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1 Introduction

A specific design style is only ever used if it meets the required needs of the task
in hand. The task in hand now is that of generating large, complex, application
specific systems on silicon in a fairly short space of time with the confidence that
they will perform to the required specification. In the past the development of a
large circuit might have been done using a team of engineers over a period of few
years, e.g. the development of the 68000 microprocessor. This method of circuit
development is not acceptable in the present day due to the time and manpower
spent in iterating to get the design correct. What is needed is a design technique
which is easy to follow and gives very high degree of confidence in the first time
correct implementation of the circuit.

Before such a design technique can be developed we need to look at the sort of
mistakes that are made which slow down the development of the circuit. The sort of
errors that are generally made can be classified into two categories—timing errors
and logical errors. Designers use simulators to model the behaviour of circuits
before their implementation. The critical point to note here is that the degree of
confidence one has in the design after it has been simulated is no more than the
confidence one has in the model of the primitives used in the simulation. The sort
of errors that are not easy to catch at the simulation stage are the complex timing
errors. This is because the process of manufacturing is not ideal and so there are
slight differences from one batch of devices to the next.

So, the sort of design technique needed is a synchronous design scheme. Such
a design scheme dictates that all storage elements be updated by the use of a
global clock. This reduces the timing problems to the areas between the clocked
elements and the problems of identifying difficult timing paths and race hazards
is simplified. It also frees the designer to think more about the algorithm and the
logical design of the system rather than the detailed timing requirements of the
logic.

The price paid for this simplification of the design style is an increase in the size
of the chip. This price is probably worth paying since the adoption of a difficult
asynchronous design would probably lead to the introduction of obscure timing
errors which may be difficult to model and may not be discovered until the chip
" has been fabricated.

The technology we are interested in is CMOS, and associated with it are hazards
not encountered with the simple NMOS technology. For example in CMOS all
latches are clocked with a pair of clock lines which are inverses of each other. The
constraints on the clock lines are that the overlap between the clocks and the rise
and fall times of the clock edges should be less than the delay across a gate (1.e. less
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than a few nano-seconds). This is a stringent requirement for a VLSI technology
and may be very difficult to meet as the device geometries get smaller and the
capacitive and resistive effects due to the clock lines become more significant. This
not only introduces clock stagger across the chip but also degrades the clock rise
and fall times—both of which are hazardous and may cause the latches to become
transparent for a short time and hence corrupt data. To over come the problem
of clock stagger on a large chip requires fine tuning of the clock delays across the
chip which would be difficult to model at the design stage and still provide no
guarantee as to the probability of it working. To overcome the poor clock rise and
fall times requires one to use excessively large clock drivers and clock buffers at
regular intervals which leads to rather complex clock structures. Unfortunately it
is also desirable not to have very fast clock rise and fall times, since this generates
electromagnetic interference and hence causes neighbouring lines to get corrupted,
a highly undesirable feature!

The solution to these problems is to do with the design style, not the deploy-
ment of clever distributed clock drivers. Presented here is a technique for formally
analysing such design styles. Our work is based on a design style known as CLIC [8]
which is tolerant to considerable clock overlap and slow clock rise and fall times. It
is an extension of the work done by Goncalves and De Man [4] where they present
a design style they call NORA that generalises yet another design style known as
DOMINO [7].

Common to all of these design styles is the use of dynamic logic rather than
static logic. The reason for this comes from the fact that in static CMOS, all logic
functions are duplicated—once using the p-type transistors and then again using
the n-type transistors. This has the advantage that the static power consumption
of the circuit is very low, but it also means that almost twice the amount of
silicon area is being used than necessary. However in the context of a synchronous
system we have a continuously running global clock which could be used for other
purposes: 1.e. instead of using static logic blocks we use dynamic logic blocks which
are clocked by the global clock. This does increase the power consumption a little
but it is still less than the power that may be used by a similar NMOS circuit.

This dynamic design feature was used in the DOMINO design style which only
used the n-type gates and provided only non-inverting logic. The NORA design
style on the other hand used both n-type and p-type devices and so provided the
full freedom of inverting and non inverting logic. However a requirement with the
NORA design technique was that the clock rise and fall times should be kept fairly
small to avoid data corruption by the latchs becoming transparent for a short time.
This problem begins to dominate as one approaches VLSI as described above. The
CLIC design style overcomes this by use of a two phase clocking scheme.




After a short overview of the CLIC design style and its design rules, we give
formal means of developing correct CLIC gates. This is based on a simple transistor
model with charge storage capability and a simple four value model of the signals
on wires. The CLIC design style is fully described in [8]. The notation used there
is quite different from ours and the clock labeling scheme is completely different
which does not easily lend itself to formal analysis. So a summary of this design

technique is first given.

2 Overview of the CLIC Design Style

2.1 Introduction

In this section a brief overview is given of synchronous design methodology and
dynamic logic, together with how these two ideas are married together to form the
basis of the CLIC design style.

2.1.1 Synchronous Design Methodology

The basic principle behind any synchronous design philosophy is that the system
is separated into blocks of purely combinatorial logic with no data storage facility,
interleaved by register latches which hold the data between clock pulses. There is
a global system clock which is used to clock the register latches, and, the period of
this is such as to allow all combinatorial logic blocks to finish evaluation of results.
So, on the tick of the clock, new data appears on the inputs of the combinatorial
logic blocks, and the old results are passed as inputs to the next stage by use of the
register latches. By definition there is no feedback within the purely combinatorial
blocks. This principle is illustrated in figure 1.

o - o - -

Figure 1: Synchronous Logic Concept

2.1.2 Dynamic Logic

A dynamic logic gate has two phases of operation, precharge and evaluate, which
is controlled by a system clock. For example a simple pseudo-NMOS dynamic gate
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is shown in figure 2. The output is precharged high while the c1k input is low.
Then as c1k goes high the path to Vdd is turned off and the path to Gnd is turned
on. Now the output will either remain floating high or will be discharged low
depending on the inputs.

