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Introduction

The aim of this paper is to show how recursive data types can be used to support
formal reasoning in higher order logic about the behaviour of hardware devices.
Two examples are given: the correctness proof of a class of tree-structured
circuits, and the formulation and proof of assertions describing the relationship
between two simple transistor models. In both examples, recursive types are
used to state propositions about hardware in a general and concise way.

The organization of the paper is as follows. In Section 1, a brief review
is given of the conventional techniques for specifying and verifying hardware
in higher order logic. Section 2 discusses how recursive types can be added
to higher order logic without making ad hoc extensions to the axioms of the
logic. Sections 3 and 4 give two examples to show how such recursive types
can be used to extend the techniques outlined in Section 1. Recursive types
are used in both examples to model the structure of circuits independently of
their behaviour.

1 Hardware Verification using Higher Order
Logic |

The basic techniques for specifying and proving the correctness of hardware
using higher order logic are well established and are documented in several
recent papers [1,6,9,12]. To make this paper self-contained, a brief review is
given in this section of these techniques. The version of higher order logic used
is based on Church’s type theory [3], extended with the type discipline of the
LOF logic PPA [7]. This formulation of higher order logic was developed by
Mike Gordon for the HOL theorem prover [5] and is described in detail in [4].

1.1 Notation

The formulation of higher order logic used in this paper includes terms that
correspond to the conventional notation of predicate calculus. A term of the
form Pz expresses the proposition that & has the property P, and a term of
the form R(z,y) means that the relation R holds between & and y. The usual
logical operators =, A, V, D and = denote negation, conjunction, disjunction,
implication, and equivalence respectively. The universal and existential quan-
tifiers V and 3 express the concepts of every and some: Vi.P # means that P
holds for every value of z, and Jx.P2 means that P holds for some (i.e. at
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least one) value of z. The additional quantifier 3! denotes unique existence:
Alz. P 2 means that P holds for exactly one value of . Nested quantifiers of the
form Yvy.Vovs. « - - Vo,.tm can also be written Vv vy - - - v,,.tm. Other notation
includes (¢ = ¢1 |t2) to denote the conditional “if ¢ then ¢; else ¢5°, and fog
to denote the composition of the functions f and g. The constants T and F
denote the truth values true and false.

Higher order logic extends the conventional notation of predicate calculus
in three significant ways: (1) variables are allowed to range over functions and
predicates, (2) functions can take functions as arguments and return functions
as results, and (3) functions can be written in the notation of the M-calculus.?
For example, the idea that a clock ck rises at some time ¢ can be expressed in
higher order logic as follows:

Vekt. (Rise ck) t = —ck(t) A ck(t+1)

In this definition, ck is a higher order variable ranging over functions from
time (modelled by natural numbers) to booleans, and Rise is a higher order
function that takes a function modelling a clock as an argument and yields
a predicate on natural numbers as a result. Conventional practice is that
function application in higher order logic associates to the left. For example,
the term (Rise ck) t can also be written Rise ck ¢.

1.2 Specifying Hardware Behaviour

The behaviour of hardware devices can be specified in higher order logic by
defining predicates that state which combinations of values can appear on their
external ports. Consider, for instance, the one-bit multiplexer shown below:

Mux

c — L > out

The behaviour of this device can be specified in logic by a four-place predicate
Mux, defined such that the term ‘Mux(e,a,b, out)’ is true exactly when the

1 \-calculus notation will not, however, be used in this paper.
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combination of the values of the variables ¢, a, b, and out is one that could
occur on the corresponding ports of the device. The definition of Mux is:

Mux(c, a, b, out) = (out = (c = a | b))

In this specification the variables ¢, a, b, and out range over boolean truth-
values. The predicate Mux asserts that the relationship between these values
corresponds to the way a multiplexer works in practice: when the control line
¢ is true, the value on the output out is equal to the value on the input a; and
when c is false the value on out is equal to the value on b.

1.3 Specifying Hardware Structure

The behaviour of devices constructed by wiring together smaller devices can be
represented in logic by conjoining the predicates that specify the behaviours of
their components with the logical connective ‘A’ and using the existential quan-
tifier ‘3’ to hide internal signals [1,6]. Consider, for example, the multiplexer
implementation shown below:

Dy
b —Dﬁi}_g}*—

If Inv and Nand are predicates that specify the behaviour of an inverter and a
NAND-gate respectively, then this multiplexer implementation can be specified
in logic by the predicate Mux_imp defined as follows:

Mux_imp(c, a, b, out) =
41 49 13. Inv(c, il) A Nand(a, c, ig) A Nand(z’l, b, i3) A Nand(z'g, i3, out)

In this definition the three internal wires i1, i5, and 45 are ‘hidden’ from the
external environment using the existential quantifier ‘I°. The definition of
Mux_imp states that the values which can appear on the external ports of the
multiplexer are precisely those which satisfy the constraints imposed by the
predicates modelling the four gates from which it is built.
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1.4 Formulating Correctness

The predicate Mux defined in Section 1.2 specifies the intended behaviour of a
one-bit multiplexer. The multiplexer circuit defined by Mux_imp can be proved
correct with respect to this specification by proving the following theorem:

Ve a b out. Mux_imp(c, a, b, out) = Mux(c, a, b, out)

This theorem states that the values which can appear on the external ports of
the multiplexer implementation are exactly those allowed by the specification
of intended behaviour. The implementation defined by Mux_imp is therefore
correct with respect to the specification given by Mux.

In this simple example, the implementation predicate Mux_imp is logically
equivalent to the specification of intended behaviour Mux. For more complex
circuits, however, it may be inappropriate to formulate correctness as logical
equivalence. The behavioural specification that a large or complex circuit is
expected to satisfy will typically be an abstract description of its intended
behaviour. It may be only a partial specification; or it may be given in terms
of higher-level data types or a different time-scale than the predicate defining
the implementation. In this case, the correctness of an implementation Imp
with respect to a specification Spec will not be a logical equivalence,

F Vi o. Imp(4, 0) = Spec(i, 0)
but an implication of the form:
- Vio. Imp(%,0) D Spec(Abs(i, 0))

where Abs is an abstraction function that maps input and output signals of
the implementation description Imp to corresponding signals of the abstract
specification Spec. For a discussion of various ways in which the correctness of
circuits can be formulated using such abstraction functions see [12].

2 Recursive Types in Higher Order Logic

Higher order logic is a typed logic; every syntactically well-formed term of
the logic must have a type that is consistent with the types of its subterms.
Informally, types can be thought of as denoting sets of values, and terms can be
thought of as denoting elements of these sets. The basic types of the version of
higher order logic used in this paper include bool (denoting the set of boolean
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truth-values) and num (denoting the set of natural numbers). These two types
are examples of type constants; they denote fixed sets of values. Types can be
built from other types using type operators. An example is the primitive type
operator ‘—’, denoting the function space operation on types. If ty; and ty,
are types, then the type ty; —tys denotes the set of all total functions from
values of type {y1 to values of type f{ys. The syntax of types also includes
type variables. These are written «, §, v, etc., and are used to stand for ‘any
type’. Type variables occur in Church’s formulation of higher order logic as
metavariables ranging over types; in the version of higher order logic used here
they are part of the object language.

