saved by Caller restored restored restored restored

Not Saved by Caller | | cleared cleared

Registers with entries marked with a dash are untouched.

Table 17.2: Register Usage on Cross-Domain Return

The actual mechanics of passing the one capability argument must be care-

fully designed for maximum performance. Colwell [44, Section 3.3.5] found in

the Intel 432 that every cross-domain call had to clear the memory of various

access descriptors. This memory clearing added signi�cantly to the cost of the

432's cross-domain call, and Colwell suggested improving performance by adding

a special memory-clearing primitive [44, Section 5.1.2]. Such a memory-clearing

primitive would still require a certain number of memory cycles to accomplish

the clearing. Not having to clear the memory at all would be a much better

solution.

17.6.1 Avoiding Clearing

Avoiding the need to clear the C-stack is very tricky, because the memory al-

located for the C-stack will be used by many di�erent domains as a process

executes cross-domain call and return instructions. It must be impossible for a

domain to improperly re-use a capability that might have been passed to some

other domain in an earlier call, even though the C-stack frame for the current do-

main occupies the same memory location as that previous call. Always clearing

the C-stack is su�cient to meet this security goal, but at extreme performance

cost.

Imposing certain conventions on the use of the C-stack can eliminate the need

for most clearing. First, all C-stack frames are the same size. No matter how

many registers are pushed in a call, su�cient space is left for all registers. Second,

with the exception of the single capability argument, no user-manipulable data

is stored in the C-stack. Only the cross-domain call and return instructions can

read and write the C-stack frame, and they only reference data that the user

can properly see.

5

Given these assumptions, the SCAP cross-domain call need

5

For example, the cross-domain return instruction only restores those registers that were

actually pushed. See Section 17.7.2 and 17.7.3 for more details.

168

not clear most of the C-stack frame, either on call or return, and thereby saves

a signi�cant number of memory cycles.

The capability-argument �eld in the C-stack remains problematical. The

need for clearing of the capability-argument �eld depends on whether there are

subsequent cross-domain calls from the current domain, and, if there are subse-

quent calls, whether those calls pass capability arguments. Section 17.8 shows

the solution to when to clear the capability argument �eld.

17.6.2 Avoiding Probing

A VAX-based capability architecture could expend signi�cant numbers of cycles

probing the C-stack prior to use, to allow restarting instructions after page faults.

SCAP avoids probing the C-stack by requiring that all pages of the C-stack

for the current process be locked into primary memory when that process is

allowed to run. If any page of the C-stack is found to be inaccessible, then the

processor takes a C-stack-not-valid abort, analogous to the VAX-architecture's

kernel-stack-not-valid abort [138, p. 240], and the operating system terminates

the o�ending process. This restriction is feasible, because the C-stack is totally

under the control of the privileged operating system, and no user programs can

a�ect it. The size of the C-stack can be determined at process-creation time,

and, barring in�nite cross-domain-call-recursion loops, the C-stack should never

be very large. For example, the CAP-I operating system normally limits the size

of the C-stack for a user process to 256 words of 32 bits each.

17.7 Implementing the Optimizations

Implementing the register optimizations for cross-domain calls is not straightfor-

ward. Wall's approach of assigning registers at link time is su�cient for calls in

which the calling and called domains fully trust each other, but a cross-domain

call mechanism must assume that the output of a normal linker could be mali-

ciously modi�ed. The code that actually performs the register saving, clearing,

and restoring must be protected from unauthorized tampering. That code is

generated by a trusted cross-domain linker. There are two alternate implemen-

tation approaches: one using a microcoded cross-domain-call instruction, such

as found in CAP [231], and one using a RISC approach with specially compiled

code sequences for each cross-domain call and return.

17.7.1 Trusted Linker

The trusted cross-domain linker �nds the cross-domain call instructions of the

calling domain. The linker then �nds the called domains, and, based on the

information provided by the compilers of the calling domain and all the called

169

domains, constructs three register masks for each cross-domain call instruction

in the calling domain. These three masks are analogous to the procedure-entry

masks of the VAX CALLx instructions [138, p. 89]. The VAX procedure-entry

mask speci�es which registers must be saved during the call and restored during

the return. By contrast, the three masks for cross-domain calls specify which

registers must be saved during the call and restored during the return, which

registers must be cleared during the call, and which registers must be cleared

during the return. The contents of the masks must be protected from tampering

by both the calling and the called domains. Therefore, the cross-domain call

instruction simply specify a numeric o�set within a protected-linkage table that

contains the masks and the actual location of the target domain.

6

The trusted linker could be run statically, much like conventional linkers, or

it could run dynamically, much like the Multics dynamic linker [168]. Unlike the

Multics linker that Janson [107] removed from the security kernel, the trusted

linker will be very simple, since it need only generate the register masks. (The

trusted linker will do a little more in the RISC case described in Section 17.7.3.)

17.7.2 Microcoded Cross-Domain Call

This section describes one possible microcoded implementation of cross-domain

call and return, as an extension to the VAX architecture. See Appendix D for a

description of the various registers that make up the processor state.

To make a cross-domain call, the calling domain loads the input arguments

into registers, before it issues the cross-domain call instruction. The instruction

takes two operands, the index into a cross-domain linkage table, as generated by

the trusted linker, and a capability to be passed to the new domain. The cross-

domain linkage table is stored at a location speci�ed in the C-stack frame, thus

avoiding the need for a privileged register. To avoid the need for a length check,

the size of the table is �xed at 256 entries so that the index can be speci�ed as

a single byte. This restricts the number of cross-domain call targets that any

single domain can contain, but each domain has its own table.

Each entry in the cross-domain linkage table (shown in Figure 17.1) contains

the three register masks and a pointer to the domain control block (DCB)

7

for

the called domain. The domain control block is analogous to the process resource

list (PRL) entry in CAP-I. The domain control block contains a set of memory-

management registers used to map the called domain into memory and a pointer

to the starting location in the domain. Just as in CAP, the microcode for the

6

Even if a malicious caller deliberately speci�ed an incorrect o�set, no security violation

could occur. All that would happen is that a di�erent, but authorized, cross-domain call would

be executed.

7

The name, domain control block, is used, because of the analogy to the VAX process control

block (PCB).

170

Save/Restore Register Mask

Call Clear Mask

Return Clear Mask

Pointer to Domain Control Block (DCB)

Figure 17.1: Format of Cross-Domain Linkage Table Entry

cross-domain call pushes the necessary linkage information onto the C-stack. The

processor has a new stack-pointer register, called the CSP, to point to the top

of the C-stack. Figure 17.2 shows the format of a frame on the C-stack, and

Figure 17.3 shows the domain control block (DCB). The order of the entries

in the C-stack frame and the DCB is determined by the ease of writing the

microcode to push and pop the values.

Pointer to Callee's Cross-Domain Linkage Table

PME P1LR

P1BR

ASTLVL P0LR

P0BR

PSL

PC

FP through R0

USP

SSP

ESP

KSP

Save/Restore Register Mask

Return Clear Mask

Figure 17.2: Format of C-stack Frame

The microcode for the cross-domain call instruction performs the following

tasks:

1. Use the supplied index into the cross-domain linkage table to locate the

DCB.

2. Push the call frame onto the C-stack, storing only the appropriate registers,

speci�ed in the save/restore mask.

3. Push the save-register mask and the return-clear mask onto the C-stack.

4. Clear the registers speci�ed in the call-clear mask.

171

PSL

PC

PME P1LR

P1BR

ASTLVL P0LR

P0BR

USP

SSP

ESP

KSP

Pointer to Callee's Cross-Domain Linkage Table

Figure 17.3: Format of Domain Control Block (DCB)

5. Load the new values into the memory-management registers from the DCB

of the called domain.

6. Clear the translation bu�er.

7. Transfer control to the start location.

The new domain optionally maps the capability argument into its address

space as a separate operation, and eventually issues a cross-domain return in-

struction, after �rst loading the output argument registers with appropriate val-

ues. The return instruction performs the following steps:

1. Pop the memory-management registers o� the top of the C-stack and load

them.

2. Clear the translation bu�er.

3. Pop the clear-register mask o� the C-stack and clear the appropriate reg-

isters.

4. Pop the save-register mask o� the C-stack and use it to reload the speci�ed

general registers.

5. Perform an REI (return from exception or interrupt) using the PC and

PSL on the top of the C-stack, thus returning to the calling domain.

The performance bene�ts of the microcoded cross-domain-call instruction will

depend heavily on the relative performance match of the processor's cycle time,

the speed of primary memory references (from the cache, if it exists), and the

amount of computation that can be performed in each microinstruction. More

speci�cally, using masks to selectively save and clear registers is a performance

172

bene�t only if the microengine can check the bits in the masks faster than it can

save and clear the registers.

; Assumption is that the stack pointer is in LS[T3] upon entry

;

MOV LS[#E] TO Q ;Set up loop counter

MOV Q TO LS[OS] ; in the operand specifier

MOV LS[#4] TO WR[2] ;Get constant 4 for stack pushes

JSR LOOP ;Start the loop

LOOP: MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG]

SUB WR[2] FROM LS[T3] ;Push the stack pointer

DEC LS[OS], ;Decrement the loop counter

DT(LONG)&SET.ALU.CC ; and set condition codes

WRITE.MEM LS[GPR.OS], ;Write the register value

SKIP.IF[MEM.REF.OK] ; and skip if no error

JSR [WRITE.GPR.OS] ;Jump to error subroutine

CLR LS[GPR.OS], ;Clear the general register

LOOP.IF(NEQ) ; and loop until done

Figure 17.4: Microcode to Save and Clear Registers Unconditionally

Figure 17.4 shows a section of VAX-11/730 microcode which saves and clears

all the general purpose registers unconditionally.

8

Figure 17.5 shows a section

of VAX-11/730 microcode to save and clear only those registers indicated in

masks. The microcode to unconditionally save and clear all the registers is

actually the faster of the two (�ve microinstructions per register versus eight,

assuming all memory references work), because the relative speed of the VAX-

11/730 memory [217] is such that checking the two masks takes longer than

just performing the register pushes and clears. By contrast, it appears that the

VAX-11/780 microengine [219] probably could make e�ective use of the masks,

because it can perform more functions per memory cycle. More interestingly,

it appears that the VAX 8800 processor [74], like the VAX-11/730, would be

unlikely to bene�t from the masks, because it can reference memory faster than

it can test bit masks. The VAX 8800 is pipelined at the microcode level, and its

memory cache has a special bypass path to minimize the e�ects of stalls. This

e�ect is not surprising, since the principal reason [230] for the current success

of RISC processors is the availability of extremely fast primary memories and

cache memories.

8

Appendix E contains a brief introduction to VAX-11/730 microcode.

173

; Assumption is that the stack pointer is in LS[T3]

; WR[0] contains the register save mask

; WR[1] contains the register clear mask

;

MOV LS[#E] TO Q ;Set up loop counter

MOV Q TO LS[OS] ; in the operand specifier

MOV LS[#4] TO WR[2] ;Get constant 4

JSR LOOP ;Start the loop

LOOP: SHL WR[0], ;Check the save mask

DT(LONG)&SET.ALU.CC ; and set condition codes

SUB WR[2] FROM LS[T3] TO Q, ;Decrement stack ptr to Q

JMP.IF(N.CLR) TO CLEAR ; and jump if register

; does not need saving

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;Start writing

MOV Q TO LS[T3] ;Move new stack ptr to T3

WRITE.MEM LS[GPR.OS], ;Write the register value

SKIP.IF[MEM.REF.OK] ; and skip if no error

JSR [WRITE.GPR.OS] ;Jump to error subroutine

CLEAR: SHL WR[1], ;Check the clear mask

DT(LONG)&SET.ALU.CC ; and set condition codes

DEC LS[OS], ;Decrement loop counter,

DT(LONG)&SET.ALU.CC ; set condition codes,

SKIP.IF(N.CLR) ; and skip on clear mask

CLR LS[GPR.OS], ;Clear the register

LOOP.IF(NEQ) ; and loop if not done

NOP, ;Extra loop test, for when

LOOP.IF(NEQ) ; CLR is skipped

Figure 17.5: Microcode to Save and Clear Registers Using Masks

174

17.7.3 RISC Cross-Domain Call

In a RISC implementation, there is no microcode, and cross-domain call and

return must be implemented as a series of simple instructions. Such simple

instructions would each run much faster than complex instructions, and could

be pipelined. Further, the expense of looping through register masks is likely to

be excessive in a RISC implementation. Instead, trusted linker generates a series

of load or store instructions to save or restore precisely the needed registers. The

code sequences replace the cross-domain linkage table used in the microcoded

version in Section 17.7.2. The cross-domain call instruction similarly takes an

operand to identify which call is being made. The operand serves as an index

into a transfer vector to locate the proper code sequence.

User

Mode

Kernel

Mode

CPU

Logic

Domain Boundary

Address-Space

Change

Address-Space

Change

Return

Entry

Code

6

��

��

7

Call

Linkage

Code

?

��

��

2

Call

Entry

Code

6

��

��

3

Return

Linkage

Code

�

��

��

6

Calling

Domain

?

��

��

1

6

��

��

8

Called

Domain

6

��

��

4

?

��

��

5

Figure 17.6: RISC Optimized Cross-Domain Call

The actual mechanism of a cross-domain call, shown in Figure 17.6, follows:

1. The calling domain loads argument values into the registers and executes

a cross-domain call instruction.

175

2. The cross-domain call instruction traps into kernel mode and transfers

control to the call-linkage code generated by the trusted linker. The call-

linkage code pushes the current values of the program counter (PC) and

processor status longword (PSL) onto the C-stack and then executes a

series of stores and clears to push onto the C-stack those registers that

must be saved and to clear those registers that must be cleared. Then,

the call linkage code pushes the address of the return linkage code onto

the C-stack, followed by the current values of the memory-management

registers.

3. Next, the call entry code loads new values into the memory-management

registers from the DCB of the called domain and then clears the translation

bu�er.

4. Finally, the call entry code transfers control to the start location.

Cross-domain return, also shown in Figure 17.6, uses the following algorithm:

5. The called domain loads values into the registers to be used as output

arguments and executes a cross-domain return instruction.

6. The return instruction traps to kernel mode and transfers control to stan-

dard return-linkage code. The standard return linkage code pops the

memory-management registers o� the C-stack, loads them, and clears the

translation bu�er.

7. Next, the return-linkage code pops the address of the return-entry code,

generated by the trusted linker, and transfers to that code to restore or

clear the appropriate registers.

8. Finally, the return-entry code executes an REI (return from exception or

interrupt) using the PC and PSL on the C-stack.

Leonard has suggested [137] one additional optimization that is possible with

assistance from both the compiler and the trusted linker. Instead of clearing

registers during both the cross-domain call and cross-domain return sequences,

the compiler can provide speci�ed values to be loaded into those registers, thereby

saving some instructions in some cases. The values to be loaded are speci�ed in

tables, so that the trusted linker merely loads the speci�ed constant rather than a

zero into the register. The complexity of the trusted linker does not signi�cantly

change by this additional optimization.

176

17.8 Minimizing Argument Clearing

Section 17.6.1 outlined the problem of clearing the capability-argument �eld in

the C-stack frame. The simplest solution would be to incorporate the passing

of the capability as part of the cross-domain call instruction and clear the �eld

on every return. Thus far, however, the cross-domain call instruction does not

depend on capabilities at all. It only needs to reference the general purpose

registers and the memory-mapping registers. It would be highly desirable not

to build knowledge of the capability format into the instruction in either the

microcoded case or the RISC case, because the capability format is relatively

complex and subject to change as the operating system evolves. Further, if the

call instruction always passed the argument, the return instruction would always

have to clear the �eld, and many of those clears would be redundant.

Therefore, SCAP implements capability argument passing with a new tech-

nique, called conditional clearing on return. The cross-domain call instruction

has no knowledge of capabilities at all. It only handles switching address spaces

and optimizing the general-register saving, restoring, and clearing. A location is

reserved in the C-stack frame to hold an optional capability argument. If a call-

ing domain wishes to pass a capability argument, the domain must �rst execute

a PASSARG instruction that copies a speci�ed capability into the argument �eld

in the next C-stack frame, that is, the C-stack frame belonging to the domain

about to be called. The called domain executes a MAPARG instruction to ex-

tract the capability from the C-stack frame and loads it into a capability segment

slot. PASSARG and MAPARG are both implemented as operating system calls,

since many cross-domain calls do not use them at all. When a called domain re-

turns, the capability argument �eld used in that call is not cleared. In that way,

if the calling domain wishes to make a second call, using the same capability pa-

rameter, no additional memory cycles need be expended. If the calling domain

wishes to make another call and pass a di�erent capability argument, it calls

PASSARG and overwrites the previous capability. If it wishes to make another

call and pass no capability arguments, then the calling domain must explicitly

call PASSARG with a null capability to overwrite the previous capability. In

this way, no unnecessary clearing operations are done.

Eventually, the calling domain must return to its caller, and something must

be done about any capability remaining in the argument �eld. The �eld could

be unconditionally cleared, but that would waste memory cycles if either no calls

had been made or if the last call made had passed no capabilities. Therefore, the

clearing on return is made conditional. A spare bit in the C-stack frame of the

calling procedure is reserved to indicated whether the capability argument �eld

contains a valid capability. The bit should be taken from a spare bit in some

other entry in the C-stack frame that would have to be referenced anyway. In

SCAP, based on the VAX architecture, the clearing-on-return bit replaces one

177

of the bits in the processor status longword (PSL) that must otherwise be zero.

The PSL must be read on every cross-domain return, so no additional memory

cycles are required to check the bit.

The clearing-on-return bit is set to one every time PASSARG is called with

a capability. If PASSARG is called with a null capability, then the bit is cleared.

When the cross-domain return occurs, the bit is checked. If set, the cross-domain

argument �eld is cleared, along with the bit itself. If the bit is clear, then the

return proceeds immediately.

The algorithm just described uses the C-stack frames of the current domain

and the next domain in a complex fashion. Figure 17.7 should clarify how the

frames are used. In the �gure, domain A has called domain B which is currently

executing. B will call C, D, and E, which in turn will call other domains. When

B executes a PASSARG instruction, the capability argument is written into the

frame for C, D, and E, but the bit used for conditional clearing on return is

be written into B's own frame. Note that the same storage locations are used

for the calls to C, D, and E. Likewise, the domains called by C, D, or E will

share the same storage locations. The conditional-clearing-on-return algorithm

ensures that the capability-argument locations in those shared stack frames are

cleared the precise number of times required, and no more.

"!

A

?

Current

Domain

"!

B

�

�

�

�

�

�) ?

P

P

P

P

P

Pq

"!

C

"!

D

"!

E

? ? ?

Other

Domains

"!

"!

"!

C-stack

A's

frame

B's

frame

Frames for

C, D, and E

Frames for

domains called

by C, D, or E

?

growth

Figure 17.7: C-stack Frame Usage

No memory cycles are wasted by clearing the capability-argument �eld only

to immediately store another capability in the �eld. This is achieved by rec-

ognizing that most cross-domain calls require only register arguments, and by

taking advantage that testing a bit in a �eld that must be read and restored

178

is signi�cantly less expensive than the extra memory cycles that unconditional

clearing would require.

The conditional-clearing-on-return strategy just described is for an imple-

mentation of cross-domain call and return using microcode. For a RISC imple-

mentation, there is no need to check a bit in the C-stack frame. Instead, the

trusted linker generates two alternate code sequences to clear or not to clear the

capability-argument �eld. The PASSARG call patches the transfer address in

the trusted linker's area to point to either one code sequence or the other, as

required.

The capability-argument-passing strategy has increased the size of the C-

stack frame from that shown in Figure 17.2. The revised C-stack frame format

is shown in Figure 17.8. The CR bit to implement the conditional-clear-on-

return operation is shown using one of the spare bits in the PSL. This minimizes

memory usage in the frame, but requires that the PASSARG call perform extra

work to set the bit without disturbing the rest of the PSL. Alternatively, the

CR bit could appear in a longword by itself, and PASSARG would require fewer

memory cycles. As memory is getting cheaper, the latter strategy is probably

better.

Pointer to New Cross-Domain Linkage Table

Received Capability Argument

PME P1LR

P1BR

ASTLVL P0LR

P0BR

CR PSL

PC

FP through R0

USP

SSP

ESP

KSP

Save Register Mask

Return Clear Mask

Figure 17.8: Format of Revised C-stack Frame

One may wonder why conditional clear on return is worth implementing, given

that a much larger number of memory cycles are spent saving and restoring the

VAX memory management registers (P0BR, P0LR, P1BR, and P1LR) and the

VAX stack pointers (KSP, ESP, SSP, and USP). In fact, those costs overwhelm

any bene�t from conditional clear on return for a VAX-like processor. In a sim-

pler memory management strategy, however, the bene�ts of conditional clearing

179

on return are signi�cant. This chapter uses the VAX memory management as

an example, so that the design concepts can be more closely related to existing

technology. An ideal implementation would use a single memory-management

register, rather than four, and would not have separate stack pointers for each

protection ring.

17.9 Optimizing With Long Returns

There is a further optimization possible for cross-domain returns. This opti-

mization, called long return by Stroustrup [204] depends on the observation that

many procedures call other procedures as their last operation and, as a result,

several return instructions may be executed sequentially. This type of behaviour

is most frequently found in tail-recursive functions.

9

If the compiler recognizes that the calling procedure will simply return to its

caller after the return of the called procedure, then the compiler can generate

a special kind of cross-domain call that does not save registers and a return

location on the C-stack, but re-uses the frame from the previous domain. When

the called procedure eventually executes its cross-domain return, the return skips

over the intermediate procedure and returns directly to the caller of the calling

procedure. With this optimization, the cost of both the �nal call and return are

signi�cantly reduced.

Opportunities for using long returns can be recognized at the time of com-

piling the calling procedures and need no information about the called routines.

The actual change is to the code of the calling routine to omit unnecessary saves.

The called routine need not know whether it is making a normal return or a long

return, so separate compilation is not a�ected by the optimization. The use of

long returns has particular payo� for cross-domain returns, because even with

all the register-saving optimizations described above, the cross-domain call re-

quires more memory references than a normal call. While long return may save a

memory reference or two in a normal subroutine returns, the use of a long return

in a cross-domain return can save dozens of memory references. The Honeywell

DPS 8 processor implements a form of the long return optimization with the

PCLIMB version of the CLIMB cross-domain call instructions. [64, page 7{88]

Unfortunately, the only published discussion of performance of the DPS 8 proces-

sor [150] does not address the potential performance bene�ts of LTRAD. Indeed,

as of the publication of that paper in 1984, the GCOS 8 operating system for

the DPS 8 processor did not use the non-hierarchic-protection-domain features

of the hardware.

9

Although Stroustrup [204] coined the term long return, the idea had been previously

implemented by Steele [202]. Steele [203, page 6] further suggests that the idea of long returns

had been used much earlier to optimize tail recursion in LISP compilers on the PDP-10 and

even the PDP-1!

180

The long return optimization has no impact on the conditional clearing on

return optimization, described above in Section 17.8. This is because the long

return optimization simply avoids pushing unnecessary C-stack frames in certain

cases. The code to test the bit in the PSL or to transfer to the correct return

code will continue to work correctly in such cases.

17.10 Bene�ts

While a capability-based security kernel for SCAP would probably be quite dif-

ferent from Digital's prototype kernel for VAX processors, the frequency and

types of arguments of cross-domain calls will be similar. (See Appendix G for a

design sketch of a capability-based security kernel.) Thus, if the costs of simple

cross-domain calls with few arguments are minimized, the performance degrada-

tion of domain-structured protection should not be signi�cantly worse than in

a non-domain-structured kernel that implements cross-layer calls with the VAX

CALLx instruction. Chapter 18 shows the measured performance of microcoded

cross-domain calls on the VAX-11/730.

As seen above, the number of arguments that cannot be passed in registers is

small. Further, the di�erent protection domains that make up a security kernel

will trust each other for security and integrity. Domain structuring is a tool

to aid software development, minimize the propagation of errors, and to aid in

the formal veri�cation of the kernel as a whole. The domains are not mutually-

suspicious subsystems, as viewed by Schroeder [189]. The register optimization

thus can be taken from the �rst column of Tables 17.1 and 17.2, where the

calling and the called domains trust each other. Much of the cost for register

saving, clearing, and restoring can be minimized for the most frequently executed

cross-domain calls and returns.

181

182

Chapter 18

Cross-Domain-Call Performance

Experiments

Each cross-domain-call experiment ran stand-alone on the VAX-11/730. No

operating system or user programs were present. The experiments were driven

by a testing program written in VAX PL/I

1

, with selected subroutines in VAX

MACRO.

Each experiment had a calling domain and a called domain. The calling

domain executed a loop consisting of 10,000 cross-domain calls to the called

domain. The called domain simply executed a cross-domain-return instruction.

This type of experiment measured the cost of the call and return instructions

only. No measurements were made of the cost of translation-bu�er re�lls, as

these would be dependent on operating-system design and on speci�c application

design.

The timings were done with the VAX interval timer that increments once each

microsecond. Immediately prior to starting each experiment, the interval timer

was set to zero and started. Immediately after the last cross-domain return,

the interval timer was read and stopped. Each experiment consisted of 10,000

iterations in order to minimize any measurement skew due to the time required

to read the interval timer. I measured the time required to start the interval

timer at 0 and then immediately read its value to be 81 microseconds.

2

This

value is high, because the VAX-11/730 timers are implemented in the 8085A

console processor, and the communications path to the console processor is quite

slow. Using 10,000 iterations of each experiment eliminates any errors from the

81 microseconds of timing overhead.

This style of timing depends on the use of the full VAX interval timer im-

plementation. VAX subsetting rules [138, p. 287] permit implementation of an

1

The experiments were written in VAX PL/I, because the author was familiar with its use

in a stand-alone environment on a VAX. Many other higher level languages could equally well

have been used.

2

The VAX 8550 can read its timer in 4 microseconds.

183

interval timer that only gives 10-millisecond interrupts. Running these experi-

ments with only the subset timer would have been possible, but more di�cult,

as a clock interrupt handler would have been required. The accuracy of the mea-

surements would not have been a�ected, although increasing to 100,000 iterations

might have been desirable.

Appendix I contains the actual code for certain of the experiments described

in this section. To limit the volume of listings, not all the experiments are

included in the appendix.

18.1 Experimental Results

�seconds

730 730 8550

Test Name Macro �code Macro

1 JSB/RSB 7 N/A 1

2 CALLS/RET saving 0 regs 51 N/A 3

3 CALLS/RET saving 4 regs 60 N/A 3

4 CALLS/RET saving 10 regs 79 N/A 4

5 Cross-Domain Call/Return with 803 N/A 46

SVPCTX and LDPCTX

6 Cross-Domain Call/Return with 1255 N/A 83

handcoded equivalent of SVPCTX

7 Cross-Domain Call/Return saving and 1231 372 80

clearing all regs

8 Cross-Domain Call/Return passing 3 args 1185 347 74

returning 1, saving 4, clearing others

9 Cross-Domain Call/Return passing 3 args 1079 N/A 69

returning 1, saving & clearing none

10 Cross-Domain Call/Return as in 9 plus 960 335 57

skipping ESP, SSP, ASTLVL, PME

11 Cross-Domain Call/Return as in 10 plus 355 112 31

simulating ASNs

Table 18.1: Cross-Domain-Call/Return Performance Results

Table 18.1 shows the timing results of various experiments. Where possible

and meaningful, some of the experiments show implementations of the same de-

sign of cross-domain call and return in both VAX MACRO and in VAX-11/730

microcode. The MACRO numbers are shown for both the VAX-11/730 and for

the VAX 8550. The entries in the table that are marked N/A had no microcode

version. The purpose of doing both implementations is to show the bene�ts

gained by microcoding frequently used complex instructions over software im-

plementation in a machine like the VAX-11/730. All of the timing numbers were

184

measured for 10,000 iterations, but then normalized to 1 iteration. The time for

the loop instruction has not been factored out of any of the numbers.

The �rst four tests measure the cost of the standard VAX subroutine call-

ing instructions. The �rst test measures the Jump-to-Subroutine (JSB) and

Return-from-Subroutine (RSB) instructions, these being the fastest way to call

a subroutine in the VAX architecture. JSB simply pushes the PC onto the stack

and transfers control to the subroutine. RSB pops the PC o� the stack and re-

turns to it. Section I.1 shows the machine code used to measure the performance

of JSB and RSB.

By comparison, the full VAX calling sequence uses the Call-Procedure-with-

Stack-Argument-List (CALLS) and the Return-from-Procedure (RET) instruc-

tions to create stack frames and save from 0 to 10 of the general purpose reg-

isters, based on register masks. As can be seen from the tests, the full VAX

procedure call can easily be much more expensive than a simple call using JSB.

Section 17.7.2 showed how unconditional saving of all the registers could be faster

than selective saving of the registers. In fact, the comments in the microcode

source �les indicate that the VAX-11/730 CALLS instruction was optimized for

space, rather than for speed. By contrast, the VAX 8550 microcode optimizes the

performance of the CALLS and RET instructions, including special optimization

for the case where all ten registers are saved.