—————— teo=-=-== Vdd
I
R o}l
I -
I I
] B el output
| b
l -t [
e R L
| ip1 - .~ ip2
| o
I [RSrag
I |
I -t
clk =mm—bmmmomeenn H
I
------ +~--=-=- Gnd

Figure 2: A simple dynamic logic gate

Many design styles use such dynamic gates. In particular the DOMINO logic
design style [7] uses this sort of structures with each output terminated by a static
inverter. The advantage of this is that the output of the inverter is low while the
gate is in its precharged state. So this can be fed as input to other such gates
resulting in a chain of dynamic gates separated by static inverters. Now when the
clock goes high, all the gates change to the evaluation phase. Since all inputs are
initially low no output of a gate will change state unless the gate at the start of
the chain changes. Effectively what we have here is a chain of evaluation going
from the start of the chain to the end, much as the fall of one domino causes the
next to fall which in turn causes the next to fall and so on.

2.1.3 The CLIC Design Style

This design style uses both dynamic logic features and the principles of syn-
chronous design. It comes with a set of rules which guarantee that there will
be no timing hazards. The basic principle behind this is very similar to that of the
NORA design style as described in [4]. The major difference is that instead of using
the simple clock and its inverse, a two phase non-overlapping clocking scheme is
used which results in having four clock lines— ¢;, @,, ¢; and &,. The remainder
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of this section tries to give a brief overview of this design style. A more detailed
electrical analysis of this is given in [8].

2.2 Clock Definition and Generation for CLIC

The two phase clock for the CLIC design style is generated from a single square
wave clock input. On every rising edge of the external clock input an internal
narrow pulse is generated on the ¢; clock line. Similarly on the falling edge of
the external clock another pulse is generated on the ¢; clock line. These two
internal clock lines are then inverted to form the remaining two internal clock
lines, namely @, and @, respectively. These are shown in figure 3 together with
the external clock.

External = 0o e e
Clock  _______ I T ! | |
Input

Phii | |1 i1

Phil’ .1 1.1 -1

Phi2 |1 1 | D

Phi2’ -1 1.1 1.1

Figure 3: The external and the internal clock relationships

For the purposes of analysing the clock scheme we can divide the clock cycle
into eight distinct intervals as shown in figure 4. The shaded regions represent un-
certainty in the value on the clock lines, i.e. the value could be Hi, Lo or something
in between. The essential requirements of the clock scheme are that the duration
of the clock pulses, i.e. the intervals ¢3 and t7, should be long enough so that the
internal gates of the chip have enough time to precharge their outputs.

2.3 CLIC Primitive Gates

All the logic gates used in the CLIC environment, except for the static inverter, are
dynamic logic gates which are driven by one of the four clock lines. The primitives
used in realising a logic function are a combination of these gates. There are four
basic building blocks used in CLIC circuits—the N_Shell, the P_Shell, the Latch, and
the Stat_Inv. These are illustrated in figure 5. Both the N_Shell and the P_Shell
devices need extra components, namely transistors, to be “wired” into the them
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Figure 4: Full definition of the internal clock

to make n-type and p-type gates respectively. It is these n-type and p-type gates
which form the primitive gates as used in the CLIC design scheme.

In the remainder of this section we give a brief account of how each of these
devices work. The working of the static inverter however are trivial and will not
be discussed here.

2.3.1 The Latch

The Latch as used in the CLIC environment is a dynamic device. It needs to be
updated at regular intervals otherwise the value held on its output may deteriorate.
There are two types of latches in the CLIC system, one driven by ¢; and #,, and
the other driven by ¢, and ¢,. The differences between the two are only in the
clocks they are driven by and none other.

A typical latch is illustrated in figure 6 together with the clocks which drive it.
The input is required to be stable during the times when there is a positive pulse
on the ¢ line and a negative pulse on the ¢ line. By stable is meant that the the
input should either remain Hi or Lo, but should not be in the process of changing.
This constraint on the input is necessary to stop the latch from latching onto a
false value.

If a latch is correctly clocked then it can be in one of two modes—Transparent
mode or Latched mode.
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Figure 5: The primitive building blocks of CLIC
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Figure 6: The Latch

Transparent mode ¢ = Hi, and ¢ = Lo
The two transistors driven by the clock lines get switched on, so the value
on the output of the latch is charged to the inverse of the input. It is also
important to note that during this time the latch behaves as a static inverter,
i.e. if there were any changes on the input then they would be reflected by
a change on the output.

Latched mode ¢ = Lo, and ¢ = Hi
The two transistors driven by the clock lines get switched off, so the out-
put node of the latch gets isolated from the power rails and so retains the
previously charged value. During this time any changes on the input have
no effect on the output. The output node is designed to hold the value long
enough until the latch is refreshed again by going into the transparent mode
for a short time.

The latch only needs to be in the transparent mode for a short time, long
enough for the output node to be charged to the correct value. Even if there is
considerable clock overlap and clock edges are poor, the latch will still lock onto
the correct value provided the input is stable during the interval when there is a
positive pulse on the ¢ line and a negative pulse on the ¢ line. This restriction
ensures that the latch behaves correctly as regards locking onto the input value.
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2.3.2 P-type and N-type Logic Gates

The name of p-type and n-type logic gates arises from the fact that these gates
use only p-type or n-type transistors respectively except for the precharging and
enabling transistors. All p-type gates are driven by either ¢; or ¢; and all n-
type gates are driven by either ¢, or ¢,. Perhaps the best way to understand the
working of these gates is by example.

