
PERL(1) Perl Programmers Reference Guide PERL(1)

NAME
perl − The Perl 5 language interpreter

SYNOPSIS
perl [−sTtuUWX] [−hv] [−V[:configvar]]

[−cw] [−d[t][:debugger]] [−D[number/list]]
[−pna] [−Fpattern] [−l[octal]] [−0[octal/hexadecimal]]
[−Idir] [−m[−]module] [−M[−]’module...’] [−f] [−C [number/list]]
[−S] [−x[dir]] [−i[extension]]
[[−e|−E] ’command’] [−−] [programfile] [argument]...

For more information on these options, you can run perldoc perlrun.

GETTING HELP
The perldoc program gives you access to all the documentation that comes with Perl. You can get
more documentation, tutorials and community support online at <https://www.perl.org/>.

If you’re new to Perl, you should start by running perldoc perlintro, which is a general intro for
beginners and provides some background to help you navigate the rest of Perl’s extensive
documentation. Run perldoc perldoc to learn more things you can do with perldoc.

For ease of access, the Perl manual has been split up into several sections.

Overview
perl Perl overview (this section)
perlintro Perl introduction for beginners
perlrun Perl execution and options
perltoc Perl documentation table of contents

Tutorials
perlreftut Perl references short introduction
perldsc Perl data structures intro
perllol Perl data structures: arrays of arrays

perlrequick Perl regular expressions quick start
perlretut Perl regular expressions tutorial

perlootut Perl OO tutorial for beginners

perlperf Perl Performance and Optimization Techniques

perlstyle Perl style guide

perlcheat Perl cheat sheet
perltrap Perl traps for the unwary
perldebtut Perl debugging tutorial

perlfaq Perl frequently asked questions
perlfaq1 General Questions About Perl
perlfaq2 Obtaining and Learning about Perl
perlfaq3 Programming Tools
perlfaq4 Data Manipulation
perlfaq5 Files and Formats
perlfaq6 Regexes
perlfaq7 Perl Language Issues
perlfaq8 System Interaction
perlfaq9 Networking

Reference Manual

perl v5.38.2 2025-07-25 1

PERL(1) Perl Programmers Reference Guide PERL(1)

perlsyn Perl syntax
perldata Perl data structures
perlop Perl operators and precedence
perlsub Perl subroutines
perlfunc Perl built−in functions
perlopentut Perl open() tutorial
perlpacktut Perl pack() and unpack() tutorial

perlpod Perl plain old documentation
perlpodspec Perl plain old documentation format specification
perldocstyle Perl style guide for core docs
perlpodstyle Perl POD style guide
perldiag Perl diagnostic messages
perldeprecation Perl deprecations
perllexwarn Perl warnings and their control
perldebug Perl debugging
perlvar Perl predefined variables
perlre Perl regular expressions, the rest of the story
perlrebackslash Perl regular expression backslash sequences
perlrecharclass Perl regular expression character classes
perlreref Perl regular expressions quick reference
perlref Perl references, the rest of the story
perlform Perl formats
perlobj Perl objects
perltie Perl objects hidden behind simple variables
perlclass Perl class syntax
perldbmfilter Perl DBM filters

perlipc Perl interprocess communication
perlfork Perl fork() information
perlnumber Perl number semantics

perlthrtut Perl threads tutorial

perlport Perl portability guide
perllocale Perl locale support
perluniintro Perl Unicode introduction
perlunicode Perl Unicode support
perlunicook Perl Unicode cookbook
perlunifaq Perl Unicode FAQ
perluniprops Index of Unicode properties in Perl
perlunitut Perl Unicode tutorial
perlebcdic Considerations for running Perl on EBCDIC platforms

perlsec Perl security
perlsecpolicy Perl security report handling policy

perlmod Perl modules: how they work
perlmodlib Perl modules: how to write and use
perlmodstyle Perl modules: how to write modules with style
perlmodinstall Perl modules: how to install from CPAN
perlnewmod Perl modules: preparing a new module for distribution
perlpragma Perl modules: writing a user pragma

perlutil utilities packaged with the Perl distribution

perlfilter Perl source filters

perldtrace Perl's support for DTrace

2 2025-07-25 perl v5.38.2

PERL(1) Perl Programmers Reference Guide PERL(1)

perlglossary Perl Glossary

Internals and C Language Interface
perlembed Perl ways to embed perl in your C or C++ application
perldebguts Perl debugging guts and tips
perlxstut Perl XS tutorial
perlxs Perl XS application programming interface
perlxstypemap Perl XS C/Perl type conversion tools
perlclib Internal replacements for standard C library functions
perlguts Perl internal functions for those doing extensions
perlcall Perl calling conventions from C
perlmroapi Perl method resolution plugin interface
perlreapi Perl regular expression plugin interface
perlreguts Perl regular expression engine internals
perlclassguts Internals of class syntax

perlapi Perl API listing (autogenerated)
perlintern Perl internal functions (autogenerated)
perliol C API for Perl's implementation of IO in Layers
perlapio Perl internal IO abstraction interface

perlhack Perl hackers guide
perlsource Guide to the Perl source tree
perlinterp Overview of the Perl interpreter source and how it works
perlhacktut Walk through the creation of a simple C code patch
perlhacktips Tips for Perl core C code hacking
perlpolicy Perl development policies
perlgov Perl Rules of Governance
perlgit Using git with the Perl repository

History
perlhist Perl history records
perldelta Perl changes since previous version
perl5381delta Perl changes in version 5.38.1
perl5380delta Perl changes in version 5.38.0
perl5363delta Perl changes in version 5.36.3
perl5362delta Perl changes in version 5.36.2
perl5361delta Perl changes in version 5.36.1
perl5360delta Perl changes in version 5.36.0
perl5343delta Perl changes in version 5.34.3
perl5342delta Perl changes in version 5.34.2
perl5341delta Perl changes in version 5.34.1
perl5340delta Perl changes in version 5.34.0
perl5321delta Perl changes in version 5.32.1
perl5320delta Perl changes in version 5.32.0
perl5303delta Perl changes in version 5.30.3
perl5302delta Perl changes in version 5.30.2
perl5301delta Perl changes in version 5.30.1
perl5300delta Perl changes in version 5.30.0
perl5283delta Perl changes in version 5.28.3
perl5282delta Perl changes in version 5.28.2
perl5281delta Perl changes in version 5.28.1
perl5280delta Perl changes in version 5.28.0
perl5263delta Perl changes in version 5.26.3
perl5262delta Perl changes in version 5.26.2
perl5261delta Perl changes in version 5.26.1
perl5260delta Perl changes in version 5.26.0
perl5244delta Perl changes in version 5.24.4
perl5243delta Perl changes in version 5.24.3
perl5242delta Perl changes in version 5.24.2

perl v5.38.2 2025-07-25 3

PERL(1) Perl Programmers Reference Guide PERL(1)

perl5241delta Perl changes in version 5.24.1
perl5240delta Perl changes in version 5.24.0
perl5224delta Perl changes in version 5.22.4
perl5223delta Perl changes in version 5.22.3
perl5222delta Perl changes in version 5.22.2
perl5221delta Perl changes in version 5.22.1
perl5220delta Perl changes in version 5.22.0
perl5203delta Perl changes in version 5.20.3
perl5202delta Perl changes in version 5.20.2
perl5201delta Perl changes in version 5.20.1
perl5200delta Perl changes in version 5.20.0
perl5184delta Perl changes in version 5.18.4
perl5182delta Perl changes in version 5.18.2
perl5181delta Perl changes in version 5.18.1
perl5180delta Perl changes in version 5.18.0
perl5163delta Perl changes in version 5.16.3
perl5162delta Perl changes in version 5.16.2
perl5161delta Perl changes in version 5.16.1
perl5160delta Perl changes in version 5.16.0
perl5144delta Perl changes in version 5.14.4
perl5143delta Perl changes in version 5.14.3
perl5142delta Perl changes in version 5.14.2
perl5141delta Perl changes in version 5.14.1
perl5140delta Perl changes in version 5.14.0
perl5125delta Perl changes in version 5.12.5
perl5124delta Perl changes in version 5.12.4
perl5123delta Perl changes in version 5.12.3
perl5122delta Perl changes in version 5.12.2
perl5121delta Perl changes in version 5.12.1
perl5120delta Perl changes in version 5.12.0
perl5101delta Perl changes in version 5.10.1
perl5100delta Perl changes in version 5.10.0
perl589delta Perl changes in version 5.8.9
perl588delta Perl changes in version 5.8.8
perl587delta Perl changes in version 5.8.7
perl586delta Perl changes in version 5.8.6
perl585delta Perl changes in version 5.8.5
perl584delta Perl changes in version 5.8.4
perl583delta Perl changes in version 5.8.3
perl582delta Perl changes in version 5.8.2
perl581delta Perl changes in version 5.8.1
perl58delta Perl changes in version 5.8.0
perl561delta Perl changes in version 5.6.1
perl56delta Perl changes in version 5.6
perl5005delta Perl changes in version 5.005
perl5004delta Perl changes in version 5.004

Miscellaneous
perlbook Perl book information
perlcommunity Perl community information

perldoc Look up Perl documentation in Pod format

perlexperiment A listing of experimental features in Perl

perlartistic Perl Artistic License
perlgpl GNU General Public License

4 2025-07-25 perl v5.38.2

PERL(1) Perl Programmers Reference Guide PERL(1)

Language-Specific
perlcn Perl for Simplified Chinese (in UTF−8)
perljp Perl for Japanese (in EUC−JP)
perlko Perl for Korean (in EUC−KR)
perltw Perl for Traditional Chinese (in Big5)

Platform-Specific
perlaix Perl notes for AIX
perlamiga Perl notes for AmigaOS
perlandroid Perl notes for Android
perlbs2000 Perl notes for POSIX−BC BS2000
perlcygwin Perl notes for Cygwin
perlfreebsd Perl notes for FreeBSD
perlhaiku Perl notes for Haiku
perlhpux Perl notes for HP−UX
perlhurd Perl notes for Hurd
perlirix Perl notes for Irix
perllinux Perl notes for Linux
perlmacosx Perl notes for Mac OS X
perlopenbsd Perl notes for OpenBSD
perlos2 Perl notes for OS/2
perlos390 Perl notes for OS/390
perlos400 Perl notes for OS/400
perlplan9 Perl notes for Plan 9
perlqnx Perl notes for QNX
perlriscos Perl notes for RISC OS
perlsolaris Perl notes for Solaris
perlsynology Perl notes for Synology
perltru64 Perl notes for Tru64
perlvms Perl notes for VMS
perlvos Perl notes for Stratus VOS
perlwin32 Perl notes for Windows

Stubs for Deleted Documents
perlboot
perlbot
perlrepository
perltodo
perltooc
perltoot

On Debian systems, you need to install the perl-doc package which contains the majority of the
standard Perl documentation and the perldoc program.

Extensive additional documentation for Perl modules is available, both those distributed with Perl and
third-party modules which are packaged or locally installed.

You should be able to view Perl’s documentation with your man (1) program or perldoc (1).

Some documentation is not available as man pages, so if a cross-reference is not found by man, try it
with perldoc. Perldoc can also take you directly to documentation for functions (with the −f switch).
See perldoc −−help (or perldoc perldoc or man perldoc) for other helpful options
perldoc has to offer.

In general, if something strange has gone wrong with your program and you’re not sure where you
should look for help, try making your code comply with use strict and use warnings. These will often
point out exactly where the trouble is.

DESCRIPTION
Perl officially stands for Practical Extraction and Report Language, except when it doesn’t.

Perl was originally a language optimized for scanning arbitrary text files, extracting information from
those text files, and printing reports based on that information. It quickly became a good language for
many system management tasks. Over the years, Perl has grown into a general-purpose programming

perl v5.38.2 2025-07-25 5

PERL(1) Perl Programmers Reference Guide PERL(1)

language. It’s widely used for everything from quick "one-liners" to full-scale application development.

The language is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny,
elegant, minimal). It combines (in the author’s opinion, anyway) some of the best features of sed, awk,
and sh, making it familiar and easy to use for Unix users to whip up quick solutions to annoying
problems. Its general-purpose programming facilities support procedural, functional, and object-
oriented programming paradigms, making Perl a comfortable language for the long haul on major
projects, whatever your bent.

Perl’s roots in text processing haven’t been forgotten over the years. It still boasts some of the most
powerful regular expressions to be found anywhere, and its support for Unicode text is world-class. It
handles all kinds of structured text, too, through an extensive collection of extensions. Those libraries,
collected in the CPAN, provide ready-made solutions to an astounding array of problems. When they
haven’t set the standard themselves, they steal from the best −− just like Perl itself.

AV AILABILITY
Perl is available for most operating systems, including virtually all Unix-like platforms. See
"Supported Platforms" in perlport for a listing.

ENVIRONMENT
See "ENVIRONMENT" in perlrun.

AUTHOR
Larry Wall <larry@wall.org>, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to others who wish to advocate the use of
Perl in their applications, or if you wish to simply express your gratitude to Larry and the Perl
developers, please write to perl−thanks@perl.org .

FILES
"@INC" locations of perl libraries

"@INC" above is a reference to the built-in variable of the same name; see perlvar for more
information.

SEE ALSO
https://www.perl.org/ the Perl homepage
https://www.perl.com/ Perl articles
https://www.cpan.org/ the Comprehensive Perl Archive
https://www.pm.org/ the Perl Mongers

DIAGNOSTICS
Using the use strict pragma ensures that all variables are properly declared and prevents other
misuses of legacy Perl features. These are enabled by default within the scope of use v5.12 (or
higher).

The use warnings pragma produces some lovely diagnostics. It is enabled by default when you
say use v5.35 (or higher). One can also use the −w flag, but its use is normally discouraged,
because it gets applied to all executed Perl code, including that not under your control.

See perldiag for explanations of all Perl’s diagnostics. The use diagnostics pragma
automatically turns Perl’s normally terse warnings and errors into these longer forms.

Compilation errors will tell you the line number of the error, with an indication of the next token or
token type that was to be examined. (In a script passed to Perl via −e switches, each −e is counted as
one line.)

Setuid scripts have additional constraints that can produce error messages such as "Insecure
dependency". See perlsec.

Did we mention that you should definitely consider using the use warnings pragma?

BUGS
The behavior implied by the use warnings pragma is not mandatory.

Perl is at the mercy of your machine’s definitions of various operations such as type casting, atof(), and
floating-point output with sprintf().

If your stdio requires a seek or eof between reads and writes on a particular stream, so does Perl. (This

6 2025-07-25 perl v5.38.2

PERL(1) Perl Programmers Reference Guide PERL(1)

doesn’t apply to sysread() and syswrite().)

While none of the built-in data types have any arbitrary size limits (apart from memory size), there are
still a few arbitrary limits: a giv en variable name may not be longer than 251 characters. Line numbers
displayed by diagnostics are internally stored as short integers, so they are limited to a maximum of
65535 (higher numbers usually being affected by wraparound).

You may submit your bug reports (be sure to include full configuration information as output by the
myconfig program in the perl source tree, or by perl −V) to <https://github.com/Perl/perl5/issues>.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don’t tell anyone I said that.

NOTES
The Perl motto is "There’s more than one way to do it." Divining how many more is left as an exercise
to the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel
Book for why.

perl v5.38.2 2025-07-25 7

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

NAME
perlsyn − Perl syntax

DESCRIPTION
A Perl program consists of a sequence of declarations and statements which run from the top to the
bottom. Loops, subroutines, and other control structures allow you to jump around within the code.

Perl is a free-form language: you can format and indent it however you like. Whitespace serves mostly
to separate tokens, unlike languages like Python where it is an important part of the syntax, or Fortran
where it is immaterial.

Many of Perl’s syntactic elements are optional. Rather than requiring you to put parentheses around
ev ery function call and declare every variable, you can often leave such explicit elements off and Perl
will figure out what you meant. This is known as Do What I Mean, abbreviated DWIM. It allows
programmers to be lazy and to code in a style with which they are comfortable.

Perl borrows syntax and concepts from many languages: awk, sed, C, Bourne Shell, Smalltalk, Lisp
and even English. Other languages have borrowed syntax from Perl, particularly its regular expression
extensions. So if you have programmed in another language you will see familiar pieces in Perl. They
often work the same, but see perltrap for information about how they differ.

Declarations
The only things you need to declare in Perl are report formats and subroutines (and sometimes not even
subroutines). A scalar variable holds the undefined value (undef) until it has been assigned a defined
value, which is anything other than undef. When used as a number, undef is treated as 0; when
used as a string, it is treated as the empty string, ""; and when used as a reference that isn’t being
assigned to, it is treated as an error. If you enable warnings, you’ll be notified of an uninitialized value
whenever you treat undef as a string or a number. Well, usually. Boolean contexts, such as:

if ($a) {}

are exempt from warnings (because they care about truth rather than definedness). Operators such as
++, −−, +=, −=, and .=, that operate on undefined variables such as:

undef $a;
$a++;

are also always exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect on the execution of the primary
sequence of statements: declarations all take effect at compile time. All declarations are typically put
at the beginning or the end of the script. However, if you’re using lexically-scoped private variables
created with my(), state(), or our(), you’ll have to make sure your format or subroutine
definition is within the same block scope as the my if you expect to be able to access those private
variables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from that point
forward in the program. You can declare a subroutine without defining it by saying sub name, thus:

sub myname;
$me = myname $0 or die "can't get myname";

A bare declaration like that declares the function to be a list operator, not a unary operator, so you have
to be careful to use parentheses (or or instead of ||.) The || operator binds too tightly to use after
list operators; it becomes part of the last element. You can always use parentheses around the list
operators arguments to turn the list operator back into something that behaves more like a function call.
Alternatively, you can use the prototype ($) to turn the subroutine into a unary operator:

sub myname ($);
$me = myname $0 || die "can't get myname";

That now parses as you’d expect, but you still ought to get in the habit of using parentheses in that
situation. For more on prototypes, see perlsub.

Subroutines declarations can also be loaded up with the require statement or both loaded and
imported into your namespace with a use statement. See perlmod for details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart from declaring
a variable name, the declaration acts like an ordinary statement, and is elaborated within the sequence

8 2025-07-25 perl v5.38.2

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

of statements as if it were an ordinary statement. That means it actually has both compile-time and
run-time effects.

Comments
Te xt from a "#" character until the end of the line is a comment, and is ignored. Exceptions include
"#" inside a string or regular expression.

Simple Statements
The only kind of simple statement is an expression evaluated for its side-effects. Every simple
statement must be terminated with a semicolon, unless it is the final statement in a block, in which case
the semicolon is optional. But put the semicolon in anyway if the block takes up more than one line,
because you may eventually add another line. Note that there are operators like eval {}, sub {},
and do {} that look like compound statements, but aren’t−−they’re just TERMs in an
expression−−and thus need an explicit termination when used as the last item in a statement.

Statement Modifiers
Any simple statement may optionally be followed by a SINGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR
for LIST
foreach LIST
when EXPR

The EXPR following the modifier is referred to as the "condition". Its truth or falsehood determines
how the modifier will behave.

if executes the statement once if and only if the condition is true. unless is the opposite, it executes
the statement unless the condition is true (that is, if the condition is false). See "Scalar values" in
perldata for definitions of true and false.

print "Basset hounds got long ears" if length $ear >= 10;
go_outside() and play() unless $is_raining;

The for(each) modifier is an iterator: it executes the statement once for each item in the LIST (with
$_ aliased to each item in turn). There is no syntax to specify a C−style for loop or a lexically scoped
iteration variable in this form.

print "Hello $_!\n" for qw(world Dolly nurse);

while repeats the statement while the condition is true. Postfix while has the same magic treatment
of some kinds of condition that prefix while has. until does the opposite, it repeats the statement
until the condition is true (or while the condition is false):

Both of these count from 0 to 10.
print $i++ while $i <= 10;
print $j++ until $j > 10;

The while and until modifiers have the usual "while loop" semantics (conditional evaluated first),
except when applied to a do−BLOCK (or to the Perl4 do−SUBROUTINE statement), in which case
the block executes once before the conditional is evaluated.

This is so that you can write loops like:

do {
$line = <STDIN>;
...

} until !defined($line) || $line eq ".\n"

See "do" in perlfunc. Note also that the loop control statements described later will NOT work in this
construct, because modifiers don’t take loop labels. Sorry. You can always put another block inside of
it (for next/redo) or around it (for last) to do that sort of thing.

For next or redo, just double the braces:

perl v5.38.2 2025-07-25 9

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

do {{
next if $x == $y;
do something here

}} until $x++ > $z;

For last, you have to be more elaborate and put braces around it:

{
do {

last if $x == $y**2;
do something here

} while $x++ <= $z;
}

If you need both next and last, you have to do both and also use a loop label:

LOOP: {
do {{

next if $x == $y;
last LOOP if $x == $y**2;
do something here

}} until $x++ > $z;
}

NOTE: The behaviour of a my, state, or our modified with a statement modifier conditional or loop
construct (for example, my $x if ...) is undefined. The value of the my variable may be undef,
any previously assigned value, or possibly anything else. Don’t rely on it. Future versions of perl
might do something different from the version of perl you try it out on. Here be dragons.

The when modifier is an experimental feature that first appeared in Perl 5.14. To use it, you should
include a use v5.14 declaration. (Technically, it requires only the switch feature, but that aspect
of it was not available before 5.14.) Operative only from within a foreach loop or a given block, it
executes the statement only if the smartmatch $_ ˜˜ EXPR is true. If the statement executes, it is
followed by a next from inside a foreach and break from inside a given.

Under the current implementation, the foreach loop can be anywhere within the when modifier’s
dynamic scope, but must be within the given block’s lexical scope. This restriction may be relaxed in
a future release. See "Switch Statements" below.

Compound Statements
In Perl, a sequence of statements that defines a scope is called a block. Sometimes a block is delimited
by the file containing it (in the case of a required file, or the program as a whole), and sometimes a
block is delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces. We will call this syntactic
construct a BLOCK. Because enclosing braces are also the syntax for hash reference constructor
expressions (see perlref), you may occasionally need to disambiguate by placing a ; immediately after
an opening brace so that Perl realises the brace is the start of a block. You will more frequently need to
disambiguate the other way, by placing a + immediately before an opening brace to force it to be
interpreted as a hash reference constructor expression. It is considered good style to use these
disambiguating mechanisms liberally, not only when Perl would otherwise guess incorrectly.

The following compound statements may be used to control flow:

if (EXPR) BLOCK
if (EXPR) BLOCK else BLOCK
if (EXPR) BLOCK elsif (EXPR) BLOCK ...
if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

unless (EXPR) BLOCK
unless (EXPR) BLOCK else BLOCK
unless (EXPR) BLOCK elsif (EXPR) BLOCK ...
unless (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

given (EXPR) BLOCK

10 2025-07-25 perl v5.38.2

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

LABEL while (EXPR) BLOCK
LABEL while (EXPR) BLOCK continue BLOCK

LABEL until (EXPR) BLOCK
LABEL until (EXPR) BLOCK continue BLOCK

LABEL for (EXPR; EXPR; EXPR) BLOCK
LABEL for VAR (LIST) BLOCK
LABEL for VAR (LIST) BLOCK continue BLOCK

LABEL foreach (EXPR; EXPR; EXPR) BLOCK
LABEL foreach VAR (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK continue BLOCK

LABEL BLOCK
LABEL BLOCK continue BLOCK

PHASE BLOCK

As of Perl 5.36, you can iterate over multiple values at a time by specifying a list of lexicals within
parentheses:

no warnings "experimental::for_list";
LABEL for my (VAR, VAR) (LIST) BLOCK
LABEL for my (VAR, VAR) (LIST) BLOCK continue BLOCK
LABEL foreach my (VAR, VAR) (LIST) BLOCK
LABEL foreach my (VAR, VAR) (LIST) BLOCK continue BLOCK

If enabled by the experimental try feature, the following may also be used

try BLOCK catch (VAR) BLOCK
try BLOCK catch (VAR) BLOCK finally BLOCK

The experimental given statement is not automatically enabled; see "Switch Statements" below for
how to do so, and the attendant caveats.

Unlike in C and Pascal, in Perl these are all defined in terms of BLOCKs, not statements. This means
that the curly brackets are required−−no dangling statements allowed. If you want to write conditionals
without curly brackets, there are several other ways to do it. The following all do the same thing:

if (!open(FOO)) { die "Can't open $FOO: $!" }
die "Can't open $FOO: $!" unless open(FOO);
open(FOO) || die "Can't open $FOO: $!";
open(FOO) ? () : die "Can't open $FOO: $!";

a bit exotic, that last one

The if statement is straightforward. Because BLOCKs are always bounded by curly brackets, there is
never any ambiguity about which if an else goes with. If you use unless in place of if, the sense
of the test is reversed. Like if, unless can be followed by else. unless can even be followed by
one or more elsif statements, though you may want to think twice before using that particular
language construct, as everyone reading your code will have to think at least twice before they can
understand what’s going on.

The while statement executes the block as long as the expression is true. The until statement
executes the block as long as the expression is false. The LABEL is optional, and if present, consists of
an identifier followed by a colon. The LABEL identifies the loop for the loop control statements
next, last, and redo. If the LABEL is omitted, the loop control statement refers to the innermost
enclosing loop. This may include dynamically searching through your call-stack at run time to find the
LABEL. Such desperate behavior triggers a warning if you use the use warnings pragma or the
−w flag.

If the condition expression of a while statement is based on any of a group of iterative expression
types then it gets some magic treatment. The affected iterative expression types are readline, the
<FILEHANDLE> input operator, readdir, glob, the <PATTERN> globbing operator, and each. If

perl v5.38.2 2025-07-25 11

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

the condition expression is one of these expression types, then the value yielded by the iterative
operator will be implicitly assigned to $_. If the condition expression is one of these expression types
or an explicit assignment of one of them to a scalar, then the condition actually tests for definedness of
the expression’s value, not for its regular truth value.

If there is a continue BLOCK, it is always executed just before the conditional is about to be
evaluated again. Thus it can be used to increment a loop variable, even when the loop has been
continued via the next statement.

When a block is preceded by a compilation phase keyword such as BEGIN, END, INIT, CHECK, or
UNITCHECK, then the block will run only during the corresponding phase of execution. See perlmod
for more details.

Extension modules can also hook into the Perl parser to define new kinds of compound statements.
These are introduced by a keyword which the extension recognizes, and the syntax following the
keyword is defined entirely by the extension. If you are an implementor, see "PL_keyword_plugin" in
perlapi for the mechanism. If you are using such a module, see the module’s documentation for details
of the syntax that it defines.

Loop Control
The next command starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /ˆ#/; # discard comments
...

}

The last command immediately exits the loop in question. The continue block, if any, is not
executed:

LINE: while (<STDIN>) {
last LINE if /ˆ$/; # exit when done with header
...

}

The redo command restarts the loop block without evaluating the conditional again. The continue
block, if any, is not executed. This command is normally used by programs that want to lie to
themselves about what was just input.

For example, when processing a file like /etc/termcap. If your input lines might end in backslashes to
indicate continuation, you want to skip ahead and get the next record.

while (<>) {
chomp;
if (s/\\$//) {

$_ .= <>;
redo unless eof();

}
now process $_

}

which is Perl shorthand for the more explicitly written version:

LINE: while (defined($line = <ARGV>)) {
chomp($line);
if ($line =˜ s/\\$//) {

$line .= <ARGV>;
redo LINE unless eof(); # not eof(ARGV)!

}
now process $line

}

Note that if there were a continue block on the above code, it would get executed only on lines
discarded by the regex (since redo skips the continue block). A continue block is often used to reset
line counters or m?pat? one-time matches:

12 2025-07-25 perl v5.38.2

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

inspired by :1,$g/fred/s//WILMA/
while (<>) {

m?(fred)? && s//WILMA $1 WILMA/;
m?(barney)? && s//BETTY $1 BETTY/;
m?(homer)? && s//MARGE $1 MARGE/;

} continue {
print "$ARGV $.: $_";
close ARGV if eof; # reset $.
reset if eof; # reset ?pat?

}

If the word while is replaced by the word until, the sense of the test is reversed, but the conditional
is still tested before the first iteration.

Loop control statements don’t work in an if or unless, since they aren’t loops. You can double the
braces to make them such, though.

if (/pattern/) {{
last if /fred/;
next if /barney/; # same effect as "last",

but doesn't document as well
do something here

}}

This is caused by the fact that a block by itself acts as a loop that executes once, see "Basic BLOCKs".

The form while/if BLOCK BLOCK, available in Perl 4, is no longer available. Replace any
occurrence of if BLOCK by if (do BLOCK).

For Loops
Perl’s C−style for loop works like the corresponding while loop; that means that this:

for ($i = 1; $i < 10; $i++) {
...

}

is the same as this:

$i = 1;
while ($i < 10) {

...
} continue {

$i++;
}

There is one minor difference: if variables are declared with my in the initialization section of the for,
the lexical scope of those variables is exactly the for loop (the body of the loop and the control
sections). To illustrate:

my $i = 'samba';
for (my $i = 1; $i <= 4; $i++) {

print "$i\n";
}
print "$i\n";

when executed, gives:

1
2
3
4
samba

As a special case, if the test in the for loop (or the corresponding while loop) is empty, it is treated
as true. That is, both

perl v5.38.2 2025-07-25 13

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

for (;;) {
...

}

and

while () {
...

}

are treated as infinite loops.

Besides the normal array index looping, for can lend itself to many other interesting applications.
Here’s one that avoids the problem you get into if you explicitly test for end-of-file on an interactive file
descriptor causing your program to appear to hang.

$on_a_tty = −t STDIN && −t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {

do something
}

The condition expression of a for loop gets the same magic treatment of readline et al that the
condition expression of a while loop gets.

Foreach Loops
The foreach loop iterates over a normal list value and sets the scalar variable VAR to be each
element of the list in turn. If the variable is preceded with the keyword my, then it is lexically scoped,
and is therefore visible only within the loop. Otherwise, the variable is implicitly local to the loop and
regains its former value upon exiting the loop. If the variable was previously declared with my, it uses
that variable instead of the global one, but it’s still localized to the loop. This implicit localization
occurs only for non C−style loops.

The foreach keyword is actually a synonym for the for keyword, so you can use either. If VAR is
omitted, $_ is set to each value.

If any element of LIST is an lvalue, you can modify it by modifying VAR inside the loop. Conversely,
if any element of LIST is NOT an lvalue, any attempt to modify that element will fail. In other words,
the foreach loop index variable is an implicit alias for each item in the list that you’re looping over.

If any part of LIST is an array, foreach will get very confused if you add or remove elements within
the loop body, for example with splice. So don’t do that.

foreach probably won’t do what you expect if VAR is a tied or other special variable. Don’t do that
either.

As of Perl 5.22, there is an experimental variant of this loop that accepts a variable preceded by a
backslash for VAR, in which case the items in the LIST must be references. The backslashed variable
will become an alias to each referenced item in the LIST, which must be of the correct type. The
variable needn’t be a scalar in this case, and the backslash may be followed by my. To use this form,
you must enable the refaliasing feature via use feature. (See feature. See also "Assigning
to References" in perlref.)

As of Perl 5.36, you can iterate over multiple values at a time. You can only iterate with lexical scalars
as the iterator variables − unlike list assignment, it’s not possible to use undef to signify a value that
isn’t wanted. This is a limitation of the current implementation, and might be changed in the future.

If the size of the LIST is not an exact multiple of the number of iterator variables, then on the last
iteration the "excess" iterator variables are aliases to undef, as if the LIST had , undef appended as
many times as needed for its length to become an exact multiple. This happens whether LIST is a
literal LIST or an array − ie arrays are not extended if their size is not a multiple of the iteration size,
consistent with iterating an array one-at-a-time. As these padding elements are not lvalues, attempting
to modify them will fail, consistent with the behaviour when iterating a list with literal undefs. If this
is not the behaviour you desire, then before the loop starts either explicitly extend your array to be an
exact multiple, or explicitly throw an exception.

Examples:

14 2025-07-25 perl v5.38.2

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

for (@ary) { s/foo/bar/ }

for my $elem (@elements) {
$elem *= 2;

}

for $count (reverse(1..10), "BOOM") {
print $count, "\n";
sleep(1);

}

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:[\\\n:]*/, $ENV{TERMCAP})) {
print "Item: $item\n";

}

use feature "refaliasing";
no warnings "experimental::refaliasing";
foreach \my %hash (@array_of_hash_references) {

do something with each %hash
}

foreach my ($foo, $bar, $baz) (@list) {
do something three−at−a−time

}

foreach my ($key, $value) (%hash) {
iterate over the hash
The hash is immediately copied to a flat list before the loop
starts. The list contains copies of keys but aliases of values.
This is the same behaviour as for $var (%hash) {...}

}

Here’s how a C programmer might code up a particular algorithm in Perl:

for (my $i = 0; $i < @ary1; $i++) {
for (my $j = 0; $j < @ary2; $j++) {

if ($ary1[$i] > $ary2[$j]) {
last; # can't go to outer :−(

}
$ary1[$i] += $ary2[$j];

}
this is where that last takes me

}

Whereas here’s how a Perl programmer more comfortable with the idiom might do it:

OUTER: for my $wid (@ary1) {
INNER: for my $jet (@ary2) {

next OUTER if $wid > $jet;
$wid += $jet;

}
}

See how much easier this is? It’s cleaner, safer, and faster. It’s cleaner because it’s less noisy. It’s safer
because if code gets added between the inner and outer loops later on, the new code won’t be
accidentally executed. The next explicitly iterates the other loop rather than merely terminating the
inner one. And it’s faster because Perl executes a foreach statement more rapidly than it would the
equivalent C−style for loop.

Perceptive Perl hackers may have noticed that a for loop has a return value, and that this value can be

perl v5.38.2 2025-07-25 15

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

captured by wrapping the loop in a do block. The reward for this discovery is this cautionary advice:
The return value of a for loop is unspecified and may change without notice. Do not rely on it.

Try Catch Exception Handling
The try/catch syntax provides control flow relating to exception handling. The try keyword
introduces a block which will be executed when it is encountered, and the catch block provides code
to handle any exception that may be thrown by the first.

try {
my $x = call_a_function();
$x < 100 or die "Too big";
send_output($x);

}
catch ($e) {

warn "Unable to output a value; $e";
}
print "Finished\n";

Here, the body of the catch block (i.e. the warn statement) will be executed if the initial block
invokes the conditional die, or if either of the functions it invokes throws an uncaught exception. The
catch block can inspect the $e lexical variable in this case to see what the exception was. If no
exception was thrown then the catch block does not happen. In either case, execution will then
continue from the following statement − in this example the print.

The catch keyword must be immediately followed by a variable declaration in parentheses, which
introduces a new variable visible to the body of the subsequent block. Inside the block this variable will
contain the exception value that was thrown by the code in the try block. It is not necessary to use the
my keyword to declare this variable; this is implied (similar as it is for subroutine signatures).

Both the try and the catch blocks are permitted to contain control-flow expressions, such as
return, goto, or next/last/redo. In all cases they behave as expected without warnings. In
particular, a return expression inside the try block will make its entire containing function return −
this is in contrast to its behaviour inside an eval block, where it would only make that block return.

Like other control-flow syntax, try and catch will yield the last evaluated value when placed as the
final statement in a function or a do block. This permits the syntax to be used to create a value. In this
case remember not to use the return expression, or that will cause the containing function to return.

my $value = do {
try {

get_thing(@args);
}
catch ($e) {

warn "Unable to get thing − $e";
$DEFAULT_THING;

}
};

As with other control-flow syntax, try blocks are not visible to caller() (just as for example,
while or foreach loops are not). Successive lev els of the caller result can see subroutine calls
and eval blocks, because those affect the way that return would work. Since try blocks do not
intercept return, they are not of interest to caller.

The try and catch blocks may optionally be followed by a third block introduced by the finally
keyword. This third block is executed after the rest of the construct has finished.

16 2025-07-25 perl v5.38.2

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

try {
call_a_function();

}
catch ($e) {

warn "Unable to call; $e";
}
finally {

print "Finished\n";
}

The finally block is equivalent to using a defer block and will be invoked in the same situations;
whether the try block completes successfully, throws an exception, or transfers control elsewhere by
using return, a loop control, or goto.

Unlike the try and catch blocks, a finally block is not permitted to return, goto or use any
loop controls. The final expression value is ignored, and does not affect the return value of the
containing function even if it is placed last in the function.

This syntax is currently experimental and must be enabled with use feature 'try'. It emits a
warning in the experimental::try category.

Basic BLOCKs
A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes once. Thus you
can use any of the loop control statements in it to leave or restart the block. (Note that this is NOT true
in eval{}, sub{}, or contrary to popular belief do{} blocks, which do NOT count as loops.) The
continue block is optional.

The BLOCK construct can be used to emulate case structures.

SWITCH: {
if (/ˆabc/) { $abc = 1; last SWITCH; }
if (/ˆdef/) { $def = 1; last SWITCH; }
if (/ˆxyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

}

You’ll also find that foreach loop used to create a topicalizer and a switch:

SWITCH:
for ($var) {

if (/ˆabc/) { $abc = 1; last SWITCH; }
if (/ˆdef/) { $def = 1; last SWITCH; }
if (/ˆxyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

}

Such constructs are quite frequently used, both because older versions of Perl had no official switch
statement, and also because the new version described immediately below remains experimental and
can sometimes be confusing.

defer blocks
A block prefixed by the defer modifier provides a section of code which runs at a later time during
scope exit.

A defer block can appear at any point where a regular block or other statement is permitted. If the
flow of execution reaches this statement, the body of the block is stored for later, but not invoked
immediately. When the flow of control leaves the containing block for any reason, this stored block is
executed on the way past. It provides a means of deferring execution until a later time. This acts
similarly to syntax provided by some other languages, often using keywords named try /
finally.

This syntax is available if enabled by the defer named feature, and is currently experimental. If
experimental warnings are enabled it will emit a warning when used.

use feature 'defer';

perl v5.38.2 2025-07-25 17

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

{
say "This happens first";
defer { say "This happens last"; }

say "And this happens inbetween";
}

If multiple defer blocks are contained in a single scope, they are executed in LIFO order; the last one
reached is the first one executed.

The code stored by the defer block will be invoked when control leaves its containing block due to
regular fallthrough, explicit return, exceptions thrown by die or propagated by functions called by
it, goto, or any of the loop control statements next, last or redo.

If the flow of control does not reach the defer statement itself then its body is not stored for later
execution. (This is in direct contrast to the code provided by an END phaser block, which is always
enqueued by the compiler, reg ardless of whether execution ever reached the line it was given on.)

use feature 'defer';

{
defer { say "This will run"; }
return;
defer { say "This will not"; }

}

Exceptions thrown by code inside a defer block will propagate to the caller in the same way as any
other exception thrown by normal code.