3

Test 5 is the �rst test with a true cross-domain call. The test shows a cross-

domain call and return implemented with the VAX

Save Process Context (SVPCTX) and Load Process Context (LDPCTX) instruc-

tions. SVPCTX and LDPCTX are intended for scheduling processes, rather than

cross-domain calls, and are therefore less than ideal. In particular, they always

save and then load all the general-purpose registers, so no register arguments

are possible, and they do not conveniently follow a cross-domain call stack ap-

proach, but save in a location speci�ed in the processor-control-block-base reg-

ister (PCBB). Despite these drawbacks, it is possible to build a cross-domain

call from them, and as the results of tests 6 through 8 show, a microcoded in-

struction that doesn't do quite the right thing is preferable to a series of simpler

instructions that do exactly the right thing, but require many more instruction

decodes. Section I.2 shows the actual code for test 5.

Test 6 shows a cross-domain call and return built out of simple VAX in-

structions that implement an algorithm identical to that in test 5. This shows

that, both for the VAX-11/730 and the VAX 8550, microcoding large complex

sequences of instructions is advantageous if they are executed frequently. Most

of the performance gain of the microcode comes from having to decode only a

single instruction, instead of a large number of instructions.

3

The VAX calling standard never saves more than 10 registers out of the total 16 general

purpose registers, because the remaining six registers are reserved for other purposes.

185

Test 7 is the �rst test that includes both a MACRO version and a microcode

version. This test is a true cross-domain call in which all general registers are

saved on the C-stack and then cleared prior to entering the called domain. The

registers are then all restored on return. Once again, no arguments could be

passed in registers, but the registers are handled e�ciently. The microcode

implementation takes less than half the time of the SVPCTX and LDPCTX

implementation, indicating that optimizing the microcode for the precise task

can give signi�cant performance gains. The code for invoking the microcode

versions of this test (7) and all subsequent microcode tests is shown in Section I.3.

The actual microcode for test 7 is shown in Section I.4.

Test 8 is the �rst test to take advantage of register optimization based on

trust, as de�ned in Section 17.5. This test passes three register arguments on

call and returns one register value on return. Four registers are assumed to

overlap between the calling and the called domains and are therefore saved and

restored. It is assumed that the calling and called domains do not trust one

another, so all non-argument registers are cleared. The microcoded version here

is handcoded to perform exactly those operations, simulating the code that the

trusted linker would generate in a RISC machine implementation. This test and

subsequent tests do not measure the use of register masks, because Section 17.7.2

showed that the use of masks would always be slower than unconditional saving

and restoring on the VAX-11/730.

Test 9 is identical to test 8, except the calling and called domains are assumed

to trust one another. Therefore, register clearing can be avoided. Only the

software version was implemented to show the small but signi�cant performance

gain possible here. The microcode performance should be about midway between

the results obtained for tests 8 and 10.

Test 10 is identical to test 9, except that operations speci�c to the VAX

architecture have been omitted. All tests, thus far, have saved and restored the

executive (ESP) and supervisor (SSP) stack pointers, the ASTLVL register, and

the PME register. A true RISC implementation of SCAP would not include

these registers that are needed only to maintain VAX compatibility. The results

show that another small but signi�cant performance gain is possible by omitting

these registers.

4

Finally, test 11 simulates the behaviour of a translation bu�er that supports

ASNs. As can be seen, at least one third of the cost of the most highly optimized

cross-domain call is spent in ushing the translation bu�er. This test omits the

ushing, but simulates the time required to load an address space number (ASN)

4

PDP-11 compatibility mode was also going to be omitted in this test, but close exami-

nation revealed that the only savings would be in microcode space, rather than performance.

Compatibility mode is entered by setting a bit in the PSL, and that bit can be tested at the

same time as other bits are tested, so that the normal path through cross-domain call and

return require no extra cycles for compatibility mode.

186

register. While this simulation of ASNs is clearly inaccurate, it does make clear

that translation bu�er ushing is the largest single contributor to the cost of

cross-domain calls.

18.2 Comments on the Performance Results

Several interesting conclusions can be drawn from the performance numbers.

First, the ratio of the most heavily optimized cross-domain call to the CALLS

type of call is a little under 2:1. This says that cross-domain calls could replace

CALLS calls in selected parts of the security kernel without totally destroying

system performance. The ratio to the JSB type of call is not as good|roughly

16:1. If one compares that ratio to the ratios measured on CAP-I by Cook [45,

Section 7.3.2]

5

, things do not look so dismal.

Cook computed a ratio of 114.6:1 comparing a CAP ENTER/RETURN se-

quence to a simple register load instruction. Cook's experiments subtracted out

the cost of the looping instructions, while mine do not, and Cook measured reg-

ister load instructions, rather than simple subroutine calls. The CAP-I has no

exact counterpart to the JSB and RSB instructions, although SREB (subroutine

entry) is similar to JSB. Cook reported times for both the BS (register load) and

TCS (test and count) instructions. By counting the number of microinstructions

used in the CAP-I interpreter to implement SREB, TCS, and BS, I estimated

that the time for a JSB and an RSB would be roughly that of a TCS and a BS.

Using this estimate, if Cook had used my experimental methodology, the ratio

on CAP would have been 31:1, compared to my SCAP ratio of 16:1.

6

This suggests that the SCAP optimization techniques gain a signi�cant im-

provement over the CAP ENTER instruction. Since the CAP ENTER instruc-

tion is simpler and faster than cross-domain call instructions on other capability

machines, this makes my SCAP optimizations all the more signi�cant. How-

ever, Cook's experimental methodology is su�ciently di�erent from mine that

no stronger conclusions should be drawn without much more careful measure-

ments on both processors.

Benchmarks, such as these, must be treated with caution, because their per-

formance on the VAX can be changed by more than a factor of two by very

subtle e�ects. First, the target of the loop instruction that performs the 10,000

iterations must be longword aligned to give the best performance. If the start

5

It is interesting to note that the absolute speeds of the Cambridge CAP computer and

the VAX-11/730 seem to be similar. Of course, CAP was built using early 1970s hardware

technology and commissioned in 1975, while the VAX-11/730 was built in late 1970s technology

and announced in 1982.

6

The 31:1 ratio was computed by taking Cook's instruction times from Table 7.3 in his

dissertation [45]. The ratio of an ENTER + RETURN + TCS instruction to a TCS + BS +

TCS instruction was 240:0 + 2:8 : 2:8 + 2:14 + 2:8 or 31:1.

187

of the loop is not longword aligned, performance can vary by 50% or more. Sec-

ond, the VAX-11/730 uses a direct-mapped translation bu�er as described in

Sections E.2.1 and C.2. As a result, if the pages used by a benchmark all map

to the same location in the TB, the performance results could be thrown o� by

large numbers of TB misses. In one experiment, the page containing the instruc-

tion loop, the page containing the C-stack, and the page containing the data

stack all inadvertently mapped to the same location in the TB. This meant that

every instruction in the benchmark took three TB misses for every time around

the loop! This level of thrashing doubled the time for that experiment, making

the results useless, until I reorganized the benchmark to avoid this inadvertent

addressing clash. As a result, my benchmarks are extremely arti�cial and do not

reect real applications that may have such addressing clashes.

Further, the experiments may not have used the ideal alignments, so changes

in instruction alignment could easily change my performance results in either

direction. These alignment problems occur on all virtual memory machines and

particularly on VAX computers, where instructions may start on arbitrary byte

boundaries. As a result, they make realistic benchmarking a very di�cult task,

and they throw signi�cant doubts on all published benchmarks that try to com-

pare performance between di�erent computer architectures.

The SCAP architecture contains three di�erent optimizations for cross-do-

main calls. The most signi�cant optimization is the use of ASNs in the translation

bu�er. That improvement is the �rst to choose in trying to improve cross-

domain call performance. The next optimization is saving, clearing, and restoring

registers selectively. This optimization has clear performance bene�ts, given the

use of a trusted linker. The third optimization is the conditional clear on return.

This optimization was not broken out in the experiments, because it involves

only avoiding one extra memory write of a capability.

7

Conditional clear-on-

return is clearly less signi�cant than the other two optimizations, but once there

is a trusted linker for generating call and return sequences, conditional clear-

on-return provides an incremental performance improvement at no signi�cant

cost in added complexity. That incremental improvement, when spread over the

millions of cross-domain calls executed per day, will become visible.

7

It could be two writes, if capabilities are larger than the unit of memory transfer.

188

Chapter 19

Real-Time Issues

This chapter presents a design for interrupt handling in SCAP. The design is

based on the way the VAX handles interrupts. The primary goals are to support

very small interrupt handlers that respond very quickly and to support more

complex interrupt handlers that may cross domain boundaries while handling an

interrupt.

19.1 Idealized Interrupt Handling

Ideally, each interrupt would be handled by a full-edged domain with its own

address space. The processor would have a list of enter capabilities, one for each

possible interrupt, and, upon receipt of an interrupt, the processor's interrupt

priority level would be raised and a cross-domain call executed using the appro-

priate enter capability. Thus, the list of enter capabilities would be analogous to

the System Control Block (SCB) of the VAX architecture.

The drawback of this idealized interrupt strategy is that the time needed to

actually schedule an interrupt handler may be lengthy, and it is often crucial

to handle an interrupt before the data associated with that interrupt is lost.

Flight-control software and nuclear-reactor-control software are examples where

real-time response is crucial. Rapid response to interrupts also can be important

in a time-shared environment to maximize overall system throughput and to keep

I/O devices busy.

Performing a cross-domain call requires saving and restoring the contents of

many processor registers. Because interrupts may occur at any time, no assump-

tions can be made about what registers are in use at the time of an interrupt.

Saving all the registers in a modern CPU can require a large number of memory

cycles, quite adversely a�ecting the interrupt-latency time. Of course, a trusted

interrupt handler might only save the registers that it actually intends to use.

One technique to reduce the interrupt latency is to dedicate a special set of

registers to be used only by interrupt handlers. When the interrupt occurs, the

processor simply switches to the alternate set of registers, leaving undisturbed

189

the registers of the currently running job.

1

A machine with multiple interrupt

priority levels, such as the VAX (See Section D.6.), would need a set of registers

for at least the highest priority levels. Lower priority levels could save and restore

the registers they use, as is currently done for all priority levels.

19.2 SCAP Hardware Interrupt Handling

The hardware of SCAP handles interrupts just as the VAX does. There will be 32

interrupt priority levels (IPLs) numbered from 0 (lowest) to 31 (highest). When

an interrupt occurs, the processor raises its IPL to the level of the interrupt,

fetches the appropriate vector from the System Control Block (SCB), switches

to the interrupt stack if speci�ed in the vector, and transfers control to the

speci�ed address in kernel mode. The code that runs in the interrupt handlers

speci�ed in the SCB is intended to be quite short and simple. The code might

perform simple tasks, such as updating the clock or echoing characters, but any

more complex tasks should be handled in a separate domain. The bu�ers used by

the interrupt routines are protected from normal user code, by being accessible

only in kernel mode. The interrupt handers will e�ectively execute in a common

domain and will have to trust one another. Since the interrupt handlers will

have to be part of the security kernel, this seems an e�ective tradeo� of least

privilege for improved performance. As soon as the interrupt handler issues a

cross-domain call, as described below in Section 19.3, the domain separation will

be reinstated.

This simple approach to interrupt handling is very di�erent from the waymost

previous capability systems have handled interrupts. I have chosen this approach

to support real-time computations that may require very small interrupt-latency

times. Appendix F summarizes how other capability systems have dealt with

the interrupt handling problem.

19.3 Cross-Domain Calls at Elevated IPL

SCAP permits cross-domain calls at elevated IPLs, but only to domains that

are part of the security kernel. The VAX architecture, described briey in Ap-

pendix D, uses an interrupt stack to provide a unique per-processor context to

handle interrupts, regardless of what other software may be running at the time

of the interrupt. This unique context allows the scheduler to switch to some

other process as a result of the interrupt, without losing the kernel-stack context

of the process that was running at the time of the interrupt.

1

The Ferranti Atlas computer [127] dedicated 9 out of 128 index registers (called B{lines)

for the exclusive use of interrupt handlers. Although other programs were free to use the

registers, the contents of the registers could change during any interrupt.

190

For SCAP, the IPL value will be preserved across the call, but the called

domain will run on its own stack, rather than either the interrupt stack or the

stack of the caller. Only code in the interrupt handlers pointed to by the SCB

will run on the interrupt stack.

Likewise, SCAP must provide an interrupt C-stack (or IC-stack) to allow

cross-domain calls out of an interrupt handler, without interfering with the C-

stack of the job that is running at the time of the interrupt. A domain called at

elevated IPL may further raise and then lower IPL, but it must not lower IPL

below the base level at which it was called. Lowering IPL below the base level

must be forbidden to avoid incorrect stacking of device interrupts. (See [138,

Chapter 5, page 229] for more details.)

For simplicity, a domain that raises IPL is required to lower IPL to the

previous level before executing a cross-domain return instruction. The cross-

domain return will check that the IPLs of the returning domain and of the

domain to which it returns are identical. If the IPLs are not identical, then the

instruction will take a reserved-operand fault. The cross-domain return could

just restore the IPL of the domain to which the return is happening. However,

this would needlessly complicate the instruction by requiring that it check for

interrupts at intermediate IPL levels, just as the MTPR (Move to Processor

Register) to IPL and REI (Return from Exception or Interrupt) instructions

do. Since most cross-domain returns will be at matching IPLs, requiring the

execution of an extra MTPR if they do not will result in a simpler cross-domain

return instruction and better performance for most cross-domain returns.

19.4 Software Interrupts and ASTs

The REI and cross-domain-return instructions in SCAP check for pending soft-

ware interrupts, just as in the VAX architecture. Software interrupts are vectored

to handlers in the system-wide context, just as any other interrupts would be.

Asynchronous system traps (ASTs), however, are constructs speci�c to pro-

tection-ring architectures. Their �rst purpose is to signal asynchronous events

that cannot be handled currently, but should be handled prior to returning to

a less privileged protection ring. This need was �rst recognized in the Multics

protection-ring architecture [192] that provides a ring-alarm register that can be

used to request a fault prior to returning to a less privileged protection ring.

The VAX ASTLVL register is a direct analog of the Multics ring-alarm register.

Because there is no direct mapping of the ring-alarm concept to a non-hierarchic

domain system, SCAP will not check for ASTs during cross-domain calls or re-

turns. The REI instruction will continue to check for ASTs, so that any code

within a single domain that uses the protection rings will continue to work cor-

rectly. Such code would exist only if SCAP were to provide a virtual-machine

191

environment for compatibility with existing VAX operating systems, as discussed

in Section H.3.

The second purpose of ASTs, as used in the VAX/VMS operating system, is

to simulate multi-tasking within the context of a single process [221, Chapter 5]

by requesting that an AST be associated with an asynchronous event. When the

event in question occurs and the process enters the operating system to await

any event at all, the AST occurs and code can be executed to handle the event.

This second purpose for ASTs is a reection of the lack of light-weight processes

in the VAX/VMS operating system.

2

A much less complex way to handle an

asynchronous event is to schedule a light-weight process to wait for the event.

SCAP processes, as de�ned in Section 6.1.2, are speci�cally designed to be cheap

enough to dedicate one to every possible asynchronous event. Therefore, the

SCAP operating system will have no need for ASTs for either returning across

domain boundaries or for handing asynchronous events.

19.5 Operation of the Scheduler

To illustrate the use of the C-stack and IC-stack in interrupt handling, this

section presents two examples of how a job might enter the scheduler, either

as the result of an interrupt (from I/O completion or expiration of a scheduler

quantum) or as the result of an explicit request to wait for some event.

19.5.1 Scheduling Due to Interrupts

Assume that a user job is running and has a chain of cross-domain calls nested

on its C-stack. An interrupt occurs, either due to I/O completion or due to a

timer runout, reecting the end of the job's time slice.

When the interrupt occurs, the processor behaves exactly as a normal VAX

CPU. The current mode is switched to kernel, the PSL (processor status long-

word) is marked for the interrupt stack, and the stack pointer is saved and

replaced by the value of the interrupt stack pointer (ISP).

3

The program counter

(PC) is loaded from the value in the appropriate vector in the System Control

Block (SCB). To improve interrupt response, the interrupt-handler code must

be mapped into the address space of every domain at the same location. Those

pages will be mapped only for kernel-mode access, to prevent tampering. Note

that the VAX architecture's concept of system space does this form of universal

mapping, but not just for interrupt handlers.

2

Multics had an analogous mechanism, called interprocess signals (IPS), to deal with the

same problem of multi-tasking in an single, expensive process.

3

Actually, switching to the interrupt stack is controlled by a bit in the vector in the System

Control Block.

192

The code of the interrupt handler stores any data associated with the in-

terrupt, and for this example, decides that it must invoke the scheduler.

4

The

interrupt handler does a special cross-domain call to the scheduler. The special

call saves the state of the current domain on the C-stack of the current job, but

then switches to the IC-stack before entering the called domain.

5

The sched-

uler domain performs whatever functions are required to select the next process

to run, possibly including saving the entire process state. The scheduler then

switches to the C-stack of the new job and does a cross-domain return to restore

the state of the domain of the new job. Note that by switching to the IC-stack,

the interrupt handler may call any series of domains before the scheduler do-

main is actually invoked to switch jobs. Of course, when the �nal cross-domain

return is executed on the IC-stack, the instruction will have to switch back to

the C-stack, based on a ag in the IC-stack frame.

19.5.2 Scheduling Due to Explicit Calls

The scheduler can also be entered by an explicit cross-domain call to wait for

some event. In this case, the scheduler itself would issue the special cross-domain

call that would save the state of the current job on the C-stack and switch to the

IC-stack. Once on the IC-stack, the scheduler would operate in the same way as

for the case of entry on interrupt.

19.6 Summary of Stack Usage

To summarize the stack usage in SCAP, each domain will have a stack corre-

sponding to each of the access modes. On a modi�ed VAX, there would be four

stacks, one each for kernel, executive, supervisor, and user modes. On a RISC

processor, there would be only kernel and user modes. Each job will have a

C-stack to record cross-domain activations. For each processor, there will be

an interrupt stack for use only in interrupt handlers and an interrupt C-stack

(IC-stack) to record cross-domain activations from interrupt handlers.

4

For simplicity, this example has ignored the distinctions between hardware and software

interrupt priority levels. In fact, the hardware interrupt handler would simply store some

data, request a software interrupt at lower IPL, and do an REI instruction. Later, the software

interrupt handler would actually invoke the scheduler, after allowing other hardware interrupts

to be handled.

5

Entering the scheduler from an interrupt handler is a very frequent event in most operating

systems. Additional specialized optimizations may be required here. These optimizations will

be dependent on the precise implementation of the scheduler.

193

19.7 Real-Time Processing

This chapter has discussed various techniques for reducing interrupt-latency

times, yet still allowing cross-domain calls in interrupt handlers. Actually sup-

porting real-time applications requires much more than just good interrupt-

latency times. Low-overhead paths through the scheduler and other critical

parts of the operating system, direct control over main-memory residence, and

many other factors all contribute to a good real-time system. Achieving all of

these goals within a capability-based operating system is a research topic outside

the scope of this dissertation. SCAP is designed to improve the performance of

capability systems, but it cannot claim to provide full real-time solutions.

194

Chapter 20

Conclusions

20.1 Major Research Results

This dissertation contains several signi�cant research results about the design

of capability systems that are more secure and provide better performance than

existing capability designs.

The most signi�cant result is that highly-secure capability systems can be

constructed from conventional computer systems. The principal hardware re-

quirements are a large virtual address space and good support in the virtual-

address-translation hardware for rapid and frequent changes of address space.

Highly specialized hardware and microcode for supporting capabilities are

likely to make the system slower and make security veri�cation more di�cult.

The strong arguments for hardware support for capabilities came from systems,

such as Hydra [238] and CAL [130], that did not have either large virtual address

spaces or good ways to switch address spaces quickly.

Application of good compiler optimization techniques can eliminate the need

for the typical hardware capability features, such as memory tagging and seg-

ment-bounds checking. This dissertation describes cross-domain-call optimiza-

tion techniques, using a trusted linker, that signi�cantly improve the context-

switching performance with no hardware support required beyond address space

numbers in the translation bu�er.

The second major result is that programming generality can easily become

a performance trap. A security system must be designed to meet the actual

requirements, rather than to conform to abstract standards of elegance. It is

better to make security boundaries explicitly visible to the programmers, so

that they can design for the performance limitations, rather than make security

completely transparent and end up with unacceptably bad performance.

Third, there is a resolution to the long-standing debate between advocates

of access-control-list systems and capability systems. By changing the de�nition

of a capability from necessary and su�cient to gain access to only necessary to

gain access, the new secure capabilities can be used to solve the con�nement

195

problem and the traceability-of-access problem and to better implement imme-

diate revocation. These problems, for which capability systems were frequently

criticized, can be solved without giving up the major advantages of capabilities

for constructing small domains of protection for use as abstract type managers.

20.2 Problem Resolution

It is important to recognize that not all the problems raised in this dissertation

have been solved. While many have been solved, others remain and may well be

unsolvable.

For example, e�ective security enforcement cannot be achieved at no cost

in performance. The cost of changing protection domains will always be higher

than that of remaining in the same protection domain. This dissertation proposes

several ways to reduce that cost and to make that cost tolerable, compared to

the bene�ts gained.

Likewise, complete software compatibility can only be achieved at some cost

in either performance or security e�ectiveness, or both. Many existing operat-

ing systems have features that are inherently insecurable, and maintaining full

compatibility with such features is impossible in a highly secure system. Main-

taining full compatibility with certain software features may have a very high

cost in performance. In such cases, engineering trade-o�s will be required to

achieve a capability system that can be commercially successful.

20.3 The Next Step

This dissertation has developed the basic SCAP architecture and has shown

prototypical performance results for some of its key components. There is still

much research and development needed before SCAP can be considered a proven

technology. In particular, the issues of software compatibility between the models

of conventional operating systems and the capability, object-orientedmodels have

not been resolved. Appendix H suggests techniques for achieving at least some

compatibility.

The next step to take is the construction of a domain-structured security

kernel to run on either a RISC processor or on a VAX processor with higher

performance than the VAX-11/730. Unlike previous security kernel development

projects, however, the development of the SCAP kernel must include develop-

ment of compiler and linker tools, such as those described in Chapter 17 to

gain the necessary level of performance. New programming languages are not

required, but the code generation and linkage conventions must be specially tai-

lored to make context switching as fast as possible.

196

References

[1] R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L. Konigsford, S. Tukubo, and

D. A. Webb. Security Analysis and Enhancements of Computer Operating

Systems. NBSIR 76-1041, The RISOS Project, Lawrence Livermore Lab-

oratory, Livermore, CA, USA, April 1976. Published by the Institute for

Computer Sciences and Technology, National Bureau of Standards, Wash-

ington, DC, USA.

[2] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard

Rashid, Avadis Tevanian, and Michael Young. Mach: a new kernel foun-

dation for UNIX development. In Proceedings of Summer USENIX, July

1986.

[3] W. B. Ackerman and W. W. Plummer. An implementation of a multi-

processing computer system. In Proceedings of the ACM Symposium on

Operating Systems Principles, Gatlinburg, TN, USA, October 1967.

[4] Katherine Addison, Larry Baron, Mark Copple, Don Cragun, Keith Hos-

pers, Patricia Jordan, Mikel Lechner, Michael Manley, and Case Schauer.

Computer security at Sun Microsystems, Inc. In Proceedings of the 10

th

National Computer Security Conference, pages 216{219, National Bureau

of Standards, Gaithersburg, MD, USA, 21{24 September 1987.

[5] @

0

. Computer recreations. Software|Practice and Experience, 1(2):201{

204, April|June 1971.

[6] James P. Anderson. Computer Security Technology Planning Study. Tech-

nical Report ESD{TR{73{51, Vols. I and II, James P. Anderson and Co.,

Fort Washington, PA, USA, HQ Electronic Systems Division, Hanscom

AFB, MA, USA, October 1972.

[7] M. Anderson, R. D. Pose, and C. S. Wallace. A password-capability sys-

tem. The Computer Journal, 29(1):1{8, February 1986.

[8] Poul Anderson. Sam Hall. Astounding Science Fiction, 51(6):9+, August

1953. Reprinted in Isaac Asimov, Martin H. Greenberg, and Charles G.

Waugh, editors, Computer Crimes and Capers, pages 144{172, Academy

Chicago Publishers, Chicago, IL, USA, 1983.

197

[9] James Archibald and Jean-Loup Baer. Cache coherence protocols: eval-

uation using a multiprocessor simulation model. ACM Transactions on

Computer Systems, 4(4):273{298, November 1986.

[10] C. Richard Attanasio, Peter W. Markstein, and Ray J. Phillips. Pene-

trating an operating system: a study of VM/370 integrity. IBM Systems

Journal, 15(1):102{116, 1976.

[11]

�

Ozap Babao�glu and William Joy. Converting a swap-based system to do

paging in an architecture lacking page referenced bits. Operating Systems

Review, 15(5):78{86, December 1981. Proceedings of the Eighth Sym-

posium on Operating Systems Principles, Asilomar Conference Grounds,

Paci�c Grove, CA, USA, 14{16 December 1981.

[12] D. W. Barron, A. G. Fraser, D. F. Hartley, B. Landy, and R. M. Needham.

File handling at Cambridge University. In AFIPS Conference Proceed-

ings, Volume 30, 1967 Spring Joint Computer Conference, pages 163{167,

Thompson Books, Washington, DC, USA, 1967.

[13] D. E. Bell, R. S. Fiske, M. Gasser, and P. S. Tasker. Secure On{Line

Processing Technology|Final Report. Technical Report ESD{TR{74{186,

The MITRE Corporation, Bedford, MA, USA, HQ Electronic Systems Di-

vision, Hanscom AFB, MA, USA, August 1974.

[14] David E. Bell and Leonard J. LaPadula. Computer Security Model: Uni�ed

Exposition and Multics Interpretation. Technical Report ESD{TR{75{306,

The MITRE Corporation, Bedford, MA, USA, HQ Electronic Systems Di-

vision, Hanscom AFB, MA, USA, June 1975.

[15] David E. Bell and Leonard J. LaPadula. Secure Computer Systems: Math-

ematical Foundations. Technical Report ESD{TR{73{278, Vol. I, The

MITRE Corporation, Bedford, MA, USA, HQ Electronic Systems Divi-

sion, Hanscom AFB, MA, USA, November 1973.

[16] David E. Bell and Leonard J. LaPadula. Secure Computer Systems: A

Mathematical Model. Technical Report ESD{TR{73{278, Vol. II, The

MITRE Corporation, Bedford, MA, USA, HQ Electronic Systems Divi-

sion, Hanscom AFB, MA, USA, November 1973.

[17] David E. Bell. Secure Computer Systems: A Re�nement of the Mathemat-

ical Model. Technical Report ESD{TR{73{278, Vol. III, The MITRE Cor-

poration, Bedford, MA, USA, HQ Electronic Systems Division, Hanscom

AFB, MA, USA, April 1974.

[18] Kenneth J. Biba. Integrity Considerations for Secure Computer Systems.

Technical Report ESD{TR{76{372, The MITRE Corporation, Bedford,

MA, USA, HQ Electronic Systems Division, Hanscom AFB, MA, USA,

April 1977.

198

[19] Joel S. Birnbaum and William S. Worley, Jr. Beyond RISC: high-precision

architecture. Hewlett-Packard Journal, 36(8):4{10, August 1985. Also

published in Digest of Papers, Compcon Spring 86, IEEE Computer Soci-

ety, San Francisco, CA, USA, 3{6 March 1986, pages 40{47.

[20] Andrew D. Birrell. System Programming in a High Level Language. Ph.

D. dissertation, Technical Report No. 6, Computer Laboratory, University

of Cambridge, Cambridge, England, December 1977.

[21] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote proce-

dure calls. ACM Transactions on Computer Systems, 2(1):39{59, February

1984.

[22] Peter B. Bishop. Computer Systems with a Very Large Address Space and

Garbage Collection. Ph. D. thesis, Department of Electrical Engineering

and Computer Science, MIT/LCS/TR{178, Laboratory for Computer Sci-

ence, Massachusetts Institute of Technology, Cambridge, MA, USA, May

1977.

[23] Steven Blotcky, Kevin Lynch, and Steven Lipner. SE/VMS: implementing

mandatory security in VAX/VMS. In Proceedings of the 9

th

National Com-

puter Security Conference, pages 47{54, National Bureau of Standards,

Gaithersburg, MD, USA, 15{18 September 1986.

[24] W. E. Boebert. On the inability of an unmodi�ed capability machine to

enforce the

*

{property. In Proceedings of the 7

th

DoD/NBS Computer Se-

curity Conference, pages 291{293, National Bureau of Standards, Gaithers-

burg, MD, USA, 24{26 September 1984.