Writing ‘tm:ty’ indicates explicitly that the term ¢m has logical type ty. The
function Rise defined in Section 1.1, for example, can be written with explicit
type information as shown below:

Rise:(numﬁbooi)—>(num——+bool)

Such type information will usually be omitted, however, when it is clear from
the form or context of a term what its type must be.

As a syntactic device, types are necessary to avoid inconsistency. Without
types, the expressive power gained by allowing variables to range over functions
makes it possible to write paradoxical expressions in the logic that make it in-
consistent (e.g. Russell’s paradox). Ensuring that every term has a type which
is consistent with those of its subterms makes such expressions syntactically
ill-formed, and thus eliminates them from the logic.

The type expressions needed to prevent inconsistency have a very simple
and economical syntax. All that is needed are the type constants num and
bool, and types of the form ty;—ty,. In principle, every type needed for doing
proofs in higher order logic can be written using only these primitive types.
But in practice it is desirable to extend the syntax of types to include more
kinds of types than are strictly necessary to prevent inconsistency.

Extending the syntax of types in higher order logic allows types to play a
mathematical role in reasoning about hardware, in addition to their purely
logical role of eliminating inconsistency. In mathematical (and programming)
practice the notion of types is used to make distinctions between variables
that range over different kinds of values (e.g. numbers, pairs, lists, recursive
structures, etc.). From this point of view, a type is the name of a commonly-
used set of values of a particular kind, having certain well-defined properties.
Such types are often characterized by sets of axioms that define their properties
abstractly and concisely.



Many of the sorts of values that arise naturally in reasoning about hardware
(e.g. bit-vectors) can be represented by types of this kind. As will be discussed
in Section 3, devices whose components exhibit some form of recursively regular
structure (e.g. adders and trees of gates) can also be represented by axiomatized
data types. While the primitive types of the logic are in principle sufficient to
represent these data structures, adding new types to the logic make it possible
to formulate propositions about hardware in a more natural and concise way.
This pragmatic motivation for a rich syntax of types is similar to the motivation
for the use of abstract data types in high-level programming languages.

Section 2.1 below contains a brief explanation of how the syntax of types in
higher order logic can be consistently extended using type definitions. These are
analogous to abstract type definitions in programming languages like ML [10];
they define a new type by representing it by a set of values of an already
existing type. Section 2.3 describes a class of recursive types which can be
added to the logic using such type definitions.

2.1 Type Definitions

The type definition mechanism described in this section is based on a suggestion
by Mike Fourman, which has been formalized by Mike Gordon in [4]. The idea
is that a type definition is made by adding an axiom to the logic which asserts
that a new type is isomorphic to an appropriate ‘subset’ of an existing type:

existing
isomorphism type

j.‘

new
e | type

Y

o
-

R

Suppose, for example, that ty is a type of the logic and P:ty—bool is a
predicate on values of type ty that defines some useful subset of the set denoted
by ty. A type definition introduces a new type constant ty. which denotes a
set having exactly the same properties as the subset defined by P. This is
done by extending the syntax of types to include the new type constant ¢y,
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and then adding an axiom to the logic asserting that the set of values denoted
by the new type is isomorphic to the set specified by P:

FAfity=—1ty.
(Valaz‘fm:fazDa1=a2)/\(Vr.Pr:(3a,7~:fa)) (1)

This axiom states that there is a function f from the new type ty. to the
existing type ¢ty which is one-to-one and onto the subset defined by P. The
function f can be thought of as a representation function that maps a value
of the new type ty- to the value of type ty that represents it. Because f is
an isomorphism, it can be shown that the set denoted by ty, has the same
properties as the subset of 7y defined by P. By adding this axiom to the logic,
the new type tyy is therefore defined in terms of the existing type ty.

All types of higher order logic must denote non-empty sets. This means that
the predicate P used in the type definition above must be true of at least one
value of the representing type; i.e. it must be the case that - Jz:ty. P z. This
theorem must be proved before the type definition axiom (1) can be added to
the logic.

If the subset defined by P is non-empty, then adding the type definition
axiom (1) shown above is a conservative extension of the logic. That is, for
all boolean terms tm not containing the new type, F ¢m is a theorem of the
extended logic exactly when it is a theorem of the original logic. In partic-
ular, - F is a theorem of the extended logic if and only if it is a theorem of
the original logic. Thus adding type definition axioms to the logic will not
introduce inconsistency; adding type definition axioms is ‘safe’.

In addition to type constants, new type operators can also be defined by
adding axioms of the form shown above. For example, a Cartesian product
type operator ‘x’ can be defined by postulating a type definition axiom of the
form: '

F3f:(a x B)—(a—p—bool).
(va1a2'fa1:fa2:)Cll:az)/\(VT’.PT:(Ha‘r:fa)) (2)

where P is a predicate on values of type a—f—bool, defined such that the
subset of a—[—bool satisfying P represents the Cartesian product of the types
« and B. Since (2) asserts that (a x ) is isomorphic to this subset, adding
this axiom to the logic defines ‘X’ to be the Cartesian product operation on
types. See [4] for details.
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2.2  Deriving Abstract Axioms for New Types

Type definition axioms of the form described above merely state that a new
type is isomorphic to a particular subset of an existing type. From such type
definition axioms, it is possible to derive theorems that characterize new types
more abstractly. The idea is to prove a collection of theorems that state the
essential properties of a new type without reference to how it is represented.
These theorems can then be used for all future reasoning about the new type.
The motivation for first defining a type and then deriving abstract ‘axioms’
for it is that this process guarantees consistency. Simply postulating abstract
axioms for a new type may introduce inconsistency into the logic; but deriving
abstract axioms from a type definition amounts to giving a formal proof of
their consistency.

As an example, consider the Cartesian product type operator x defined
by the type definition axiom (2) shown above. This type operator can be
characterized abstractly by defining the usual projection functions

Fst:(a x f)»a  and  Snd:(a x B)—f
such that the following theorem holds:
FVfiy—a. Vgiy—B. M hry—(a x B).(Fstoh = f) A(Sndo h = g)

This theorem can be derived by formal proof from the type definition axiom (2)
for x and the definitions of the projection functions Fst and Snd. It is an
abstract characterization of the type operator X; and all the usual properties
of the Cartesian product of two types follow from it, without the need to know
how the type operator X is defined.

2.3 Recursive Types

In this section, a class of recursive types is described which can be defined in
higher order logic using the method outlined above. The abstract ‘axioms’ that
characterize these types can be derived from the properties of the existing types
that represent them. In what follows, however, the details of these derivations
will not be given; the abstract axioms for recursive types will simply be stated
without proof. The process of defining these types and deriving abstract axioms
for them has been automated using the HOL theorem prover for higher order
logic. The details appear in [13].
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2.3.1 An Example: the Type of Lists

Lists are a simple example of a recursive type. The abstract syntax of lists can
be specified by the little grammar shown below:

list := Nil | Cons a list

Here, Nil and Cons are the usual constructors for lists. This grammar can be
seen as a ‘declaration’ of the recursive type of finite lists containing values
of type a. It states that lists are constructed inductively from Nil using the
constructor Cons.