If the defer block is being executed due to a thrown exception and throws another one it is not
specified what happens, beyond that the caller will definitely receive an exception.

Besides throwing an exception, a defer block is not permitted to otherwise alter the control flow of its
surrounding code. In particular, it may not cause its containing function to return, nor may it goto a
label, or control a containing loop using next, last or redo. These constructions are however,
permitted entirely within the body of the defer.

use feature 'defer';

{
defer {

foreach (1 .. 5) {
last if $_ == 3; # this is permitted

}
}

}

{
foreach (6 .. 10) {

defer {
last if $_ == 8; # this is not

}
}

}

Switch Statements
Starting from Perl 5.10.1 (well, 5.10.0, but it didn’t work right), you can say

use feature "switch";

to enable an experimental switch feature. This is loosely based on an old version of a Raku proposal,
but it no longer resembles the Raku construct. You also get the switch feature whenever you declare
that your code prefers to run under a version of Perl between 5.10 and 5.34. For example:

use v5.14;

18 2025-07-25 perl v5.38.2

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

Under the "switch" feature, Perl gains the experimental keywords given, when, default,
continue, and break. Starting from Perl 5.16, one can prefix the switch keywords with CORE:: to
access the feature without a use feature statement. The keywords given and when are
analogous to switch and case in other languages −− though continue is not −− so the code in the
previous section could be rewritten as

use v5.10.1;
for ($var) {

when (/ˆabc/) { $abc = 1 }
when (/ˆdef/) { $def = 1 }
when (/ˆxyz/) { $xyz = 1 }
default { $nothing = 1 }

}

The foreach is the non-experimental way to set a topicalizer. If you wish to use the highly
experimental given, that could be written like this:

use v5.10.1;
given ($var) {

when (/ˆabc/) { $abc = 1 }
when (/ˆdef/) { $def = 1 }
when (/ˆxyz/) { $xyz = 1 }
default { $nothing = 1 }

}

As of 5.14, that can also be written this way:

use v5.14;
for ($var) {

$abc = 1 when /ˆabc/;
$def = 1 when /ˆdef/;
$xyz = 1 when /ˆxyz/;
default { $nothing = 1 }

}

Or if you don’t care to play it safe, like this:

use v5.14;
given ($var) {

$abc = 1 when /ˆabc/;
$def = 1 when /ˆdef/;
$xyz = 1 when /ˆxyz/;
default { $nothing = 1 }

}

The arguments to given and when are in scalar context, and given assigns the $_ variable its topic
value.

Exactly what the EXPR argument to when does is hard to describe precisely, but in general, it tries to
guess what you want done. Sometimes it is interpreted as $_ ˜˜ EXPR, and sometimes it is not. It
also behaves differently when lexically enclosed by a given block than it does when dynamically
enclosed by a foreach loop. The rules are far too difficult to understand to be described here. See
"Experimental Details on given and when" later on.

Due to an unfortunate bug in how given was implemented between Perl 5.10 and 5.16, under those
implementations the version of $_ governed by given is merely a lexically scoped copy of the
original, not a dynamically scoped alias to the original, as it would be if it were a foreach or under
both the original and the current Raku language specification. This bug was fixed in Perl 5.18 (and
lexicalized $_ itself was removed in Perl 5.24).

If your code still needs to run on older versions, stick to foreach for your topicalizer and you will be
less unhappy.

Goto
Although not for the faint of heart, Perl does support a goto statement. There are three forms:
goto−LABEL, goto−EXPR, and goto−&NAME. A loop’s LABEL is not actually a valid target for

perl v5.38.2 2025-07-25 19

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

a goto; it’s just the name of the loop.

The goto−LABEL form finds the statement labeled with LABEL and resumes execution there. It may
not be used to go into any construct that requires initialization, such as a subroutine or a foreach
loop. It also can’t be used to go into a construct that is optimized away. It can be used to go almost
anywhere else within the dynamic scope, including out of subroutines, but it’s usually better to use
some other construct such as last or die. The author of Perl has never felt the need to use this form
of goto (in Perl, that is−−C is another matter).

The goto−EXPR form expects a label name, whose scope will be resolved dynamically. This allows
for computed gotos per FORTRAN, but isn’t necessarily recommended if you’re optimizing for
maintainability:

goto(("FOO", "BAR", "GLARCH")[$i]);

The goto−&NAME form is highly magical, and substitutes a call to the named subroutine for the
currently running subroutine. This is used by AUTOLOAD() subroutines that wish to load another
subroutine and then pretend that the other subroutine had been called in the first place (except that any
modifications to @_ in the current subroutine are propagated to the other subroutine.) After the goto,
not even caller() will be able to tell that this routine was called first.

In almost all cases like this, it’s usually a far, far better idea to use the structured control flow
mechanisms of next, last, or redo instead of resorting to a goto. For certain applications, the
catch and throw pair of eval{} and die() for exception processing can also be a prudent approach.

The Ellipsis Statement
Beginning in Perl 5.12, Perl accepts an ellipsis, "...", as a placeholder for code that you haven’t
implemented yet. When Perl 5.12 or later encounters an ellipsis statement, it parses this without error,
but if and when you should actually try to execute it, Perl throws an exception with the text
Unimplemented:

use v5.12;
sub unimplemented { ... }
eval { unimplemented() };
if ($@ =˜ /ˆUnimplemented at /) {

say "I found an ellipsis!";
}

You can only use the elliptical statement to stand in for a complete statement. Syntactically, "...;" is
a complete statement, but, as with other kinds of semicolon-terminated statement, the semicolon may
be omitted if "..." appears immediately before a closing brace. These examples show how the
ellipsis works:

use v5.12;
{ ... }
sub foo { ... }
...;
eval { ... };
sub somemeth {

my $self = shift;
...;

}
$x = do {

my $n;
...;
say "Hurrah!";
$n;

};

The elliptical statement cannot stand in for an expression that is part of a larger statement. These
examples of attempts to use an ellipsis are syntax errors:

use v5.12;

print ...;

20 2025-07-25 perl v5.38.2

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

open(my $fh, ">", "/dev/passwd") or ...;
if ($condition && ...) { say "Howdy" };
... if $a > $b;
say "Cromulent" if ...;
$flub = 5 + ...;

There are some cases where Perl can’t immediately tell the difference between an expression and a
statement. For instance, the syntax for a block and an anonymous hash reference constructor look the
same unless there’s something in the braces to give Perl a hint. The ellipsis is a syntax error if Perl
doesn’t guess that the { ... } is a block. Inside your block, you can use a ; before the ellipsis to
denote that the { ... } is a block and not a hash reference constructor.

Note: Some folks colloquially refer to this bit of punctuation as a "yada-yada" or "triple-dot", but its
true name is actually an ellipsis.

PODs: Embedded Documentation
Perl has a mechanism for intermixing documentation with source code. While it’s expecting the
beginning of a new statement, if the compiler encounters a line that begins with an equal sign and a
word, like this

=head1 Here There Be Pods!

Then that text and all remaining text up through and including a line beginning with =cut will be
ignored. The format of the intervening text is described in perlpod.

This allows you to intermix your source code and your documentation text freely, as in

=item snazzle($)

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut back to the compiler, nuff of this pod stuff!

sub snazzle($) {
my $thingie = shift;
.........

}

Note that pod translators should look at only paragraphs beginning with a pod directive (it makes
parsing easier), whereas the compiler actually knows to look for pod escapes even in the middle of a
paragraph. This means that the following secret stuff will be ignored by both the compiler and the
translators.

$a=3;
=secret stuff
warn "Neither POD nor CODE!?"
=cut back
print "got $a\n";

You probably shouldn’t rely upon the warn() being podded out forever. Not all pod translators are
well-behaved in this regard, and perhaps the compiler will become pickier.

One may also use pod directives to quickly comment out a section of code.

Plain Old Comments (Not!)
Perl can process line directives, much like the C preprocessor. Using this, one can control Perl’s idea of
filenames and line numbers in error or warning messages (especially for strings that are processed with
eval()). The syntax for this mechanism is almost the same as for most C preprocessors: it matches
the regular expression

perl v5.38.2 2025-07-25 21

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

example: '# line 42 "new_filename.plx"'
/ˆ\# \s*
line \s+ (\d+) \s*
(?:\s("?)([ˆ"]+)\g2)? \s*
$/x

with $1 being the line number for the next line, and $3 being the optional filename (specified with or
without quotes). Note that no whitespace may precede the #, unlike modern C preprocessors.

There is a fairly obvious gotcha included with the line directive: Debuggers and profilers will only
show the last source line to appear at a particular line number in a given file. Care should be taken not
to cause line number collisions in code you’d like to debug later.

Here are some examples that you should be able to type into your command shell:

% perl
line 200 "bzzzt"
the '#' on the previous line must be the first char on line
die 'foo';
__END_ _
foo at bzzzt line 201.

% perl
line 200 "bzzzt"
eval qq[\n#line 2001 ""\ndie 'foo']; print $@;
__END_ _
foo at − line 2001.

% perl
eval qq[\n#line 200 "foo bar"\ndie 'foo']; print $@;
__END_ _
foo at foo bar line 200.

% perl
line 345 "goop"
eval "\n#line " . __LINE_ _ . ' "' . __FILE_ _ ."\"\ndie 'foo'";
print $@;
__END_ _
foo at goop line 345.

Experimental Details on given and when
As previously mentioned, the "switch" feature is considered highly experimental (it is also scheduled to
be removed in perl 5.42.0); it is subject to change with little notice. In particular, when has tricky
behaviours that are expected to change to become less tricky in the future. Do not rely upon its current
(mis)implementation. Before Perl 5.18, given also had tricky behaviours that you should still beware
of if your code must run on older versions of Perl.

Here is a longer example of given:

use feature ":5.10";
given ($foo) {

when (undef) {
say '$foo is undefined';

}
when ("foo") {

say '$foo is the string "foo"';
}
when ([1,3,5,7,9]) {

say '$foo is an odd digit';
continue; # Fall through

}
when ($_ < 100) {

say '$foo is numerically less than 100';

22 2025-07-25 perl v5.38.2

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

}
when (\&complicated_check) {

say 'a complicated check for $foo is true';
}
default {

die q(I don't know what to do with $foo);
}

}

Before Perl 5.18, given(EXPR) assigned the value of EXPR to merely a lexically scoped copy (!) of
$_, not a dynamically scoped alias the way foreach does. That made it similar to

do { my $_ = EXPR; ... }

except that the block was automatically broken out of by a successful when or an explicit break.
Because it was only a copy, and because it was only lexically scoped, not dynamically scoped, you
could not do the things with it that you are used to in a foreach loop. In particular, it did not work
for arbitrary function calls if those functions might try to access $_. Best stick to foreach for that.

Most of the power comes from the implicit smartmatching that can sometimes apply. Most of the time,
when(EXPR) is treated as an implicit smartmatch of $_, that is, $_ ˜˜ EXPR. (See "Smartmatch
Operator" in perlop for more information on smartmatching.) But when EXPR is one of the 10
exceptional cases (or things like them) listed below, it is used directly as a boolean.

1. A user-defined subroutine call or a method invocation.

2. A regular expression match in the form of /REGEX/, $foo =˜ /REGEX/, or $foo =˜
EXPR. Also, a negated regular expression match in the form !/REGEX/, $foo !˜ /REGEX/,
or $foo !˜ EXPR.

3. A smart match that uses an explicit ˜˜ operator, such as EXPR ˜˜ EXPR.

NOTE: You will often have to use $c ˜˜ $_ because the default case uses $_ ˜˜ $c , which
is frequently the opposite of what you want.

4. A boolean comparison operator such as $_ < 10 or $x eq "abc". The relational operators
that this applies to are the six numeric comparisons (<, >, <=, >=, ==, and !=), and the six string
comparisons (lt, gt, le, ge, eq, and ne).

5. At least the three builtin functions defined(...), exists(...), and eof(...). We
might someday add more of these later if we think of them.

6. A neg ated expression, whether !(EXPR) or not(EXPR), or a logical exclusive-or, (EXPR1)
xor (EXPR2). The bitwise versions (˜ and ˆ) are not included.

7. A filetest operator, with exactly 4 exceptions: −s, −M, −A, and −C, as these return numerical
values, not boolean ones. The −z filetest operator is not included in the exception list.

8. The .. and ... flip-flop operators. Note that the ... flip-flop operator is completely different
from the ... elliptical statement just described.

In those 8 cases above, the value of EXPR is used directly as a boolean, so no smartmatching is done.
You may think of when as a smartsmartmatch.

Furthermore, Perl inspects the operands of logical operators to decide whether to use smartmatching for
each one by applying the above test to the operands:

9. If EXPR is EXPR1 && EXPR2 or EXPR1 and EXPR2, the test is applied recursively to both
EXPR1 and EXPR2. Only if both operands also pass the test, recursively, will the expression be
treated as boolean. Otherwise, smartmatching is used.

10. If EXPR is EXPR1 || EXPR2, EXPR1 // EXPR2, or EXPR1 or EXPR2, the test is applied
recursively to EXPR1 only (which might itself be a higher-precedence AND operator, for
example, and thus subject to the previous rule), not to EXPR2. If EXPR1 is to use smartmatching,
then EXPR2 also does so, no matter what EXPR2 contains. But if EXPR2 does not get to use
smartmatching, then the second argument will not be either. This is quite different from the &&
case just described, so be careful.

These rules are complicated, but the goal is for them to do what you want (even if you don’t quite

perl v5.38.2 2025-07-25 23

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

understand why they are doing it). For example:

when (/ˆ\d+$/ && $_ < 75) { ... }

will be treated as a boolean match because the rules say both a regex match and an explicit test on $_
will be treated as boolean.

Also:

when ([qw(foo bar)] && /baz/) { ... }

will use smartmatching because only one of the operands is a boolean: the other uses smartmatching,
and that wins.

Further:

when ([qw(foo bar)] || /ˆbaz/) { ... }

will use smart matching (only the first operand is considered), whereas

when (/ˆbaz/ || [qw(foo bar)]) { ... }

will test only the regex, which causes both operands to be treated as boolean. Watch out for this one,
then, because an arrayref is always a true value, which makes it effectively redundant. Not a good idea.

Tautologous boolean operators are still going to be optimized away. Don’t be tempted to write

when ("foo" or "bar") { ... }

This will optimize down to "foo", so "bar" will never be considered (even though the rules say to
use a smartmatch on "foo"). For an alternation like this, an array ref will work, because this will
instigate smartmatching:

when ([qw(foo bar)] { ... }

This is somewhat equivalent to the C−style switch statement’s fallthrough functionality (not to be
confused with Perl’s fallthrough functionality−−see below), wherein the same block is used for several
case statements.

Another useful shortcut is that, if you use a literal array or hash as the argument to given, it is turned
into a reference. So given(@foo) is the same as given(\@foo), for example.

default behaves exactly like when(1 == 1), which is to say that it always matches.

Breaking out

You can use the break keyword to break out of the enclosing given block. Every when block is
implicitly ended with a break.

Fall-through

You can use the continue keyword to fall through from one case to the next immediate when or
default:

given($foo) {
when (/x/) { say '$foo contains an x'; continue }
when (/y/) { say '$foo contains a y' }
default { say '$foo does not contain a y' }

}

Return value

When a given statement is also a valid expression (for example, when it’s the last statement of a
block), it evaluates to:

• An empty list as soon as an explicit break is encountered.

• The value of the last evaluated expression of the successful when/default clause, if there
happens to be one.

• The value of the last evaluated expression of the given block if no condition is true.

In both last cases, the last expression is evaluated in the context that was applied to the given block.

Note that, unlike if and unless, failed when statements always evaluate to an empty list.

24 2025-07-25 perl v5.38.2

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

my $price = do {
given ($item) {

when (["pear", "apple"]) { 1 }
break when "vote"; # My vote cannot be bought
1e10 when /Mona Lisa/;
"unknown";

}
};

Currently, given blocks can’t always be used as proper expressions. This may be addressed in a
future version of Perl.

Switching in a loop

Instead of using given(), you can use a foreach() loop. For example, here’s one way to count
how many times a particular string occurs in an array:

use v5.10.1;
my $count = 0;
for (@array) {

when ("foo") { ++$count }
}
print "\@array contains $count copies of 'foo'\n";

Or in a more recent version:

use v5.14;
my $count = 0;
for (@array) {

++$count when "foo";
}
print "\@array contains $count copies of 'foo'\n";

At the end of all when blocks, there is an implicit next. You can override that with an explicit last
if you’re interested in only the first match alone.

This doesn’t work if you explicitly specify a loop variable, as in for $item (@array). You have
to use the default variable $_.

Differences from Raku

The Perl 5 smartmatch and given/when constructs are not compatible with their Raku analogues.
The most visible difference and least important difference is that, in Perl 5, parentheses are required
around the argument to given() and when() (except when this last one is used as a statement
modifier). Parentheses in Raku are always optional in a control construct such as if(), while(), or
when(); they can’t be made optional in Perl 5 without a great deal of potential confusion, because
Perl 5 would parse the expression

given $foo {
...

}

as though the argument to given were an element of the hash %foo, interpreting the braces as hash-
element syntax.

However, their are many, many other differences. For example, this works in Perl 5:

use v5.12;
my @primary = ("red", "blue", "green");

if (@primary ˜˜ "red") {
say "primary smartmatches red";

}

if ("red" ˜˜ @primary) {
say "red smartmatches primary";

}

perl v5.38.2 2025-07-25 25

PERLSYN (1) Perl Programmers Reference Guide PERLSYN (1)

say "that's all, folks!";

But it doesn’t work at all in Raku. Instead, you should use the (parallelizable) any operator:

if any(@primary) eq "red" {
say "primary smartmatches red";

}

if "red" eq any(@primary) {
say "red smartmatches primary";

}

The table of smartmatches in "Smartmatch Operator" in perlop is not identical to that proposed by the
Raku specification, mainly due to differences between Raku’s and Perl 5’s data models, but also
because the Raku spec has changed since Perl 5 rushed into early adoption.

In Raku, when() will always do an implicit smartmatch with its argument, while in Perl 5 it is
convenient (albeit potentially confusing) to suppress this implicit smartmatch in various rather loosely-
defined situations, as roughly outlined above. (The difference is largely because Perl 5 does not have,
ev en internally, a boolean type.)

26 2025-07-25 perl v5.38.2

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

NAME
perldata − Perl data types

DESCRIPTION
Variable names

Perl has three built-in data types: scalars, arrays of scalars, and associative arrays of scalars, known as
"hashes". A scalar is a single string (of any size, limited only by the available memory), number, or a
reference to something (which will be discussed in perlref). Normal arrays are ordered lists of scalars
indexed by number, starting with 0. Hashes are unordered collections of scalar values indexed by their
associated string key.

Values are usually referred to by name, or through a named reference. The first character of the name
tells you to what sort of data structure it refers. The rest of the name tells you the particular value to
which it refers. Usually this name is a single identifier, that is, a string beginning with a letter or
underscore, and containing letters, underscores, and digits. In some cases, it may be a chain of
identifiers, separated by :: (or by the deprecated '); all but the last are interpreted as names of
packages, to locate the namespace in which to look up the final identifier (see "Packages" in perlmod
for details). For a more in-depth discussion on identifiers, see "Identifier parsing". It’s possible to
substitute for a simple identifier, an expression that produces a reference to the value at runtime. This
is described in more detail below and in perlref.

Perl also has its own built-in variables whose names don’t follow these rules. They hav e strange names
so they don’t accidentally collide with one of your normal variables. Strings that match parenthesized
parts of a regular expression are saved under names containing only digits after the $ (see perlop and
perlre). In addition, several special variables that provide windows into the inner working of Perl have
names containing punctuation characters. These are documented in perlvar.

Scalar values are always named with ’$’, even when referring to a scalar that is part of an array or a
hash. The ’$’ symbol works semantically like the English word "the" in that it indicates a single value
is expected.

$days # the simple scalar value "days"
$days[28] # the 29th element of array @days
$days{'Feb'} # the 'Feb' value from hash %days
$#days # the last index of array @days

Entire arrays (and slices of arrays and hashes) are denoted by ’@’, which works much as the word
"these" or "those" does in English, in that it indicates multiple values are expected.

@days # ($days[0], $days[1],... $days[n])
@days[3,4,5] # same as ($days[3],$days[4],$days[5])
@days{'a','c'} # same as ($days{'a'},$days{'c'})

Entire hashes are denoted by ’%’:

%days # (key1, val1, key2, val2 ...)

In addition, subroutines are named with an initial ’&’, though this is optional when unambiguous, just
as the word "do" is often redundant in English. Symbol table entries can be named with an initial ’*’,
but you don’t really care about that yet (if ever :−).

Every variable type has its own namespace, as do several non-variable identifiers. This means that you
can, without fear of conflict, use the same name for a scalar variable, an array, or a hash−−or, for that
matter, for a filehandle, a directory handle, a subroutine name, a format name, or a label. This means
that $foo and @foo are two different variables. It also means that $foo[1] is a part of @foo, not a
part of $foo. This may seem a bit weird, but that’s okay, because it is weird.

Because variable references always start with ’$’, ’@’, or ’%’, the "reserved" words aren’t in fact
reserved with respect to variable names. They are reserved with respect to labels and filehandles,
however, which don’t hav e an initial special character. You can’t hav e a filehandle named "log", for
instance. Hint: you could say open(LOG,'logfile') rather than open(log,'logfile').
Using uppercase filehandles also improves readability and protects you from conflict with future
reserved words. Case is significant−−"FOO", "Foo", and "foo" are all different names. Names that
start with a letter or underscore may also contain digits and underscores.

It is possible to replace such an alphanumeric name with an expression that returns a reference to the

perl v5.38.2 2025-07-25 27

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

appropriate type. For a description of this, see perlref.

Names that start with a digit may contain only more digits. Names that do not start with a letter,
underscore, digit or a caret are limited to one character, e.g., $% or $$. (Most of these one character
names have a predefined significance to Perl. For instance, $$ is the current process id. And all such
names are reserved for Perl’s possible use.)

Identifier parsing
Up until Perl 5.18, the actual rules of what a valid identifier was were a bit fuzzy. Howev er, in general,
anything defined here should work on previous versions of Perl, while the opposite −− edge cases that
work in previous versions, but aren’t defined here −− probably won’t work on newer versions. As an
important side note, please note that the following only applies to bareword identifiers as found in Perl
source code, not identifiers introduced through symbolic references, which have much fewer
restrictions. If working under the effect of the use utf8; pragma, the following rules apply:

/ (?[(\p{Word} & \p{XID_Start}) + [_]])
(?[(\p{Word} & \p{XID_Continue})]) * /x

That is, a "start" character followed by any number of "continue" characters. Perl requires every
character in an identifier to also match \w (this prevents some problematic cases); and Perl additionally
accepts identifier names beginning with an underscore.

If not under use utf8, the source is treated as ASCII + 128 extra generic characters, and identifiers
should match

/ (?aa) (?!\d) \w+ /x

That is, any word character in the ASCII range, as long as the first character is not a digit.

There are two package separators in Perl: A double colon (::) and a single quote ('). Use of ' as the
package separator is deprecated and will be removed in Perl 5.40. Normal identifiers can start or end
with a double colon, and can contain several parts delimited by double colons. Single quotes have
similar rules, but with the exception that they are not legal at the end of an identifier: That is, $'foo
and $foo'bar are legal, but $foo'bar' is not.

Additionally, if the identifier is preceded by a sigil −− that is, if the identifier is part of a variable name
−− it may optionally be enclosed in braces.

While you can mix double colons with singles quotes, the quotes must come after the colons:
$::::'foo and $foo::'bar are legal, but $::'::foo and $foo'::bar are not.

Put together, a grammar to match a basic identifier becomes

/
(?(DEFINE)

(?<variable>
(?&sigil)
(?:

(?&normal_identifier)
| \{ \s* (?&normal_identifier) \s* \}

)
)
(?<normal_identifier>

(?: ::)* '?
(?&basic_identifier)
(?: (?= (?: ::)+ '? | (?: ::)* ') (?&normal_identifier))?
(?: ::)*

)
(?<basic_identifier>
is use utf8 on?
(?(?{ (caller(0))[8] & $utf8::hint_bits })

(?&Perl_XIDS) (?&Perl_XIDC)*
| (?aa) (?!\d) \w+

)
)
(?<sigil> [&*\$\@\%])

28 2025-07-25 perl v5.38.2

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

(?<Perl_XIDS> (?[(\p{Word} & \p{XID_Start}) + [_]]))
(?<Perl_XIDC> (?[\p{Word} & \p{XID_Continue}]))

)
/x

Meanwhile, special identifiers don’t follow the above rules; For the most part, all of the identifiers in
this category have a special meaning given by Perl. Because they hav e special parsing rules, these
generally can’t be fully-qualified. They come in six forms (but don’t use forms 5 and 6):

1. A sigil, followed solely by digits matching \p{POSIX_Digit}, like $0, $1, or $10000.

2. A sigil followed by a single character matching the \p{POSIX_Punct} property, like $! or %+,
except the character "{" doesn’t work.

3. A sigil, followed by a caret and any one of the characters [][A−Zˆ_?\], like $ˆV or $ˆ].

4. Similar to the above, a sigil, followed by bareword text in braces, where the first character is a
caret. The next character is any one of the characters [][A−Zˆ_?\], followed by ASCII word
characters. An example is ${ˆGLOBAL_PHASE}.

5. A sigil, followed by any single character in the range [\xA1−\xAC\xAE−\xFF] when not
under "use utf8". (Under "use utf8", the normal identifier rules given earlier in this
section apply.) Use of non-graphic characters (the C1 controls, the NO-BREAK SPACE, and the
SOFT HYPHEN) has been disallowed since v5.26.0. The use of the other characters is unwise, as
these are all reserved to have special meaning to Perl, and none of them currently do have special
meaning, though this could change without notice.

Note that an implication of this form is that there are identifiers only legal under "use utf8",
and vice-versa, for example the identifier $état is legal under "use utf8", but is otherwise
considered to be the single character variable $é followed by the bareword "tat", the
combination of which is a syntax error.

6. This is a combination of the previous two forms. It is valid only when not under "use utf8"
(normal identifier rules apply when under "use utf8"). The form is a sigil, followed by text in
braces, where the first character is any one of the characters in the range [\x80−\xFF] followed
by ASCII word characters up to the trailing brace.

The same caveats as the previous form apply: The non-graphic characters are no longer allowed
with "use utf8", it is unwise to use this form at all, and utf8ness makes a big difference.

Prior to Perl v5.24, non-graphical ASCII control characters were also allowed in some situations; this
had been deprecated since v5.20.

Context
The interpretation of operations and values in Perl sometimes depends on the requirements of the
context around the operation or value. There are two major contexts: list and scalar. Certain operations
return list values in contexts wanting a list, and scalar values otherwise. If this is true of an operation it
will be mentioned in the documentation for that operation. In other words, Perl overloads certain
operations based on whether the expected return value is singular or plural. Some words in English
work this way, like "fish" and "sheep".

In a reciprocal fashion, an operation provides either a scalar or a list context to each of its arguments.
For example, if you say

int(<STDIN>)

the integer operation provides scalar context for the <> operator, which responds by reading one line
from STDIN and passing it back to the integer operation, which will then find the integer value of that
line and return that. If, on the other hand, you say

sort(<STDIN>)

then the sort operation provides list context for <>, which will proceed to read every line available up
to the end of file, and pass that list of lines back to the sort routine, which will then sort those lines and
return them as a list to whatever the context of the sort was.

Assignment is a little bit special in that it uses its left argument to determine the context for the right
argument. Assignment to a scalar evaluates the right-hand side in scalar context, while assignment to
an array or hash evaluates the righthand side in list context. Assignment to a list (or slice, which is just

perl v5.38.2 2025-07-25 29

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

a list anyway) also evaluates the right-hand side in list context.

When you use the use warnings pragma or Perl’s −w command-line option, you may see warnings
about useless uses of constants or functions in "void context". Void context just means the value has
been discarded, such as a statement containing only "fred"; or getpwuid(0);. It still counts as
scalar context for functions that care whether or not they’re being called in list context.

User-defined subroutines may choose to care whether they are being called in a void, scalar, or list
context. Most subroutines do not need to bother, though. That’s because both scalars and lists are
automatically interpolated into lists. See "wantarray" in perlfunc for how you would dynamically
discern your function’s calling context.

Scalar values
All data in Perl is a scalar, an array of scalars, or a hash of scalars. A scalar may contain one single
value in any of three different flavors: a number, a string, or a reference. In general, conversion from
one form to another is transparent. Although a scalar may not directly hold multiple values, it may
contain a reference to an array or hash which in turn contains multiple values.

Scalars aren’t necessarily one thing or another. There’s no place to declare a scalar variable to be of
type "string", type "number", type "reference", or anything else. Because of the automatic conversion
of scalars, operations that return scalars don’t need to care (and in fact, cannot care) whether their caller
is looking for a string, a number, or a reference. Perl is a contextually polymorphic language whose
scalars can be strings, numbers, or references (which includes objects). Although strings and numbers
are considered pretty much the same thing for nearly all purposes, references are strongly-typed,
uncastable pointers with builtin reference-counting and destructor invocation.

A scalar value is interpreted as FALSE in the Boolean sense if it is undefined, the null string or the
number 0 (or its string equivalent, "0"), and TRUE if it is anything else. The Boolean context is just a
special kind of scalar context where no conversion to a string or a number is ever performed. Negation
of a true value by ! or not returns a special false value. When evaluated as a string it is treated as "",
but as a number, it is treated as 0. Most Perl operators that return true or false behave this way.

There are actually two varieties of null strings (sometimes referred to as "empty" strings), a defined one
and an undefined one. The defined version is just a string of length zero, such as "". The undefined
version is the value that indicates that there is no real value for something, such as when there was an
error, or at end of file, or when you refer to an uninitialized variable or element of an array or hash.
Although in early versions of Perl, an undefined scalar could become defined when first used in a place
expecting a defined value, this no longer happens except for rare cases of autovivification as explained
in perlref. You can use the defined() operator to determine whether a scalar value is defined (this has
no meaning on arrays or hashes), and the undef() operator to produce an undefined value.

To find out whether a given string is a valid non-zero number, it’s sometimes enough to test it against
both numeric 0 and also lexical "0" (although this will cause noises if warnings are on). That’s because
strings that aren’t numbers count as 0, just as they do in awk:

if ($str == 0 && $str ne "0") {
warn "That doesn't look like a number";

}

That method may be best because otherwise you won’t treat IEEE notations like NaN or Infinity
properly. At other times, you might prefer to determine whether string data can be used numerically by
calling the POSIX::strtod() function or by inspecting your string with a regular expression (as
documented in perlre).

warn "has nondigits" if /\D/;
warn "not a natural number" unless /ˆ\d+$/; # rejects −3
warn "not an integer" unless /ˆ−?\d+$/; # rejects +3
warn "not an integer" unless /ˆ[+−]?\d+$/;
warn "not a decimal number" unless /ˆ−?\d+\.?\d*$/; # rejects .2
warn "not a decimal number" unless /ˆ−?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"

unless /ˆ([+−]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+−]?\d+))?$/;

The length of an array is a scalar value. You may find the length of array @days by evaluating
$#days, as in csh. Howev er, this isn’t the length of the array; it’s the subscript of the last element,

30 2025-07-25 perl v5.38.2

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

which is a different value since there is ordinarily a 0th element. Assigning to $#days actually
changes the length of the array. Shortening an array this way destroys intervening values. Lengthening
an array that was previously shortened does not recover values that were in those elements.

You can also gain some minuscule measure of efficiency by pre-extending an array that is going to get
big. You can also extend an array by assigning to an element that is off the end of the array. You can
truncate an array down to nothing by assigning the null list () to it. The following are equivalent:

@whatever = ();
$#whatever = −1;

If you evaluate an array in scalar context, it returns the length of the array. (Note that this is not true of
lists, which return the last value, like the C comma operator, nor of built-in functions, which return
whatever they feel like returning.) The following is always true:

scalar(@whatever) == $#whatever + 1;

Some programmers choose to use an explicit conversion so as to leave nothing to doubt:

$element_count = scalar(@whatever);

If you evaluate a hash in scalar context, it returns a false value if the hash is empty. If there are any
key/value pairs, it returns a true value. A more precise definition is version dependent.

Prior to Perl 5.25 the value returned was a string consisting of the number of used buckets and the
number of allocated buckets, separated by a slash. This is pretty much useful only to find out whether
Perl’s internal hashing algorithm is performing poorly on your data set. For example, you stick 10,000
things in a hash, but evaluating %HASH in scalar context reveals "1/16", which means only one out of
sixteen buckets has been touched, and presumably contains all 10,000 of your items. This isn’t
supposed to happen.

As of Perl 5.25 the return was changed to be the count of keys in the hash. If you need access to the old
behavior you can use Hash::Util::bucket_ratio() instead.

If a tied hash is evaluated in scalar context, the SCALAR method is called (with a fallback to
FIRSTKEY).

You can preallocate space for a hash by assigning to the keys() function. This rounds up the allocated
buckets to the next power of two:

keys(%users) = 1000; # allocate 1024 buckets

Scalar value constructors
Numeric literals are specified in any of the following floating point or integer formats:

12345
12345.67
.23E−10 # a very small number
3.14_15_92 # a very important number
4_294_967_296 # underscore for legibility
0xff # hex
0xdead_beef # more hex
0377 # octal (only numbers, begins with 0)
0o12_345 # alternative octal (introduced in Perl 5.33.5)
0b011011 # binary
0x1.999ap−4 # hexadecimal floating point (the 'p' is required)

You are allowed to use underscores (underbars) in numeric literals between digits for legibility (but not
multiple underscores in a row: 23_ _500 is not legal; 23_500 is). You could, for example, group
binary digits by threes (as for a Unix-style mode argument such as 0b110_100_100) or by fours (to
represent nibbles, as in 0b1010_0110) or in other groups.

String literals are usually delimited by either single or double quotes. They work much like quotes in
the standard Unix shells: double-quoted string literals are subject to backslash and variable substitution;
single-quoted strings are not (except for \' and \\). The usual C−style backslash rules apply for
making characters such as newline, tab, etc., as well as some more exotic forms. See "Quote and
Quote-like Operators" in perlop for a list.

Hexadecimal, octal, or binary, representations in string literals (e.g. ’0xff’) are not automatically

perl v5.38.2 2025-07-25 31

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

converted to their integer representation. The hex() and oct() functions make these conversions for
you. See "hex" in perlfunc and "oct" in perlfunc for more details.

Hexadecimal floating point can start just like a hexadecimal literal, and it can be followed by an
optional fractional hexadecimal part, but it must be followed by p, an optional sign, and a power of
two. The format is useful for accurately presenting floating point values, avoiding conversions to or
from decimal floating point, and therefore avoiding possible loss in precision. Notice that while most
current platforms use the 64−bit IEEE 754 floating point, not all do. Another potential source of (low-
order) differences are the floating point rounding modes, which can differ between CPUs, operating
systems, and compilers, and which Perl doesn’t control.

You can also embed newlines directly in your strings, i.e., they can end on a different line than they
begin. This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds
another line containing the quote character, which may be much further on in the script. Variable
substitution inside strings is limited to scalar variables, arrays, and array or hash slices. (In other
words, names beginning with $ or @, followed by an optional bracketed expression as a subscript.)
The following code segment prints out "The price is $100."

$Price = '$100'; # not interpolated
print "The price is $Price.\n"; # interpolated

There is no double interpolation in Perl, so the $100 is left as is.

By default floating point numbers substituted inside strings use the dot (".") as the decimal separator.
If use locale is in effect, and POSIX::setlocale() has been called, the character used for the
decimal separator is affected by the LC_NUMERIC locale. See perllocale and POSIX.

Demarcated variable names using braces

As in some shells, you can enclose the variable name in braces as a demarcator to disambiguate it from
following alphanumerics and underscores or other text. You must also do this when interpolating a
variable into a string to separate the variable name from a following double-colon or an apostrophe
since these would be otherwise treated as a package separator:

$who = "Larry";
print PASSWD "${who}::0:0:Superuser:/:/bin/perl\n";
print "We use ${who}speak when ${who}'s here.\n";

Without the braces, Perl would have looked for a $whospeak, a $who::0, and a $who's variable.
The last two would be the $0 and the $s variables in the (presumably) non-existent package who.

In fact, a simple identifier within such curly braces is forced to be a string, and likewise within a hash
subscript. Neither need quoting. Our earlier example, $days{'Feb'} can be written as
$days{Feb} and the quotes will be assumed automatically. But anything more complicated in the
subscript will be interpreted as an expression. This means for example that $version{2.0}++ is
equivalent to $version{2}++, not to $version{'2.0'}++.

There is a similar problem with interpolation with text that looks like array or hash access notation.
Placing a simple variable like $who immediately in front of text like "[1]" or "{foo}" would cause
the variable to be interpolated as accessing an element of @who or a value stored in %who:

$who = "Larry Wall";
print "$who[1] is the father of Perl.\n";

would attempt to access index 1 of an array named @who. Again, using braces will prevent this from
happening:

$who = "Larry Wall";
print "${who}[1] is the father of Perl.\n";

will be treated the same as

$who = "Larry Wall";
print $who . "[1] is the father of Perl.\n";

This notation also applies to more complex variable descriptions, such as array or hash access with
subscripts. For instance

32 2025-07-25 perl v5.38.2

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

@name = qw(Larry Curly Moe);
print "Also ${name[0]}[1] was a member\n";

Without the braces the above example would be parsed as a two lev el array subscript in the @name
array, and under use strict would likely produce a fatal exception, as it would be parsed like this:

print "Also " . $name[0][1] . " was a member\n";

and not as the intended:

print "Also " . $name[0] . "[1] was a member\n";

A similar result may be derived by using a backslash on the first character of the subscript or package
notation that is not part of the variable you want to access. Thus the above example could also be
written:

@name = qw(Larry Curly Moe);
print "Also $name[0]\[1] was a member\n";

however for some special variables (multi character caret variables) the demarcated form using curly
braces is the only way you can reference the variable at all, and the only way you can access a subscript
of the variable via interpolation.

Consider the magic array @{ˆCAPTURE} which is populated by the regex engine with the contents of
all of the capture buffers in a pattern (see perlvar and perlre). The only way you can access one of these
members inside of a string is via the braced (demarcated) form:

"abc"=˜/(.)(.)(.)/
and print "Second buffer is ${ˆCAPTURE[1]}";

is equivalent to

"abc"=˜/(.)(.)(.)/
and print "Second buffer is " . ${ˆCAPTURE}[1];

Saying @ˆCAPTURE is a syntax error, so it must be referenced as @{ˆCAPTURE}, and to access one
of its elements in normal code you would write ${ˆCAPTURE}[1] . Howev er when interpolating
in a string "${ˆCAPTURE}[1]" would be equivalent to ${ˆCAPTURE} . "[1]", which does not
ev en refer to the same variable! Thus the subscripts must also be placed inside of the braces:
"${ˆCAPTURE[1]}".