---------- fo————
I
-
---0[| - -
| - Phil S b
I I
| +-=== op Phil’ [-1 |1
I I -
I - Phi2 I
ipl ----=------- I '
| - Phi2’ I-1
I |
| -’ —- -
ip2 ~--mmmm——-- 1] || I I
|- I |
| I Precharge | |
| - | |
phit*----- P— Evaluate |
- |
| Hold

Figure 7: Two input N-type Nand gate

Consider a simple two input n-type Nand gate as shown in figure 7. The work-
ing of this gate has two distinct phases—the Precharge period and the Evaluation
period.

Precharge ¢ = Lo
During this period the output of the gate is pulled Hi by the enabled p-
transistor. Any changes on the inputs during this time have no effect on
the output since the bottom n-transistor is off and so the path to Gnd is
effectively cut, 1.e. the output cannot be pulled Lo.

Evaluation ¢ = Hi
When ¢ goes Hi the top p-transistor goes off and the bottom n-transistor
comes on. If both the inputs now go Hi then the output will be pulled down
to logic level Lo, otherwise it will remain floating at Hi.
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The correct answer is generated on the output of the gate at the end of the
evaluation period and is held static until the next precharge period.

Note that the output may hold the wrong answer if the inputs are allowed to
go Hi and then go Lo during the evaluation period. Since there is no pull-up during
the evaluation period, if the output goes Lo then it will remain so until the next
precharge period. So for example if the inputs are initially Hi and then go Lo, then
at the end of the evaluation period the output and the inputs will all be Lo which
is the wrong answer for a Nand gate. To overcome this problem a restriction is
imposed which states that “there should be no Hi to Lo transitions on the inputs
of n-type gates during the evaluation period.”

Similarly the working of p-type gates can be understood by considering a two
input p-type Nor gate. The structure of this is shown in figure 8. As in the case
of n-type gates, this too has the precharge period and the evaluation period.

---0]| - -
: - Phii || L
I
| - Phit’ I I
ipl ====m==m-- ofl -
I - Phi2 I
I I
| -t Phi2’ [-1
ip2 -~----=--- oll
| - — - -
I I bl I I
| +---- op | I |
| | Precharge | |
| - I |
phil ----- F—— Evaluate |
- I
| Hold

Figure 8: Two input P-type Nor gate

Precharge ¢ = Hi
During this period the output of the gate is pulled Lo by the enabled n-
transistor. Any changes on the inputs during this time have no effect on the
output since the top p-transistor is off and so the path to Vdd is effectively
cut, t.e. the output cannot be pulled Hi.
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Evaluation ¢ = Lo
When ¢ goes Lo the bottom n-transistor goes off and the top p-tranmsistor
comes on. If both the inputs now go Lo then the output will be pulled up to
logic level Hi, otherwise it will remain floating at Lo.

Just as before the correct answer is generated on the output of the gate at the end
of the evaluation period and is held static until the next precharge period.

For similar reasons to those of the n-type gates, we need to impose the restric-
tion that “there should be no Lo to Hi transitions on the inputs of p-type gates
during the evaluation period.”

2.4 Composition Rules for CLIC

From the previous section’s work we note that the outputs of the n-type gates
cannot have Lo to Hi transitions during the evaluation period which is exactly
the requirements on the inputs of the p-type gates. Similarly the outputs of the
p-type gates cannot have Hi to Lo transitions during the evaluation period which
also meets the exact requirements for the inputs of the n-type gates. This is not
by accident but is designed into the style so that we can compose these gates
together. Rules like this and others which are necessary to make sure that the
circuit designed with CLIC dynamic gates does not contain any timing hazards are
presented in this section.

Perhaps the best method of presenting the CLIC composition rules is simply
by listing them. Before giving these rules we introduce a few shorthands for the
various types of gates and the clocks by which they may be driven.

P_Gate(¢) A p-type gate driven by ¢ where ¢ is either ¢, or ¢.

N_Gate(¢) A n-type gate driven by ¢ where @ is either ¢, or ¢,.

Latch(¢,¢) A latch driven by ¢ and ¢ where these ciock pairs are
either ¢; and ¢, or ¢, and &,.

If a clock phase ¢ for example is used in the statement of a rule then it is
intended that the rule be interpreted as being in two parts—part one with all
instances of ¢ and ¢ replaced by ¢, and ¢, and part two with all instances of
¢ and ¢ replaced by ¢, and ¢,. Having got these we can now give the CLIC
composition rules as follows:
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Rule 1. An N_Gate(4) may be driven by:

(a) P_Gate(¢)
(b) N_Gate(@) buffered by a static inverter
(c) Latch(¢,9)

)

d) Latch(¢,#) buffered by a static inverter

(
Rule 2. A P_Gate(¢) may be driven by:
(a) N_Gate(d)
(b)
(c) Latch(¢,®)
)

d) Latch(¢,$) buffered by a static inverter

P_Gate(¢) buffered by a static inverter

(
Rule 3. A Latch(¢;,4,) may be driven by:

(2) N_Gate(g,)
(b) N_Gate(,) buffered by a static inverter
(c) P-Gate(,)
(d) P_Gate(¢s) buffered by a static inverter
)
)

(e) Latch{(¢s,4,)
(f) Latch(¢s,¢,) buffered by a static inverter
Rule 4. A Latch(¢z,¢,) may be driven by:

(a) N_Gate(d,)
(b) N_Gate(¢,) buffered by a static inverter
) P-Gate(¢:)
) P_Gate(¢;) buffered by a static inverter
(e) Latch(¢y,8,)
) Latch(¢1,8,) buffered by a static inverter

12




3 Formalising the Clic Design Style

The objective here is to use the various formal techniques available to capture the
major concepts which go to make a useful design style. There are a number of level
at which we could view the development of the circuit design, from the physics of
the semiconductor devices to the top level specifications of a system given in vague
terms using English like specification languages. A designer cannot hope to view
all his circuit at all of these levels at once. He neither has the capacity nor the
expertise in all of these areas, so the best he can do is to work with simple models
of the lower level implementations of the various devices. The formalisation of the
CLIC design style presented here will thus reflect the sort of devices a logic designer
might reasonably be expected to work from. So we begin this section with a very
brief introduction of the formalism used.

