
The Foundation of a Generic Theorem Prover

Lawrence C Paulson
Computer Laboratory

University of Cambridge

Abstract

Isabelle [28, 30] is an interactive theorem prover that supports a variety
of logics. It represents rules as propositions (not as functions) and builds
proofs by combining rules. These operations constitute a meta-logic (or ‘log-
ical framework’) in which the object-logics are formalized. Isabelle is now
based on higher-order logic — a precise and well-understood foundation.

Examples illustrate use of this meta-logic to formalize logics and proofs.
Axioms for first-order logic are shown sound and complete. Backwards proof
is formalized by meta-reasoning about object-level entailment.

Higher-order logic has several practical advantages over other meta-logics.
Many proof techniques are known, such as Huet’s higher-order unification
procedure.

Key words: higher-order logic, higher-order unification, Isabelle, LCF, logical
frameworks, meta-reasoning, natural deduction

Contents

1 History and overview 2

2 The meta-logic M 4
2.1 Syntax of the meta-logic . 4
2.2 Syntactic conventions . 5
2.3 Semantics of the meta-logic . 5
2.4 Inference rules . 6

3 Representing intuitionistic propositional logic 7

4 Backwards proof construction 11
4.1 Proof states as derived rules . 12
4.2 Proof construction by resolution . 13
4.3 Lifting a rule over assumptions . 14
4.4 Deriving object-level rules . 16

5 Quantification 18

6 Backwards proof with quantifiers 20
6.1 Lifting over universal quantifiers . 20
6.2 Unification . 23

7 Other representations of eigenvariables 25
7.1 Hilbert’s ε-operator . 25
7.2 Replacing Hilbert’s ε by special constants 26
7.3 Lifting versus special constants . 27

8 An implementation 29

9 Related work 31

1

1 History and overview

The dominance of classical first-order logic is challenged every year by something
new. Scott’s Logic of Computable Functions appeared in 1969 and attracted the
interest of Robin Milner. Milner built a proof checker but found it impossibly tedious
for proofs of any length. He later developed Edinburgh lcf, a proof checker that
was programmable [26].

Edinburgh lcf’s meta-language (ml) does not merely execute obvious command
sequences. ml gives a general representation of logic. Terms and formulae are
computable data, as are theorems. Each inference rule is a function from theorems
to theorems. A theorem can be built only by applying rules to existing theorems.

While forwards proof is fundamental, it is often preferable to work backwards
from a goal. Each inference rule maps premises to conclusion; its ‘inverse’ is a func-
tion (called a tactic) mapping a goal to subgoals. A tactic also returns a validation:
a function from theorems to a theorem. When the backwards proof is finished,
applying the validation functions performs the forwards proof, and yields the de-
sired theorem. Tacticals operate on tactics, expressing control structures such as
sequential or repetitive application of a tactic.

ml’s secure type checking ensures soundness: theorems are constructed only by
rules. Exceptions signal when a rule or tactic is wrongly applied. Still, a tactic can
be invalid : promising more than it can deliver. If its validation function is wrong
then the final forwards proof will not yield the theorem that was expected. Tactics
should be built using tactics and tacticals known to be valid. The lcf environment
grows with use: rules can be composed as functions; tactics can be combined by
tacticals.

By 1986, Edinburgh lcf’s techniques had spread to several systems [29], Stan-
dard ml had become a language in its own right, and Isabelle reached a usable form.
Isabelle was intended to allow lcf-style proofs in various logics, using a representa-
tion of logic that did not require writing a function for each rule. In Isabelle-86, a
rule was represented by a Horn clause; rules could be combined to build proofs [28].
(See also de Groote [14].) Since forwards and backwards proof were simply styles of
proof construction, there was little difference between rules and tactics. Each state
of a backwards proof was a derived rule:

subgoal · · · subgoal

original goal

Isabelle’s tactics and tacticals could be used like lcf ones though they were based
on totally different principles.

The initial concern was with implementation problems. Quantifiers required
a syntax involving the typed λ-calculus, while the joining of rules required unifi-
cation; these together required higher-order unification [19]. I experimented with
many different ways of enforcing the variable conditions of quantifier rules. Even-
tually Isabelle-86 supported many logics: Martin-Löf’s Type Theory, intuitionistic
and classical sequent calculi, Zermelo-Fraenkel set theory. It was implemented in
Standard ml.

2

Isabelle-86 was based on a näıve calculus of rules. It left many questions open,
such as whether the following rules should be regarded as distinct:

A B

C

B A

C

A B A

C

The treatment of quantifiers seemed particularly unclear.
Many people have developed calculi for mathematical reasoning [7, 9, 15, 25]. A

calculus of logics is often called a logical framework ; I prefer to speak of a meta-logic
and its object-logics. Isabelle-86 required a precise meta-logic suited to its aims and
methods. A fragment of higher-order logic (called M here for ‘meta’) now serves
this purpose. Implication expresses entailment; universal quantification expresses
schematic rules and general premises; equality expresses definitions. The meta-logic
extends that of Isabelle-86: it can express things like ‘adding the double negation
rule to intuitionistic logic entails the excluded middle.’

Isabelle constructs proofs through deductions in M. The paper presents these
methods formally in order to clarify theoretical issues such as soundness. Here is an
outline of the paper:

Section 2 presents the meta-logic M: intuitionistic higher-order logic.

Section 3 formalizes the natural deduction rules for intuitionistic propo-
sitional logic in M. The formalization is shown sound and complete by
induction on normalized proofs.

Section 4 describes how meta-level reasoning expresses object-level back-
wards proof, with examples from propositional logic.

Section 5 considers object-logics with quantifiers. The natural deduction
system is extended to intuitionistic first-order logic and again shown
sound and complete.

Section 6 extends the backwards proof methods to handle quantifiers and
unification, with examples from first-order logic. The representation of
eigenvariables differs from Isabelle-86.

Using Hilbert’s ε-operator, Section 7 recovers the Isabelle-86 representa-
tion and compares it with its alternative.

Section 8 describes how an implementation (the latest is called Isabelle-
88) was obtained from Isabelle-86.

Section 9 concludes with a discussion of related work.

Isabelle’s treatment of backwards proof has unique advantages over lcf’s. An
Isabelle proof state is formalized by a meta-theorem; there are no validations. The
subgoals are guaranteed sufficient to obtain the final goal. Unification is naturally
accommodated. The techniques are presented within M, but resemble those of
Isabelle-86 and may apply to other meta-logics.

Most of the examples below have been tested using Isabelle. They cover only
propositional and first-order logic, but illustrate general techniques. Besides, the

3

point is not to handle every esoteric logic. It is that mathematics requires a living
language. Definitions extend its syntax; theorems extend its primitive modes of
reasoning. In Zermelo-Fraenkel set theory the Cartesian product is defined by the
power set, union, pairing, and separation axioms. ‘Obvious’ properties like

a ∈ A b ∈ B
〈a, b〉 ∈ A×B

require tedious proofs. A mathematician, having performed the proofs, would treat
Cartesian product like a primitive with the obvious properties as new rules of infer-
ence. Isabelle is an attempt to support this style.

2 The meta-logic M
Alonzo Church developed higher-order logic, also called hol or simple type theory.
It is based on the typed λ-calculus [16]. Gordon [13] built his hol theorem prover
from lcf; another theorem prover is tps [2].

Andrews [1] has written a book covering higher-order logic. Here is a brief sketch
of a fragment called M, which will be our meta-logic.

2.1 Syntax of the meta-logic

The types1 consist of basic types and function types of the form σ → τ . Let the
Greek letters σ, τ , and υ stand for types.

The terms are those of the typed λ-calculus — constants, variables, abstractions,
combinations — with the usual type constraints. Let a, b, and c stand for terms,
using f , g, and h for terms of function type. Typical bound variables will be x, y,
and z. Write a : σ to mean ‘a has type σ.’

The basic types and constants depend on the logic being represented. But they
always include the type of propositions, prop, and the logical constants of M. A
formula is a term of type prop. Let φ, ψ, and θ stand for formulae. The implication
φ⇒ ψ means ‘φ implies ψ.’ The universally quantified formula

∧
x.φ means ‘for all

x, φ is true,’ where x ranges over some type σ. The equality a ≡ b means ‘a equals
b.’

The symbols ⇒,
∧

, and ≡ have been chosen to differ from symbols of object-
logics: those to be represented in M. In an object-logic presented below the corre-
sponding symbols are ⊃, ∀, and =. The words ‘meta-implication,’ ‘meta-equality,’
‘meta-formula,’ ‘meta-theorem,’ ‘meta-rule,’ etc., refer to expressions of M.

Quantification involves λ-abstraction. For every type σ, there is a constant
∧
σ

of type (σ → prop) → prop. The formula
∧
x.φ, where x has type σ, abbreviates∧

σ(λx.φ). Using λ-conversions every quantification can be put into the form
∧
σ(f),

more readably
∧
x.f(x), where f is a term of type σ → prop. Abstraction also

expresses quantifiers in object-logics, as we shall see in Section 5.

1Sometimes called arities, following Martin-Löf, to avoid confusion with ml types or object-level
types.

4

2.2 Syntactic conventions

The application of a to the successive arguments b1, . . . , bm is written a(b1, . . . , bm):

a(b1, . . . , bm) abbreviates (· · · (ab1) · · · bm)

In the absence of parentheses, implication (⇒) groups to the right. Let Φ, Ψ,
and Θ stand for lists of formulae. Implication can also be written for such lists: if
Φ is the list [φ1, . . . , φm], then

φ1 ⇒ · · · ⇒ φm ⇒ ψ
[φ1, . . . , φm]⇒ ψ

Φ⇒ ψ

 each abbreviate φ1 ⇒ (· · · ⇒ (φm ⇒ ψ) · · ·)

One λ or quantifier does the work of many:

λx1 . . . xm . a∧
x1 . . . xm . φ

}
abbreviates

{
λx1 λxm.a∧
x1

∧
xm.φ

The scope of a λ or quantifier extends far to the right:

λx . f(x, g(x))∧
x . φ⇒ b ≡ c

}
abbreviates

{
λx . (f(x, g(x)))∧
x . (φ⇒ (b ≡ c))

A substitution has the form [a1/x1, . . . , ak/xk], where x1, . . . , xk are distinct vari-
ables and a1, . . . , ak are terms. If b is an expression and s is the substitution above
then bs is the expression that results from simultaneously replacing every free oc-
currence of xi by ai in b, for i = 1, . . . , k (of course ai must have the same type as
xi). Substitution must be carefully defined to avoid capture of free variables.