Lists of this kind can be represented in higher order logic by defining a
unary type operator («)list using the type definition mechanism outlined in
Section 2.1. Once a type definition axiom for («)list has been introduced into
the logic, an abstract axiomatization for lists can be derived based on two
constants:

Nil:(a)list  and  Cons:a—(a)list—(a)list

The constant Nil denotes the empty list. The function Cons constructs lists in
the usual way: if h is a value of type « and ¢ is a list then Cons h ¢ denotes the
list with head h and tail £. Using these two constructors, the abstract axiom
for (a)list can be written as follows:

Ve f.3fn. (fa(Nil) = e) A (Vht. fo(Cons ht) = f.(fnt) ht) (3)

This theorem asserts that a function on lists fn:(a)list—p can be uniquely
defined by primitive recursion on lists—i.e. by giving a base case that defines
the value of fn(Nil), and a recursive case that defines the value of fn(Cons h )
in terms of (fn t), h, and ¢.

All the usual properties of lists follow from the theorem shown above. For
example, consider the following three theorems about lists:

FVP. (P(Nil) AVt. Pt D Vh. P(Cons h t)) D VYI. P
I Vht. ~(Nil = Cons h t)
F Vh1 hz tl tz. (Cons h1 t1 = Cons h2 tg) D) ((h1 = hz) A (tl = t2))

These three theorems follow immediately from the abstract axiom (3) for
(a)list. The first theorem states that properties can be proved to hold of
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all lists by structural induction; the second theorem states that Nil and Cons
yield distinct values of type («)list; and the last theorem states that Cons is
one-to-one. These facts mean that every value of type (a)list is either equal to
Nil, or is constructed from Nil by finitely many applications of the constructor
Cons—i.e. the set denoted by («)list is the free algebra with constructors Nil
and Cons. Thus («)list denotes precisely the set of all finite-length lists of
values of type a.

The abstract axiom (3) for (a)list can also be used to prove the existence
of particular functions defined by primitive recursion on lists. For example,
specializing the variables e and f in a suitably type-instantiated version of (3)
so that:

e=10 and YVeyae. feoyz=a+l
yields the following theorem:
F 3 fn. (fa(Nil) = 0) A (Vht. fn(Cons h t) = (fn t)+1)

which asserts the (unique) existence of a length function defined by primitive
recursion on lists. Any function definition by primitive recursion on lists can
be justified in a similar way: by appropriately specializing e and f in (3).

2.3.2 General Recursive Types

The axiom (3) for lists shown above illustrates the general form of the theorems
that will be used to characterize recursive types. In general, a recursive type
with n constructors Cy, Cy, ..., C, can be informally described by a type
‘declaration’ of the form:

rty := City---ty | Coty---ty | - | Coty -ty (4)

where rty is the name of the recursive type being described, and each ty is
either an existing logical type (not containing rty) or the name rty itself.
An expression of this form is similar to a ‘datatype’ declaration in Standard
ML [10]. It simply states the names of the constructors for a new type rty and
the types of their arguments.

Any recursive type described by an informal declaration of this kind can be
characterized formally in higher order logic by a single abstract axiom of the
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following general form:

Vfi fa -+ fn. A fnrty—ao.
Voy -z fn(Crey o 25) = fi(fnzy) o (fna) e - 2 A
Ve - zp. f(Cozy - ;) = fa(fna) - (fnaj)z - 25 A

I

Ver o zp. fn(Chey - a) = fo (fne) - (fnag) ey - o

where the right hand sides of the equations include terms (fn z) only for
variables z of type rty. (See, for example, the axiom for lists shown above.)

A theorem of this form states the unique existence of primitive recursive
functions defined by cases on the constructors Cq, Co, ..., C,,. From a theorem
of this kind, it is possible to prove:

e a structural induction theorem for the recursive type rty,
e that the constructors Cy, C, ..., C, yield distinct values of type rty,
e that each constructor Cy, Cs, ..., C, is one-to-one; and

e the validity of any function definition by primitive recursion on rty.

- Abstract axioms for recursive types (and the facts listed above, which follow
from these axioms) are used in the formal proofs of the hardware verification
examples given in Sections 3 and 4. Details will not, however, be given of the
abstract axioms for the recursive types used; they will be simply described
informally by type ‘declarations’ of the general form illustrated by (4). Details
of the justification of structural induction and function definitions by primitive
recursion for these types will also be omitted.

'The definition and axiomatization of recursive types in higher order logic
has been mechanized by a package written for the HOL theorem prover. Using
this package, any recursive type of the kind described in this section can be
constructed completely automatically from an informal type declaration of the
general form illustrated by (4) above. The system reads such a declaration,
finds an appropriate existing type to represent the new type, asserts a type
definition axiom, and derives an abstract axiom for the new type by formal
proof. The package also includes tools for deriving structural induction and for
automating primitive recursive definitions. A full description of this package
appears in [8,13].
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3 Reasoning about Tree-Shaped Devices

Many -hardware devices can be built by wiring basic components together to
make tree-shaped structures. This section contains an example which shows
how recursive types of the kind described in Section 2 can be used to help
specify and reason formally about such devices in higher order logic.

The idea is to model a collection of tree-structured devices by a recursive
type whose values have the same structure as the devices themselves. Consider,
for example, the set of all tree-shaped circuits built from 2-input or-gates. The
structural aspect of these circuits can be modelled in logic by an abstract type
tree that denotes the set of all binary trees. With this approach, each value
t of type tree represents a tree of 2-input OR-gates, and the type tree itself
represents the set of all such circuits.

Representing circuits in this way makes it possible to specify their behaviour
formally by defining a higher-order function Beh(¢) which, for each tree ¢, yields
a predicate defining the behaviour of the corresponding circuit. With such a
parameterized specification, properties can be proved about the set of all tree-
shaped circuits by showing that they follow from Beh(t) for all trees 1.

In what follows, an example is given to illustrate these ideas. First, a formal
specification is given for the intended behaviour of a simple test-for-zero device.
A recursive type of trees is then used to specify a class of alternative tree-
shaped circuits that implement this device. These circuits are then proved
correct with respect to the specification of intended behaviour. Finally, the
type of trees is used to generate provably ‘optimal’ circuits that satisfy the
behavioural specification.

3.1 The Example Device and its Top-level Specification

A top-level view of the device discussed in this section is shown below:

Ttz

17 —>] > out

This device takes an n-bit word as input on the port labelled in. The output
on the port labelled out is a boolean value that indicates if the natural number
represented by the n-bit word in is equal to zero.
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To specify the behaviour of this device in logie, a data type wordn is needed
to model the set of all bit-vectors, or n-bit words. The following informal
recursive type declaration describes such a type:

wordn := Wire bool | Bus bool wordn

As was discussed in Section 2.3.2, the recursive type wordn described by this
informal declaration can be characterized formally in logic using two primitive
constructors:

Wire : bool—wordn and Bus:bool—wordn—wordn

The function Wire takes a value b of type bool and yields a one-bit word,
‘Wire b’, containing the single bit b. The function Bus takes a boolean value
b and an n-bit word w and yields the (n+1)-bit word ‘Bus b w’ with least
significant bit b. The 4-bit word 1101, for example, is denoted by

Bus T (Bus F (Bus T (Wire T))).