The demarcated form using curly braces can be used with all the different types of variable access,
including array and hash slices. For instance code like the following:

@name = qw(Larry Curly Moe);
local $" = " and ";
print "My favorites were @{name[1,2]}.\n";

would output

My favorites were Curly and Moe.

Special floating point: infinity (Inf) and not-a-number (NaN)

Floating point values include the special values Inf and NaN, for infinity and not-a-number. The
infinity can be also negative.

The infinity is the result of certain math operations that overflow the floating point range, like 9**9**9.
The not-a-number is the result when the result is undefined or unrepresentable. Though note that you
cannot get NaN from some common "undefined" or "out-of-range" operations like dividing by zero, or
square root of a negative number, since Perl generates fatal errors for those.

The infinity and not-a-number have their own special arithmetic rules. The general rule is that they are
"contagious": Inf plus one is Inf, and NaN plus one is NaN. Where things get interesting is when
you combine infinities and not-a-numbers: Inf minus Inf and Inf divided by Inf are NaN (while
Inf plus Inf is Inf and Inf times Inf is Inf). NaN is also curious in that it does not equal any
number, including itself: NaN != NaN.

Perl doesn’t understand Inf and NaN as numeric literals, but you can have them as strings, and Perl
will convert them as needed: "Inf" + 1. (You can, however, import them from the POSIX extension;
use POSIX qw(Inf NaN); and then use them as literals.)

perl v5.38.2 2025-07-25 33

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

Note that on input (string to number) Perl accepts Inf and NaN in many forms. Case is ignored, and
the Win32−specific forms like 1.#INF are understood, but on output the values are normalized to Inf
and NaN.

Version Strings

A literal of the form v1.20.300.4000 is parsed as a string composed of characters with the
specified ordinals. This form, known as v−strings, provides an alternative, more readable way to
construct strings, rather than use the somewhat less readable interpolation form
"\x{1}\x{14}\x{12c}\x{fa0}". This is useful for representing Unicode strings, and for
comparing version "numbers" using the string comparison operators, cmp, gt, lt etc. If there are two
or more dots in the literal, the leading v may be omitted.

print v9786; # prints SMILEY, "\x{263a}"
print v102.111.111; # prints "foo"
print 102.111.111; # same

Such literals are accepted by both require and use for doing a version check. Note that using the
v−strings for IPv4 addresses is not portable unless you also use the inet_aton()/inet_ntoa() routines of
the Socket package.

Note that since Perl 5.8.1 the single-number v−strings (like v65) are not v−strings before the =>
operator (which is usually used to separate a hash key from a hash value); instead they are interpreted
as literal strings (’v65’). They were v−strings from Perl 5.6.0 to Perl 5.8.0, but that caused more
confusion and breakage than good. Multi-number v−strings like v65.66 and 65.66.67 continue to
be v−strings always.

Special Literals

The special literals _ _FILE_ _, _ _LINE_ _, and _ _PACKAGE_ _ represent the current filename, line
number, and package name at that point in your program. _ _SUB_ _ gives a reference to the current
subroutine. They may be used only as separate tokens; they will not be interpolated into strings. If
there is no current package (due to an empty package; directive), _ _PACKAGE_ _ is the undefined
value. (But the empty package; is no longer supported, as of version 5.10.) Outside of a subroutine,
_ _SUB_ _ is the undefined value. _ _SUB_ _ is only available in 5.16 or higher, and only with a use
v5.16 or use feature "current_sub" declaration.

The two control characters ˆD and ˆZ, and the tokens _ _END_ _ and _ _DAT A_ _ may be used to
indicate the logical end of the script before the actual end of file. Any following text is ignored by the
interpreter unless read by the program as described below.

Te xt after _ _DAT A_ _ may be read via the filehandle PACKNAME::DATA, where PACKNAME is the
package that was current when the _ _DAT A_ _ token was encountered. The filehandle is left open
pointing to the line after _ _DAT A_ _. The program should close DATA when it is done reading
from it. (Leaving it open leaks filehandles if the module is reloaded for any reason, so it’s a safer
practice to close it.) For compatibility with older scripts written before _ _DAT A_ _ was introduced,
_ _END_ _ behaves like _ _DAT A_ _ in the top level script (but not in files loaded with require or
do) and leaves the remaining contents of the file accessible via main::DATA.

while (my $line = <DATA>) { print $line; }
close DATA;
__DATA_ _
Hello world.

The DATA file handle by default has whatever PerlIO layers were in place when Perl read the file to
parse the source. Normally that means that the file is being read bytewise, as if it were encoded in
Latin−1, but there are two major ways for it to be otherwise. Firstly, if the __END_ _/__DATA_ _
token is in the scope of a use utf8 pragma then the DATA handle will be in UTF−8 mode. And
secondly, if the source is being read from perl’s standard input then the DATA file handle is actually
aliased to the STDIN file handle, and may be in UTF−8 mode because of the PERL_UNICODE
environment variable or perl’s command-line switches.

See SelfLoader for more description of _ _DAT A_ _, and an example of its use. Note that you cannot
read from the DAT A filehandle in a BEGIN block: the BEGIN block is executed as soon as it is seen
(during compilation), at which point the corresponding _ _DAT A_ _ (or _ _END_ _) token has not yet
been seen.

34 2025-07-25 perl v5.38.2

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

Barewords

A word that has no other interpretation in the grammar will be treated as if it were a quoted string.
These are known as "barewords". As with filehandles and labels, a bareword that consists entirely of
lowercase letters risks conflict with future reserved words, and if you use the use warnings pragma
or the −w switch, Perl will warn you about any such words. Perl limits barewords (like identifiers) to
about 250 characters. Future versions of Perl are likely to eliminate these arbitrary limitations.

Some people may wish to outlaw barewords entirely. If you say

use strict 'subs';

then any bareword that would NOT be interpreted as a subroutine call produces a compile-time error
instead. The restriction lasts to the end of the enclosing block. An inner block may countermand this
by saying no strict 'subs'.

Array Interpolation

Arrays and slices are interpolated into double-quoted strings by joining the elements with the delimiter
specified in the $" variable ($LIST_SEPARATOR if "use English;" is specified), space by default.
The following are equivalent:

$temp = join($", @ARGV);
system "echo $temp";

system "echo @ARGV";

Within search patterns (which also undergo double-quotish substitution) there is an unfortunate
ambiguity: Is /$foo[bar]/ to be interpreted as /${foo}[bar]/ (where [bar] is a character
class for the regular expression) or as /${foo[bar]}/ (where [bar] is the subscript to array
@foo)? If @foo doesn’t otherwise exist, then it’s obviously a character class. If @foo exists, Perl
takes a good guess about [bar], and is almost always right. If it does guess wrong, or if you’re just
plain paranoid, you can force the correct interpretation with curly braces as above.

If you’re looking for the information on how to use here-documents, which used to be here, that’s been
moved to "Quote and Quote-like Operators" in perlop.

List value constructors
List values are denoted by separating individual values by commas (and enclosing the list in
parentheses where precedence requires it):

(LIST)

In a context not requiring a list value, the value of what appears to be a list literal is simply the value of
the final element, as with the C comma operator. For example,

@foo = ('cc', '−E', $bar);

assigns the entire list value to array @foo, but

$foo = ('cc', '−E', $bar);

assigns the value of variable $bar to the scalar variable $foo. Note that the value of an actual array
in scalar context is the length of the array; the following assigns the value 3 to $foo:

@foo = ('cc', '−E', $bar);
$foo = @foo; # $foo gets 3

You may have an optional comma before the closing parenthesis of a list literal, so that you can say:

@foo = (
1,
2,
3,

);

To use a here-document to assign an array, one line per element, you might use an approach like this:

perl v5.38.2 2025-07-25 35

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

@sauces = <<End_Lines =˜ m/(\S.*\S)/g;
normal tomato
spicy tomato
green chile
pesto
white wine

End_Lines

LISTs do automatic interpolation of sublists. That is, when a LIST is evaluated, each element of the
list is evaluated in list context, and the resulting list value is interpolated into LIST just as if each
individual element were a member of LIST. Thus arrays and hashes lose their identity in a LIST−−the
list

(@foo,@bar,&SomeSub,%glarch)

contains all the elements of @foo followed by all the elements of @bar, followed by all the elements
returned by the subroutine named SomeSub called in list context, followed by the key/value pairs of
%glarch. To make a list reference that does NOT interpolate, see perlref.

The null list is represented by (). Interpolating it in a list has no effect. Thus ((),(),()) is equivalent to
(). Similarly, interpolating an array with no elements is the same as if no array had been interpolated at
that point.

This interpolation combines with the facts that the opening and closing parentheses are optional (except
when necessary for precedence) and lists may end with an optional comma to mean that multiple
commas within lists are legal syntax. The list 1,,3 is a concatenation of two lists, 1, and 3, the first
of which ends with that optional comma. 1,,3 is (1,),(3) is 1,3 (And similarly for 1,,,3 is
(1,),(,),3 is 1,3 and so on.) Not that we’d advise you to use this obfuscation.

A list value may also be subscripted like a normal array. You must put the list in parentheses to avoid
ambiguity. For example:

Stat returns list value.
$time = (stat($file))[8];

SYNTAX ERROR HERE.
$time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

Find a hex digit.
$hexdigit = ('a','b','c','d','e','f')[$digit−10];

A "reverse comma operator".
return (pop(@foo),pop(@foo))[0];

Lists may be assigned to only when each element of the list is itself legal to assign to:

($x, $y, $z) = (1, 2, 3);

($map{'red'}, $map{'blue'}, $map{'green'}) = (0x00f, 0x0f0, 0xf00);

An exception to this is that you may assign to undef in a list. This is useful for throwing away some
of the return values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

As of Perl 5.22, you can also use (undef)x2 instead of undef, undef. (You can also do ($x)
x 2, which is less useful, because it assigns to the same variable twice, clobbering the first value
assigned.)

When you assign a list of scalars to an array, all previous values in that array are wiped out and the
number of elements in the array will now be equal to the number of elements in the right-hand list −−
the list from which assignment was made. The array will automatically resize itself to precisely
accommodate each element in the right-hand list.

use warnings;
my (@xyz, $x, $y, $z);

36 2025-07-25 perl v5.38.2

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

@xyz = (1, 2, 3);
print "@xyz\n"; # 1 2 3

@xyz = ('al', 'be', 'ga', 'de');
print "@xyz\n"; # al be ga de

@xyz = (101, 102);
print "@xyz\n"; # 101 102

When, however, you assign a list of scalars to another list of scalars, the results differ according to
whether the left-hand list −− the list being assigned to −− has the same, more or fewer elements than
the right-hand list.

($x, $y, $z) = (1, 2, 3);
print "$x $y $z\n"; # 1 2 3

($x, $y, $z) = ('al', 'be', 'ga', 'de');
print "$x $y $z\n"; # al be ga

($x, $y, $z) = (101, 102);
print "$x $y $z\n"; # 101 102
Use of uninitialized value $z in concatenation (.)
or string at [program] line [line number].

If the number of scalars in the left-hand list is less than that in the right-hand list, the "extra" scalars in
the right-hand list will simply not be assigned.

If the number of scalars in the left-hand list is greater than that in the left-hand list, the "missing"
scalars will become undefined.

($x, $y, $z) = (101, 102);
for my $el ($x, $y, $z) {

(defined $el) ? print "$el " : print "<undef>";
}
print "\n";

101 102 <undef>

List assignment in scalar context returns the number of elements produced by the expression on the
right side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2
$x = (($foo,$bar) = f()); # set $x to f()'s return count

This is handy when you want to do a list assignment in a Boolean context, because most list functions
return a null list when finished, which when assigned produces a 0, which is interpreted as FALSE.

It’s also the source of a useful idiom for executing a function or performing an operation in list context
and then counting the number of return values, by assigning to an empty list and then using that
assignment in scalar context. For example, this code:

$count = () = $string =˜ /\d+/g;

will place into $count the number of digit groups found in $string. This happens because the
pattern match is in list context (since it is being assigned to the empty list), and will therefore return a
list of all matching parts of the string. The list assignment in scalar context will translate that into the
number of elements (here, the number of times the pattern matched) and assign that to $count. Note
that simply using

$count = $string =˜ /\d+/g;

would not have worked, since a pattern match in scalar context will only return true or false, rather than
a count of matches.

The final element of a list assignment may be an array or a hash:

($x, $y, @rest) = split;
my($x, $y, %rest) = @_;

perl v5.38.2 2025-07-25 37

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

You can actually put an array or hash anywhere in the list, but the first one in the list will soak up all the
values, and anything after it will become undefined. This may be useful in a my() or local().

A hash can be initialized using a literal list holding pairs of items to be interpreted as a key and a value:

same as map assignment above
%map = ('red',0x00f,'blue',0x0f0,'green',0xf00);

While literal lists and named arrays are often interchangeable, that’s not the case for hashes. Just
because you can subscript a list value like a normal array does not mean that you can subscript a list
value as a hash. Likewise, hashes included as parts of other lists (including parameters lists and return
lists from functions) always flatten out into key/value pairs. That’s why it’s good to use references
sometimes.

It is often more readable to use the => operator between key/value pairs. The => operator is mostly
just a more visually distinctive synonym for a comma, but it also arranges for its left-hand operand to
be interpreted as a string if it’s a bareword that would be a legal simple identifier. => doesn’t quote
compound identifiers, that contain double colons. This makes it nice for initializing hashes:

%map = (
red => 0x00f,
blue => 0x0f0,
green => 0xf00,

);

or for initializing hash references to be used as records:

$rec = {
witch => 'Mable the Merciless',
cat => 'Fluffy the Ferocious',
date => '10/31/1776',

};

or for using call-by-named-parameter to complicated functions:

$field = $query−>radio_group(
name => 'group_name',
values => ['eenie','meenie','minie'],
default => 'meenie',
linebreak => 'true',
labels => \%labels

);

Note that just because a hash is initialized in that order doesn’t mean that it comes out in that order.
See "sort" in perlfunc for examples of how to arrange for an output ordering.

If a key appears more than once in the initializer list of a hash, the last occurrence wins:

%circle = (
center => [5, 10],
center => [27, 9],
radius => 100,
color => [0xDF, 0xFF, 0x00],
radius => 54,

);

same as
%circle = (

center => [27, 9],
color => [0xDF, 0xFF, 0x00],
radius => 54,

);

This can be used to provide overridable configuration defaults:

38 2025-07-25 perl v5.38.2

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

values in %args take priority over %config_defaults
%config = (%config_defaults, %args);

Subscripts
An array can be accessed one scalar at a time by specifying a dollar sign ($), then the name of the array
(without the leading @), then the subscript inside square brackets. For example:

@myarray = (5, 50, 500, 5000);
print "The Third Element is", $myarray[2], "\n";

The array indices start with 0. A neg ative subscript retrieves its value from the end. In our example,
$myarray[−1] would have been 5000, and $myarray[−2] would have been 500.

Hash subscripts are similar, only instead of square brackets curly brackets are used. For example:

%scientists =
(

"Newton" => "Isaac",
"Einstein" => "Albert",
"Darwin" => "Charles",
"Feynman" => "Richard",

);

print "Darwin's First Name is ", $scientists{"Darwin"}, "\n";

You can also subscript a list to get a single element from it:

$dir = (getpwnam("daemon"))[7];

Multi-dimensional array emulation
Multidimensional arrays may be emulated by subscripting a hash with a list. The elements of the list
are joined with the subscript separator (see "$;" in perlvar).

$foo{$x,$y,$z}

is equivalent to

$foo{join($;, $x, $y, $z)}

The default subscript separator is "\034", the same as SUBSEP in awk.

Slices
A slice accesses several elements of a list, an array, or a hash simultaneously using a list of subscripts.
It’s more convenient than writing out the individual elements as a list of separate scalar values.

($him, $her) = @folks[0,−1]; # array slice
@them = @folks[0 .. 3]; # array slice
($who, $home) = @ENV{"USER", "HOME"}; # hash slice
($uid, $dir) = (getpwnam("daemon"))[2,7]; # list slice

Since you can assign to a list of variables, you can also assign to an array or hash slice.

@days[3..5] = qw/Wed Thu Fri/;
@colors{'red','blue','green'}

= (0xff0000, 0x0000ff, 0x00ff00);
@folks[0, −1] = @folks[−1, 0];

The previous assignments are exactly equivalent to

($days[3], $days[4], $days[5]) = qw/Wed Thu Fri/;
($colors{'red'}, $colors{'blue'}, $colors{'green'})

= (0xff0000, 0x0000ff, 0x00ff00);
($folks[0], $folks[−1]) = ($folks[−1], $folks[0]);

Since changing a slice changes the original array or hash that it’s slicing, a foreach construct will
alter some−−or even all−−of the values of the array or hash.

foreach (@array[4 .. 10]) { s/peter/paul/ }

foreach (@hash{qw[key1 key2]}) {
s/ˆ\s+//; # trim leading whitespace

perl v5.38.2 2025-07-25 39

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

s/\s+$//; # trim trailing whitespace
s/\b(\w)(\w*)\b/\u$1\L$2/g; # "titlecase" words

}

As a special exception, when you slice a list (but not an array or a hash), if the list evaluates to empty,
then taking a slice of that empty list will always yield the empty list in turn. Thus:

@a = ()[0,1]; # @a has no elements
@b = (@a)[0,1]; # @b has no elements
@c = (sub{}−>())[0,1]; # @c has no elements
@d = ('a','b')[0,1]; # @d has two elements
@e = (@d)[0,1,8,9]; # @e has four elements
@f = (@d)[8,9]; # @f has two elements

This makes it easy to write loops that terminate when a null list is returned:

while (($home, $user) = (getpwent)[7,0]) {
printf "%−8s %s\n", $user, $home;

}

As noted earlier in this document, the scalar sense of list assignment is the number of elements on the
right-hand side of the assignment. The null list contains no elements, so when the password file is
exhausted, the result is 0, not 2.

Slices in scalar context return the last item of the slice.

@a = qw/first second third/;
%h = (first => 'A', second => 'B');
$t = @a[0, 1]; # $t is now 'second'
$u = @h{'first', 'second'}; # $u is now 'B'

If you’re confused about why you use an ’@’ there on a hash slice instead of a ’%’, think of it like this.
The type of bracket (square or curly) governs whether it’s an array or a hash being looked at. On the
other hand, the leading symbol (’$’ or ’@’) on the array or hash indicates whether you are getting back
a singular value (a scalar) or a plural one (a list).

Ke y/Value Hash Slices

Starting in Perl 5.20, a hash slice operation with the % symbol is a variant of slice operation returning a
list of key/value pairs rather than just values:

%h = (blonk => 2, foo => 3, squink => 5, bar => 8);
%subset = %h{'foo', 'bar'}; # key/value hash slice
%subset is now (foo => 3, bar => 8)
%removed = delete %h{'foo', 'bar'};
%removed is now (foo => 3, bar => 8)
%h is now (blonk => 2, squink => 5)

However, the result of such a slice cannot be localized or assigned to. These are otherwise very much
consistent with hash slices using the @ symbol.

Index/Value Array Slices

Similar to key/value hash slices (and also introduced in Perl 5.20), the % array slice syntax returns a list
of index/value pairs:

@a = "a".."z";
@list = %a[3,4,6];
@list is now (3, "d", 4, "e", 6, "g")
@removed = delete %a[3,4,6]
@removed is now (3, "d", 4, "e", 6, "g")
@list[3,4,6] are now undef

Note that calling delete on array values is strongly discouraged.

Typeglobs and Filehandles
Perl uses an internal type called a typeglob to hold an entire symbol table entry. The type prefix of a
typeglob is a *, because it represents all types. This used to be the preferred way to pass arrays and
hashes by reference into a function, but now that we have real references, this is seldom needed.

40 2025-07-25 perl v5.38.2

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

The main use of typeglobs in modern Perl is create symbol table aliases. This assignment:

*this = *that;

makes $this an alias for $that, @this an alias for @that, %this an alias for %that, &this an
alias for &that, etc. Much safer is to use a reference. This:

local *Here::blue = \$There::green;

temporarily makes $Here::blue an alias for $There::green, but doesn’t make @Here::blue
an alias for @There::green, or %Here::blue an alias for %There::green, etc. See "Symbol
Tables" in perlmod for more examples of this. Strange though this may seem, this is the basis for the
whole module import/export system.

Another use for typeglobs is to pass filehandles into a function or to create new filehandles. If you need
to use a typeglob to save away a filehandle, do it this way:

$fh = *STDOUT;

or perhaps as a real reference, like this:

$fh = *STDOUT;

See perlsub for examples of using these as indirect filehandles in functions.

Typeglobs are also a way to create a local filehandle using the local() operator. These last until their
block is exited, but may be passed back. For example:

sub newopen {
my $path = shift;
local *FH; # not my!
open (FH, $path) or return undef;
return *FH;

}
$fh = newopen('/etc/passwd');

Now that we have the *foo{THING} notation, typeglobs aren’t used as much for filehandle
manipulations, although they’re still needed to pass brand new file and directory handles into or out of
functions. That’s because *HANDLE{IO} only works if HANDLE has already been used as a handle.
In other words, *FH must be used to create new symbol table entries; *foo{THING} cannot. When
in doubt, use *FH.

All functions that are capable of creating filehandles (open(), opendir(), pipe(), socketpair(),
sysopen(), socket(), and accept()) automatically create an anonymous filehandle if the handle passed to
them is an uninitialized scalar variable. This allows the constructs such as open(my $fh, ...)
and open(local $fh,...) to be used to create filehandles that will conveniently be closed
automatically when the scope ends, provided there are no other references to them. This largely
eliminates the need for typeglobs when opening filehandles that must be passed around, as in the
following example:

sub myopen {
open my $fh, "@_"

or die "Can't open '@_': $!";
return $fh;

}

{
my $f = myopen("</etc/motd");
print <$f>;
$f implicitly closed here

}

Note that if an initialized scalar variable is used instead the result is different: my $fh='zzz';
open($fh, ...) is equivalent to open(*{'zzz'}, ...). use strict 'refs' forbids
such practice.

Another way to create anonymous filehandles is with the Symbol module or with the IO::Handle
module and its ilk. These modules have the advantage of not hiding different types of the same name

perl v5.38.2 2025-07-25 41

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

during the local(). See the bottom of "open" in perlfunc for an example.

SEE ALSO
See perlvar for a description of Perl’s built-in variables and a discussion of legal variable names. See
perlref, perlsub, and "Symbol Tables" in perlmod for more discussion on typeglobs and the
*foo{THING} syntax.

42 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

NAME
perlop − Perl operators and precedence

DESCRIPTION
In Perl, the operator determines what operation is performed, independent of the type of the operands.
For example $x + $y is always a numeric addition, and if $x or $y do not contain numbers, an
attempt is made to convert them to numbers first.

This is in contrast to many other dynamic languages, where the operation is determined by the type of
the first argument. It also means that Perl has two versions of some operators, one for numeric and one
for string comparison. For example $x == $y compares two numbers for equality, and $x eq $y
compares two strings.

There are a few exceptions though: x can be either string repetition or list repetition, depending on the
type of the left operand, and &, |, ˆ and ˜ can be either string or numeric bit operations.

Operator Precedence and Associativity
Operator precedence and associativity work in Perl more or less like they do in mathematics.

Operator precedence means some operators group more tightly than others. For example, in 2 + 4 *
5, the multiplication has higher precedence, so 4 * 5 is grouped together as the right-hand operand of
the addition, rather than 2 + 4 being grouped together as the left-hand operand of the multiplication.
It is as if the expression were written 2 + (4 * 5), not (2 + 4) * 5. So the expression yields 2
+ 20 == 22, rather than 6 * 5 == 30.

Operator associativity defines what happens if a sequence of the same operators is used one after
another: usually that they will be grouped at the left or the right. For example, in 9 − 3 − 2,
subtraction is left associative, so 9 − 3 is grouped together as the left-hand operand of the second
subtraction, rather than 3 − 2 being grouped together as the right-hand operand of the first
subtraction. It is as if the expression were written (9 − 3) − 2, not 9 − (3 − 2). So the
expression yields 6 − 2 == 4, rather than 9 − 1 == 8.

For simple operators that evaluate all their operands and then combine the values in some way,
precedence and associativity (and parentheses) imply some ordering requirements on those combining
operations. For example, in 2 + 4 * 5, the grouping implied by precedence means that the
multiplication of 4 and 5 must be performed before the addition of 2 and 20, simply because the result
of that multiplication is required as one of the operands of the addition. But the order of operations is
not fully determined by this: in 2 * 2 + 4 * 5 both multiplications must be performed before the
addition, but the grouping does not say anything about the order in which the two multiplications are
performed. In fact Perl has a general rule that the operands of an operator are evaluated in left-to-right
order. A few operators such as &&= have special evaluation rules that can result in an operand not being
evaluated at all; in general, the top-level operator in an expression has control of operand evaluation.

Some comparison operators, as their associativity, chain with some operators of the same precedence
(but never with operators of different precedence). This chaining means that each comparison is
performed on the two arguments surrounding it, with each interior argument taking part in two
comparisons, and the comparison results are implicitly ANDed. Thus "$x < $y <= $z" behaves
exactly like "$x < $y && $y <= $z", assuming that "$y" is as simple a scalar as it looks. The
ANDing short-circuits just like "&&" does, stopping the sequence of comparisons as soon as one yields
false.

In a chained comparison, each argument expression is evaluated at most once, even if it takes part in
two comparisons, but the result of the evaluation is fetched for each comparison. (It is not evaluated at
all if the short-circuiting means that it’s not required for any comparisons.) This matters if the
computation of an interior argument is expensive or non-deterministic. For example,

if($x < expensive_sub() <= $z) { ...

is not entirely like

if($x < expensive_sub() && expensive_sub() <= $z) { ...

but instead closer to

my $tmp = expensive_sub();
if($x < $tmp && $tmp <= $z) { ...

in that the subroutine is only called once. However, it’s not exactly like this latter code either, because

perl v5.38.2 2025-07-25 43

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

the chained comparison doesn’t actually involve any temporary variable (named or otherwise): there is
no assignment. This doesn’t make much difference where the expression is a call to an ordinary
subroutine, but matters more with an lvalue subroutine, or if the argument expression yields some
unusual kind of scalar by other means. For example, if the argument expression yields a tied scalar,
then the expression is evaluated to produce that scalar at most once, but the value of that scalar may be
fetched up to twice, once for each comparison in which it is actually used.

In this example, the expression is evaluated only once, and the tied scalar (the result of the expression)
is fetched for each comparison that uses it.

if ($x < $tied_scalar < $z) { ...

In the next example, the expression is evaluated only once, and the tied scalar is fetched once as part of
the operation within the expression. The result of that operation is fetched for each comparison, which
normally doesn’t matter unless that expression result is also magical due to operator overloading.

if ($x < $tied_scalar + 42 < $z) { ...

Some operators are instead non-associative, meaning that it is a syntax error to use a sequence of those
operators of the same precedence. For example, "$x .. $y .. $z" is an error.

Perl operators have the following associativity and precedence, listed from highest precedence to
lowest. Operators borrowed from C keep the same precedence relationship with each other, even where
C’s precedence is slightly screwy. (This makes learning Perl easier for C folks.) With very few
exceptions, these all operate on scalar values only, not array values.

left terms and list operators (leftward)
left −>
nonassoc ++ −−
right **
right ! ˜ ˜. \ and unary + and −
left =˜ !˜
left * / % x
left + − .
left << >>
nonassoc named unary operators
nonassoc isa
chained < > <= >= lt gt le ge
chain/na == != eq ne <=> cmp ˜˜
left & &.
left | |. ˆ ˆ.
left &&
left || //
nonassoc
right ?:
right = += −= *= etc. goto last next redo dump
left , =>
nonassoc list operators (rightward)
right not
left and
left or xor

In the following sections, these operators are covered in detail, in the same order in which they appear
in the table above.

Many operators can be overloaded for objects. See overload.

Terms and List Operators (Leftward)
A TERM has the highest precedence in Perl. They include variables, quote and quote-like operators,
any expression in parentheses, and any function whose arguments are parenthesized. Actually, there
aren’t really functions in this sense, just list operators and unary operators behaving as functions
because you put parentheses around the arguments. These are all documented in perlfunc.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be of highest

44 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

precedence, just like a normal function call.

In the absence of parentheses, the precedence of list operators such as print, sort, or chmod is
either very high or very low depending on whether you are looking at the left side or the right side of
the operator. For example, in

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on the left are
evaluated after. In other words, list operators tend to gobble up all arguments that follow, and then act
like a simple TERM with regard to the preceding expression. Be careful with parentheses:

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or this.
print ($foo), exit; # Or even this.

Also note that

print ($foo & 255) + 1, "\n";

probably doesn’t do what you expect at first glance. The parentheses enclose the argument list for
print which is evaluated (printing the result of $foo & 255). Then one is added to the return
value of print (usually 1). The result is something like this:

1 + 1, "\n"; # Obviously not what you meant.

To do what you meant properly, you must write:

print(($foo & 255) + 1, "\n");

See "Named Unary Operators" for more discussion of this.

Also parsed as terms are the do {} and eval {} constructs, as well as subroutine and method calls,
and the anonymous constructors [] and {}.

See also "Quote and Quote-like Operators" toward the end of this section, as well as "I/O Operators".

The Arrow Operator
"−>" is an infix dereference operator, just as it is in C and C++. If the right side is either a [...],
{...}, or a (...) subscript, then the left side must be either a hard or symbolic reference to an
array, a hash, or a subroutine respectively. (Or technically speaking, a location capable of holding a
hard reference, if it’s an array or hash reference being used for assignment.) See perlreftut and perlref.

Otherwise, the right side is a method name or a simple scalar variable containing either the method
name or a subroutine reference, and (if it is a method name) the left side must be either an object (a
blessed reference) or a class name (that is, a package name). See perlobj.

The dereferencing cases (as opposed to method-calling cases) are somewhat extended by the
postderef feature. For the details of that feature, consult "Postfix Dereference Syntax" in perlref.

Auto-increment and Auto-decrement
"++" and "−−" work as in C. That is, if placed before a variable, they increment or decrement the
variable by one before returning the value, and if placed after, increment or decrement after returning
the value.

$i = 0; $j = 0;
print $i++; # prints 0
print ++$j; # prints 1

Note that just as in C, Perl doesn’t define when the variable is incremented or decremented. You just
know it will be done sometime before or after the value is returned. This also means that modifying a
variable twice in the same statement will lead to undefined behavior. Avoid statements like:

perl v5.38.2 2025-07-25 45

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$i = $i ++;
print ++ $i + $i ++;

Perl will not guarantee what the result of the above statements is.

The auto-increment operator has a little extra builtin magic to it. If you increment a variable that is
numeric, or that has ever been used in a numeric context, you get a normal increment. If, however, the
variable has been used in only string contexts since it was set, and has a value that is not the empty
string and matches the pattern /ˆ[a−zA−Z]*[0−9]*\z/, the increment is done as a string,
preserving each character within its range, with carry:

print ++($foo = "99"); # prints "100"
print ++($foo = "a0"); # prints "a1"
print ++($foo = "Az"); # prints "Ba"
print ++($foo = "zz"); # prints "aaa"

undef is always treated as numeric, and in particular is changed to 0 before incrementing (so that a
post-increment of an undef value will return 0 rather than undef).

The auto-decrement operator is not magical.

Exponentiation
Binary "**" is the exponentiation operator. It binds even more tightly than unary minus, so −2**4 is
−(2**4), not (−2)**4. (This is implemented using C’s pow(3) function, which actually works on
doubles internally.)

Note that certain exponentiation expressions are ill-defined: these include 0**0, 1**Inf, and
Inf**0. Do not expect any particular results from these special cases, the results are platform-
dependent.

Symbolic Unary Operators
Unary "!" performs logical negation, that is, "not". See also not for a lower precedence version of
this.

Unary "−" performs arithmetic negation if the operand is numeric, including any string that looks like
a number. If the operand is an identifier, a string consisting of a minus sign concatenated with the
identifier is returned. Otherwise, if the string starts with a plus or minus, a string starting with the
opposite sign is returned. One effect of these rules is that −bareword is equivalent to the string
"−bareword". If, however, the string begins with a non-alphabetic character (excluding "+" or
"−"), Perl will attempt to convert the string to a numeric, and the arithmetic negation is performed. If
the string cannot be cleanly converted to a numeric, Perl will give the warning Argument "the string"
isn’t numeric in negation (−) at

Unary "˜" performs bitwise negation, that is, 1’s complement. For example, 0666 & ˜027 is 0640.
(See also "Integer Arithmetic" and "Bitwise String Operators".) Note that the width of the result is
platform-dependent: ˜0 is 32 bits wide on a 32−bit platform, but 64 bits wide on a 64−bit platform, so
if you are expecting a certain bit width, remember to use the "&" operator to mask off the excess bits.

Starting in Perl 5.28, it is a fatal error to try to complement a string containing a character with an
ordinal value above 255.

If the "bitwise" feature is enabled via use feature 'bitwise' or use v5.28, then unary "˜"
always treats its argument as a number, and an alternate form of the operator, "˜.", always treats its
argument as a string. So ˜0 and ˜"0" will both give 2**32−1 on 32−bit platforms, whereas ˜.0 and
˜."0" will both yield "\xff". Until Perl 5.28, this feature produced a warning in the
"experimental::bitwise" category.

Unary "+" has no effect whatsoever, even on strings. It is useful syntactically for separating a function
name from a parenthesized expression that would otherwise be interpreted as the complete list of
function arguments. (See examples above under "Terms and List Operators (Leftward)".)

Unary "\" creates references. If its operand is a single sigilled thing, it creates a reference to that
object. If its operand is a parenthesised list, then it creates references to the things mentioned in the
list. Otherwise it puts its operand in list context, and creates a list of references to the scalars in the list
provided by the operand. See perlreftut and perlref. Do not confuse this behavior with the behavior of
backslash within a string, although both forms do convey the notion of protecting the next thing from
interpolation.

46 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Binding Operators
Binary "=˜" binds a scalar expression to a pattern match. Certain operations search or modify the
string $_ by default. This operator makes that kind of operation work on some other string. The right
argument is a search pattern, substitution, or transliteration. The left argument is what is supposed to
be searched, substituted, or transliterated instead of the default $_. When used in scalar context, the
return value generally indicates the success of the operation. The exceptions are substitution (s///)
and transliteration (y///) with the /r (non-destructive) option, which cause the return value to be the
result of the substitution. Behavior in list context depends on the particular operator. See "Regexp
Quote-Like Operators" for details and perlretut for examples using these operators.

If the right argument is an expression rather than a search pattern, substitution, or transliteration, it is
interpreted as a search pattern at run time. Note that this means that its contents will be interpolated
twice, so

'\\' =˜ q'\\';

is not ok, as the regex engine will end up trying to compile the pattern \, which it will consider a
syntax error.

Binary "!˜" is just like "=˜" except the return value is negated in the logical sense.

Binary "!˜" with a non-destructive substitution (s///r) or transliteration (y///r) is a syntax error.

Multiplicative Operators
Binary "*" multiplies two numbers.

Binary "/" divides two numbers.

Binary "%" is the modulo operator, which computes the division remainder of its first argument with
respect to its second argument. Given integer operands $m and $n: If $n is positive, then $m % $n is
$m minus the largest multiple of $n less than or equal to $m. If $n is negative, then $m % $n is $m
minus the smallest multiple of $n that is not less than $m (that is, the result will be less than or equal to
zero). If the operands $m and $n are floating point values and the absolute value of $n (that is
abs($n)) is less than (UV_MAX + 1), only the integer portion of $m and $n will be used in the
operation (Note: here UV_MAX means the maximum of the unsigned integer type). If the absolute
value of the right operand (abs($n)) is greater than or equal to (UV_MAX + 1), "%" computes the
floating-point remainder $r in the equation ($r = $m − $i*$n) where $i is a certain integer that
makes $r have the same sign as the right operand $n (not as the left operand $m like C function
fmod()) and the absolute value less than that of $n. Note that when use integer is in scope,
"%" gives you direct access to the modulo operator as implemented by your C compiler. This operator
is not as well defined for negative operands, but it will execute faster.

Binary x is the repetition operator. In scalar context, or if the left operand is neither enclosed in
parentheses nor a qw// list, it performs a string repetition. In that case it supplies scalar context to the
left operand, and returns a string consisting of the left operand string repeated the number of times
specified by the right operand. If the x is in list context, and the left operand is either enclosed in
parentheses or a qw// list, it performs a list repetition. In that case it supplies list context to the left
operand, and returns a list consisting of the left operand list repeated the number of times specified by
the right operand. If the right operand is zero or negative (raising a warning on negative), it returns an
empty string or an empty list, depending on the context.

print '−' x 80; # print row of dashes

print "\t" x ($tab/8), ' ' x ($tab%8); # tab over

@ones = (1) x 80; # a list of 80 1's
@ones = (5) x @ones; # set all elements to 5

Additive Operators
Binary "+" returns the sum of two numbers.

Binary "−" returns the difference of two numbers.

Binary "." concatenates two strings.

perl v5.38.2 2025-07-25 47

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Shift Operators
Binary "<<" returns the value of its left argument shifted left by the number of bits specified by the
right argument. Arguments should be integers. (See also "Integer Arithmetic".)

Binary ">>" returns the value of its left argument shifted right by the number of bits specified by the
right argument. Arguments should be integers. (See also "Integer Arithmetic".)

If use integer (see "Integer Arithmetic") is in force then signed C integers are used (arithmetic
shift), otherwise unsigned C integers are used (logical shift), even for negative shiftees. In arithmetic
right shift the sign bit is replicated on the left, in logical shift zero bits come in from the left.

Either way, the implementation isn’t going to generate results larger than the size of the integer type
Perl was built with (32 bits or 64 bits).

Shifting by negative number of bits means the reverse shift: left shift becomes right shift, right shift
becomes left shift. This is unlike in C, where negative shift is undefined.

Shifting by more bits than the size of the integers means most of the time zero (all bits fall off), except
that under use integer right overshifting a negative shiftee results in −1. This is unlike in C,
where shifting by too many bits is undefined. A common C behavior is "shift by modulo wordbits", so
that for example

1 >> 64 == 1 >> (64 % 64) == 1 >> 0 == 1 # Common C behavior.

but that is completely accidental.