[25] W. E. Boebert and C. T. Ferguson. A partial solution to the discretionary

Trojan horse problem. In Proceedings of the 8

th

National Computer Secu-

rity Conference, pages 141{144, National Bureau of Standards, Gaithers-

burg, MD, USA, 30 September { 3 October 1985.

[26] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical in-

tegrity policies. In Proceedings of the 8

th

National Computer Security Con-

ference, pages 18{27, National Bureau of Standards, Gaithersburg, MD,

USA, 30 September { 3 October 1985.

[27] W. E. Boebert, R. Y. Kain, and W. D. Young. Secure computing: the

Secure Ada Target approach. Scienti�c Honeyweller, 6(2):1{27, July 1985.

[28] W. E. Boebert, W. D. Young, R. Y. Kain, and S. A. Hansohn. Secure

Ada target: issues, system design, and veri�cation. In Proceedings of the

1985 Symposium on Security and Privacy, pages 176{183, IEEE Computer

Society, Oakland, CA, USA, 22{24 April 1985.

[29] Richard G. Bratt, Gerald F. Clancy, Craig J. Mundie, Stephen I. Schleimer,

and Steven J. Wallach. Data Processing System Having a Memory Using

199

Object-Based Information and a Protection Scheme for Determining Access

Rights to Such Information. United States Patent No. 4,525,780, 25 June

1985.

[30] Thierry Breton and Denis Beneich. Softwar. Futura Publications, a divi-

sion of Macdonald & Co., London, England, 1987. Mark Howson, English

translator. Originally published by Editions Robert La�ont S. A., Paris,

France, 1984.

[31] B. R. S. Buckingham. The SWARD Command Language (CL/SWARD).

Technical Report TR-73-011, IBM Systems Research Institute, New York,

NY, February 1981.

[32] Steve Bunch. The SETUID feature in UNIX and security. In Proceedings of

the 10

th

National Computer Security Conference, pages 245{253, National

Bureau of Standards, Gaithersburg, MD, USA, 21{24 September 1987.

[33] Brian Case. 32-bit microprocessor opens system bottlenecks. Computer

Design, 26(7):79{86, 1 April 1987.

[34] G. J. Chaitin. Register allocation & spilling via graph coloring. SIGPLAN

Notices, 17(6):98{105, June 1982. Proceedings of the SIGPLAN'82 Sym-

posium on Compiler Construction, Boston, MA, USA, 23{25 June 1982.

[35] Albert Chang and Mark F. Mergen. 801 storage: architecture and pro-

gramming. ACM Transactions on Computer Systems, 6(1):28{50, Febru-

ary 1988.

[36] Maureen Harris Chehyl, Morrie Gasser, George A. Hu�, and Jonathan K.

Millen. Verifying security. ACM Computing Surveys, 13(3):279{339,

September 1981.

[37] Frederick Chow and John Hennessy. Register allocation by priority-based

coloring. SIGPLAN Notices, 19(6):222{232, June 1984. Proceedings of

the ACM SIGPLAN'84 Symposium on Compiler Construction, Montreal,

Quebec, Canada, 17{22 June 1984.

[38] David D. Clark. Ancillary Reports: Kernel Design Project. Technical

Memorandum MIT/LCS/TM{87, Laboratory for Computer Science, Mas-

sachusetts Institute of Technology, Cambridge, MA, USA, June 1977.

[39] David D. Clark, Robert M. Graham, Jerome H. Saltzer, and Michael D.

Schroeder. The Classroom Information and Computing Service. Project

MAC TR{80, Massachusetts Institute of Technology, Cambridge, MA,

USA, 11 January 1971.

[40] David D. Clark and David R. Wilson. A comparison of commercial and

military computer security policies. In Proceedings of the 1987 IEEE Sym-

posium on Security and Privacy, pages 184{194, IEEE Computer Society,

Oakland, CA, USA, 27{29 April 1987.

200

[41] Douglas W. Clark and Joel S. Emer. Performance of the VAX-11/780

translation bu�er: simulation and measurement. ACM Transactions on

Computer Systems, 3(1):31{62, February 1985.

[42] CLIPPER 32-Bit Microprocessor: User's Manual. Prentice-Hall, Inc., En-

glewood Cli�s, NJ, USA, 1987.

[43] Fred Cohen. Computer viruses|theory and experiments. In Proceedings of

the 7

th

DoD/NBS Computer Security Conference, pages 240{263, National

Bureau of Standards, Gaithersburg, MD, USA, 24{26 September 1984.

[44] Robert P. Colwell. The Performance E�ects of Functional Migration and

Architectural Complexity in Object-Oriented Systems. Ph. D. thesis, De-

partment of Computer Science, CMU-CS-85-159, Carnegie-Mellon Univer-

sity, Pittsburgh, PA, USA, August 1985.

[45] Douglas John Cook. The Evaluation of a Protection System. Ph. D. disser-

tation, Computer Laboratory Technical Report No. 9, University of Cam-

bridge, Cambridge, England, April 1978.

[46] Hugo Cornwall. The Hacker's Handbook. Century Communications, Ltd.,

London, England, 1985.

[47] Hugo Cornwall. Hacker's Handbook III. Century Hutchinson, Ltd., Lon-

don, England, 1988.

[48] D. C. Cosserat. A capability oriented multi-processor system for real-time

applications. In Proceedings of the International Conference on Computer

Communications, pages 282{289, Washington, DC, USA, 24{26 October

1972.

[49] R. C. Daley and P. G. Neumann. A general-purpose �le system for sec-

ondary storage. In AFIPS Conference Proceedings, Volume 27, Part I,

1965 Fall Joint Computer Conference, pages 213{229, Spartan Books,

Washington, DC, USA, 1965.

[50] C. J. Date. An Introduction to Database Systems. Volume I, Addison-

Wesley Publishing Company, Reading, MA, USA, fourth edition, 1986.

[51] C. J. Date. An Introduction to Database Systems. Volume II, Addison-

Wesley Publishing Company, Reading, MA, USA, 1983.

[52] L. DeLashmutt. Trusted computing research at Data General Corpora-

tion. In Proceedings of the Fourth Seminar on the DoD Computer Security

Initiative, pages J{1 { J{21, National Bureau of Standards, Gaithersburg,

MD, USA, 10{12 August 1981.

[53] Carl Nigel Robert Dellar. The Distribution of Operating System Functions.

Ph. D. dissertation, Computer Laboratory, University of Cambridge, Cam-

bridge, England, September 1980.

201

[54] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social pro-

cesses and proofs of theorems and programs. Communications of the ACM,

22(5):271{280, May 1979.

[55] M. DeMoney, J. Moore, and J. Mashey. Operating system support on

a RISC. In Digest of Papers, Compcon Spring 86, pages 138{143, IEEE

Computer Society, San Francisco, CA, USA, 3{6 March 1986.

[56] Dorothy E. Denning. A lattice model of secure information ow. Commu-

nications of the ACM, 19(5):236{243, May 1976.

[57] Jack B. Dennis. Programming generality, parallelism and computer archi-

tecture. In IFIP Congress 68, Booklet C, Software 2, pages C1{C7, North

Holland Publishing Company, Amsterdam, The Netherlands, August 1968.

[58] Jack B. Dennis and Earl C. Van Horn. Programming semantics for mul-

tiprogrammed computations. Communications of the ACM, 9(3):143{155,

March 1966.

[59] Department of Defense Trusted Computer System Evaluation Criteria.

DOD 5200.28-STD, Department of Defense, Washington, DC, USA, De-

cember 1985.

[60] Yvo Desmedt. Is there an ultimate use of cryptography? In Andrew M.

Odlyzko, editor, Advances in Cryptology|CRYPTO '86, pages 459{463,

Springer-Verlag, Berlin, 1987. Lecture Notes in Computer Science, Volume

263.

[61] Daniel W. Dobberpuhl, Robert M. Supnik, and Richard T. Witek. The

MicroVAX 78032 chip, a 32-bit microprocessor. Digital Technical Journal,

(2):12{23, March 1986.

[62] R. W. Doran. Computer Architecture: A Structured Approach. Academic

Press, London, England, 1979.

[63] Deborah D. Downs, Jerzy R. Rub, Kenneth C. Kung, and Carole S. Jordan.

Issues in discretionary access control. In Proceedings of the 1985 Sympo-

sium on Security and Privacy, pages 208{218, IEEE Computer Society,

Oakland, CA, USA, 22{24 April 1985.

[64] DPS 8 & DPS 88 Assembly Instructions. Order Number DH03-01, Hon-

eywell Information Systems Inc., Waltham, MA, USA, June 1984.

[65] D. M. England. Architectural features of system 250. In Operating Sys-

tems: Infotech State of the Art Report 14, pages 395{427, Infotech Infor-

mation Ltd., Maindenhead, England, 1972.

[66] Deborah Lynn Estrin. Access to Inter-Organization Computer Networks.

Ph. D. thesis, Department of Electrical Engineering and Computer Science,

MIT/LCS/TR{345, Laboratory for Computer Science, Massachusetts In-

stitute of Technology, Cambridge, MA, USA, August 1985.

202

[67] R. S. Fabry. Capability-based addressing. Communications of the ACM,

17(7):403{412, July 1974.

[68] R. J. Feiertag and E. I. Organick. The Multics input/output system. Oper-

ating Systems Review, 6(1,2):35{41, June 1972. Proceedings of the Third

Symposium on Operating Systems Principles, Stanford University, Palo

Alto, CA, 18{20 October 1971.

[69] Eduardo B. Fern�andez, Rita C. Summers, and Christopher Wood.

Database Security and Integrity. Addison-Wesley Publishing Company,

Reading, MA, USA, 1981.

[70] Harry C. Forsdick and David P. Reed. Patterns of security violations:

multiple references to arguments. In David D. Clark, editor, Ancillary Re-

ports: Kernel Design Project, pages 34{49, MIT/LCS/TM-87, Laboratory

for Computer Science, Massachusetts Institute of Technology, Cambridge,

MA, USA, June 1977.

[71] Tryggve Fossum, James B. McElroy, and William English. An overview of

the VAX 8600 system. Digital Technical Journal, (1):8{23, August 1985.

[72] J. M. Foster, I. F. Currie, and P. W. Edwards. Flex: A Working Computer

with an Architecture Based on Procedure Values. RSRE Memorandum

No. 3500, Royal Signals & Radar Establishment, Malvern, England, July

1982.

[73] A. G. Fraser. User control in a multi-access system. The Computer Jour-

nal, 11(1):12{16, 1968.

[74] John Fu, James B. Keller, and Kenneth J. Haduch. Aspects of the

VAX 8800 C box design. Digital Technical Journal, (4):41{51, February

1987.

[75] GEC 41XX Series Nucleus. DD1622, Issue 2, GEC Computers Limited,

Borehamwood, Herts, England, August 1983.

[76] Edward F. Gehringer. Capability Architectures and Small Objects. UMI

Research Press, Ann Arbor, MI, USA, 1982.

[77] Edward F. Gehringer and Robert P. Colwell. Fast object-oriented pro-

cedure calls: lessons from the Intel 432. Computer Architecture News,

14(2):92{101, June 1986. The 13th Annual International Symposium on

Computer Architecture Conference Proceedings, Tokyo, Japan, 2{5 June

1986.

[78] C. G. Girling. Object representation on a heterogeneous network. Operat-

ing Systems Review, 16(4):49{59, October 1982.

203

[79] Virgil D. Gligor, C. S. Chandersekaran, Robert S. Chapman, Leslie J.

Dotterer, Matthew S. Hecht, Wen{Der Jiang, Abhai Johri, Gary L. Luck-

enbaugh, and N. Vasudevan. Design and implementation of secure Xenix.

IEEE Transactions on Software Engineering, SE-13(2):208{221, February

1987.

[80] B. D. Gold, R. R. Linde, R. J. Peeler, M. Schaefer, J. F. Scheid, and P. D.

Ward. A security retro�t of VM/370. In AFIPS Conference Proceedings,

Volume 48, 1979 National Computer Conference, pages 335{344, AFIPS

Press, Montvale, NJ, USA, 1979.

[81] G. Scott Graham and Peter J. Denning. Protection|principles and prac-

tice. In AFIPS Conference Proceedings, Volume 40, 1972 Spring Joint

Computer Conference, pages 417{429, AFIPS Press, Montvale, NJ, USA,

1972.

[82] Frederick T. Grampp and Robert H. Morris. UNIX operating system secu-

rity. AT&T Bell Laboratories Technical Journal, 63(8):1649{1672, October

1984.

[83] J. N. Gray. Notes on data base operating systems. In R. Bayer, R. M.

Graham, and G. Seegm�uller, editors, Operating Systems: An Advanced

Course, chapter 3.F, pages 393{481, Springer-Verlag, Berlin, 1979.

[84] Jerrold M. Grochow. MOO in Multics. Software|Practice and Experience,

2(3):303{304, July|September 1972.

[85] Guide to VAX/VMS File Applications. Order No. A1{Y508B{TE, Digital

Equipment Corporation, Maynard, MA, USA, April 1986.

[86] Guide to VAX/VMS System Security. Order No. AA{Y510A{TE, AA{

Y510A{T1, Digital Equipment Corporation, Maynard, MA, USA, July

1985.

[87] D. Halton. Hardware of the system 250 for communication control. In In-

ternational Switching Symposium, Massachusetts Institute of Technology,

Cambridge, MA, USA, 6-9 June 1972.

[88] Paul M. Hansen, Mark A. Linton, Robert N. Mayo, Marguerite Murphy,

and David A. Patterson. A performance evaluation of the Intel iAPX 432.

Computer Architecture News, 10(4):17{26, June 1982.

[89] Michael A. Harrison, Walter L. Ruzzo, and Je�rey D. Ullman. Protection

in operating systems. Communications of the ACM, 19(8):461{471, August

1976.

[90] B. Hebbard, P. Grosso, T. Baldridge, C. Chan, D. Fishman, P. Goshgarian,

T. Hilton, J. Hoshen, K. Hoult, G. Huntley, M. Stolarchuk, and L. Warner.

A penetration of the Michigan terminal system. Operating Systems Review,

14(1):7{20, January 1980.

204

[91] Andrew J. Herbert, editor. CAP Operating System Manual. University of

Cambridge Computer Laboratory, Cambridge, England, 13 January 1978.

[92] Andrew J. Herbert, editor. CAP System Programmers' Manual. Univer-

sity of Cambridge Computer Laboratory, Cambridge, England, 13 January

1978.

[93] Andrew J. Herbert. A hardware-supported protection architecture. In

D. Lanciaux, editor, Operating Systems: Theory and Practice, pages 293{

306, North-Holland Publishing Co., Amsterdam, The Netherlands, 1979.

Proceedings of the Second International Symposium on Operating Systems

Theory and Practice.

[94] Andrew J. Herbert. Microcode Kernel Speci�cation. CAP-III Techni-

cal Memorandum, Computer Laboratory, University of Cambridge, Cam-

bridge, England, 6 September 1982.

[95] Andrew J. Herbert. A Microprogrammed Operating System Kernel. Ph. D.

dissertation, Computer Laboratory, University of Cambridge, Cambridge,

England, November 1978.

[96] Andrew J. Herbert. MOO on the CAP computer. Software|Practice and

Experience, 7(6):797{798, November|December 1977.

[97] Andrew J. Herbert and Roger M. Needham. Sequencing computation

steps in a network. Operating Systems Review, 15(5):59{63, December

1981. Proceedings of the Eighth Symposium on Operating Systems Sys-

tems Principles, Asilomar Conference Grounds, Paci�c Grove, CA, USA,

14{16 December 1981.

[98] Phillip D. Hester, Richard O. Simpson, and Albert Chang. The IBM RT

PC ROMP and memory management unit architecture. In IBM RT Per-

sonal Computer Technology, pages 48{56, SA23{1057, IBM Engineering

Systems Products, Milford, CT, USA, 1986.

[99] T. H. Hinke and M. Schaefer. Secure Data Management System. Techni-

cal Report TM-(L)-5407/007/00, System Development Corporation, Santa

Monica, CA, USA, June 1975.

[100] M. E. Houdek and G. R. Mitchell. Translating a large virtual address. In

IBM System/38 Technical Developments, pages 22{24, G580{0237{1, IBM

General Systems Division, Atlanta, GA, USA, 1980.

[101] iAPX 432 General Data Processor Architecture Reference Manual. Intel

Corporation, Aloha, OR, USA, 1981.

[102] IBM System/38 Functional Concepts Manual. GA21-9330-5, International

Business Machines Corporation, Rochester, MN, USA, November 1986.

205

[103] IBM System/38 Functional Reference Manual|Volume 1. GA21-9331-5,

International Business Machines Corporation, Rochester, MN, USA, June

1984.

[104] IBM System/38 Technical Developments. G580{0237{1, IBM General Sys-

tems Division, Atlanta, GA, USA, 1980.

[105] Introduction to KeyKOS Concepts. KL004-06, Key Logic, Inc., Santa

Clara, CA, USA, November 1986.

[106] Introduction to VAX/VMS System Routines. Order Number: AA{Z500A{

TE, Digital Equipment Corporation, Maynard, MA, USA, September 1984.

[107] Philippe A. Janson. Removing the Dynamic Linker from the Security Ker-

nel of a Computing Utility. S.M. and E.E. thesis, Department of Electri-

cal Engineering, MAC TR{132, Project MAC, Massachusetts Institute of

Technology, Cambridge, MA, USA, June 1974.

[108] Philippe A. Janson. Using Type Extension to Organize Virtual Memory

Mechanisms. Ph. D. thesis, Department of Electrical Engineering and

Computer Science, MIT/LCS/TR{167, Laboratory for Computer Science,

Massachusetts Institute of Technology, Cambridge, MA, USA, September

1976.

[109] Martyn A. Johnson. Computer Laboratory, University of Cambridge,

Cambridge, England. Private Communication, January 1988.

[110] Mike Johnson. Am29000 Streamlined Instruction Processor User's Manu-

al. TD-WCT 10 K 2/87, PID 08996A, Advanced Micro Devices, Sunnyvale,

CA, USA, 1987.

[111] Jay Jonekait. GNOSIS: a secure capability based 370 operating system. In

Proceedings of the Third Seminar on the DoD Computer Security Initiative,

pages G{1 { G{16, National Bureau of Standards, Gaithersburg, MD, USA,

18{20 November 1980.

[112] Cli�ord E. Kahn. Digital Equipment Corporation, Littleton, MA, USA.

Private Communication, 3 December 1987.

[113] Richard Y. Kain and Carl E. Landwehr. On access checking in capa-

bility-based systems. IEEE Transactions on Software Engineering, SE{

13(2):202{207, February 1987.

[114] Paul A. Karger. Authentication and discretionary access control in com-

puter networks. Computer Networks and ISDN Systems, 10(1):27{37, 1985.

[115] Paul A. Karger. Implementing commercial data integrity with secure ca-

pabilities. In Proceedings of the 1988 IEEE Symposium on Security and

Privacy, pages 130{139, IEEE Computer Society, Oakland, CA, USA, 18

{ 20 April 1988.

206

[116] Paul A. Karger. The lattice security model in a public computing network.

In ACM 78: Proceedings 1978 Annual Conference, pages 453{459, Asso-

ciation for Computing Machinery, Washington, DC, USA, 4{6 December

1978.

[117] Paul A. Karger. Limiting the damage potential of discretionary trojan

horses. In Proceedings of the 1987 IEEE Symposium on Security and Pri-

vacy, pages 32{37, IEEE Computer Society, Oakland, CA, USA, 27 { 29

April 1987.

[118] Paul A. Karger. Non-Discretionary Access Control for Decentralized Com-

puting Systems. S.M. thesis, Department of Electrical Engineering and

Computer Science, MIT/LCS/TR-179, Massachusetts Institute of Tech-

nology, Cambridge, MA, USA, May 1977.

[119] Paul A. Karger and Andrew J. Herbert. An augmented capability architec-

ture to support lattice security and traceability of access. In Proceedings of

the 1984 Symposium on Security and Privacy, pages 2{12, IEEE Computer

Society, Oakland, CA, USA, 29 April { 2 May 1984.

[120] Paul A. Karger and Steven B. Lipner. Digital's research activities in com-

puter security. In Proceedings of EASCON'82, pages 29{32, IEEE, Wash-

ington, DC, USA, September 1982.

[121] Paul A. Karger and Roger R. Schell. Multics Security Evaluation: Vulnera-

bility Analysis. Technical Report ESD{TR{74{193, Vol. II, HQ Electronic

Systems Division, Hanscom AFB, MA, USA, June 1974.

[122] B. Je�rey Katz, Stephen P. Morse, William B. Pohlman, and Bruce W.

Revenel. 8086 microcomputer bridges the gap between 8- and 16-bit de-

signs. Electronics, 51(4):99{104, 16 February 1978.

[123] R. H. Katz, S. J. Eggers, D. A. Wood, , C. L. Perkins, and R. G. Sheldon.

Implementing a cache consistency protocol. Computer Architecture News,

13(3):276{283, June 1985. The 12th Annual International Symposium on

Computer Architecture Conference Proceedings, Boston, MA, USA, 17{19

June 1985.

[124] Lawrence J. Kenah, Ruth E. Goldenberg, and Simon F. Bate. VAX/VMS

Internals and Data Structures. Order No. EY-8264E-DP, Digital Press,

Bedford, MA, USA, 1988.

[125] Tracy Kidder. The Soul of a New Machine. Little, Brown and Company,

Boston, MA, USA, 1981.

[126] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. One-

level storage system. IRE Transactions on Electronic Computers, EC{

11(2):223{235, April 1962.

207

[127] T. Kilburn, R. B. Payne, and D. J. Howarth. The Atlas supervisor. In

Computers|Key to Total Systems Control, Proceedings of the Eastern

Joint Computer Conference, pages 279{294, American Federation of Infor-

mation Processing Societies, Macmillan Company, New York, NY, USA,

12{14 December 1961.

[128] Donald E. Knuth. Sorting and Searching. Volume 3 of The Art of Com-

puter Programming, Addison-Wesley Publishing Company, Reading, MA,

USA, 1973.

[129] Steven Kramer. Linus IV|an experiment in computer security. In Pro-

ceedings of the 1984 Symposium on Security and Privacy, pages 24{32,

IEEE Computer Society, Oakland, CA, USA, 29 April { 2 May 1984.

[130] B. W. Lampson and H. E. Sturgis. Reections on an operating system

design. Communications of the ACM, 19(5):251{265, May 1976.

[131] Butler W. Lampson. A note on the con�nement problem. Communications

of the ACM, 16(10):613{615, October 1973.

[132] Butler W. Lampson. Protection. Operating Systems Review, 8(1):18{24,

January 1974. Proceedings of the Fifth Princeton Conference on Infor-

mation Sciences and Systems, Princeton University, Princeton, NJ, USA,

March 1971, pp. 437{443.

[133] Bill Landreth. Out of the Inner Circle: A Hacker's Guide to Computer

Security. Microsoft Press, Bellvue, WA, USA, 1985.

[134] Carl E. Landwehr. Formal models for computer security. ACM Computing

Surveys, 13(3):247{278, September 1981.

[135] Hugh C. Lauer and Roger M. Needham. On the duality of operating sys-

tem structures. In D. Lanciaux, editor, Operating Systems: Theory and

Practice, pages 371{384, North-Holland Publishing Co., Amsterdam, The

Netherlands, 1979. Proceedings of the Second International Symposium

on Operating Systems Theory and Practice, IRIA, Rocquencourt, France,

2{4 October 1978.

[136] T. M. P. Lee. Using mandatory integrity to enforce \commercial" secu-

rity. In Proceedings of the 1988 IEEE Symposium on Security and Privacy,

IEEE Computer Society, Oakland, CA, USA, 18{21 April 1988.

[137] Timothy E. Leonard. Digital Equipment Corporation, Boxborough, MA,

USA. Private Communication, 3 September 1987.

[138] Timothy E. Leonard, editor. VAX Architecture Reference Manual. Digital

Press, Bedford, MA, USA, 1987.

[139] Henry M. Levy. Capability-Based Computer Systems. Digital Press, Bed-

ford, MA, USA, 1983.

208

[140] Henry M. Levy and Douglas W. Clark. On the use of benchmarks for

measuring system performance. Computer Architecture News, 10(6):5{8,

December 1982.

[141] Henry M. Levy and Richard H. Eckhouse, Jr. Computer Programming and

Architecture: The VAX{11. Digital Press, Bedford, MA, USA, 1980.

[142] S. B. Lipner, S. R. Beckhardt, and D. F. Stork. A UNIX Executive for Use

with the PDP{11/45 Security Kernel. Working Paper 20056, The MITRE

Corporation, Bedford, MA, USA, 5 December 1974.

[143] Steven B. Lipner. A comment on the con�nement problem. Operating

Systems Review, 9(5):192{196, November 1975. Proceedings of the Fifth

Symposium on Operating Systems Principles, Unversity of Texas at Austin,

Austin, TX, USA, 19{21 November 1975.

[144] Steven B. Lipner. Non-discretionary controls for commercial applications.

In Proceedings of the 1982 Symposium on Security and Privacy, pages 2{10,

IEEE Computer Society, Oakland, CA, USA, 26{28 April 1982.

[145] Steven B. Lipner. Secure system development at Digital Equipment: Tar-

getting the needs of a commercial and government customer base. In Pro-

ceedings of the 8th National Computer Security Conference, pages 120{

123, DoD Computer Security Center and National Bureau of Standards,

Gaithersburg, MD, USA, 30 September { 3 October 1985.

[146] Jerome Lobel. Foiling the System Breakers. McGraw-Hill Book Company,

New York, NY, USA, 1986.

[147] T. Mark A. Lomas. Computer Laboratory, University of Cambridge, Cam-

bridge, England. Private Communication, 14 January 1988.

[148] Loopholes in IBM System/38. Computer Fraud & Security Bulletin,

5(6):1{5, April 1983.

[149] N. Lourie, H. Schrimpf, R. Reach, and W. Kahn. Arithmetic and con-

trol techniques in a multiprogram computer. In Proceedings of the Eastern

Joint Computer Conference, pages 75{81, Boston, MA, USA, 1{3 Decem-

ber 1959.

[150] G. A. Mann. Software design implications of a domain architecture. In

Proceedings of the Third Annual International Conference on Computers

and Communications, pages 144{150, IEEE Computer Society, Phoenix,

AZ, USA, 19{21 March 1984.

[151] Andrew H. Mason. A Layered Virtual Memory Manager. S.M. and

E.E. thesis, Department of Electrical Engineering and Computer Science,

MIT/LCS/TR{177, Laboratory for Computer Science, Massachusetts In-

stitute of Technology, Cambridge, MA, USA, May 1977.

209

[152] Mark McCain. Beating o� the hacking trojans. The Times (London,

England), (62,778):26, 29 May 1987.

[153] E. J. McCauley and P. J. Drongowski. KSOS|The design of a secure

operating system. In AFIPS Conference Proceedings, Volume 48, 1979

National Computer Conference, pages 345{351, AFIPS Press, Montvale,

NJ, USA, 1979.

[154] Thomas M. McWilliams and L. Curtis Widdoes, Jr. S{1 multiprocessor ar-

chitecture. In Advanced Digital Computing Technology Base Development

for Navy Applications: The S{1 Project, Technical Report UCID-18038,

Lawrence Livermore Laboratory, University of California, Livermore, CA,

USA, 30 September 1978.

[155] MICRO2 User's Guide. Order No. AA{H531A-TE, Digital Equipment

Corporation, Maynard, MA, USA, June 1979.

[156] James G. Mitchell, William Maybury, and Richard Sweet. Mesa Language

Manual: Version 5.0. Technical Report CSL{79{3, Xerox Palo Alto Re-

search Center, Systems Development Department, Palo Alto, CA, USA,

April 1979.

[157] Warren A. Montgomery. Measurements of sharing in Multics. Operating

Systems Review, 11(5):2{12, November 1977. Proceedings of the Sixth

ACM Symposium on Operating Systems Principles, Purdue University,

West Lafayette, IN, USA, 16{18 November 1985.

[158] D. Morris and G. D. Detlefsen. An implementation of a segmented virtual

store. In Conference on Computer Science and Technology, pages 63{71,

University of Manchester Institute of Science and Technology, Institution

of Electrical Engineers, London, England, 30 June { 3 July 1969. IEE

Conference Publication 55.

[159] Derrick Morris and Roland N. Ibbett. The MU5 Computer System.

Springer-Verlag, New York, NY, USA, 1979.

[160] Robert Morris. Scatter storage techniques. Communications of the ACM,

11(1):38{44, January 1968.

[161] J. Moussouris, L. Crudele, D. Freitas, C. Hansen, E. Hudson, R. March,

S. Przybylski, T. Riodan, C. Rowen, and D. Van't Hof. A CMOS RISC

processor with integrated system functions. In Digest of Papers, Compcon

Spring 86, pages 126{131, IEEE Computer Society, San Francisco, CA,

USA, 3{6 March 1986.