Substitutions are not part ofM itself. The term f(a) indicates function applica-
tion, not substitution. The β-reduction law, namely ((λx.b)(a)) ≡ b[a/x], expresses
substitution at the object-level.

2.3 Semantics of the meta-logic

Higher-order logic is a language for writing formal mathematics. It can be justified
on intuitive grounds, or else we can demonstrate its consistency by constructing a
standard model in set theory.

Every type denotes a non-empty set. Given sets for each basic type, the interpre-
tation of σ → τ is the set of functions from σ to τ . A closed term of type σ denotes
a value of the corresponding set. Given a value for each constant, λ-abstractions
denote functions.

The type prop denotes a set of truth values. Classical logic uses {T,F}; topos
theory provides various intuitionistic interpretations [22]. The logical constants (

∧
σ,

⇒, and ≡σ) denote appropriate truth-valued functions.

5

Remark. Requiring all types to be non-empty permits this simple inference sys-
tem, where

(
∧
x .
∧
θ . θ)⇒ (

∧
θ . θ)

is a theorem. (Here θ is a bound variable of type prop!) If the type of x were
empty then

∧
θ . θ would be true; every formula would be true; the logic would be

inconsistent.
Lambek and Scott [22, pages 128–132] present an inference system for higher-

order logic allowing empty types.

2.4 Inference rules

The constant symbols include, for every type σ,

⇒ : prop → (prop → prop)∧
σ : (σ → prop)→ prop

≡σ : σ → (σ → prop)

The implication rules are ⇒-introduction and ⇒-elimination:

[φ]

ψ

φ⇒ ψ

φ⇒ ψ φ

ψ

These are natural deduction rules; ⇒-introduction discharges the assumption φ. In
most other rules, the conclusion depends on all assumptions of the premises.

The universal quantification rules are
∧

-introduction and
∧

-elimination:

φ∧
x.φ

∧
x.φ

φ[b/x]

These are also called generalization and specialization. The generalization rule is
subject to the eigenvariable condition that x is not free in the assumptions.

The equality rules are reflexivity, symmetry, and transitivity:

a ≡ a
a ≡ b

b ≡ a

a ≡ b b ≡ c

a ≡ c

The λ-conversions are α-conversion (bound variable renaming), β-conversion,
and extensionality:

(λx.a) ≡ (λy.a[y/x]) ((λx.a)(b)) ≡ a[b/x]
f(x) ≡ g(x)

f ≡ g

The α-conversion axiom holds provided y is not free in a. Extensionality holds
provided x is not free in the assumptions, f , or g. Extensionality is equivalent to
η-conversion, namely (λx.f(x)) ≡ f where x is not free in f (see Hindley and Seldin
[16, pages 72–74]).

6

The abstraction and combination rules are

a ≡ b

(λx.a) ≡ (λx.b)

f ≡ g a ≡ b

f(a) ≡ g(b)

Abstraction holds provided x is not free in the assumptions.
Logical equivalence means equality of truth values:

[φ]

ψ

[ψ]

φ

φ ≡ ψ

φ ≡ ψ φ

ψ

The typed λ-calculus satisfies the strong normalization and Church-Rosser prop-
erties [16]. Thus repeatedly applying β and η-reductions always terminates. The
reductions can take place in any order; the resulting normal form will be the same
up to α-conversion. To summarize:

Theorem 1 Every term can be reduced to a normal form that is unique up to α-
conversion.

Remark. Because of normal forms, equality is decidable in the typed λ-calculus
— but not in higher-order logic. The normal form does not take account of the
logical rules. No effective procedure can reduce every theorem to some unique true
formula.

There is also a normalization procedure for hol proofs. This plays a crucial role
in demonstrating that an object-logic is faithfully expressed.

3 Representing intuitionistic propositional logic

To represent an object-logic in Isabelle we extend the meta-logic with types, con-
stants, and axioms. A simple example is intuitionistic propositional logic (ipl).

To represent the syntax of ipl, introduce the basic type form for denotations of
formulae. Introduce the constant symbols

⊥ : form

&,∨,⊃ : form → (form → form)

true : form → prop

Variables of type form include A, B, and C.
Object-sentences are enclosed in double brackets [[]]. The meta-formula [[A]] ab-

breviates true(A) and means that A is true. Keeping the types form and prop
distinct avoids presuming that truth-values of the object-logic are identical to those
of the meta-logic. To avoid confusing these logics, let us use distinctive terminology.
There is a meta-rule called ⇒-elimination. The similar object-rule is called the ⊃E
rule, while the corresponding meta-axiom is called the ⊃E axiom.

7

The natural deduction rules (Figure 1) of intuitionistic logic are represented by
meta-level axioms (Figure 2). The resulting extension of M is called Mipl. The
outer quantifiers of meta-axioms will often be dropped.

The new symbols have the usual interpretations. Let the type form denote a
set of truth values such that &, ∨, ⊃, and ⊥ have their intuitionistic meanings [11,
Chapter 5]. The axioms are true under this semantics: for example, if A is true
and B is true then A& B is true. Meta-implication (⇒) expresses the discharge of
assumptions. The ⊃I axiom says that if the truth of A implies the truth of B, then
the formula A ⊃ B is true.

The resemblance between the meta-level axioms and the rules should be regarded
as a happy coincidence. An axiom formalizes not the syntax of a rule but its seman-
tic justification. The resemblance diminishes in first-order logic (Section 5). The
formalization of modal logic by Avron et al. [3] (in their meta-logic) reflects Kripke
semantics rather than the syntax of the rules.

An obvious question is whether the object-logic is faithfully represented. The def-
inition below is oriented towards natural deduction: it concerns entailments rather
than theorems.

Definition 1 Let L be a logic and A1, . . ., Am, B be formulae of L. Let ML be a
meta-logic obtained fromM by adding types, constants, and axioms. Suppose that
[[−]] is a function mapping each formula A of L to a meta-formula [[A]] ofML. Then
say

• ML is sound for L if, for every ML-proof of [[B]] from [[A1]], . . . , [[Am]], there
is an L-proof of B from A1, . . . , Am.

• ML is complete for L if, for every L-proof of B from A1, . . . , Am, there is an
ML-proof of [[B]] from [[A1]], . . . , [[Am]].

• ML is faithful for L if ML is sound and complete for L.

Informally, Mipl is sound for ipl because the additional axioms are true and
the rules of M are sound. A better argument is by induction on normal proofs
in M. Here is a summary of the proof-theoretic concepts of Prawitz [31, 32]. For
simplicity, let us ignore equality rules, identifying terms that are equivalent up to
λ-conversions.

A branch in a proof traces the construction and destruction of a formula. Each
branch is obtained by repeatedly walking downwards from a premise of a rule to its
conclusion, but terminates at the second premise of ⇒-elimination. Thus in

φ⇒ ψ φ

ψ

a branch may connect φ ⇒ ψ with ψ but not φ with ψ since these formulae may
be syntactically unrelated. (This discussion is for M. For logics having other
connectives, most elimination rules are special cases.)

Every proof inM can be normalized such that, in every branch, no elimination
rule immediately follows an introduction rule. In a normal proof, every branch

8

introduction (I) elimination (E)

Conjunction
A B

A&B

A&B

A

A&B

B

Disjunction
A

A ∨B
B

A ∨B
A ∨B

[A]

C

[B]

C

C

Implication

[A]

B

A ⊃ B

A ⊃ B A

B

Contradiction
⊥
A

Figure 1: The rules of intuitionistic propositional logic

∧
AB . [[A]]⇒ ([[B]]⇒ [[A&B]]) (&I)

∧
AB . [[A&B]]⇒ [[A]]

∧
AB . [[A&B]]⇒ [[B]] (&E)

∧
AB . [[A]]⇒ [[A ∨B]]

∧
AB . [[B]]⇒ [[A ∨B]] (∨I)

∧
ABC . [[A ∨B]]⇒ ([[A]]⇒ [[C]])⇒ ([[B]]⇒ [[C]])⇒ [[C]] (∨E)

∧
AB . ([[A]]⇒ [[B]])⇒ [[A ⊃ B]] (⊃ I)

∧
AB . [[A ⊃ B]]⇒ [[A]]⇒ [[B]] (⊃ E)

∧
A . [[⊥]]⇒ [[A]] (⊥E)

Figure 2: Meta-level axioms for intuitionistic propositional logic

9

∧
AB . [[A]]⇒ ([[B]]⇒ [[A&B]])∧
B . [[C]]⇒ ([[B]]⇒ [[C &B]])

[[C]]⇒ ([[D]]⇒ [[C &D]])

...
[[C]]

[[D]]⇒ [[C &D]]

...
[[D]]

[[C &D]]

Figure 3: The meta-proof formalizing a &I inference

∧
AB . ([[A]]⇒ [[B]])⇒ [[A ⊃ B]]∧
B . ([[C]]⇒ [[B]])⇒ [[C ⊃ B]]

([[C]]⇒ [[D]])⇒ [[C ⊃ D]]

[[[C]]]
...

[[D]]

[[C]]⇒ [[D]]

[[C ⊃ D]]

Figure 4: The meta-proof formalizing an ⊃I inference

begins with an assumption or axiom, then has a series of eliminations, then a series
of introductions. During the eliminations the formulae shrink to a minimum; during
the introductions they grow again.

Observe that [[B]] is an atomic Mipl-formula. A normal proof can be put into
expanded normal form, where every minimum formula is atomic [32, page 254]. For
example, if a minimum formula is φ⇒ ψ, then the following can be spliced into the
proof, reducing the minimum formula to ψ:

φ⇒ ψ [φ]

ψ

φ⇒ ψ

Completeness holds because to each object-level inference there corresponds a
meta-proof involving anMipl axiom. Soundness holds because to each occurrence
of an Mipl axiom in a meta-proof there corresponds an object-level inference.
Figures 3 and 4 illustrate the correspondence.

Theorem 2 Mipl is sound for ipl.
Proof : By induction on the size of the expanded normal proof inMipl of [[B]] from
[[A1]], . . . , [[Am]], construct an ipl proof of B from A1, . . . , Am.

Since [[B]] is atomic, the branch terminating with [[B]] cannot contain introduction
rules, and thus cannot discharge assumptions. The branch must consist entirely of
elimination rules. If it is just [[B]] then B is an assumption, one of A1, . . . , Am. Oth-
erwise the branch contains elimination rules, so its first formula cannot be atomic.
It must consist of an axiom followed by elimination rules. There is one case for each
axiom.