Using the recursive type wordn, the behaviour of the test-for-zero device can
be specified in logic by a two-place predicate Tfz defined by:

Tfz(in, out) = (out = (Val in = 0))

where the variable in has type wordn, and the variable out has type bool. The
function Val:wordn—num maps n-bit binary words to natural numbers. It is
defined by primitive recursion as follows:

Val(Wire b) = (b=1]0)
Val(Bus bv) = (2 x (Valv))+(b=1]0)

The predicate Tfz is an example of a formal specification of a class of related
hardware devices. It specifies the behaviour of an n-bit test-for-zero device
for all input word widths n. The actual width of the device specified by Tfz
is implicitly determined by the size of the n-bit word represented by in. A
similar technique for specifying n-bit wide devices is used by Hunt in [11].
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3.2 Alternative Implementations of the Device

An n-bit test-for-zero device can be implemented by a tree of 2-input OR-gates
connected to an inverter. Figure 1 shows two correct implementations of this
kind for a 6-bit test-for-zero device. Each of these devices takes a 6-bit binary
word on its input wires. The output of each device is a boolean value which
is true if the binary number represented by its 6-bit input is zero, and false
otherwise.

Both of the circuits shown in Figure 1 are functionally correct. The circuit
on the right (circuit b), however, is an optimal tree-shaped implementation for
a 6-bit device, in the sense that the length of the path from inputs to output
is the shortest possible, and the gate delay through the device is therefore
minimal. On the other hand, the structure of circuit (a) is that of a ‘degenerate’
binary tree: its structure is essentially that of a linear list. If the criterion by
which circuits are judged is that of minimising delay, this structure is the worst
implementation of a 6-bit test-for-zero device.

More generally, the best implementation of an n-bit Tfz device using a binary
tree of 2-input OR-gates will be a tree of height [log, n], and the worst imple-
mentation will be a degenerate tree of height n—1. In Section 3.4, a recursive
type tree of binary trees will be used to specify formally the class of all such
implementations, and this recursive type will be used in Section 3.6 to define

(a) degenerate tree. (b) optimal tree.

Figure 1: Two 6-bit Test-for-zero Circuits.
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an ‘executable’ function which generates a provably optimal implementation
for any input width.

3.3 A Type of Binary Trees

A recursive type tree of binary trees can be described informally by:
tree := Leaf | Node tree tree

The type iree has one primitive constant value, Leaf:tree, and one primitive
constructor Node:tree—itree—tree. The constant Leaf denotes the trivial tree
consisting of a single leaf node. The constructor Node is used to build binary
trees from smaller binary trees; if ¢; and ¢, are trees, then the expression
(Node t1 t5) denotes the binary tree with left subtree #; and right subtree 1.
Using Leaf and Node, it is possible to construct a binary tree of any shape. For
example, the binary tree:

is denoted by the expression: Node Leaf (Node Leaf Leaf).

'T'wo recursive functions on trees will be used in the sections that follow. The
first of these is the function Height:tree—num, which computes the height of
a binary tree. It can be defined by primitive recursion on trees as follows:

Height Leaf =0

Height (Node 1 t3) = (Max (Height ¢;) (Height ¢5)) + 1
As discussed in Section 2.3.2, the validity of a primitive recursive definition of
this kind follows directly from the abstract axiom for the recursive type tree.
The second function on trees that will be needed below is Leaves:tree—snum.

This function computes the number of leaf nodes in a tree, and its primitive
recursive definition is simple:

Leaves Leaf =1

Leaves (Node 1 22) = (Leaves ¢1) + (Leaves )

Again, the validity of this definition follows directly from the abstract axiom
for tree.
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3.4 Specifying the Set of all Implementations

Using the recursive type tree described above, it is possible to define a predicate
that specifies the class of all tree-structured implementations of an n-bit test-
for-zero device. The recursive type tree has values with the same kind of
structure as the circuits to be specified. The formal specification will therefore
be a predicate Tfz_imp ¢ (in, out) that is parameterized by a value ¢ of type tree.
For each tree t, the expression Tfz_imp ¢ (in,out) will specify the behaviour
of the corresponding tree-shaped implementation. Since ¢ ranges over the set
of all binary trees, the parameterized predicate Tfzimp ¢ (in, out) will specify
the class of all such circuits.

The binary tree supplied as the parameter ¢ to Tfz_imp ¢ (in, out) determines
the shape of the tree of OR-gates in the implementation being specified. Each
internal node of the tree ¢ corresponds to an OR-gate in the implementation;
and each leaf node of ¢ corresponds to a wire of the n-bit input word. For
example, if ¢ is the binary tree:

then the circuit specified by Tfz_imp ¢ (in, out) will be the optimal 6-bit test-
for-zero implementation shown in Figure 1. '

3.4.1 Defining the Predicate Tfz_imp

The implementation predicate Tfz_imp is defined using an auxiliary predicate
Or_tree that specifies the behaviour of the tree of ORr-gates, and a predicate
Inv that specifies the behaviour of an inverter. Given these two predicates, the

definition of Tfz_imp is simply:
Tfz_imp t (¢n, out) = Jx. Or_tree t (in, z) A Inv(z, out)

Here, the internal line z is used to connect the tree of OR-gates defined by
Or_tree to the output inverter Inv.
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'The definition of Or_tree ¢ (in, ¢) is done by primitive recursion on the tree ¢.
In the base case, the predicate Or_tree just models a direct connection between
the input ¢n (which must be a bit-vector of width one) and the output «:

Or_tree Leaf (in,z) = (in = Wire z)

In the recursive case, the predicate Or_tree connects two subtrees together using
a 2-input OR-gate, and then concatenates the input words of these subtrees to
get the input word of the whole device:

Or_tree (Node 1 t5) (in,z) =
di1 99 21 29, (z'n:z'l + 22) A Or(ml, 2, iL') A
Or_tree t1 (i1, 21) A Or_tree tg (ia, z2)

The infix operator 4+ in this definition is the concatenation operation on n-
bit words represented by the recursive type wordn. Its primitive recursive
definition is:

(Wire b)) +w = Busbw
(Bus b wy) ++ wa = Busb (w1 ++ wa)

3.5 The Proof of Correctness

The predicate Tfz_imp defines the class of all test-for-zero implementations,
both for all possible shapes of the or-gate tree and for all possible widths of
the n-bit input in. Before going on to prove that this class of devices is correct
with respect to the specification Tfz, it is worth checking that the predicate
Tfz_imp ¢ (in, out) does not specify an inconsistent implementation, and can
be satisfied for sensible values of ¢ and in.

~ The following theorem asserts that Tfz_imp consistently defines a circuit for
all appropriate combinations of in and ¢:

F Vi in. (Jout. Tfziimp t (in, out)) = (Leaves t = Width in)

This theorem states that Tfz_imp ¢ (in,out) can be satisfied by some value
of out exactly when the number of leaves in the tree ¢ matches the width of
the input ¢n. This means that Tfz_imp at least defines some consistent and
satisfiable implementation for every appropriate tree shape t. The proof of this
theorem is done by structural induction on the variable ¢ ranging over trees. As
discussed in Section 2.3.2, the validity of such inductive proofs follows formally
from the abstract axiom for the recursive type tree.
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It remains to show that every test-for-zero implementation described by
Tfz_imp is functionally correct. The desired correctness statement is:

F Yt in out. Tfz_imp ¢t (in, out) D Tfz(in, out)

This theorem follows easily by structural induction on the binary tree . It
states that every nm-bit implementation of a test-for-zero device constructed
from an appropriate binary tree ¢ of OR-gates satisfies the specification Tfz.
Parameterizing the implementation description with the variable ¢ of type tree
effectively ‘quantifies’ over all possible shapes that the implementation can
have. The correctness statement given above therefore asserts that every such
implementation is functionally correct with respect to the abstract specification
given by Tfz. The correctness statement also asserts the correctness of these
designs for every possible width of the n-bit input in.