[162] Sape J. Mullender. Principles of Distributed Operating System Design.

Ph. D. dissertation, Vrije Universiteit te Amsterdam, Amsterdam, The

Netherlands, 31 October 1985. Published by Mathematisch Centrum, Am-

sterdam.

210

[163] W. H. Murray. Data integrity in a business data processing system. In

Proceedings of the Workshop in Integrity Policy in Computer Information

Systems (WIPCIS), ACM SIGSAC and Bentley College, Waltham, MA,

USA, 27{29 October 1987.

[164] G. Myers and B. R. S. Buckingham. A hardware implementation of

capability-based addressing. Operating Systems Review, 14(4):13{25, Oc-

tober 1980.

[165] R. M. Needham and A. J. Herbert. The Cambridge Distributed Computing

System. Addison-Wesley Publishing Company, London, England, 1982.

[166] Peter G. Neumann, Robert S. Boyer, Richard J. Feiertag, Karl N. Levitt,

and Lawrence Robinson. A Provably Secure Operating System: The Sys-

tem, Its Applications, and Proofs. Computer Science Laboratory Re-

port CSL{116, SRI International, Menlo Park, CA, USA, May 7 1980.

[167] Elliott I. Organick. Computer System Organization: The B5700/B6700

Series. Academic Press, New York, NY, USA, 1973.

[168] Elliott I. Organick. The Multics System: An Examination of Its Structure.

The MIT Press, Cambridge, MA, USA, 1972.

[169] Elliott I. Organick. A Programmer's View of the Intel 432 System.

McGraw-Hill Book Company, New York, NY, USA, 1983.

[170] Ronald Paans and Guus Bonnes. Surreptitious security violation in the

MVS operating system. In Viiveke A. F�ak, editor, Security, IFIP/Sec'83,

North-Holland Publishing Company, Amsterdam, The Netherlands, 1983.

Proceedings of the IFIP First Security Conference, Stockholm, Sweden,

16{18 May 1983.

[171] J. B. D. Pardoe. Computer Laboratory, University of Cambridge, Cam-

bridge, England. Private Communication, July 1987.

[172] David A. Patterson. Reduced instruction set computers. Communications

of the ACM, 28(1):8{21, January 1985.

[173] Gerald J. Popek and Robert P. Goldberg. Formal requirements for vir-

tualizable third generation architectures. Communications of the ACM,

17(7):412{421, July 1974.

[174] Gerald J. Popek, Mark Kampe, Charles S. Kline, Allen Stoughton, Michael

Urban, and Evelyn J. Walton. UCLA secure UNIX. In AFIPS Conference

Proceedings, Volume 48, 1979 National Computer Conference, pages 355{

364, AFIPS Press, Montvale, NJ, USA, 1979.

[175] Publisher blamed for computer virus. Lafayette (IN, USA) Journal &

Courier, A{12, 16 March 1988.

211

[176] Michael O. Rabin and J. D. Tygar. An Integrated Toolkit for Operating

System Security. Technical Report TR{05{87, Aiken Computational Lab-

oratory, Harvard University, Cambridge, MA, USA, May 1987.

[177] S. A. Rajunas, N. Hardy, A. C. Bomberger, W. S. Frantz, and C. R. Lan-

dau. Security in KeyKOS. In Proceedings of the 1986 IEEE Symposium

on Security and Privacy, pages 78{85, IEEE Computer Society, Oakland,

CA, USA, 7{9 April 1986.

[178] Justin Rattner and William W. Lattin. Ada determines architecture of

32-bit microprocessor. Electronics, 54(4):119{126, 24 February 1981.

[179] David D. Redell. Naming and Protection in Extendible Operating Systems.

Ph. D. thesis, University of California, Berkeley, CA, USA, published as

Project MAC TR-140, Massachusetts Institute of Technology, Cambridge,

MA, USA, November 1974.

[180] David P. Reed. Processor Multiplexing in a Layered Operating System.

S.M. thesis, Department of Electrical Engineering and Computer Science,

MIT/LCS/TR{164, Laboratory for Computer Science, Massachusetts In-

stitute of Technology, Cambridge, MA, USA, July 1976.

[181] David P. Reed and Rajendra K. Kanodia. Synchronization with event-

counts and sequencers. Communications of the ACM, 22(2):115{123,

February 1979.

[182] Jerome H. Saltzer and Michael D. Schroeder. The protection of infor-

mation in computer systems. Proceedings of the IEEE, 63(9):1278{1308,

September 1975.

[183] A. R. Saxena. A Veri�ed Speci�cation of a Hierarchical Operating Sys-

tem. Technical Report 107, Digital Systems Laboratory, Department of

Electrical Engineering, Stanford University, Stanford, CA, USA, January

1976.

[184] O. Sami Saydjari, Joseph M. Beckman, and Je�rey R. Leaman. Locking

computers securely. In Proceedings of the 10

th

National Computer Security

Conference, pages 129{141, National Bureau of Standards, Gaithersburg,

MD, USA, 21{24 September 1987.

[185] Marvin Schaefer, Rich Neely, Luke Dion, Hilda Faust Mathieu, Larry

Robinson, Mike Soleglad, Peter Neumann, and Les Fraim. Kernel per-

formance issues. In Proceedings of the 1981 Symposium on Security and

Privacy, pages 162{178, IEEE Computer Society, Oakland, CA, USA, 27{

29 April 1981.

[186] Roger R. Schell. Computer security: the Achilles' heel of the electronic

Air Force? Air University Review, 30(2):16{33, January{February 1979.

212

[187] Roger R. Schell. A security kernel for a multiprocessor microcomputer.

Computer, 16(7):47{53, July 1983.

[188] W. L. Schiller. The Design and Speci�cation of a Security Kernel for the

PDP{11/45. Technical Report ESD{TR{75{69, The MITRE Corporation,

Bedford, MA, USA, HQ Electronic Systems Division, Hanscom AFB, MA,

USA, May 1975.

[189] Michael D. Schroeder. Cooperation of Mutually Suspicious Subsystems in

a Computer Utility. Ph. D. thesis, Department of Electrical Engineering,

Project MAC TR{104, Massachusetts Institute of Technology, Cambridge,

MA, USA, September 1972.

[190] Michael D. Schroeder. The Multics kernel design project. Operating

Systems Review, 11(5):43{56, November 1977. Proceedings of the Sixth

Symposium on Operating Systems Principles, Purdue University, West

Lafayette, IN, USA, 16{18 November 1985.

[191] Michael D. Schroeder. Performance of the GE{645 associative memory

while Multics is in operation. In ACM SIGOPS Workshop on System

Performance Evaluation, pages 227{245, Harvard University, Cambridge,

MA, USA, 5{7 April 1971.

[192] Michael D. Schroeder and Jerome H. Saltzer. A hardware architecture for

implementing protection rings. Communications of the ACM, 15(3):157{

170, March 1972.

[193] Adi Shamir. How to share a secret. Communications of the ACM,

22(11):612{613, November 1979.

[194] Lawrence J. Shirley. Non-Discretionary Security Validation by Assign-

ment. Master's thesis, Department of Computer Science, Naval Postgrad-

uate School, Monterey, CA, USA, June 1981.

[195] Lawrence J. Shirley and Roger R. Schell. Mechanism su�ciency validation

by assignment. In Proceedings of the 1981 Symposium on Security and

Privacy, pages 26{32, IEEE Computer Society, Oakland, CA, USA, 27{29

April 1981.

[196] William R. Shockley. Implementing the Clark/Wilson Integrity Policy Us-

ing Current Technology. Technical Report GCI{88-6-01, Gemini Comput-

ers, Inc., P.O. Box 222417, Carmel, CA, USA, February 1988.

[197] R. L. Sites. An analysis of the CRAY{1 computer. Computer Architecture

News, 6(7):101{106, April 1978. The 5th Annual Symposium on Computer

Architecture Conference Proceedings.

[198] Christopher John Slinn. Aspects of a Capability Based Operating System.

Ph. D. dissertation, Computer Laboratory, University of Cambridge, Cam-

bridge, England, February 1977.

213

[199] Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(2):473{

530, September 1982.

[200] Leroy Smith. Architectures for Secure Computing Systems. Technical Re-

port MTR-2772, The MITRE Corp., Bedford, MA, USA, June 1974.

[201] Margaret Stanley. The Use of Values Without Names in a Programming

Support Environment. RSRE Memorandum 3901, Royal Signals and Radar

Establishment, Malvern, Worcs., England, November 1985.

[202] Guy Lewis Steele Jr. Debunking the \expensive procedure call" myth or,

procedure call implementations considered harmful or, LAMBDA: the ul-

timate GOTO. In Proceedings of the 1977 Annual Conference, pages 153{

162, Association for Computing Machinery, Seattle, WA, USA, 16{19 Oc-

tober 1977.

[203] Guy Lewis Steele Jr. LAMBDA: The Ultimate Declarative. AI Memo 379,

Arti�cial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, MA, USA, November 1976.

[204] Bjarne Stroustrup. Communication and Control in Distributed Computer

Systems. Ph. D. dissertation, Computer Laboratory, University of Cam-

bridge, Cambridge, England, February 1979.

[205] H. E. Sturgis. A Postmortem for a Time Sharing System. Technical Re-

port CSL 74{1, Xerox Palo Alto Research Center, Palo Alto, CA, January

1974.

[206] Daniel Tabak. Reduced Instructions Set Computer |RISC| Architecture.

Research Studies Press, Ltd., Letchworth, Hertfordshire, England, 1987.

Distributed by John Wiley & Sons, Inc., New York, NY, USA.

[207] John D. Tangney. Minicomputer Architectures for E�ective Security Ker-

nel Implementations. Technical Report MTR-3531, The MITRE Corp.,

Bedford, MA, USA, May 1978.

[208] Charles P. Thacker and Lawrence C. Stewart. Firey: a multiprocessor

workstation. Computer Architecture News, 15(5):164{172, October 1987.

[209] Shreekant S. Thakkar and Alan E. Knowles. A high-performance memory

management scheme. Computer, 19(5):8{22, May 1986.

[210] Ken Thompson. Reections on trusting trust. Communications of the

ACM, 27(8):761{763, August 1984.

[211] Ken Thompson and Dennis M. Ritchie. The UNIX time-sharing system.

Communications of the ACM, 17(7):365{375, July 1974.

[212] ULTRIX-32 Programmer's Manual: Sections 1 and 6. Order No. AA-

BG53C-TE, Digital Equipment Corporation, Merrimack, NH, USA, 1986.

214

[213] ULTRIX-32 Programmer's Manual: Sections 2 and 3. Order No. AA-

BG54C-TE, Digital Equipment Corporation, Merrimack, NH, USA, 1986.

[214] VAX DBMS Database Security Guide. Order No. AA{Y312A-TE, Digital

Equipment Corporation, Maynard, MA, USA, January 1984.

[215] VAX DEC/MMS User's Guide. Order No. AA{P119B{TE, Digital Equip-

ment Corporation, Maynard, MA, USA, August 1984.

[216] VAX Hardware Handbook. Volume 1, EB 25949 46/85 12 04/43, Digital

Equipment Corporation, West Concord, MA, USA, 1986.

[217] VAX{11/730 Central Processing Unit Technical Description. EK{KA730{

TD{001, Digital Equipment Corporation, Maynard, MA, USA, May 1982.

[218] VAX{11/730 Memory System. EK{MS730{TD{001, Digital Equipment

Corporation, Maynard, MA, USA, May 1982.

[219] VAX 11/780 Data Path Description. AA{H307A{TE, Digital Equipment

Corporation, Maynard, MA, USA, February 1979.

[220] VAX/VMS Command De�nition Utility Reference Manual. Order No.

AA{Z408A{TE, Digital Equipment Corporation, Maynard, MA, USA,

September 1984.

[221] VAX/VMS System Services Reference Manual. Order No. AA-Z501B-TE,

AD-Z501B-T1, Digital Equipment Corporation, Maynard, MA, USA, April

1986.

[222] D. E. Waldecker, C. G. Wright, M. S. Schmookler, T. G. Whiteside, R. D.

Groves, C. P. Freeman, and A. Torres. ROMP/MMU implementation. In

IBM RT Personal Computer Technology, pages 57{65, SA23{1057, IBM

Engineering Systems Products, Milford, CT, USA, 1986.

[223] R. D. H. Walker. The Structure of a Well{Protected Computer. Ph. D.

dissertation, Computer Laboratory, University of Cambridge, Cambridge,

England, December 1973.

[224] David W. Wall. Global register allocation at link time. SIGPLAN Notices,

21(7):264{275, July 1986. Proceedings of the SIGPLAN '86 Symposium

on Compiler Construction, Palo Alto, CA, 25{27 June 1986.

[225] K. G. Walter, W. F. Ogden, W. C. Rounds, F. T. Bradshaw, S. R. Ames,

and D. G. Shumway. Primitive Models for Computer Security. Techni-

cal Report ESD{TR{74{117, Case Western Reserve University, Cleveland,

OH, HQ Electronic Systems Division, Hanscom AFB, MA, USA, 23 Jan-

uary 1974.

[226] Desmond John Watson. An Approach to Protection Through Capabilities.

Ph. D. dissertation, Computer Laboratory, University of Cambridge, Cam-

bridge, England, July 1978.

215

[227] Clark Weissman. Security controls in the ADEPT{50 time sharing system.

In AFIPS Conference Proceedings, Volume 35, 1969 Fall Joint Computer

Conference, pages 119{133, AFIPS Press, Montvale, NJ, USA, 1969.

[228] WFL Reference Manual. Form No. 5011794, Burroughs Corporation, De-

troit, MI, USA, March 1981.

[229] J. Whitmore, A. Bensoussan, P. Green, D. Hunt, A. Kobziar, and J. Stern.

Design for Multics Security Enhancements. Technical Report ESD{TR{

74-176, Honeywell Information Systems, Inc., HQ Electronic Systems Di-

vision, Hanscom AFB, MA, USA, December 1973.

[230] Maurice V. Wilkes. Unpublished lectures on reduced instruction set com-

puter (RISC) design. Computer Laboratory, University of Cambridge,

Cambridge, England., 1985{1987.

[231] Maurice V. Wilkes and Roger M. Needham. The Cambridge CAP Com-

puter and Its Operating System. Elsevier North Holland, Inc., New York,

NY, USA, 1979.

[232] A. L. Wilkinson, D. H. Anderson, D. P. Chang, Lee Hock Hin, A. J. Mayo,

I. T. Viney, R. Williams, and W. Wright. A penetration analysis of a

Burroughs large system. Operating Systems Review, 15(1):14{25, January

1981.

[233] J. H. Wimbrow. A large-scale interactive administrative system. IBM

Systems Journal, 10(4):260{282, 1971.

[234] Simon Wiseman. A secure capability computer system. In Proceedings of

the 1986 IEEE Symposium on Security and Privacy, pages 86{94, IEEE

Computer Society, Oakland, CA, USA, 7{9 April 1986.

[235] Ian H. Witten. Computer (in)security: in�ltrating open systems. Abacus,

4(4):6{25, Summer 1987.

[236] J. P. L. Woodward and G. H. Nibaldi. A Kernel-Based Secure UNIX

Design. Technical Report MTR-3499, The MITRE Corporation, Bedford,

MA, USA, November 1977.

[237] J. B. Wordsworth. Formal methods in the development of CICS. Computer

Bulletin, 3(4):6{7, December 1987.

[238] William A. Wulf, Roy Levin, and Samuel P. Harbison. HYDRA/C.mmp:

An Experimental Computer System. McGraw-Hill, New York, NY, USA,

1981.

216

Appendix A

Computer Security Evaluation

Criteria

This appendix is a brief summary of the computer security evaluation criteria,

promulgated by the National Computer Security Center [59]. The criteria divide

computer security systems into four major divisions, with classes within those

divisions. Computer vendors submit their operating systems to the National

Computer Security Center for design assistance and ultimately evaluation against

the criteria. A number of commercially available systems have been successfully

evaluated against the criteria. At least one commercial system has been evaluated

in each of the four major divisions.

� Division D: Minimal Protection

This division contains only one class. It is reserved for those systems that

have been evaluated but that fail to meet the requirements for a higher

evaluation class.

� Division C: Discretionary Protection

Classes in this division provide for discretionary (need-to-know) protection.

{ Class (C1): Discretionary Security Protection

Class (C1) systems provide a minimal set of security features to sep-

arate users and their data. Most conventional time-sharing systems

fall into this class.

{ Class (C2): Controlled Access Protection

Class (C2) systems require a �ner grained control system than class

(C1) systems. For example, simple owner/group/world protection

schemes would be unacceptable at class (C2). Class (C2) systems

must also provide improved audit trails and login control procedures.

� Division B: Mandatory Protection

Classes in this division provide an implementation of the non-discretionary

lattice security model.

217

{ Class (B1): Labeled Security Protection

Class (B1) systems must label all storage objects and enforce the

lattice security model on those objects. However, covert channels are

not addressed in this class.

{ Class (B2): Structured Protection

Class (B2) systems must label all system resources (as opposed to

only storage objects), and must show that covert channels have either

been eliminated or bandwidth limited. Also, a trusted communica-

tions path between the user and the system must provide two-way

authentication.

{ Class (B3): Security Domains

Class (B3) systems are required to isolate the security functions from

the rest of the operating system, typically into some form of security

kernel. At this class, access control lists are explicitly required. An

informal descriptive top level speci�cation (DTLS) of the design is

required.

� Division A: Veri�ed Protection

Division A systems are characterized by the use of formal mathematical

methods to assure correctness of design and implementation.

{ Class (A1): Veri�ed Design

Class (A1) systems require the preparation and veri�cation of a math-

ematically formal top level speci�cation (FTLS) of the security kernel

design. Informal techniques must be used to show correspondence

between the FTLS and the implemented software.

{ Beyond Class (A1)

Classes beyond A1 will probably require formal veri�cation of the

code of the security kernel and some considerations of microcode and

hardware correctness. However, constructing systems at this level of

security is still beyond current technology, so requirements have not

yet been stated.

218

Appendix B

Tutorial on Paging

In the earliest processors with virtual memory, such as the Atlas [126], page

tables could simply be stored in consecutive words of physical memory. Starting

with the �rst Multics processor, the GE-645 [168], the size of the virtual address

spaces have been su�ciently large that the entire page table cannot be stored

in primary memory at once. The traditional solution to the problem of large

page tables has been to construct hierarchies of tables, such as in the GE-645 or

the VAX architecture. This appendix contains a brief review of the evolution of

paging structures, as a tutorial backup to Chapter 16.

B.1 Atlas

The structure of the Atlas page table was very simple [126]. It mapped a virtual

address space of 2

18

48-bit words consisting of 512-word pages. Thus, a page

table would need at most 512 entries, as shown in Figure B.1.

Page Table Entry 0

Page Table Entry 1

� � �

Page Table Entry 510

Page Table Entry 511

Figure B.1: Atlas Page Table

Atlas did not automatically consult the full page table. Instead, it had 32

Page Address Registers (PARs), one for each page of physical memory. On each

memory reference it compared the virtual address against the 32 PARs and gen-

erated a fault, if no match was found. Software in the Atlas operating system was

responsible for loading the PARs from the page table. Thus, the PARs formed

a fully-associative translation bu�er, with a software TB-miss handler. See Sec-

tion 15.3 for a more complete discussion of translation-bu�er miss handling.

219

B.2 Multics

By comparison, the Multics virtual address space was 2

36

36-bit words in 1,024-

word pages. As a result, mapping a full Multics address space required 2

26

page table entries, �ve orders of magnitude more than Atlas. Even with today's

rapidly declining memory prices, one could not dedicate that much memory to

page tables. Instead, the Multics processor provided a scheme for multiple levels

of address-translation tables, so that only a small number of page table entries

need be in primary memory at any one time. Figure B.2 shows how address

translation was accomplished on the Multics processor.

DBR

-

Descriptor

Segment

Page Table

PTE 0

PTE 1

� � �

PTE 255

-

-

-

Descriptor

Segment

SDW 0

SDW 1

� � �

SDW 1023

� � �

SDW 2

18

� 1024

SDW 2

18

� 1023

� � �

SDW 2

18

� 1

-

-

-

-

-

-

Page Table

PTE 0

PTE 1

� � �

PTE 255

-

-

-

Data

Page

Figure B.2: Multics Address Translation

To translate a virtual address, Multics started with the descriptor base reg-

ister (DBR) to locate the page table of the descriptor segment. From there,

the processor stepped through the descriptor segment, and the page table of the

target segment to �nd the physical address of the desired page of data. At each

stage, the processor checked for exception conditions. As a result, the hardware

and microcode needed to translate an address were quite complex.

B.3 VAX

The VAX architecture [138] supports a virtual address space of 2

32

bytes in 512-

byte pages. Like Multics, mapping a full VAX virtual address space requires

a very large number of page table entries, 2

23

. The VAX strategy for dealing

with the proliferation of page table entries is di�erent from Multics' strategy. To

220

avoid so many levels of tables, the address space is divided into regions, called

system space, P0 space, and P1 space. The P0 and P1 spaces are collectively

termed process space. Each of the three spaces may grow to 2

30

bytes each. A

fourth space is reserved for future use. The system-space page table resides in

contiguous physical memory. The P0 and P1 page tables reside in system space,

and are thus paged

1

. Figure B.3 shows how the page tables map the three regions

of the VAX address space. In practice, only a fraction of system space is ever

used so as to limit the amount of contiguous physical memory that would have

to be devoted to page tables.

Physical Memory

System

Space

Page

Table

@
@

@
@

@
@

@
@

�
�

�
�

�
�

�
�

System Space

P0

Page

Table

P1

Page

Table

hh

hh

h
h

hh

((

((

((

((

hh

hh

hh

hh

((

(
(

((

((

P0 Space

P1 Space

Figure B.3: VAX Address Space Mapping

B.4 Additional Levels of Page Tables

To support larger address spaces than found in either Multics or the VAX, one

could add additional levels of page tables. The CLICS (Classroom Informa-

tion and Computing Service) [39] design proposed an extra level of page tables,

1

This description omits the complications related to P1 space growing in the negative

direction.

221

beyond that of Multics, to support an address space of 2

40

words. All such

schemes for multiple levels of page tables su�er from two problems. First, it

takes additional memory references to perform the address translation. The use

of translation bu�ers can minimise the cost of extra memory references by re-

solving most addresses in the translation bu�er, and only going through the page

tables when the address is missing from the bu�er. Second and more important,

the multiple levels of page tables make the address translation hardware and

microcode signi�cantly more complex. At any level of translation, one or more

of several exception conditions may be encountered. (These exceptions include

translation not valid, access violation, and non-existent physical memory.) The

address-translation mechanism must be prepared to deal with all of these. Fur-

ther, the operating system must allocate space for the various page tables and

must make policy decisions on how many page tables should be allowed in pri-

mary memory at any one time. Implementing those decisions can require quite

complex software algorithms.

222

Appendix C

Translation Bu�er Associativity

One of the most signi�cant aspects of translation bu�er design is the tradeo� of

size against level of associativity. Most translation bu�ers are organised either

as direct mapped, n-way set associative, or fully associative.

1

For the examples

in this section, we shall assume that a virtual address is divided into a virtual-

page-frame number and an o�set within that page, as shown in Figure C.1.

Virtual Page Frame Number O�set

Figure C.1: Fields of a Virtual Address

C.1 Fully Associative

A fully associative translation bu�er, as shown in Figure C.2, allows any

entry in the TB to map any page in primary memory. The look-up hardware

must compare the virtual page frame number with the tags of every entry in the

translation bu�er. To make the look-up fast, the comparisons must be done in

parallel, and there must be logic to implement a replacement algorithm. Most

frequently, a least-recently-used (LRU) algorithm is implemented with a usage

count associated with each entry, although some machines use other replacement

algorithms. Since both the parallel-look-up and the LRU replacement algorithms

signi�cantly increase in cost and complexity as the number of entries goes up,

fully associative translation bu�ers are in practice quite small (typically 8 to

32 entries). For example, the MicroVAX 78032 chip [61] has an 8-entry, fully

associative translation bu�er with LRU replacement.

1

Other translation-bu�er organizations are sometimes used, but they do not directly a�ect

the security questions of this chapter.

223

Virtual Page

Frame Number

Virtual Address

O�set

?

Parallel

Comparator

.

.

.

�

�

�

Page Frame

Numbers

Usage

Count

Page Table

Entry

0

2

p

� 1

| {z }

p bits wide

.

.

.

.

.

.

.

.

.

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

2

p

entries

Translation Bu�er

Figure C.2: Fully-Associative Translation Bu�er

C.2 Direct Mapped

In a direct-mapped translation bu�er, as shown in Figure C.3, the page de-

scriptor for a particular virtual address can only be loaded into a corresponding

translation-bu�er entry. If the direct-mapped translation bu�er contains 2

p

en-

tries, then p bits of the virtual page-frame number are used as an index into the

bu�er. The remaining bits of the virtual page-frame number are stored in the tag

�eld of the TB entry and a single comparator checks whether the selected entry

is a match. Thus, look-up and replacement hardware can be extremely simple

and fast, and the incremental cost of additional entries is quite small. The low-

end VAX-11/730 [218] has a 128-entry, direct-mapped translation bu�er, and

the high-performance VAX 8600 [71] has a 512-entry, direct-mapped translation

bu�er.

2

Because more than one virtual address may map to a single TB entry, the

CPU may have a very di�cult time using a direct-mapped TB. In particular, if

an instruction and its memory operand both map to the same TB entry, then

the CPU cannot reference both simultaneously. Thus, the simplest TB-miss

2

Most VAX translation-bu�er implementations use the high order bit as part of the index,

e�ectively dividing the translation bu�er into two pieces, one for system space addresses and

one for process space addresses.

224

Virtual Page

Frame Number

Virtual Address

O�set

� -

n bits wide

-�

n� p bits

| {z }

tag

� -

p bits

| {z }

index

-

?

Single

Comparator

Tag

Page Table

Entry

.

.

.

.

.

.

.

.

.

.

.

.

| {z }

bits wide

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

entries

Translation Bu�er

n � p

0

2

p

� 1

2

p

u

�

�

�

�

�

�

�

�

�

�

�

�

�)

Figure C.3: Direct-Mapped Translation Bu�er

strategy, restarting the instruction from scratch after �lling the TB, will cause

an in�nite loop with a direct-mapped TB. Instead, the CPU (or its microcode)

must maintain a copy of the instruction, to avoid re-fetching from memory after

the operand TB miss has been resolved. If the instruction is allowed to reference

many operands in di�erent pages, then the CPU must be capable of bu�ering

either all the operands or the intermediate results.

In a RISC machine, each instruction will reference at most a single memory

operand.

3

However, some RISC architectures, such as the MIPS Computer Sys-

tems chip [55], implement the TB miss entirely in software. (See Section 15.3 for

more detail.) If the return from the fault handler simply restarts the instruction

fetch, then a direct-mapped translation bu�er cannot be used.

4

Alternatively,

the CPU could push the actual faulting instruction, rather than just the value of

the program counter onto the exception handler's stack frame.

5

When the soft-

3

The presence of vector instructions could complicate this issue.

4

The MIPS chip in fact has a 64-entry, fully-associative translation bu�er.

5

The GE-600 and Honeywell H6000 series processors store the actual faulting instruction

in their saved machine conditions.

225

ware handler returned, the CPU could use the stored instruction, rather than

retrying the instruction fetch.

C.3 Set Associative

An N-way set-associative translation bu�er represents a compromise between

the direct-mapped and the fully-associative translation bu�ers. Essentially, an

N-way set-associative TB consists of N direct-mapped TBs in parallel. Just as

in the direct-mapped case, a set of bits from the address are used as an index

into the TB. However, fewer bits are used for the look-up and the balance of the

address bits are used in an associative comparison on the N entries selected by

the index.

Virtual Page Frame Number

O�set

Virtual Address

� -

n bits wide

-�

n� (p� 1) bits

| {z }

tag

� -

p� 1 bits

| {z }

index

-

-

Double Comparator

Tag

Page Table

Entry

.

.

.

.

.

.

.

.

.

.

.

.

| {z }

n� (p� 1)

bits wide

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

entries

2

(p�1)

0

2

(p�1)

� 1

r

6

Tag

Page Table

Entry

.

.

.

.

.

.

.

.

.

.

.

.

| {z }

n � (p� 1)

bits wide

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

entries

2

(p�1)

0

2

(p�1)

� 1

r

6

Translation Bu�er Sets

Figure C.4: Two-Way Set-Associative Translation Bu�er

A 2-way set-associative translation bu�er, as shown in Figure C.4, of 2

p

entries

would use p�1 bits from the virtual page-frame number to index the translation

bu�er, and then do a parallel comparison of the two entries, looking for a match

226

on the remaining bits of the virtual page-frame number. For example, the VAX-

11/780 and the VAX-11/785 [216] have 128-entry and 512-entry, 2-way, set-

associative translation bu�ers, respectively.