10

For the &I axiom, B is C&D for some formulae C and D. The meta-proof must
have the structure of Figure 3. It has two

∧
-eliminations involving C and D, and

two ⇒-eliminations, involving proofs of [[C]] and [[D]] from [[A1]], . . . , [[Am]]. By the
induction hypothesis, construct ipl proofs of C and D from A1, . . . , Am. Applying
&I gives an ipl proof of C &D.

For the ⊃I axiom, B is C ⊃ D. The meta-proof must have the structure of
Figure 4. It contains a proof of [[C]] ⇒ [[D]] from [[A1]], . . . , [[Am]]. By expanded
normal form this consists of a proof of [[D]] from [[A1]], . . . , [[Am]], [[C]], followed by
⇒-introduction, discharging the assumption [[C]]. By the induction hypothesis, con-
struct an ipl proof of D from A1, . . . , Am, C, and ⊃I gives an ipl proof of C ⊃ D
from A1, . . . , Am.

The cases for the other axioms are similar. 2

Theorem 3 Mipl is complete for ipl.
Proof : By induction on the size of the ipl proof of B from A1, . . . , Am, construct
a proof of [[B]] from [[A1]], . . . , [[Am]] in Mipl.

Suppose the last inference of the ipl proof is ⊃I, and the conclusion is C ⊃ D.
Then the rule is applied to an ipl proof of D from A1, . . . , Am, C. By the induction
hypothesis, construct an Mipl-proof of [[D]] from [[A1]], . . . , [[Am]], [[C]]. Now it is
easy to construct a meta-proof like that in Figure 4.

The cases for the other axioms are similar. 2

Remark. The heavy use of meta-implication (⇒) may suggest that the meta-logic
ought to involve sequents. Then the &I axiom would be

[[A]], [[B]] |− [[A&B]]

and the resolution rule (Section 4.2) would resemble the cut rule. However, this
amounts to using the sequent symbol as a logical connective. In typical usage,
an axiom is a formula — not a sequent [36]. Such a use of sequents would also
complicate the use of hypothetical rules (illustrated in Section 4.4).

4 Backwards proof construction

The reduction of the goal φ to the subgoals φ1, . . . , φm amounts to deriving the
rule φ1, . . . , φm/φ. The meta-logic represents this object-level rule as the implica-
tion [φ1, . . . , φm] ⇒ φ. Such Horn clauses are combined by a derived meta-rule:
resolution.

Let us begin by looking at backwards proof as a style of proof construction.
Then we can formalize backwards proof inM, obtaining the methods implemented
in Isabelle.

11

A&B ⊃ C ⊃ A& C

A&B ⊃ C ⊃ A& C
⊃I7−→
1

A&B
...

C ⊃ A& C

A&B ⊃ C ⊃ A& C
⊃I7−→
2

A&B
C
...

A& C

A&B ⊃ C ⊃ A& C

&I7−→
3

A&B
C
...
A

A&B
C
...
C

A&B ⊃ C ⊃ A& C
asm7−→

4

A&B
C
...
A

A&B ⊃ C ⊃ A& C
&E7−→
5

A&B ⊃ C ⊃ A& C

Figure 5: The steps of the backwards proof

4.1 Proof states as derived rules

In this section, ‘rule,’ ‘proof,’ etc., refer to object-level rules and proofs. The method
is illustrated by a sample proof in intuitionistic propositional logic:

[A&B]

A [C]

A& C

C ⊃ A& C

A&B ⊃ (C ⊃ A& C)

A backwards proof grows from the root upwards, rather than from the leaves
downwards. Every state of the proof can be represented by a derived rule whose
conclusion is the main goal, here A&B ⊃ (C ⊃ A&C), and whose premises are the
current subgoals. The proof of the derived rule — namely, the internal structure —
has no further role and is suppressed. The initial state is represented by the trivial
rule whose premise and conclusion are identical.

Figure 5 shows the sequence of proof states, represented as derived rules. Each

step is written as an arrow (like
⊃I7−→
2

) giving the inference rule and step number.

The initial rule is combined with ⊃I, to derive a rule involving the discharge of the
assumption A&B. Combining this rule again with ⊃I adds C to the assumptions.
Combining the resulting rule with &I derives a rule that has two premises. This

12

splits the goal A& C in two. The full proof at this point is

A&B
C
...
A

A&B
C
...
C

A& C

C ⊃ A& C

A&B ⊃ (C ⊃ A& C)

The second subgoal, C, holds trivially by assumption. The first subgoal is proved
using &E to prove A from A&B. The final state is the theorem A&B ⊃ (C ⊃ A&C).

4.2 Proof construction by resolution

To formalize this kind of proof construction inM requires a change in notation. An
object-inference like A&B

A
will now be written [[A & B]] ⇒ [[A]]. The meta-inference

φ 7−→ ψ will now be written φ
ψ

.

The initial state in a proof of C is formalized by the trivial meta-theorem [[C]]⇒
[[C]]. A state of the proof having n subgoals is represented by a derived object-rule
having n premises, formalized by the meta-theorem

[ψ1, . . . , ψn]⇒ [[C]]

The state with zero subgoals is the meta-theorem [[C]], which represents the object-
theorem C. Outer quantifiers are dropped, so the meta-theorems may contain free
variables.

Most Isabelle proof steps use resolution, a derived meta-rule. Resolution instan-
tiates free variables of an object-rule by unification against a subgoal in the proof
state. In a simple case, the substitution s must match φ against ψ, namely φs ≡ ψ:

Φ⇒ φ Ψ⇒ ψ ⇒ θ

Ψ⇒ Φs⇒ θ
(1)

The list notation for nested implication eliminates subscripts; Φ and Ψ are lists of
formulae. Here is the meta-rule again, writing out the lists in full.

Let i be given; if φs ≡ ψi then

[φ1, . . . , φm]⇒ φ [ψ1, . . . , ψi, . . . , ψn]⇒ θ

[ψ1, . . . , φ1s, . . . , φms, . . . , ψn]⇒ θ

Resolution replaces the subgoal ψi by φ1s, . . . , φms in the proof state. The first
premise is an object-level rule and the second is a proof state; the conclusion is a
new proof state:

object-level rule proof state

new proof state

13

Full resolution involves unification. The free variables of the object-level rule
should be distinct from those of the proof state. In the examples, variables are
renamed by subscripting. Isabelle variables contain an index to facilitate renaming.

Resolution is easily derived in M. Using both quantifier rules k times derives
an instantiation rule,

φ

φ[a1/x1, . . . , ak/xk]

provided that x1, . . . , xk are not free in the assumptions. Resolution consists of
instantiation followed by reasoning about implication.

Remark. Isabelle resolution [28] is ordinary resolution restricted to Horn clauses.
Many Isabelle proof procedures use techniques of logic programming. Completeness
of resolution is not a central issue in Isabelle, for a proof may use any meta-rules.

4.3 Lifting a rule over assumptions

The resolution rule (1) represents lcf-style backwards proof, which does not rec-
ognize natural deduction. In lcf (and early versions of Isabelle) natural deduc-
tion must be expressed through a sequent calculus. Our formalization of ipl ex-
presses natural deduction by meta-implication. We now supplement resolution with
a method (called lifting) of making assumptions at the meta-level.

Suppose we want to formalize the sample proof, Figure 5. Resolving the ⊃I
axiom against the goal [[A&B ⊃ (C ⊃ A& C)]] will produce the subgoal

[[A&B]]⇒ [[C ⊃ A& C]] (2)

which contains the assumption A & B. The next backwards step should use ⊃I
again. We can prepare the axiom by replacing its bound variables A and B by new
free variables A2 and B2,

([[A2]]⇒ [[B2]])⇒ [[A2 ⊃ B2]]

and then lift it over the assumption A&B, to obtain the meta-theorem

([[A&B]]⇒ ([[A2]]⇒ [[B2]]))⇒ ([[A&B]]⇒ [[A2 ⊃ B2]]) (3)

Resolution with this instantiates A2 and B2, replacing the subgoal (2) by

[[A&B]]⇒ ([[C]]⇒ [[A& C]])

This subgoal contains the assumptions A&B and C.

The lifting rule. The general case is lifting the object-rule [φ1, . . . , φm]⇒ φ over
the list of assumptions Θ:

[φ1, . . . , φm]⇒ φ

[Θ⇒ φ1, . . . ,Θ⇒ φm]⇒ (Θ⇒ φ)

14

This meta-rule, called lifting or ⇒-lifting, is derivable in M.
Suppose first that Θ = [θ]. Clearly ⇒-introduction gives

ψ

θ ⇒ ψ

If ψ represents an object-rule then it must be an implication, say φ⇒ ψ′. To push
θ to the right, assume θ ⇒ φ and apply the following meta-rule, whose derivation is
simple:

θ ⇒ (φ⇒ ψ′) θ ⇒ φ

θ ⇒ ψ′

If ψ′ is also an implication then repeating this step pushes θ fully to the right; finally,
an equal number of ⇒-introductions discharges the assumptions like θ ⇒ φ. If ψ′ is
not an implication then the result would be

(θ ⇒ φ)⇒ (θ ⇒ ψ′)

Now if Θ = [θ1, . . . , θk] then repeatedly apply the process above to θk, . . . , θ1.

A sample proof. Now we can formalize the proof of A&B ⊃ (C ⊃ A&C). The
first step is the resolution of the ⊃I axiom with the initial proof state:

([[A1]]⇒ [[B1]])⇒ [[A1 ⊃ B1]] [[A&B ⊃ C ⊃ A& C]]⇒ [[A&B ⊃ C ⊃ A& C]]

([[A&B]]⇒ [[C ⊃ A& C]])⇒ [[A&B ⊃ C ⊃ A& C]]

The ⊃I axiom was prepared for resolution by dropping outer quantifiers, introducing
new free variables A1 and B1. Resolution instantiated A1 to A & B and B1 to
C ⊃ A & C. The new state has one subgoal: to prove C ⊃ A & C from the
assumption A&B.