If you get tired of being subject to your platform’s native integers, the use bigint pragma neatly
sidesteps the issue altogether:

print 20 << 20; # 20971520
print 20 << 40; # 5120 on 32−bit machines,

21990232555520 on 64−bit machines
use bigint;
print 20 << 100; # 25353012004564588029934064107520

Named Unary Operators
The various named unary operators are treated as functions with one argument, with optional
parentheses.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be of highest
precedence, just like a normal function call. For example, because named unary operators are higher
precedence than ||:

chdir $foo || die; # (chdir $foo) || die
chdir($foo) || die; # (chdir $foo) || die
chdir ($foo) || die; # (chdir $foo) || die
chdir +($foo) || die; # (chdir $foo) || die

but, because "*" is higher precedence than named operators:

chdir $foo * 20; # chdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20
chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; # rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20
rand +(10) * 20; # rand (10 * 20)

Regarding precedence, the filetest operators, like −f, −M, etc. are treated like named unary operators,
but they don’t follow this functional parenthesis rule. That means, for example, that
−f($file).".bak" is equivalent to −f "$file.bak".

See also "Terms and List Operators (Leftward)".

48 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Relational Operators
Perl operators that return true or false generally return values that can be safely used as numbers. For
example, the relational operators in this section and the equality operators in the next one return 1 for
true and a special version of the defined empty string, "", which counts as a zero but is exempt from
warnings about improper numeric conversions, just as "0 but true" is.

Binary "<" returns true if the left argument is numerically less than the right argument.

Binary ">" returns true if the left argument is numerically greater than the right argument.

Binary "<=" returns true if the left argument is numerically less than or equal to the right argument.

Binary ">=" returns true if the left argument is numerically greater than or equal to the right argument.

Binary "lt" returns true if the left argument is stringwise less than the right argument.

Binary "gt" returns true if the left argument is stringwise greater than the right argument.

Binary "le" returns true if the left argument is stringwise less than or equal to the right argument.

Binary "ge" returns true if the left argument is stringwise greater than or equal to the right argument.

A sequence of relational operators, such as "$x < $y <= $z", performs chained comparisons, in
the manner described above in the section "Operator Precedence and Associativity". Beware that they
do not chain with equality operators, which have lower precedence.

Equality Operators
Binary "==" returns true if the left argument is numerically equal to the right argument.

Binary "!=" returns true if the left argument is numerically not equal to the right argument.

Binary "eq" returns true if the left argument is stringwise equal to the right argument.

Binary "ne" returns true if the left argument is stringwise not equal to the right argument.

A sequence of the above equality operators, such as "$x == $y == $z", performs chained
comparisons, in the manner described above in the section "Operator Precedence and Associativity".
Beware that they do not chain with relational operators, which have higher precedence.

Binary "<=>" returns −1, 0, or 1 depending on whether the left argument is numerically less than,
equal to, or greater than the right argument. If your platform supports NaN’s (not-a-numbers) as
numeric values, using them with "<=>" returns undef. NaN is not "<", "==", ">", "<=" or ">="
anything (even NaN), so those 5 return false. NaN != NaN returns true, as does
NaN != anything else. If your platform doesn’t support NaN’s then NaN is just a string with numeric
value 0.

$ perl −le '$x = "NaN"; print "No NaN support here" if $x == $x'
$ perl −le '$x = "NaN"; print "NaN support here" if $x != $x'

(Note that the bigint, bigrat, and bignum pragmas all support "NaN".)

Binary "cmp" returns −1, 0, or 1 depending on whether the left argument is stringwise less than, equal
to, or greater than the right argument.

Here we can see the difference between <=> and cmp,

print 10 <=> 2 #prints 1
print 10 cmp 2 #prints −1

(likewise between gt and >, lt and <, etc.)

Binary "˜˜" does a smartmatch between its arguments. Smart matching is described in the next
section.

The two-sided ordering operators "<=>" and "cmp", and the smartmatch operator "˜˜", are non-
associative with respect to each other and with respect to the equality operators of the same precedence.

"lt", "le", "ge", "gt" and "cmp" use the collation (sort) order specified by the current
LC_COLLATE locale if a use locale form that includes collation is in effect. See perllocale. Do
not mix these with Unicode, only use them with legacy 8−bit locale encodings. The standard
Unicode::Collate and Unicode::Collate::Locale modules offer much more powerful
solutions to collation issues.

For case-insensitive comparisons, look at the "fc" in perlfunc case-folding function, available in Perl

perl v5.38.2 2025-07-25 49

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

v5.16 or later:

if (fc($x) eq fc($y)) { ... }

Class Instance Operator
Binary isa evaluates to true when the left argument is an object instance of the class (or a subclass
derived from that class) given by the right argument. If the left argument is not defined, not a blessed
object instance, nor does not derive from the class given by the right argument, the operator evaluates
as false. The right argument may give the class either as a bareword or a scalar expression that yields a
string class name:

if($obj isa Some::Class) { ... }

if($obj isa "Different::Class") { ... }
if($obj isa $name_of_class) { ... }

This feature is available from Perl 5.31.6 onwards when enabled by use feature 'isa'. This
feature is enabled automatically by a use v5.36 (or higher) declaration in the current scope.

Smartmatch Operator
First available in Perl 5.10.1 (the 5.10.0 version behaved differently), binary ˜˜ does a "smartmatch"
between its arguments. This is mostly used implicitly in the when construct described in perlsyn,
although not all when clauses call the smartmatch operator. Unique among all of Perl’s operators, the
smartmatch operator can recurse. The smartmatch operator is experimental and its behavior is subject
to change.

It is also unique in that all other Perl operators impose a context (usually string or numeric context) on
their operands, autoconverting those operands to those imposed contexts. In contrast, smartmatch
infers contexts from the actual types of its operands and uses that type information to select a suitable
comparison mechanism.

The ˜˜ operator compares its operands "polymorphically", determining how to compare them
according to their actual types (numeric, string, array, hash, etc.). Like the equality operators with
which it shares the same precedence, ˜˜ returns 1 for true and "" for false. It is often best read aloud
as "in", "inside of", or "is contained in", because the left operand is often looked for inside the right
operand. That makes the order of the operands to the smartmatch operand often opposite that of the
regular match operator. In other words, the "smaller" thing is usually placed in the left operand and the
larger one in the right.

The behavior of a smartmatch depends on what type of things its arguments are, as determined by the
following table. The first row of the table whose types apply determines the smartmatch behavior.
Because what actually happens is mostly determined by the type of the second operand, the table is
sorted on the right operand instead of on the left.

Left Right Description and pseudocode
===
Any undef check whether Any is undefined

like: !defined Any

Any Object invoke ˜˜ overloading on Object, or die

Right operand is an ARRAY:

Left Right Description and pseudocode
===
ARRAY1 ARRAY2 recurse on paired elements of ARRAY1 and ARRAY2[2]

like: (ARRAY1[0] ˜˜ ARRAY2[0])
&& (ARRAY1[1] ˜˜ ARRAY2[1]) && ...

HASH ARRAY any ARRAY elements exist as HASH keys
like: grep { exists HASH−>{$_} } ARRAY

Regexp ARRAY any ARRAY elements pattern match Regexp
like: grep { /Regexp/ } ARRAY

undef ARRAY undef in ARRAY
like: grep { !defined } ARRAY

50 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Any ARRAY smartmatch each ARRAY element[3]
like: grep { Any ˜˜ $_ } ARRAY

Right operand is a HASH:

Left Right Description and pseudocode
===
HASH1 HASH2 all same keys in both HASHes

like: keys HASH1 ==
grep { exists HASH2−>{$_} } keys HASH1

ARRAY HASH any ARRAY elements exist as HASH keys
like: grep { exists HASH−>{$_} } ARRAY

Regexp HASH any HASH keys pattern match Regexp
like: grep { /Regexp/ } keys HASH

undef HASH always false (undef cannot be a key)
like: 0 == 1

Any HASH HASH key existence
like: exists HASH−>{Any}

Right operand is CODE:

Left Right Description and pseudocode
===
ARRAY CODE sub returns true on all ARRAY elements[1]

like: !grep { !CODE−>($_) } ARRAY
HASH CODE sub returns true on all HASH keys[1]

like: !grep { !CODE−>($_) } keys HASH
Any CODE sub passed Any returns true

like: CODE−>(Any)

Right operand is a Regexp:

Left Right Description and pseudocode
===
ARRAY Regexp any ARRAY elements match Regexp

like: grep { /Regexp/ } ARRAY
HASH Regexp any HASH keys match Regexp

like: grep { /Regexp/ } keys HASH
Any Regexp pattern match

like: Any =˜ /Regexp/

Other:

Left Right Description and pseudocode
===
Object Any invoke ˜˜ overloading on Object,

or fall back to...

Any Num numeric equality
like: Any == Num

Num nummy[4] numeric equality
like: Num == nummy

undef Any check whether undefined
like: !defined(Any)

Any Any string equality
like: Any eq Any

Notes:

perl v5.38.2 2025-07-25 51

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

1. Empty hashes or arrays match.
2. That is, each element smartmatches the element of the same index in the other array.[3]
3. If a circular reference is found, fall back to referential equality.
4. Either an actual number, or a string that looks like one.

The smartmatch implicitly dereferences any non-blessed hash or array reference, so the HASH and
ARRAY entries apply in those cases. For blessed references, the Object entries apply. Smartmatches
involving hashes only consider hash keys, never hash values.

The "like" code entry is not always an exact rendition. For example, the smartmatch operator short-
circuits whenever possible, but grep does not. Also, grep in scalar context returns the number of
matches, but ˜˜ returns only true or false.

Unlike most operators, the smartmatch operator knows to treat undef specially:

use v5.10.1;
@array = (1, 2, 3, undef, 4, 5);
say "some elements undefined" if undef ˜˜ @array;

Each operand is considered in a modified scalar context, the modification being that array and hash
variables are passed by reference to the operator, which implicitly dereferences them. Both elements of
each pair are the same:

use v5.10.1;

my %hash = (red => 1, blue => 2, green => 3,
orange => 4, yellow => 5, purple => 6,
black => 7, grey => 8, white => 9);

my @array = qw(red blue green);

say "some array elements in hash keys" if @array ˜˜ %hash;
say "some array elements in hash keys" if \@array ˜˜ \%hash;

say "red in array" if "red" ˜˜ @array;
say "red in array" if "red" ˜˜ \@array;

say "some keys end in e" if /e$/ ˜˜ %hash;
say "some keys end in e" if /e$/ ˜˜ \%hash;

Tw o arrays smartmatch if each element in the first array smartmatches (that is, is "in") the
corresponding element in the second array, recursively.

use v5.10.1;
my @little = qw(red blue green);
my @bigger = ("red", "blue", ["orange", "green"]);
if (@little ˜˜ @bigger) { # true!

say "little is contained in bigger";
}

Because the smartmatch operator recurses on nested arrays, this will still report that "red" is in the
array.

use v5.10.1;
my @array = qw(red blue green);
my $nested_array = [[[[[[[@array]]]]]]];
say "red in array" if "red" ˜˜ $nested_array;

If two arrays smartmatch each other, then they are deep copies of each others’ values, as this example
reports:

use v5.12.0;
my @a = (0, 1, 2, [3, [4, 5], 6], 7);
my @b = (0, 1, 2, [3, [4, 5], 6], 7);

if (@a ˜˜ @b && @b ˜˜ @a) {

52 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

say "a and b are deep copies of each other";
}
elsif (@a ˜˜ @b) {

say "a smartmatches in b";
}
elsif (@b ˜˜ @a) {

say "b smartmatches in a";
}
else {

say "a and b don't smartmatch each other at all";
}

If you were to set $b[3] = 4, then instead of reporting that "a and b are deep copies of each other",
it now reports that "b smartmatches in a". That’s because the corresponding position in @a
contains an array that (eventually) has a 4 in it.

Smartmatching one hash against another reports whether both contain the same keys, no more and no
less. This could be used to see whether two records have the same field names, without caring what
values those fields might have. For example:

use v5.10.1;
sub make_dogtag {

state $REQUIRED_FIELDS = { name=>1, rank=>1, serial_num=>1 };

my ($class, $init_fields) = @_;

die "Must supply (only) name, rank, and serial number"
unless $init_fields ˜˜ $REQUIRED_FIELDS;

...
}

However, this only does what you mean if $init_fields is indeed a hash reference. The condition
$init_fields ˜˜ $REQUIRED_FIELDS also allows the strings "name", "rank",
"serial_num" as well as any array reference that contains "name" or "rank" or
"serial_num" anywhere to pass through.

The smartmatch operator is most often used as the implicit operator of a when clause. See the section
on "Switch Statements" in perlsyn.

Smartmatching of Objects

To avoid relying on an object’s underlying representation, if the smartmatch’s right operand is an object
that doesn’t overload ˜˜, it raises the exception "Smartmatching a non−overloaded
object breaks encapsulation". That’s because one has no business digging around to see
whether something is "in" an object. These are all illegal on objects without a ˜˜ overload:

%hash ˜˜ $object
42 ˜˜ $object

"fred" ˜˜ $object

However, you can change the way an object is smartmatched by overloading the ˜˜ operator. This is
allowed to extend the usual smartmatch semantics. For objects that do have an ˜˜ overload, see
overload.

Using an object as the left operand is allowed, although not very useful. Smartmatching rules take
precedence over overloading, so even if the object in the left operand has smartmatch overloading, this
will be ignored. A left operand that is a non-overloaded object falls back on a string or numeric
comparison of whatever the ref operator returns. That means that

$object ˜˜ X

does not invoke the overload method with X as an argument. Instead the above table is consulted as
normal, and based on the type of X, overloading may or may not be invoked. For simple strings or
numbers, "in" becomes equivalent to this:

perl v5.38.2 2025-07-25 53

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$object ˜˜ $number ref($object) == $number
$object ˜˜ $string ref($object) eq $string

For example, this reports that the handle smells IOish (but please don’t really do this!):

use IO::Handle;
my $fh = IO::Handle−>new();
if ($fh ˜˜ /\bIO\b/) {

say "handle smells IOish";
}

That’s because it treats $fh as a string like "IO::Handle=GLOB(0x8039e0)", then pattern
matches against that.

Bitwise And
Binary "&" returns its operands ANDed together bit by bit. Although no warning is currently raised,
the result is not well defined when this operation is performed on operands that aren’t either numbers
(see "Integer Arithmetic") nor bitstrings (see "Bitwise String Operators").

Note that "&" has lower priority than relational operators, so for example the parentheses are essential
in a test like

print "Even\n" if ($x & 1) == 0;

If the "bitwise" feature is enabled via use feature 'bitwise' or use v5.28, then this
operator always treats its operands as numbers. Before Perl 5.28 this feature produced a warning in the
"experimental::bitwise" category.

Bitwise Or and Exclusive Or
Binary "|" returns its operands ORed together bit by bit.

Binary "ˆ" returns its operands XORed together bit by bit.

Although no warning is currently raised, the results are not well defined when these operations are
performed on operands that aren’t either numbers (see "Integer Arithmetic") nor bitstrings (see
"Bitwise String Operators").

Note that "|" and "ˆ" have lower priority than relational operators, so for example the parentheses
are essential in a test like

print "false\n" if (8 | 2) != 10;

If the "bitwise" feature is enabled via use feature 'bitwise' or use v5.28, then this
operator always treats its operands as numbers. Before Perl 5.28. this feature produced a warning in
the "experimental::bitwise" category.

C−style Logical And
Binary "&&" performs a short-circuit logical AND operation. That is, if the left operand is false, the
right operand is not even evaluated. Scalar or list context propagates down to the right operand if it is
evaluated.

C−style Logical Or
Binary "||" performs a short-circuit logical OR operation. That is, if the left operand is true, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is
evaluated.

Logical Defined-Or
Although it has no direct equivalent in C, Perl’s // operator is related to its C−style "or". In fact, it’s
exactly the same as ||, except that it tests the left hand side’s definedness instead of its truth. Thus,
EXPR1 // EXPR2 returns the value of EXPR1 if it’s defined, otherwise, the value of EXPR2 is
returned. (EXPR1 is evaluated in scalar context, EXPR2 in the context of // itself). Usually, this is
the same result as defined(EXPR1) ? EXPR1 : EXPR2 (except that the ternary-operator form
can be used as a lvalue, while EXPR1 // EXPR2 cannot). This is very useful for providing default
values for variables. If you actually want to test if at least one of $x and $y is defined, use
defined($x // $y).

The ||, // and && operators return the last value evaluated (unlike C’s || and &&, which return 0 or
1). Thus, a reasonably portable way to find out the home directory might be:

54 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$home = $ENV{HOME}
// $ENV{LOGDIR}
// (getpwuid($<))[7]
// die "You're homeless!\n";

In particular, this means that you shouldn’t use this for selecting between two aggregates for
assignment:

@a = @b || @c; # This doesn't do the right thing
@a = scalar(@b) || @c; # because it really means this.
@a = @b ? @b : @c; # This works fine, though.

As alternatives to && and || when used for control flow, Perl provides the and and or operators (see
below). The short-circuit behavior is identical. The precedence of "and" and "or" is much lower,
however, so that you can safely use them after a list operator without the need for parentheses:

unlink "alpha", "beta", "gamma"
or gripe(), next LINE;

With the C−style operators that would have been written like this:

unlink("alpha", "beta", "gamma")
|| (gripe(), next LINE);

It would be even more readable to write that this way:

unless(unlink("alpha", "beta", "gamma")) {
gripe();
next LINE;

}

Using "or" for assignment is unlikely to do what you want; see below.

Range Operators
Binary ".." is the range operator, which is really two different operators depending on the context. In
list context, it returns a list of values counting (up by ones) from the left value to the right value. If the
left value is greater than the right value then it returns the empty list. The range operator is useful for
writing foreach (1..10) loops and for doing slice operations on arrays. In the current
implementation, no temporary array is created when the range operator is used as the expression in
foreach loops, but older versions of Perl might burn a lot of memory when you write something like
this:

for (1 .. 1_000_000) {
code

}

The range operator also works on strings, using the magical auto-increment, see below.

In scalar context, ".." returns a boolean value. The operator is bistable, like a flip-flop, and emulates
the line-range (comma) operator of sed, awk, and various editors. Each ".." operator maintains its
own boolean state, even across calls to a subroutine that contains it. It is false as long as its left
operand is false. Once the left operand is true, the range operator stays true until the right operand is
true, AFTER which the range operator becomes false again. It doesn’t become false till the next time
the range operator is evaluated. It can test the right operand and become false on the same evaluation it
became true (as in awk), but it still returns true once. If you don’t want it to test the right operand until
the next evaluation, as in sed, just use three dots ("...") instead of two. In all other regards, "..."
behaves just like ".." does.

The right operand is not evaluated while the operator is in the "false" state, and the left operand is not
evaluated while the operator is in the "true" state. The precedence is a little lower than || and &&. The
value returned is either the empty string for false, or a sequence number (beginning with 1) for true.
The sequence number is reset for each range encountered. The final sequence number in a range has
the string "E0" appended to it, which doesn’t affect its numeric value, but gives you something to
search for if you want to exclude the endpoint. You can exclude the beginning point by waiting for the
sequence number to be greater than 1.

If either operand of scalar ".." is a constant expression, that operand is considered true if it is equal
(==) to the current input line number (the $. variable).

perl v5.38.2 2025-07-25 55

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

To be pedantic, the comparison is actually int(EXPR) == int(EXPR), but that is only an issue if
you use a floating point expression; when implicitly using $. as described in the previous paragraph,
the comparison is int(EXPR) == int($.) which is only an issue when $. is set to a floating
point value and you are not reading from a file. Furthermore, "span" .. "spat" or
2.18 .. 3.14 will not do what you want in scalar context because each of the operands are
evaluated using their integer representation.

Examples:

As a scalar operator:

if (101 .. 200) { print; } # print 2nd hundred lines, short for
if ($. == 101 .. $. == 200) { print; }

next LINE if (1 .. /ˆ$/); # skip header lines, short for
next LINE if ($. == 1 .. /ˆ$/);
(typically in a loop labeled LINE)

s/ˆ/> / if (/ˆ$/ .. eof()); # quote body

parse mail messages
while (<>) {

$in_header = 1 .. /ˆ$/;
$in_body = /ˆ$/ .. eof;
if ($in_header) {

do something
} else { # in body

do something else
}

} continue {
close ARGV if eof; # reset $. each file

}

Here’s a simple example to illustrate the difference between the two range operators:

@lines = (" − Foo",
"01 − Bar",
"1 − Baz",
" − Quux");

foreach (@lines) {
if (/0/ .. /1/) {

print "$_\n";
}

}

This program will print only the line containing "Bar". If the range operator is changed to ..., it will
also print the "Baz" line.

And now some examples as a list operator:

for (101 .. 200) { print } # print $_ 100 times
@foo = @foo[0 .. $#foo]; # an expensive no−op
@foo = @foo[$#foo−4 .. $#foo]; # slice last 5 items

Because each operand is evaluated in integer form, 2.18 .. 3.14 will return two elements in list
context.

@list = (2.18 .. 3.14); # same as @list = (2 .. 3);

The range operator in list context can make use of the magical auto-increment algorithm if both
operands are strings, subject to the following rules:

• With one exception (below), if both strings look like numbers to Perl, the magic increment will not
be applied, and the strings will be treated as numbers (more specifically, integers) instead.

56 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

For example, "−2".."2" is the same as −2..2, and "2.18".."3.14" produces 2, 3.

• The exception to the above rule is when the left-hand string begins with 0 and is longer than one
character, in this case the magic increment will be applied, even though strings like "01" would
normally look like a number to Perl.

For example, "01".."04" produces "01", "02", "03", "04", and "00".."−1"
produces "00" through "99" − this may seem surprising, but see the following rules for why it
works this way. To get dates with leading zeros, you can say:

@z2 = ("01" .. "31");
print $z2[$mday];

If you want to force strings to be interpreted as numbers, you could say

@numbers = (0+$first .. 0+$last);

Note: In Perl versions 5.30 and below, any string on the left-hand side beginning with "0",
including the string "0" itself, would cause the magic string increment behavior. This means that
on these Perl versions, "0".."−1" would produce "0" through "99", which was inconsistent
with 0..−1, which produces the empty list. This also means that "0".."9" now produces a list
of integers instead of a list of strings.

• If the initial value specified isn’t part of a magical increment sequence (that is, a non-empty string
matching /ˆ[a−zA−Z]*[0−9]*\z/), only the initial value will be returned.

For example, "ax".."az" produces "ax", "ay", "az", but "*x".."az" produces only
"*x".

• For other initial values that are strings that do follow the rules of the magical increment, the
corresponding sequence will be returned.

For example, you can say

@alphabet = ("A" .. "Z");

to get all normal letters of the English alphabet, or

$hexdigit = (0 .. 9, "a" .. "f")[$num & 15];

to get a hexadecimal digit.

• If the final value specified is not in the sequence that the magical increment would produce, the
sequence goes until the next value would be longer than the final value specified. If the length of
the final string is shorter than the first, the empty list is returned.

For example, "a".."−−" is the same as "a".."zz", "0".."xx" produces "0" through
"99", and "aaa".."−−" returns the empty list.

As of Perl 5.26, the list-context range operator on strings works as expected in the scope of
"use feature 'unicode_strings". In previous versions, and outside the scope of that
feature, it exhibits "The "Unicode Bug"" in perlunicode: its behavior depends on the internal encoding
of the range endpoint.

Because the magical increment only works on non-empty strings matching
/ˆ[a−zA−Z]*[0−9]*\z/, the following will only return an alpha:

use charnames "greek";
my @greek_small = ("\N{alpha}" .. "\N{omega}");

To get the 25 traditional lowercase Greek letters, including both sigmas, you could use this instead:

use charnames "greek";
my @greek_small = map { chr } (ord("\N{alpha}")

..
ord("\N{omega}")

);

However, because there are many other lowercase Greek characters than just those, to match lowercase
Greek characters in a regular expression, you could use the pattern
/(?:(?=\p{Greek})\p{Lower})+/ (or the experimental feature

perl v5.38.2 2025-07-25 57

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

/(?[\p{Greek} & \p{Lower}])+/).

Conditional Operator
Ternary "?:" is the conditional operator, just as in C. It works much like an if-then-else. If the
argument before the ? is true, the argument before the : is returned, otherwise the argument after the :
is returned. For example:

printf "I have %d dog%s.\n", $n,
($n == 1) ? "" : "s";

Scalar or list context propagates downward into the 2nd or 3rd argument, whichever is selected.

$x = $ok ? $y : $z; # get a scalar
@x = $ok ? @y : @z; # get an array
$x = $ok ? @y : @z; # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are legal lvalues (meaning that you
can assign to them):

($x_or_y ? $x : $y) = $z;

Because this operator produces an assignable result, using assignments without parentheses will get
you in trouble. For example, this:

$x % 2 ? $x += 10 : $x += 2

Really means this:

(($x % 2) ? ($x += 10) : $x) += 2

Rather than this:

($x % 2) ? ($x += 10) : ($x += 2)

That should probably be written more simply as:

$x += ($x % 2) ? 10 : 2;

Assignment Operators
"=" is the ordinary assignment operator.

Assignment operators work as in C. That is,

$x += 2;

is equivalent to

$x = $x + 2;

although without duplicating any side effects that dereferencing the lvalue might trigger, such as from
tie(). Other assignment operators work similarly. The following are recognized:

**= += *= &= &.= <<= &&=
−= /= |= |.= >>= ||=
.= %= ˆ= ˆ.= //=

x=

Although these are grouped by family, they all have the precedence of assignment. These combined
assignment operators can only operate on scalars, whereas the ordinary assignment operator can assign
to arrays, hashes, lists and even references. (See "Context" and "List value constructors" in perldata,
and "Assigning to References" in perlref.)

Unlike in C, the scalar assignment operator produces a valid lvalue. Modifying an assignment is
equivalent to doing the assignment and then modifying the variable that was assigned to. This is useful
for modifying a copy of something, like this:

($tmp = $global) =˜ tr/13579/24680/;

Although as of 5.14, that can be also be accomplished this way:

use v5.14;
$tmp = ($global =˜ tr/13579/24680/r);

Likewise,

58 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

($x += 2) *= 3;

is equivalent to

$x += 2;
$x *= 3;

Similarly, a list assignment in list context produces the list of lvalues assigned to, and a list assignment
in scalar context returns the number of elements produced by the expression on the right hand side of
the assignment.

The three dotted bitwise assignment operators (&.= |.= ̂ .=) are new in Perl 5.22. See "Bitwise
String Operators".

Comma Operator
Binary "," is the comma operator. In scalar context it evaluates its left argument, throws that value
aw ay, then evaluates its right argument and returns that value. This is just like C’s comma operator.

In list context, it’s just the list argument separator, and inserts both its arguments into the list. These
arguments are also evaluated from left to right.

The => operator (sometimes pronounced "fat comma") is a synonym for the comma except that it
causes a word on its left to be interpreted as a string if it begins with a letter or underscore and is
composed only of letters, digits and underscores. This includes operands that might otherwise be
interpreted as operators, constants, single number v−strings or function calls. If in doubt about this
behavior, the left operand can be quoted explicitly.

Otherwise, the => operator behaves exactly as the comma operator or list argument separator,
according to context.

For example:

use constant FOO => "something";

my %h = (FOO => 23);

is equivalent to:

my %h = ("FOO", 23);

It is NOT:

my %h = ("something", 23);

The => operator is helpful in documenting the correspondence between keys and values in hashes, and
other paired elements in lists.

%hash = ($key => $value);
login($username => $password);

The special quoting behavior ignores precedence, and hence may apply to part of the left operand:

print time.shift => "bbb";

That example prints something like "1314363215shiftbbb", because the => implicitly quotes the
shift immediately on its left, ignoring the fact that time.shift is the entire left operand.

List Operators (Rightward)
On the right side of a list operator, the comma has very low precedence, such that it controls all
comma-separated expressions found there. The only operators with lower precedence are the logical
operators "and", "or", and "not", which may be used to evaluate calls to list operators without the
need for parentheses:

open HANDLE, "< :encoding(UTF−8)", "filename"
or die "Can't open: $!\n";

However, some people find that code harder to read than writing it with parentheses:

open(HANDLE, "< :encoding(UTF−8)", "filename")
or die "Can't open: $!\n";

in which case you might as well just use the more customary "||" operator:

perl v5.38.2 2025-07-25 59

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

open(HANDLE, "< :encoding(UTF−8)", "filename")
|| die "Can't open: $!\n";

See also discussion of list operators in "Terms and List Operators (Leftward)".

Logical Not
Unary "not" returns the logical negation of the expression to its right. It’s the equivalent of "!"
except for the very low precedence.

Logical And
Binary "and" returns the logical conjunction of the two surrounding expressions. It’s equivalent to
&& except for the very low precedence. This means that it short-circuits: the right expression is
evaluated only if the left expression is true.

Logical or and Exclusive Or
Binary "or" returns the logical disjunction of the two surrounding expressions. It’s equivalent to ||
except for the very low precedence. This makes it useful for control flow:

print FH $data or die "Can't write to FH: $!";

This means that it short-circuits: the right expression is evaluated only if the left expression is false.
Due to its precedence, you must be careful to avoid using it as replacement for the || operator. It
usually works out better for flow control than in assignments:

$x = $y or $z; # bug: this is wrong
($x = $y) or $z; # really means this
$x = $y || $z; # better written this way

However, when it’s a list-context assignment and you’re trying to use || for control flow, you probably
need "or" so that the assignment takes higher precedence.

@info = stat($file) || die; # oops, scalar sense of stat!
@info = stat($file) or die; # better, now @info gets its due

Then again, you could always use parentheses.

Binary "xor" returns the exclusive-OR of the two surrounding expressions. It cannot short-circuit (of
course).

There is no low precedence operator for defined-OR.

C Operators Missing From Perl
Here is what C has that Perl doesn’t:

unary & Address-of operator. (But see the "\" operator for taking a reference.)

unary * Dereference-address operator. (Perl’s prefix dereferencing operators are typed: $, @, %, and
&.)

(TYPE) Type-casting operator.

Quote and Quote-like Operators
While we usually think of quotes as literal values, in Perl they function as operators, providing various
kinds of interpolating and pattern matching capabilities. Perl provides customary quote characters for
these behaviors, but also provides a way for you to choose your quote character for any of them. In the
following table, a {} represents any pair of delimiters you choose.

Customary Generic Meaning Interpolates
'' q{} Literal no
"" qq{} Literal yes
`` qx{} Command yes*

qw{} Word list no
// m{} Pattern match yes*

qr{} Pattern yes*
s{}{} Substitution yes*
tr{}{} Transliteration no (but see below)
y{}{} Transliteration no (but see below)

<<EOF here−doc yes*

60 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

* unless the delimiter is ''.

Non-bracketing delimiters use the same character fore and aft, but the four sorts of ASCII brackets
(round, angle, square, curly) all nest, which means that

q{foo{bar}baz}

is the same as

'foo{bar}baz'

Note, however, that this does not always work for quoting Perl code:

$s = q{ if($x eq "}") ... }; # WRONG

is a syntax error. The Text::Balanced module (standard as of v5.8, and from CPAN before then)
is able to do this properly.

There can (and in some cases, must) be whitespace between the operator and the quoting characters,
except when # is being used as the quoting character. q#foo# is parsed as the string foo, while
q #foo# is the operator q followed by a comment. Its argument will be taken from the next line.
This allows you to write:

s {foo} # Replace foo
{bar} # with bar.

The cases where whitespace must be used are when the quoting character is a word character (meaning
it matches /\w/):

q XfooX # Works: means the string 'foo'
qXfooX # WRONG!

The following escape sequences are available in constructs that interpolate, and in transliterations
whose delimiters aren’t single quotes ("'"). In all the ones with braces, any number of blanks and/or
tabs adjoining and within the braces are allowed (and ignored).

Sequence Note Description
\t tab (HT, TAB)
\n newline (NL)
\r return (CR)
\f form feed (FF)
\b backspace (BS)
\a alarm (bell) (BEL)
\e escape (ESC)
\x{263A} [1,8] hex char (example shown: SMILEY)
\x{ 263A } Same, but shows optional blanks inside and

adjoining the braces
\x1b [2,8] restricted range hex char (example: ESC)
\N{name} [3] named Unicode character or character sequence
\N{U+263D} [4,8] Unicode character (example: FIRST QUARTER MOON)
\c[[5] control char (example: chr(27))
\o{23072} [6,8] octal char (example: SMILEY)
\033 [7,8] restricted range octal char (example: ESC)

Note that any escape sequence using braces inside interpolated constructs may have optional blanks
(tab or space characters) adjoining with and inside of the braces, as illustrated above by the second
\x{ } example.

[1] The result is the character specified by the hexadecimal number between the braces. See "[8]"
below for details on which character.

Blanks (tab or space characters) may separate the number from either or both of the braces.

Otherwise, only hexadecimal digits are valid between the braces. If an invalid character is
encountered, a warning will be issued and the invalid character and all subsequent characters
(valid or invalid) within the braces will be discarded.

If there are no valid digits between the braces, the generated character is the NULL character
(\x{00}). However, an explicit empty brace (\x{}) will not cause a warning (currently).

perl v5.38.2 2025-07-25 61

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

[2] The result is the character specified by the hexadecimal number in the range 0x00 to 0xFF. See
"[8]" below for details on which character.

Only hexadecimal digits are valid following \x. When \x is followed by fewer than two valid
digits, any valid digits will be zero-padded. This means that \x7 will be interpreted as \x07, and
a lone "\x" will be interpreted as \x00. Except at the end of a string, having fewer than two
valid digits will result in a warning. Note that although the warning says the illegal character is
ignored, it is only ignored as part of the escape and will still be used as the subsequent character in
the string. For example:

Original Result Warns?
"\x7" "\x07" no
"\x" "\x00" no
"\x7q" "\x07q" yes
"\xq" "\x00q" yes

[3] The result is the Unicode character or character sequence given by name. See charnames.

[4] \N{U+hexadecimal number} means the Unicode character whose Unicode code point is
hexadecimal number.

[5] The character following \c is mapped to some other character as shown in the table:

Sequence Value
\c@ chr(0)
\cA chr(1)
\ca chr(1)
\cB chr(2)
\cb chr(2)
...
\cZ chr(26)
\cz chr(26)
\c[chr(27)

See below for chr(28)
\c] chr(29)
\cˆ chr(30)
\c_ chr(31)
\c? chr(127) # (on ASCII platforms; see below for link to

EBCDIC discussion)

In other words, it’s the character whose code point has had 64 xor’d with its uppercase. \c? is
DELETE on ASCII platforms because ord("?") ˆ 64 is 127, and \c@ is NULL because the
ord of "@" is 64, so xor’ing 64 itself produces 0.

Also, \c\X yields chr(28) . "X" for any X, but cannot come at the end of a string, because
the backslash would be parsed as escaping the end quote.

On ASCII platforms, the resulting characters from the list above are the complete set of ASCII
controls. This isn’t the case on EBCDIC platforms; see "OPERATOR DIFFERENCES" in
perlebcdic for a full discussion of the differences between these for ASCII versus EBCDIC
platforms.

Use of any other character following the "c" besides those listed above is discouraged, and as of
Perl v5.20, the only characters actually allowed are the printable ASCII ones, minus the left brace
"{". What happens for any of the allowed other characters is that the value is derived by xor’ing
with the seventh bit, which is 64, and a warning raised if enabled. Using the non-allowed
characters generates a fatal error.

To get platform independent controls, you can use \N{...}.

[6] The result is the character specified by the octal number between the braces. See "[8]" below for
details on which character.

Blanks (tab or space characters) may separate the number from either or both of the braces.

Otherwise, if a character that isn’t an octal digit is encountered, a warning is raised, and the value

62 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

is based on the octal digits before it, discarding it and all following characters up to the closing
brace. It is a fatal error if there are no octal digits at all.

[7] The result is the character specified by the three-digit octal number in the range 000 to 777 (but
best to not use above 077, see next paragraph). See "[8]" below for details on which character.

Some contexts allow 2 or even 1 digit, but any usage without exactly three digits, the first being a
zero, may give unintended results. (For example, in a regular expression it may be confused with
a backreference; see "Octal escapes" in perlrebackslash.) Starting in Perl 5.14, you may use \o{}
instead, which avoids all these problems. Otherwise, it is best to use this construct only for
ordinals \077 and below, remembering to pad to the left with zeros to make three digits. For
larger ordinals, either use \o{}, or convert to something else, such as to hex and use \N{U+}
(which is portable between platforms with different character sets) or \x{} instead.

[8] Several constructs above specify a character by a number. That number gives the character’s
position in the character set encoding (indexed from 0). This is called synonymously its ordinal,
code position, or code point. Perl works on platforms that have a native encoding currently of
either ASCII/Latin1 or EBCDIC, each of which allow specification of 256 characters. In general,
if the number is 255 (0xFF, 0377) or below, Perl interprets this in the platform’s native encoding.
If the number is 256 (0x100, 0400) or above, Perl interprets it as a Unicode code point and the
result is the corresponding Unicode character. For example \x{50} and \o{120} both are the
number 80 in decimal, which is less than 256, so the number is interpreted in the native character
set encoding. In ASCII the character in the 80th position (indexed from 0) is the letter "P", and
in EBCDIC it is the ampersand symbol "&". \x{100} and \o{400} are both 256 in decimal,
so the number is interpreted as a Unicode code point no matter what the native encoding is. The
name of the character in the 256th position (indexed by 0) in Unicode is LATIN CAPITAL
LETTER A WITH MACRON.

An exception to the above rule is that \N{U+hex number} is always interpreted as a Unicode
code point, so that \N{U+0050} is "P" ev en on EBCDIC platforms.

NOTE: Unlike C and other languages, Perl has no \v escape sequence for the vertical tab (VT, which
is 11 in both ASCII and EBCDIC), but you may use \N{VT}, \ck, \N{U+0b}, or \x0b. (\v does
have meaning in regular expression patterns in Perl, see perlre.)

The following escape sequences are available in constructs that interpolate, but not in transliterations.

\l lowercase next character only
\u titlecase (not uppercase!) next character only
\L lowercase all characters till \E or end of string
\U uppercase all characters till \E or end of string
\F foldcase all characters till \E or end of string
\Q quote (disable) pattern metacharacters till \E or

end of string
\E end either case modification or quoted section

(whichever was last seen)

See "quotemeta" in perlfunc for the exact definition of characters that are quoted by \Q.

\L, \U, \F, and \Q can stack, in which case you need one \E for each. For example:

say "This \Qquoting \ubusiness \Uhere isn't quite\E done yet,\E is it?";
This quoting\ Business\ HERE\ ISN\'T\ QUITE\ done\ yet\, is it?

If a use locale form that includes LC_CTYPE is in effect (see perllocale), the case map used by
\l, \L, \u, and \U is taken from the current locale. If Unicode (for example, \N{} or code points of
0x100 or beyond) is being used, the case map used by \l, \L, \u, and \U is as defined by Unicode.
That means that case-mapping a single character can sometimes produce a sequence of several
characters. Under use locale, \F produces the same results as \L for all locales but a UTF−8 one,
where it instead uses the Unicode definition.