The set-associative organization reduces the frequency of address clashes,

such as we saw in the direct-mapped translation bu�er, but without the hard-

ware cost and complexity of a fully-associative translation bu�er. For a RISC

processor in which the only memory referencing instructions are load and store of

a single location, a 2-way set-associative translation bu�er can completely avoid

the in�nite-loop problem of software-�lling a direct-mapped translation bu�er.

6

6

Operands or data structures that cross page boundaries can complicate this issue.

227

228

Appendix D

VAX Processor Architecture

This appendix briey summarizes the VAX processor architecture. For the de�ni-

tive speci�cation of the architecture, see Leonard [138]. For a tutorial on assem-

bly level programming of the VAX, see Levy and Eckhouse [141].

D.1 Data Types

The VAX processor supports a large number of data types, including integers,

oating point numbers, variable-length bit �elds, queues, character strings, and

decimal strings. The machine is fundamentally byte-addressed, with each byte

containing 8 bits, numbered from 0 to 7, right to left. Table D.1 summarizes the

various data types.

D.2 Registers

The VAX architecture supports both programmer-visible registers and internal

processor registers (IPRs) that are visible only to the operating system.

D.2.1 Programmer Visible Registers

The programmer of a VAX computer sees 16 general-purpose registers (GPRs),

and a processor status longword (PSL). The GPRs are each 32 bits in length,

and adjacent registers can be combined to represent quadwords, octawords, or

D, G, or H oating point numbers. In addition, variable length (0 to 32-bit) bit

�elds may cross register boundaries. The following GPRs have special meanings:

� R15 is the program counter (PC). The PC contains the address of the next

instruction byte of the program.

� R14 is the stack pointer (SP). The SP contains the address of the top of

the current stack.

229

Type Description

Integers (both signed and unsigned)

Bytes 8 bits long

Words 16 bits long (two bytes)

Longwords 32 bits long (four bytes)

Quadwords 64 bits long (eight bytes)

Octawords 128 bits long (sixteen bytes)

Floating Point

F oating 32 bits long (8-bit exponent, 24-bit fraction)

D oating 64 bits long (8-bit exponent, 56-bit fraction)

G oating 64 bits long (11-bit exponent, 53-bit fraction)

H oating 128 bits long (15-bit exponent, 113-bit fraction)

Queues

absolute queues circular, doubly linked lists using absolute virtual

addresses as links

self-relative queues use displacements from queue entries as links. can be

interlocked for simultaneous access from multiple CPUs

or I/O controllers.

Decimal Strings

Trailing numeric 0 to 31 decimal digits as bytes, with the sign at the end

of the string.

Leading separate 0 to 31 decimal digits, two to a byte, with the sign at

numeric the beginning of the string.

Packed decimal 0 to 31 decimal digits, two to a byte, with the sign at

the end of the string.

Other

Character strings contiguous sequences of from 0 to 65,535 bytes.

Variable-length bit allow addressing 0 to 32 contiguous bits starting at

�elds any arbitrary bit position.

Table D.1: VAX Data Types

230

� R13 is the current frame pointer (FP). The FP contains the address of

the base of the current stack frame, as used by the VAX procedure-calling

convention.

� R12 is the argument pointer (AP). The AP is used by the subroutine call

and return instructions (CALLx and RET) to point to argument lists.

The PSL is a 32-bit longword that de�nes the current processor status.

Table D.2 briey summarizes the contents of the PSL. See the VAX Archi-

tecture Reference Manual [138, pp. 20-23] for a more detailed description of the

PSL.

Extent Name Mnemonic Meaning

<31> Compatibility CM Indicates the CPU is in PDP{11

Mode compatibility mode.

<30> Trace TP Force a trace fault at the start

Pending of the next instruction.

<29:28> Reserved Reserved to Digital. Must be 0.

<27> First Part FPD First part of an interruptable

Done instruction done.

<26> Interrupt IS Processor is executing on the

Stack interrupt stack.

<25:24> Current CUR MOD Access mode of the current

Access Mode process.

<23:22> Previous PRV MOD Access mode before the last

Access Mode exception or CHMx instruction.

<21> Reserved Reserved to Digital. Must be 0.

<20:16> Interrupt IPL The current processor priority.

Priority Level

<15:8> Reserved Reserved to Digital. Must be 0.

<7> Decimal Over- DV Enable decimal overow traps.

ow Enable

<6> Floating Under- FU Enable oating underow

ow Enable exceptions.

<5> Integer Over- IV Enable integer overow traps.

ow Enable

<4> Trace Enable T When set at the beginning of an

instruction, cause TP to be set.

<3:0> Condition NZVC Negative, Zero, Overow,

Codes and Carry condition code bits.

Table D.2: Processor Status Longword Fields

231

D.2.2 Internal-Processor Registers

The VAX architecture also supports a large number of internal processor registers

(IPRs) that are referenced with the move to/from processor register instructions

(MTPR and MFPR). Both of those instructions are privileged, so that only

the operating system can reference the IPRs. Table D.3 briey summarizes the

architecturally de�ned IPRs. In addition to those IPRs, each VAX CPU may

de�ne additional IPRs that are speci�c to that processor alone.

Name Mnemonic Hex

kernel stack pointer KSP 0

executive stack pointer ESP 1

supervisor stack pointer SSP 2

user stack pointer USP 3

interrupt stack pointer ISP 4

P0 base register P0BR 8

P0 length register P0LR 9

P1 base register P1BR A

P1 length register P1LR B

system base register SBR C

system length register SLR D

process control block base PCBB 10

system control block base SCBB 11

interrupt priority level IPL 12

AST level ASTLVL 13

software interrupt request register SIRR 14

software interrupt summary register SISR 15

interval clock control ICCS 18

next interval count register NICR 19

interval count register ICR 1A

time-of-year register TODR 1B

console receiver status RXCS 20

console receiver data bu�er RXDB 21

console transmit status TXCS 22

console transmit data bu�er TXDB 23

memory management enable MAPEN 38

translation bu�er invalidate all TBIA 39

translation bu�er invalidate single TBIS 3A

performance monitor enable PME 3D

system identi�cation SID 3E

translation bu�er check TBCHK 3F

Table D.3: Architecturally De�ned Internal Processor Registers (IPRs)

232

D.3 Instruction Formats

Machine instructions in the VAX architecture are of varying lengths, aligned

on byte boundaries. An instruction consists of an opcode followed by 0 to 6

operand speci�ers. Opcodes may be either one or two bytes long, and operand

speci�ers are between one and eighteen bytes long. There are more than 300

native mode instructions and dozens of addressing modes. (The exact numbers

depend on how one counts.) The instruction set is highly orthogonal; that is, the

instruction set allows operations, data types, and addressing modes (to a great

extent) to be chosen independently.

D.4 Memory Management

The VAX address space is 2

32

bytes in length, divided into four regions of 2

30

bytes each. The lower-addressed half of the address space contains two regions,

called P0 space and P1 space, are unique to each process. P0 space is for program

text and static data. P1 space is for the program stack and grows in the negative

direction. P0 and P1 spaces are collectively termed process space.

The upper-addressed half of the address space also contains two regions|

system space (S0 space) and an unused region, sometimes called S1 space. Al-

though the process space regions are changed whenever a process is scheduled,

the system space region normally remains the same in all processes. System

space is normally used only by the operating system.

The actual layout of the page tables is described in Section B.3.

D.5 Protection

The VAX architecture implements protection by providing four concentric rings

of protection, called access modes. The four access modes are numbered from

0 to 3 and are named kernel, executive, supervisor, and user, respectively. Ac-

cess mode protection is implemented by comparing the CUR MOD �eld of the

PSL with the four-bit protection �eld of the page-table entry (PTE) that maps

the virtual address in question. Table D.4 shows the possible values the PTE

protection �eld can take. The VAX uses a more e�cient encoding of the possi-

ble value of read and write protection combined with access modes than other

architectures, such as the Honeywell H6180 Multics processor [192].

The VAX processor allows software to change access modes by executing one

of the four change mode instructions, (CHMK, CHME, CHMS, and CHMU).

These instructions cause the processor to branch to a known address in the

target access mode. Code in the new mode can then determine what operation

has actually been requested. When a CHMx instruction is executed, the access

233

Accessibility

Name Mnemonic Value Kernel Exec Super User

no access NA 0 none none none none

reserved 1 UNPREDICTABLE

kernel write KW 2 write none none none

kernel read KR 3 read none none none

user write UW 4 write write write write

exec write EW 5 write write none none

exec read, kernel write ERKW 6 write read none none

exec read ER 7 read read none none

super write SW 8 write write write none

super read, exec write SREW 9 write write read none

super read, kernel write SRKW 10 write read read none

super read SR 11 read read read none

user read, super write URSW 12 write write write read

user read, exec write UREW 13 write write read read

user read, kernel write URKW 14 write read read read

user read UR 15 read read read read

Table D.4: PTE Protection Codes

mode of the caller is stored in the PRV MOD �eld of the PSL, and the CUR MOD

�eld is set to the new access mode.

The VAX accomplishes argument validation with special PROBE instructions

and the PRV MOD �eld. The probe instructions test the access rights to an

argument of not only the current access mode, but also the previous access mode

to prevent any kind of Trojan horse pointer attack.

D.6 Interrupts and Exceptions

When an interrupt or exception occurs, the VAXprocessor transfers to an address

speci�ed in the System Control Block (SCB). The SCB consists of an array

of vectors that contain addresses of the exception handlers. Each interrupt or

exception has its own SCB vector.

Most interrupts and exceptions cause the processor to switch into kernel

mode, although certain arithmetic exceptions are handled in the access mode in

which they occurred. The CHMx exceptions cause the processor to switch into

the access mode speci�ed by the CHMx instruction that was executed. The SCB

vector also contains a ag to control whether the exception is handled on the

kernel stack of the current process or on the per-CPU interrupt stack.

The architecture de�nes thirty-two interrupt priority levels (IPLs) to medi-

ate between conicting I/O devices. Interrupt levels 16 to 31 are reserved for

234

hardware devices, while interrupt levels 0 to 15 are reserved for software use.

Software interrupts can be requested using the SISR and SIRR internal proces-

sor registers. When the processor is executing at a given IPL, interrupts at a

lower or equal IPL are held pending until the processor lowers its priority level.

The VAX architecture also supports a mechanism for asynchronous system

traps (ASTs). See Section 19.4 for more detail.

235

236

Appendix E

Microarchitecture of the

VAX-11/730

This appendix briey summarizes the microarchitecture of the VAX-11/730 pro-

cessor that I have used for experiments in this dissertation. For more detailed

information on the processor, consult the CPU Technical Description [217] and

the Memory System Technical Description [218].

E.1 System Overview

The VAX-11/730 computer system was announced in 1982 as the third member

of the VAX family. It was marketed at the time as a low-cost entry-level system,

with performance of approximately one third that of a VAX-11/780. The primary

design goal of the system was minimum cost, rather than high performance, and

the inuence of that goal can be seen in the hardware and microcode. Figure E.1

shows the major components of a VAX-11/730 system. The KA730 CPU consists

of three major modules: the data-path module (DAP), the writable-control store

module (WCS), and the memory-controller module (MCT). The three modules

of the CPU are connected by the memory-control bus (MC bus). An optional

FP730 Floating-Point Accelerator (FPA) can be attached to the CPU to improve

the performance of oating-point instructions. Up to �ve megabytes of memory

can be attached to the MCT.

The VAX-11/730 uses a UNIBUS as its peripheral I/O bus. An optional

RB730 Integrated-Disk Controller (IDC) provides a low cost way to attach

disks. Alternatively, conventional disk controllers can be attached directly to

the UNIBUS.

The WCS module includes a console processor that controls the system's

console terminal and a pair of TU58 DECtape II tape cartridge drives.

237

Memory

FPA

-�

-�

IDC

F

P

A

/

P

O

R

T

B

U

S

6

�

6

�

6

U

N

I

B

U

S

?

66

??

6

MC BUS

WCSMCT

KA730 CPU

l

l

l

l

,

,

,

,

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
..
.
.
..
.
..
.
..
..
..
..
..
..
...
...
...
.....
......

....................
......

....
....
...
..
...
..
..
..
..
.
..
..
.
.
..
.
.
.
.
..
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
..
..
.
..
..
...
..
...
...
...
.....
......
...................

......
.....
...
...
...
..
...
..
..
.
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dual

TU58

P

P

P

P

P

Terminal

-�

DAP

�-

Figure E.1: VAX-11/730 System

238

E.2 CPU Description

The major components of the KA730 CPU are the memory controller (MCT),

the the writable-control store (WCS) and the CPU data path (DAP). Figure E.2

is a simpli�ed block diagram of these three modules.

E.2.1 Memory Controller (MCT)

The memory controller module (MCT) is a microprogrammed device to control

one to �ve memory cards of one megabyte each. The MCT microinstructions

are stored in 512-entry PROM consisting of 72-bit microwords. My research did

not require any modi�cations to the MCT microcode.

The MCT contains the translation bu�er (TB), used for virtual to physical-

address translation and for UNIBUS-address mapping. The TB contains 1,024

entries of 23 bits each. Of those entries, 128 are used as a direct-mapped trans-

lation bu�er. The 128 translation bu�er entries are organized as 64 for system-

space addresses and 64 for process-space addresses. (See Section C.2 for a discus-

sion of direct-mapped translation bu�ers.) Of the remaining TB entries, 512 are

used for UNIBUS mapping, and 384 are unused. While I considered attempting

to use the 384 unused entries to store entries from more than one address space

simultaneously, such a change would have required major modi�cation to the

PROM and possibly to the hardware of the module. Such modi�cations would

have been quite di�cult and would have invalidated the service contract on the

system.

The MCT also contains a data rotator that is used for handling unaligned

memory references and for certain shift and rotate operations in implementing

VAX instructions. The data rotator is not a full barrel shifter and can only

rotate data one byte right, one byte left, or two bytes right.

E.2.2 Writable-Control Store (WCS)

The writable-control store module (WCS) contains either 16K or 20K entries

of 24-bit microwords that are used to implement the VAX instruction set. (The

optional 4K is used to implement functions required by the Integrated-Disk Con-

troller IDC.) The micromemory is read-only to the CPU data path, but the

console processor, an Intel 8085A 8-bit microprocessor loads the microprograms

from a TU58 tape at the time the system is powered-up. The console processor

also implements the VAX console-command language and the interval timer and

time-of-year clock functions for the system. The WCS module also includes the

UNIBUS data transceivers for moving data to and from UNIBUS I/O devices.

239

U

N

I

B

U

S

M

C

B

U

S

MCT

WCS

DAP

Memory

Data

Rotator

Micro-

Sequencer

Translation

Bu�er

6

-

-�

6

?

?

6

8085A

Console

Processor

6

6

CPU

Control

Store

UNIBUS

Data

Xcvrs

CPU

Micro-

Sequencer

6

?

Data

Path

Interrupt

Processing

Hardware

-

-

-

�

� -

-�

Instruction

Processing

Hardware

�

??

to FPA

Figure E.2: KA730 Block Diagram

240

E.2.3 CPU Data Path (DAP)

The CPU data path module (DAP) consists of a microsequencer, interrupt-

processing hardware, instruction-decoding hardware, and the data path itself.

Figure E.3 contains a block diagram of the basic data path.

-

-

�

�

Y

B

U

S

D

B

U

S

Eight 2901A

Data Processors

Local Store

(256 longwords)

�

�

to MC

bus

to micro-

sequencer

-

to FPA

Figure E.3: Data Path Block Diagram

The data path is implemented by eight cascaded Am2901A 4-bit micropro-

cessor slices, con�gured for carry look-ahead and external shift control. Data

enters the 2901As from the D bus, and output data is transmitted on the Y bus.

The 2901As contain sixteen 32-bit RAM locations and a special 32-bit Q register.

The VAX-11/730 uses only six of the sixteen RAM locations as working registers

in the microprogram.

The data path contains a 256-entry local store (LS), each entry consisting

of 32 bits. Local store contains the VAX general-purpose registers (GPRs) and

internal processor registers (IPRs), and various constants and temporaries used

by the microprogram.

E.2.4 Micro Instruction Set

The VAX-11/730 microcode is organized vertically. Therefore, it is relatively

easy to write microprograms. Each microinstruction resembles an assembler-level

instruction of a simple minicomputer. There is relatively little parallelism, unlike

in a horizontally-microprogrammed machine where each microinstruction would

specify many functions in parallel. The principal di�culties in writing microcode

for the VAX-11/730 come from the non-orthogonal microinstruction set, the

delayed-branch instructions, and the delayed-memory-reference instructions.

241

The microinstruction set is not at all orthogonal. That is, not all operations

can be performed on all sources and destinations. Some microinstructions can

only be used with certain of the working registers and/or the Q register. However,

the local store organization is the most serious cause of non-orthogonality.

Local store is organized in two halves of 128 entries each. The lower half of

local store can be used as the source or destination address of a wide variety of

microinstructions, permitting arithmetic to be done directly to or from a local

store address. However, the upper half of local store can only be used in move

(MOV) microinstructions. As a result, operations on values stored in the upper

half of local store can require one or two extra micro instructions. Further, the

microprogrammer can easily forget whether a named location is in the upper

or lower half of local store, resulting in a large number of microassembly-time

errors.

The microinstruction set has a very limited repertoire of shift and rotate

instructions, as shown in Table E.1. The single and double bit shifts and rotates

are implemented by the DAP, but the 9-bit and 15-bit rotates are implemented

by the data rotator in the MCT and require delays, just as memory references

do.

� Shifts

{ 1 bit right, sign extended

{ 1 bit left, zero �lled

{ 2 bits left, zero �lled

� Rotates

{ 1 bit right

{ 1 bit left

{ 9 bits right (using data rotator)

{ 15 bits left (using data rotator)

Table E.1: VAX-11/730 Microcode Shifts and Rotates

E.3 Microprogram Organization

The microprogram is organized into 12 major modules, as shown in Table E.2.

1

The two modules, FPWARM and FPHOT, are of the most interest, because they

1

The instructions are not strictly divided between the modules, as Table E.2 would suggest.

For example, the BITFLD module does not contain only bit �eld instructions.

242

are where the most unused microwords can be found. FPWARM contains the

microcode implementation of all the VAX oating point instructions. FPHOT

contains microcode to invoke the Floating-Point Accelerator (FPA) to implement

a large number of the VAX oating-point instructions. At power-up time, the

system checks to see if an FPA is present and loads either FPWARM or FPHOT

from the TU58 tape cartridge. This is important, because FPHOT contains

a large block of free microwords, and it was these microwords that I used to

implement the SCAP microcode. Thus, SCAP microcode can only run on VAX-

11/730s that have an FPA installed.

Module Start End Function

Name Address Address

DEFINE - - macro de�nitions

CONSLE 0000 07FF console functions, MFPR, MTPR

MMIE 0800 0DFF memory mgmt, interrupts & exceptions

FPWARM 0E00 19FF warm oating point

FPHOT 0E00 19FF hot oating point

BITFLD 1A00 1CFF bit�eld instructions

CM 1D00 21FF PDP{11 compatibility mode

BASIC 2200 3AFF basic instruction set

QUEUE 3B00 3FFF queue instructions

IDC 4000 43FF integrated disk controller

IRDFPA 6200 6614 basic instruction set with FPA

POWER 8E00 8FFF power-up code

Table E.2: VAX-11/730 Microprogram Modules

E.4 Microprogramming Tools

The microprogramming tools available for the VAX-11/730 are relatively prim-

itive. There is no linker, so the microcode must be assembled as a single block

by the MICRO2 assembler[155]. The output of MICRO2 is a listing �le and

a ULD �le. A ULD �le contains a text representation of the microcode to be

loaded into the micromemory or U-memory. The ULD �le is then processed by

a program, called ULDTOBIN, that produces binary images suitable for writing

to the TU58 tape cartridge. The microprogram is over 85,000 lines in length

and a microassembly combined with the necessary housekeeping operations to

prepare the TU58 tape and cross-reference listings can take over 2 1/2 hours on

a VAX-11/730 or over one hour on a MicroVAX-II. Writing the TU58 tape takes

another 10 minutes, and loading the microcode into the WCS takes another 10

minutes. Thus, correcting a minor microcode error can be very time-consuming.

243

244

Appendix F

Interrupt Handling in

Capability Systems

This appendix summarizes how hardware interrupts were handled in a number of

earlier capability-based processors. The information is presented here to contrast

with the SCAP approach to interrupt handling, presented in chapter 19.

F.1 CAP

The CAP computer handles interrupts in microcode by forcing an entry to the

master-coordinator process [223, Section 3.15]. The master coordinator then

schedules the appropriate process to run in response to the interrupt. The ex-

pense of the Coordinator Entry instruction plus the cost of making a scheduling

decision makes interrupt latency relatively long in the CAP. Actual device con-

trol was not carried out in the CAP processor itself, but rather in a front-end

computer. Originally, a CTL Modular One computer served as the front-end

processor to which all I/O devices were attached. As the Cambridge ring was

developed, the CAP operating system was converted to use only a single periph-

eral, the ring, for all I/O operations [53]. The CAP microprogram was modi�ed

to include �ve orders for driving the ring which force coordinator entries as above.

As with the Modular One, the actual terminal and disk control is done, not by

the CAP processor, but by the terminal concentrators and �le servers attached

to the ring [165]. While the CAP operating system had no real-time response

requirements in either con�guration, the modi�ed CAP microprogram had to

respond to interrupts from the ring every twelve microseconds. Ring interrupts

were handled entirely in the microprogram, and no attempt was made to execute

cross-domain calls in response to interrupts.

245

F.2 Intel 432

The Intel 432 consists of the 432 General Data Processor (GDP) chip [101] and

one or more front-end processors that handle I/O. The front-end processors are

conventional processors and are not capability-based. The GDP communicates

with the front-end processors using a message-passing protocol described in [169,

Chapter 7]. The message-passing protocol, including the process-wakeup func-

tions, is implemented entirely in microcode. While this architecture eliminates

the need for interrupts in the capability-based processor, the actual I/O device

drivers must be written in a totally conventional manner with none of the bene-

�ts of protection domains to assist in assuring correctness and security. Further,

the cost of passing messages to the GDP means that any time-critical functions

must be performed in the front-end processor, rather than in the capability-based

environment.

F.3 IBM System/38

The IBM System/38 handles I/O interrupts with a complex microcode mecha-

nism that turns the interrupts into signals in a general-purpose event system [103,

Chapter 15]. Machine instructions are provided to allow programs to declare

event monitors, test events, enable and disable events, etc. Events can be caused

by I/O operations, timer runouts, or explicit program action. Because the Sys-

tem/38 event mechanism is so high-level, the amount of microcode needed to

handle an I/O interrupt is quite large. However, the System/38 is not sold as

a real-time processor, so the relatively long times needed to turn interrupts into

events are probably not a serious concern.

F.4 Honeywell DPS 88

The Honeywell DPS 88 processor [64] responds to faults and interrupts by exe-

cuting a cross-domain call instruction to a particular domain as speci�ed by an

enter capability stored in a processor-speci�c fault vector.

1

While the translation

bu�ers of the DPS 88 are optimized to not require ushing on a cross-domain

call, the number of registers that must be saved and loaded at the time of an

interrupt is sizable (up to sixty four 36-bit words). As a result, the interrupt

latency is likely to be quite high. The DPS 88 is sold as a mainframe com-

puter and is not intended to do real-time processing. It has a separate channel

processor, called an Input-Output Multiplexor (IOM), that directly handles the

peripherals.

1

In DPS 88 terminology [64], a cross-domain call is an ICLIMB instruction, and an enter

capability is an entry descriptor.

246

F.5 Plessey System 250

The Plessey System 250 [87] has a di�erent approach to handling I/O interrupts

in a capability system. Rather than using a true interrupt system, the System 250

uses a polling system to detect I/O events. A location in store, the system

interrupt word, is accessible to all processors and I/O channels through a special

capability. I/O channels (or processors) can set bits in the system interrupt word.

Each CPU polls the interrupt word periodically (typically every 100 �s).

2

Such

a polling approach is particularly suitable for the intended applications of the

System 250 in telephone-switching systems. The only conventional interrupts [65,

pp. 401{402] in the System 250 are for timer runouts (to implement the polling)

and for fault conditions.

2

This type of scheduled device polling is common in many real-time applications.

247

248

Appendix G

Possible Kernel Design

This appendix contains a brief sketch of what the SCAP security kernel might

look like. The research leading up to this dissertation has focused primarily on

the security model and on the processor architecture. The purpose of this sketch

is merely to suggest how the kernel might be designed. It does not include any

detailed design or implementation, so major portions of the sketch may prove to

be inaccurate.

The design is based heavily on the Multics security kernel [190], the Naval

Postgraduate School security kernel [187], and the earlier Digital Equipment

Corporation security kernel [120] designs. As part of the Multics security kernel

design, Janson [108] proposed breaking the kernel into a hierarchic set of type

managers. By forbidding dependency loops between the type managers, the

overall design of the kernel becomes much clearer, and one can easily debug

lower-level components of the kernel with higher-level components not present

at all. All of the previous e�orts to create layered kernel designs have used

type managers only to structure their code. No enforcement of type-manager-

boundaries was ever done. All of the layers of the kernel actually resided in a

single domain of protection, because the processors in question, Multics, the Zilog

Z8000, and the VAX, were all based on protection ring architectures and could

not support large numbers of small domains. As seen in the author's experience

during the development of the VAX kernel, malfunctions in one layer of the kernel

can easily damage other layers. The major new feature of the SCAP kernel is

the use of small protection domains to isolate the di�erent layers of the kernel.

This strong isolation should produce a more robust kernel implementation that

should be easier both to debug and to formally specify and verify.

G.1 The Major Type Managers

Figure G.1 shows the lower-level type managers of the SCAP kernel. The design

is based heavily on Janson's design for Multics, and this choice of layers is still

very preliminary. When the full design of the SCAP kernel is done, I expect that

249

the particular set of layers will change somewhat. In particular, the design shown

in Figure G.1 does not include disk quota or removable disk packs. These areas

will likely be quite di�erent from Janson's design. The �gure also omits many

of the higher levels of the kernel including network interfaces, terminal handlers,

and the secure-server functions.

The translation-bu�er manager is the lowest layer of the kernel. It is respon-

sible for loading PTEs into the translation bu�er. It uses the inform capability

segments and the page tables to determine what to load. As part of its oper-

ation, it must check for capabilities that have not been validated and generate

exceptions to higher layers. It must also check the eventcount values in the ca-

pability to detect revocations, based on the strategy described in Chapter 11.

The translation-bu�er manager may be implemented in software or in microcode,

depending on how the CPU is implemented. (See Section 15.3.)

The kernel-segmentmanager is responsible for allocating the primary memory

used by the security kernel itself. Since the cost of memory is dropping so

dramatically, this layer can be made very simple by pre-allocating the kernel's

memory at boot time. As a result, page faults occur only on non-kernel pages,

and the overall memory-management strategy can be much simpler. The idea

of a separate memory-management layer to support the kernel itself was �rst

proposed by Saxena. [183]

The lower-level scheduler, based on the work of Reed [180], creates the ab-

straction of SCAP processes. SCAP processes are analogous to Reed's level-one

virtual processors (vp1s), and are described in more detail in Section 6.1.2. The

lower-level scheduler handles I/O interrupts and converts them into wakeups for

the appropriate SCAP process. SCAP processes synchronize with each other by

using level-one eventcounts [181]. All code above the lower-level scheduler runs

in the context of a SCAP process.

The primary-memory page manager is responsible for allocating all pages of

primary memory that are not used by the kernel-segment manager. The pages

are kept on one of four lists - the used list, the free list, the modi�ed list and

the bad list. Higher layers are responsible for moving pages between the various

lists.

The disk driver is responsible for reading and writing pages on the disks.

This abstraction will actually be somewhat more complex, as there is a general

I/O manager that handles all I/O requests and dispatches requests to various

I/O drivers. Drivers will run in dedicated SCAP processes so that I/O can be

performed asynchronously with the rest of the security kernel.

The page-table manager is responsible for page-table entries for each page

of non-kernel objects. It handles page faults, issues the appropriate disk I/O

requests, etc. The exact form of the page-table structures is yet to be determined.

250

Translation-Bu�er

Manager

Kernel-Segment

Manager

�

�

�

�

�

��

Lower-Level

Scheduler

Primary-Memory

Page Manager

Disk Driver

?

Page-Table

Manager

?

?

?

Passive-

Object

Manager

?

Active-

Object

Manager

?

Inform-

Capability

Manager

H

H

H

H

H

Hj

Object Manager

�

�

�

�

�� ?

H

H

H

H

Hj

Known-Object

Manager

?

Higher-Level

Scheduler

?

?

Directory Manager

?

@

@R

Figure G.1: Lower-Level Type Managers for SCAP Security Kernel

251

The inform-capability manager is responsible for the capability segments as-

sociated with a domain. It is the analog of Janson's [108] connected-segment

manager that manages the Multics descriptor segments.