3.6 Generating Provably Optimal Implementations

In this section, a function is defined in logic to generate a provably optimal
tree-shaped test-for-zero circuit (i.e. a circuit of least height) for any input
word width. This is done by defining a function Gen:num-—tree such that
Gen(n) denotes a binary tree of minimal height having exactly n leaf nodes.
The resulting binary tree can then be used as the parameter ¢ in the circuit
specification Tfz_imp ¢ (in, out) to yield an optimal implementation. That is,
given the function Gen, an optimal test-for-zero implementation for any input
word 1n can be specified by:

Tfz_imp (Gen(Width in)) (in, out)

The function Gen is defined such that it satisfies the following recursive
equation for all n:

F Genn = (n<2 = Leaf | Node (Gen(n div 2)) (Gen(n—(n div 2)))) (5)

It is not, however, possible to define Gen simply by writing down the recursive
equation shown above. This is because all functions in higher order logic must
be total, and it is not in general the case that an arbitrary recursive equation
‘f n = -..f.. involving a function variable f can in fact be satisfied by a
total function. Equation (5) must therefore be derived in the logic by formal
proof. This can be done by defining a class of functions Gen,, (n), each of which
satisfies the recursive equation for Gen for all n<m, and then defining Gen by
the non-recursive equation: Vn.Gen n = Geny(n).
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The form of equation (5) is such that the value of Gen(n) can be computed for
any particular value of n simply by rewriting with the equation and simplifying
the arithmetical expressions that occur on the right hand side. This logical
equation therefore acts like an executable “functional program’ for generating
the optimal tree for any n, and thus for generating optimal implementations
of the test-for-zero device.

It follows from the recursive equation (5) that the binary tree denoted by
Gen(n) has n leaf nodes and is of minimal height. This is stated formally by
the following two theorems:

FVn.(n # 0) D (Leaves(Gen n) = n)
F Vin.(Leaves t = n) D Height(Gen n) < Height ¢

The first of these theorems follows by mathematical induction on n; it states
that Gen generates trees with the required number of leaf nodes. The second
theorem can be proved by structural induction on binary trees; it states that
the height of the tree denoted by Gen(n) is no larger than the height of any
tree with n leaves. These theorems show that Gen can be used to generate
optimal (and correct) implementations of the test-for-zero device.

3.7 Discussion

In the example given above, the recursive structure of the type tree exactly
mirrors the recursive structure of the set of circuits being specified. The type
of binary trees can therefore be used to model the abstract structure of these
circuits independently of their behaviour. Using the recursive type tree in
this way makes it possible to ‘quantify’ over the set of alternative circuits
by quantifying over variables of type #ree. This allows assertions about all
such circuits to be formulated directly in the logic. Two assertions of this kind
were presented above: (1) that every alternative implementation is functionally
correct, and (2) that the circuit generated by Gen is optimal.

In the following section, this idea of modelling the structure of circuits
by a recursive type is applied to reasoning about models of MOS transistor
behaviour. Again, a specially-defined recursive type will be used to make
1t possible to formulate assertions about ‘all circuits’ directly as theorems of
higher order logic.
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4 Comparing Two Transistor Models

The value of a formal proof of correctness depends on how accurately the
underlying model of circuit behaviour reflects reality. The more accurate the
model, the less likely it is that design errors will escape discovery by formal
proof. But a very accurate model of device behaviour may, in some cases,
be unnecessarily complex. It may be possible to adopt a circuit design style
for which a simpler model will do. For example, the functional correctness of
a fully complementary CMOS circuit does not critically depend on transistor
size ratios [14, pp 160-61]. A very accurate transistor model, which took into
account transistor sizes, would therefore be inappropriate for this conservative
circuit design style.

Assertions about the relationship between an accurate transistor model and
a simpler one can be formulated naturally and concisely in higher order logic
using recursive types. In this section, a specially-defined recursive type ‘cire’
is introduced to provide an explicit representation in logic for the structure
of the class of all CMOS circuit designs. The motivation for introducing this
type is that it makes it possible for assertions about the relationship between
two transistor models to be stated as theorems of higher order logic, rather
than meta-theorems about provability in the logic. In particular, it makes it
possible to prove a theorem which states that certain circuits can be verified
using a simple transistor model rather than a more accurate (but also more
complex) transistor model.

In the sections that follow, two simple transistor models are described. The
two models are then formalized in higher order logic by means of semantic
functions defined on a recursive type cire of MOS circuits. The relationship
between these two transistor models is then formalized by a theorem which
describes a condition under which the two models are effectively equivalent.

4.1 A Switch Model of Transistors

One model of transistor behaviour treats a transistor as an ideal bidirectional
switch controlled by the boolean value on its gate [1,6]. In this simple model
the behaviour of a N-type transistor is specified formally as follows:

Ntran(g,s,d) = (¢ D (s = d))

In this specification the signals on the gate (g), source (s) and drain (d) of
a transistor are modelled by values of type bool. If ¢ is equal to T then the
source and drain will have the same boolean value; and if g is equal to F then
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the source and drain can have any two boolean values. Thus Ntran acts as an
ideal switch which is closed when g=T and open when g=F. The specification
of a P-type transistor is similar:

Ptran(g, s,d) = (-g D (s = d))

Although this very simple transistor model can be useful for some purposes,
it fails to capture many aspects of the behaviour of real MOS transistors. One
of these aspects is the fact that the switching behaviour of a MOS transistor
depends not on the ‘logic level’ present on its gate, but on the magnitude of
the gate-to-source voltage V,; compared to some non-zero threshold voltage
Vi. This means that MOS transistors do not act as ideal switches that pass all
logic levels equally well. Consider, for example, the transmission of logic levels
through an N-type transistor to a capacitative load C:

g

1
imn —7~ 1—3 C

Suppose the gate g is connected directly to power. If the input in is at logic
level F then any charge at C will be drained off through the transistor, and
the point C will also have logic level F. But if the input is at logic level T, the
voltage at point C will only reach a level that is the threshold voltage V; less
than the voltage represented by T. This voltage may be too low to drive the
gate of another transistor, and therefore must be treated as distinct from the
logic level T. The switch model of transistors given above does not reflect this
threshold switching behaviour of real transistors; and this inadequacy makes
it possible to prove in this model the ‘correctness’ of certain circuits which do
not work in practice (an example is given below in Section 4.7).

The fundamental problem with the simple switch model is that it specifies
the behaviour of transistors in terms of the two-valued type bool, so that each
node of a circuit has either the value T or the value F. For example, in the
switch model the value at point C of the transistor shown above must be either
T or F. This means that when the value at in is T and the gate is high, the
value at C must also be T. No other value is possible. But in a real N-type
transistor, the value at C will be some ‘degraded’ logic level which must be
treated as distinct from T. To model such degraded logic levels, a type with
more than two values is needed.
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4.2 A Threshold Switching Model of Transistors?

A transistor model that at least partly captures threshold switching behaviour
can be based on an abstract data type that has exactly three distinct values:
Hi, Lo, and X. Using the informal notation introduced in Section 2.3.2, an
appropriate logical type ‘tri’ is defined by the equation shown below.

tri := Hi | Lo | X

This informal definition states that #r7i denotes a set which contains exactly
three distinct values—namely Hi, Lo, and X. The abstract characterization of
this three-valued type consists of the following single theorem.