3.1 Introduction to Higher-Order Logic

The formalism used is that of typed higher-order logic developed by Mike Gordon
at the University of Cambridge [5]. This logic uses standard predicate calculus
notation. So for example “P(z)” is interpreted as “z has property P.” It has
the usual logical operators ~, A, V, D and = denoting negation, conjunction,
disjunction, implication and equivalence respectively. Also provided are the two
quantifiers V and J which express the concepts of all and some, e.g. “Vz. P(z)”
means that P holds for every value of z and “Jz. P(z)” means that P holds for
some value of z. Finally conditionals of the form “if b then ¢, else {;” are expressed

as “(b—t; | 12).”

What makes this logic higher-order is that quantification is allowed over func-
tions and predicates. So for example the induction axiom for natural number can
be expressed as follows:

VP. P(0) A (Vn.P(n) D P(n+1)) D Vn.P(n)

The use of higher-order logic (HOL) as a hardware description language is ex-
plained in [6]. Essentially devices can be expressed as predicates with the labels
of external ports of the device being synonymous with the arguments to the pred-

icate. So for example a simple inverter with the input node labeled ip and the
output node labeled op and delay § would be defined as follows:

Invert(ip,0p) =4y Vi. op(t+6) = ~ip(2)

Where =g is simply a means of saying that the Lh.s. is defined to be equal to
the r.h.s.. Joining together of devices in HOL is done by the conjunction of the
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predicates with the common ports having the same labels. Hiding of internal
nodes is done be means of existentially quantifying them. This is explained in
more detail in [2].

3.2 Overview

To see how to formalise the CLIC design style we first need to look at the forms
of the correctness statements at the top level. For any given device, the cor-
rectness statement simply states that “the implementation together with some
input-conditions on the inputs implies the specification together with some output-
conditions on the outputs.” This can be formally stated as follows:

Dev.Imp(tp1, ... 1Pn,0P1, +o. 0Pm) A 5
IpCond ip; A -+ A Ip_Cond ip,

. . 1
Dev.Spec(ipy, ... tPn,0P1, -.. OPm) A (1)
Op.Cond op; A -+ A Op._Cond op,,

So the derivation of the correctness statement of a device which is composed of
two lower level devices simply requires that the input-conditions and the output-
conditions match for all those lines which are to be connected between them.
Then by simple logical manipulation we can show that the top level correctness
statement can be derived purely from the lower level correctness statements.

This then is the overview of our methodology for the formalisation of a design
style. Naturally the lp_Cond and Op_Cond predicates will have to be defined to
reflect the design rules for the particular design style. Also other parameters may
need to be added to these predicates to formalise any peculiarities specific to the
design style. '

However before going on to giving the correctness statements for the various
CLIC primitive gates we need a few preliminary axioms and definitions to get us
off the ground. Namely we need to clarify the model of transistors we plan to use,
the sort of values we plan to propagate around the circuit and reason about and
the definitions of the clock.

3.3 Formal Definitions of CMOS Primitives

In formalising the CMOS primitives we need to declare the sort of values nodes in a
circuit can have. These values will depend on the models we use for the primitive
devices, namely the transistors. After studying the CLIC design style it seems that
a unidirectional model for the transistor is adequate for describing the various
gates etc. So the values we use reflect this choice of the transistor model.
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Any node in the circuit can only have one of the following four values:

Er
/ \
Hi Lo

\ /
2z

These four values are derived by using Bryants work [1] with only two strengths.
Note that they form a complete lattice.

b

With this we introduce a simple operator U which states what happens at a
node when two signals meet. U is simply defined to be the least upper bound on
the above lattice of values. Now we are ready to define the basic primitives of the
CMOS technology within the constraints of the above four valued algebra.

Vdd(z) =ay V. z(t) = Hi (2)
Gnd(z) =4y Vi o(t) = Lo (3)
N_Tran(g,4,0) =ay Vit o(t) = ((g(t) = Lo) — Zz]|:(¢)) (4)
P-Tran(g,4,0) =aes Vt. o(t) = ((g(t) = Hi) — Zz|i(2)) (5)
Join(i1,92,0) =aep V. oft) = a(t) Ll i3(¢) (6)
Capy(1,0) =aey V. oft) = (~ (i (t) = 22) —  (2) i (t-1)) ()

Note that all further devices described here will be built out of these six primitive
building blocks.

3.4 Formal Definition of Clock

The Clock as described earlier is derived from a single square wave input. The
formal definition used is not derived from such a single input but it is simply
defined to be that which such a circuit might generate. This is because we do not
mode] the various gates to have delay. It would not be too difficult to derive the
given definition as an abstraction of what might be generated by the circuit if we
were to use a different model for the gates.
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Figure 9: Graphical representation of the four clock lines

However we are now going to define a predicate Clock with four arguments
which are the four lines which might be generated by the clock generator circuit.
The way we do this is to define how one of the four clock lines behaves, and
then relate the behaviour of the other three lines to it. Before giving the formal
definition, here is a graphical representation with an arbitrary starting point.

Note that the clock is cyclic over four units of time and the uncertainty states
have been eliminated. This is done to help convey the basic principle of how the
bulk of the work regarding the formalisation was done, rather than present even
more unnecessary detail than already present. A full treatment to this is given in
[3] where the correctness of the design style is shown at the finer grain of time and
then related to the coarser grain of time at which this paper deals. Here then is
the formal definition of the above graphical representation:

ClOCk(¢1,$u¢2,$z) =def CyCle ¢1 A (8)
Shift ¢y dg A
Invert ¢, ¢, A
Invert ¢; ¢,

Now definitions for the various predicates used to define Clock can be given. The
simplest two, namely Shift and Invert are as follows:

Shift ¢y d2 =aey Vi $a(t) = ¢y (t+2) (9)

Invert ¢ ¢ =4y Vt. $t=NOT(41) (10)

Where NOT is the negation function over the values Hi, Lo and Er.