The passive-object manager maintains a at �le system on the disk for storing

objects. It is called by the object manager to swap objects in and out.

The active-object manager is responsible for the active-object table (AOT),

as described in Section 11.3.

The object manager is responsible for objects, whether they are active or

passive. As a result, it calls on both the active- and passive-object managers

to move objects in and out. In particular, the object manager is responsible

for maintaining consistency of objects on disk and in primary memory. The

�nal implementation of the SCAP security kernel will have to support an atomic

transaction protocol on objects, to avoid the problems that Multics su�ered

that directories could be left inconsistent after a system crash. The security

kernel cannot a�ord anything of the complexity and unreliability of the Multics

salvager. Instead, the object manager and the directory manager will implement

some form of two-phase commit protocol to ensure object consistency. Detailed

design of such a reliable storage system is beyond the scope of this dissertation.

The known-object manager maintains a per-job known-object table (KOT).

Each job has a known-object table that holds all the outform capabilities for all

domain instances within the job. The inform capabilities have pointers back into

the KOT for use when objects are deactivated. The KOT is somewhat analogous

to the process resource list (PRL) in the CAP I system [231], but indirection to

the PRL is only used to �nd an outform capability, and no further indirection

to other KOTs is ever required.

The higher-level scheduler (HLS) creates the SCAP domain abstraction. As

discussed in Section 6.5, SCAP domains are analogous to Reed's level two vir-

tual processors (vp2s). Processes move from domain to domain by issuing cross-

domain-call instructions that are logically the equivalent of Reed's bind opera-

tions. The HLS is responsible for creating and destroying domains and for gross

level scheduling of the system, including, in particular, scheduling of access to

primary memory. The lower-level scheduler, by contrast, tries to keep the CPU

busy from the set of runnable processes. Together, the higher-level and lower-

level schedulers implement the Multics notion of eligibility [168, p. 273], that

only processes from as many domains as will �t into primary memory should be

eligible to run on the CPU. Scheduling additional domains would only cause the

demand paging system to thrash.

The directory manager is responsible for maintaining the directory hierarchy

on disk. All objects have directory entries, so that access control decisions can

be made. The directory manager and the object manager have to implement an

atomic transaction protocol to ensure object consistency, even in the presence of

system crashes.

252

G.2 Performance Considerations

The design presented so far has used protection domains quite freely. As a

result, the number of cross-domain calls within the security kernel will be very

high. As Janson points out, however, such a large number of cross-domain calls

will likely make the overall system performance unacceptably bad, no matter

how fast the actual cross domain call can be made. He recommends that calls on

lower-level domains be in-line expanded by the compiler. Such a recommendation

is quite reasonable in the context of a Multics security kernel in which all the

type managers are actually running in a single domain of protection (ring 0).

However, the primary purpose of SCAP domains is to provide structure and

protection within the security kernel to provide additional con�dence that the

kernel is correctly implemented. In-line code expansion would eliminate those

bene�ts.

This author's personal experience with security-kernel implementation in a

protection-ring environment [120] indicates that only certain cross-domain calls

within the kernel occur frequently. The SCAP kernel should initially be imple-

mented with all type managers in separate domains. Then, the kernel's perfor-

mance should be carefully measured, and based on those measurements, certain

layers should be collapsed by in-line code expansion. As a result, it is essential

that the kernel's implementation language support optional in-line expansion of

procedure calls.

253

254

Appendix H

SCAP Software Compatibility

H.1 General Issues

Merely solving the security and performance problems of capability systems will

not make them universally popular. The other major, and perhaps most cru-

cial, problem to solve is software compatibility. Users of computer systems have

made major investments in existing software that is designed to run on existing

operating systems. Those users are not going to give up that software, simply

because a new and secure operating system has been introduced. Similarly, com-

puter vendors and independent software vendors have made major investments

in software packages to sell to the users, and those vendors would incur high

costs to convert those packages to a new operating system.

Capability-based operating systems have thus far been quite di�erent from

conventional operating systems and have maintained little, if any, compatibility

with existing software. As a result, the costs of converting to a capability system

have been quite high and, combined with the reputation for poor performance,

have contributed to capability systems being unpopular.

1

The history of security kernels has demonstrated the same compatibility

problem. The original security kernel for the PDP-11/45, developed by Lee

Schiller [188] at the MITRE Corporation, su�ered from a lack of compatibil-

ity with other PDP{11 operating systems. That incompatibility motivated the

development of kernelized versions of UNIX, as originally proposed by Lipner,

Beckhardt, and Stork [142].

1

The one exception to this lack of popularity has been the IBM System/38. While soft-

ware conversion costs have been signi�cant, the System/38 operating system is much more

powerful than the simple operating systems of its immediate predecessors, the IBM System/3,

System/32, and System/34. As a result, users have been willing to convert to the System/38

from those systems, but would be less willing to convert from more powerful systems, such as

IBM's MVS or VM/370 or AT&T's UNIX.

255

Integrating the SCAP secure capability architecture with existing operating

systems remains a di�cult problem, and a full solution is well beyond the scope

of this dissertation.

One approach is to build a totally new capability-based operating system.

However, the investment required would be massive, and few existing applications

could be run on the new system. The SCAP architecture has been designed to be

used on VAX processors with only minimal modi�cations to the processor itself.

Therefore, it would be desirable to run existing VAX operating systems, such as

ULTRIX-32 (Digital's version of the UNIX operating system) or VAX/VMS.

This appendix briey examines two ways that SCAP could support existing

operating-system code. One is by replacing the UNIX setuid mechanism by

SCAP protected subsystems and domains. The other is by creating a virtual

machine monitor for compatibility purposes.

H.2 Replacing Setuid

One could build a security kernel on the SCAP architecture that provided an

interface that looked much like UNIX. This appears possible, because UNIX

already has a limited protected subsystem mechanism based on setuid. This

section suggests how one might replace setuid programs with SCAP domains.

The proposal here does not address the ideas of light-weight processes, described

in Section 6.1.2. It is only a sketch of a design intended as a possible direction

for future research.

H.2.1 Setuid Protected Subsystems

The current UNIX protected-subsystem mechanism is based on the setuid and

setgid bits in the access mode of a �le. When the UNIX shell invokes a program,

it uses fork(2) [213, p. 2-45] to create a sub-process in which the program is

to run. The sub-process then issues the execve(2)[213, pp. 2-32 { 2-34] system

call to start the program. Execve checks the setuid and setgid bits on the �le

containing the program, and if either is set, changes the e�ective user ID or

group ID of the process to that of the owner of the program. Thus, the owner of

the program can create objects that can only be manipulated by the protected

subsystem and not by other programs that the user might run. The user who runs

a setuid program does not receive reciprocal protection from malicious actions

that the program might take. Speci�cally, the setuid program has full access to

the objects that belong to the caller.

2

Thus, setuid is not su�cient to solve the

mutually-suspicious subsystem problem [189].

2

Gould has developed some limitations on setuid programs in its secure UNIX product,

UTX/32S [32].

256

Further, the UNIX setuid mechanism does not provide a convenient method

for repeatedly calling a protected subsystem, such as in CAP-I [231]. If the setuid

program returns to its caller, the sub-process is destroyed and a subsequent

invocation would incur the expense of recreating the sub-process. The parent

process could use interprocess communication to pass information to the setuid

program, but there is no counterpart of CAP-III's ability to pass capabilities as

interprocess messages [93].

H.2.2 SCAP Protected Subsystems in UNIX

Although setuid is clearly insu�cient, the concept of running a protected subsys-

tem in a separate address space forms the basis for supporting SCAP protected

subsystems and domains.

A protected subsystem is a collection of capabilities and �les stored on the

disk. A domain is an instance of a protected subsystem in execution. A domain

runs at the non-discretionary access class of its creator. A domain in execution

bears a strong resemblance to a UNIX process. It has its own address space and

registers and will be scheduled independently from other processes or domains.

Unlike a UNIX process that is created by the fork(2) system call, a domain is

created by a new system call that combines the e�ects of fork(2) and execve(2)

into one call. A process created with fork(2) is an exact copy of its parent. A

domain, however, always runs a program di�erent from its caller and must be

protected from its caller throughout its existence. The new domain-creation call

combines the fork and execve operation into a single, atomic call. The resulting

domain will be running in a separate process with the domain's program already

loaded. Unlike a child process, a created domain does not inherit opened �le

descriptors. Instead, the domain receives arguments via a cross-domain call, as

described in Chapter 17.

H.3 A Virtual Machine Monitor for SCAP

The other approach to achieving software compatibility without major devel-

opment expense is to provide a virtual machine monitor as part of the SCAP

operating system. If SCAP were built as a set of extensions to the VAX archi-

tecture, and if the protection-ring features of the VAX (that is, the four access

modes: kernel, executive, supervisor, and user) were retained, then one could

implement a virtual VAX CPU in a single domain of protection. Other domains

would contain the software that constituted the virtual machine monitor, and

that software would simulate the operation of VAX privileged instructions that

were trapped by the hardware when the virtual VAX CPU attempted to exe-

cute them in an unprivileged domain. With such a virtual machine monitor, one

could continue to run unmodi�ed versions of both VAX/VMS and ULTRIX-32 in

257

parallel with the new capability-based operating system. Further, one could add

cross-domain calls to the run-time libraries of the existing operating systems,

to allow existing applications to make calls on programs running in di�erent

domains, outside the virtual machine monitor.

The principal di�culty with building such a virtual machine monitor is

that the VAX architecture is not virtualizable, as de�ned by Popek and Gold-

berg [173]. The principal problem is that the Move Processor Status Longword

(MOVPSL) instruction is sensitive but not privileged. A sensitive instruction is

one that reveals information about the protection state of the processor. To be

virtualizable, all such instructions must be privileged, so that they can be trapped

and simulated by the virtual machine monitor. This problem (and other related

problems) would have to be resolved, before a SCAP operating system could

support virtual VAX processors that ran unmodi�ed VAX operating systems.

Solving these problems is well beyond the scope of this dissertation.

258

Appendix I

Annotated Code Sequences

This appendix contains the actual code for some of the experiments described in

Chapter 18. Not all of the experiments are included here, because they would be

far too voluminous. The intent is to give a avour of the code involved, rather

than complete listings. Only the inner loops of the performance experiments are

shown. The driver routines involved in booting the processor, setting up page

tables, and interfacing with the clock are not included. The routines are the

actual code used, with only minor editing for clarity.

I.1 Call with JSB

Figure I.1 shows the code for test 1 of Table 18.1 on page 184. Test 1 measures

the performance of calling and returning with the JSB and RSB instructions.

Register 2 is chosen arbitrarily to keep the loop count. The loop count is incre-

mented and tested by the AOBLEQ (add one and branch if less than or equal)

instruction. Note that the targets of both the JSB and the AOBLEQ instructions

are forced to be aligned on a longword boundary. All VAX branch instructions

su�er a performance penalty if their targets are not longword aligned. Forc-

.entry jsbtest,^m<r2>

movl #1,r2 ; start loop at 1

.align long,^x01 ; align on longword with NOPs

1$: jsb 2$; jump to the subroutine

aobleq #10000,r2,1$; do the loop 10000 times

ret ; return to caller

.align long

2$: rsb ; simply return from subroutine

.end

Figure I.1: JSB Measurement Code

259

ing alignment in this and all other experiments makes the performance results

independent of any alignment penalties.

I.2 Cross-Domain Call with SVPCTX

Figures I.2 and I.3 show the code for test 5 of Table 18.1 on page 184. Test 5

measures the performance of cross-domain call and return using the SVPCTX

and LDPCTX instructions. This test is somewhat more complex, because the

calling and called domains run in user mode, while the code sequences that

implement cross-domain call and return run in kernel mode.

Figure I.2 contains the code for the calling and called domains and for the

kernel-mode dispatcher. The test begins at the entry svpctx test, executing in

kernel mode. A PC/PSL pair is pushed onto the stack, and the test executes

an REI instruction to begin executing at the label caller code in user mode.

The calling domain executes a loop for 10,000 times, just as in Section I.1. The

cross-domain instruction (CCALL) is actually a reserved instruction that causes

an exception to be handled in kernel mode. Register 0 contains the number of the

routine to be called. The SCB entry for reserved-instruction exceptions has been

set to point to the label res inst. The code at that point determines whether

the reserved instruction was a cross-domain call (CCALL), a cross-domain re-

turn (CRET), a test completed (DONE), or some other unexpected reserved

instruction. Assuming that the instruction is a CCALL, the code branches to

label cross call in �gure I.3.

At cross call, the code pushes a frame onto the C-stack and executes the

SVPCTX instruction to save the state of the calling domain. As the SVPCTX

instruction does not save the entire state, the code executes a series of MFPR

instructions to save the memory management registers, ASTLVL, and PME. (See

Section D.2.2 for a de�nition of these internal-processor registers.) The code next

range tests the parameter in register 0, loads the new state with the LDPCTX

instruction, and executes an REI instruction to label callee code in Figure I.2.

At callee code, a cross-domain return (CRET) instruction is executed in

user mode causing a reserved-instruction exception, handled at label res int.

From there, the code branches to label cross ret in Figure I.3. The cross-

domain return sequence is simpler. The C-stack is popped, and an LDPCTX

instruction is executed to load the saved state of the calling domain. An REI

instruction is executed to return to user mode and the AOBLEQ instruction

continues the loop. At the completion of 10,000 iterations, the code executes

a DONE instruction that takes a reserved-instruction exception to enter kernel

mode and complete the experiment at the label all done.

260

.entry svpctx test,^m<r2,r9>

ccall op = ^x01FE

cret op = ^x02FE

done op = ^x03FE

.opdef CCALL ccall op,

.opdef CRET cret op,

.opdef DONE done op,

pushl #^x03C00000 ; push a PSL with IPL=0,

; CUR MOD=PRV MOD=3,

; and all other fields 0

pushal caller code ; push PC of caller code

rei ; rei to user mode and start

caller code: ; this executes in user mode

movl #1,r9 ; start loop at 1

.align long,^x01 ; longword align with NOPs

$1: movl #1,r0 ; routine number goes in r0

ccall

aobleq #10000,r9,$1 ; loop for 10000 times

done

.align long

callee code:

cret

.align long

res inst:: ; SCB vector branches here

cmpw @0(sp),#ccall op ; test for cross-call

beql cross call

cmpw @0(sp),#cret op ; test for cross-return

beql cross return

cmpw @0(sp),#done op ; test for all-done

beql all done

halt ; halt if something else

all done:

addl2 #8,sp ; pop the frame off the stack

ret ; and return

Figure I.2: SVPCTX/LDPCTX Measurement Code, Part 1

261

.align long

cross call:

subl2 #pcb length,csp ; push the CSP

mtpr csp,#pr$pcbb ; point PCBB at the C-stack

svpctx ; save the current context

movl csp,r1 ; now we can use registers

mfpr #pr$p0br,pcb.p0br(r1) ; save p0br

mfpr #pr$p0lr,pcb.p0lr(r1) ; save p0lr

mfpr #pr$p1br,pcb.p1br(r1) ; save p1br

mfpr #pr$p1lr,pcb.p1lr(r1) ; save p1lr

mfpr #pr$astlvl,r2 ; get ASTLVL into R2

insv r2,#24,#3,pcb.p0lr(r1) ; and insert into p0lr field

mfpr #pr$pme,r2 ; get PME into R2

ashl #31,r2,r2 ; shift into high bit

bisl2 r2,pcb.p1lr(r1) ; or in PME

addl2 #2,pcb.pc(r1) ; increment saved PC to jump

; over the reserved instruction

; At this point, the caller's state has been saved.

; The next code loads the callees state.

; The experiment uses a single PCB but simulates two PCBs.

; Remember that R0 contains the routine number being called.

tstl r0 ; test r0 for negative values

blss error case ; reject if negative

cmpl r0,#10 ; compare against max value

bgtr error case ; reject if greater than max

movl pcb.ksp(r0),r0 ; just use up some time

mtpr csp,#pr$pcbb ; put proper address into PCBB

ldpctx ; load the new context

moval callee code,0(sp) ; fix up new PC

rei ; and REI to user mode

cross return:

mtpr csp,#pr$pcbb ; load PCBB

addl2 #pcb length,csp ; pop CSP

ldpctx ; load the old context back

rei ; REI back

error case:

halt ; error cases

.end

Figure I.3: SVPCTX/LDPCTX Measurement Code, Part 2

262

I.3 Microcode Invoker

Figure I.4 shows the test routine that invokes the microcoded cross-domain call

and cross-domain returns instructions used in tests 7 through 11 of Table 18.1

on page 184. The code is very straightforward, compared to the invoking code in

Section I.2. There is no requirement to switch between kernel and user modes,

because the CCALL and CRET instructions are available in all modes. The

instructions use unassigned opcodes that the modi�ed microcode interprets as

cross-domain call and cross-domain return instructions. As noted in the com-

ments, the driving test code must have set up a cross-domain linkage table, such

that entry one contains the address of micro$target.

.entry microtest,^m<r7>

micro ccall op = ^x31FD

micro cret op = ^x30FD

.opdef CCALL micro ccall op,ab

.opdef CRET micro cret op,

movl #1,r7 ; start loop at 1

.align long,^x01 ; align to longword with NOPs

$1: ccall #1 ; call to routine #1

aobleq #10000,r7,$1 ; loop for 10000 times

ret

; The cross-domain linkage table has been initialized,

; such that the start address of routine #1 is micro$target

.align long

micro$target::

cret ; cross-domain return

.end

Figure I.4: Microcode Invoker

I.4 Cross-Domain Call Microcode

This section contains part of the microcode for test 7 of Table 18.1 on page 184.

Test 7 implements cross-domain call and return in microcode, saving and restor-

ing all the general registers every time. It includes none of the optimizations

described in Chapter 17. The microcode for test 7 is the best example to include

here, because all of the other versions of the microcode are derived from this ver-

263

sion, with certain functions removed. Appendix E contains a brief summary of

the microarchitecture of the VAX-11/730 and should be read before this section.

Only the microcode for cross-domain call is described here. The cross-domain

return microcode is omitted, as it does not display any additional interesting

features. The microcode is broken down into a series of blocks, each with an

accompanying brief description.

The cross-domain call instruction has a two-byte opcode (hex 31FD) and

takes one argument|an entry number that speci�es which enter capability in

the cross-domain call table should be used. The instruction assumes that all of

the relevant data structures, such as the C-stack, and the domain-control block,

have been paged in and are accessible. If any of the critical data structures is

not accessible, the instruction generates a kernel-stack-not-valid abort.

The �rst block of microcode shows how the instruction decodes its operand,

�nds the C-stack, and saves the stack pointer and the PSL.

.TOC " CROSS DOMAIN CALL INSTRUCTION 31FD"

5802: ; This puts the routine in the middle of the FPA code.

; Location is 1802 in FPWARM.MIC

HOT.CROSSCALL:

DECODE.SPEC ADRS[SRC1.FLT], ;FETCH 1ST OPERAND

JSR.IF(IB VALID) ;TEST FOR IB ERRORS

JSR [FILL.IB&DECODE.SPEC.ADRS(SRC1.FLT)]

; AT THIS POINT, THE PARAMETER IS IN WR[0]

MOV WR[0] TO LS[T2] ;SAVE PARAMETER IN T2

JSR [IE.SAVE.PC&PSL] ;SAVE PC AND PSL IN T1 & T0

MOV LS[PSL] TO WR[0] ;GET OLD PSL

AND LS[#1F0000] TO WR[0] ;NEW PSL IS ALL 0,

;WITH OLD VALUE OF IPL

JSR [REI.SAVE.OLD.SP] ;SAVE THE OLD SP REGISTER

MOV LS[CSP] TO WR[1] ;GET POINTER TO C-STACK

; NOW LOAD A NEW PSL, SO THAT WE CAN TOUCH THE C-STACK AND OTHER

; THINGS WITH KERNEL MODE ACCESS RIGHTS.

MOV WR[0] TO LS[PSL.HW] ;LOAD NEW HARDWARE PSL

SWAP WR[0] WITH LS[PSL] ; AND SAVE OLD ONE

MOV WR[1] TO LS[T3] ;GET ADDRESS INTO LOCAL STORE

The next block of microcode shows how the entry number is converted into a

pointer into the call table on the stack and is checked for validity. This block also

illustrates a typical performance optimization for the VAX-11/730. The �rst mi-

croinstruction initiates a longword read from primary memory, but the data is not

264

available until the third microinstruction. Therefore, the second microinstruc-

tion is inserted between the MEM.REQ and the MOV MEM.DATA microinstructions

to avoid stalling the processor.

MEM.REQ[READ.V.RCHK] ADRS[T3] DT[LONG] ;GET PTR TO CALL TABLE

MOV LS[#4] TO WR[2] ;GET A CONSTANT 4

MOV MEM.DATA TO WR[1], ;READ THE VALUE

SKIP.IF[MEM.REF.OK] ; SKIP IF NO PROBLEMS

JSR [READ.TO.WR1(ERROR)] ;FIX PROBLEMS OR FAULT

SUB WR[2] FROM LS[T3], ;INCREMENT POINTER

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;SERIOUS PROBLEM WITH C-STACK

; WR[1] NOW HAS A POINTER TO THE CALL TABLE

MEM.REQ[READ.V.RCHK] ADRS[T3] DT[LONG] ;GET LEN OF CALL TABLE

MOV LS[T2] TO WR[0] ;GET CALL NUMBER

MOV MEM.DATA TO WR[2], ;READ THE VALUE

SKIP.IF[MEM.REF.OK] ; SKIP IF NO PROBLEMS

JSR [READ.TO.WR2(ERROR)] ;FIX PROBLEMS OR FAULT

SHL2 WR[0], ;MULTIPLY CALL NUMBER BY 4

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;SERIOUS PROBLEM WITH C-STACK

; WR[2] NOW HAS LENGTH OF CALL TABLE IN BYTES

CMP WR[0] WITH WR[2], ;CHECK CALL NUMBER IN RANGE

DT(LONG)&SET.ALU.CC

JMP.IF[GEQU] TO [RESERVED.OPERAND.FAULT];JMP IF OUT OF RANGE

ADD WR[0] TO WR[1] ;COMPUTE ADDRESS OF CALL VECTOR

Next, the microcode locates the domain-control block (DCB), by reading the

address from the enter capabilities in the cross-domain call table. Then the

microcode reads the new PSL.

MOV WR[1] TO LS[T3]

MEM.REQ[READ.V.RCHK] ADRS[T3] DT[LONG] ;GET ADDRESS OF DCB

MOV LS[CSP] TO WR[0] ;GET C-STACK POINTER

MOV MEM.DATA TO WR[2], ;READ THE VALUE

SKIP.IF[MEM.REF.OK] ; SKIP IF NO PROBLEMS

JSR [READ.TO.WR2] ;FIX PROBLEMS OR FAULT

; AT THIS POINT, WE HAVE A PTR TO THE DOMAIN CONTROL BLOCK (DCB)

; IN WR[2] WE GOT IT BY READING THE ENTER CAPABILITY STORED IN THE

; CALL TABLE THE FIRST TIME, THE READ WILL FAULT, AND THE O/S WILL

; MAP THE DCB INTO THE VIRTUAL ADDRESS IN KERNEL MODE - SEE THE

265

; MEM.REQ INSTRUCTION ABOVE

; NOW WE START ON THE DCB

MOV WR[2] TO LS[T2] ;SAVE DCB ADDRESS IN T2

ADD LS[#20] PLUS WR[2] TO Q ;MOVE TO END OF DCB

ADD LS[#C] TO Q ; CONSTANT 2C CAN'T BE USED

MOV Q TO LS[T3] ;AND SAVE IN T3

MEM.REQ[READ.V.RCHK] ADRS[T3] DT[LONG] ;START READ OF NEW PSL

MOV LS[T0] TO WR[1] ;GET OLD IPL INTO WR[1] FOR USE LATER

MOV MEM.DATA TO WR[0], ;READ THE NEW PSL

SKIP.IF[MEM.REF.OK] ;SKIP IF NO PROBLEMS

JSR [READ.TO.WR0] ;FIX PROBLEMS OR FAULT

In this block, the microcode validates the new PSL. The requirements are

that the new IS must be zero, the new IPL must be equal to the old IPL, the

MBZ �elds must contain zeros, and, if the new IPL is greater than zero, then the

new current mode must be kernel. The code also checks for entry into PDP-11

compatibility mode.

This block also illustrates the VAX-11/730's delayed branching. The �rst

microinstruction performs a test and sets the condition codes. Before the con-

dition codes are available, there is room for an intervening microinstruction, in

this case an AND operation. The SKIP condition is speci�ed as part of the same

microword as the AND.

; NOW WE MUST VALIDATE THE NEW PSL

BIT LS[BIT26] WITH WR[0], ;TEST FOR PSL<IS>

DT(LONG)&SET.ALU.CC ; SET THE CONDITION CODES

AND WR[0] WITH LS[#1F0000] TO Q, ;GET NEW IPL INTO Q

SKIP.IF[BITS.CLR] ; SKIP IF PSL<IS> = 0

JMP [RESERVED.OPERAND.FAULT];NEW PSL<IS> MUST BE 0

AND LS[#1F0000] TO WR[1] ;GET OLD IPL INTO WR[1]

CMP WR[1] WITH Q, ;COMPARE IPL VALUES

DT(LONG)&SET.ALU.CC ; AND SET CONDITION CODES

;NOW TEST THAT CURRENT MODE = 0 IF IPL > 0

TST Q, ;SEE IF IPL > 0

DT(LONG)&SET.ALU.CC, ; AND SET CONDITION CODES

SKIP.IF[EQL] ; AND SKIP IF IPLs ARE EQUAL

JMP [RESERVED.OPERAND.FAULT];IPL CHANGE IS FORBIDDEN

MOV LS[#B020FF00] TO WR[1], ;GET MASK FOR MBZ AND CM FIELDS

SKIP.IF[BITS.CLR] ; SKIP IF IPL > 0

AND WR[0] WITH LS[#3000000] TO Q, ;MASK OUT ALL BUT CUR MODE

266

DT(LONG)&SET.ALU.CC ; AND SET CONDITION CODES

SKIP.IF[BITS.CLR] ;SKIP IF IPL > 0 & CUR > 0

; OR IF IPL = 0 (FALL THRU)

JMP [RESERVED.OPERAND.FAULT];IPL > 0 AND CUR > 0 FORBIDDEN

AND WR[0] TO WR[1], ;ISOLATE MBZ AND CM FIELDS

DT(LONG)&SET.ALU.CC ; AND SET CONDITION CODES

BIC LS[BIT31] TO WR[1], ;MASK ALL BUT MBZ FIELDS

DT(LONG)&SET.ALU.CC, ; AND SET CONDITION CODES

SKIP.IF[NEQ] ; AND SKIP IF MBZ AND CM NOT 0

JMP [CSTACK.PUSH] ;GO START PUSHING REGS

;

; The new PSL had compatibility mode bit set, or MBZ was nonzero.

; Check for PSL<MBZ> all clear, and if so, validate the REI into

; compatibility mode.

;

MOV LS[#C0000E0] TO WR[1], ; Get -11 mode MBZ bits.

SKIP.IF[EQL] ; Skip if PSL<MBZ> clear.

JMP [RESERVED.OPERAND.FAULT]; If PSL<MBZ> nonzero, fault.

AND WR[0] TO WR[1], ; Mask out all but compatibility

DT(LONG)&SET.ALU.CC ; mode PSL<MBZ> bits, & test them.

AND WR[0] WITH LS[#3000000] TO Q, ; Get new PSL<CUR> in Q,

SKIP.IF[EQL] ; skip if -11 mode and MBZ

; fields are clear

JMP [RESERVED.OPERAND.FAULT]; jump if they are nonzero.

CMP LS[#3000000] WITH Q, ; Compare new PSL<CUR> with User,

DT(LONG)&SET.ALU.CC ; as -11 mode must be in user mode

JMP.IF[NEQ] TO [RESERVED.OPERAND.FAULT] ; If not in user mode,

; fault.

SET.STATE.ZERO ; Set "entering -11 mode"

Here, the microcode begins to save the state of the calling domain by pushing

the memory management registers, PME and ASTLVL onto the C-stack.

; NOW START PUSHING REGISTERS ONTO THE C-STACK

CSTACK.PUSH:

MOV LS[CSP] TO WR[0] ;GET POINTER TO C-STACK

MOV WR[0] TO LS[T3] ;T3 WILL POINT TO THE C-STACK

MOV LS[#4] TO WR[2] ;WR[2] WILL CONTAIN CONSTANT 4

; PUSH PME AND P1LR

SUB WR[2] FROM LS[T3] ;SKIP OVER 1st 2 ENTRIES

267

SUB WR[2] FROM LS[T3] ;...