Recall that lifting the ⊃I axiom over A & B produces the meta-theorem (3).
Resolving (3) with the proof state instantiates A2 to C and B2 to A& C:

(3) ([[A&B]]⇒ [[C ⊃ A& C]])⇒ [[A&B ⊃ (C ⊃ A& C)]]

([[A&B]]⇒ [[C]]⇒ [[A& C]])⇒ [[A&B ⊃ (C ⊃ A& C)]]

To save space, define abbreviations for the main goal and the assumption list:

ψ = [[A&B ⊃ (C ⊃ A& C)]]

Θ = [[[A&B]], [[C]]]

Thus the current proof state is (Θ⇒ [[A& C]])⇒ ψ.
The next step is resolution with the &I axiom, after lifting it over the assump-

tions:

(Θ⇒ [[A3]])⇒ (Θ⇒ [[B3]])⇒ (Θ⇒ [[A3 &B3]]) (Θ⇒ [[A& C]])⇒ ψ

(Θ⇒ [[A]])⇒ (Θ⇒ [[C]])⇒ ψ

The variable instantiations are A3 to A and B3 to C. Observe how the assumptions,
Θ, are copied to both subgoals.

15

The next step solves the second goal by assumption. It is formalized by resolution
with the meta-tautology Θ⇒ [[C]], without lifting:

Θ⇒ [[C]] (Θ⇒ [[A]])⇒ (Θ⇒ [[C]])⇒ ψ

(Θ⇒ [[A]])⇒ ψ

Next, resolution with the &E axiom reduces the goal A to the subgoal A & B.
Since the goal cannot instantiate the variable B of the &E axiom, let us take the
correct instance of the axiom, lifted over Θ:

(Θ⇒ [[A&B]])⇒ (Θ⇒ [[A]]) (Θ⇒ [[A]])⇒ ψ

(Θ⇒ [[A&B]])⇒ ψ

Full resolution (with unification) can instantiate variables in the proof state. But
Section 4.4 gives a better treatment of &E.

We solve the last subgoal by assumption — resolution with another meta-tautology:

Θ⇒ [[A&B]] (Θ⇒ [[A&B]])⇒ ψ

ψ

This concludes the proof of A & B ⊃ (C ⊃ A & C), representing each step of
the object-level proof by a meta-level resolution. The proof is valid for arbitrary
object-formulae A, B, and C. To emphasize this we may generalize ψ over its free
variables, obtaining the final meta-theorem∧

ABC . [[A&B ⊃ (C ⊃ A& C)]]

4.4 Deriving object-level rules

Gordon [13] prefers higher-order logic because it can express many of its derived
rules as theorems. Isabelle expresses derived rules as meta-theorems, allowing us to
work in first-order logic or even weaker systems.

A new conjunction rule. The &E rules typically work in the forwards direction:
from A&B conclude A. Another version of conjunction elimination, resembling ∨E,
is better suited to backwards proof:

A&B
[A,B]
C

C

This conjunction rule discharges the assumptions A and B in its second premise; we
can also say [33] that its second premise is the rule A B

C
.

The formalization in Mipl is∧
ABC . [[A&B]]⇒ ([[A]]⇒ [[B]]⇒ [[C]])⇒ [[C]]

To prove it, start with the goal [[C]]. For fixed A, B, C we may assume [[A&B]] and
[[A]] ⇒ [[B]] ⇒ [[C]]. Once [[C]] has been proved, discharging the meta-assumptions
and generalizing produces the correct meta-theorem.

16

The first step is resolution with the meta-assumption [[A]]⇒ [[B]]⇒ [[C]]:

[[A]]⇒ [[B]]⇒ [[C]] [[C]]⇒ [[C]]

[[A]]⇒ [[B]]⇒ [[C]]

The subgoals are [[A]] and [[B]]. We resolve &E against the first subgoal:

[[A&B]]⇒ [[A]] [[A]]⇒ [[B]]⇒ [[C]]

[[A&B]]⇒ [[B]]⇒ [[C]]

Next, resolve with the meta-assumption [[A&B]]:

[[A&B]] [[A&B]]⇒ [[B]]⇒ [[C]]

[[B]]⇒ [[C]]

Next, use the other &E axiom:

[[A&B]]⇒ [[B]] [[B]]⇒ [[C]]

[[A&B]]⇒ [[C]]

Finally, resolve with [[A&B]] again:

[[A&B]] [[A&B]]⇒ [[C]]

[[C]]

Hypothetical rules. Adding the double negation rule to intuitionistic proposi-
tional logic gives classical logic. More precisely, if every formula A satisfies the
double negation rule,

(A ⊃ ⊥) ⊃ ⊥
A

then every formula B satisfies the excluded middle, B ∨ (B ⊃ ⊥).2

The formalization of this entailment is

(
∧
A . [[(A ⊃ ⊥) ⊃ ⊥]]⇒ [[A]])⇒ (

∧
B . [[B ∨ (B ⊃ ⊥)]])

Here the premise is a schematic rule. We must make, and finally discharge, the
quantified meta-assumption∧

A . [[(A ⊃ ⊥) ⊃ ⊥]]⇒ [[A]]

Conversely, any formula that satisfies the excluded middle also satisfies double
negation [11, page 27]:

A ∨ (A ⊃ ⊥) (A ⊃ ⊥) ⊃ ⊥
A

The formalization of this derived rule is∧
A . [[A ∨ (A ⊃ ⊥)]]⇒ [[(A ⊃ ⊥) ⊃ ⊥]]⇒ [[A]]

Contrast the use of quantifiers in these examples.

2The proof is tricky. From (B ∨ (B ⊃ ⊥)) ⊃ ⊥ prove both B ⊃ ⊥ and (B ⊃ ⊥) ⊃ ⊥.

17

5 Quantification

Many logical constants introduce bound variables: universal and existential quanti-
fiers (∀ and ∃), description operators (λ, ι and ε), general product and sum (Π and
Σ), union and intersection of families (as in

⋃
i∈I Ai), and so on. Isabelle implements

logics comprising most of these.
Adding quantifiers to the previous object-logic gives intuitionistic first-order logic

(ifol). Formally, extend Mipl to become Mifol. Add the type term for denota-
tions of terms. The quantifiers are the constant symbols

∀,∃ : (term → form)→ form

If A, A(x), and A(x, y) each have type form then the three variables named
A must have different types, and so are different variables. Rather than declaring
a fixed list of variables with their types, let the context determine the types —
avoiding things like A & A(x). For emphasis, F , G, and H will stand for formula-
valued functions.

Write ∀x.A for ∀(λx.A) and ∃x.A for ∃(λx.A). By λ-conversion every quantified
formula is equivalent to one of the form ∀(F) or ∃(F), where F has type term →
form.

The rules (Figure 6) and their meta-level axioms (Figure 7) do not have the close
resemblance that we saw for propositional logic. The eigenvariable conditions of ∀I
and ∃E are not formalized literally. Note that the two conditions differ in form but
not in effect. Both ensure that x serves only to specify a truth-valued function,
through its occurrences in A.

In the axioms, F denotes not the text of the quantification but its meaning: a
truth-valued function. The axiom ∀I states that if F is an everywhere-true function
then ∀x.F (x) is true. Similarly, B denotes not the text of a formula but a truth-
value. The ∃E axiom states that if ∃x.F (x) is true and F (x) implies B for all x,
then B is true. The axioms reflect the meanings of the corresponding rules.

Although the justification of each axiom is semantic, they behave as expected
in syntax. Substitution for the variables F and B avoids capture of the variable x.
In particular, B may not be replaced by a formula containing x. Assumptions also
obey the eigenvariable conditions, as we shall see below.

The demonstration that these axioms faithfully represent first-order logic is sim-
ilar to that for propositional logic (Section 3).

Theorem 4 Mifol is sound for ifol.
Proof : By induction over the expanded normal proof in Mifol of [[B]] from
[[A1]], . . . , [[Am]], construct an ifol proof of B from A1, . . . , Am. The branch ter-
minating with [[B]], unless it is trivial, consists of an axiom followed by elimination
rules.

For the ∃I axiom, B is ∃x.G(x). The normalized proof must have the form shown
in Figure 8. Two

∧
-eliminations introduce G and u; then ⇒-elimination is applied

to a proof of [[G(u)]] from [[A1]], . . . , [[Am]]. By the induction hypothesis construct
an ifol proof of G(u) from A1, . . . , Am, and use the ∃I rule to prove ∃x.G(x). The

18

introduction (I) elimination (E)

Universal quantifier
A

∀x.A∗
∀x.A
A[t/x]

Existential quantifier
A[t/x]

∃x.A
∃x.A

[A]

B

B
∗

*Eigenvariable conditions :
∀I: provided x not free in the assumptions

∃E: provided x not free in B or in any assumption save A

Figure 6: Quantifier rules

∧
F . (

∧
x . [[F (x)]])⇒ [[∀x.F (x)]] (∀I)

∧
Fy . [[∀x.F (x)]]⇒ [[F (y)]] (∀E)

∧
Fy . [[F (y)]]⇒ [[∃x.F (x)]] (∃I)

∧
FB . [[∃x.F (x)]]⇒ (

∧
x . [[F (x)]]⇒ [[B]])⇒ [[B]] (∃E)

Figure 7: Meta-level axioms for the quantifier rules

∧
Fy . [[F (y)]]⇒ [[∃x.F (x)]]∧
y . [[G(y)]]⇒ [[∃x.G(x)]]

[[G(u)]]⇒ [[∃x.G(x)]]

...
[[G(u)]]

[[∃x.G(x)]]

Figure 8: The meta-proof formalizing an ∃I inference

∧
FB . [[∃x.F (x)]]⇒ (

∧
x . [[F (x)]]⇒ [[B]])⇒ [[B]]∧

B . [[∃x.G(x)]]⇒ (
∧
x . [[G(x)]]⇒ [[B]])⇒ [[B]]

[[∃x.G(x)]]⇒ (
∧
x . [[G(x)]]⇒ [[C]])⇒ [[C]]

...
[[∃x.G(x)]]

(
∧
x . [[G(x)]]⇒ [[C]])⇒ [[C]]

[[[G(y)]]]
...

[[C]]
[[G(y)]]⇒ [[C]]∧
y . [[G(y)]]⇒ [[C]]

[[C]]

Figure 9: The meta-proof formalizing an ∃E inference

19

Mifol proof is shown without β-conversions, identifying terms that have the same
normal form. If G is λx.A then G(u) ≡ A[u/x], and [[∃x.G(x)]] ≡ [[∃x.A]].

For ∃E, the proof (Figure 9) contains a proof of
∧
y . [[G(y)]]⇒ [[C]] from [[A1]],

. . . , [[Am]]. Assuming expanded normal form, it consists of a proof of [[C]] followed
by ⇒-introduction, discharging [[G(y)]], followed by

∧
-introduction. (The bound

variable y can be chosen so that it is not free in [[A1]], . . . , [[Am]].) By the induction
hypothesis, there are ifol proofs of C from A1, . . . , Am, G(y) and of ∃x.G(x) from
A1, . . . , Am. The ∃E rule gives an ifol proof of C from A1, . . . , Am.