So far we have defined the way in which all the clock lines are related to ¢,
but have not given a formal definition for Cycle. Before doing this we will state
informally the behaviour of ¢;.
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o ¢, is cyclic over four units of time

e During any four consecutive units of time the value on ¢, is Hi exactly once
and Lo for the other three units.

e ¢; can start in any of its four possible states.

Now we can formalise each of these three informal statements into logic to give
the following definition for clock:

Cycle =y (%, $(t) = (t+4)) A (11)
(Cyclel1 OV
Cyclel g1V
Cycle1 ¢ 2V
Cycle.1 ¢ 3)

Cycled dto =as (dto) = Hi) (12)

This seems like a lengthy definition for Clock and it could have been shorter but
for two reasons. Firstly that it closely mimics the way the designer has informally
described the signals on the clock lines, and secondly it is of the form which allows
some of the latter lemmas to be more easily derived.

However here are a few of the more elegant definitions I came up with at the
time of thinking how to define the cyclic property of clock. These are all provably
equivalent to the definition given above.

Cycle ¢ =def (Ht. ¢(t) =Hi A (13)
$(t+1) = Lo A
#(t+2) = Lo A
#(t+3) =Lo ) A
(Vt. o(t+4) = ¢(t) )
Cycle ¢ =45 In. (0<n<3) A (14)

Vt. ¢(t) = ((MOD4 ¢t = n) — Hi| Lo)
Where MOD4 is the remainder of dividing its argument by 4.

Note how the various properties of Clock are separated into different predicates.
This is done deliberately so that we can follow the formalisation more easily and
also that it simply reads better.
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3.5 Formal Composition Rules for CLIC

The rules governing the interconnection of CLIC gates have been described earlier
in a rather lengthy and informal way. If we are to be able to formalise them then
understanding the reason behind them is necessary. Consider for example an n-
type gate driving a p-type gate. During the precharge period the output of the
n-type gate is precharged Hi, which means that the inputs of the p-type gate are
at the correct level, namely that the transistors are off and the output node of the
p-type gate would be isolated if it went into the evaluation phase now. So when the
clock changes and puts both of these gates into the evaluation phase, the output
of the p-type gate does not change unless and until its inputs change. However if
we had the other situation where the input of the p-type gate was held Lo then
as soon as the gate went into its evaluation phase the output would change to Hi.
Now no matter what happens to the inputs, the output cannot be changed to Lo
until the next precharge period. So effectively the gate has erroneously changed
its output value,

In summarising this we can say that the inputs of a p-type gate must not
have Lo to Hi transitions during its evaluation phase and also the output of an
n-type gate does not have a Lo to Hi transition during its evaluation phase. So to
capture this sort of behaviour we need a single predicate which captures the output
behaviour of the n-type gate and the constraints on the inputs of the p-type gate.

Here is the formal definition of such a predicate WB as used in our system. It
relies on the fact that the gates are clocked and that the clock is correctly behaved.

_ $(t+1) = ¢(t) A _
WBz¢ =45 Vi ( .'c(t) _ ¢(t) D $(t+1) = m(t) (15)
This says that the node z is defined to be “Well Behaved” with respect to ¢ where
¢ is one of the four clock line as defined by Clock.

So for example the output of an n-type gate driven by §, satisfies “WB op ¢;,”
and this is exactly the required input conditions for a p-type gate driven by ¢;. In
this context what “WB op ¢,” means is that while ¢; is Lo, i.e. the n-type gate is
in its evaluation phase, then the op cannot have a rising edge on it. This is exactly
right since once the output of an n-type gate has been discharged then it cannot
go to Hi again until the clock rises and precharges the gate as discussed above.

With this one predicate we have now condensed all of the rules which were listed
in a rather informal way. However this predicate relies on the formal definition of
Clock and must always be used in conjunction with it. This is not a restriction
since CLIC is a dynamic design style and so all CLIC gates will require the existence
of Clock for their correct behaviour.
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3.6 Formal Derivations of CLIC Primitive Gates

Having got the preliminaries out of the way we can now begin the derivations of the
correctness statements for the various CLIC gates. There are four types of gates in
the CLIC design methodology, namely the n-type gate, p-type gate, the latch and
' the static inverter. Statements of correctness can be individually derived for the
latch and the static inverter, but it would be foolish to simply derive a statement
of correctness for each of the various n-type and p-type gates separately. Rather
than doing this it is far better to derive some general theorems which will then
be useful for generating the statement of correctness for the individual n-type and

p-type gates.

3.6.1 N-type and P-type Logic Gates

For any general theorems to be proved of n-type or p-type gates we first need
to extract out what is common to the various gates. A simple split would be to
separate the set of components which perform the logic specific function into one
bag and the remainder into an other. We call the remainder of an n-type gate the
N_Shell, since it has a hole in it into which other components need to be inserted
before it can function as an n-type CLIC gate.

Figure 10: N_Shell as used in CLIC

This is illustrated in figure 10 and can be formally stated as follow:
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N_Shell(¢,01,%p,0p) =4y 3P0 P1 P2 Ps.
Gnd(po)
N_Tran(¢, po, 01)
P-Tran(¢,p1,p2)
JOin(phip)pS)
Caps(ps, op)

(16)

>>> > >

Capg in the above definition is simply a capacitor with a “memory” of three
units of time just as Cap, has a “memory” of one unit of time. Note that Capy is
derived by composing three Cap, devices together.