All systems use the virtual "\n" to represent a line terminator, called a "newline". There is no such
thing as an unvarying, physical newline character. It is only an illusion that the operating system,
device drivers, C libraries, and Perl all conspire to preserve. Not all systems read "\r" as ASCII CR
and "\n" as ASCII LF. For example, on the ancient Macs (pre-MacOS X) of yesteryear, these used to
be reversed, and on systems without a line terminator, printing "\n" might emit no actual data. In

perl v5.38.2 2025-07-25 63

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

general, use "\n" when you mean a "newline" for your system, but use the literal ASCII when you
need an exact character. For example, most networking protocols expect and prefer a CR+LF
("\015\012" or "\cM\cJ") for line terminators, and although they often accept just "\012", they
seldom tolerate just "\015". If you get in the habit of using "\n" for networking, you may be
burned some day.

For constructs that do interpolate, variables beginning with "$" or "@" are interpolated. Subscripted
variables such as $a[3] or $href−>{key}[0] are also interpolated, as are array and hash slices.
But method calls such as $obj−>meth are not.

Interpolating an array or slice interpolates the elements in order, separated by the value of $", so is
equivalent to interpolating join $", @array. "Punctuation" arrays such as @* are usually
interpolated only if the name is enclosed in braces @{*}, but the arrays @_, @+, and @− are
interpolated even without braces.

For double-quoted strings, the quoting from \Q is applied after interpolation and escapes are processed.

"abc\Qfoo\tbar$s\Exyz"

is equivalent to

"abc" . quotemeta("foo\tbar$s") . "xyz"

For the pattern of regex operators (qr//, m// and s///), the quoting from \Q is applied after
interpolation is processed, but before escapes are processed. This allows the pattern to match literally
(except for $ and @). For example, the following matches:

'\s\t' =˜ /\Q\s\t/

Because $ or @ trigger interpolation, you’ll need to use something like /\Quser\E\@\Qhost/ to
match them literally.

Patterns are subject to an additional level of interpretation as a regular expression. This is done as a
second pass, after variables are interpolated, so that regular expressions may be incorporated into the
pattern from the variables. If this is not what you want, use \Q to interpolate a variable literally.

Apart from the behavior described above, Perl does not expand multiple levels of interpolation. In
particular, contrary to the expectations of shell programmers, back-quotes do NOT interpolate within
double quotes, nor do single quotes impede evaluation of variables when used within double quotes.

Regexp Quote-Like Operators
Here are the quote-like operators that apply to pattern matching and related activities.

qr/STRING/msixpodualn
This operator quotes (and possibly compiles) its STRING as a regular expression. STRING is
interpolated the same way as PA TTERN in m/PATTERN/. If "'" is used as the delimiter, no
variable interpolation is done. Returns a Perl value which may be used instead of the
corresponding /STRING/msixpodualn expression. The returned value is a normalized
version of the original pattern. It magically differs from a string containing the same
characters: ref(qr/x/) returns "Regexp"; however, dereferencing it is not well defined
(you currently get the normalized version of the original pattern, but this may change).

For example,

$rex = qr/my.STRING/is;
print $rex; # prints (?si−xm:my.STRING)
s/$rex/foo/;

is equivalent to

s/my.STRING/foo/is;

The result may be used as a subpattern in a match:

64 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$re = qr/$pattern/;
$string =˜ /foo${re}bar/; # can be interpolated in other

patterns
$string =˜ $re; # or used standalone
$string =˜ /$re/; # or this way

Since Perl may compile the pattern at the moment of execution of the qr() operator, using
qr() may have speed advantages in some situations, notably if the result of qr() is used
standalone:

sub match {
my $patterns = shift;
my @compiled = map qr/$_/i, @$patterns;
grep {

my $success = 0;
foreach my $pat (@compiled) {

$success = 1, last if /$pat/;
}
$success;

} @_;
}

Precompilation of the pattern into an internal representation at the moment of qr() avoids
the need to recompile the pattern every time a match /$pat/ is attempted. (Perl has many
other internal optimizations, but none would be triggered in the above example if we did not
use qr() operator.)

Options (specified by the following modifiers) are:

m Treat string as multiple lines.
s Treat string as single line. (Make . match a newline)
i Do case−insensitive pattern matching.
x Use extended regular expressions; specifying two

x's means \t and the SPACE character are ignored within
square−bracketed character classes

p When matching preserve a copy of the matched string so
that ${ˆPREMATCH}, ${ˆMATCH}, ${ˆPOSTMATCH} will be
defined (ignored starting in v5.20 as these are always
defined starting in that release)

o Compile pattern only once.
a ASCII−restrict: Use ASCII for \d, \s, \w and [[:posix:]]

character classes; specifying two a's adds the further
restriction that no ASCII character will match a
non−ASCII one under /i.

l Use the current run−time locale's rules.
u Use Unicode rules.
d Use Unicode or native charset, as in 5.12 and earlier.
n Non−capture mode. Don't let () fill in $1, $2, etc...

If a precompiled pattern is embedded in a larger pattern then the effect of "msixpluadn"
will be propagated appropriately. The effect that the /o modifier has is not propagated, being
restricted to those patterns explicitly using it.

The /a, /d, /l, and /u modifiers (added in Perl 5.14) control the character set rules, but /a
is the only one you are likely to want to specify explicitly; the other three are selected
automatically by various pragmas.

See perlre for additional information on valid syntax for STRING, and for a detailed look at
the semantics of regular expressions. In particular, all modifiers except the largely obsolete
/o are further explained in "Modifiers" in perlre. /o is described in the next section.

perl v5.38.2 2025-07-25 65

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

m/PATTERN/msixpodualngc
/PATTERN/msixpodualngc

Searches a string for a pattern match, and in scalar context returns true if it succeeds, false if
it fails. If no string is specified via the =˜ or !˜ operator, the $_ string is searched. (The
string specified with =˜ need not be an lvalue−−it may be the result of an expression
evaluation, but remember the =˜ binds rather tightly.) See also perlre.

Options are as described in qr// above; in addition, the following match process modifiers
are available:

g Match globally, i.e., find all occurrences.
c Do not reset search position on a failed match when /g is

in effect.

If "/" is the delimiter then the initial m is optional. With the m you can use any pair of non-
whitespace (ASCII) characters as delimiters. This is particularly useful for matching path
names that contain "/", to avoid LTS (leaning toothpick syndrome). If "?" is the delimiter,
then a match-only-once rule applies, described in m?PATTERN? below. If "'" (single
quote) is the delimiter, no variable interpolation is performed on the PA TTERN. When using
a delimiter character valid in an identifier, whitespace is required after the m.

PA TTERN may contain variables, which will be interpolated every time the pattern search is
evaluated, except for when the delimiter is a single quote. (Note that $(, $), and $| are not
interpolated because they look like end-of-string tests.) Perl will not recompile the pattern
unless an interpolated variable that it contains changes. You can force Perl to skip the test
and never recompile by adding a /o (which stands for "once") after the trailing delimiter.
Once upon a time, Perl would recompile regular expressions unnecessarily, and this modifier
was useful to tell it not to do so, in the interests of speed. But now, the only reasons to use
/o are one of:

1. The variables are thousands of characters long and you know that they don’t change, and
you need to wring out the last little bit of speed by having Perl skip testing for that.
(There is a maintenance penalty for doing this, as mentioning /o constitutes a promise
that you won’t change the variables in the pattern. If you do change them, Perl won’t
ev en notice.)

2. you want the pattern to use the initial values of the variables regardless of whether they
change or not. (But there are saner ways of accomplishing this than using /o.)

3. If the pattern contains embedded code, such as

use re 'eval';
$code = 'foo(?{ $x })';
/$code/

then perl will recompile each time, even though the pattern string hasn’t changed, to
ensure that the current value of $x is seen each time. Use /o if you want to avoid this.

The bottom line is that using /o is almost never a good idea.

The empty pattern //
If the PA TTERN evaluates to the empty string, the last successfully matched regular
expression is used instead. In this case, only the g and c flags on the empty pattern are
honored; the other flags are taken from the original pattern. If no match has previously
succeeded, this will (silently) act instead as a genuine empty pattern (which will always
match). Using a user supplied string as a pattern has the risk that if the string is empty that it
triggers the "last successful match" behavior, which can be very confusing. In such cases you
are recommended to replace m/$pattern/ with m/(?:$pattern)/ to avoid this
behavior.

The last successful pattern may be accessed as a variable via
${ˆLAST_SUCCESSFUL_PATTERN}. Matching against it, or the empty pattern should
have the same effect, with the exception that when there is no last successful pattern the
empty pattern will silently match, whereas using the ${ˆLAST_SUCCESSFUL_PATTERN}
variable will produce undefined warnings (if warnings are enabled). You can check

66 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

defined(${ˆLAST_SUCCESSFUL_PATTERN}) to test if there is a "last successful
match" in the current scope.

Note that it’s possible to confuse Perl into thinking // (the empty regex) is really // (the
defined-or operator). Perl is usually pretty good about this, but some pathological cases
might trigger this, such as $x/// (is that ($x) / (//) or $x // /?) and
print $fh // (print $fh(// or print($fh //?). In all of these examples, Perl
will assume you meant defined-or. If you meant the empty regex, just use parentheses or
spaces to disambiguate, or even prefix the empty regex with an m (so // becomes m//).

Matching in list context
If the /g option is not used, m// in list context returns a list consisting of the subexpressions
matched by the parentheses in the pattern, that is, ($1, $2, $3...) (Note that here $1 etc. are
also set). When there are no parentheses in the pattern, the return value is the list (1) for
success. With or without parentheses, an empty list is returned upon failure.

Examples:

open(TTY, "+</dev/tty")
|| die "can't access /dev/tty: $!";

<TTY> =˜ /ˆy/i && foo(); # do foo if desired

if (/Version: *([0−9.]*)/) { $version = $1; }

next if m#ˆ/usr/spool/uucp#;

poor man's grep
$arg = shift;
while (<>) {

print if /$arg/o; # compile only once (no longer needed!)
}

if (($F1, $F2, $Etc) = ($foo =˜ /ˆ(\S+)\s+(\S+)\s*(.*)/))

This last example splits $foo into the first two words and the remainder of the line, and
assigns those three fields to $F1, $F2, and $Etc. The conditional is true if any variables
were assigned; that is, if the pattern matched.

The /g modifier specifies global pattern matching−−that is, matching as many times as
possible within the string. How it behaves depends on the context. In list context, it returns a
list of the substrings matched by any capturing parentheses in the regular expression. If there
are no parentheses, it returns a list of all the matched strings, as if there were parentheses
around the whole pattern.

In scalar context, each execution of m//g finds the next match, returning true if it matches,
and false if there is no further match. The position after the last match can be read or set
using the pos() function; see "pos" in perlfunc. A failed match normally resets the search
position to the beginning of the string, but you can avoid that by adding the /c modifier (for
example, m//gc). Modifying the target string also resets the search position.

\G assertion

You can intermix m//g matches with m/\G.../g, where \G is a zero-width assertion that
matches the exact position where the previous m//g, if any, left off. Without the /g
modifier, the \G assertion still anchors at pos() as it was at the start of the operation (see
"pos" in perlfunc), but the match is of course only attempted once. Using \G without /g on
a target string that has not previously had a /g match applied to it is the same as using the \A
assertion to match the beginning of the string. Note also that, currently, \G is only properly
supported when anchored at the very beginning of the pattern.

Examples:

perl v5.38.2 2025-07-25 67

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

list context
($one,$five,$fifteen) = (`uptime` =˜ /(\d+\.\d+)/g);

scalar context
local $/ = "";
while ($paragraph = <>) {

while ($paragraph =˜ /\p{Ll}['")]*[.!?]+['")]*\s/g) {
$sentences++;

}
}
say $sentences;

Here’s another way to check for sentences in a paragraph:

my $sentence_rx = qr{
(?: (?<= ˆ) | (?<= \s)) # after start−of−string or

whitespace
\p{Lu} # capital letter
.*? # a bunch of anything
(?<= \S) # that ends in non−

whitespace
(?<! \b [DMS]r) # but isn't a common abbr.
(?<! \b Mrs)
(?<! \b Sra)
(?<! \b St)
[.?!] # followed by a sentence

ender
(?= $ | \s) # in front of end−of−string

or whitespace
}sx;
local $/ = "";
while (my $paragraph = <>) {

say "NEW PARAGRAPH";
my $count = 0;
while ($paragraph =˜ /($sentence_rx)/g) {

printf "\tgot sentence %d: <%s>\n", ++$count, $1;
}

}

Here’s how to use m//gc with \G:

$_ = "ppooqppqq";
while ($i++ < 2) {

print "1: '";
print $1 while /(o)/gc; print "', pos=", pos, "\n";
print "2: '";
print $1 if /\G(q)/gc; print "', pos=", pos, "\n";
print "3: '";
print $1 while /(p)/gc; print "', pos=", pos, "\n";

}
print "Final: '$1', pos=",pos,"\n" if /\G(.)/;

The last example should print:

1: 'oo', pos=4
2: 'q', pos=5
3: 'pp', pos=7
1: '', pos=7
2: 'q', pos=8
3: '', pos=8
Final: 'q', pos=8

68 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Notice that the final match matched q instead of p, which a match without the \G anchor
would have done. Also note that the final match did not update pos. pos is only updated on
a /g match. If the final match did indeed match p, it’s a good bet that you’re running an
ancient (pre−5.6.0) version of Perl.

A useful idiom for lex−like scanners is /\G.../gc. You can combine several regexps
like this to process a string part-by-part, doing different actions depending on which regexp
matched. Each regexp tries to match where the previous one leaves off.

$_ = <<'EOL';
$url = URI::URL−>new("http://example.com/");
die if $url eq "xXx";

EOL

LOOP: {
print(" digits"), redo LOOP if /\G\d+\b[,.;]?\s*/gc;
print(" lowercase"), redo LOOP

if /\G\p{Ll}+\b[,.;]?\s*/gc;
print(" UPPERCASE"), redo LOOP

if /\G\p{Lu}+\b[,.;]?\s*/gc;
print(" Capitalized"), redo LOOP

if /\G\p{Lu}\p{Ll}+\b[,.;]?\s*/gc;
print(" MiXeD"), redo LOOP if /\G\pL+\b[,.;]?\s*/gc;
print(" alphanumeric"), redo LOOP

if /\G[\p{Alpha}\pN]+\b[,.;]?\s*/gc;
print(" line−noise"), redo LOOP if /\G\W+/gc;
print ". That's all!\n";

}

Here is the output (split into several lines):

line−noise lowercase line−noise UPPERCASE line−noise UPPERCASE
line−noise lowercase line−noise lowercase line−noise lowercase
lowercase line−noise lowercase lowercase line−noise lowercase
lowercase line−noise MiXeD line−noise. That's all!

m?PATTERN?msixpodualngc
This is just like the m/PATTERN/ search, except that it matches only once between calls to
the reset() operator. This is a useful optimization when you want to see only the first
occurrence of something in each file of a set of files, for instance. Only m?? patterns local
to the current package are reset.

while (<>) {
if (m?ˆ$?) {

blank line between header and body
}

} continue {
reset if eof; # clear m?? status for next file

}

Another example switched the first "latin1" encoding it finds to "utf8" in a pod file:

s//utf8/ if m? ˆ =encoding \h+ \K latin1 ?x;

The match-once behavior is controlled by the match delimiter being ?; with any other
delimiter this is the normal m// operator.

In the past, the leading m in m?PATTERN? was optional, but omitting it would produce a
deprecation warning. As of v5.22.0, omitting it produces a syntax error. If you encounter
this construct in older code, you can just add m.

s/PATTERN/REPLACEMENT/msixpodualngcer
Searches a string for a pattern, and if found, replaces that pattern with the replacement text
and returns the number of substitutions made. Otherwise it returns false (a value that is both

perl v5.38.2 2025-07-25 69

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

an empty string ("") and numeric zero (0) as described in "Relational Operators").

If the /r (non-destructive) option is used then it runs the substitution on a copy of the string
and instead of returning the number of substitutions, it returns the copy whether or not a
substitution occurred. The original string is never changed when /r is used. The copy will
always be a plain string, even if the input is an object or a tied variable.

If no string is specified via the =˜ or !˜ operator, the $_ variable is searched and modified.
Unless the /r option is used, the string specified must be a scalar variable, an array element,
a hash element, or an assignment to one of those; that is, some sort of scalar lvalue.

If the delimiter chosen is a single quote, no variable interpolation is done on either the
PA TTERN or the REPLACEMENT. Otherwise, if the PA TTERN contains a $ that looks like a
variable rather than an end-of-string test, the variable will be interpolated into the pattern at
run-time. If you want the pattern compiled only once the first time the variable is
interpolated, use the /o option. If the pattern evaluates to the empty string, the last
successfully executed regular expression is used instead. See perlre for further explanation
on these.

Options are as with m// with the addition of the following replacement specific options:

e Evaluate the right side as an expression.
ee Evaluate the right side as a string then eval the

result.
r Return substitution and leave the original string

untouched.

Any non-whitespace delimiter may replace the slashes. Add space after the s when using a
character allowed in identifiers. If single quotes are used, no interpretation is done on the
replacement string (the /e modifier overrides this, however). Note that Perl treats backticks
as normal delimiters; the replacement text is not evaluated as a command. If the PA TTERN is
delimited by bracketing quotes, the REPLACEMENT has its own pair of quotes, which may
or may not be bracketing quotes, for example, s(foo)(bar) or s<foo>/bar/. A /e
will cause the replacement portion to be treated as a full-fledged Perl expression and
evaluated right then and there. It is, however, syntax checked at compile-time. A second e
modifier will cause the replacement portion to be evaled before being run as a Perl
expression.

Examples:

s/\bgreen\b/mauve/g; # don't change wintergreen

$path =˜ s|/usr/bin|/usr/local/bin|;

s/Login: $foo/Login: $bar/; # run−time pattern

($foo = $bar) =˜ s/this/that/; # copy first, then
change

($foo = "$bar") =˜ s/this/that/; # convert to string,
copy, then change

$foo = $bar =˜ s/this/that/r; # Same as above using /r
$foo = $bar =˜ s/this/that/r

=˜ s/that/the other/r; # Chained substitutes
using /r

@foo = map { s/this/that/r } @bar # /r is very useful in
maps

$count = ($paragraph =˜ s/Mister\b/Mr./g); # get change−cnt

$_ = 'abc123xyz';
s/\d+/$&*2/e; # yields 'abc246xyz'
s/\d+/sprintf("%5d",$&)/e; # yields 'abc 246xyz'
s/\w/$& x 2/eg; # yields 'aabbcc 224466xxyyzz'

70 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

s/%(.)/$percent{$1}/g; # change percent escapes; no /e
s/%(.)/$percent{$1} || $&/ge; # expr now, so /e
s/ˆ=(\w+)/pod($1)/ge; # use function call

$_ = 'abc123xyz';
$x = s/abc/def/r; # $x is 'def123xyz' and

$_ remains 'abc123xyz'.

expand variables in $_, but dynamics only, using
symbolic dereferencing
s/\$(\w+)/${$1}/g;

Add one to the value of any numbers in the string
s/(\d+)/1 + $1/eg;

Titlecase words in the last 30 characters only (presuming
that the substring doesn't start in the middle of a word)
substr($str, −30) =˜ s/\b(\p{Alpha})(\p{Alpha}*)\b/\u$1\L$2/g;

This will expand any embedded scalar variable
(including lexicals) in $_ : First $1 is interpolated
to the variable name, and then evaluated
s/(\$\w+)/$1/eeg;

Delete (most) C comments.
$program =˜ s {

/* # Match the opening delimiter.
.*? # Match a minimal number of characters.
*/ # Match the closing delimiter.

} []gsx;

s/ˆ\s*(.*?)\s*$/$1/; # trim whitespace in $_,
expensively

for ($variable) { # trim whitespace in $variable,
cheap

s/ˆ\s+//;
s/\s+$//;

}

s/([ˆ]*) *([ˆ]*)/$2 $1/; # reverse 1st two fields

$foo !˜ s/A/a/g; # Lowercase all A's in $foo; return
0 if any were found and changed;
otherwise return 1

Note the use of $ instead of \ in the last example. Unlike sed, we use the \<digit> form only
in the left hand side. Anywhere else it’s $<digit>.

Occasionally, you can’t use just a /g to get all the changes to occur that you might want.
Here are two common cases:

put commas in the right places in an integer
1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/g;

expand tabs to 8−column spacing
1 while s/\t+/' ' x (length($&)*8 − length($`)%8)/e;

While s/// accepts the /c flag, it has no effect beyond producing a warning if warnings are
enabled.

perl v5.38.2 2025-07-25 71

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Quote-Like Operators
q/STRING/
'STRING'

A single-quoted, literal string. A backslash represents a backslash unless followed by the
delimiter or another backslash, in which case the delimiter or backslash is interpolated.

$foo = q!I said, "You said, 'She said it.'"!;
$bar = q('This is it.');
$baz = '\n'; # a two−character string

qq/STRING/
"STRING"

A double-quoted, interpolated string.

$_ .= qq
(*** The previous line contains the naughty word "$1".\n)

if /\b(tcl|java|python)\b/i; # :−)
$baz = "\n"; # a one−character string

qx/STRING/
`STRING`

A string which is (possibly) interpolated and then executed as a system command, via /bin/sh or
its equivalent if required. Shell wildcards, pipes, and redirections will be honored. Similarly to
system, if the string contains no shell metacharacters then it will executed directly. The
collected standard output of the command is returned; standard error is unaffected. In scalar
context, it comes back as a single (potentially multi-line) string, or undef if the shell (or
command) could not be started. In list context, returns a list of lines (however you’ve defined
lines with $/ or $INPUT_RECORD_SEPARATOR), or an empty list if the shell (or command)
could not be started.

Because backticks do not affect standard error, use shell file descriptor syntax (assuming the shell
supports this) if you care to address this. To capture a command’s STDERR and STDOUT
together:

$output = `cmd 2>&1`;

To capture a command’s STDOUT but discard its STDERR:

$output = `cmd 2>/dev/null`;

To capture a command’s STDERR but discard its STDOUT (ordering is important here):

$output = `cmd 2>&1 1>/dev/null`;

To exchange a command’s STDOUT and STDERR in order to capture the STDERR but leave its
STDOUT to come out the old STDERR:

$output = `cmd 3>&1 1>&2 2>&3 3>&−`;

To read both a command’s STDOUT and its STDERR separately, it’s easiest to redirect them
separately to files, and then read from those files when the program is done:

system("program args 1>program.stdout 2>program.stderr");

The STDIN filehandle used by the command is inherited from Perl’s STDIN. For example:

open(SPLAT, "stuff") || die "can't open stuff: $!";
open(STDIN, "<&SPLAT") || die "can't dupe SPLAT: $!";
print STDOUT `sort`;

will print the sorted contents of the file named "stuff".

Using single-quote as a delimiter protects the command from Perl’s double-quote interpolation,
passing it on to the shell instead:

$perl_info = qx(ps $$); # that's Perl's $$
$shell_info = qx'ps $$'; # that's the new shell's $$

How that string gets evaluated is entirely subject to the command interpreter on your system. On

72 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

most platforms, you will have to protect shell metacharacters if you want them treated literally.
This is in practice difficult to do, as it’s unclear how to escape which characters. See perlsec for a
clean and safe example of a manual fork() and exec() to emulate backticks safely.

On some platforms (notably DOS-like ones), the shell may not be capable of dealing with
multiline commands, so putting newlines in the string may not get you what you want. You may
be able to evaluate multiple commands in a single line by separating them with the command
separator character, if your shell supports that (for example, ; on many Unix shells and & on the
Windows NT cmd shell).

Perl will attempt to flush all files opened for output before starting the child process, but this may
not be supported on some platforms (see perlport). To be safe, you may need to set $|
($AUTOFLUSH in English) or call the autoflush() method of IO::Handle on any open
handles.

Beware that some command shells may place restrictions on the length of the command line. You
must ensure your strings don’t exceed this limit after any necessary interpolations. See the
platform-specific release notes for more details about your particular environment.

Using this operator can lead to programs that are difficult to port, because the shell commands
called vary between systems, and may in fact not be present at all. As one example, the type
command under the POSIX shell is very different from the type command under DOS. That
doesn’t mean you should go out of your way to avoid backticks when they’re the right way to get
something done. Perl was made to be a glue language, and one of the things it glues together is
commands. Just understand what you’re getting yourself into.

Like system, backticks put the child process exit code in $?. If you’d like to manually inspect
failure, you can check all possible failure modes by inspecting $? like this:

if ($? == −1) {
print "failed to execute: $!\n";

}
elsif ($? & 127) {

printf "child died with signal %d, %s coredump\n",
($? & 127), ($? & 128) ? 'with' : 'without';

}
else {

printf "child exited with value %d\n", $? >> 8;
}

Use the open pragma to control the I/O layers used when reading the output of the command, for
example:

use open IN => ":encoding(UTF−8)";
my $x = `cmd−producing−utf−8`;

qx// can also be called like a function with "readpipe" in perlfunc.

See "I/O Operators" for more discussion.

qw/STRING/
Evaluates to a list of the words extracted out of STRING, using embedded whitespace as the word
delimiters. It can be understood as being roughly equivalent to:

split(" ", q/STRING/);

the differences being that it only splits on ASCII whitespace, generates a real list at compile time,
and in scalar context it returns the last element in the list. So this expression:

qw(foo bar baz)

is semantically equivalent to the list:

"foo", "bar", "baz"

Some frequently seen examples:

perl v5.38.2 2025-07-25 73

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

use POSIX qw(setlocale localeconv)
@EXPORT = qw(foo bar baz);

A common mistake is to try to separate the words with commas or to put comments into a multi-
line qw−string. For this reason, the use warnings pragma and the −w switch (that is, the $ˆW
variable) produces warnings if the STRING contains the "," or the "#" character.

tr/SEARCHLIST/REPLACEMENTLIST/cdsr
y/SEARCHLIST/REPLACEMENTLIST/cdsr

Transliterates all occurrences of the characters found (or not found if the /c modifier is specified)
in the search list with the positionally corresponding character in the replacement list, possibly
deleting some, depending on the modifiers specified. It returns the number of characters replaced
or deleted. If no string is specified via the =˜ or !˜ operator, the $_ string is transliterated.

For sed devotees, y is provided as a synonym for tr.

If the /r (non-destructive) option is present, a new copy of the string is made and its characters
transliterated, and this copy is returned no matter whether it was modified or not: the original
string is always left unchanged. The new copy is always a plain string, even if the input string is
an object or a tied variable.

Unless the /r option is used, the string specified with =˜ must be a scalar variable, an array
element, a hash element, or an assignment to one of those; in other words, an lvalue.

The characters delimitting SEARCHLIST and REPLACEMENTLIST can be any printable
character, not just forward slashes. If they are single quotes
(tr'SEARCHLIST'REPLACEMENTLIST'), the only interpolation is removal of \ from pairs
of \\; so hyphens are interpreted literally rather than specifying a character range.

Otherwise, a character range may be specified with a hyphen, so tr/A−J/0−9/ does the same
replacement as tr/ACEGIBDFHJ/0246813579/.

If the SEARCHLIST is delimited by bracketing quotes, the REPLACEMENTLIST must have its
own pair of quotes, which may or may not be bracketing quotes; for example,
tr(aeiouy)(yuoiea) or tr[+\−*/]"ABCD". This final example shows a way to visually
clarify what is going on for people who are more familiar with regular expression patterns than
with tr, and who may think forward slash delimiters imply that tr is more like a regular
expression pattern than it actually is. (Another option might be to use tr[...][...].)

tr isn’t fully like bracketed character classes, just (significantly) more like them than it is to full
patterns. For example, characters appearing more than once in either list behave differently here
than in patterns, and tr lists do not allow backslashed character classes such as \d or \pL, nor
variable interpolation, so "$" and "@" are always treated as literals.

The allowed elements are literals plus \' (meaning a single quote). If the delimiters aren’t single
quotes, also allowed are any of the escape sequences accepted in double-quoted strings. Escape
sequence details are in the table near the beginning of this section.

A hyphen at the beginning or end, or preceded by a backslash is also always considered a literal.
Precede a delimiter character with a backslash to allow it.

The tr operator is not equivalent to the tr(1) utility. tr[a−z][A−Z] will uppercase the 26
letters "a" through "z", but for case changing not confined to ASCII, use lc, uc, lcfirst,
ucfirst (all documented in perlfunc), or the substitution operator
s/PATTERN/REPLACEMENT/ (with \U, \u, \L, and \l string-interpolation escapes in the
REPLACEMENT portion).

Most ranges are unportable between character sets, but certain ones signal Perl to do special
handling to make them portable. There are two classes of portable ranges. The first are any
subsets of the ranges A−Z, a−z, and 0−9, when expressed as literal characters.

tr/h−k/H−K/

capitalizes the letters "h", "i", "j", and "k" and nothing else, no matter what the platform’s
character set is. In contrast, all of

74 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

tr/\x68−\x6B/\x48−\x4B/
tr/h−\x6B/H−\x4B/
tr/\x68−k/\x48−K/

do the same capitalizations as the previous example when run on ASCII platforms, but something
completely different on EBCDIC ones.

The second class of portable ranges is invoked when one or both of the range’s end points are
expressed as \N{...}

$string =˜ tr/\N{U+20}−\N{U+7E}//d;

removes from $string all the platform’s characters which are equivalent to any of Unicode
U+0020, U+0021, ... U+007D, U+007E. This is a portable range, and has the same effect on
ev ery platform it is run on. In this example, these are the ASCII printable characters. So after this
is run, $string has only controls and characters which have no ASCII equivalents.

But, even for portable ranges, it is not generally obvious what is included without having to look
things up in the manual. A sound principle is to use only ranges that both begin from, and end at,
either ASCII alphabetics of equal case (b−e, B−E), or digits (1−4). Anything else is unclear (and
unportable unless \N{...} is used). If in doubt, spell out the character sets in full.

Options:

c Complement the SEARCHLIST.
d Delete found but unreplaced characters.
r Return the modified string and leave the original string

untouched.
s Squash duplicate replaced characters.

If the /d modifier is specified, any characters specified by SEARCHLIST not found in
REPLACEMENTLIST are deleted. (Note that this is slightly more flexible than the behavior of
some tr programs, which delete anything they find in the SEARCHLIST, period.)

If the /s modifier is specified, sequences of characters, all in a row, that were transliterated to the
same character are squashed down to a single instance of that character.

my $a = "aaabbbca";
$a =˜ tr/ab/dd/s; # $a now is "dcd"

If the /d modifier is used, the REPLACEMENTLIST is always interpreted exactly as specified.
Otherwise, if the REPLACEMENTLIST is shorter than the SEARCHLIST, the final character, if
any, is replicated until it is long enough. There won’t be a final character if and only if the
REPLACEMENTLIST is empty, in which case REPLACEMENTLIST is copied from
SEARCHLIST. An empty REPLACEMENTLIST is useful for counting characters in a class, or
for squashing character sequences in a class.

tr/abcd// tr/abcd/abcd/
tr/abcd/AB/ tr/abcd/ABBB/
tr/abcd//d s/[abcd]//g
tr/abcd/AB/d (tr/ab/AB/ + s/[cd]//g) − but run together

If the /c modifier is specified, the characters to be transliterated are the ones NOT in
SEARCHLIST, that is, it is complemented. If /d and/or /s are also specified, they apply to the
complemented SEARCHLIST. Recall, that if REPLACEMENTLIST is empty (except under /d) a
copy of SEARCHLIST is used instead. That copy is made after complementing under /c.
SEARCHLIST is sorted by code point order after complementing, and any REPLACEMENTLIST
is applied to that sorted result. This means that under /c, the order of the characters specified in
SEARCHLIST is irrelevant. This can lead to different results on EBCDIC systems if
REPLACEMENTLIST contains more than one character, hence it is generally non-portable to use
/c with such a REPLACEMENTLIST.

Another way of describing the operation is this: If /c is specified, the SEARCHLIST is sorted by
code point order, then complemented. If REPLACEMENTLIST is empty and /d is not specified,
REPLACEMENTLIST is replaced by a copy of SEARCHLIST (as modified under /c), and these
potentially modified lists are used as the basis for what follows. Any character in the target string

perl v5.38.2 2025-07-25 75

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

that isn’t in SEARCHLIST is passed through unchanged. Every other character in the target string
is replaced by the character in REPLACEMENTLIST that positionally corresponds to its mate in
SEARCHLIST, except that under /s, the 2nd and following characters are squeezed out in a
sequence of characters in a row that all translate to the same character. If SEARCHLIST is longer
than REPLACEMENTLIST, characters in the target string that match a character in SEARCHLIST
that doesn’t hav e a correspondence in REPLACEMENTLIST are either deleted from the target
string if /d is specified; or replaced by the final character in REPLACEMENTLIST if /d isn’t
specified.

Some examples:

$ARGV[1] =˜ tr/A−Z/a−z/; # canonicalize to lower case ASCII

$cnt = tr/*/*/; # count the stars in $_
$cnt = tr/*//; # same thing

$cnt = $sky =˜ tr/*/*/; # count the stars in $sky
$cnt = $sky =˜ tr/*//; # same thing

$cnt = $sky =˜ tr/*//c; # count all the non−stars in $sky
$cnt = $sky =˜ tr/*/*/c; # same, but transliterate each non−star

into a star, leaving the already−stars
alone. Afterwards, everything in $sky
is a star.

$cnt = tr/0−9//; # count the ASCII digits in $_

tr/a−zA−Z//s; # bookkeeper −> bokeper
tr/o/o/s; # bookkeeper −> bokkeeper
tr/oe/oe/s; # bookkeeper −> bokkeper
tr/oe//s; # bookkeeper −> bokkeper
tr/oe/o/s; # bookkeeper −> bokkopor

($HOST = $host) =˜ tr/a−z/A−Z/;
$HOST = $host =˜ tr/a−z/A−Z/r; # same thing

$HOST = $host =˜ tr/a−z/A−Z/r # chained with s///r
=˜ s/:/ −p/r;

tr/a−zA−Z/ /cs; # change non−alphas to single space

@stripped = map tr/a−zA−Z/ /csr, @original;
/r with map

tr [\200−\377]
[\000−\177]; # wickedly delete 8th bit

$foo !˜ tr/A/a/ # transliterate all the A's in $foo to 'a',
return 0 if any were found and changed.
Otherwise return 1

If multiple transliterations are given for a character, only the first one is used:

tr/AAA/XYZ/

will transliterate any A to X.

Because the transliteration table is built at compile time, neither the SEARCHLIST nor the
REPLACEMENTLIST are subjected to double quote interpolation. That means that if you want to
use variables, you must use an eval():

76 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

eval "tr/$oldlist/$newlist/";
die $@ if $@;

eval "tr/$oldlist/$newlist/, 1" or die $@;

<<EOF
A line-oriented form of quoting is based on the shell "here-document" syntax. Following a <<
you specify a string to terminate the quoted material, and all lines following the current line down
to the terminating string are the value of the item.

Prefixing the terminating string with a ˜ specifies that you want to use "Indented Here-docs" (see
below).

The terminating string may be either an identifier (a word), or some quoted text. An unquoted
identifier works like double quotes. There may not be a space between the << and the identifier,
unless the identifier is explicitly quoted. The terminating string must appear by itself (unquoted
and with no surrounding whitespace) on the terminating line.

If the terminating string is quoted, the type of quotes used determine the treatment of the text.

Double Quotes
Double quotes indicate that the text will be interpolated using exactly the same rules as
normal double quoted strings.

print <<EOF;
The price is $Price.
EOF

print << "EOF"; # same as above
The price is $Price.
EOF

Single Quotes
Single quotes indicate the text is to be treated literally with no interpolation of its content.
This is similar to single quoted strings except that backslashes have no special meaning, with
\\ being treated as two backslashes and not one as they would in every other quoting
construct.

Just as in the shell, a backslashed bareword following the << means the same thing as a
single-quoted string does:

$cost = <<'VISTA'; # hasta la ...
That'll be $10 please, ma'am.
VISTA

$cost = <<\VISTA; # Same thing!
That'll be $10 please, ma'am.
VISTA

This is the only form of quoting in perl where there is no need to worry about escaping
content, something that code generators can and do make good use of.

Backticks
The content of the here doc is treated just as it would be if the string were embedded in
backticks. Thus the content is interpolated as though it were double quoted and then
executed via the shell, with the results of the execution returned.

print << `EOC`; # execute command and get results
echo hi there
EOC

Indented Here-docs
The here-doc modifier ˜ allows you to indent your here-docs to make the code more
readable:

perl v5.38.2 2025-07-25 77

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

if ($some_var) {
print <<˜EOF;
This is a here−doc
EOF

}

This will print...

This is a here−doc

...with no leading whitespace.

The line containing the delimiter that marks the end of the here-doc determines the
indentation template for the whole thing. Compilation croaks if any non-empty line inside
the here-doc does not begin with the precise indentation of the terminating line. (An empty
line consists of the single character "\n".) For example, suppose the terminating line begins
with a tab character followed by 4 space characters. Every non-empty line in the here-doc
must begin with a tab followed by 4 spaces. They are stripped from each line, and any
leading white space remaining on a line serves as the indentation for that line. Currently,
only the TAB and SPACE characters are treated as whitespace for this purpose. Tabs and
spaces may be mixed, but are matched exactly; tabs remain tabs and are not expanded.

Additional beginning whitespace (beyond what preceded the delimiter) will be preserved:

print <<˜EOF;
This text is not indented
This text is indented with two spaces

This text is indented with two tabs
EOF

Finally, the modifier may be used with all of the forms mentioned above:

<<˜\EOF;
<<˜'EOF'
<<˜"EOF"
<<˜`EOF`

And whitespace may be used between the ˜ and quoted delimiters:

<<˜ 'EOF'; # ... "EOF", `EOF`

It is possible to stack multiple here-docs in a row:

print <<"foo", <<"bar"; # you can stack them
I said foo.
foo
I said bar.
bar

myfunc(<< "THIS", 23, <<'THAT');
Here's a line
or two.
THIS
and here's another.
THAT

Just don’t forget that you have to put a semicolon on the end to finish the statement, as Perl
doesn’t know you’re not going to try to do this:

print <<ABC
179231
ABC

+ 20;

If you want to remove the line terminator from your here-docs, use chomp().