The cases for the other axioms are similar. 2

Theorem 5 Mifol is complete for ifol.
Proof : By induction over the ifol proof of B from A1, . . . , Am, construct a proof
of [[B]] from [[A1]], . . . , [[Am]] in Mifol.

The hardest case is when the last inference is ∃E. Then the rule is applied to an
ifol proof of ∃x.A, and to a proof of B from A. By the axiom for ∃E, it is enough to
prove the theorems [[∃x.A]] and

∧
x . [[A]]⇒ [[B]]. By the induction hypothesis, there

is an Mifol-proof of [[∃x.A]], and also a proof of [[B]] from [[A]]. The meta-proof
resembles that in Figure 9, where G is λx.A. Again, terms having the same normal
form are identified. 2

Remark. Perhaps the type names term and form are overly syntactic; term de-
notes a set of individuals while form denotes a set of truth-values. The meaning of
A ⊃ B should depend on the meanings of A and B, not on their syntactic structure.

Still, types play an important syntactic role. An expression of type term repre-
sents an ifol term, and similarly form represents formulae. By assigning a type to
each syntactic category of the object-logic, type-checking in M enforces syntactic
constraints.

6 Backwards proof with quantifiers

Quantifiers complicate backwards proof: goals may contain unknowns and param-
eters. An unknown takes the form of a free variable in the proof state, and can be
replaced by any term. Unification is a standard technique for solving unknowns.
A parameter comes from an eigenvariable of a rule. Parameters have two possible
representations,

∧
-bound variables and Hilbert ε-terms.

6.1 Lifting over universal quantifiers

The universal quantifier
∧

is the obvious way to express a goal involving parameters.
Recall the axioms ∀I and ∃E. If we use ∀I to prove ∀z.G(z)∨H(z) then the subgoal
will be

∧
z . [[G(z) ∨ H(z)]]. Resolution against a quantified goal requires a new

derived meta-rule: lifting an object-rule over a quantified variable. This
∧

-lifting
resembles ⇒-lifting, introduced earlier to handle assumptions.

20

Suppose we want to apply ∨I to the goal
∧
z . [[G(z)∨H(z)]]. The ∨I axiom has

quantified variables A and B: ∧
AB . [[A]]⇒ [[A ∨B]]

(Lifting seems easier to explain if quantifiers are shown explicitly. In the sample
proofs below, outer quantifiers are dropped after lifting.) Lifting the axiom over z
produces a meta-theorem with new quantified variables G and H, functions of z:∧

GH . (
∧
z . [[G(z)]])⇒ (

∧
z . [[G(z) ∨H(z)]]) (4)

Why is this a theorem? By the ∨I axiom, [[G(z)]] implies [[G(z) ∨H(z)]] for all G,
H, and z. Thus we may reduce

∧
z . [[G(z) ∨H(z)]] to the subgoal

∧
z . [[G(z)]].

The ∃I axiom has quantified variables F and y:∧
Fy . [[F (y)]]⇒ [[∃x.F (x)]]

Lifting over z produces quantified variables G and f :∧
Gf . (

∧
z . [[G(z, f(z))]])⇒ (

∧
z . [[∃x.G(z, x)]]) (5)

By the ∃I axiom, [[G(z, f(z))]] implies [[∃x.G(z, x)]] for all G, f , and z. Thus we may
reduce

∧
z . [[∃x.G(z, x)]] to the subgoal

∧
z . [[G(z, f(z))]]. The pattern may become

clearer if we recall that ∃x.F (x) means ∃(F) and ∃x.G(z, x) means ∃(G(z)); we have
replaced F by G(z).

The lifting rule. Given an object-rule, lifting replaces all the outer quantified
variables by new ones of function type. Its formal derivation consists of several
steps. Consider the M-proof ∧

y . ψ

ψ[f(z)/y]∧
z . ψ[f(z)/y]

Here f is a variable (of function type), and the final step will involve generalization
over f . For k quantified variables we can similarly derive the rule∧

y1 . . . yk . ψ∧
z . ψ[f1(z)/y1, . . . , fk(z)/yk]

where the fi are free variables. If z has type σ then lifting replaces yi (of type τi)
by a different variable fi (of type σ → τi).

Typically ψ is an implication φ ⇒ ψ′. To push the
∧
z into the implication,

assume
∧
z . φ and apply this derived meta-rule:∧

z . φ⇒ ψ′
∧
z . φ∧

z . ψ′

If the object-rule has several premises then ψ′ will also be an implication; continue
pushing the

∧
z into the right. Then use ⇒-introduction to discharge the assump-

tions like
∧
z . φ, and use

∧
-introduction to generalize over the variables f1, . . . , fk.

This yields general forms of lifting.
Repeated lifting over the variables zn, . . . , z1 allows resolution with the goal∧
z1 . . . zn.θ.

21

A sample proof. Consider a proof of ∀z.G(z) ∨H(z) from ∀z.G(z):

∀z.G(z)

G(z)

G(z) ∨H(z)

∀z.G(z) ∨H(z)

In the meta-proof, G and H are function variables. We may afterwards substitute
∀z.A for G and ∀z.B for H, where A and B are any formulae.

Working backwards, the first inference is ∀I. The first resolution instantiates F1

to λz.G(z) ∨H(z):

(
∧
z . [[F1(z)]])⇒ [[∀z.F1(z)]] [[∀z.G(z) ∨H(z)]]⇒ [[∀z.G(z) ∨H(z)]]

(
∧
z . [[G(z) ∨H(z)]])⇒ [[∀z.G(z) ∨H(z)]]

Here resolution must cope with function variables like F1, determining the correct λ-
abstraction and identifying terms that have the same normal form. For this Isabelle
uses higher-order unification [19, 28]. The conclusion is normalized to eliminate
β-redexes.

Observe that the goal G(z)∨H(z) must be proved for arbitrary z, a parameter.
The next step uses the ∨I axiom, which becomes the meta-theorem (4) after lifting
over z. Resolution with this produces the subgoal G(z):

(
∧
z.[[G2(z)]])⇒ ∧

z.[[G2(z) ∨H2(z)]] (
∧
z.[[G(z) ∨H(z)]])⇒ [[∀z.G(z) ∨H(z)]]

(
∧
z . [[G(z)]])⇒ [[∀z.G(z) ∨H(z)]]

The instantiations are G2 to G and H2 to H.
The next inference, ∀E, cannot easily be used backwards. Its conclusion, A[t/x],

can match a goal in numerous ways. Higher-order unification of a term with F (y),
where F and y are variables, yields many unifiers.3 Instead, work forwards. Making
the assumption [[∀z.G(z)]], the ∀E axiom proves

∧
y.[[G(y)]]. (Recall that we are

deriving a rule, and therefore may assume its premise.) Lifting this theorem over z
gives

∧
f.
∧
z . [[G(f(z))]].∧

z . [[G(f3(z))]] (
∧
z . [[G(z)]])⇒ [[∀z.G(z) ∨H(z)]]

[[∀z.G(z) ∨H(z)]]

The final resolution replaces f3 by λz.z, and so

G(f3(z)) ≡ G((λz.z)(z)) ≡ G(z)

This use of function variables is typical: the term f3(z) states precisely its de-
pendence on the context. The following sections give more examples.

3When this example was run, Isabelle did actually make the correct unifier its first choice.

22

Both kinds of lifting together. The goal ∀z . P (z) ⊃ P (z) ∨Q(z) leads to the
proof state

(
∧
z . [[P (z)]]⇒ [[P (z) ∨Q(z)]])⇒ [[∀z . P (z) ⊃ P (z) ∨Q(z)]]

The next step requires both kinds of lifting: to lift the ∨I axiom over the assumption
P (z) and then the variable z. The result after lifting is∧

GH . (
∧
z . P (z)⇒ [[G(z)]])⇒ (

∧
z . P (z)⇒ [[G(z) ∨H(z)]])

The methods of this section and 4.3 work together to derive this sort of lifting.

6.2 Unification

Unification is a powerful aid for reasoning about quantification. We can prove a < b
by proving a < c and c < b for some c. A procedure runs in linear time provided
that, for some constant K, if the input has size n then the run time is Kn. Given
∀x.P (x) ∨ Q(x) we may argue by cases on whether P (a) or Q(a) holds, leaving a
unspecified. Each of these cases involve unknowns: terms that must eventually be
stated to complete the proof. Unification instantiates unknowns in goals.

Certain examples in first-order logic are especially helpful. Construct a proof of
∃xy.P (f(x), y) from ∀z.P (z, g(z)), considering how unification can determine the
instantiations of x, y, and z. To exercise all the quantifier rules, prove ∀x.∃y.P (x, y)
from ∃y.∀x.P (x, y) and try to prove the converse. Here we will work two simpler
examples: a proof of ∀x.∃y . x = y, and an attempted proof of ∃y.∀x . x = y. These
illustrate eigenvariable conditions.

The examples involve a reflexive equality relation, with the axiom
∧
y . [[y = y]].

Resolution using unification. Resolution easily handles goals containing un-
knowns. Simply extend the meta-rule (1) of Section 4.2 to instantiate both premises,
the object-rule and the proof state. If the substitution s satisfies φs ≡ ψs then

Φ⇒ φ Ψ⇒ ψ ⇒ θ

Ψs⇒ Φs⇒ θs

This resolution rule applies if s unifies φ and ψ. Resolution can affect variables
throughout the proof state: Ψ becomes Ψs and θ becomes θs.

A successful proof. A first-order proof of ∀x.∃y . x = y is

x = x

∃y . x = y

∀x.∃y . x = y

The first resolution in the backwards proof of ∀x.∃y .x = y involves the ∀I axiom,
instantiating F1 to λx.∃y . x = y:

(
∧
x . [[F1(x)]])⇒ [[∀x.F1(x)]] [[∀x.∃y . x = y]]⇒ [[∀x.∃y . x = y]]

(
∧
x . [[∃y . x = y]])⇒ [[∀x.∃y . x = y]]

23

The meta-theorem (5) is the result of lifting the ∃I axiom over a variable. We
use the lifted axiom here with different variable names. Resolution yields

(
∧
x . [[G2(x, f2(x))]])⇒ ∧

x . [[∃y.G2(x, y)]] (
∧
x . [[∃y.x = y]])⇒ [[∀x.∃y.x = y]]

(
∧
x . [[x = f2(x)]])⇒ [[∀x.∃y.x = y]]

The variable G2 is instantiated to λxy . x = y, so the normal form of G2(x, f2(x)) is
x = f2(x).