Before we can progress further we need ‘to define the property which is held
true of all those cluster of devices which may be inserted into this N_Shell. By
studying the mechanism of an n-type gate we note that the cluster of devices which
get inserted in the N_Shell perform one of two functions—they either maintain a
link between the ip and the o; nodes of the N_Shell, or they don’t. We call this
property Opt_Link and it can be formally stated as follows:

Opt_Link(ip,0p) =4y Vi. (opt=1ipt)V (opt=1Zz) (17)

Here it is worth noting that the true property of two nodes being linked or
not linked is not actually captured because we are using a directional flow of
information model. The best we can do under the circumstances as stated, is say
that the values on the two node are equal or that the input node to the N_Shell
has a floating value on it. This is still not quite enough but we’ll leave the extra
conditions until later when they are needed. However there is enough for the
following two properties of the N_Shell to be derived.

CIOCk(¢1_3_$1’ ¢2,$2) A
N_Shell(¢,,a,b,0p) A| D WBop ¢ (18)
Opt_Link(a, b)

Clock(¢1, By, 2, 5) A Def op t A

N_Shell(¢,, a,b,0p) A Def op (t+1) A

OptLink(a,8)  A| = | Defop (t+2) A (19)
é1(t) = Hi Def op (t+3)

(¢
Where Defat =45 (a(t)=Hi)V (a(t) = Lo)

The first theorem can be interpreted as saying that ¢f the N_Shell is implemented
correctly and it is correctly driven by clock and the cluster of devices placed
in it are correctly behaved in that they have the property of Opt_Link then the
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output will be “Well Behaved,” i.e. the output will not have Lo to Hi transitions
during the evaluation phase. The second theorem simply says that given the same
assumptions and assuming that at some time ¢ the clock phase ¢, goes Hi then
the output will be “Well Defined” for the times t to t-+4, s.e. the output will be

either Hi or Lo.

Now that we have these general theorems we must ensure that this Opt_Link
property is derivable for all the various sorts of cluster of elements that may be
inserted in the N_Shell. For this to be truly general it will require us to talk of the
structure of an arbitrary cluster of devices.

Any logic function which is implementable can be simplified into a network of
transistors which only includes transistors in series and/or transistors in parallel
with the outputs of the transistors joined together by the Join device. On the
basis of this the following three theorems together allow us to show that any
cluster containing only parallel and/or series transistor networks, can be shown to
maintain the Opt_Link property across the two terminals by which the cluster is
connected to the N_Shell.

N_Tran(g,7,0) D Opt_Link(s,0) (20)

Opt.Link(a,b) A
Opt_Link(b, ¢)

) D Opt_Link(a,c) (21)

Opt_Link(a,b) A
Opt_Link(a,c) A| D Opt.Link(a,d) (22)
Join(b, ¢, d)

To illustrate this let’s look at a simple example namely the two input Nand
gate of figure 7. The structure of this can be formally defined as follows:

N_Nand_Imp(4,ip1,p2,0p) =aes 3Ip1 P2 ps.
N_Shell(¢, ps, ps, op) A (23)
N_Tran(ip;,p1,p2) A
N_Tran(ips, p2, ps)

Now by using theorems 18, 19, 20, 21 and 22 we can derive the following two
properties. This states that the output of a two input Nand gate is “well behaved”
and that the output is also “well defined” over a certain interval of time with
reference to the point when ¢; is Hi.

Clock(¢1, ¢y, ¢2, ;) A -
( N_Nandilm;l)(ai,ipzl,ipz,Op) ) > WB op ¢, (24)
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— - Defop t A
Clock(d1, By, 65:32) A Def op (t+1) A
N_NandImp(@y,ips,ipz,0p) A| D | pee (t+2) A (25)
¢1(t) = Hi

Def op (t+3)

So far we have only demonstrated that the output of n-type gates are “well
behaved” and “well defined,” but nothing has been said about the derivation of
the logical behaviour of these gates. For this we need theorems considerably more
complex than those given for Opt_Link. These properties include Link, No_Link
and WB_Link which state under what circumstances a “link” exists across the
two nodes of the cluster of devices inserted in the N_Shell. The line of thought
regarding work on these is very similar to that followed for Opt_Link, so we shall
not deal with them here. However the other two theorems for the two input nand
gate giving its logical behaviour are presented below. They use an abstraction
function Val_Abs which maps the values Hi and Lo to true and false respectively.

C|°Ck(¢1,$1,fz,$z) A
N_Nand_mp(é,,:p1,ip2, 0p) A
¢1(t) = Hi A -
Def ip (t+1) A
Def ip; (t-+1) ‘
(ValAbs op (t+1) = ~ (ValAbs ips (¢+1) A Val-Abs ip, (t+1)))

( Clock(¢1, 61, 62, 6;) A
N_Nand_lmp(¢1,ipnipz,OP) A
WB ip, 31 A
WB ip; ¢, A
¢1(t) = Hi N
Def ipy (t-+1) A
Def ip (t+1) A
Def ipy (142) A
\ Def ip, (t-+2) )
( Val_Abs op (t+2) = ~ (Val-Abs ip; (t+2) A Val Abs ip, (t+2)))

The treatment for p-type logic gates follows exactly the same line of argu-
ment, even to the point where considerable number of the intermediate results are
common to both.

3.6.2 The Latch

This is also known as the C?MOS latch and its structure is shown in figure 11.
This is Formally captured as follows:
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Figure 11: The Latch as used in CLIC

Latch_Imp(@, ,ip,0p) =aes 3po P1 P2 Ps P4 Ps Po.
Gnd(po) A
Vdd(pl) A
N_Tran(sp, po, p2) A
N_Tran(g, pz,pa) A (28)
P_Tran(¢,ps, ps) A
P_Tran(ip, p1,ps) A
Join(ps, ps,ps) A
Caps(pe,Op)

Since this is simply a one off result, the derivation is not important but what is
important is the result so only that is presented. The full behaviour of the Latch
device is summarised in the following three theorems.