78 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

chomp($string = <<'END');
This is a string.
END

If you want your here-docs to be indented with the rest of the code, use the <<˜FOO construct
described under "Indented Here-docs":

$quote = <<˜'FINIS';
The Road goes ever on and on,
down from the door where it began.
FINIS

If you use a here-doc within a delimited construct, such as in s///eg, the quoted material must
still come on the line following the <<FOO marker, which means it may be inside the delimited
construct:

s/this/<<E . 'that'
the other
E
. 'more '/eg;

It works this way as of Perl 5.18. Historically, it was inconsistent, and you would have to write

s/this/<<E . 'that'
. 'more '/eg;
the other
E

outside of string evals.

Additionally, quoting rules for the end-of-string identifier are unrelated to Perl’s quoting rules.
q(), qq(), and the like are not supported in place of '' and "", and the only interpolation is for
backslashing the quoting character:

print << "abc\"def";
testing...
abc"def

Finally, quoted strings cannot span multiple lines. The general rule is that the identifier must be a
string literal. Stick with that, and you should be safe.

Gory details of parsing quoted constructs
When presented with something that might have sev eral different interpretations, Perl uses the DWIM
(that’s "Do What I Mean") principle to pick the most probable interpretation. This strategy is so
successful that Perl programmers often do not suspect the ambivalence of what they write. But from
time to time, Perl’s notions differ substantially from what the author honestly meant.

This section hopes to clarify how Perl handles quoted constructs. Although the most common reason
to learn this is to unravel labyrinthine regular expressions, because the initial steps of parsing are the
same for all quoting operators, they are all discussed together.

The most important Perl parsing rule is the first one discussed below: when processing a quoted
construct, Perl first finds the end of that construct, then interprets its contents. If you understand this
rule, you may skip the rest of this section on the first reading. The other rules are likely to contradict
the user’s expectations much less frequently than this first one.

Some passes discussed below are performed concurrently, but because their results are the same, we
consider them individually. For different quoting constructs, Perl performs different numbers of passes,
from one to four, but these passes are always performed in the same order.

Finding the end
The first pass is finding the end of the quoted construct. This results in saving to a safe location a
copy of the text (between the starting and ending delimiters), normalized as necessary to avoid
needing to know what the original delimiters were.

If the construct is a here-doc, the ending delimiter is a line that has a terminating string as the
content. Therefore <<EOF is terminated by EOF immediately followed by "\n" and starting

perl v5.38.2 2025-07-25 79

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

from the first column of the terminating line. When searching for the terminating line of a here-
doc, nothing is skipped. In other words, lines after the here-doc syntax are compared with the
terminating string line by line.

For the constructs except here-docs, single characters are used as starting and ending delimiters.
If the starting delimiter is an opening punctuation (that is (, [, {, or <), the ending delimiter is the
corresponding closing punctuation (that is),], }, or >). If the starting delimiter is an unpaired
character like / or a closing punctuation, the ending delimiter is the same as the starting delimiter.
Therefore a / terminates a qq// construct, while a] terminates both qq[] and qq]] constructs.

When searching for single-character delimiters, escaped delimiters and \\ are skipped. For
example, while searching for terminating /, combinations of \\ and \/ are skipped. If the
delimiters are bracketing, nested pairs are also skipped. For example, while searching for a
closing] paired with the opening [, combinations of \\, \], and \[are all skipped, and nested [
and] are skipped as well. However, when backslashes are used as the delimiters (like qq\\ and
tr\\\), nothing is skipped. During the search for the end, backslashes that escape delimiters or
other backslashes are removed (exactly speaking, they are not copied to the safe location).

For constructs with three-part delimiters (s///, y///, and tr///), the search is repeated once
more. If the first delimiter is not an opening punctuation, the three delimiters must be the same,
such as s!!! and tr))), in which case the second delimiter terminates the left part and starts
the right part at once. If the left part is delimited by bracketing punctuation (that is (), [], {}, or
<>), the right part needs another pair of delimiters such as s(){} and tr[]//. In these cases,
whitespace and comments are allowed between the two parts, although the comment must follow
at least one whitespace character; otherwise a character expected as the start of the comment may
be regarded as the starting delimiter of the right part.

During this search no attention is paid to the semantics of the construct. Thus:

"$hash{"$foo/$bar"}"

or:

m/
bar # NOT a comment, this slash / terminated m//!
/x

do not form legal quoted expressions. The quoted part ends on the first " and /, and the rest
happens to be a syntax error. Because the slash that terminated m// was followed by a SPACE,
the example above is not m//x, but rather m// with no /x modifier. So the embedded # is
interpreted as a literal #.

Also no attention is paid to \c\ (multichar control char syntax) during this search. Thus the
second \ in qq/\c\/ is interpreted as a part of \/, and the following / is not recognized as a
delimiter. Instead, use \034 or \x1c at the end of quoted constructs.

Interpolation
The next step is interpolation in the text obtained, which is now delimiter-independent. There are
multiple cases.

<<'EOF'
No interpolation is performed. Note that the combination \\ is left intact, since escaped
delimiters are not available for here-docs.

m'', the pattern of s'''
No interpolation is performed at this stage. Any backslashed sequences including \\ are
treated at the stage of "Parsing regular expressions".

'', q//, tr''', y''', the replacement of s'''
The only interpolation is removal of \ from pairs of \\. Therefore "−" in tr''' and
y''' is treated literally as a hyphen and no character range is available. \1 in the
replacement of s''' does not work as $1.

tr///, y///
No variable interpolation occurs. String modifying combinations for case and quoting such
as \Q, \U, and \E are not recognized. The other escape sequences such as \200 and \t and

80 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

backslashed characters such as \\ and \− are converted to appropriate literals. The character
"−" is treated specially and therefore \− is treated as a literal "−".

"", ``, qq//, qx//, <file*glob>, <<"EOF"
\Q, \U, \u, \L, \l, \F (possibly paired with \E) are converted to corresponding Perl
constructs. Thus, "$foo\Qbaz$bar" is converted to
$foo . (quotemeta("baz" . $bar)) internally. The other escape sequences such
as \200 and \t and backslashed characters such as \\ and \− are replaced with appropriate
expansions.

Let it be stressed that whatever falls between \Q and \E is interpolated in the usual way.
Something like "\Q\\E" has no \E inside. Instead, it has \Q, \\, and E, so the result is the
same as for "\\\\E". As a general rule, backslashes between \Q and \E may lead to
counterintuitive results. So, "\Q\t\E" is converted to quotemeta("\t"), which is the
same as "\\\t" (since TAB is not alphanumeric). Note also that:

$str = '\t';
return "\Q$str";

may be closer to the conjectural intention of the writer of "\Q\t\E".

Interpolated scalars and arrays are converted internally to the join and "." catenation
operations. Thus, "$foo XXX '@arr'" becomes:

$foo . " XXX '" . (join $", @arr) . "'";

All operations above are performed simultaneously, left to right.

Because the result of "\Q STRING \E" has all metacharacters quoted, there is no way to
insert a literal $ or @ inside a \Q\E pair. If protected by \, $ will be quoted to become
"\\\$"; if not, it is interpreted as the start of an interpolated scalar.

Note also that the interpolation code needs to make a decision on where the interpolated
scalar ends. For instance, whether "a $x −> {c}" really means:

"a " . $x . " −> {c}";

or:

"a " . $x −> {c};

Most of the time, the longest possible text that does not include spaces between components
and which contains matching braces or brackets. because the outcome may be determined by
voting based on heuristic estimators, the result is not strictly predictable. Fortunately, it’s
usually correct for ambiguous cases.

The replacement of s///
Processing of \Q, \U, \u, \L, \l, \F and interpolation happens as with qq// constructs.

It is at this step that \1 is begrudgingly converted to $1 in the replacement text of s///, in
order to correct the incorrigible sed hackers who haven’t picked up the saner idiom yet. A
warning is emitted if the use warnings pragma or the −w command-line flag (that is, the
$ˆW variable) was set.

RE in m?RE?, /RE/, m/RE/, s/RE/foo/,
Processing of \Q, \U, \u, \L, \l, \F, \E, and interpolation happens (almost) as with qq//
constructs.

Processing of \N{...} is also done here, and compiled into an intermediate form for the
regex compiler. (This is because, as mentioned below, the regex compilation may be done at
execution time, and \N{...} is a compile-time construct.)

However any other combinations of \ followed by a character are not substituted but only
skipped, in order to parse them as regular expressions at the following step. As \c is skipped
at this step, @ of \c@ in RE is possibly treated as an array symbol (for example @foo), even
though the same text in qq// gives interpolation of \c@.

Code blocks such as (?{BLOCK}) are handled by temporarily passing control back to the

perl v5.38.2 2025-07-25 81

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

perl parser, in a similar way that an interpolated array subscript expression such as
"foo$array[1+f("[xyz")]bar" would be.

Moreover, inside (?{BLOCK}), (?# comment), and a #−comment in a /x−regular
expression, no processing is performed whatsoever. This is the first step at which the
presence of the /x modifier is relevant.

Interpolation in patterns has several quirks: $|, $(, $), @+ and @− are not interpolated, and
constructs $var[SOMETHING] are voted (by several different estimators) to be either an
array element or $var followed by an RE alternative. This is where the notation
${arr[$bar]} comes handy: /${arr[0−9]}/ is interpreted as array element −9, not
as a regular expression from the variable $arr followed by a digit, which would be the
interpretation of /$arr[0−9]/. Since voting among different estimators may occur, the
result is not predictable.

The lack of processing of \\ creates specific restrictions on the post-processed text. If the
delimiter is /, one cannot get the combination \/ into the result of this step. / will finish the
regular expression, \/ will be stripped to / on the previous step, and \\/ will be left as is.
Because / is equivalent to \/ inside a regular expression, this does not matter unless the
delimiter happens to be character special to the RE engine, such as in s*foo*bar*,
m[foo], or m?foo?; or an alphanumeric char, as in:

m m ˆ a \s* b mmx;

In the RE above, which is intentionally obfuscated for illustration, the delimiter is m, the
modifier is mx, and after delimiter-removal the RE is the same as for m/ ˆ a \s* b /mx.
There’s more than one reason you’re encouraged to restrict your delimiters to non-
alphanumeric, non-whitespace choices.

This step is the last one for all constructs except regular expressions, which are processed further.

Parsing regular expressions
Previous steps were performed during the compilation of Perl code, but this one happens at run
time, although it may be optimized to be calculated at compile time if appropriate. After
preprocessing described above, and possibly after evaluation if concatenation, joining, casing
translation, or metaquoting are involved, the resulting string is passed to the RE engine for
compilation.

Whatever happens in the RE engine might be better discussed in perlre, but for the sake of
continuity, we shall do so here.

This is another step where the presence of the /x modifier is relevant. The RE engine scans the
string from left to right and converts it into a finite automaton.

Backslashed characters are either replaced with corresponding literal strings (as with \{), or else
they generate special nodes in the finite automaton (as with \b). Characters special to the RE
engine (such as |) generate corresponding nodes or groups of nodes. (?#...) comments are
ignored. All the rest is either converted to literal strings to match, or else is ignored (as is
whitespace and #−style comments if /x is present).

Parsing of the bracketed character class construct, [...], is rather different than the rule used for
the rest of the pattern. The terminator of this construct is found using the same rules as for finding
the terminator of a {}−delimited construct, the only exception being that] immediately following
[is treated as though preceded by a backslash.

The terminator of runtime (?{...}) is found by temporarily switching control to the perl
parser, which should stop at the point where the logically balancing terminating } is found.

It is possible to inspect both the string given to RE engine and the resulting finite automaton. See
the arguments debug/debugcolor in the use re pragma, as well as Perl’s −Dr command-
line switch documented in "Command Switches" in perlrun.

Optimization of regular expressions
This step is listed for completeness only. Since it does not change semantics, details of this step
are not documented and are subject to change without notice. This step is performed over the
finite automaton that was generated during the previous pass.

82 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

It is at this stage that split() silently optimizes /ˆ/ to mean /ˆ/m.

I/O Operators
There are several I/O operators you should know about.

A string enclosed by backticks (grave accents) first undergoes double-quote interpolation. It is then
interpreted as an external command, and the output of that command is the value of the backtick string,
like in a shell. In scalar context, a single string consisting of all output is returned. In list context, a list
of values is returned, one per line of output. (You can set $/ to use a different line terminator.) The
command is executed each time the pseudo-literal is evaluated. The status value of the command is
returned in $? (see perlvar for the interpretation of $?). Unlike in csh, no translation is done on the
return data−−newlines remain newlines. Unlike in any of the shells, single quotes do not hide variable
names in the command from interpretation. To pass a literal dollar-sign through to the shell you need
to hide it with a backslash. The generalized form of backticks is qx//, or you can call the "readpipe"
in perlfunc function. (Because backticks always undergo shell expansion as well, see perlsec for
security concerns.)

In scalar context, evaluating a filehandle in angle brackets yields the next line from that file (the
newline, if any, included), or undef at end-of-file or on error. When $/ is set to undef (sometimes
known as file-slurp mode) and the file is empty, it returns '' the first time, followed by undef
subsequently.

Ordinarily you must assign the returned value to a variable, but there is one situation where an
automatic assignment happens. If and only if the input symbol is the only thing inside the conditional
of a while statement (even if disguised as a for(;;) loop), the value is automatically assigned to
the global variable $_, destroying whatever was there previously. (This may seem like an odd thing to
you, but you’ll use the construct in almost every Perl script you write.) The $_ variable is not
implicitly localized. You’ll have to put a local $_; before the loop if you want that to happen.
Furthermore, if the input symbol or an explicit assignment of the input symbol to a scalar is used as a
while/for condition, then the condition actually tests for definedness of the expression’s value, not
for its regular truth value.

Thus the following lines are equivalent:

while (defined($_ = <STDIN>)) { print; }
while ($_ = <STDIN>) { print; }
while (<STDIN>) { print; }
for (;<STDIN>;) { print; }
print while defined($_ = <STDIN>);
print while ($_ = <STDIN>);
print while <STDIN>;

This also behaves similarly, but assigns to a lexical variable instead of to $_:

while (my $line = <STDIN>) { print $line }

In these loop constructs, the assigned value (whether assignment is automatic or explicit) is then tested
to see whether it is defined. The defined test avoids problems where the line has a string value that
would be treated as false by Perl; for example a "" or a "0" with no trailing newline. If you really
mean for such values to terminate the loop, they should be tested for explicitly:

while (($_ = <STDIN>) ne '0') { ... }
while (<STDIN>) { last unless $_; ... }

In other boolean contexts, <FILEHANDLE> without an explicit defined test or comparison elicits a
warning if the use warnings pragma or the −w command-line switch (the $ˆW variable) is in
effect.

The filehandles STDIN, STDOUT, and STDERR are predefined. (The filehandles stdin, stdout,
and stderr will also work except in packages, where they would be interpreted as local identifiers
rather than global.) Additional filehandles may be created with the open() function, amongst others.
See perlopentut and "open" in perlfunc for details on this.

If a <FILEHANDLE> is used in a context that is looking for a list, a list comprising all input lines is
returned, one line per list element. It’s easy to grow to a rather large data space this way, so use with
care.

perl v5.38.2 2025-07-25 83

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

<FILEHANDLE> may also be spelled readline(*FILEHANDLE). See "readline" in perlfunc.

The null filehandle <> (sometimes called the diamond operator) is special: it can be used to emulate the
behavior of sed and awk, and any other Unix filter program that takes a list of filenames, doing the
same to each line of input from all of them. Input from <> comes either from standard input, or from
each file listed on the command line. Here’s how it works: the first time <> is evaluated, the @ARGV
array is checked, and if it is empty, $ARGV[0] is set to "−", which when opened gives you standard
input. The @ARGV array is then processed as a list of filenames. The loop

while (<>) {
... # code for each line

}

is equivalent to the following Perl-like pseudo code:

unshift(@ARGV, '−') unless @ARGV;
while ($ARGV = shift) {

open(ARGV, $ARGV);
while (<ARGV>) {

... # code for each line
}

}

except that it isn’t so cumbersome to say, and will actually work. It really does shift the @ARGV array
and put the current filename into the $ARGV variable. It also uses filehandle ARGV internally. <> is
just a synonym for <ARGV>, which is magical. (The pseudo code above doesn’t work because it treats
<ARGV> as non-magical.)

Since the null filehandle uses the two argument form of "open" in perlfunc it interprets special
characters, so if you have a script like this:

while (<>) {
print;

}

and call it with perl dangerous.pl 'rm −rfv *|', it actually opens a pipe, executes the rm
command and reads rm’s output from that pipe. If you want all items in @ARGV to be interpreted as
file names, you can use the module ARGV::readonly from CPAN, or use the double diamond
bracket:

while (<<>>) {
print;

}

Using double angle brackets inside of a while causes the open to use the three argument form (with the
second argument being <), so all arguments in ARGV are treated as literal filenames (including "−").
(Note that for convenience, if you use <<>> and if @ARGV is empty, it will still read from the standard
input.)

You can modify @ARGV before the first <> as long as the array ends up containing the list of filenames
you really want. Line numbers ($.) continue as though the input were one big happy file. See the
example in "eof" in perlfunc for how to reset line numbers on each file.

If you want to set @ARGV to your own list of files, go right ahead. This sets @ARGV to all plain text
files if no @ARGV was giv en:

@ARGV = grep { −f && −T } glob('*') unless @ARGV;

You can even set them to pipe commands. For example, this automatically filters compressed
arguments through gzip:

@ARGV = map { /\.(gz|Z)$/ ? "gzip −dc < $_ |" : $_ } @ARGV;

If you want to pass switches into your script, you can use one of the Getopts modules or put a loop
on the front like this:

84 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

while ($_ = $ARGV[0], /ˆ−/) {
shift;
last if /ˆ−−$/;
if (/ˆ−D(.*)/) { $debug = $1 }
if (/ˆ−v/) { $verbose++ }
... # other switches

}

while (<>) {
... # code for each line

}

The <> symbol will return undef for end-of-file only once. If you call it again after this, it will
assume you are processing another @ARGV list, and if you haven’t set @ARGV, will read input from
STDIN.

If what the angle brackets contain is a simple scalar variable (for example, $foo), then that variable
contains the name of the filehandle to input from, or its typeglob, or a reference to the same. For
example:

$fh = *STDIN;
$line = <$fh>;

If what’s within the angle brackets is neither a filehandle nor a simple scalar variable containing a
filehandle name, typeglob, or typeglob reference, it is interpreted as a filename pattern to be globbed,
and either a list of filenames or the next filename in the list is returned, depending on context. This
distinction is determined on syntactic grounds alone. That means <$x> is always a readline()
from an indirect handle, but <$hash{key}> is always a glob(). That’s because $x is a simple
scalar variable, but $hash{key} is not−−it’s a hash element. Even <$x > (note the extra space) is
treated as glob("$x "), not readline($x).

One level of double-quote interpretation is done first, but you can’t say <$foo> because that’s an
indirect filehandle as explained in the previous paragraph. (In older versions of Perl, programmers
would insert curly brackets to force interpretation as a filename glob: <${foo}>. These days, it’s
considered cleaner to call the internal function directly as glob($foo), which is probably the right
way to hav e done it in the first place.) For example:

while (<*.c>) {
chmod 0644, $_;

}

is roughly equivalent to:

open(FOO, "echo *.c | tr −s ' \t\r\f' '\\012\\012\\012\\012'|");
while (<FOO>) {

chomp;
chmod 0644, $_;

}

except that the globbing is actually done internally using the standard File::Glob extension. Of
course, the shortest way to do the above is:

chmod 0644, <*.c>;

A (file)glob evaluates its (embedded) argument only when it is starting a new list. All values must be
read before it will start over. In list context, this isn’t important because you automatically get them all
anyway. Howev er, in scalar context the operator returns the next value each time it’s called, or undef
when the list has run out. As with filehandle reads, an automatic defined is generated when the glob
occurs in the test part of a while, because legal glob returns (for example, a file called 0) would
otherwise terminate the loop. Again, undef is returned only once. So if you’re expecting a single
value from a glob, it is much better to say

($file) = <blurch*>;

than

perl v5.38.2 2025-07-25 85

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$file = <blurch*>;

because the latter will alternate between returning a filename and returning false.

If you’re trying to do variable interpolation, it’s definitely better to use the glob() function, because
the older notation can cause people to become confused with the indirect filehandle notation.

@files = glob("$dir/*.[ch]");
@files = glob($files[$i]);

If an angle-bracket-based globbing expression is used as the condition of a while or for loop, then it
will be implicitly assigned to $_. If either a globbing expression or an explicit assignment of a
globbing expression to a scalar is used as a while/for condition, then the condition actually tests for
definedness of the expression’s value, not for its regular truth value.

Constant Folding
Like C, Perl does a certain amount of expression evaluation at compile time whenever it determines
that all arguments to an operator are static and have no side effects. In particular, string concatenation
happens at compile time between literals that don’t do variable substitution. Backslash interpolation
also happens at compile time. You can say

'Now is the time for all'
. "\n"
. 'good men to come to.'

and this all reduces to one string internally. Likewise, if you say

foreach $file (@filenames) {
if (−s $file > 5 + 100 * 2**16) { }

}

the compiler precomputes the number which that expression represents so that the interpreter won’t
have to.

No-ops
Perl doesn’t officially have a no-op operator, but the bare constants 0 and 1 are special-cased not to
produce a warning in void context, so you can for example safely do

1 while foo();

Bitwise String Operators
Bitstrings of any size may be manipulated by the bitwise operators (˜ | & ˆ).

If the operands to a binary bitwise op are strings of different sizes, | and ˆ ops act as though the shorter
operand had additional zero bits on the right, while the & op acts as though the longer operand were
truncated to the length of the shorter. The granularity for such extension or truncation is one or more
bytes.

ASCII−based examples
print "j p \n" ˆ " a h"; # prints "JAPH\n"
print "JA" | " ph\n"; # prints "japh\n"
print "japh\nJunk" & '_____'; # prints "JAPH\n";
print 'p N$' ˆ " E<H\n"; # prints "Perl\n";

If you are intending to manipulate bitstrings, be certain that you’re supplying bitstrings: If an operand
is a number, that will imply a numeric bitwise operation. You may explicitly show which type of
operation you intend by using "" or 0+, as in the examples below.

$foo = 150 | 105; # yields 255 (0x96 | 0x69 is 0xFF)
$foo = '150' | 105; # yields 255
$foo = 150 | '105'; # yields 255
$foo = '150' | '105'; # yields string '155' (under ASCII)

$baz = 0+$foo & 0+$bar; # both ops explicitly numeric
$biz = "$foo" ˆ "$bar"; # both ops explicitly stringy

This somewhat unpredictable behavior can be avoided with the "bitwise" feature, new in Perl 5.22.
You can enable it via use feature 'bitwise' or use v5.28. Before Perl 5.28, it used to emit
a warning in the "experimental::bitwise" category. Under this feature, the four standard

86 2025-07-25 perl v5.38.2

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

bitwise operators (˜ | & ˆ) are always numeric. Adding a dot after each operator (˜. |. &. ˆ.)
forces it to treat its operands as strings:

use feature "bitwise";
$foo = 150 | 105; # yields 255 (0x96 | 0x69 is 0xFF)
$foo = '150' | 105; # yields 255
$foo = 150 | '105'; # yields 255
$foo = '150' | '105'; # yields 255
$foo = 150 |. 105; # yields string '155'
$foo = '150' |. 105; # yields string '155'
$foo = 150 |.'105'; # yields string '155'
$foo = '150' |.'105'; # yields string '155'

$baz = $foo & $bar; # both operands numeric
$biz = $foo ˆ. $bar; # both operands stringy

The assignment variants of these operators (&= |= ˆ= &.= |.= ˆ.=) behave likewise under the
feature.

It is a fatal error if an operand contains a character whose ordinal value is above 0xFF, and hence not
expressible except in UTF−8. The operation is performed on a non−UTF−8 copy for other operands
encoded in UTF−8. See "Byte and Character Semantics" in perlunicode.

See "vec" in perlfunc for information on how to manipulate individual bits in a bit vector.

Integer Arithmetic
By default, Perl assumes that it must do most of its arithmetic in floating point. But by saying

use integer;

you may tell the compiler to use integer operations (see integer for a detailed explanation) from here to
the end of the enclosing BLOCK. An inner BLOCK may countermand this by saying

no integer;

which lasts until the end of that BLOCK. Note that this doesn’t mean everything is an integer, merely
that Perl will use integer operations for arithmetic, comparison, and bitwise operators. For example,
ev en under use integer, if you take the sqrt(2), you’ll still get 1.4142135623731 or so.

Used on numbers, the bitwise operators (& | ˆ ˜ << >>) always produce integral results. (But see also
"Bitwise String Operators".) However, use integer still has meaning for them. By default, their
results are interpreted as unsigned integers, but if use integer is in effect, their results are
interpreted as signed integers. For example, ˜0 usually evaluates to a large integral value. However,
use integer; ˜0 is −1 on two’s-complement machines.

Floating-point Arithmetic
While use integer provides integer-only arithmetic, there is no analogous mechanism to provide
automatic rounding or truncation to a certain number of decimal places. For rounding to a certain
number of digits, sprintf() or printf() is usually the easiest route. See perlfaq4.

Floating-point numbers are only approximations to what a mathematician would call real numbers.
There are infinitely more reals than floats, so some corners must be cut. For example:

printf "%.20g\n", 123456789123456789;
produces 123456789123456784

Testing for exact floating-point equality or inequality is not a good idea. Here’s a (relatively expensive)
work-around to compare whether two floating-point numbers are equal to a particular number of
decimal places. See Knuth, volume II, for a more robust treatment of this topic.

sub fp_equal {
my ($X, $Y, $POINTS) = @_;
my ($tX, $tY);
$tX = sprintf("%.${POINTS}g", $X);
$tY = sprintf("%.${POINTS}g", $Y);
return $tX eq $tY;

}

perl v5.38.2 2025-07-25 87

PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

The POSIX module (part of the standard perl distribution) implements ceil(), floor(), and other
mathematical and trigonometric functions. The Math::Complex module (part of the standard perl
distribution) defines mathematical functions that work on both the reals and the imaginary numbers.
Math::Complex is not as efficient as POSIX, but POSIX can’t work with complex numbers.

Rounding in financial applications can have serious implications, and the rounding method used should
be specified precisely. In these cases, it probably pays not to trust whichever system rounding is being
used by Perl, but to instead implement the rounding function you need yourself.

Bigger Numbers
The standard Math::BigInt, Math::BigRat, and Math::BigFloat modules, along with the
bignum, bigint, and bigrat pragmas, provide variable-precision arithmetic and overloaded
operators, although they’re currently pretty slow. At the cost of some space and considerable speed,
they avoid the normal pitfalls associated with limited-precision representations.

use 5.010;
use bigint; # easy interface to Math::BigInt
$x = 123456789123456789;
say $x * $x;

+15241578780673678515622620750190521

Or with rationals:

use 5.010;
use bigrat;
$x = 3/22;
$y = 4/6;
say "x/y is ", $x/$y;
say "x*y is ", $x*$y;
x/y is 9/44
x*y is 1/11

Several modules let you calculate with unlimited or fixed precision (bound only by memory and CPU
time). There are also some non-standard modules that provide faster implementations via external C
libraries.

Here is a short, but incomplete summary:

Math::String treat string sequences like numbers
Math::FixedPrecision calculate with a fixed precision
Math::Currency for currency calculations
Bit::Vector manipulate bit vectors fast (uses C)
Math::BigIntFast Bit::Vector wrapper for big numbers
Math::Pari provides access to the Pari C library
Math::Cephes uses the external Cephes C library (no

big numbers)
Math::Cephes::Fraction fractions via the Cephes library
Math::GMP another one using an external C library
Math::GMPz an alternative interface to libgmp's big ints
Math::GMPq an interface to libgmp's fraction numbers
Math::GMPf an interface to libgmp's floating point numbers

Choose wisely.

88 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

NAME
perlsub − Perl subroutines

SYNOPSIS
To declare subroutines:

sub NAME; # A "forward" declaration.
sub NAME(PROTO); # ditto, but with prototypes
sub NAME : ATTRS; # with attributes
sub NAME(PROTO) : ATTRS; # with attributes and prototypes

sub NAME BLOCK # A declaration and a definition.
sub NAME(PROTO) BLOCK # ditto, but with prototypes
sub NAME : ATTRS BLOCK # with attributes
sub NAME(PROTO) : ATTRS BLOCK # with prototypes and attributes

use feature 'signatures';
sub NAME(SIG) BLOCK # with signature
sub NAME :ATTRS (SIG) BLOCK # with signature, attributes
sub NAME :prototype(PROTO) (SIG) BLOCK # with signature, prototype

To define an anonymous subroutine at runtime:

$subref = sub BLOCK; # no proto
$subref = sub (PROTO) BLOCK; # with proto
$subref = sub : ATTRS BLOCK; # with attributes
$subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes

use feature 'signatures';
$subref = sub (SIG) BLOCK; # with signature
$subref = sub : ATTRS(SIG) BLOCK; # with signature, attributes

To import subroutines:

use MODULE qw(NAME1 NAME2 NAME3);

To call subroutines:

NAME(LIST); # & is optional with parentheses.
NAME LIST; # Parentheses optional if predeclared/imported.
&NAME(LIST); # Circumvent prototypes.
&NAME; # Makes current @_ visible to called subroutine.

DESCRIPTION
Like many languages, Perl provides for user-defined subroutines. These may be located anywhere in
the main program, loaded in from other files via the do, require, or use keywords, or generated on
the fly using eval or anonymous subroutines. You can even call a function indirectly using a variable
containing its name or a CODE reference.

The Perl model for function call and return values is simple: all functions are passed as parameters one
single flat list of scalars, and all functions likewise return to their caller one single flat list of scalars.
Any arrays or hashes in these call and return lists will collapse, losing their identities−−but you may
always use pass-by-reference instead to avoid this. Both call and return lists may contain as many or as
few scalar elements as you’d like. (Often a function without an explicit return statement is called a
subroutine, but there’s really no difference from Perl’s perspective.)

In a subroutine that uses signatures (see "Signatures" below), arguments are assigned into lexical
variables introduced by the signature. In the current implementation of Perl they are also accessible in
the @_ array in the same way as for non-signature subroutines, but accessing them in this manner is
now discouraged inside such a signature-using subroutine.

In a subroutine that does not use signatures, any arguments passed in show up in the array @_.
Therefore, if you called a function with two arguments, those would be stored in $_[0] and $_[1].
The array @_ is a local array, but its elements are aliases for the actual scalar parameters. In particular,
if an element $_[0] is updated, the corresponding argument is updated (or an error occurs if it is not
updatable). If an argument is an array or hash element which did not exist when the function was

perl v5.38.2 2025-07-25 89

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

called, that element is created only when (and if) it is modified or a reference to it is taken. (Some
earlier versions of Perl created the element whether or not the element was assigned to.) Assigning to
the whole array @_ removes that aliasing, and does not update any arguments.

When not using signatures, Perl does not otherwise provide a means to create named formal
parameters. In practice all you do is assign to a my() list of these. Variables that aren’t declared to be
private are global variables. For gory details on creating private variables, see "Private Variables via
my()" and "Temporary Values via local()". To create protected environments for a set of functions in a
separate package (and probably a separate file), see "Packages" in perlmod.

A return statement may be used to exit a subroutine, optionally specifying the returned value, which
will be evaluated in the appropriate context (list, scalar, or void) depending on the context of the
subroutine call. If you specify no return value, the subroutine returns an empty list in list context, the
undefined value in scalar context, or nothing in void context. If you return one or more aggregates
(arrays and hashes), these will be flattened together into one large indistinguishable list.

If no return is found and if the last statement is an expression, its value is returned. If the last
statement is a loop control structure like a foreach or a while, the returned value is unspecified.
The empty sub returns the empty list.

Example:

sub max {
my $max = shift(@_);
foreach $foo (@_) {

$max = $foo if $max < $foo;
}
return $max;

}
$bestday = max($mon,$tue,$wed,$thu,$fri);

Example:

get a line, combining continuation lines
that start with whitespace

sub get_line {
$thisline = $lookahead; # global variables!
LINE: while (defined($lookahead = <STDIN>)) {

if ($lookahead =˜ /ˆ[\t]/) {
$thisline .= $lookahead;

}
else {

last LINE;
}

}
return $thisline;

}

$lookahead = <STDIN>; # get first line
while (defined($line = get_line())) {

...
}

Assigning to a list of private variables to name your arguments:

sub maybeset {
my($key, $value) = @_;
$Foo{$key} = $value unless $Foo{$key};

}

Because the assignment copies the values, this also has the effect of turning call-by-reference into call-
by-value. Otherwise a function is free to do in-place modifications of @_ and change its caller’s values.

90 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

upcase_in($v1, $v2); # this changes $v1 and $v2
sub upcase_in {

for (@_) { tr/a−z/A−Z/ }
}

You aren’t allowed to modify constants in this way, of course. If an argument were actually literal and
you tried to change it, you’d take a (presumably fatal) exception. For example, this won’t work:

upcase_in("frederick");

It would be much safer if the upcase_in() function were written to return a copy of its parameters
instead of changing them in place:

($v3, $v4) = upcase($v1, $v2); # this doesn't change $v1 and $v2
sub upcase {

return unless defined wantarray; # void context, do nothing
my @parms = @_;
for (@parms) { tr/a−z/A−Z/ }
return wantarray ? @parms : $parms[0];

}

Notice how this (unprototyped) function doesn’t care whether it was passed real scalars or arrays. Perl
sees all arguments as one big, long, flat parameter list in @_. This is one area where Perl’s simple
argument-passing style shines. The upcase() function would work perfectly well without changing
the upcase() definition even if we fed it things like this:

@newlist = upcase(@list1, @list2);
@newlist = upcase(split /:/, $var);

Do not, however, be tempted to do this:

(@x, @y) = upcase(@list1, @list2);

Like the flattened incoming parameter list, the return list is also flattened on return. So all you have
managed to do here is stored everything in @x and made @y empty. See "Pass by Reference" for
alternatives.

A subroutine may be called using an explicit & prefix. The & is optional in modern Perl, as are
parentheses if the subroutine has been predeclared. The & is not optional when just naming the
subroutine, such as when it’s used as an argument to defined() or undef(). Nor is it optional when you
want to do an indirect subroutine call with a subroutine name or reference using the &$subref() or
&{$subref}() constructs, although the $subref−>() notation solves that problem. See perlref
for more about all that.

Subroutines may be called recursively. If a subroutine is called using the & form, the argument list is
optional, and if omitted, no @_ array is set up for the subroutine: the @_ array at the time of the call is
visible to subroutine instead. This is an efficiency mechanism that new users may wish to avoid.

&foo(1,2,3); # pass three arguments
foo(1,2,3); # the same

foo(); # pass a null list
&foo(); # the same

&foo; # foo() get current args, like foo(@_) !!
use strict 'subs';
foo; # like foo() iff sub foo predeclared, else

a compile−time error
no strict 'subs';
foo; # like foo() iff sub foo predeclared, else

a literal string "foo"

Not only does the & form make the argument list optional, it also disables any prototype checking on
arguments you do provide. This is partly for historical reasons, and partly for having a convenient way
to cheat if you know what you’re doing. See "Prototypes" below.

Since Perl 5.16.0, the __SUB_ _ token is available under use feature 'current_sub' and

perl v5.38.2 2025-07-25 91

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

use v5.16. It will evaluate to a reference to the currently-running sub, which allows for recursive
calls without knowing your subroutine’s name.

use v5.16;
my $factorial = sub {

my ($x) = @_;
return 1 if $x == 1;
return($x * __SUB_ _−>($x − 1));

};

The behavior of __SUB_ _ within a regex code block (such as /(?{...})/) is subject to change.

Subroutines whose names are in all upper case are reserved to the Perl core, as are modules whose
names are in all lower case. A subroutine in all capitals is a loosely-held convention meaning it will be
called indirectly by the run-time system itself, usually due to a triggered event. Subroutines whose
name start with a left parenthesis are also reserved the same way. The following is a list of some
subroutines that currently do special, pre-defined things.

documented later in this document
AUTOLOAD

documented in perlmod
CLONE, CLONE_SKIP

documented in perlobj
DESTROY, DOES

documented in perltie
BINMODE, CLEAR, CLOSE, DELETE, DESTROY, EOF, EXISTS, EXTEND, FETCH,
FETCHSIZE, FILENO, FIRSTKEY, GETC, NEXTKEY, OPEN, POP, PRINT, PRINTF, PUSH,
READ, READLINE, SCALAR, SEEK, SHIFT, SPLICE, STORE, STORESIZE, TELL,
TIEARRAY, TIEHANDLE, TIEHASH, TIESCALAR, UNSHIFT, UNTIE, WRITE

documented in PerlIO::via
BINMODE, CLEARERR, CLOSE, EOF, ERROR, FDOPEN, FILENO, FILL, FLUSH, OPEN,
POPPED, PUSHED, READ, SEEK, SETLINEBUF, SYSOPEN, TELL, UNREAD, UTF8, WRITE

documented in perlfunc
import, unimport, INC

documented in UNIVERSAL
VERSION

documented in perldebguts
DB::DB, DB::sub, DB::lsub, DB::goto, DB::postponed

undocumented, used internally by the overload feature
any starting with (

The BEGIN, UNITCHECK, CHECK, INIT and END subroutines are not so much subroutines as named
special code blocks, of which you can have more than one in a package, and which you can not call
explicitly. See "BEGIN, UNITCHECK, CHECK, INIT and END" in perlmod

Signatures
Perl has a facility to allow a subroutine’s formal parameters to be declared by special syntax, separate
from the procedural code of the subroutine body. The formal parameter list is known as a signature.

This facility must be enabled before it can be used. It is enabled automatically by a use v5.36 (or
higher) declaration, or more directly by use feature 'signatures', in the current scope.

The signature is part of a subroutine’s body. Normally the body of a subroutine is simply a braced
block of code, but when using a signature, the signature is a parenthesised list that goes immediately
before the block, after any name or attributes.

For example,

sub foo :lvalue ($x, $y = 1, @z) { }

The signature declares lexical variables that are in scope for the block. When the subroutine is called,
the signature takes control first. It populates the signature variables from the list of arguments that

92 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

were passed. If the argument list doesn’t meet the requirements of the signature, then it will throw an
exception. When the signature processing is complete, control passes to the block.

Positional parameters are handled by simply naming scalar variables in the signature. For example,

sub foo ($left, $right) {
return $left + $right;

}

takes two positional parameters, which must be filled at runtime by two arguments. By default the
parameters are mandatory, and it is not permitted to pass more arguments than expected. So the above
is equivalent to

sub foo {
die "Too many arguments for subroutine" unless @_ <= 2;
die "Too few arguments for subroutine" unless @_ >= 2;
my $left = $_[0];
my $right = $_[1];
return $left + $right;

}

An argument can be ignored by omitting the main part of the name from a parameter declaration,
leaving just a bare $ sigil. For example,

sub foo ($first, $, $third) {
return "first=$first, third=$third";

}

Although the ignored argument doesn’t go into a variable, it is still mandatory for the caller to pass it.