Putting λx.x for f2 solves the subgoal,
∧
x . [[x = f2(x)]], by reflexivity. In the

formal proof, this happens by lifting the reflexivity axiom over x and then resolving:∧
x . [[g3(x) = g3(x)]] (

∧
x . [[x = f2(x)]])⇒ [[∀x.∃y . x = y]]

[[∀x.∃y . x = y]]

Consider the steps of higher-order unification [19, 28]. The initial disagreement pair
is

〈
∧
x . [[g3(x) = g3(x)]],

∧
x . [[x = f2(x)]]〉

It reduces to the pairs 〈λx.g3(x), λx.x〉 and 〈λx.g3(x), λx.f2(x)〉. The first pair forces
g3(x) to be λx.x; the second forces f2(x) to be λx.x. This is a unifier: the common
instance is

∧
x . [[x = x]].

An unsuccessful proof. An attempt to prove ∃y.∀x . x = y is

x = t

∀x . x = t

∃y.∀x . x = y

Here t can be any term not containing x free. No such term satisfies x = t, so the
top formula is false.

The first resolution in the attempted proof of ∃y.∀x.x = y involves the ∃I axiom:

[[F1(y1)]]⇒ [[∃x.F1(x)]] [[∃y.∀x . x = y]]⇒ [[∃y.∀x . x = y]]

[[∀x . x = y1]]⇒ [[∃y.∀x . x = y]]

The subgoal contains a new variable, y1.
Resolution with the ∀I axiom gives

(
∧
x . [[F2(x)]])⇒ [[∀x.F2(x)]] [[∀x . x = y1]]⇒ [[∃y.∀x . x = y]]

(
∧
x . [[x = y1]])⇒ [[∃y.∀x . x = y]]

We are stuck. The subgoal
∧
x . [[x = y1]] is false; no fixed y1 can equal every x.

Resolution with the reflexivity axiom fails. The initial disagreement pair

〈
∧
x . [[g3(x) = g3(x)]],

∧
x . [[x = y1]]〉

reduces to the pairs 〈λx.g3(x), λx.x〉 and 〈λx.g3(x), λx.y1〉. The first pair forces
g3(x) to be λx.x, reducing the second to 〈λx.x, λx.y1〉, which has no unifier.

24

7 Other representations of eigenvariables

We have seen how to express most forms of Isabelle-86 proof construction as formal
inference in a meta-logic. What about the Isabelle-86 treatment of eigenvariables?

Isabelle-86 does not use
∧

-lifting; it enforces eigenvariable conditions literally.
The quantifier rule

Γ |− A(y)

Γ |− ∀x.A(x)

holds provided y is not free in Γ or A. (Isabelle-86 cannot handle natural deduction,
so its object-logics are typically sequent calculi.) Isabelle-86 reduces Γ |− ∀x.A(x) to
the subgoal Γ |− A(y), where y is a variable not previously used in the proof. Since
two proofs must not be combined if they have eigenvariables in common, resolution
renames all eigenvariables in its first premise. Isabelle-86 maintains the eigenvariable
conditions — it accounts for assignments to variables in Γ and A, forbidding those
that would introduce y into Γ or A.

The meta-logic M represents each inference rule as an implication. This fails if
a premise has free variables. Subject to the usual conditions, the following inference
is valid:

φ[y/x]∧
x.φ

The following implication is invalid :

φ[y/x]⇒
∧
x.φ (6)

Both cases involve implicit quantification over y, but with different scopes.
Replacing y by a special term can transform the implication (6) into a valid

formula. For this, M is too weak a meta-logic, so let us temporarily adopt full
higher-order logic.

7.1 Hilbert’s ε-operator

Church’s formulation of higher-order logic includes the Hilbert ε-operator: εx.ψ is
a term for any formula ψ. It embodies a strong Axiom of Choice. If ψ is true for
some value of x then εx.ψ denotes some such value; otherwise εx.ψ has an arbitrary
value of the same type as x. (Recall that no type may denote the empty set.) An
axiom scheme for the ε-operator is∧

x . ψ ⇒ ψ[(εx.ψ) / x]

Full higher-order logic has classical negation. Putting ¬φ for ψ, taking the
contrapositive, and pushing the

∧
x inwards, gives

φ[(εx.¬φ) / x]⇒
∧
x.φ

So the special term to plug into the implication (6) is εx.¬φ: a value chosen to falsify
φ, if such exists.

25

The term εx.¬φ contains the same free variables as
∧
x.φ. For example, a theorem

representing ∀I in first-order logic is∧
F . [[F (εx . ¬[[F (x)]])]]⇒ [[∀x.F (x)]]

where the variable F is free in εx . ¬[[F (x)]] but bound in the surrounding term.
Specializing F to λx . g(x) = 0 yields the theorem

[[g(εx . ¬[[g(x) = 0]]) = 0]]⇒ [[∀x . g(x) = 0]]

Specializing F to λx . G(x) ⊃ H(x) yields the theorem

[[G(εx . ¬[[G(x) ⊃ H(x)]]) ⊃ H(εx . ¬[[G(x) ⊃ H(x)]])]]⇒ [[∀x . G(x) ⊃ H(x)]]

The term εx . ¬[[F (x)]] produces two different terms

εx . ¬[[g(x) = 0]] and εx . ¬[[G(x) ⊃ H(x)]]

Each eigenvariable is represented by a giant term: εx . ¬[[F (x)]] contains the
formula F , which may contain other ε-terms. I tried this cumbersome representation
in early versions of Isabelle, but no method of structure sharing would control the
exponential growth.

7.2 Replacing Hilbert’s ε by special constants

Here is something similar to ε-terms but more practical. Extend higher-order logic
with the axiom scheme

φ[y{φ} / x]⇒
∧
x.φ (7)

We simply postulate constants to satisfy the implication (6). For each φ there
is a unique constant y{φ} not free in φ. This is Henkin’s technique for reducing
first-order logic to propositional logic [5, page 30]. Its main application is the Com-
pleteness Theorem; here it extends our propositional proof methods to first-order
logic.

The simplest representation of y{φ} is to regard φ as part of the name, but this
is as cumbersome as ε-terms. Enumerating names like y{609} (Lisp’s gensym) does
not work if

∧
x.φ contains free variables: substitution could create distinct instances

of (7), and even introduce occurrences of y{609} in
∧
x.φ. We must make certain

that one constant is not used for different instances of (7) in a proof.
Taking the free variables of

∧
x.φ as part of the name, and updating them,

provides an automatic renaming mechanism — precisely that of Isabelle-86. Thus
y{φ} should be written y{z1, . . . , zn}, where z1,. . . ,zn are the free variables of

∧
x.φ.

The only way to introduce occurrences of y{φ} into
∧
x.φ is to instantiate some free

variable zi with y{z1, . . . , zn}. This is prevented by the occurs check in unification.
The ε-terms can express functions like λx . εy . ψ, which maps x to some y such

that ψ holds. But y{z1, . . . , zn} is a constant — so z1, . . . , zn must not be bound
in the surrounding term. This restricts the generalization rule (

∧
-introduction) to

26

variables not mentioned by special constants. Instead we can use the instantiation
rule,

φ

φ[a1/x1, . . . , ak/xk]

where the variables x1, . . . , xk must not be free in the assumptions. In M the rule
follows by generalization and specialization, but here it must be taken as primitive.
In each special constant, xi is replaced by all free variables of ai.

The ∀I axiom becomes

[[F (y{F})]]⇒ [[∀x.F (x)]]

Note that there is no
∧
F : since the variable F is mentioned by the constant y{F},

it must be free in the axiom. However, we may replace F by a term, creating a new
special constant. Replacing F by λx . g(x) = 0 yields the theorem

[[g(y{g}) = 0]]⇒ [[∀x . g(x) = 0]]

Replacing F by λx.G(x) ⊃ H(x) yields the theorem

[[G(y{G,H}) ⊃ H(y{G,H})]]⇒ [[∀x.G(x) ⊃ H(x)]]

The theorems contain different constants y{g} and y{G,H}: thus y{F} is auto-
matically renamed.

Compare these with the ε-term examples. Keeping just the free variables of F ,
rather than F itself, prevents the exponential growth.

7.3 Lifting versus special constants

Redoing the examples from Section 6.2 illustrates how special constants work.

A successful proof. The first resolution in the backwards proof of ∀x.∃y . x = y
involves the ∀I axiom:

[[F1(x{F1})]]⇒ [[∀x.F1(x)]] [[∀x.∃y . x = y]]⇒ [[∀x.∃y . x = y]]

[[∃y . x{} = y]]⇒ [[∀x.∃y . x = y]]

Here F1 is assigned λx.∃y . x = y, which has no free variables. Thus the special
constant x{} in the conclusion has no variables.

Next we resolve with the ∃I axiom:

[[F2(y2)]]⇒ [[∃x.F2(x)]] [[∃y . x{} = y]]⇒ [[∀x.∃y . x = y]]

[[x{} = y2]]⇒ [[∀x.∃y . x = y]]

The function variable F2 is instantiated to λy .x{} = y, so the normal form of F2(y2)
is x{} = y2.

Resolving the proof state with the reflexivity axiom sets y2 to x{}, completing
the proof:

[[x3 = x3]] [[x{} = y2]]⇒ [[∀x.∃y . x = y]]

[[∀x.∃y . x = y]]

27

A unsuccessful proof. The first step in the attempted proof of ∃y.∀x . x = y is
the same as before:

[[F1(y1)]]⇒ [[∃x.F1(x)]] [[∃y.∀x . x = y]]⇒ [[∃y.∀x . x = y]]

[[∀x . x = y1]]⇒ [[∃y.∀x . x = y]]

Resolution with the ∀I axiom gives

[[F2(x{F2})]]⇒ [[∀x.F2(x)]] [[∀x . x = y1]]⇒ [[∃y.∀x . x = y]]

[[x{y1} = y1]]⇒ [[∃y.∀x . x = y]]

The instantiation of F2 is λx . x = y1, which contains free variable y1: hence the
special constant x{y1} in the conclusion. The subgoal [[x{y1} = y1]] cannot be
solved because the instantiation of y1 to x{y1} would be circular. These terms are
not unifiable.