(Clock(¢1,$1,¢z,$2) )A) 5 (WB o $1 A) (29)

Latch_Imp(é1, é,,%p, 0p WB op ¢,

Clock($1, 71,62, 8s) A Defop t A

Latch_imp(é1, ¢,,tp,0p) A 5 Def op (t+1) A 30
#1(t) = Hi A Def op (t+2) A (30)
Def ip t Def op (t+3)
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C|°Ck(¢1’-¢—’1’ ¢_2_s $2) A
Latch_Imp(¢1, é,,tp, 0p) A
¢1(t) = Hi A
Def ip ¢ 1)

Val_Abs op t = ~Val Abs tpt A

Val_Abs op (t+1) = ~Val Absipt A

Val Abs op (t+2) = ~Val Absipt A

Val_Abs op (t+3) = ~Val Absipt

>

The first of these captures the fact that the output may drive any of p-type
or n-type gates, even both at the same time. The second theorem states that the
output is “well defined” so the results can be abstracted into the boolean domain
by use of the Val_Abs abstraction function. Finally the third gives the logical
behaviour between the input and the output at the abstract level, 1.e. on the clock
tick the input is inverted and passed to the output where it is held static until the
next clock tick.

3.6.83 The Static Inverter

This is the only device in the entire CLIC design style which does not need one of
the clock lines for it to function correctly. It has only two external ports namely
the input (ip) and output (op) ports and its behaviour could perfectly be defined
without the use of the Clock predicate. However, to enable it to be used in conjunc-
tion with other dynamic CLIC devices, its correctness statement has to be given
in the same form. So we begin by giving the formal definition for the structure of
the gate as follows:

Stat_Inv_Imp(sp,0p) =4y Ipo P1 P2 Ps.
Gnd(po) A
Vdd(p:) A
N_Tran(ip, po, pz) A
P_Tran(ip, p1,ps) A
Join(pz,ps,op)

Now the usual three properties can be derived for this gate. The first one being
that it’s output is “well behaved.”

o (WBipd, D WBopg)
( Clock(¢1, ¢, b2, 6,) A S (WBip¢y D WBop ¢,)
Stat_Inv_Imp(sp, op) (WBipd, D WB op ¢,)
(WBip ¢ DO WBop ¢,)

A
A
A (33)
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Inspecting this theorem reveals that it is in a different form than the others so
far. In fact it is not so different as to not allow logical inferences to be made using
the same techniques. However if it were to be put in the same form as the ones so
far, we would have four different theorems giving rise to the four different clauses.
Remember that the inverter is used to invert the polarity of a gate so that a gate
may drive its own sort, e.g. a p-type gate may drive another p-type gate only if
it is buffered by an inverter. Since there are two different sorts of gates, n-type
and p-type, and two clock phases, the need arises for four very similar theorems,
or one containing all four clauses.

The remaining two theorerms for this device are fairly standard. In fact they are
even simplified a little to take advantage of the fact that this device is not clocked.
The next theorem for instance simply states that “if the input is defined then so
is the output.” The last one gives the logical behaviour of the gate appropriately
abstracted to the boolean level using the Val_Abs predicate.

Stat_Inv_Imp(ip,0p) A
(Def ipt > Defopt (34)
Stat.Inv-Imp(ip, 0p) A) (vl Abs op t = ~Val Abs ip 1) (35)
\ Defipt

3.7 Formalising the CLIC Circuit Design Methodology

So far we have outlined a method for deriving the correctness statement of any
logic gate designed in the CLIC design style. If we are to design real circuits with
these correctness statements, rather than just admire their elegance and still use
the old rules of thumb, then we must provide formal means of doing so. f.e. a
formal method of combining the correctness statements of an arbitrary number of
gates resulting in a new correctness statement for the new circuit.

What the designer is interested in is simply obtaining the logical behaviour of
the system so that he may satisfy himself that the system does what he intended
it to do. So a technique is needed which allows the designer to compose the logical
behaviour component of the specifications and leave the rest of the “checking” to
the system. In our system simple logical inferences would be used to check the
validity of connecting together the output of one gate to the input of an other.
In fact the rule involved is the resolution of the predicates and their arguments
governing the constraints on the inputs of devices, against the predicates and their
arguments governing the properties of the outputs. Work is in hand at present to
automate this process.
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To illustrate the use of this consider the the implementation of a simple logical
AND function with delay. Firstly, in order to get delay we will have to use a
latch since this is the only device in the CLIC design style which allows behaviours
between input and output to be mapped across time giving a controlled unit delay
with respect to the clock. So the solution we shall choose to implement is to drive
the output of an n-type nand gate, such as the one already used in an earlier
example, by a latch. This is illustrated in figure 12, 4

phi2’
|-=-=-\ I\
I \ I\
ip ----1 N >0---moem- |L >0--~-- op
| / I/
|-/ I/
phit’ phi2

Figure 12: A simple CLIC Circuit

The theorems needed for these two devices have already been derived earlier in
this paper, namely theorems 27 and 31, for the nand gate and the latch respectively.
The correctness statement for the nand gate is exactly as needed but that of the
latch needs to be messaged into a form which allows these two to be combined.
Given below are the two theorems for these two devices in their correct form just
before they are to be combined. There are a number of important steps involved
before we get to this state involving a lemma about clock but these are not covered
here. Further details regarding these intermediate steps can be found in [3].