A positional parameter is made optional by giving a default value, separated from the parameter name
by =:

sub foo ($left, $right = 0) {
return $left + $right;

}

The above subroutine may be called with either one or two arguments. The default value expression is
evaluated when the subroutine is called, so it may provide different default values for different calls. It
is only evaluated if the argument was actually omitted from the call. For example,

my $auto_id = 0;
sub foo ($thing, $id = $auto_id++) {

print "$thing has ID $id";
}

automatically assigns distinct sequential IDs to things for which no ID was supplied by the caller. A
default value expression may also refer to parameters earlier in the signature, making the default for
one parameter vary according to the earlier parameters. For example,

sub foo ($first_name, $surname, $nickname = $first_name) {
print "$first_name $surname is known as \"$nickname\"";

}

A default value expression can also be written using the //= operator, where it will be evaluated and
used if the caller omitted a value or the value provided was undef.

sub foo ($name //= "world") {
print "Hello, $name";

}

foo(undef); # will print "Hello, world"

Similarly, the ||= operator can be used to provide a default expression to be used whenever the caller
provided a false value (and remember that a missing or undef value are also false).

perl v5.38.2 2025-07-25 93

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

sub foo ($x ||= 10) {
return 5 + $x;

}

An optional parameter can be nameless just like a mandatory parameter. For example,

sub foo ($thing, $ = 1) {
print $thing;

}

The parameter’s default value will still be evaluated if the corresponding argument isn’t supplied, even
though the value won’t be stored anywhere. This is in case evaluating it has important side effects.
However, it will be evaluated in void context, so if it doesn’t hav e side effects and is not trivial it will
generate a warning if the "void" warning category is enabled. If a nameless optional parameter’s
default value is not important, it may be omitted just as the parameter’s name was:

sub foo ($thing, $=) {
print $thing;

}

Optional positional parameters must come after all mandatory positional parameters. (If there are no
mandatory positional parameters then an optional positional parameters can be the first thing in the
signature.) If there are multiple optional positional parameters and not enough arguments are supplied
to fill them all, they will be filled from left to right.

After positional parameters, additional arguments may be captured in a slurpy parameter. The simplest
form of this is just an array variable:

sub foo ($filter, @inputs) {
print $filter−>($_) foreach @inputs;

}

With a slurpy parameter in the signature, there is no upper limit on how many arguments may be
passed. A slurpy array parameter may be nameless just like a positional parameter, in which case its
only effect is to turn off the argument limit that would otherwise apply:

sub foo ($thing, @) {
print $thing;

}

A slurpy parameter may instead be a hash, in which case the arguments available to it are interpreted as
alternating keys and values. There must be as many keys as values: if there is an odd argument then an
exception will be thrown. Keys will be stringified, and if there are duplicates then the later instance
takes precedence over the earlier, as with standard hash construction.

sub foo ($filter, %inputs) {
print $filter−>($_, $inputs{$_}) foreach sort keys %inputs;

}

A slurpy hash parameter may be nameless just like other kinds of parameter. It still insists that the
number of arguments available to it be even, even though they’re not being put into a variable.

sub foo ($thing, %) {
print $thing;

}

A slurpy parameter, either array or hash, must be the last thing in the signature. It may follow
mandatory and optional positional parameters; it may also be the only thing in the signature. Slurpy
parameters cannot have default values: if no arguments are supplied for them then you get an empty
array or empty hash.

A signature may be entirely empty, in which case all it does is check that the caller passed no
arguments:

sub foo () {
return 123;

}

Prior to Perl 5.36 these were considered experimental, and emitted a warning in the

94 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

experimental::signatures category. From Perl 5.36 onwards this no longer happens, though
the warning category still exists for back-compatibility with code that attempts to disable it with a
statement such as:

no warnings 'experimental::signatures';

In the current Perl implementation, when using a signature the arguments are still also available in the
special array variable @_. Howev er, accessing them via this array is now discouraged, and should not
be relied upon in newly-written code as this ability may change in a future version. Code that attempts
to access the @_ array will produce warnings in the
experimental::args_array_with_signatures category when compiled:

sub f ($x) {
This line emits the warning seen below
print "Arguments are @_";

}

Use of @_ in join or string with signatured subroutine is
experimental at ...

There is a difference between the two ways of accessing the arguments: @_ aliases the arguments, but
the signature variables get copies of the arguments. So writing to a signature variable only changes that
variable, and has no effect on the caller’s variables, but writing to an element of @_ modifies whatever
the caller used to supply that argument.

There is a potential syntactic ambiguity between signatures and prototypes (see "Prototypes"), because
both start with an opening parenthesis and both can appear in some of the same places, such as just
after the name in a subroutine declaration. For historical reasons, when signatures are not enabled, any
opening parenthesis in such a context will trigger very forgiving prototype parsing. Most signatures
will be interpreted as prototypes in those circumstances, but won’t be valid prototypes. (A valid
prototype cannot contain any alphabetic character.) This will lead to somewhat confusing error
messages.

To avoid ambiguity, when signatures are enabled the special syntax for prototypes is disabled. There is
no attempt to guess whether a parenthesised group was intended to be a prototype or a signature. To
give a subroutine a prototype under these circumstances, use a prototype attribute. For example,

sub foo :prototype($) { $_[0] }

It is entirely possible for a subroutine to have both a prototype and a signature. They do different jobs:
the prototype affects compilation of calls to the subroutine, and the signature puts argument values into
lexical variables at runtime. You can therefore write

sub foo :prototype($$) ($left, $right) {
return $left + $right;

}

The prototype attribute, and any other attributes, must come before the signature. The signature always
immediately precedes the block of the subroutine’s body.

Private Variables via my()
Synopsis:

my $foo; # declare $foo lexically local
my (@wid, %get); # declare list of variables local
my $foo = "flurp"; # declare $foo lexical, and init it
my @oof = @bar; # declare @oof lexical, and init it
my $x : Foo = $y; # similar, with an attribute applied

WARNING: The use of attribute lists on my declarations is still evolving. The current semantics and
interface are subject to change. See attributes and Attribute::Handlers.

The my operator declares the listed variables to be lexically confined to the enclosing block, conditional
(if/unless/elsif/else), loop (for/foreach/while/until/continue), subroutine, eval,
or do/require/use’d file. If more than one value is listed, the list must be placed in parentheses.
All listed elements must be legal lvalues. Only alphanumeric identifiers may be lexically
scoped−−magical built-ins like $/ must currently be localized with local instead.

perl v5.38.2 2025-07-25 95

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

Unlike dynamic variables created by the local operator, lexical variables declared with my are totally
hidden from the outside world, including any called subroutines. This is true if it’s the same subroutine
called from itself or elsewhere−−every call gets its own copy.

This doesn’t mean that a my variable declared in a statically enclosing lexical scope would be invisible.
Only dynamic scopes are cut off. For example, the bumpx() function below has access to the lexical
$x variable because both the my and the sub occurred at the same scope, presumably file scope.

my $x = 10;
sub bumpx { $x++ }

An eval(), howev er, can see lexical variables of the scope it is being evaluated in, so long as the
names aren’t hidden by declarations within the eval() itself. See perlref.

The parameter list to my() may be assigned to if desired, which allows you to initialize your variables.
(If no initializer is given for a particular variable, it is created with the undefined value.) Commonly
this is used to name input parameters to a subroutine. Examples:

$arg = "fred"; # "global" variable
$n = cube_root(27);
print "$arg thinks the root is $n\n";
outputs: fred thinks the root is 3

sub cube_root {
my $arg = shift; # name doesn't matter
$arg **= 1/3;
return $arg;

}

The my is simply a modifier on something you might assign to. So when you do assign to variables in
its argument list, my doesn’t change whether those variables are viewed as a scalar or an array. So

my ($foo) = <STDIN>; # WRONG?
my @FOO = <STDIN>;

both supply a list context to the right-hand side, while

my $foo = <STDIN>;

supplies a scalar context. But the following declares only one variable:

my $foo, $bar = 1; # WRONG

That has the same effect as

my $foo;
$bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,

my $x = $x;

can be used to initialize a new $x with the value of the old $x, and the expression

my $x = 123 and $x == 123

is false unless the old $x happened to have the value 123.

Lexical scopes of control structures are not bounded precisely by the braces that delimit their controlled
blocks; control expressions are part of that scope, too. Thus in the loop

while (my $line = <>) {
$line = lc $line;

} continue {
print $line;

}

the scope of $line extends from its declaration throughout the rest of the loop construct (including
the continue clause), but not beyond it. Similarly, in the conditional

96 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

if ((my $answer = <STDIN>) =˜ /ˆyes$/i) {
user_agrees();

} elsif ($answer =˜ /ˆno$/i) {
user_disagrees();

} else {
chomp $answer;
die "'$answer' is neither 'yes' nor 'no'";

}

the scope of $answer extends from its declaration through the rest of that conditional, including any
elsif and else clauses, but not beyond it. See "Simple Statements" in perlsyn for information on
the scope of variables in statements with modifiers.

The foreach loop defaults to scoping its index variable dynamically in the manner of local.
However, if the index variable is prefixed with the keyword my, or if there is already a lexical by that
name in scope, then a new lexical is created instead. Thus in the loop

for my $i (1, 2, 3) {
some_function();

}

the scope of $i extends to the end of the loop, but not beyond it, rendering the value of $i inaccessible
within some_function().

Some users may wish to encourage the use of lexically scoped variables. As an aid to catching implicit
uses to package variables, which are always global, if you say

use strict 'vars';

then any variable mentioned from there to the end of the enclosing block must either refer to a lexical
variable, be predeclared via our or use vars, or else must be fully qualified with the package name.
A compilation error results otherwise. An inner block may countermand this with no strict
'vars'.

A my has both a compile-time and a run-time effect. At compile time, the compiler takes notice of it.
The principal usefulness of this is to quiet use strict 'vars', but it is also essential for
generation of closures as detailed in perlref. Actual initialization is delayed until run time, though, so it
gets executed at the appropriate time, such as each time through a loop, for example.

Variables declared with my are not part of any package and are therefore never fully qualified with the
package name. In particular, you’re not allowed to try to make a package variable (or other global)
lexical:

my $pack::var; # ERROR! Illegal syntax

In fact, a dynamic variable (also known as package or global variables) are still accessible using the
fully qualified :: notation even while a lexical of the same name is also visible:

package main;
local $x = 10;
my $x = 20;
print "$x and $::x\n";

That will print out 20 and 10.

You may declare my variables at the outermost scope of a file to hide any such identifiers from the
world outside that file. This is similar in spirit to C’s static variables when they are used at the file
level. To do this with a subroutine requires the use of a closure (an anonymous function that accesses
enclosing lexicals). If you want to create a private subroutine that cannot be called from outside that
block, it can declare a lexical variable containing an anonymous sub reference:

my $secret_version = '1.001−beta';
my $secret_sub = sub { print $secret_version };
&$secret_sub();

As long as the reference is never returned by any function within the module, no outside module can
see the subroutine, because its name is not in any package’s symbol table. Remember that it’s not
REALLY called $some_pack::secret_version or anything; it’s just $secret_version,

perl v5.38.2 2025-07-25 97

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

unqualified and unqualifiable.

This does not work with object methods, however; all object methods have to be in the symbol table of
some package to be found. See "Function Templates" in perlref for something of a work-around to
this.

Persistent Private Variables
There are two ways to build persistent private variables in Perl 5.10. First, you can simply use the
state feature. Or, you can use closures, if you want to stay compatible with releases older than 5.10.

Persistent variables via state()

Beginning with Perl 5.10.0, you can declare variables with the state keyword in place of my. For
that to work, though, you must have enabled that feature beforehand, either by using the feature
pragma, or by using −E on one-liners (see feature). Beginning with Perl 5.16, the CORE::state
form does not require the feature pragma.

The state keyword creates a lexical variable (following the same scoping rules as my) that persists
from one subroutine call to the next. If a state variable resides inside an anonymous subroutine, then
each copy of the subroutine has its own copy of the state variable. However, the value of the state
variable will still persist between calls to the same copy of the anonymous subroutine. (Don’t forget
that sub { ... } creates a new subroutine each time it is executed.)

For example, the following code maintains a private counter, incremented each time the
gimme_another() function is called:

use feature 'state';
sub gimme_another { state $x; return ++$x }

And this example uses anonymous subroutines to create separate counters:

use feature 'state';
sub create_counter {

return sub { state $x; return ++$x }
}

Also, since $x is lexical, it can’t be reached or modified by any Perl code outside.

When combined with variable declaration, simple assignment to state variables (as in state $x =
42) is executed only the first time. When such statements are evaluated subsequent times, the
assignment is ignored. The behavior of assignment to state declarations where the left hand side of
the assignment involves any parentheses is currently undefined.

Persistent variables with closures

Just because a lexical variable is lexically (also called statically) scoped to its enclosing block, eval,
or do FILE, this doesn’t mean that within a function it works like a C static. It normally works more
like a C auto, but with implicit garbage collection.

Unlike local variables in C or C++, Perl’s lexical variables don’t necessarily get recycled just because
their scope has exited. If something more permanent is still aware of the lexical, it will stick around.
So long as something else references a lexical, that lexical won’t be freed−−which is as it should be.
You wouldn’t want memory being free until you were done using it, or kept around once you were
done. Automatic garbage collection takes care of this for you.

This means that you can pass back or save away references to lexical variables, whereas to return a
pointer to a C auto is a grave error. It also gives us a way to simulate C’s function statics. Here’s a
mechanism for giving a function private variables with both lexical scoping and a static lifetime. If you
do want to create something like C’s static variables, just enclose the whole function in an extra block,
and put the static variable outside the function but in the block.

98 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

{
my $secret_val = 0;
sub gimme_another {

return ++$secret_val;
}

}
$secret_val now becomes unreachable by the outside
world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate file via require or use, then this is probably just
fine. If it’s all in the main program, you’ll need to arrange for the my to be executed early, either by
putting the whole block above your main program, or more likely, placing merely a BEGIN code block
around it to make sure it gets executed before your program starts to run:

BEGIN {
my $secret_val = 0;
sub gimme_another {

return ++$secret_val;
}

}

See "BEGIN, UNITCHECK, CHECK, INIT and END" in perlmod about the special triggered code
blocks, BEGIN, UNITCHECK, CHECK, INIT and END.

If declared at the outermost scope (the file scope), then lexicals work somewhat like C’s file statics.
They are available to all functions in that same file declared below them, but are inaccessible from
outside that file. This strategy is sometimes used in modules to create private variables that the whole
module can see.

Temporary Values via local()
WARNING: In general, you should be using my instead of local, because it’s faster and safer.
Exceptions to this include the global punctuation variables, global filehandles and formats, and direct
manipulation of the Perl symbol table itself. local is mostly used when the current value of a
variable must be visible to called subroutines.

Synopsis:

localization of values

local $foo; # make $foo dynamically local
local (@wid, %get); # make list of variables local
local $foo = "flurp"; # make $foo dynamic, and init it
local @oof = @bar; # make @oof dynamic, and init it

local $hash{key} = "val"; # sets a local value for this hash entry
delete local $hash{key}; # delete this entry for the current block
local ($cond ? $v1 : $v2); # several types of lvalues support

localization

localization of symbols

local *FH; # localize $FH, @FH, %FH, &FH ...
local *merlyn = *randal; # now $merlyn is really $randal, plus

@merlyn is really @randal, etc
local *merlyn = 'randal'; # SAME THING: promote 'randal' to *randal
local *merlyn = \$randal; # just alias $merlyn, not @merlyn etc

A local modifies its listed variables to be "local" to the enclosing block, eval, or do FILE−−and
to any subroutine called from within that block. A local just gives temporary values to global
(meaning package) variables. It does not create a local variable. This is known as dynamic scoping.
Lexical scoping is done with my, which works more like C’s auto declarations.

Some types of lvalues can be localized as well: hash and array elements and slices, conditionals
(provided that their result is always localizable), and symbolic references. As for simple variables, this

perl v5.38.2 2025-07-25 99

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

creates new, dynamically scoped values.

If more than one variable or expression is given to local, they must be placed in parentheses. This
operator works by saving the current values of those variables in its argument list on a hidden stack and
restoring them upon exiting the block, subroutine, or eval. This means that called subroutines can also
reference the local variable, but not the global one. The argument list may be assigned to if desired,
which allows you to initialize your local variables. (If no initializer is given for a particular variable, it
is created with an undefined value.)

Because local is a run-time operator, it gets executed each time through a loop. Consequently, it’s
more efficient to localize your variables outside the loop.

Grammatical note on local()

A local is simply a modifier on an lvalue expression. When you assign to a localized variable, the
local doesn’t change whether its list is viewed as a scalar or an array. So

local($foo) = <STDIN>;
local @FOO = <STDIN>;

both supply a list context to the right-hand side, while

local $foo = <STDIN>;

supplies a scalar context.

Localization of special variables

If you localize a special variable, you’ll be giving a new value to it, but its magic won’t go away. That
means that all side-effects related to this magic still work with the localized value.

This feature allows code like this to work :

Read the whole contents of FILE in $slurp
{ local $/ = undef; $slurp = <FILE>; }

Note, however, that this restricts localization of some values ; for example, the following statement
dies, as of Perl 5.10.0, with an error Modification of a read-only value attempted, because the $1
variable is magical and read-only :

local $1 = 2;

One exception is the default scalar variable: starting with Perl 5.14 local($_) will always strip all
magic from $_, to make it possible to safely reuse $_ in a subroutine.

WARNING: Localization of tied arrays and hashes does not currently work as described. This will be
fixed in a future release of Perl; in the meantime, avoid code that relies on any particular behavior of
localising tied arrays or hashes (localising individual elements is still okay). See "Localising Tied
Arrays and Hashes Is Broken" in perl58delta for more details.

Localization of globs

The construct

local *name;

creates a whole new symbol table entry for the glob name in the current package. That means that all
variables in its glob slot ($name, @name, %name, &name, and the name filehandle) are dynamically
reset.

This implies, among other things, that any magic eventually carried by those variables is locally lost.
In other words, saying local */ will not have any effect on the internal value of the input record
separator.

Localization of elements of composite types

It’s also worth taking a moment to explain what happens when you localize a member of a
composite type (i.e. an array or hash element). In this case, the element is localized by name. This
means that when the scope of the local() ends, the saved value will be restored to the hash element
whose key was named in the local(), or the array element whose index was named in the
local(). If that element was deleted while the local() was in effect (e.g. by a delete() from a
hash or a shift() of an array), it will spring back into existence, possibly extending an array and

100 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

filling in the skipped elements with undef. For instance, if you say

%hash = ('This' => 'is', 'a' => 'test');
@ary = (0..5);
{

local($ary[5]) = 6;
local($hash{'a'}) = 'drill';
while (my $e = pop(@ary)) {

print "$e . . .\n";
last unless $e > 3;

}
if (@ary) {

$hash{'only a'} = 'test';
delete $hash{'a'};

}
}
print join(' ', map { "$_ $hash{$_}" } sort keys %hash),".\n";
print "The array has ",scalar(@ary)," elements: ",

join(', ', map { defined $_ ? $_ : 'undef' } @ary),"\n";

Perl will print

6 . . .
4 . . .
3 . . .
This is a test only a test.
The array has 6 elements: 0, 1, 2, undef, undef, 5

The behavior of local() on non-existent members of composite types is subject to change in future. The
behavior of local() on array elements specified using negative indexes is particularly surprising, and is
very likely to change.

Localized deletion of elements of composite types

You can use the delete local $array[$idx] and delete local $hash{key}
constructs to delete a composite type entry for the current block and restore it when it ends. They
return the array/hash value before the localization, which means that they are respectively equivalent to

do {
my $val = $array[$idx];
local $array[$idx];
delete $array[$idx];
$val

}

and

do {
my $val = $hash{key};
local $hash{key};
delete $hash{key};
$val

}

except that for those the local is scoped to the do block. Slices are also accepted.

my %hash = (
a => [7, 8, 9],
b => 1,

)

{
my $x = delete local $hash{a};
$x is [7, 8, 9]
%hash is (b => 1)

perl v5.38.2 2025-07-25 101

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

{
my @nums = delete local @$x[0, 2]
@nums is (7, 9)
$x is [undef, 8]

$x[0] = 999; # will be erased when the scope ends
}
$x is back to [7, 8, 9]

}
%hash is back to its original state

This construct is supported since Perl v5.12.

Lvalue subroutines
It is possible to return a modifiable value from a subroutine. To do this, you have to declare the
subroutine to return an lvalue.

my $val;
sub canmod : lvalue {

$val; # or: return $val;
}
sub nomod {

$val;
}

canmod() = 5; # assigns to $val
nomod() = 5; # ERROR

The scalar/list context for the subroutine and for the right-hand side of assignment is determined as if
the subroutine call is replaced by a scalar. For example, consider:

data(2,3) = get_data(3,4);

Both subroutines here are called in a scalar context, while in:

(data(2,3)) = get_data(3,4);

and in:

(data(2),data(3)) = get_data(3,4);

all the subroutines are called in a list context.

Lvalue subroutines are convenient, but you have to keep in mind that, when used with objects, they
may violate encapsulation. A normal mutator can check the supplied argument before setting the
attribute it is protecting, an lvalue subroutine cannot. If you require any special processing when
storing and retrieving the values, consider using the CPAN module Sentinel or something similar.

Lexical Subroutines
Beginning with Perl 5.18, you can declare a private subroutine with my or state. As with state
variables, the state keyword is only available under use feature 'state' or use v5.10 or
higher.

Prior to Perl 5.26, lexical subroutines were deemed experimental and were available only under the
use feature 'lexical_subs' pragma. They also produced a warning unless the
"experimental::lexical_subs" warnings category was disabled.

These subroutines are only visible within the block in which they are declared, and only after that
declaration:

Include these two lines if your code is intended to run under Perl
versions earlier than 5.26.
no warnings "experimental::lexical_subs";
use feature 'lexical_subs';

foo(); # calls the package/global subroutine

102 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

state sub foo {
foo(); # also calls the package subroutine

}
foo(); # calls "state" sub
my $ref = \&foo; # take a reference to "state" sub

my sub bar { ... }
bar(); # calls "my" sub

You can’t (directly) write a recursive lexical subroutine:

WRONG
my sub baz {

baz();
}

This example fails because baz() refers to the package/global subroutine baz, not the lexical
subroutine currently being defined.

The solution is to use __SUB_ _:

my sub baz {
__SUB_ _−>(); # calls itself

}

It is possible to predeclare a lexical subroutine. The sub foo {...} subroutine definition syntax
respects any previous my sub; or state sub; declaration. Using this to define recursive
subroutines is a bad idea, however:

my sub baz; # predeclaration
sub baz { # define the "my" sub

baz(); # WRONG: calls itself, but leaks memory
}

Just like my $f; $f = sub { $f−>() }, this example leaks memory. The name baz is a
reference to the subroutine, and the subroutine uses the name baz; they keep each other alive (see
"Circular References" in perlref).

state sub vs my sub

What is the difference between "state" subs and "my" subs? Each time that execution enters a block
when "my" subs are declared, a new copy of each sub is created. "State" subroutines persist from one
execution of the containing block to the next.

So, in general, "state" subroutines are faster. But "my" subs are necessary if you want to create
closures:

sub whatever {
my $x = shift;
my sub inner {

... do something with $x ...
}
inner();

}

In this example, a new $x is created when whatever is called, and also a new inner, which can see
the new $x. A "state" sub will only see the $x from the first call to whatever.

our subroutines

Like our $variable, our sub creates a lexical alias to the package subroutine of the same name.

The two main uses for this are to switch back to using the package sub inside an inner scope:

sub foo { ... }

sub bar {
my sub foo { ... }
{

perl v5.38.2 2025-07-25 103

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

need to use the outer foo here
our sub foo;
foo();

}
}

and to make a subroutine visible to other packages in the same scope:

package MySneakyModule;

our sub do_something { ... }

sub do_something_with_caller {
package DB;
() = caller 1; # sets @DB::args
do_something(@args); # uses MySneakyModule::do_something

}

Passing Symbol Table Entries (typeglobs)
WARNING: The mechanism described in this section was originally the only way to simulate pass-by-
reference in older versions of Perl. While it still works fine in modern versions, the new reference
mechanism is generally easier to work with. See below.

Sometimes you don’t want to pass the value of an array to a subroutine but rather the name of it, so that
the subroutine can modify the global copy of it rather than working with a local copy. In Perl you can
refer to all objects of a particular name by prefixing the name with a star: *foo. This is often known
as a "typeglob", because the star on the front can be thought of as a wildcard match for all the funny
prefix characters on variables and subroutines and such.

When evaluated, the typeglob produces a scalar value that represents all the objects of that name,
including any filehandle, format, or subroutine. When assigned to, it causes the name mentioned to
refer to whatever * value was assigned to it. Example:

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {

$elem *= 2;
}

}
doubleary(*foo);
doubleary(*bar);

Scalars are already passed by reference, so you can modify scalar arguments without using this
mechanism by referring explicitly to $_[0] etc. You can modify all the elements of an array by
passing all the elements as scalars, but you have to use the * mechanism (or the equivalent reference
mechanism) to push, pop, or change the size of an array. It will certainly be faster to pass the
typeglob (or reference).

Even if you don’t want to modify an array, this mechanism is useful for passing multiple arrays in a
single LIST, because normally the LIST mechanism will merge all the array values so that you can’t
extract out the individual arrays. For more on typeglobs, see "Typeglobs and Filehandles" in perldata.

When to Still Use local()
Despite the existence of my, there are still three places where the local operator still shines. In fact,
in these three places, you must use local instead of my.

1. You need to give a global variable a temporary value, especially $_.

The global variables, like @ARGV or the punctuation variables, must be localized with
local(). This block reads in /etc/motd, and splits it up into chunks separated by lines of equal
signs, which are placed in @Fields.

104 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

{
local @ARGV = ("/etc/motd");
local $/ = undef;
local $_ = <>;
@Fields = split /ˆ\s*=+\s*$/;

}

It particular, it’s important to localize $_ in any routine that assigns to it. Look out for implicit
assignments in while conditionals.

2. You need to create a local file or directory handle or a local function.

A function that needs a filehandle of its own must use local() on a complete typeglob. This
can be used to create new symbol table entries:

sub ioqueue {
local (*READER, *WRITER); # not my!
pipe (READER, WRITER) or die "pipe: $!";
return (*READER, *WRITER);

}
($head, $tail) = ioqueue();

See the Symbol module for a way to create anonymous symbol table entries.

Because assignment of a reference to a typeglob creates an alias, this can be used to create what is
effectively a local function, or at least, a local alias.

{
local *grow = \&shrink; # only until this block exits
grow(); # really calls shrink()
move(); # if move() grow()s, it shrink()s too

}
grow(); # get the real grow() again

See "Function Templates" in perlref for more about manipulating functions by name in this way.

3. You want to temporarily change just one element of an array or hash.

You can localize just one element of an aggregate. Usually this is done on dynamics:

{
local $SIG{INT} = 'IGNORE';
funct(); # uninterruptible

}
interruptibility automatically restored here

But it also works on lexically declared aggregates.

Pass by Reference
If you want to pass more than one array or hash into a function−−or return them from it−−and have
them maintain their integrity, then you’re going to have to use an explicit pass-by-reference. Before
you do that, you need to understand references as detailed in perlref. This section may not make much
sense to you otherwise.

Here are a few simple examples. First, let’s pass in several arrays to a function and have it pop all of
then, returning a new list of all their former last elements:

@tailings = popmany (\@w, \@x, \@y, \@z);

sub popmany {
my $aref;
my @retlist;
foreach $aref (@_) {

push @retlist, pop @$aref;
}
return @retlist;

}

perl v5.38.2 2025-07-25 105

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

Here’s how you might write a function that returns a list of keys occurring in all the hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);
sub inter {

my ($k, $href, %seen); # locals
foreach $href (@_) {

while ($k = each %$href) {
$seen{$k}++;

}
}
return grep { $seen{$_} == @_ } keys %seen;

}

So far, we’re using just the normal list return mechanism. What happens if you want to pass or return a
hash? Well, if you’re using only one of them, or you don’t mind them concatenating, then the normal
calling convention is ok, although a little expensive.

Where people get into trouble is here:

(@w, @x) = func(@y, @z);
or

(%w, %x) = func(%y, %z);

That syntax simply won’t work. It sets just @w or %w and clears the @x or %x. Plus the function didn’t
get passed into two separate arrays or hashes: it got one long list in @_, as always.

If you can arrange for everyone to deal with this through references, it’s cleaner code, although not so
nice to look at. Here’s a function that takes two array references as arguments, returning the two array
elements in order of how many elements they hav e in them:

($wref, $xref) = func(\@y, \@z);
print "@$wref has more than @$xref\n";
sub func {

my ($yref, $zref) = @_;
if (@$yref > @$zref) {

return ($yref, $zref);
} else {

return ($zref, $yref);
}

}

It turns out that you can actually do this also:

(*w, *x) = func(\@y, \@z);
print "@w has more than @x\n";
sub func {

local (*y, *z) = @_;
if (@y > @z) {

return (\@y, \@z);
} else {

return (\@z, \@y);
}

}

Here we’re using the typeglobs to do symbol table aliasing. It’s a tad subtle, though, and also won’t
work if you’re using my variables, because only globals (even in disguise as locals) are in the symbol
table.

If you’re passing around filehandles, you could usually just use the bare typeglob, like *STDOUT, but
typeglobs references work, too. For example:

106 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

splutter(*STDOUT);
sub splutter {

my $fh = shift;
print $fh "her um well a hmmm\n";

}

$rec = get_rec(*STDIN);
sub get_rec {

my $fh = shift;
return scalar <$fh>;

}

If you’re planning on generating new filehandles, you could do this. Notice to pass back just the bare
*FH, not its reference.

sub openit {
my $path = shift;
local *FH;
return open (FH, $path) ? *FH : undef;

}

Prototypes
Perl supports a very limited kind of compile-time argument checking using function prototyping. This
can be declared in either the PROT O section or with a prototype attribute. If you declare either of

sub mypush (\@@)
sub mypush :prototype(\@@)

then mypush() takes arguments exactly like push() does.

If subroutine signatures are enabled (see "Signatures"), then the shorter PROT O syntax is unavailable,
because it would clash with signatures. In that case, a prototype can only be declared in the form of an
attribute.

The function declaration must be visible at compile time. The prototype affects only interpretation of
new-style calls to the function, where new-style is defined as not using the & character. In other words,
if you call it like a built-in function, then it behaves like a built-in function. If you call it like an old-
fashioned subroutine, then it behaves like an old-fashioned subroutine. It naturally falls out from this
rule that prototypes have no influence on subroutine references like \&foo or on indirect subroutine
calls like &{$subref} or $subref−>().

Method calls are not influenced by prototypes either, because the function to be called is indeterminate
at compile time, since the exact code called depends on inheritance.

Because the intent of this feature is primarily to let you define subroutines that work like built-in
functions, here are prototypes for some other functions that parse almost exactly like the corresponding
built-in.

Declared as Called as

sub mylink ($$) mylink $old, $new
sub myvec ($$$) myvec $var, $offset, 1
sub myindex ($$;$) myindex &getstring, "substr"
sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) − $off, $off
sub myreverse (@) myreverse $x, $y, $z
sub myjoin ($@) myjoin ":", $x, $y, $z
sub mypop (\@) mypop @array
sub mysplice (\@$$@) mysplice @array, 0, 2, @pushme
sub mykeys (\[%@]) mykeys $hashref−>%*
sub myopen (*;$) myopen HANDLE, $name
sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
sub mygrep (&@) mygrep { /foo/ } $x, $y, $z
sub myrand (;$) myrand 42
sub mytime () mytime

perl v5.38.2 2025-07-25 107

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

Any backslashed prototype character represents an actual argument that must start with that character
(optionally preceded by my, our or local), with the exception of $, which will accept any scalar
lvalue expression, such as $foo = 7 or my_function()−>[0]. The value passed as part of @_
will be a reference to the actual argument given in the subroutine call, obtained by applying \ to that
argument.

You can use the \[] backslash group notation to specify more than one allowed argument type. For
example:

sub myref (\[$@%&*])

will allow calling myref() as

myref $var
myref @array
myref %hash
myref &sub
myref *glob

and the first argument of myref() will be a reference to a scalar, an array, a hash, a code, or a glob.

Unbackslashed prototype characters have special meanings. Any unbackslashed @ or % eats all
remaining arguments, and forces list context. An argument represented by $ forces scalar context. An
& requires an anonymous subroutine, which, if passed as the first argument, does not require the sub
keyword or a subsequent comma.

A * allows the subroutine to accept a bareword, constant, scalar expression, typeglob, or a reference to
a typeglob in that slot. The value will be available to the subroutine either as a simple scalar, or (in the
latter two cases) as a reference to the typeglob. If you wish to always convert such arguments to a
typeglob reference, use Symbol::qualify_to_ref() as follows:

use Symbol 'qualify_to_ref';

sub foo (*) {
my $fh = qualify_to_ref(shift, caller);
...

}

The + prototype is a special alternative to $ that will act like \[@%] when given a literal array or hash
variable, but will otherwise force scalar context on the argument. This is useful for functions which
should accept either a literal array or an array reference as the argument:

sub mypush (+@) {
my $aref = shift;
die "Not an array or arrayref" unless ref $aref eq 'ARRAY';
push @$aref, @_;

}

When using the + prototype, your function must check that the argument is of an acceptable type.

A semicolon (;) separates mandatory arguments from optional arguments. It is redundant before @ or
%, which gobble up everything else.

As the last character of a prototype, or just before a semicolon, a @ or a %, you can use _ in place of $:
if this argument is not provided, $_ will be used instead.

Note how the last three examples in the table above are treated specially by the parser. mygrep() is
parsed as a true list operator, myrand() is parsed as a true unary operator with unary precedence the
same as rand(), and mytime() is truly without arguments, just like time(). That is, if you say

mytime +2;

you’ll get mytime() + 2, not mytime(2), which is how it would be parsed without a prototype.
If you want to force a unary function to have the same precedence as a list operator, add ; to the end of
the prototype:

sub mygetprotobynumber($;);
mygetprotobynumber $x > $y; # parsed as mygetprotobynumber($x > $y)

108 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

The interesting thing about & is that you can generate new syntax with it, provided it’s in the initial
position:

sub try (&@) {
my($try,$catch) = @_;
eval { &$try };
if ($@) {

local $_ = $@;
&$catch;

}
}
sub catch (&) { $_[0] }

try {
die "phooey";

} catch {
/phooey/ and print "unphooey\n";

};

That prints "unphooey". (Yes, there are still unresolved issues having to do with visibility of @_.
I’m ignoring that question for the moment. (But note that if we make @_ lexically scoped, those
anonymous subroutines can act like closures... (Gee, is this sounding a little Lispish? (Never mind.))))

And here’s a reimplementation of the Perl grep operator:

sub mygrep (&@) {
my $code = shift;
my @result;
foreach $_ (@_) {

push(@result, $_) if &$code;
}
@result;

}

Some folks would prefer full alphanumeric prototypes. Alphanumerics have been intentionally left out
of prototypes for the express purpose of someday in the future adding named, formal parameters. The
current mechanism’s main goal is to let module writers provide better diagnostics for module users.
Larry feels the notation quite understandable to Perl programmers, and that it will not intrude greatly
upon the meat of the module, nor make it harder to read. The line noise is visually encapsulated into a
small pill that’s easy to swallow.

If you try to use an alphanumeric sequence in a prototype you will generate an optional warning −
"Illegal character in prototype...". Unfortunately earlier versions of Perl allowed the prototype to be
used as long as its prefix was a valid prototype. The warning may be upgraded to a fatal error in a
future version of Perl once the majority of offending code is fixed.

It’s probably best to prototype new functions, not retrofit prototyping into older ones. That’s because
you must be especially careful about silent impositions of differing list versus scalar contexts. For
example, if you decide that a function should take just one parameter, like this:

sub func ($) {
my $n = shift;
print "you gave me $n\n";

}

and someone has been calling it with an array or expression returning a list:

func(@foo);
func($text =˜ /\w+/g);

Then you’ve just supplied an automatic scalar in front of their argument, which can be more than a
bit surprising. The old @foo which used to hold one thing doesn’t get passed in. Instead, func()
now gets passed in a 1; that is, the number of elements in @foo. And the m//g gets called in scalar
context so instead of a list of words it returns a boolean result and advances pos($text). Ouch!

If a sub has both a PROT O and a BLOCK, the prototype is not applied until after the BLOCK is

perl v5.38.2 2025-07-25 109

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

completely defined. This means that a recursive function with a prototype has to be predeclared for the
prototype to take effect, like so:

sub foo($$);
sub foo($$) {

foo 1, 2;
}

This is all very powerful, of course, and should be used only in moderation to make the world a better
place.

Constant Functions
Functions with a prototype of () are potential candidates for inlining. If the result after optimization
and constant folding is either a constant or a lexically-scoped scalar which has no other references, then
it will be used in place of function calls made without &. Calls made using & are never inlined. (See
constant for an easy way to declare most constants.)

The following functions would all be inlined:

sub pi () { 3.14159 } # Not exact, but close.
sub PI () { 4 * atan2 1, 1 } # As good as it gets,

and it's inlined, too!
sub ST_DEV () { 0 }
sub ST_INO () { 1 }

sub FLAG_FOO () { 1 << 8 }
sub FLAG_BAR () { 1 << 9 }
sub FLAG_MASK () { FLAG_FOO | FLAG_BAR }

sub OPT_BAZ () { not (0x1B58 & FLAG_MASK) }

sub N () { int(OPT_BAZ) / 3 }

sub FOO_SET () { 1 if FLAG_MASK & FLAG_FOO }
sub FOO_SET2 () { if (FLAG_MASK & FLAG_FOO) { 1 } }

(Be aware that the last example was not always inlined in Perl 5.20 and earlier, which did not behave
consistently with subroutines containing inner scopes.) You can countermand inlining by using an
explicit return:

sub baz_val () {
if (OPT_BAZ) {

return 23;
}
else {

return 42;
}

}
sub bonk_val () { return 12345 }

As alluded to earlier you can also declare inlined subs dynamically at BEGIN time if their body
consists of a lexically-scoped scalar which has no other references. Only the first example here will be
inlined:

BEGIN {
my $var = 1;
no strict 'refs';
*INLINED = sub () { $var };

}

BEGIN {
my $var = 1;
my $ref = \$var;
no strict 'refs';

110 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

*NOT_INLINED = sub () { $var };
}

A not so obvious caveat with this (see [RT #79908]) is what happens if the variable is potentially
modifiable. For example:

BEGIN {
my $x = 10;
*FOO = sub () { $x };
$x++;

}
print FOO(); # printed 10 prior to 5.32.0

From Perl 5.22 onwards this gav e a deprecation warning, and from Perl 5.32 onwards it became a run-
time error. Previously the variable was immediately inlined, and stopped behaving like a normal lexical
variable; so it printed 10, not 11.