MOV LS[CONSOLE.CSR.IES] TO WR[1] ;GET PME

BIT LS[BIT6] WITH WR[1], ;FROM BIT 6

DT(LONG)&SET.ALU.CC

MOV LS[P1LR] TO WR[1], ;GET P1LR INTO WR[1]

SKIP.IF[BITS.CLR] ; AND SKIP IF PME IS OFF

BIS LS[BIT31] TO WR[1] ;SET THE PME BIT

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

MOV WR[1] TO LS[T7] ;GET VALUE INTO LS

WRITE.MEM LS[T7], ;DO THE PUSH

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [WRITE.T7(ERROR)] ;FIX PROBLEM OR FAULT

; PUSH P1BR

SUB WR[2] FROM LS[T3], ;GET NEXT LONGWORD ON C-STACK

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

MOV LS[P1BR] TO WR[1] ;GET P1BR INTO WR[1]

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

MOV WR[1] TO LS[T7] ;GET VALUE INTO LS

WRITE.MEM LS[T7], ;DO THE PUSH

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [WRITE.T7(ERROR)] ;FIX PROBLEM OR FAULT

; PUSH ASTLVL AND P0LR

SUB WR[2] FROM LS[T3], ;GET NEXT LONGWORD ON C-STACK

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

MOV LS[P0LR] TO WR[1] ;GET P0LR TO WR[1]

MOV LS[ASTLVL] TO WR[3] ;OR IN THE AST LEVEL

BIS WR[3] TO WR[1] ; USING WR3 DUE TO MICRO LIMITS

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

MOV WR[1] TO LS[T7] ;GET VALUE INTO LS

WRITE.MEM LS[T7], ;DO THE PUSH

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [WRITE.T7(ERROR)] ;FIX PROBLEM OR FAULT

; PUSH P0BR

SUB WR[2] FROM LS[T3], ;GET NEXT LONGWORD ON C-STACK

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

MOV LS[P0BR] TO WR[1] ;GET P0BR INTO WR[1]

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

268

MOV WR[1] TO LS[T7] ;GET VALUE INTO LS

WRITE.MEM LS[T7], ;DO THE PUSH

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [WRITE.T7(ERROR)] ;FIX PROBLEM OR FAULT

In the next block, the microcode continues to save the state of the calling

domain by pushing the PSL, PC, and the general registers onto the C-stack.

; PUSH PSL

SUB WR[2] FROM LS[T3], ;GET NEXT LONGWORD ON C-STACK

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

MOV LS[#E] TO WR[0] ;INITIALIZE THE LOOP COUNTER

; FOR THE GPR SAVE&CLEAR LOOP

WRITE.MEM LS[T0], ;WRITE SAVED VALUE OF PSL

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [WRITE.T0(ERROR)] ;FIX PROBLEM OR FAULT

; PUSH PC

SUB WR[2] FROM LS[T3], ;GET NEXT LONGWORD ON C-STACK

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

MOV WR[0] TO LS[OS] ;GET LOOP COUNTER INTO OS

;FOR THE GPR SAVE&CLEAR LOOP

WRITE.MEM LS[T1], ;WRITE SAVED VALUE OF PC

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [WRITE.T1(ERROR)] ;FIX PROBLEM OR FAULT

; NOW PUSH AND CLEAR REGISTERS FP THROUGH R0

SUB WR[2] FROM LS[T3], ;GET ADDRESS FOR NEXT PUSH

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

JSR [CROSS.REGISTER.SAVE.LOOP] ;START THE LOOP

CROSS.REGISTER.SAVE.LOOP:

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

DEC LS[OS], ;DECREMENT LOOP COUNTER

DT(LONG)&SET.ALU.CC ; AND SET CONDITION CODES

WRITE.MEM LS[GPR.OS], ;WRITE THE REGISTER VALUE

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [WRITE.GPR.OS(ERROR)];FIX PROBLEM OR FAULT

SUB WR[2] FROM LS[T3], ;GET ADDRESS FOR NEXT PUSH

SKIP

269

JMP [CSTACK_INVALID]

CLR LS[GPR.OS], ;CLEAR THE REGISTER

LOOP.IF(NEQ) ; AND LOOP UNTIL REGISTER 0

The next block of microcode completes saving the state of the calling domain

by pushing �ve stack pointers (USP, SSP, ESP, KSP, and CSP) onto the C-stack.

; NOW PUSH THE STACK POINTERS

; (REI.SAVE.OLD.SP ALREADY SAVED CURRENT SP)

; PUSH USP

MOV LS[USP] TO WR[1] ;GET THE STACK POINTER FROM LS

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

MOV WR[1] TO LS[T7] ;GET THE STACK POINTER INTO T7

WRITE.MEM LS[T7], ;WRITE THE VALUE

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [WRITE.T7(ERROR)] ;FIX PROBLEM OR FAULT

; PUSH SSP

SUB WR[2] FROM LS[T3], ;GET ADDRESS FOR NEXT PUSH

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

MOV LS[SSP] TO WR[1] ;GET THE STACK POINTER FROM LS

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

MOV WR[1] TO LS[T7] ;GET THE STACK POINTER INTO T7

WRITE.MEM LS[T7], ;WRITE THE VALUE

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [WRITE.T7(ERROR)] ;FIX PROBLEM OR FAULT

; PUSH ESP

SUB WR[2] FROM LS[T3], ;GET ADDRESS FOR NEXT PUSH

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

MOV LS[ESP] TO WR[1] ;GET THE STACK POINTER FROM LS

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

MOV WR[1] TO LS[T7] ;GET THE STACK POINTER INTO T7

WRITE.MEM LS[T7], ;WRITE THE VALUE

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [WRITE.T7(ERROR)] ;FIX PROBLEM OR FAULT

; PUSH KSP

SUB WR[2] FROM LS[T3], ;GET ADDRESS FOR NEXT PUSH

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

MOV LS[KSP] TO WR[1] ;GET THE STACK POINTER FROM LS

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

MOV WR[1] TO LS[T7] ;GET THE STACK POINTER INTO T7

270

WRITE.MEM LS[T7], ;WRITE THE VALUE

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [WRITE.T7(ERROR)] ;FIX PROBLEM OR FAULT

; NOW STORE THE NEW VALUE OF THE CSP REGISTER

MOV LS[#C] TO WR[1], ;GET 12 INTO WR[1]

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

SUB WR[1] FROM LS[T3] ;LEAVE ROOM FOR THE CAPAB ARG

MOV LS[T3] TO WR[1] ;GET VALUE INTO WR[1]

MOV WR[1] TO LS[CSP] ;AND FROM THERE TO LS[CSP]

Next, the microcode locates the call table of the new domain from the domain-

control block and pushes the address and length onto the C-stack.

; FIND THE ADDRESS OF THE CALL TABLE OF THE NEW DOMAIN

; AND PUSH IT ONTO THE C-STACK

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG] ;START THE MEMORY READ

ADD WR[2] TO LS[T2] ;GET POINTER TO NEXT ENTRY

MOV MEM.DATA TO LS[T7], ;READ THE NEW POINTER

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [READ.TO.T7(ERROR)] ;FIX PROBLEM OR FAULT

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG],;START THE WRITE

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS READ FAILED

ADD WR[2] TO LS[T2] ;GET POINTER TO NEXT ENTRY

WRITE.MEM LS[T7], ;WRITE THE POINTER TO THE

SKIP.IF[MEM.REF.OK] ; NEW CALL TABLE INTO THE

; FIRST LONGWORD OF THE NEW

; C-STACK FRAME

JSR [WRITE.T7(ERROR)] ;FIX PROBLEM OR FAULT

; FIND THE LENGTH OF THE CALL TABLE OF THE NEW DOMAIN

; AND PUSH IT ONTO THE C-STACK

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG], ;START THE MEMORY READ

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

SUB WR[2] FROM LS[T3] ;NEXT C-STACK LOCATION

MOV MEM.DATA TO LS[T7] ;READ THE NEW LENGTH

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [READ.TO.T7(ERROR)] ;FIX PROBLEM OR FAULT

MEM.REQ[WRITE.V.WCHK] ADRS[T3] DT[LONG] ;START THE WRITE

;ROOM FOR AN INSTRUCTION HERE

WRITE.MEM LS[T7], ;WRITE THE LENGTH OF THE

SKIP.IF[MEM.REF.OK] ; NEW CALL TABLE INTO THE

271

; SECOND LONGWORD OF THE NEW

; C-STACK FRAME

JSR [WRITE.T7(ERROR)] ;FIX PROBLEM OR FAULT

In this block, the microcode begins to load the state of the called domain

by reading values for the KSP, ESP, SSP, and USP from the domain-control

block. The code sequences that load the ESP, SSP, and USP illustrate another

optimization. The VAX-11/730 permits a value to be transferred from primary

memory into a working register in parallel with the old contents of the working

register being written to local store.

; READ THE KSP

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG], ;START THE MEMORY READ

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS WRITE FAILED

ADD WR[2] TO LS[T2] ;GET POINTER TO NEXT ENTRY

MOV MEM.DATA TO WR[1], ;READ THE KSP

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [READ.TO.WR1(ERROR)];FIX PROBLEM OR FAULT

; READ THE ESP

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG], ;START THE MEMORY READ

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS READ FAILED

ADD WR[2] TO LS[T2] ;GET POINTER TO NEXT ENTRY

MOV MEM.DATA TO WR[1] XCHG TO LS[KSP], ;READ ESP & SAVE KSP

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [READ.TO.WR1(ERROR)];FIX PROBLEM OR FAULT

; READ THE SSP

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG], ;START THE MEMORY READ

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS READ FAILED

ADD WR[2] TO LS[T2] ;GET POINTER TO NEXT ENTRY

MOV MEM.DATA TO WR[1] XCHG TO LS[ESP], ;READ SSP & SAVE ESP

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [READ.TO.WR1(ERROR)];FIX PROBLEM OR FAULT

; READ THE USP

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG], ;START THE MEMORY READ

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS READ FAILED

ADD WR[2] TO LS[T2] ;GET POINTER TO NEXT ENTRY

MOV MEM.DATA TO WR[1] XCHG TO LS[SSP], ;READ USP & SAVE SSP

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

272

JSR [READ.TO.WR1(ERROR)];FIX PROBLEM OR FAULT

MOV WR[1] TO LS[USP], ;SAVE THE USP

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS READ FAILED

Here, the microcode continues loading the state of the called domain by

reading values for the memory management registers, PME, and ASTLVL from

the domain-control block.

; Load P0BR

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG] ; Start fetching P0BR

ADD WR[2] TO LS[T2] ;GET POINTER TO NEXT ENTRY

MOV MEM.DATA TO WR[0], ; Read the new P0BR.

SKIP.IF[MEM.REF.OK] ; Continue if no error.

JSR [READ.TO.WR0(ERROR)]; Fix the problem or fault

NOP, ; DO NOTHING

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS READ FAILED

JSR [MTPR.P0BR] ; Load the new P0BR.

JMP [RESERVED.OPERAND.FAULT] ; Fault if value is reserved.

;

; Read P0LR and ASTLVL, and load P0LR.

;

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG]

; Start fetching <P0LR & ASTLVL>.

ADD WR[2] TO LS[T2] ;GET POINTER TO NEXT ENTRY

MOV MEM.DATA TO WR[0], ; Read the new P0LR & ASTLVL.

SKIP.IF[MEM.REF.OK] ; Continue if no error.

JSR [READ.TO.WR0(ERROR)]; Fix the problem or fault

MOV WR[0] TO LS[T3], ; Save a copy of ASTLVL in T3<26:24>.

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS READ FAILED

JSR [MTPR.P0LR] ; Load P0LR

JMP [RESERVED.OPERAND.FAULT] ; Fault if bad value.

;

; Load ASTLVL.

;

MOV LS[#7000000] TO WR[0] ; Get a copy of ASTLVL in <26:24>.

AND WR[0] TO LS[T3] ;Clear all but <26:24>.

BIC LS[#2000000] TO WR[0] ;Build 5000000 constant

CMP LS[T3] WITH WR[0], ; ASTLVL is less than 5.

DT(LONG)&SET.ALU.CC ;

273

JMP.IF[GEQU] TO [RESERVED.OPERAND.FAULT];Fault if too large.

MOV LS[T3] TO WR[0] ;Get Users ASTLVL for LS location.

;

; Load P1BR.

;

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG]

ADD WR[2] TO LS[T2] ;GET POINTER TO NEXT ENTRY

MOV MEM.DATA TO WR[0] XCHG TO LS[ASTLVL],; Read the new P1BR.

;and load ASTLVL read before.

SKIP.IF[MEM.REF.OK] ; Continue if no error.

JSR [READ.TO.WR0(ERROR)]; Fix the problem or machine check.

NOP, ; DO NOTHING

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS READ FAILED

JSR [MTPR.P1BR] ; Load the new P1BR.

JMP [RESERVED.OPERAND.FAULT] ; Fault if the value is reserved.

;

; Load P1LR from the DCB. PME is ignored.

;

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG]

ADD WR[2] TO LS[T2] ;GET POINTER TO NEXT ENTRY

MOV MEM.DATA TO WR[0], ; Read the new P1LR.

SKIP.IF[MEM.REF.OK] ; Continue if no error.

JSR [READ.TO.WR0(ERROR)]; Fix the problem or machine check.

BIT LS[BIT31] WITH WR[0], ; Check if PME should be on.

DT(LONG)&SET.ALU.CC,

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS READ FAILED

MOV LS[CONSOLE.CSR.IES] TO WR[1]; Get present PME value.

BIT LS[BIT6] WITH WR[1],;Check if present PME on.

DT(LONG)&SET.ALU.CC,

SKIP.IF[BIT.SET] ;skip if should be on.

BIT LS[BIT30] WITH WR[0], ;Perform operation to clear the cc's

DT(LONG)&SET.ALU.CC, ;so the next test will pass.

SKIP.IF[BITS.CLR] ;skip if should be clear and is.

JMP.IF[BITS.CLR] TO [PME.CHANGE] ; Jump to change PME.

JSR [MTPR.P1LR] ; Load the new P1LR.

JMP [RESERVED.OPERAND.FAULT] ; Fault if the value is reserved.

In this block, the cross-domain call is completed. The microcode ushes the

process part of the translation bu�er, loads the new PC, SP, and PSL, checks for

ASTs and software interrupts, loads the hardware copy of the PSL, and makes

a �nal check for PDP-11 compatibility mode. It then fetches the next VAX (or

274

PDP-11) instruction. Note that the translation bu�er can only be ushed by a

microcode loop which writes one entry at a time.

; NOW FLUSH THE PROCESS PART OF THE TB

;

MOV LS[#1FF] TO WR[0] ;GET ADDRESS IN PAGE BOUNDARY AREA

MOV WR[0] TO LS[T3] ; OF FIRST PAGE INTO LOCAL STORE

MOV LS[#20] TO WR[0] ;USE LOOP COUNT OF 32

MOV LS[#400] TO WR[1] ;INCREMENT PAST TWO ENTRIES AT A TIME

JSR [CROSS.SWEEP.TB.01] ;START THE LOOP

CROSS.SWEEP.TB.01:

MEM.REQ[WRITE.TB.STEP] ADRS[T3] DT[LONG] ;START THE WRITE

DEC WR[0], ;DECREMENT THE LOOP COUNT

DT(LONG)&SET.ALU.CC ; AND SET THE CONDITION CODES

WRITE.MEM LS[ZERO] ;WRITE THE ZERO INTO THE TB

ADD WR[1] TO LS[T3], ;INCREMENT TO TWO MORE TB ENTRIES

LOOP.IF(NEQ) ; AND LOOP IF MORE ENTRIES

;NOW LOAD PC, SP, AND PSL

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG] ;START FETCHING PC

ADD WR[2] TO LS[T2] ;INCREMENT TO NEXT LONGWORD OF DCB

MOV MEM.DATA TO WR[0], ;GET THE NEW PC VALUE INTO WR[0]

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [READ.TO.WR0(ERROR)];FIX OR FAULT

MEM.REQ[READ.V.RCHK] ADRS[T2] DT[LONG], ;START FETCH OF PSL

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS READ FAILED

MOV WR[0] TO LS[PC] ;PUT VALUE INTO THE PC

MOV MEM.DATA TO WR[0], ;GET NEW PSL INTO WR[0]

SKIP.IF[MEM.REF.OK] ; AND SKIP IF OK

JSR [READ.TO.WR0(ERROR)];FIX OR FAULT

MEM.REQ[READ.V.RCHK.IFILL] ADRS[PC] DT[LONG],

;FLUSH AND FILL IB,

SKIP ; AND SKIP

JMP [CSTACK_INVALID] ;IF PREVIOUS READ FAILED

JSR [REI.LOAD.NEW.SP] ;LOAD THE NEW SP VALUE

JSR [REI.LOAD.PSL] ;LOAD THE PSL

JSR [REI.CHECK.ASTLVL] ;CHECK FOR ASTs

JSR [REI.CHECK.SISR] ;CHECK FOR SOFTWARE INTERRUPTS

MOV WR[0] TO LS[PSL.HW] ;LOAD THE HARDWARE WITH THE NEW PSL

NOP, ;WAIT A STATE FOR PSL<T> TO PROPOGATE,

SKIP.IF[STATE.ZERO.SET]; AND SKIP IF ENTERING -11 MODE

JMP [IRD] ;NEXT NATIVE MODE INSTRUCTION

JMP [CM.RESTORE.Q.AND.IRD] ;NEXT -11 MODE MODE INSTRUCTION

; END OF CROSS-DOMAIN CALL INSTRUCTION

275

276

Index

*

{property. See con�nement

property.

A-segment, 166

A1 rating, 18, 35, 87, 218

beyond, 218

AAS, 101

Abbott, R. P., 22

abstract data types, 45, 51, 163

abstract type managers, 196

access classes, 33{34, 69{72, 108

access control lists, 26, 31, 51, 67,

74, 80{82, 83, 218

inspection, 104

separation-of-duty, 97{100

Access Isolation Mechanism, 35,

119

access matrix, 31{32

access modes, 233

access sets, 73

access-control-list entries, 99

access-control-list system, 17, 68

access-violation fault, 110, 135

Accetta, Mike, 54, 63

accounting records, 71

ACEs. See access-control-list entries.

Ackerman, W. B., 27

ACL. See access control lists.

Acorn RISC machine, 126

active segment table, 109, 113

active-object manager, 252

active-object table, 252

Ada compiler, 131

Addison, Katherine, 35

address space entities, 54{55

address space numbers, 50,

139{141, 144, 149, 153{159,

195

ADEPT{50, 34

AIM, 119

Air Force

computer security panel report,

22, 27

@

0

, 162

Am29000, 126, 162

Am2901A, 241

Ames, S. R., 34, 36, 91

Amoeba, 43, 117

bank service, 121

Anderson, D. H., 22

Anderson, James P., 22{24, 27

Anderson, M., 73, 120

Anderson, Poul, 21{22

AOBLEQ, 259{260

AP, 231

Archibald, James, 144

argument copying, 134

argument passing, 57, 133, 163{164

capabilities, 166{169

argument pointer, 231

argument validation, 129{131, 142,

234

ARM, 126

ASNs, 50, 153{159, 186{188. See

also address space numbers.

ASSIGNED GOTO, 23

assignment statements, 23

assured pipelines, 103

AST level, 232

ASTLVL, 186, 191, 232, 260, 267,

273

ASTs, 191, 235, 274. See also

asynchronous system traps.

asynchronous system traps, 191,

235

Atlas, 135, 142, 190, 219

atomic transaction protocol, 252

Attanasio, C. Richard, 22

277

AT&T, 255

audit trail, 39, 96{98, 100, 105, 217

authentication, 28

authentication forwarding, 101

authentication server, 101

authorized individuals, 22

authorized pointers, 72

B{lines, 190

B1 rating, 35, 218

B2 rating, 35, 218

B3 rating, 35, 218

Babao�glu,

�

Ozap, 154

Baer, Jean-Loup, 144

Baldridge, T., 22

bank service, 121

Baron, Larry, 35

Baron, Robert, 54, 63

barrel shifter, 239

Barron, D. W., 26

batch jobs

name translation in. See name

translation in batch jobs.

pre-compiled. See pre-compiled

batch jobs.

batch queues, 61

Bate, Simon F., 115

BBN Tenex penetration, 22

Beckhardt, S. R., 255

Beckman, Joseph M., 74, 103

Bell and LaPadula security model,

34, 37, 51, 58, 70, 72, 165

Bell, David E., 34{37, 58, 86, 165

benchmarks

e�ects of compiler optimization

on, 126

Beneich, Denis, 25

Bensoussan, A., 35, 120

Berkeley RISC, 162

Biba integrity model, 37, 95,

100{103, 106, 165

Biba, Kenneth J., 95, 100, 165

Birnbaum, Joel S., 126

Birrell, Andrew D., 57, 62, 64

Bishop, Peter B., 133

Blotcky, Steven, 35

Boebert, W. E., 28, 74, 91, 103

Bolosky, William, 54, 63

Bomberger, A. C., 75

Bonnes, Guus, 22

bootstrapping Trojan horse, 25

bounds checking, 138{139, 195

Boyer, Robert S., 28, 69

Bradshaw, F. T., 34, 36, 91

Bratt, Richard G., 44, 141

Breton, Thierry, 25

browsing, 21{23

Buckingham, B. R. S., 73

bu�ered-I/O-byte-count quota, 111

Bunch, Steve, 256

Burroughs B6700, 42

penetration, 22

Work Flow Language, 89

C-stack, 53{54, 57, 61, 161{181,

185{186, 191{193, 264{271

C-stack-not-valid abort, 169

C.mmp, 27

C1 rating, 217

C2 rating, 217

CAD-based viruses, 24

CAL, 27, 85, 195

CALLS, 185, 187

CALLx, 181, 231

Cambridge

Capability System. See CAP.

File Server, 42

ring, 245

University of, 17

CAP, 14, 17{18, 27, 42, 82, 245

arguments, 134

capability unit, 69, 81

re�nements, 133

sessions, 53

CAP-I, 54, 77, 140, 166, 169, 257

capabilities

inform and outform, 62

cross-domain calls, 62, 161

ENTER, 63, 163

LINKER, 62

operating system, 85

PARMS, 86

performance, 187

PRL, 252

278

procedure control block, 55

CAP-III, 45, 51, 63, 111, 140, 164,

257

CAP2, 63

capabilities

enter, 189, 246

sealed, 45

software, 51

capability arguments, 130

capability cache, 69, 105

capability list, 83

capability principles, 41{45

capability re�nements. See

re�nements.

capability registers, 42

capability segments, 42

capability-based systems, 17, 23,

26{27, 31, 68

lack of popularity, 255

Trojan horses, 25

capability-con�nement problem, 79

capability-system performance,

125{127

Carnegie-Mellon University, 68

cartouche, 92

cascaded network connections, 102

Case Western Reserve University,

34, 36, 91

Case, Brian, 162

categories, 33

category management, 104, 106

CDC 6400, 27

CDIs, 38{39, 95{106

certi�cation, 96

Chaitin, G. J., 161

Chan, C., 22

Chandersekaran, C. S., 35, 88

Chang, Albert, 126, 147, 155

Chang, D. P., 22

change mode instructions, 233

Chapman, Robert S., 35, 88

Chehyl, Maureen Harris, 72

Chin, J. S., 22

CHMx, 233

Chow, Frederick, 161

CICS, 96

CISC, 127

Clancy, Gerald F., 44, 141

clandestine software modi�cations,

23

Clark and Wilson

commercial-integrity model,

29, 37{39, 51, 95{106

Clark, David D., 22, 37{38, 95, 221

Clark, Douglas W., 125, 139{140

Classroom Information and

Computing Service, 221

clearances, 33{34

CLI-callback mechanism, 86

CLICS. See Classroom Information

and Computing Service.

CLIMB, 180

CLIPPER, 144

co-routines, 62

Cohen, Fred, 24

collision probability, 149

Colwell, Robert P., 126, 131, 138,

161, 168

Command De�nition Utility, 86

command-interpreter domains, 63

command-language interpreter, 14,

52, 61

commercial data integrity, 19, 22,

95{106

communications security, 29

compatibility property, 119

compilers, 117, 196

trap doors in, 24

complete mediation, 27

complete virtualization, 27

Complex Instruction Set Computer,

126

complexity

minimization of, 125

of user interface, 106

Computer Laboratory, 19

computer network, 21

conditional clear on return,

177{181, 188

con�ned domain, 68

con�nement problem, 17{19, 32{34,

67{77, 196

279

undecidability of, 93

con�nement property, 14, 34, 81, 96

conict matrix, 101

connected-segment manager, 252

console processor, 183, 237, 239

console receiver data bu�er, 232

console receiver status, 232

console transmit data bu�er, 232

console transmit status, 232

constrained data items, 38{39, 95

context switching, 18, 139{142, 195

Cook, Douglas John, 75, 164, 187

Coordinator Entry, 245

Copple, Mark, 35

copying arguments, 130

Cornwall, Hugo, 21{23

Cosserat, D. C., 27, 42

covert channels, 32, 218

Cragun, Don, 35

CRAY-1, 162

create-authorized-pointer, 72

cross-domain call, 19, 43, 50, 52,

54, 57{58, 62, 127, 131,

189{194, 246, 257

at elevated IPL, 190{191

frequency, 163{164

non-locking, 64

optimization, 161{181,

183{188

performance, 253, 259{275

stack. See C-stack.

cross-domain call table, 265

cross-domain linkage table,

170{172, 175, 263

cross-domain return, 50, 191{193

cross-domain-call, 252

cross-ring calls, 130

Crudele, L., 126

cryptographic secret-sharing, 103

CSP, 270

CTL Modular One, 245

Currie, I. F., 27

CUR MOD, 233{234

D rating, 217

Daley, R. C., 26

Data General

unique-ID machine, 44,

141{142

data path module, 241

data rotator, 239, 242

data-path module, 237

data-type safety, 51

database management, 43

database-management systems, 51

Date, C. J., 105

De Millo, Richard A., 96

DEC/MMS, 88

declining memory costs, 114

DECtape II, 237

DeLashmutt, L., 44, 141

Dellar, Carl Nigel Robert, 245

demand paging, 127, 132

DeMoney, M., 142, 225

denial of service, 31, 39{40

Denning, Dorothy E., 33, 73

Denning, Peter J., 25

Dennis, Jack B., 27, 129

descriptive top level speci�cation,

218

Desmedt, Yvo, 24

Detlefsen, G. D., 140

dial-up line, 21

Digital Equipment Corporation, 17,

163

PDP-1, 180

PDP-10, 180

PDP-10 penetration, 22

PDP-11 compatibility mode,

186. See also PDP-11

compatibility mode.

PDP-11/45, 255

Secure Systems Development

Group, 19

VAX. See VAX.

Dion, Luke, 28

direct penetration, 22{23, 27

directory management, 83{85

directory manager, 252

discretionary access controls, 32,

80{82, 87, 217

discretionary access rights, 54

280

discretionary Trojan horses, 19, 25,

52, 63, 76, 83{93

disk driver, 250

disk quota, 107{109, 117{121, 250

Dobberpuhl, Daniel W., 223

domain control block, 170{172

Domain De�nition Tables, 103

domain enter capabilities, 62

Domain Transition Tables, 103

domain-control block, 264{273

domains, 19, 51, 53{59, 156, 257

creation of, 62{63, 82

domains of protection, 83, 125, 196

Donnelley, J. E., 22

Doran, R. W., 42

Dotterer, Leslie J., 35, 88

downgrading, 72

Downs, Deborah D., 83

Drongowski, P. J., 35, 72

DTLS, 218

duality of message passing and

procedure calls, 53, 63{64

dynamic linker, 62, 170

Eckhouse, Jr., Richard H., 229

Edwards, D. B. G., 142, 219

Edwards, Daniel J., 24

Edwards, P. W., 27

Eggers, S. J., 144

electronic mail, 43, 51, 55, 59

eligibility, 252

Emer, Joel S., 139{140

encapsulation, 54

encryption, 21, 28

English, William, 224

enhanced dynamic linker, 91

enter capabilities, 43{44, 57, 265.

See also capabilities, enter.

ESP, 179, 186, 232, 270, 272

Estrin, Deborah Lynn, 102

event monitors, 246

eventcounts, 100, 113{116, 250

executive stack pointer, 232

external fragmentation, 133, 138

extracode, 135

EXTRACT, 134{135

Fabry, R. S., 41, 141

factories, 75

Fairchild CLIPPER, 144

false alarm rate, 91

fault tolerance, 165

Faust Mathieu, Hilda, 28

Feiertag, Richard J., 28, 69, 164

Ferguson, C. T., 91

Fern�andez, Eduardo B., 97, 105

�lter, 75

Fishman, D., 22

Fiske, R. S., 86

at �le system, 252

Flex, 75{76, 91{92

Floating-Point Accelerator, 237,

243

formal methods, 218

formal models, 31{40

formal speci�cation, 28

formal top level speci�cation, 218

formal veri�cation, 51, 87

Forsdick, Harry C., 130

FORTRAN, 111

FORTRAN compiler, 86, 91

Trojan horse in, 84, 86

FORTRAN IV, 23

Fossum, Tryggve, 224

Foster, J. M., 27

FP, 231

FP730, 237

FPA, 237, 243

FPHOT, 242

FPWARM, 242

Fraim, Les, 28

frame pointer, 231

Frantz, W. S., 75

Fraser, A. G., 26

Freeman, C. P., 142

Freitas, D., 126

FTLS, 218

Fu, John, 173

garbage collection, 14, 19, 52,

117{121

Gasser, Morrie, 72, 86

GCOS, 34

penetration, 22, 23

281

GCOS 8, 180

GEC 41XX machines, 64

Gehringer, Edward F., 41{42, 149,

161

General Electric. See Honeywell.