( C'°°‘<(¢1,$1, ¢2’$2) /\\
N_Nand_Imp(@,,ip1,1p2, 0p) A
WB ip; 3, A
WB ip, $1 A
é1(t) = Hi Al o
Def ipy (t4+1) A (36)
Def 1p, (t+1) A
Def ip; (t+2) A
\ Def ip; (t+2) J
( Val_Abs op (t+2) = ~ (Val_Abs ip; (t+2) A Val_Abs ip, (t+2)))
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Clock(¢1, ¢1, $2, 65) A
Latch_lmp(¢2a 52, ip, op) A

¢1(t) = Hi A
Def ip t+2
Val_Abs op (t+
Val_Abs op (t+
Val_Abs op (t+
Val_Abs op (t+

= ~Val Abs ip (+2) A (87)
= ~Val Abs ip (t+2) A

~Val Abs ¢p (t+2) A

~Val_Abs ip (t42)

Now we can combine these two by using Modus Ponens and Conjunction rules
together with theorem 25 which satisfies the input constraint for the latch. The
final result together with hiding the internal line using the existential quantifier

looks like the following:

( CIOCk(¢1’$1$ ¢2’$2)

WB ip; §1

WB ip; ¢,

$1(t) =

Def ip1 (t+1)

Def !:pz (t+1)

Def ip, (t+2)
Def ip, (t+2)

> Val_Abs op (t+2) =

Val_Abs op (t+3) =
Val_Abs op (t+4) =

\ Val_Abs op (t+5) =

Jz. N_Nand_lmp(al,z'pl,ipz,:c) A)/\
Latch_Imp(é2, ¢,, z, 0p)

(Val_Abs tp; (t-+2
(Val_Abs tp; (¢
(Val_Abs ip;
(Val_Abs ip; (¢

A

A

Al D

A

A (38)

A

A

J
+2) A ValAbs ip; (t+2)) A
+2) A Val Abs ip, (t+2)) A
t+2) A ValAbs ip; (t4+2)) A
+2) A Val Abs ip, (t+2)) A

Note that this theorem which gives the combined behaviour of the n-type nand
gate and the latch is in the same form as the correctness statements for the two
devices from which it is built. This particular feature helps our formal approach
of combining CLIC gates together to be expanded to cover circuits of arbitrary
complexity. The correctness statements will increase in size in combining large
and complex circuits but will not change in their inherent structure.
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4 Discussion and Future Work

A full formal presentation has been given for the CLIC design style which we believe
to be suitable for VLSI. In particular a form for the correctness statement of CLIC
gates has been developed which maintains uniformity of specifications across the
many levels of hierarchy of circuit design—from the very simple logic gates to fairly
complex structures using many macro blocks. The use of these formal techniques
have been demonstrated on a simple example which uses many CLIC gates, both
simple and complex. A major case study based on the design of a digital phase-
locked loop is in progress which demonstrates the use of these techniques on large
systems.

Naturally the work presented is only as good as the axioms on which it is
based. Current models used for the primitive devices of integrated circuits are
simplistic, with the view to making the proofs of correctness easier. These models
are not inaccurate, but merely incomplete. They have only the features which are
relevant to the design style; other properties are not modelled. Too simplistic a
model of these devices, however, may allow a failure mode to pass unobserved. So
proofs based on such models become void. More realistic models are needed for
these primitives, together with means of showing that the simple models suffice
in controlled environments. It is hoped that research in this area will support
most of the work done to date using simpler models, by formally showing that the
simpler models are adequate in the environment in which they are used. Some
results in this area are already available [9], where the simulation model used in
[1] is embedded in logic. However this is not yet developed to the point where it
is usable for the dynamic behaviour of circuits.

Acknowledgements

I would like to thank all members of the Cambridge Hardware Verification Group.
In particular Tom Melham and Jeff Joyce who made valuable comments on earlier
drafts of this paper. Special thanks are due to Mike Gordon who provided the nec-
essary stimulus for this work and who was a continuous source of encouragement.
I would also like to thank Dave Orton of Racal Research and Glynn Winskel of
Cambridge University for providing many stimulating discussions in hardware and
formal methods respectively.

28




References

[1]

2]

[3]

[4]

[5]

(6]

7]

Randal Everitt Bryant

“A Switch-Level Simulation Model for Integrated Logic Circuits,” PhD. The-
sis, also available as a Technical Report MIT/LCS/TR-259, Laboratory for
Computer Science, MIT, Massachusetts, March 1981.

A. Camilleri, M. Gordon and T. Melham

“Hardware Verification using Higher-Order Logic,” In: Proceedings of the
IFIP International Conference: From H.D.L. Descriptions to Guaranteed
Correct Circuit Designs, Grenoble, September 9-11, 1986.

I. S. Dhingra
Ph.D. Thesis. Computer Laboratory, University of Cambridge. 1987

Nelson F. Goncalves and Hugo J. De Man

“NORA: A Racefree Dynamic CMOS Technique for Pipelined Logic Struc-
tures,” IEEE Journal of Solid-State Circuits, SC-18 (3), June 1983 pp. 261—
266.

M. J. C. Gordon
“HOL: A Machine Oriented Formulation of Higher-Order Logic,” Technical
Report 68, Computer Laboratory, University of Cambridge, 1985.

M. J. C. Gordon

“Why Higher-Order Logic is a Good Formalism for Specifying and Verifying
Hardware,” In: Formal Aspects of VLSI Design, edited by G. Milne and
P. A. Subrahmanyam, North-Holland, 1986.

R. H. Krambeck, Charles M. Lee and Hung-Fai Stephen Law
“High-Speed Compact Circuits with CMOS,” IEEE Journal of Solid-State
Circuits, SC-17 (3), June 1982 pp. 614-619.

D. W. R. Orton

“Clocked Dynamic Logic for CMOS,” Racal Research Internal Memo of
10th January 1984, Worton Drive, Worton Grange Industrial Est., Read-
ing RG2 OSB, England.

Glynn Winskel

“Models and Logic of MOS Circuits,” in VLSI Specification, Verification and
Synthesis, Ed. G. Birtwistle and P.A. Subrahmanyam, Kluwer 1987. (These
proceedings)

29