Parallel derivations. A final example will compare
∧

-lifting with special con-
stants. The main goal, ψ, is

[[∃u.∀x.∃v.∀y.∃w.P (u, x, v, y, w)]]

Each state in the backwards proof has one subgoal. Here are the derivations for
both styles, in parallel:

lifting special constants
[[∀x.∃v.∀y.∃w.P (a, x, v, y, w)]]⇒ ψ [[∀x.∃v.∀y.∃w.P (a, x, v, y, w)]]⇒ ψ
(
∧
x.[[∃v.∀y.∃w.P (a, x, v, y, w)]])⇒ ψ [[∃v.∀y.∃w.P (a,x{a}, v, y, w)]]⇒ ψ

(
∧
x.[[∀y.∃w.P (a, x, f(x), y, w)]])⇒ ψ [[∀y.∃w.P (a,x{a}, b, y, w)]]⇒ ψ

(
∧
xy.[[∃w.P (a, x, f(x), y, w)]])⇒ ψ [[∃w.P (a,x{a}, b,y{a, b}, w)]]⇒ ψ

(
∧
xy.[[P (a, x, f(x), y, g(x, y))]])⇒ ψ [[P (a,x{a}, b,y{a, b}, c)]]⇒ ψ

In the sequence of states new symbols appear one by one: the free variable a,
the parameter x, the free variable f or b, the parameter y, and the free variable g
or c. Consider the final meta-theorem (the last line above):

lifting special constants
The variable a cannot be assigned a
term containing x or y free because x
and y are bound variables.

The variable a cannot be assigned a
term containing x{a} or y{a, b} be-
cause a is free in these constants.

Assigning λx.b to f replaces the term
f(x) by b, which may contain x free
but not y.

The variable b cannot be assigned a
term containing y{a, b}, for this con-
stant contains b.

Assigning λxy.c to g replaces the term
g(x, y) by c, which may contain x and
y free.

The variable c can be assigned a term
containing x{a} or y{a, b}, for c is free
in neither constant.

28

Special constants raise many questions. When is the name of a special constant
significant, and what is its scope? Does the axiom scheme (7) entail classical logic
or the Axiom of Choice? With lifting, the status of parameters is clear. They can
be renamed by α-conversion. The scope of a parameter is its goal. Here is a proof
state with two subgoals:

(
∧
x.φ)⇒ (

∧
y.θ)⇒ ψ

The scope of x is the first goal and that of y is the second.
Lifting is clearly preferable — especially because it works in the simple meta-

logicM. Higher-order unification easily copes with the additional function variables
like f and g above.

8 An implementation

This research has always been concerned with implementation issues, of which the
main one is how to represent a logic. I have criticized lcf for representing inference
rules as functions, preferring visible structures [28]. But colleagues have pointed out
that such structures are essentially the theorems of a (meta) logic, and the functions
that manipulate them are (meta) rules. Thus Isabelle adopts lcf’s representation
at the meta-level.

Object-rules in Isabelle-86 are expressed in the typed λ-calculus and have the
familiar pattern of premises over conclusion. Free variables and special constants
give the effect of weak quantification. Written inM, the general form of an Isabelle-
86 rule is something like

(
∧
y1.φ1)⇒ · · · ⇒ (

∧
ym.φm)⇒ φ

Below the level of rules, Isabelle operates on terms: substitution, normalization,
higher-order unification, parsing and printing. Above, Isabelle is concerned with
backwards proof: tactics and tacticals. Above pure Isabelle come the object-logics
with their special tactics.

M. J. C. Gordon uses higher-order logic as a specification language for hardware.
His hol theorem prover [13] has supported several large proofs about circuit designs
[6]. Since hol is based on lcf, it may seem to be the obvious starting point for a
version of Isabelle based onM. However hol and Isabelle support distinct methods
of use, giving conflicting design requirements. I obtained the current version of
Isabelle by modifying Isabelle-86. Only the level of rules needed substantial change;
the lower levels were slightly modified and the higher levels hardly at all.

The natural deduction rules ofM are represented by the corresponding sequent
calculus. A meta-theorem has the form Ψ |− φ, where φ depends on the assumptions
Ψ, and expresses object-rules using

∧
and ⇒. Lifting and resolution are coded

directly; implementing them by execution of primitive rules would be painfully slow.
Isabelle now uses

∧
-lifting instead of special constants. Despite having quan-

tifiers, Isabelle provides a separate class of schematic variables4 — free variables

4‘Logical variables’ in prolog jargon.

29

intended for substitution. Why have two kinds of free variables? Consider trying to
prove

[[(∃z.F (z)) &B]]⇒ [[∃z.F (z) &B]]

which expresses a derived rule about ∃ and &. In the proof, the free variables
F and B are fixed while the rightmost existential quantifier produces a schematic
variable that must eventually be replaced by a term. The meta-rules ensure that
every theorem Ψ |− φ has no schematic variables in Ψ; instantiation only affects
schematic variables.

Object-logics include intuitionistic first-order logic, Martin-Löf’s Constructive
Type Theory (ctt) [23] and a first-order sequent calculus similar to lk [36]. The
Isabelle-86 logics were easily adapted to the new Isabelle. The most drastic change in
the representation of proofs,

∧
-lifting, was the main source of problems. But many

things worked immediately, including the object-logics’ specialized proof procedures.
The Isabelle-86 logics were sequent calculi, but most now have a simpler formulation
using natural deduction. Sequent calculi are mainly suitable for classical logic [32,
page 245].

All proofs in this paper are in single steps. But Isabelle provides tacticals (re-
sembling lcf’s) for joining simple proof procedures into complex ones. Constructive
Type Theory has a rewriting tactic that works by executing a ‘logic program’ de-
rived from ctt rules. This tactic is heavily used in the largest ctt example, which
develops elementary number theory up to the theorem

a mod b+ (a/b)× b = a

The first-order sequent calculus has an automatic proof procedure that performs
associative unification using higher-order unification [20, page 37]. The procedure
is not complete but it saves many steps in interactive proof and works with any
convenient mixture of primitive and derived rules. Using derived rules about set
theory, Isabelle can prove theorems like

c 6= ∅ |−
⋂
x∈c

(f(x) ∩ g(x)) = (
⋂
x∈c

f(x)) ∩ (
⋂
x∈c

g(x))

Huet’s unification procedure [19] may return, with a unifier, unsolved disagree-
ment pairs 〈a1, b1〉, . . . , 〈am, bm〉. When this happens, the pairs have at least one
and perhaps infinitely many unifiers. To avoid enumerating these unifiers the dis-
agreement pairs can be kept to constrain future unifications. (This is Huet’s key
observation, which makes his procedure practical.) Isabelle-86 stores with each de-
rived rule φ its unsolved disagreement pairs. Isabelle now expresses these using
equality:

a1 ≡ b1 ⇒ · · · ⇒ am ≡ bm ⇒ φ

Equality also replaces the Isabelle-86 definition mechanism. The meta-axiom K ≡ a
defines the constant K. We can then unfold K to a, or fold a back to K. This is
more sensible than automatically unfolding all constants.

See the User’s Manual for more detailed information about Isabelle [30].

30

9 Related work

De Bruijn’s automath is an early attempt (begun in 1966) to develop a formal lan-
guage of mathematics [7]. The automath languages are meant to appear natural
to mathematicians while allowing the computer checking of proofs. Coquand and
Huet’s Calculus of Constructions [9] is similar but has a different treatment of ab-
breviations and context. Both are extended typed λ-calculi providing the Cartesian
product of a family of types.5

Many pieces of mathematics have been computer checked in automath [21]
and the Constructions [10]. The mathematician specifies all items of discourse —
including the logical constants — by writing axioms and definitions. The calculi can
express classical reasoning, constructive reasoning, and various shades in between.
But the properties of the logical constants may be unclear, for their definitions are
technical.

Is there a clear, uniform formalization of logic? Martin-Löf’s theory of expres-
sions represents the syntax of his Constructive Type Theory. It is essentially
Church’s typed λ-calculus, which represents the syntax of higher-order logic. So
Isabelle has always represented object-theorems in the typed λ-calculus. But what
about the representation of rules? Initially I adopted an obvious form of inference
rule, without fully developing the concept. As it happened, Schroeder-Heister had
already done so.

With Schroeder-Heister’s rules of higher levels, a rule may be the premise of
another rule. This extends natural deduction: assumptions may be (higher level)
rules, not just formulae [33]. Schematic variables in a rule express quantification [34].
Unfortunately, propositional logic requires a complicated treatment of assumption
discharge, while the full conception is extremely complex. The meta-logic M is
perhaps a rendering of Schroeder-Heister’s work into a more convenient and familiar
notation.

Martin-Löf has formulated a general concept of rule [24]. In a notation resem-
bling automath’s he has produced succinct descriptions of first-order logic and
Constructive Type Theory [25]. Most recently, people at the University of Edin-
burgh have elaborated Martin-Löf’s ideas into the Edinburgh Logical Framework
[15], and formalized diverse logics [3].

automath and its descendants exploit the interpretation of propositions-as-
types. Each proposition A is interpreted as the type (or set) Ã of proof objects, and
A is true if it has a proof object, namely if there exists a : Ã. Here is a summary of
propositions-as-types [18, 27]:

• Absurdity (⊥) is interpreted as the empty type.

• A proof object of A & B consists of a pair 〈a, b〉, where a is a proof object of
A and b is a proof object of B — namely where a : Ã and b : B̃. Thus A&B
is interpreted as the Cartesian product Ã× B̃.

5The so-called ‘dependent product’ or ‘dependent function space’

31

• A proof object of A ∨ B contains either a proof object of A or else a proof
object of B, and an indication of which. Thus A ∨ B is interpreted as the
disjoint union Ã+ B̃.

• A proof object of A ⊃ B consists of a function f such that if a is a proof
object of A then f(a) is a proof object of B — namely if a : Ã then f(a) : B̃.
Thus A ⊃ B is interpreted as the function type Ã→ B̃.

• A proof object of ∀x:A .B(x) consists of a function f such that if a belongs to
A then f(a) is a proof object of B(a), namely if a : A then f(a) : B̃(a). Thus
∀x:A . B(x) is interpreted as the type Πx:A . B̃(x), the product of the family
of types {B̃(x)}x:A.

Observe that if the type B does not involve x then {B}x:A is the constant family,
and the product Πx:A . B is the function type A → B. But the A in A ⊃ B is a
set Ã of proof objects, while the A in ∀x:A . B(x) typically is an ordinary set, like
the natural numbers. Calculi like automath are expressive and yet compact, for
Π encompasses function types, implication, and universal quantification.