GE-600, 225

GE-645, 130, 219

general-purpose registers, 229, 241

Girling, C. G., 101

Gligor, Virgil D., 35, 88

global page table, 115

GNOSIS. See KeyKOS.

Gold, B. D., 72

Goldberg, Robert P., 258

Goldenberg, Ruth E., 115

Golub, David, 54, 63

Goshgarian, P., 22

Gould

UTX/32S, 256

GPRs, 229, 241. See also

general-purpose registers.

Graham, G. Scott, 25

Graham, Robert M., 221

Grampp, Frederick T., 22

Gray, J. N., 100

Green, P., 35, 120

Grochow, Jerrold M., 162

Grosso, P., 22

group access control lists, 81

groups, 99{100

Groves, R. D., 142

hackers, 21

Haduch, Kenneth J., 173

Halton, D., 247

Hansen, C., 126

Hansen, Paul M., 125

Hansohn, S. A., 28, 74

Harbison, Samuel P., 27, 68, 83, 195

hardware argument validation, 130

hardware interrupts, 52, 245{247

hardware reliability, 28

hardware veri�cation, 218

hardware viruses, 24

Hardy, N., 75

Harrison, Michael A., 32, 93

Hartley, D. F., 26

hash collision probability, 149

hash deletion

linear probing, 157

hash function costs, 149

hash-collision resolution

chaining, 147, 150

open addressing, 150{158

hashed page tables, 127, 153{159.

See also inverted page

tables.

Hebbard, B., 22

Hecht, Matthew S., 35, 88

Hennessy, John, 161

Herbert, Andrew J., 17, 28, 42, 45,

62{63, 67, 77, 101, 103, 105,

140, 161{164, 245, 257

Hester, Phillip D., 126, 147

Hewlett-Packard

Spectrum, 126

higher level language, 23

higher level scheduler. See

scheduler, higher level.

higher-level scheduler, 252

Hilton, T., 22

Hin, Lee Hock, 22

Hinke, T. H., 100

history-dependent control, 97

HMOS, 126

Honeywell

800, 162

DPS 8, 180

DPS 88, 246

H6000, 225

penetration, 22

H6180, 130, 233

penetration, 22

H635

penetration, 23

H645

penetration, 22

LOCK. See Secure Ada Target.

Secure Ada Target. See Secure

Ada Target.

Hoshen, J., 22

Hospers, Keith, 35

Houdek, M. E., 141, 147, 153{154

282

Hoult, K., 22

Howarth, D. J., 135, 190

Hudson, E., 126

Hu�, George A., 72

human error, 89

human review, 92

Hunt, D., 35, 120

Huntley, G., 22

HYDRA, 27, 68

Hydra, 195

I/O interrupts, 250

I/O manager, 250

I/O statements, 23

Ibbett, Roland N., 140, 143

IBM

Advanced Administrative

System. See AAS.

CICS, 96

Hursley Laboratory, 96

RT PC, 126, 142, 147,

150{151, 155

Secure XENIX, 35

SWARD, 73

System/3, 255

System/32, 255

System/34, 255

System/360

penetration, 22

System/370, 75

penetration, 22

System/38, 27, 42, 72, 125,

141, 147, 149{151, 246, 255

page tables, 115

penetration, 22

IC-stack, 191{193

ICCS, 232

ICL

Perq workstation, 92

ICLIMB, 246

ICR, 232

IDC, 237, 239

in-line expansion, 253

index registers, 190

in�nite indirection, 130

inform-capability manager, 252

information ow, 107{109, 118{121

Input-Output Multiplexor, 246

INSERT, 134{135

insiders, 22

instruction alignment, 187, 259

instruction decoding, 185

instruction emulation, 135

Integrated-Disk Controller, 237,

239

integrity, 95{106

integrity access classes, 37

integrity categories, 103, 106

integrity models, 22, 37{39

integrity veri�cation procedures,

38{39, 95

Intel

432, 27, 125, 161, 163, 168, 246

Ada compiler, 131

procedure calling, 131

8085A, 183, 239

8086, 126

HMOS, 126

internal fragmentation, 134

internal processor registers, 229,

232, 241

interprocessor interrupt, 143{144

interrupt C-stack, 191, 193

interrupt handling, 189, 192,

245{247

interrupt priority level, 52,

189{190, 232, 234

interrupt stack, 190{192

interrupt stack pointer, 192, 232

interrupt-latency times, 194

interrupts

hardware, 52

interval clock control, 232

interval count register, 232

interval timer, 183, 239

inverted page tables, 147{152

IOM, 246

IPL, 52, 232, 234{235, 266

IPRs, 229, 232, 241. See also

internal processor registers.

ISP, 192, 232

IVPs, 38, 95, 104

283

Janson, Philippe A., 28, 164, 170,

249, 252{253

Jiang, Wen{Der, 35, 88

job creation, 59

jobs, 53, 58{59

Johnson, Martyn A., 161

Johnson, Mike, 126, 162

Johri, Abhai, 35, 88

Jonekait, Jay, 75

Jordan, Carole S., 83

Jordan, Patricia, 35

Joy, William, 154

JSB, 185, 187, 259{260

Jump-to-Subroutine, 185

KA730, 19, 237, 240

Kahn, Cli�ord E., 89

Kahn, W., 162

Kain, Richard Y., 28, 74, 76{77,

103

Kampe, Mark, 35

Kanodia, Rajendra K., 100, 113,

250

Karger, Paul A., 17, 22{25, 28, 67,

77, 83, 95, 101, 103{105,

107, 130, 249, 253

Katz, R. H., 126, 144

Keller, James B., 173

Kenah, Lawrence J., 115

kernel mode, 260{263

kernel stack pointer, 232

kernel-segment manager, 250

kernel-stack-not-valid abort, 169,

264

kernel/emulator approach, 35{36

Key Logic, Inc., 75

KeyKOS, 75

keys, 27, 75

Kidder, Tracy., 141

Kilburn, T., 135, 142, 190, 219

Kline, Charles S., 35

Knowles, Alan E., 147

known-object manager, 252

known-object table, 252

Knuth, Donald E., 149{151, 157

Kobziar, A., 35, 120

Konigsford, W. L., 22

Kramer, Steven, 35

KSOS, 35

KSP, 179, 232, 270, 272

Kung, Kenneth C., 83

Lampson, Butler W., 27, 32, 141,

195

access matrix, 25, 79. See also

access matrix.

Landau, C. R., 75

Landreth, Bill, 21

Landwehr, Carl E., 34, 76{77

Landy, B., 26

Lanigan, M. J., 142, 219

LaPadula, Leonard J., 34{37, 58,

165

L

a

T

E

X, 12

lattice security model, 33{34, 36,

68{77, 82, 96, 217. See also

Bell and LaPadula security

model.

Lattin, William W., 126

Lauer, Hugh C., 53, 63

Lawrence Livermore Laboratory,

162

layered security kernel, 51

LDPCTX, 185{186, 260

Leaman, Je�rey R., 74, 103

Lechner, Mikel, 35

Lee, T. M. P., 102{104

Leonard, Timothy E., 44, 115,

169{170, 176, 183, 191, 220,

229, 231

levels of abstraction, 28

Levin, Roy, 27, 68, 83, 195

Levitt, Karl N., 28, 69

Levy, Henry M., 41, 72, 125, 229

light-weight processes, 51, 54, 192

Linde, R. R., 72

linear demand-paged virtual

memory, 133

linkers, 196

Linton, Mark A., 125

Linus IV, 35

Lipner commercial integrity model,

37, 95, 101, 106

284

Lipner, Steven B., 28, 33, 35, 64,

83, 100, 103{104, 141, 158,

163, 249, 253, 255

Lipton, Richard J., 96

LISP, 118, 180

Load Process Context, 185

load/store architecture, 49, 126

Lobel, Jerome, 34

local area network, 21

local store, 155, 241, 272

locate mode I/O, 134

LOCK. See Secure Ada Target.

Logical Coprocessor Kernel. See

Secure Ada Target.

login control, 217

LOGIN.COM, 84{86

Lomas, T. Mark A., 90

long returns, 180{181

Lourie, N., 162

low-cost processes, 58

lower level scheduler. See scheduler,

lower level.

lower-level scheduler, 250, 252

Luckenbaugh, Gary L., 35, 88

Lynch, Kevin, 35

Mach, 54, 63

machine registers, 53, 57

MACRO, 183{184, 186

Manley, Michael, 35

Mann, G. A., 180

MAPARG, 166, 177{180

MAPEN, 232

March, R., 126

Markstein, Peter W., 22

Mashey, J., 142, 225

Mason, Andrew H., 120

master coordinator, 245

Maybury, William, 63

Mayo, A. J., 22

Mayo, Robert N., 125

McCain, Mark, 25

McCauley, E. J., 35, 72

McElroy, James B., 224

MCP

penetration, 22

MCT, 242

McWilliams, Thomas M., 162

memory clearing, 168

memory controller module, 239

memory management, 126

memory management enable, 232

memory segments, 163

memory tagging, 195

memory-control bus, 237

memory-controller module, 237

Mergen, Mark F., 155

Mesa, 63

message passing, 63{64, 246

microprogrammed, 64

METAFONT, 12

MFPR, 232, 260

Michigan Terminal System. See

MTS.

MICRO2, 243

microcode, 135, 218, 237{243

microprogramming, 126

MicroVAX, 135

MicroVAX 78032 chip, 223

MicroVAX-II, 243

military lattice model, 33

Millen, Jonathan K., 72

MIPS Computer Systems, 126, 142,

225

missing-segment faults, 110

MIT PDP-1, 27

Mitchell, G. R., 141, 147, 153{154

Mitchell, James G., 63

MITRE Corporation, 34, 36, 255

Secure UNIX, 35

modular design, 28

modular programming, 129

Module Management System, 88

Monash University

password-capability system,

43, 73{74, 117, 120

rent collection, 120{121

monitors, 63

Montgomery, Warren A., 110, 114,

143

MOO, 162

Moore, J., 142, 225

Morris, Derrick, 140, 143

285

Morris, Robert H., 22, 149

Morse, Stephen P., 126

mouse, 92

Moussouris, J., 126

MOVC, 134

Move Character, 134

Move Processor Status Longword,

258

Move to Processor Register, 191

MOVPSL, 258

MTPR, 191, 232

MTS

penetration, 22

MU5, 140, 143

MU6-G, 147

Mullender, Sape J., 43, 121

Multics, 26, 68, 98, 107, 115, 140,

143, 219{220, 233, 249

Access Isolation Mechanism,

119

AIM, 35

argument validation, 129

descriptor segments, 252

disk quota, 119

dynamic linker, 170

eligibility, 252

�le DIM, 164

�le system, 119

interprocess signals, 192

missing-segment-faults, 81

penetration, 22

PL/I, 131

procedure call, 131

Project Guardian, 35

protection rings, 44

revocation, 109{113, 115

ring-alarm register, 191

salvager, 252

security kernel, 249, 253

shared page tables, 115

trap door, 24

multiple register sets, 161{163

Multiple-Access, 45

multiprocessor kernel, 57

multiprocessors

shared memory, 143{145

Mundie, Craig J., 44, 141

Murphy, Marguerite, 125

Murray, W. R., 101

mutual suspicion, 43

mutually-suspicious subsystems,

133, 165, 256

MVS, 255

penetration, 22

Myers, G., 73

N-segment, 166

name checking with access control

lists, 90

name translation in batch jobs,

88{90

name-checking protected subsystem,

52, 85{93

National Computer Security Center,

18, 35{36, 87, 217

Naval Postgraduate School, 249

need-to-know, 217

Needham, Roger M., 26{27, 42, 53,

63, 69, 86, 101, 169, 245,

252, 257

Neely, Rich, 28

Nelson, Bruce Jay, 57, 64

network driver

Trojan horse, 24

Neumann, Peter G., 26, 28, 69

next interval count register, 232

Nibaldi, G. H., 35

NICR, 232

non-discretionary, 14, 17, 31{37,

51, 54, 58{63, 67, 70, 72,

74{77, 81{82, 83, 87, 91{92,

107, 109, 117{119, 165, 217

non-discretionary access controls,

32{36, 58{59, 107

nuclear weapons, 37

object deactivation, 114

object manager, 252

object-oriented programming, 45,

129, 138

objects, 25

Ogden, W. F., 34, 36, 91

on-line programming, 23

286

opcodes, 233

operand speci�ers, 233

operating-system emulator, 35

operators, 29

orange book, 36, 87, 217

Organick, Elliott I., 27, 42, 68, 81,

131, 164, 170, 219, 246, 252

OS/360

penetration, 22

overlapping register sets, 162

Oxford University Programming

Research Group, 96

P0 base register, 232

P0 length register, 232

P0 space, 132, 153{154, 158, 221,

233

P0BR, 179, 232

P0LR, 179, 232

P1 base register, 232

P1 length register, 232

P1 space, 132, 153{154, 158, 221,

233

P1BR, 179, 232

P1LR, 179, 232

Paans, Ronald, 22

Page Address Registers, 219

page alignment, 133

page faults, 250

page size, 153{154

page tables, 147{152, 219{222

page-fault handlers, 49

page-table entries, 115, 233

page-table manager, 250

panel report, 22, 27

Pardoe, J. B. D., 164

PARMS, 89. See also CAP-I,

PARMS.

PARs, 219

partial ordering, 33

partially-trusted subjects, 103

PASSARG, 177{180

passive-object manager, 252

password, 28

guessing, 21

password capabilities. See Monash

University,

password-capability system.

password-capability systems, 41{43

Patterson, David A., 125{126, 162

Payne, R. B., 135, 190

PC, 185, 192, 229, 260, 269, 274

PCB, 170

PCBB, 185, 232

PCLIMB, 180

PDP-11 compatibility mode, 186,

266, 274

Peeler, R. J., 72

performance, 14, 17{18

performance monitor enable, 232

Perkins, C. L., 144

Perlis, Alan J., 96

Phillips, Ray J., 22

physical security, 28

PL/I, 131, 183

Plessey System 250, 27, 42, 77, 247

Plummer, W. W., 27

PME, 186, 232, 260, 267, 273

Pohlman, William B., 126

polling system, 247

Popek, Gerald J., 35, 258

popular press, 21

Pose, R. D., 73, 120

post-authorization, 90

pre-compiled batch jobs, 88

primary-memory page manager,

250

principal, 53

PRL, 170, 252

PROBE instructions, 234

probing

avoiding, 169

procedural security, 23, 29

procedure calls, 63{64

procedure-entry masks, 170

process control block, 170

process control block base, 232

process creation, 61

process resource list, 170, 252

process space, 153, 221, 224, 233,

239

287

process switching, 126

processes, 19, 51, 53{54, 58{59, 250

processor status longword, 176,

192, 229

processor-control-block-base, 185

program counter, 192, 229

program-integrity, 102

programming generality, 14, 19, 51,

129{135, 195

proof of program correctness, 104

propagation of capabilities, 68

protected subsystem, 19, 43{45,

53{58, 257

creation, 61

enter capability, 62

Trojan horse in, 67

protection domain, 14, 43, 130

protection rings, 180

prototype implementation, 14

Provably Secure Operating System,

69

proxy-login, 101

PRV MOD, 234

Przybylski, S., 126

PSL, 176, 178, 186, 192, 229, 231,

233{234, 260, 264, 266, 269,

274

PSOS, 68{69, 73{77

PTE, 115, 233

public-domain software

Trojan horses, 25

query optimization, 105

query-based transaction system, 23

quota cells, 117, 120

quotas, 39

Rabin, Michael O., 103

Rajunas, S. A., 75

Rashid, Richard, 54, 63

Rattner, Justin, 126

RB730, 237

Reach, R., 162

read down, 72

real-time, 189{194

recompaction, 138

Record Management System, 134

Redell, David D., 45, 81, 109{113

reduced instruction set computer,

14, 18. See also RISC.

reduced instruction set computers,

126

Reed, David P., 57, 100, 113, 130,

250, 252

two-level scheduler, 57{58

REFINE, 134{135

re�nements, 41, 132{135

register allocation

by trust, 164{166, 186, 188

register assignment

graph coloring, 161

link time, 161{181

register �le, 49

register masks, 170, 186

register saving, 189, 246

speed, 172{173

register windows, 162

registration-and-sequencing server,

101

REI, 172, 191{193, 260

relational database management

system, 125

remote procedure calls, 57, 64

removable disk packs, 250

rent collection, 52, 117, 120{121

RET, 185, 231

Return from Exception or Interrupt,

191

Return-from-Procedure, 185

Return-from-Subroutine, 185

Revenel, Bruce W., 126

revocation, 14, 19, 51, 68, 81,

107{116, 118, 196, 250

by chaining, 52, 115{116, 152

chaining inverted-page-table

entries, 152

with eventcounts, 52, 109,

113{116, 143, 152

revoker capabilities, 81, 111{113

ring-alarm register, 191

rings of protection, 43, 233

Riodan, T., 126

288

RISC, 14, 18, 49, 74, 82, 126, 142,

186, 193, 196, 225, 227

cross-domain call, 175{176

Ritchie, Dennis M., 61

RMS, 134

locate mode I/O, 134

Robinson, Lawrence, 28, 69

Rounds, W. C., 34, 36, 91

Rowen, C., 126

Royal Signals and Radar

Establishment, 75, 91

RPG III, 125

RSB, 185, 259{260

RSRE, 75, 91

RSS, 101

Rub, Jerzy R., 83

Ruzzo, Walter L., 32, 93

RXCS, 232

RXDB, 232

S{1, 162

S0 space, 132, 153, 155, 158, 233

S1 space, 153, 155, 233

sabotage, 31, 36{39, 92

Saltzer, Jerome H., 41, 43{44, 85,

129{130, 191, 221, 233

sanitization, 72

SAT, 74, 77, 103

Save Process Context, 185

Saxena, A. R., 250

Saydjari, O. Sami, 74, 103

SBR, 232

SCAP, 14, 18, 39, 67{77, 97, 103,

105, 118, 189{194, 243, 256.

See also secure capability

architecture.

architecture, 49{52

domain, 58

domain model, 53{64

process, 54{55, 58

security kernel, 61

storage management, 133

SCB, 192, 234, 260

SCBB, 232

Schaefer, Marvin, 28, 72, 100

Schauer, Case, 35

scheduler, 192{193

higher level, 58

lower level, 58

scheduling entities, 53{54

Scheid, J. F., 72

Schell, Roger R., 22{25, 28, 57,

102, 130, 249

multiprocessor kernel, 57

Schiller, W. L., 255

Schleimer, Stephen I., 44, 141

Schmookler, M. S., 142

Schrimpf, H., 162

Schroeder, Michael D., 35, 41,

43{45, 85, 129{130, 140,

165, 181, 191, 221, 233, 249,

256

scratch �les, 88

SDW, 26

seal, 51

sealed capabilities. See capabilities,

sealed.

sealing, 163

search lists, 85

Secure Ada Target, 69, 74, 103

secure attention key, 88

secure capabilities, 51, 69{82

secure capability architecture, 14,

17{18, 67{77, 256

secure committees, 103

secure document manager, 76

secure documents, 69

secure object manager, 69

secure readers{writers problem, 100

secure server, 87{88, 120

domain, 61{62

process, 59

Secure Systems Development

Group, 19

secure window manager, 92

security kernel, 17, 27{28, 35, 54,

57, 61, 87, 111, 157{158,

190, 196, 218, 255

design, 249{253

layered, 51, 163

SCAP, 61

size, 28

technology, 23

289

security manager, 81

security o�cer, 32, 38

security veri�cation, 72

security-kernel domain, 72

segment descriptor word, 26

segmentation, 133, 137{139, 143

sensitive instructions, 258

sensitivity levels, 33

separation of duties, 37{39, 95{106

setgid, 256

setuid, 256

Shamir, Adi, 103

shared memory multiprocessors, 53.

See also multiprocessors,

shared memory.

shared page tables, 115, 143

Sheldon, R. G., 144

Shirley, Lawrence J., 102

Shockley, William R., 102{104

Shumway, D. G., 34, 36, 91

SID, 232

SIDEARM. See Tagged Object

Processor.

simple security property, 34

simplicity, 27

Simpson, Richard O., 126, 147

single-level store, 125

SIRR, 232, 235

SISR, 232, 235

Sites, R. L., 162

Slinn, Christopher John, 133, 164

SLR, 232

Smith, Alan Jay, 137

Smith, Leroy, 27

snoopy cache, 144

snoopy translation bu�ers,

143{144. See also

translation bu�ers, snoopy.

software, 274

software capability systems, 27

software compatibility, 14, 196,

255{258

software developers, 82

software interrupt request register,

232

software interrupt summary

register, 232

software interrupts, 191, 235

Soleglad, Mike, 28

SP, 229, 274

special directory trees, 88

Sperry 1100

penetration, 22

spooled stream protected procedure,

164

SQL, 89

SSP, 179, 186, 232, 270, 272

stack pointer, 229, 264

Stanley, Margaret, 91

Steele Jr., Guy Lewis, 180

Stern, J., 35, 120

Stewart, Lawrence C., 144

Stolarchuk, M., 22

storage channels, 32, 35, 93,

107{109, 111, 117, 165

storage management, 133

storage quotas, 52

Stork, D. F., 255

Stoughton, Allen, 35

strict need-to-know, 91

Stroustrup, Bjarne, 180

Sturgis, H. E., 27, 85, 195

subjects, 25

subroutine-call stack, 53

subroutines, 23

Summers, Rita C., 97, 105

Sumner, F. H., 142, 219

Sun

Secure SunOS, 35

supervisor stack pointer, 232

Supnik, Robert M., 223

SVPCTX, 185{186, 260

SWARD. See IBM, SWARD.

Sweet, Richard, 63

system base register, 232

System Control Block, 189{190,

192, 234

system control block base, 232

system high, 33, 71

system identi�cation, 232

system length register, 232

290

system low, 33

system managers, 29, 32

system penetration, 21

system space, 132, 153, 192, 221,

224, 233, 239

Tabak, Daniel, 126

tagged capability architecture, 91

tagged memory, 42

Tagged Object Processor, 74

tail recursion, 180

tamper resistance, 27

tampering, 31, 36{39, 92

Tangney, John D., 27

Tasker, P. S., 86

TBCHK, 232

TBIA, 232

TBIS, 144, 232

Tenex penetration, 22

terminal input routine

Trojan horse, 24

Tevanian, Avadis, 54, 63

T

E

Xdraw, 12

T

E

Xindex, 12

text editor, 117

human interface, 87

Trojan horse in, 85

Thacker, Charles P., 144

Thakkar, Shreekant S., 147

Thompson, Ken, 24, 61

threads, 54, 58

creation, 61

tickets, 27

tightly-coupled multiprocessor, 41,

51, 61{62, 68

time-of-year clock, 239

time-of-year register, 232

timing channels, 32

Titan, 45

multi-access system, 26

TODR, 232

token capabilities, 97{106

Torres, A., 142

TPs, 38{39, 95{106

traceability of access, 14, 19, 51,

68, 79, 196

trailer records, 111

trailer-record quota, 111

transaction processing, 43

transformation procedures, 38{39,

95

translation bu�er, 19, 50, 114, 127,

137{145, 246

direct mapped, 188, 223{226,

239

�lling, 50, 114, 142{143, 219

ushing, 139{140, 143, 157,

186, 274

fully associative, 219, 223

level of associativity, 137,

223{227

manager, 250

re�lls, 183

set associative, 223, 226{227

snoopy, 144{145

swapping, 139{140

translation bu�er check, 232

translation bu�er invalidate all, 232

translation bu�er invalidate single,

144, 232

transparent security, 82

trap door, 23{25, 40

feasibility, 24

Trojan horse pointer, 234

Trojan horses, 23{25, 27, 32{34, 36,

39, 72, 104

discretionary, 14, 52. See also

discretionary Trojan horses.

non-discretionary, 165

trusted linker, 61, 169{170, 186,

195

trusted path, 86, 218

trusted processes, 72

TU58, 237, 239, 243

Tukubo, S., 22

Turing Award Lecture, 24

Turing-machine halting problem,

32, 39

two-person control, 37

two-phase commit, 100

two-phase commit protocol, 100,

252

two-way authentication, 88

291

TXCS, 232

TXDB, 232

Tygar, J. D., 103

Tymshare Corporation, 75

type managers, 28, 249

type-id, 45

typed memory, 42

UCLA Secure UNIX, 35

UDIs, 102

UIC, 99

ULD �le, 243

ULDTOBIN, 243

Ullman, Je�rey D., 32, 93

ULTRIX-32, 52, 256{257

unaligned re�nements, 134

unauthorized actions, 22

unauthorized disclosure, 31

unauthorized pointers, 72

UncfRts, 68

uncon�ned rights, 68

unconstrained data items, 38{39,

95

UNIBUS, 237, 239

unique-ID addressing, 131, 139,

141{142

University of Cambridge

Computer Laboratory, 19

University of Manchester, 140, 142,

147

UNIX, 26, 61, 142, 149, 255

/tmp directory, 88

4.2bsd, 153

C compiler

trap door, 24

execve(2), 256{257

fork(2), 61, 256{257

kernelized, 255

make(1), 88

penetration, 22

processes, 54, 257

protected subsystems, 256{257

setuid, 45

shell, 256

unseal, 51

upgraded directory, 119

Urban, Michael, 35

user identi�cation code, 99

user interface complexity, 106

user mode, 260{263

user pro�le, 72

user stack pointer, 232

USP, 179, 232, 270, 272

Van Horn, Earl C., 27

Van't Hof, D., 126

Vasudevan, N., 35, 88

VAX, 18, 74, 140, 144, 149,

189{193, 220{221, 229{235

access modes, 257

ASTLVL, 191

calling standard, 165, 185

instruction set, 50

interrupt priority levels, 190

page tables, 115, 158

penetration, 22

protection rings, 44

security kernel, 163, 181

subsetting rules, 183

virtual address, 132

VAX 8550, 19, 183{185

VAX 8600, 224

VAX 8800, 173

VAX DATATRIEVE, 89

VAX DBMS, 44

VAX-11/730, 14, 18{19, 49{50, 82,

147, 150, 153, 173, 181,

183{188, 196, 224, 237{243,

263{275

VAX-11/780, 125, 139, 173, 227,

237

VAX-11/785, 227

VAX/VMS, 44, 52, 98{99, 115, 149,

256{257

disk quota, 120

jobs, 53

penetration, 22

process, 55

processes, 54

quotas, 111

security enhancements, 35

veri�cation, 28

Viney, I. T., 22

virtual address space, 195

292

virtual machine monitor, 257{258

virtual memory, 27, 219

virtual money, 120

virtual processors

level one, 58, 250

level two, 58, 252

virtual-machine environment, 192

virtualization

complete, 27

virus, 24

VM/370, 255

penetration, 22

vp1s, 250

vp2s, 252

vulnerabilities, 21, 129

Waldecker, D. E., 142

Walker, R. D. H., 245

Wall, David W., 161, 169

Wallace, C. S., 73, 120

Wallach, Steven J., 44, 141

Walter, K. G., 34, 36, 91

Walton, Evelyn J., 35

Ward, P. D., 72

Warner, L., 22

Watson, Desmond John, 63

WCS, 19, 237, 239, 243

Webb, D. A., 22

Weissman, Clark, 34

well-formed transactions, 37{39

WFL, 89

Wheeler, David J., 141

Whiteside, T. G., 142

Whitmore, J., 35, 120

Widdoes, Jr., L. Curtis., 162

wide area network, 21

wildcard

authorization, 89

separation-of-duty, 98

Wilkes, Maurice V., 17{18, 27, 42,

63, 69, 86, 126, 169, 173,

252, 257

Wilkinson, A. L., 22

Williams, R., 22

Wilson, David R., 37{38, 95

Wimbrow, J. H., 101

window-based editor, 92

wiretapping, 21

Wiseman, Simon, 75, 91

Witek, Richard T., 223

Witten, Ian H., 25

Wood, Christopher, 97, 105

Wood, D. A., 144

Woodward, J. P. L., 35

Wordsworth, J. B., 96

Work Flow Language

B6700, 89

working register, 272

workstation, 53

physical security, 28

Worley, Jr., William S., 126

Wright, C. G., 142

Wright, W., 22

writable-control store, 19, 237, 239

write up, 72

Wulf, William A., 27, 68, 83, 195

WWMCCS, 34

XENIX, 35

Young, Michael, 54, 63

Young, W. D., 28, 74

Zilog Z8000, 249

293