FVYabe Jfntri—a. (faHi=a)A(falo=b)A(fnX=c) (6)

This theorem provides a complete and abstract characterization of the defined
logical type tri. It takes the form of a degenerate ‘primitive recursion’ theorem.
Since tri is an enumerated type with no recursive constructors, the theorem
simply states that any function defined by cases on the three constants Hi, Lo,
and X exists and is uniquely defined. It follows immediately that the type irz
denotes a set containing precisely the three distinct values denoted by these
constants.

4.2.1 The Model

Once the type tr: has been defined, it can be used as the basis for a transistor
model which at least partly captures the threshold switching behaviour of real
CMOS devices. The basic idea is to represent the strongly-driven logic levels
high and low by the values Hi and Lo, and to represent all degraded logic levels,
which cannot reliably drive the gates of transistors, by the value X.

The behaviour of an N-type transistor in this model is given by:

Ntran(g, s, d) = (g=Hi D ((s=Lo) = (d=Lo)))

It follows from this definition that when the gate ¢ has value Hi and the source
s has value Lo (i.e. the gate-to-source voltage is large) then the drain d must
also have value Lo. Thus the logic level Lo is transmitted unchanged through

2The transistor model described in this section is based on an idea suggested by Mike
Fourman at the workshop on Theoretical Aspects of VLSI Architectures at the University of
Leeds in September 1986,
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the transistor. But when both g and s have the value Hi then the value at
d may be either Hi or X; the predicate Ntran is satisfied in both cases. This
reflects the fact that a logic level Hi can be degraded to an ‘error’ value X when
it is transmitted through the transistor.

The behaviour of a P-type transistor is specified in the threshold switching
model as follows:

Ptran(g, s,d) = (9=Lo D ((s=Hi) = (d=Hi)))

Again, the value X is used to model the possibility of a logic level being
degraded as it is transmitted through a transistor. In this case, when g and s
are Lo the value of d can be either Lo or X, reflecting the fact that the logic
level low is only imperfectly transmitted through a P-type transistor.

By modelling the values that can appear on the nodes of a circuit with
the three-valued type tri instead of the two-valued type bool, the threshold
switching model of transistors reflects the behaviour of real transistors more
accurately than the simple switch model.3 Design errors are therefore less likely
to escape discovery by formal verification when the threshold switching model
is used, since a circuit that can be proved correct using the switch model may
be shown to be incorrect using the more accurate threshold switching model.

For certain circuits, however, the two models are effectively equivalent. For
these circuits, a proof of correctness in the switch model amounts to a proof
of correctness in the threshold switching model. The switch model is therefore
an adequate basis for verification of these circuits, and the extra accuracy of
the threshold switching model is not needed. In the sections that follow, a
recursive type circ of MOS circuits is used to express formally the assertion
that the two models are equivalent for a certain class of circuit designs.

4.3 A Recursive Type for the Syntax of MOS Circuits

Following the approach of Cardelli [2] and Winskel [16], a language is defined
in this section whose expressions are circuit terms which describe how circuits
are constructed from subcircuits. A circuit term is either a primitive expression
that denotes a basic component (i.e. power, ground, an N-type transistor, or
a P-type transistor), or a composite expression that denotes a circuit built up
by the operations of composition (connecting two circuits together) and hiding
(insulating wires from the environment).

30f course, the threshold switching model defined in this section is still a very crude
model of CMOS transistor behaviour. For a better model, see [15].
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The syntax of circuit terms is represented in logic by the recursive type cire,
informally described by:

circ = Pwr str
| Gnd str
| Ntran str str str
| Ptran str str str
| Join cire cire
| Hide str circ

where str is an appropriately-defined (recursive) type of ascii character strings.

This equation defines a recursive type with six constructors, corresponding
to the six different syntactic constructs in the abstract syntax of the language
it represents. The first four constructors represent the primitive CMOS devices
power, ground, N-type transistors, and P-type transistors. These are simply
functions that map wire names (modelled by strings) to values of type cire.
The constructor Pwr:str—cire, for example, maps a value s of type str to a
circuit term ‘Pwr s’ which represents a power node. Similarly, the constructor
for N-type transistors, Ntran:str—str—str—cire, maps three strings to a value
of type circ that represents an N-type transistor. For example, a circuit term
of the form ‘Ntran ¢ s d’ stands for an N-type transistor with gate labelled by
the string g, source labelled by the string s, and drain labelled by the string d.

The other two constructors, Join and Hide, represent composition and hiding
operations, which are used to construct circuit terms that model composite
CMOS circuit designs. These two constructors are recursive functions that map
values of type circ to values of type circ. The function Join:cire—cire—cire
represents the composition operation on circuit terms. If ¢; and ¢y are two
values of type cire, then the circuit term ‘Join ¢; ¢o’ represents the composition
of the two circuits represented by ¢y and c¢y. The function Hide:str—circ—circe
represents the hiding operation on circuit terms. If ¢ is a circuit term and s
is a string, then the circuit term ‘Hide s ¢’ represents the circuit obtained by
hiding the wire labelled s in the circuit represented by c.

As was outlined in Section 2.3.2, the recursive type circ described informally
by the grammar shown above can be defined formally in higher order logic
using the rule of type definition described in Section 2.1. And an abstract
characterization of the form shown in Section 2.3.2 can be proved for the type
cire, from which one can derive structural induction and primitive recursive
definitions. These facts are used in the sections that follow.
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4.4 'The Semantics of Circuit Terms

The recursive type circ defined in the previous section denotes a set of values
whose structure mirrors the way in which CMOS circuits are built up from their
primitive components. This provides an embedded language of circuit terms
in higher order logic for modelling the purely structural aspect of the class of
all CMOS circuit designs. The following sections show how the behaviour of
this class of circuit designs can also be modelled in logic by defining a formal
semantics for this language. “The semantics of circuit terms will be defined in
two different ways. One of these corresponds to the switch model of transistor
behaviour, and the other corresponds to the threshold switching model.

For both transistor models, the semantics of circuit terms will be based on
the idea of an environment. An environment is a function e:str—ty that maps
wire names (modelled by strings) to values. Such a function assigns a value
‘e s’ to every external wire s of a device, and thus describes a possible pattern |
of communication with the ‘environment’ in which a device operates. In the
switch model, values on the wires of a device are represented by booleans. An
environment in this model is therefore a function e:str—bool which assigns a
value ‘e s’ of type bool to every wire name s. This associates a boolean logic
level with every external wire of a CMOS device. In threshold switching model,
the values present on the wires of a device are modelled by the three-valued
type tri introduced above. In this model, an environment is a function of type
str—tri, which assigns a value of type tri to each external wire of a device.

Using this idea of an environment, a denotational semantics can be given to
circuit terms by defining by a ‘meaning’ function M that maps circuit terms to
predicates on environments. The precise definition of this function will depend
on the model of transistor behaviour which is used, but the basic idea is to
define a function M such that, for every circuit term ¢, the application ‘M ¢’
denotes a predicate which is satisfied by only those environments that represent
allowable configurations of values on the wires of the circuit represented by c.
For any environment e, the expression M ¢ e will then be true exactly when e
represents a configuration of externally observable values that could occur on
the wires of the CMOS circuit represented by the circuit term c.