The meta-logic M, based on higher-order logic, is strikingly different. Its func-
tion types σ → τ , implications φ ⇒ ψ, and universal quantifications

∧
x.φ are

independent. Recall how each is used to formalize propositional logic. The type of
the constant & indicates that it is a function on truth values. The axioms about &
express properties of that function.

& : form → (form → form)
∧
AB . [[A]]⇒ ([[B]]⇒ [[A&B]])

Propositions-as-types seems to offer advantages. Observe that
∧

-lifting and ⇒-
lifting would become simply Π-lifting. The richer type system allows a neat formal-
ization of typed object-logics: the type term(T) might represent the set of terms
of object-type T . The formalization of a typed logic in M involves a type of all
object-terms, including those of no legal object-type; object-level type checking re-
quires additional rules for type inference. My choice of an old-fashioned calculus for
Isabelle reflects practical considerations.

Under propositions-as-types, the formal proof of the proposition A consists of a
proof of a : Ã, where a is a proof object. A proof object is smaller than a standard
proof tree (which contains repeated subformulae) yet still can grow large. Following
the lcf tradition, Isabelle has never stored the steps of proofs. Milner’s represen-
tation of logic makes stored proofs unnecessary, a vital space savings. Now some
people regard this as a mistake. Martin-Löf’s Type Theory exploits propositions-as-
types; its proof objects constitute a functional programming language; the theorem
prover Nuprl can execute them [8]. The proof objects of ordinary logics may be
useful in proof editors.

Isabelle is intended for verifications involving hundreds of proofs, each involving
hundreds of steps. Isabelle must support a degree of automation, and this requires
unification. Propositions-as-types could consume excessive space; and what would
take the place of Huet’s unification procedure for higher-order logic [19]?

32

∀x.A
A

∃x.A

∀x.A
A[0/x]

∃x.A

(a) (b)

Figure 10: Two proofs of ∃x.A from ∀x.A

The choice of meta-logic can have subtle consequences stemming from the seman-
tics. In M every type denotes a non-empty set; under propositions-as-types there
must be an empty type. Standard first-order logic assumes a non-empty universe,
and so ∀x.A implies ∃x.A. The meta-logic M can represent the standard proof,
Figure 10(a). Avron et al. [3] suggest that deriving this in their formalization of
first-order logic requires a constant, say 0. Their proof presumably represents that
of Figure 10(b).

A logic for the formalization of mathematics must presuppose the very minimum.
Philosophers have debated whether a logic must be predicative — free of ‘vicious
circles’ [37, page 37]:

The vicious circles in question arise from supposing that a collection of
objects may contain members which can only be defined by means of the
collection as a whole. Thus, for example, the collection of propositions
will be supposed to contain a proposition stating that “all propositions
are either true or false.” It would seem, however, that such a statement
could not be legitimate unless “all propositions” referred to some already
definite collection, which it cannot do if new propositions are created by
statements about “all propositions.” We shall, therefore, have to say
that statements about “all propositions” are meaningless.

Whitehead and Russell’s ramified type theory is the ancestor of Church’s simple
type theory (higher-order logic), which is impredicative. The simplest impredicative
formula is

∧
θ .θ, a definition of absurdity: all propositions are true. The disjunction

φ ∨ ψ is equivalent to ∧
θ . (φ⇒ θ)⇒ (ψ ⇒ θ)⇒ θ

Leibniz’s definition of equality, x = y if y has every property of x, involves quantifi-
cation over propositional functions:

∧
φ . φ(x)⇒ φ(y).

Most of the other calculi are predicative and intuitionistic. To makeM predica-
tive, we can forbid bound variables whose type involves prop. The resulting system
is much weaker but can still serve as a meta-logic, which requires only quantification
over object-formulae. Its proof theory is as simple as that of first-order logic.

Amy Felty and Dale Miller [12] have formalized several logics in a logic pro-
gramming language based on hol. Logically their formalizations resemble those in
Sections 3 and 5, but also express search procedures involving tactics and tacticals.
Felty and Miller compare these with the usual approach of programming tactics in

33

ml. They claim that the Edinburgh Logical Framework can be easily translated
into higher-order logic.

Higher-order logic makes an adequate meta-logic from the theoretical perspec-
tive. We can draw on established proof theory to demonstrate soundness and
completeness of the formalization of first-order logic: compare with the argument
in Harper et al. [15]. The implementation, Isabelle, demonstrates its practical
strengths. Basing Isabelle’s reasoning methods on a precise calculus has already
lead to extensions such as hypothetical rules. It is shedding light on issues such as
theory structure.

Acknowledgements. Thierry Coquand contributed greatly to this research, which
owes much to Michael Gordon’s work on higher-order logic. David Matthews has
continued to support his ml compiler. Philippe de Groote wrote the Isabelle-86
version of lk. Brian Monahan, David Wolfram and the referee commented on the
paper. Thanks also to Peter Dybjer, Furio Honsell, Martin Hyland, Philippe Noël,
and the editor. The serc provided funding under grant GR/E0355.7.

References

[1] P. B. Andrews, An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof (Academic Press, 1986).

[2] P. B. Andrews, D. A. Miller, E. L. Cohen, and F. Pfenning, Automating higher-
order logic, in: W. W. Bledsoe and D. W. Loveland, editors, Automated The-
orem Proving: After 25 Years (American Mathematical Society, 1984), pages
169–192.

[3] A. Avron, F. A. Honsell, and I. A. Mason, Using typed lambda calculus to
implement formal systems on a machine, Report ecs-lfcs-87-31, Computer
Science Department, University of Edinburgh (1987).

[4] J. Barwise, editor, Handbook of Mathematical Logic (North-Holland, 1977).

[5] J. Barwise, An introduction to first-order logic, in: Barwise [4], pages 5–46.

[6] G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verifica-
tion and Synthesis (Kluwer Academic Publishers, 1988).

[7] N. G. de Bruijn, A survey of the project automath, in: Seldin and Hindley
[35], pages 579–606.

[8] R. L. Constable et al., Implementing Mathematics with the Nuprl Proof Devel-
opment System (Prentice-Hall, 1986).

[9] Th. Coquand and G. Huet, The calculus of constructions, Information and
Computation 76 (1988), pages 95–120.

34

[10] Th. Coquand and G. Huet, Constructions: a higher order proof system for
mechanizing mathematics, in: B. Buchberger, editor, eurocal ’85: European
Conference on Computer Algebra, Volume 1: Invited lectures (Springer, 1985),
pages 151–184.

[11] M. Dummett, Elements of Intuitionism (Oxford University Press, 1977).

[12] A. Felty and D. Miller, Specifying theorem provers in a higher-order logic pro-
gramming language, in: E. Lusk and R. Overbeek, editors, Ninth International
Conference on Automated Deduction (Springer Lecture Notes in Computer Sci-
ence 310, 1988), pages 61–80.

[13] M. J. C. Gordon, hol: A proof generating system for higher-order logic, in:
Birtwistle and Subrahmanyam [6], pages 79–128.

[14] Ph. de Groote, How I spent my time in Cambridge with Isabelle, Report RR
87-1, Unité d’informatique, Université Catholique de Louvain, Belgium (1987).

[15] R. Harper, F. Honsell and G. Plotkin, A Framework for Defining Logics, Sym-
posium on Logic in Computer Science (ieee Computer Society Press, 1987),
pages 194–204.

[16] J. R. Hindley and J. P. Seldin, Introduction to Combinators and λ-Calculus
(Cambridge University Press, 1986).

[17] C. A. R. Hoare and J. C. Shepherdson, editors, Mathematical Logic and Pro-
gramming Languages (Prentice-Hall, 1985).

[18] W. A. Howard, The formulae-as-types notion of construction, in: Seldin and
Hindley [35], pages 479–490.

[19] G. P. Huet, A unification algorithm for typed λ-calculus, Theoretical Computer
Science 1 (1975), pages 27–57.

[20] G. P. Huet and B. Lang, Proving and applying program transformations ex-
pressed with second-order patterns, Acta Informatica 11 (1978), pages 31–55.

[21] L. S. Jutting, Checking Landau’s ‘Grundlagen’ in the automath system (PhD
Thesis, Technische Hogeschool, Eindhoven, 1977).

[22] J. Lambek and P. J. Scott, Introduction to Higher Order Categorical Logic
(Cambridge University Press, 1986).

[23] P. Martin-Löf, Constructive mathematics and computer programming, in:
Hoare and Shepherdson [17], pages 167–184.

[24] P. Martin-Löf, On the meanings of the logical constants and the justifications of
the logical laws, Report, Department of Mathematics, University of Stockholm
(1986).

35

[25] P. Martin-Löf, Amendment to intuitionistic type theory, Lecture notes obtained
from P. Dybjer, Computer Science Department, Chalmers University, Gothen-
burg (1986).

[26] R. Milner, The use of machines to assist in rigorous proof, in: Hoare and
Shepherdson [17], pages 77–88.

[27] B. Nordström and J. M. Smith, Propositions and specifications of programs in
Martin-Löf’s type theory, BIT 24 (1984), pages 288–301.

[28] L. C. Paulson, Natural deduction as higher-order resolution, Journal of Logic
Programming 3 (1986), pages 237–258.

[29] L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF
(Cambridge University Press, 1987).

[30] L. C. Paulson, A preliminary user’s manual for Isabelle, Report 133, Computer
Laboratory, University of Cambridge (1988).

[31] D. Prawitz, Natural Deduction: A Proof-theoretical Study (Almquist and Wik-
sell, 1965).

[32] D. Prawitz, Ideas and results in proof theory, in: J. E. Fenstad, editor, Pro-
ceedings of the Second Scandinavian Logic Symposium (North-Holland, 1971),
pages 235–308.

[33] P. Schroeder-Heister, A natural extension of natural deduction, Journal of Sym-
bolic Logic 49 (1984), pages 1284–1300.

[34] P. Schroeder-Heister, Generalized rules for quantifiers and the completeness of
the intuitionistic operators &, ∨, ⊃, ⊥, ∀, ∃, in: M. M. Richter et al., editors,
Logic Colloquium ’83 (Springer Lecture Notes in Mathematics 1104, 1984).

[35] J. P. Seldin and J. R. Hindley, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism (Academic Press, 1980).

[36] G. Takeuti, Proof Theory (second edition) (North Holland, 1987).

[37] A. N. Whitehead and B. Russell, Principia Mathematica (Paperback edition to
*56, Cambridge University Press, 1962).

36