4.4.1 The Switch Model Semantics

The semantic function Sm for the switch model of CMOS transistor behaviour is
defined by primitive recursion on circ and has type circ—((str—bool)—bool).
When applied to a circuit term ¢, it yields a predicate Sm ¢ on environments
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of type str—bool. The primitive recursive definition of Sm is:

(ep=T)
(eg=F)

l

Sm (Pwr p) e
Sm (Gnd g) e
Sm(Ntrangsd)e = egD(ed=ces)
Sm(Ptrangsd)e = =(eg) D(ed=¢e35s)
Sm(Joineiea)e = Sme;eASmese
Sm (Hide sc) e 3b.Sm ¢ (subst ¢ b s)

ll

where (subst e b s) denotes the environment identical to e except that it assigns
the value b to the string s. The definition of subst is:

| Vst. (subst e b s) st = ((st = 5) = b | e st)

The validity of this primitive recursive definition is justified formally by the
characterization of the defined type cire given by a theorem of the form shown
in Section 2.3.2.

The first four equations in this definition of the function Sm define the
semantics of primitive CMOS devices: power, ground, N-type transistors, and
P-type transistors. Each equation states what must be true of an environment
in which the corresponding component is operating. The equation for Ntran,
for example, states what must be true in any environment in which an N-type
transistor with gate g, source s, and drain d is placed. This equation imposes
the constraint that any environment e which assigns the value T to g must also
assign equal values to d and s. The three other equations define the semantics
of power, ground, and P-type transistors in a similar way.

The last two equations shown above define the semantics of composition
and hiding. The semantic equation for the constructor Join states that an
environment e 1s a possible assignment of values to the wires in a composition
of two circuits exactly when it is a possible assignment of values to the wires
of both subcircuits. The equation for Hide uses existential quantification to
isolate the hidden wire from the environment. It states that e is a possible
environment for the circuit represented by ‘Hide s ¢’ exactly when there exists
some environment which is allowed by the semantics of ¢ and which differs
from e only in the boolean value it assigns to the string s.

4.4.2 The Threshold Model Semantics

In the threshold switching model, signals on circuit nodes are modelled by
values of type tri. The semantics of cire for the threshold switching model will
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therefore be given by a function Tm from circ to predicates on environments
of type str—tri. The function Tm is defined by primitive recursion as follows:

Tm (Pwr p)e = (e p=Hi)

Tm (Gnd g) e = (e g = Lo)

Tm (Ntrangsd)e = (e g =Hi) D ((e d = Lo) = (e s = Lo))
Tm (Ptrangsd)e = (e g = Lo) D ((e d = Hi) = (e s = Hi))
Tm (Joinecica)e = TmereATmeze

Tm (Hidesc)e = Jv.Tme (subst e v s)

This definition is similar to the recursive definition of the semantic function for
the switch model semantics of circuit terms. The difference is that the function
Tm defined here is defined for environments of type str—tri, and the threshold
switching model of CMOS behaviour is used in the defining equations for the
primitive devices Pwr, Gnd, Ntran, and Ptran. The semantics of composition
and hiding are the same as in the switch model.

4.5 Defining Satisfaction

The two semantic functions defined in the preceding sections can be used to
formulate an assertion that describes a condition under which a correctness
result obtained in the switch model amounts to a correctness result in the
threshold switching model. This assertion will state when it is ‘safe’ use the less
detailed switch model to verify a CMOS design, rather than the more accurate
threshold switching model. The first step in formulating this assertion is to
define what it means for a circuit design to ‘satisfy’ a specification of required
behaviour in a given transistor model.

In the following definition of satisfaction, ¢ is a circuit term representing a
CMOS circuit design, M stands for a semantic function on circuit terms, and
S is a specification of the circuit’s required or intended behaviour:

SatMeS = Vesstr—ma.MceDSe

The specification S in this definition is just a predicate on environments of
type str—a. The type variable « stands for the type of values on the nodes
of a circuit. This type is bool for the switch model semantics given by Sm
and ¢r: for the threshold switching semantics given by Tm. The definition of
Sat states that a circuit ¢ satisfies a specification S in a transistor model M if
every environment allowed by the semantics M c is also allowed by S.
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4.6 Translating Specifications

To compare the switch model and thresold switching model, a method is needed
for relating Sm correctness results and Tm correctness results. Since there are
assertions about correctness in the threshold model which simply cannot be
expressed in the simpler switch model, the relationship must be based on a
translation from switch model correctness statements info threshold model
correctness statements. The basis of the comparison is therefore a translation
from Sm specifications into equivalent Tm specifications.
Consider, for example, the one-bit comparator shown below:

at —{Cmp | oyt
lbl —

This device compares the two bits on the input wires 'a' and 'b'. If they are
equal, then the output 'out' is true; otherwise the output is false. In the switch
model given by Sm, the behaviour of this device can be specified by:

Cmp e = (6 'out' = (e ' — e 'b'))

where 'a', 'b', and 'out' are constants of type str, and e is an environment of
type str—bool. An equivalent Tm specification is given by:

Temp e = (Vst. e st £ X) D (e ‘out' = ((e 'a’=e 'b') = Hi | Lo))

where e is an environment of type str—tr:. This threshold model specification
states that in a ‘well-behaved’ environment—that is, an environment in which
no wire has the value X—the output will be Hi if the input bits are equal and
Lo if they are not equal.

In this example, the threshold model specification given by Temp defines
the same functional behaviour as the switch model specification given by Cmp.
In general, any Sm specification S can be translated into an equivalent Tm
specification by the function Trans, defined by:

VSe.Trans S e = (Vs.e s # X) D S(abs o €)

where abs:tri—bool is a data abstraction function defined such that abs Hi=T
and abs Lo = F. The definition of Trans states that the translation of an Sm
specification S is true of a well-behaved Tm environment e:str—iri exactly
when the specification .S holds of the corresponding Sm environment abs o e.
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4,7 Relating the Two Models

Using the translation Trans, it is possible to formulate as theorems assertions
about the relationship between the two transistor models defined by Sm and
Tm. In particular, a predicate on circuit terms Wh can be defined such that
one can prove:

F Ve.Wb ¢ D VS. Sat Sm ¢ S = Sat Tm ¢ (Trans S) (7)

This theorem asserts that if a circuit ¢ satisfies Wb, then it satisfies a switch
model specification S exactly when it satisfies the corresponding threshold
model specification Trans S. The simple switch model is therefore adequate
for proving the correctness of circuits which satisfy Wb. For such circuits, there
is no point in using the more complex threshold switching model, since the two
models exactly agree on the (Sm) specifications that these circuits satisfy.

In fact, for any circuit term ¢, a correctness result in the threshold model of
CMOS behaviour implies a correctness result in the simpler switch model. By
structural induction on ¢, one can prove:

F Ve S. Sat Tm ¢ (Trans S) D Sat Sme S

It is necessary to impose the condition Wb on circuit terms only to prove the
converse implication. This result is exactly what one would expect; for if a
circuit can be proved correct using the detailed threshold model, then it must
also be correct according to the simpler—Dbut less accurate—switch model.

The converse, however, is not true. Some circuits can be proved correct with
respect to a specification S in the switch model which are not correct with
respect to the corresponding specification Trans S in the threshold switching
model. Formally, one can prove that:

F—=VeS. Sat Sm ¢ S D Sat Tm ¢ (Trans S)

The CMOS circuit shown Figure 2 provides a counterexample by which this
negative result can be proved. This circuit is intended to be an implementation
of the one-bit comparator specified on page 32. But it is in fact composed of an
incorrect exclusive-or gate (the subcircuit on the left) connected to an inverter
by the internal wire 'w'. The exclusive-or circuit shown in this diagram is given
in [1] as an example of a CMOS design which can be proved correct using the
switch model of transistors, but which is in fact incorrect due to the threshold
switching behaviour of its transistors.
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Figure 2: An Incorrect CMOS Comparator.

According to the switch model, the circuit shown in Figure 2 is a correct
implementation of the one-bit comparator specified by Cmp. If Cmpr:cire is
the circuit term that corresponds to this circuit, then one can prove:

F Sat Sm Cmpr Cmp

This theorem states that the implementation Cmpr is correct with respect to
the switch model specification of a one-bit comparator. But according to the
threshold switching model, the circuit is not correct. Formally:

F —Sat Tm Cmpr (Trans Cmp)

That is, the circuit Cmpr does not satisfy the corresponding threshold switching
specification of a one-bit comparator.

The problem with the comparator circuit is that, for certain input values,
the value on-the internal wire 'w' can be the degraded logic level X because of
threshold effects. If the input 'a' is Lo and the input 'b' is Hi then the value
on the hidden wire 'w' can be either Hi or X. This means that the voltage on
'w' may be too low to drive the gates of the transistors in the output inverter.
In the threshold model, the output 'o' is not forced to be the correct value
Lo in this case, and the circuit therefore fails to satisfy the specification of
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required behaviour given by Trans Cmp. The problem is, of course, completely
invisible to the switch model of CMOS behaviour, and the device is (incorrectly)
regarded as correct in this simpler model.

The problem with the incorrect comparator circuit can be detected using the
threshold model semantics because there is an environment e which satisfies
the constraint Tm Cmpr e imposed by the model, but which does not satisfy
the constraint Trans Cmp e imposed by the threshold switching specification.
In particular, there is a threshold model environment e that satisfies the model,
and makes the following assignment of values to the external wires of the device:

e 'a' =Llo, e'b =Hi, and e 'o' = Hi.

For this environment, it is not only the case that the threshold model semantics
allows the internal wire 'w' to have the value X, but that the threshold model
semantics forces the internal wire 'w' to have the value X.

This observation motivates the following recursive definition of the predicate
Wb, which rules out circuits with internal wires that can be forced to have the
value X, and therefore expresses a condition which is sufficient to make the
two transistor models agree on correctness results. For the circuit terms that
model primitive devices, and for circuit terms constructed using the function
Join, the defining equations for the condition Wb are:

Wb (Pwr p) =T
Wb (Gnd p) =T
Wb (Ntran g sodr) = T
Wb (Ptrang sodr) = T
Wb (Jom (551 62) Wb A Wb C2

These equations simply state that the primitive devices satisfy Wb, and that
a composite circuit design satisfies Wb if its subcomponents do. To rule out
internal wires whose value is forced to be X for some external environment, the
defining equation for Wb is:

Wb (Hide sc)=Wb e A Ve.(Tmc e AVst. ~(st=s) D =(e st=X)) D
Jv. =(v=X) A Tm ¢ (subst ¢ v 5)

This equation states that for a circuit ‘Hide s ¢’ to satisfy the condition Wb
it must be the case that the circuit ¢ satisfies Wb, and whenever ¢ is in an
environment in which every external wire except for s does not have the value
X, 1t is possible for the wire s not to have the value X as well. In other words,
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there is no well-behaved esternal environment e, which assigns only Hi or Lo
to each wire name, but which forces the internal wire s to have the degenerate
value X.

If the condition Wb is defined as shown above, then the following theorem
about the relationship between satisfaction in the two models of transistor
behaviour can be proved by structural induction on c:

F Ye. Wb ¢ D VS. Sat Sm ¢ S D Sat Tm ¢ (Trans S)

This theorem states that for circuit terms c¢ that satisfy Wb, a correctness result
proved in the simple switch model implies an equivalent correctness result in
the more complex threshold switching model. This expresses the fact that the
simple switch model is effectively equivalent to the more detailed threshold
model only for a particular class of circuit designs. For circuits satisfying Wb,
the simple switch model is adequate for doing correctness proofs; the threshold
switching model can not be used to detect design errors in these circuits which
will not also be found by using the simpler switch model.

4.8 Discussion

The predicate Wh defined in Section 4.7 is a condition on CMOS circuit designs
which is sufficient to ensure that they can be verified using the simple switch
model rather than the more accurate (but also more complex) threshold model.
The predicate Wb, however, was not defined in a way that makes it useful
in practice for determining when the simpler switch model can be used. In
the defining equations for Wb, the semantic function Tm is used to state the
condition that hidden wires are not forced to have the value X. This means
that for any particular circuit term c it is necessary to carry out a proof in
the threshold model of CMOS behaviour in order to determine if the condition
‘Wb ¢’ holds. But this may be (and typically is) just as much work as simply
proving a threshold model correctness theorem for the circuit represented by
c. If an equivalence result of the kind stated by theorem (7) is to be useful in
practice, a condition is needed that can be checked purely syntactically.

A syntactic condition on circuit terms that makes the two transistor models
agree on correctness could be seen as a ‘design rule’ for CMOS circuits which
ensures that they are verifiable using the simple switch model. One example
of such a syntactic condition might be a predicate FC which is true of a circuit
term c exactly when c represents a fully complementary CMOS circuit design.
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If such a predicate is defined formally and shown to satisfy the implication:
Ve. FC e D VS. Sat Sm ¢ S = Sat Tm ¢ (Trans S)

then a correctness proof for any circuit that satisfies the syntactic condition FC
can be safely done using the simpler switch model semantics. A result of this
kind would show that the switch model is adequate for fully complementary
CMOS logic, and if circuits are designed using this conservative CMOS design
style, the extra complexity of the threshold switching model is not needed
to model them. Furthermore, if FC is a purely syntactic condition on circuit
terms—i.e. a condition that describes only the structure of fully complementary
circuit designs—then checking whether the simple switch model can be used
for the correctness proof of any particular circuit design can be done without
having to reason about its behaviour in the more complex threshold model.

5 Concluding Remarks

The two examples given in this paper illustrate how recursive types can be
used to separate the syntaz of circuit specifications from their semantics. In
Section 3, a type of binary trees was used to model the structure of a class of
tree shaped circuits. Each value of the type tree represented a corresponding
tree-shaped circuit. This made it possible to formulate statements in the logic
about the class of all such circuits. And in Section 4 a recursive type was used
to model the syntax of CMOS circuits. By separating the syntax of CMOS
circuits from their semantics, this recursive type made it possible to formulate
assertions about the relationship between two different transistor models,

These examples show that extending the syntax of types in higher order logic
to include recursive types facilitates general reasoning about not just individual
devices but entire classes of devices and models of behaviour. Furthermore,
defining recursive types using the mechanism described in Section 2.1 allows
this kind to reasoning to be done formally without ad hoc extensions to the
axioms of higher order logic, and therefore ensures that inconsistency is not
introduced by adding these types.
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