If you still want such a subroutine to be inlined (with no warning), make sure the variable is not used in
a context where it could be modified aside from where it is declared.

Fine, no warning
BEGIN {

my $x = 54321;
*INLINED = sub () { $x };

}
Error
BEGIN {

my $x;
$x = 54321;
*ALSO_INLINED = sub () { $x };

}

Perl 5.22 also introduces the experimental "const" attribute as an alternative. (Disable the
"experimental::const_attr" warnings if you want to use it.) When applied to an anonymous subroutine,
it forces the sub to be called when the sub expression is evaluated. The return value is captured and
turned into a constant subroutine:

my $x = 54321;
*INLINED = sub : const { $x };
$x++;

The return value of INLINED in this example will always be 54321, regardless of later modifications
to $x. You can also put any arbitrary code inside the sub, at it will be executed immediately and its
return value captured the same way.

If you really want a subroutine with a () prototype that returns a lexical variable you can easily force it
to not be inlined by adding an explicit return:

BEGIN {
my $x = 10;
*FOO = sub () { return $x };
$x++;

}
print FOO(); # prints 11

The easiest way to tell if a subroutine was inlined is by using B::Deparse. Consider this example of
two subroutines returning 1, one with a () prototype causing it to be inlined, and one without (with
deparse output truncated for clarity):

perl v5.38.2 2025-07-25 111

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

$ perl −MO=Deparse −e 'sub ONE { 1 } if (ONE) { print ONE if ONE }'
sub ONE {

1;
}
if (ONE) {

print ONE() if ONE ;
}

$ perl −MO=Deparse −e 'sub ONE () { 1 } if (ONE) { print ONE if ONE }'
sub ONE () { 1 }
do {

print 1
};

If you redefine a subroutine that was eligible for inlining, you’ll get a warning by default. You can use
this warning to tell whether or not a particular subroutine is considered inlinable, since it’s different
than the warning for overriding non-inlined subroutines:

$ perl −e 'sub one () {1} sub one () {2}'
Constant subroutine one redefined at −e line 1.
$ perl −we 'sub one {1} sub one {2}'
Subroutine one redefined at −e line 1.

The warning is considered severe enough not to be affected by the −w switch (or its absence) because
previously compiled invocations of the function will still be using the old value of the function. If you
need to be able to redefine the subroutine, you need to ensure that it isn’t inlined, either by dropping the
() prototype (which changes calling semantics, so beware) or by thwarting the inlining mechanism in
some other way, e.g. by adding an explicit return, as mentioned above:

sub not_inlined () { return 23 }

Overriding Built-in Functions
Many built-in functions may be overridden, though this should be tried only occasionally and for good
reason. Typically this might be done by a package attempting to emulate missing built-in functionality
on a non-Unix system.

Overriding may be done only by importing the name from a module at compile time−−ordinary
predeclaration isn’t good enough. However, the use subs pragma lets you, in effect, predeclare subs
via the import syntax, and these names may then override built-in ones:

use subs 'chdir', 'chroot', 'chmod', 'chown';
chdir $somewhere;
sub chdir { ... }

To unambiguously refer to the built-in form, precede the built-in name with the special package
qualifier CORE::. For example, saying CORE::open() always refers to the built-in open(), even
if the current package has imported some other subroutine called &open() from elsewhere. Even
though it looks like a regular function call, it isn’t: the CORE:: prefix in that case is part of Perl’s
syntax, and works for any keyword, regardless of what is in the CORE package. Taking a reference to
it, that is, \&CORE::open, only works for some keywords. See CORE.

Library modules should not in general export built-in names like open or chdir as part of their
default @EXPORT list, because these may sneak into someone else’s namespace and change the
semantics unexpectedly. Instead, if the module adds that name to @EXPORT_OK, then it’s possible for
a user to import the name explicitly, but not implicitly. That is, they could say

use Module 'open';

and it would import the open override. But if they said

use Module;

they would get the default imports without overrides.

The foregoing mechanism for overriding built-in is restricted, quite deliberately, to the package that
requests the import. There is a second method that is sometimes applicable when you wish to override
a built-in everywhere, without regard to namespace boundaries. This is achieved by importing a sub

112 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

into the special namespace CORE::GLOBAL::. Here is an example that quite brazenly replaces the
glob operator with something that understands regular expressions.

package REGlob;
require Exporter;
@ISA = 'Exporter';
@EXPORT_OK = 'glob';

sub import {
my $pkg = shift;
return unless @_;
my $sym = shift;
my $where = ($sym =˜ s/ˆGLOBAL_// ? 'CORE::GLOBAL' : caller(0));
$pkg−>export($where, $sym, @_);

}

sub glob {
my $pat = shift;
my @got;
if (opendir my $d, '.') {

@got = grep /$pat/, readdir $d;
closedir $d;

}
return @got;

}
1;

And here’s how it could be (ab)used:

#use REGlob 'GLOBAL_glob'; # override glob() in ALL namespaces
package Foo;
use REGlob 'glob'; # override glob() in Foo:: only
print for <ˆ[a−z_]+\.pm\$>; # show all pragmatic modules

The initial comment shows a contrived, even dangerous example. By overriding glob globally, you
would be forcing the new (and subversive) behavior for the glob operator for every namespace,
without the complete cognizance or cooperation of the modules that own those namespaces. Naturally,
this should be done with extreme caution−−if it must be done at all.

The REGlob example above does not implement all the support needed to cleanly override Perl’s
glob operator. The built-in glob has different behaviors depending on whether it appears in a scalar
or list context, but our REGlob doesn’t. Indeed, many Perl built-ins have such context sensitive
behaviors, and these must be adequately supported by a properly written override. For a fully
functional example of overriding glob, study the implementation of File::DosGlob in the
standard library.

When you override a built-in, your replacement should be consistent (if possible) with the built-in
native syntax. You can achieve this by using a suitable prototype. To get the prototype of an
overridable built-in, use the prototype function with an argument of "CORE::builtin_name"
(see "prototype" in perlfunc).

Note however that some built-ins can’t hav e their syntax expressed by a prototype (such as system or
chomp). If you override them you won’t be able to fully mimic their original syntax.

The built-ins do, require and glob can also be overridden, but due to special magic, their original
syntax is preserved, and you don’t hav e to define a prototype for their replacements. (You can’t
override the do BLOCK syntax, though).

require has special additional dark magic: if you invoke your require replacement as require
Foo::Bar, it will actually receive the argument "Foo/Bar.pm" in @_. See "require" in perlfunc.

And, as you’ll have noticed from the previous example, if you override glob, the <*> glob operator is
overridden as well.

In a similar fashion, overriding the readline function also overrides the equivalent I/O operator

perl v5.38.2 2025-07-25 113

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

<FILEHANDLE>. Also, overriding readpipe also overrides the operators `` and qx//.

Finally, some built-ins (e.g. exists or grep) can’t be overridden.

Autoloading
If you call a subroutine that is undefined, you would ordinarily get an immediate, fatal error
complaining that the subroutine doesn’t exist. (Likewise for subroutines being used as methods, when
the method doesn’t exist in any base class of the class’s package.) However, if an AUTOLOAD
subroutine is defined in the package or packages used to locate the original subroutine, then that
AUTOLOAD subroutine is called with the arguments that would have been passed to the original
subroutine. The fully qualified name of the original subroutine magically appears in the global
$AUTOLOAD variable of the same package as the AUTOLOAD routine. The name is not passed as an
ordinary argument because, er, well, just because, that’s why. (As an exception, a method call to a
nonexistent import or unimport method is just skipped instead. Also, if the AUTOLOAD
subroutine is an XSUB, there are other ways to retrieve the subroutine name. See "Autoloading with
XSUBs" in perlguts for details.)

Many AUTOLOAD routines load in a definition for the requested subroutine using ev al(), then execute
that subroutine using a special form of goto() that erases the stack frame of the AUTOLOAD routine
without a trace. (See the source to the standard module documented in AutoLoader, for example.) But
an AUTOLOAD routine can also just emulate the routine and never define it. For example, let’s pretend
that a function that wasn’t defined should just invoke system with those arguments. All you’d do is:

sub AUTOLOAD {
our $AUTOLOAD; # keep 'use strict' happy
my $program = $AUTOLOAD;
$program =˜ s/.*:://;
system($program, @_);

}
date();
who();
ls('−l');

In fact, if you predeclare functions you want to call that way, you don’t even need parentheses:

use subs qw(date who ls);
date;
who;
ls '−l';

A more complete example of this is the Shell module on CPAN, which can treat undefined subroutine
calls as calls to external programs.

Mechanisms are available to help modules writers split their modules into autoloadable files. See the
standard AutoLoader module described in AutoLoader and in AutoSplit, the standard SelfLoader
modules in SelfLoader, and the document on adding C functions to Perl code in perlxs.

Subroutine Attributes
A subroutine declaration or definition may have a list of attributes associated with it. If such an
attribute list is present, it is broken up at space or colon boundaries and treated as though a use
attributes had been seen. See attributes for details about what attributes are currently supported.
Unlike the limitation with the obsolescent use attrs, the sub : ATTRLIST syntax works to
associate the attributes with a pre-declaration, and not just with a subroutine definition.

The attributes must be valid as simple identifier names (without any punctuation other than the ’_’
character). They may have a parameter list appended, which is only checked for whether its
parentheses (’(’,’)’) nest properly.

Examples of valid syntax (even though the attributes are unknown):

sub fnord (&\%) : switch(10,foo(7,3)) : expensive;
sub plugh () : Ugly('\(") :Bad;
sub xyzzy : _5x5 { ... }

Examples of invalid syntax:

114 2025-07-25 perl v5.38.2

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

sub fnord : switch(10,foo(); # ()−string not balanced
sub snoid : Ugly('('); # ()−string not balanced
sub xyzzy : 5x5; # "5x5" not a valid identifier
sub plugh : Y2::north; # "Y2::north" not a simple identifier
sub snurt : foo + bar; # "+" not a colon or space

The attribute list is passed as a list of constant strings to the code which associates them with the
subroutine. In particular, the second example of valid syntax above currently looks like this in terms of
how it’s parsed and invoked:

use attributes __PACKAGE_ _, \&plugh, q[Ugly('\(")], 'Bad';

For further details on attribute lists and their manipulation, see attributes and Attribute::Handlers.

SEE ALSO
See "Function Templates" in perlref for more about references and closures. See perlxs if you’d like to
learn about calling C subroutines from Perl. See perlembed if you’d like to learn about calling Perl
subroutines from C. See perlmod to learn about bundling up your functions in separate files. See
perlmodlib to learn what library modules come standard on your system. See perlootut to learn how to
make object method calls.

perl v5.38.2 2025-07-25 115

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

NAME
perlfunc − Perl builtin functions

DESCRIPTION
The functions in this section can serve as terms in an expression. They fall into two major categories:
list operators and named unary operators. These differ in their precedence relationship with a
following comma. (See the precedence table in perlop.) List operators take more than one argument,
while unary operators can never take more than one argument. Thus, a comma terminates the argument
of a unary operator, but merely separates the arguments of a list operator. A unary operator generally
provides scalar context to its argument, while a list operator may provide either scalar or list contexts
for its arguments. If it does both, scalar arguments come first and list argument follow, and there can
only ever be one such list argument. For instance, splice has three scalar arguments followed by a
list, whereas gethostbyname has four scalar arguments.

In the syntax descriptions that follow, list operators that expect a list (and provide list context for
elements of the list) are shown with LIST as an argument. Such a list may consist of any combination
of scalar arguments or list values; the list values will be included in the list as if each individual
element were interpolated at that point in the list, forming a longer single-dimensional list value.
Commas should separate literal elements of the LIST.

Any function in the list below may be used either with or without parentheses around its arguments.
(The syntax descriptions omit the parentheses.) If you use parentheses, the simple but occasionally
surprising rule is this: It looks like a function, therefore it is a function, and precedence doesn’t matter.
Otherwise it’s a list operator or unary operator, and precedence does matter. Whitespace between the
function and left parenthesis doesn’t count, so sometimes you need to be careful:

print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.
print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.
print ((1+2)+4); # Prints 7.

If you run Perl with the use warnings pragma, it can warn you about this. For example, the third
line above produces:

print (...) interpreted as function at − line 1.
Useless use of integer addition in void context at − line 1.

A few functions take no arguments at all, and therefore work as neither unary nor list operators. These
include such functions as time and endpwent. For example, time+86_400 always means
time() + 86_400.

For functions that can be used in either a scalar or list context, nonabortive failure is generally indicated
in scalar context by returning the undefined value, and in list context by returning the empty list.

Remember the following important rule: There is no rule that relates the behavior of an expression in
list context to its behavior in scalar context, or vice versa. It might do two totally different things.
Each operator and function decides which sort of value would be most appropriate to return in scalar
context. Some operators return the length of the list that would have been returned in list context.
Some operators return the first value in the list. Some operators return the last value in the list. Some
operators return a count of successful operations. In general, they do what you want, unless you want
consistency.

A named array in scalar context is quite different from what would at first glance appear to be a list in
scalar context. You can’t get a list like (1,2,3) into being in scalar context, because the compiler
knows the context at compile time. It would generate the scalar comma operator there, not the list
concatenation version of the comma. That means it was never a list to start with.

In general, functions in Perl that serve as wrappers for system calls ("syscalls") of the same name (like
chown (2), fork (2), closedir (2), etc.) return true when they succeed and undef otherwise, as is
usually mentioned in the descriptions below. This is different from the C interfaces, which return −1
on failure. Exceptions to this rule include wait, waitpid, and syscall. System calls also set the
special $! variable on failure. Other functions do not, except accidentally.

Extension modules can also hook into the Perl parser to define new kinds of keyword-headed
expression. These may look like functions, but may also look completely different. The syntax

116 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

following the keyword is defined entirely by the extension. If you are an implementor, see
"PL_keyword_plugin" in perlapi for the mechanism. If you are using such a module, see the module’s
documentation for details of the syntax that it defines.

Perl Functions by Category
Here are Perl’s functions (including things that look like functions, like some keywords and named
operators) arranged by category. Some functions appear in more than one place. Any warnings,
including those produced by keywords, are described in perldiag and warnings.

Functions for SCALARs or strings
chomp, chop, chr, crypt, fc, hex, index, lc, lcfirst, length, oct, ord, pack,
q//, qq//, reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///

fc is available only if the "fc" feature is enabled or if it is prefixed with CORE::. The "fc"
feature is enabled automatically with a use v5.16 (or higher) declaration in the current scope.

Regular expressions and pattern matching
m//, pos, qr//, quotemeta, s///, split, study

Numeric functions
abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Functions for real @ARRAYs
each, keys, pop, push, shift, splice, unshift, values

Functions for list data
grep, join, map, qw//, reverse, sort, unpack

Functions for real %HASHes
delete, each, exists, keys, values

Input and output functions
binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock,
format, getc, print, printf, read, readdir, readline, rewinddir, say, seek,
seekdir, select, syscall, sysread, sysseek, syswrite, tell, telldir,
truncate, warn, write

say is available only if the "say" feature is enabled or if it is prefixed with CORE::. The
"say" feature is enabled automatically with a use v5.10 (or higher) declaration in the current
scope.

Functions for fixed-length data or records
pack, read, syscall, sysread, sysseek, syswrite, unpack, vec

Functions for filehandles, files, or directories
−X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, lstat, mkdir, open,
opendir, readlink, rename, rmdir, select, stat, symlink, sysopen, umask,
unlink, utime

Ke ywords related to the control flow of your Perl program
break, caller, continue, die, do, dump, eval, evalbytes, exit, __FILE_ _,
goto, last, __LINE_ _, method, next, __PACKAGE_ _, redo, return, sub,
__SUB_ _, wantarray

break is available only if you enable the experimental "switch" feature or use the CORE::
prefix. The "switch" feature also enables the default, given and when statements, which
are documented in "Switch Statements" in perlsyn. The "switch" feature is enabled
automatically with a use v5.10 (or higher) declaration in the current scope. In Perl v5.14 and
earlier, continue required the "switch" feature, like the other keywords.

evalbytes is only available with the "evalbytes" feature (see feature) or if prefixed with
CORE::. __SUB_ _ is only available with the "current_sub" feature or if prefixed with
CORE::. Both the "evalbytes" and "current_sub" features are enabled automatically
with a use v5.16 (or higher) declaration in the current scope.

Ke ywords related to scoping
caller, class, field, import, local, my, our, package, state, use

perl v5.38.2 2025-07-25 117

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

state is available only if the "state" feature is enabled or if it is prefixed with CORE::. The
"state" feature is enabled automatically with a use v5.10 (or higher) declaration in the
current scope.

Miscellaneous functions
defined, formline, lock, prototype, reset, scalar, undef

Functions for processes and process groups
alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, qx//,
readpipe, setpgrp, setpriority, sleep, system, times, wait, waitpid

Ke ywords related to Perl modules
do, import, no, package, require, use

Ke ywords related to classes and object-orientation
bless, class, dbmclose, dbmopen, field, method, package, ref, tie, tied,
untie, use

Low-level socket functions
accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv,
send, setsockopt, shutdown, socket, socketpair

System V interprocess communication functions
msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget,
shmread, shmwrite

Fetching user and group info
endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam,
getlogin, getpwent, getpwnam, getpwuid, setgrent, setpwent

Fetching network info
endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent,
getnetbyaddr, getnetbyname, getnetent, getprotobyname,
getprotobynumber, getprotoent, getservbyname, getservbyport,
getservent, sethostent, setnetent, setprotoent, setservent

Time-related functions
gmtime, localtime, time, times

Non-function keywords
ADJUST, and, AUTOLOAD, BEGIN, catch, CHECK, cmp, CORE, __DATA_ _, default,
defer, DESTROY, else, elseif, elsif, END, __END_ _, eq, finally, for, foreach,
ge, given, gt, if, INIT, isa, le, lt, ne, not, or, try, UNITCHECK, unless, until,
when, while, x, xor

Portability
Perl was born in Unix and can therefore access all common Unix system calls. In non-Unix
environments, the functionality of some Unix system calls may not be available or details of the
available functionality may differ slightly. The Perl functions affected by this are:

−X, binmode, chmod, chown, chroot, crypt, dbmclose, dbmopen, dump, endgrent,
endhostent, endnetent, endprotoent, endpwent, endservent, exec, fcntl, flock,
fork, getgrent, getgrgid, gethostbyname, gethostent, getlogin, getnetbyaddr,
getnetbyname, getnetent, getppid, getpgrp, getpriority, getprotobynumber,
getprotoent, getpwent, getpwnam, getpwuid, getservbyport, getservent,
getsockopt, glob, ioctl, kill, link, lstat, msgctl, msgget, msgrcv, msgsnd, open,
pipe, readlink, rename, select, semctl, semget, semop, setgrent, sethostent,
setnetent, setpgrp, setpriority, setprotoent, setpwent, setservent,
setsockopt, shmctl, shmget, shmread, shmwrite, socket, socketpair, stat,
symlink, syscall, sysopen, system, times, truncate, umask, unlink, utime, wait,
waitpid

For more information about the portability of these functions, see perlport and other available platform-
specific documentation.

118 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Alphabetical Listing of Perl Functions
−X FILEHANDLE
−X EXPR
−X DIRHANDLE
−X A file test, where X is one of the letters listed below. This unary operator takes one argument,

either a filename, a filehandle, or a dirhandle, and tests the associated file to see if something is
true about it. If the argument is omitted, tests $_, except for −t, which tests STDIN. Unless
otherwise documented, it returns 1 for true and '' for false. If the file doesn’t exist or can’t be
examined, it returns undef and sets $! (errno). With the exception of the −l test they all follow
symbolic links because they use stat() and not lstat() (so dangling symlinks can’t be
examined and will therefore report failure).

Despite the funny names, precedence is the same as any other named unary operator. The operator
may be any of:

−r File is readable by effective uid/gid.
−w File is writable by effective uid/gid.
−x File is executable by effective uid/gid.
−o File is owned by effective uid.

−R File is readable by real uid/gid.
−W File is writable by real uid/gid.
−X File is executable by real uid/gid.
−O File is owned by real uid.

−e File exists.
−z File has zero size (is empty).
−s File has nonzero size (returns size in bytes).

−f File is a plain file.
−d File is a directory.
−l File is a symbolic link (false if symlinks aren't

supported by the file system).
−p File is a named pipe (FIFO), or Filehandle is a pipe.
−S File is a socket.
−b File is a block special file.
−c File is a character special file.
−t Filehandle is opened to a tty.

−u File has setuid bit set.
−g File has setgid bit set.
−k File has sticky bit set.

−T File is an ASCII or UTF−8 text file (heuristic guess).
−B File is a "binary" file (opposite of −T).

−M Script start time minus file modification time, in days.
−A Same for access time.
−C Same for inode change time (Unix, may differ for other

platforms)

Example:

while (<>) {
chomp;
next unless −f $_; # ignore specials
#...

}

Note that −s/a/b/ does not do a negated substitution. Saying −exp($foo) still works as
expected, however: only single letters following a minus are interpreted as file tests.

perl v5.38.2 2025-07-25 119

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

These operators are exempt from the "looks like a function rule" described above. That is, an
opening parenthesis after the operator does not affect how much of the following code constitutes
the argument. Put the opening parentheses before the operator to separate it from code that
follows (this applies only to operators with higher precedence than unary operators, of course):

−s($file) + 1024 # probably wrong; same as −s($file + 1024)
(−s $file) + 1024 # correct

The interpretation of the file permission operators −r, −R, −w, −W, −x, and −X is by default based
solely on the mode of the file and the uids and gids of the user. There may be other reasons you
can’t actually read, write, or execute the file: for example network filesystem access controls,
ACLs (access control lists), read-only filesystems, and unrecognized executable formats. Note
that the use of these six specific operators to verify if some operation is possible is usually a
mistake, because it may be open to race conditions.

Also note that, for the superuser on the local filesystems, the −r, −R, −w, and −W tests always
return 1, and −x and −X return 1 if any execute bit is set in the mode. Scripts run by the superuser
may thus need to do a stat to determine the actual mode of the file, or temporarily set their
effective uid to something else.

If you are using ACLs, there is a pragma called filetest that may produce more accurate
results than the bare stat mode bits. When under use filetest 'access', the above-
mentioned filetests test whether the permission can(not) be granted using the access (2) family of
system calls. Also note that the −x and −X tests may under this pragma return true even if there
are no execute permission bits set (nor any extra execute permission ACLs). This strangeness is
due to the underlying system calls’ definitions. Note also that, due to the implementation of use
filetest 'access', the _ special filehandle won’t cache the results of the file tests when
this pragma is in effect. Read the documentation for the filetest pragma for more
information.

The −T and −B tests work as follows. The first block or so of the file is examined to see if it is
valid UTF−8 that includes non-ASCII characters. If so, it’s a −T file. Otherwise, that same
portion of the file is examined for odd characters such as strange control codes or characters with
the high bit set. If more than a third of the characters are strange, it’s a −B file; otherwise it’s a −T
file. Also, any file containing a zero byte in the examined portion is considered a binary file. (If
executed within the scope of a use locale which includes LC_CTYPE, odd characters are anything
that isn’t a printable nor space in the current locale.) If −T or −B is used on a filehandle, the
current IO buffer is examined rather than the first block. Both −T and −B return true on an empty
file, or a file at EOF when testing a filehandle. Because you have to read a file to do the −T test,
on most occasions you want to use a −f against the file first, as in next unless −f $file
&& −T $file.

If any of the file tests (or either the stat or lstat operator) is given the special filehandle
consisting of a solitary underline, then the stat structure of the previous file test (or stat
operator) is used, saving a system call. (This doesn’t work with −t, and you need to remember
that lstat and −l leave values in the stat structure for the symbolic link, not the real file.)
(Also, if the stat buffer was filled by an lstat call, −T and −B will reset it with the results of
stat _). Example:

print "Can do.\n" if −r $a || −w _ || −x _;

stat($filename);
print "Readable\n" if −r _;
print "Writable\n" if −w _;
print "Executable\n" if −x _;
print "Setuid\n" if −u _;
print "Setgid\n" if −g _;
print "Sticky\n" if −k _;
print "Text\n" if −T _;
print "Binary\n" if −B _;

As of Perl 5.10.0, as a form of purely syntactic sugar, you can stack file test operators, in a way
that −f −w −x $file is equivalent to −x $file && −w _ && −f _. (This is only fancy

120 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

syntax: if you use the return value of −f $file as an argument to another filetest operator, no
special magic will happen.)

Portability issues: "−X" in perlport.

To avoid confusing would-be users of your code with mysterious syntax errors, put something like
this at the top of your script:

use v5.10; # so filetest ops can stack

abs VALUE
abs Returns the absolute value of its argument. If VALUE is omitted, uses $_.

accept NEWSOCKET,GENERICSOCKET
Accepts an incoming socket connect, just as accept (2) does. Returns the packed address if it
succeeded, false otherwise. See the example in "Sockets: Client/Server Communication" in
perlipc.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor, as determined by the value of $ˆF. See "$ˆF" in perlvar.

alarm SECONDS
alarm

Arranges to have a SIGALRM delivered to this process after the specified number of wallclock
seconds has elapsed. If SECONDS is not specified, the value stored in $_ is used. (On some
machines, unfortunately, the elapsed time may be up to one second less or more than you specified
because of how seconds are counted, and process scheduling may delay the delivery of the signal
ev en further.)

Only one timer may be counting at once. Each call disables the previous timer, and an argument
of 0 may be supplied to cancel the previous timer without starting a new one. The returned value
is the amount of time remaining on the previous timer.

For delays of finer granularity than one second, the Time::HiRes module (from CPAN, and
starting from Perl 5.8 part of the standard distribution) provides ualarm. You may also use
Perl’s four-argument version of select leaving the first three arguments undefined, or you might
be able to use the syscall interface to access setitimer (2) if your system supports it. See
perlfaq8 for details.

It is usually a mistake to intermix alarm and sleep calls, because sleep may be internally
implemented on your system with alarm.

If you want to use alarm to time out a system call you need to use an eval/die pair. You can’t
rely on the alarm causing the system call to fail with $! set to EINTR because Perl sets up signal
handlers to restart system calls on some systems. Using eval/die always works, modulo the
caveats given in "Signals" in perlipc.

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm $timeout;
my $nread = sysread $socket, $buffer, $size;
alarm 0;

};
if ($@) {

die unless $@ eq "alarm\n"; # propagate unexpected errors
timed out

}
else {

didn't
}

For more information see perlipc.

Portability issues: "alarm" in perlport.

perl v5.38.2 2025-07-25 121

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

atan2 Y,X
Returns the arctangent of Y/X in the range −PI to PI.

For the tangent operation, you may use the Math::Trig::tan function, or use the familiar
relation:

sub tan { sin($_[0]) / cos($_[0]) }

The return value for atan2(0,0) is implementation-defined; consult your atan2 (3) manpage
for more information.

Portability issues: "atan2" in perlport.

bind SOCKET,NAME
Binds a network address to a socket, just as bind (2) does. Returns true if it succeeded, false
otherwise. NAME should be a packed address of the appropriate type for the socket. See the
examples in "Sockets: Client/Server Communication" in perlipc.

binmode FILEHANDLE, LAYER
binmode FILEHANDLE

Arranges for FILEHANDLE to be read or written in "binary" or "text" mode on systems where the
run-time libraries distinguish between binary and text files. If FILEHANDLE is an expression,
the value is taken as the name of the filehandle. Returns true on success, otherwise it returns
undef and sets $! (errno).

On some systems (in general, DOS− and Windows-based systems) binmode is necessary when
you’re not working with a text file. For the sake of portability it is a good idea always to use it
when appropriate, and never to use it when it isn’t appropriate. Also, people can set their I/O to be
by default UTF8−encoded Unicode, not bytes.

In other words: regardless of platform, use binmode on binary data, like images, for example.

If LAYER is present it is a single string, but may contain multiple directives. The directives alter
the behaviour of the filehandle. When LAYER is present, using binmode on a text file makes
sense.

If LAYER is omitted or specified as :raw the filehandle is made suitable for passing binary data.
This includes turning off possible CRLF translation and marking it as bytes (as opposed to
Unicode characters). Note that, despite what may be implied in "Programming Perl" (the Camel,
3rd edition) or elsewhere, :raw is not simply the inverse of :crlf. Other layers that would
affect the binary nature of the stream are also disabled. See PerlIO, and the discussion about the
PERLIO environment variable in perlrun.

The :bytes, :crlf, :utf8, and any other directives of the form :..., are called I/O layers.
The open pragma can be used to establish default I/O layers.

The LAYER parameter of the binmode function is described as "DISCIPLINE" in "Programming
Perl, 3rd Edition". However, since the publishing of this book, by many known as "Camel III", the
consensus of the naming of this functionality has moved from "discipline" to "layer". All
documentation of this version of Perl therefore refers to "layers" rather than to "disciplines". Now
back to the regularly scheduled documentation...

To mark FILEHANDLE as UTF−8, use :utf8 or :encoding(UTF−8). :utf8 just marks
the data as UTF−8 without further checking, while :encoding(UTF−8) checks the data for
actually being valid UTF−8. More details can be found in PerlIO::encoding.

In general, binmode should be called after open but before any I/O is done on the filehandle.
Calling binmode normally flushes any pending buffered output data (and perhaps pending input
data) on the handle. An exception to this is the :encoding layer that changes the default
character encoding of the handle. The :encoding layer sometimes needs to be called in mid-
stream, and it doesn’t flush the stream. :encoding also implicitly pushes on top of itself the
:utf8 layer because internally Perl operates on UTF8−encoded Unicode characters.

The operating system, device drivers, C libraries, and Perl run-time system all conspire to let the
programmer treat a single character (\n) as the line terminator, irrespective of external
representation. On many operating systems, the native text file representation matches the internal

122 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

representation, but on some platforms the external representation of \n is made up of more than
one character.

All variants of Unix, Mac OS (old and new), and Stream_LF files on VMS use a single character
to end each line in the external representation of text (even though that single character is
CARRIAGE RETURN on old, pre-Darwin flavors of Mac OS, and is LINE FEED on Unix and
most VMS files). In other systems like OS/2, DOS, and the various flavors of MS-Windows, your
program sees a \n as a simple \cJ, but what’s stored in text files are the two characters \cM\cJ.
That means that if you don’t use binmode on these systems, \cM\cJ sequences on disk will be
converted to \n on input, and any \n in your program will be converted back to \cM\cJ on
output. This is what you want for text files, but it can be disastrous for binary files.

Another consequence of using binmode (on some systems) is that special end-of-file markers
will be seen as part of the data stream. For systems from the Microsoft family this means that, if
your binary data contain \cZ, the I/O subsystem will regard it as the end of the file, unless you
use binmode.

binmode is important not only for readline and print operations, but also when using
read, seek, sysread, syswrite and tell (see perlport for more details). See the $/ and
$\ variables in perlvar for how to manually set your input and output line-termination sequences.

Portability issues: "binmode" in perlport.

bless REF,CLASSNAME
bless REF

bless tells Perl to mark the item referred to by REF as an object in a package. The two-
argument version of bless is always preferable unless there is a specific reason to not use it.

• Bless the referred-to item into a specific package (recommended form):

bless $ref, $package;

The two-argument form adds the object to the package specified as the second argument.

• Bless the referred-to item into package main:

bless $ref, "";

If the second argument is an empty string, bless adds the object to package main.

• Bless the referred-to item into the current package (not inheritable):

bless $ref;

If bless is used without its second argument, the object is created in the current package.
The second argument should always be supplied if a derived class might inherit a method
executing bless. Because it is a potential source of bugs, one-argument bless is
discouraged.

See perlobj for more about the blessing (and blessings) of objects.

bless returns its first argument, the supplied reference, as the value of the function; since
bless is commonly the last thing executed in constructors, this means that the reference to the
object is returned as the constructor’s value and allows the caller to immediately use this returned
object in method calls.

CLASSNAME should always be a mixed-case name, as all-uppercase and all-lowercase names are
meant to be used only for Perl builtin types and pragmas, respectively. Avoid creating all-
uppercase or all-lowercase package names to prevent confusion.

Also avoid <Cbless>ing things into the class name 0; this will cause code which (erroneously)
checks the result of ref to see if a reference is blessed to fail, as "0", a falsy value, is returned.

See "Perl Modules" in perlmod for more details.

break
Break out of a given block.

break is available only if the "switch" feature is enabled or if it is prefixed with CORE::.
The "switch" feature is enabled automatically with a use v5.10 (or higher) declaration in

perl v5.38.2 2025-07-25 123

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

the current scope.

caller EXPR
caller

Returns the context of the current pure perl subroutine call. In scalar context, returns the caller’s
package name if there is a caller (that is, if we’re in a subroutine or eval or require) and the
undefined value otherwise. caller never returns XS subs and they are skipped. The next pure perl
sub will appear instead of the XS sub in caller’s return values. In list context, caller returns

0 1 2
my ($package, $filename, $line) = caller;

Like __FILE_ _ and __LINE_ _, the filename and line number returned here may be altered by
the mechanism described at "Plain Old Comments (Not!)" in perlsyn.

With EXPR, it returns some extra information that the debugger uses to print a stack trace. The
value of EXPR indicates how many call frames to go back before the current one.

0 1 2 3 4
my ($package, $filename, $line, $subroutine, $hasargs,

5 6 7 8 9 10
$wantarray, $evaltext, $is_require, $hints, $bitmask, $hinthash)

= caller($i);

Here, $subroutine is the function that the caller called (rather than the function containing the
caller). Note that $subroutine may be (eval) if the frame is not a subroutine call, but an
eval. In such a case additional elements $evaltext and $is_require are set:
$is_require is true if the frame is created by a require or use statement, $evaltext
contains the text of the eval EXPR statement. In particular, for an eval BLOCK statement,
$subroutine is (eval), but $evaltext is undefined. (Note also that each use statement
creates a require frame inside an eval EXPR frame.) $subroutine may also be
(unknown) if this particular subroutine happens to have been deleted from the symbol table.
$hasargs is true if a new instance of @_ was set up for the frame. $hints and $bitmask
contain pragmatic hints that the caller was compiled with. $hints corresponds to $ˆH, and
$bitmask corresponds to ${ˆWARNING_BITS}. The $hints and $bitmask values are
subject to change between versions of Perl, and are not meant for external use.

$hinthash is a reference to a hash containing the value of %ˆH when the caller was compiled,
or undef if %ˆH was empty. Do not modify the values of this hash, as they are the actual values
stored in the optree.

Note that the only types of call frames that are visible are subroutine calls and eval. Other forms
of context, such as while or foreach loops or try blocks are not considered interesting to
caller, as they do not alter the behaviour of the return expression.

Furthermore, when called from within the DB package in list context, and with an argument, caller
returns more detailed information: it sets the list variable @DB::args to be the arguments with
which the subroutine was invoked.

Be aware that the optimizer might have optimized call frames away before caller had a chance
to get the information. That means that caller(N) might not return information about the call
frame you expect it to, for N > 1. In particular, @DB::args might have information from the
previous time caller was called.

Be aware that setting @DB::args is best effort, intended for debugging or generating backtraces,
and should not be relied upon. In particular, as @_ contains aliases to the caller’s arguments, Perl
does not take a copy of @_, so @DB::args will contain modifications the subroutine makes to
@_ or its contents, not the original values at call time. @DB::args, like @_, does not hold
explicit references to its elements, so under certain cases its elements may have become freed and
reallocated for other variables or temporary values. Finally, a side effect of the current
implementation is that the effects of shift @_ can normally be undone (but not pop @_ or
other splicing, and not if a reference to @_ has been taken, and subject to the caveat about
reallocated elements), so @DB::args is actually a hybrid of the current state and initial state of

124 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

@_. Buyer beware.

chdir EXPR
chdir FILEHANDLE
chdir DIRHANDLE
chdir

Changes the working directory to EXPR, if possible. If EXPR is omitted, changes to the directory
specified by $ENV{HOME}, if set; if not, changes to the directory specified by $ENV{LOGDIR}.
(Under VMS, the variable $ENV{'SYS$LOGIN'} is also checked, and used if it is set.) If
neither is set, chdir does nothing and fails. It returns true on success, false otherwise. See the
example under die.

On systems that support fchdir (2), you may pass a filehandle or directory handle as the argument.
On systems that don’t support fchdir (2), passing handles raises an exception.

chmod LIST
Changes the permissions of a list of files. The first element of the list must be the numeric mode,
which should probably be an octal number, and which definitely should not be a string of octal
digits: 0644 is okay, but "0644" is not. Returns the number of files successfully changed. See
also oct if all you have is a string.

my $cnt = chmod 0755, "foo", "bar";
chmod 0755, @executables;
my $mode = "0644"; chmod $mode, "foo"; # !!! sets mode to

−−w−−−−r−T
my $mode = "0644"; chmod oct($mode), "foo"; # this is better
my $mode = 0644; chmod $mode, "foo"; # this is best

On systems that support fchmod (2), you may pass filehandles among the files. On systems that
don’t support fchmod (2), passing filehandles raises an exception. Filehandles must be passed as
globs or glob references to be recognized; barewords are considered filenames.

open(my $fh, "<", "foo");
my $perm = (stat $fh)[2] & 07777;
chmod($perm | 0600, $fh);

You can also import the symbolic S_I* constants from the Fcntl module:

use Fcntl qw(:mode);
chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
Identical to the chmod 0755 of the example above.

Portability issues: "chmod" in perlport.

chomp VARIABLE
chomp(LIST)
chomp

This safer version of chop removes any trailing string that corresponds to the current value of $/
(also known as $INPUT_RECORD_SEPARATOR in the English module). It returns the total
number of characters removed from all its arguments. It’s often used to remove the newline from
the end of an input record when you’re worried that the final record may be missing its newline.
When in paragraph mode ($/ = ''), it removes all trailing newlines from the string. When in
slurp mode ($/ = undef) or fixed-length record mode ($/ is a reference to an integer or the
like; see perlvar), chomp won’t remove anything. If VARIABLE is omitted, it chomps $_.
Example:

while (<>) {
chomp; # avoid \n on last field
my @array = split(/:/);
...

}

If VARIABLE is a hash, it chomps the hash’s values, but not its keys, resetting the each iterator
in the process.

perl v5.38.2 2025-07-25 125

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

You can actually chomp anything that’s an lvalue, including an assignment:

chomp(my $cwd = `pwd`);
chomp(my $answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters removed is
returned.

Note that parentheses are necessary when you’re chomping anything that is not a simple variable.
This is because chomp $cwd = `pwd`; is interpreted as (chomp $cwd) = `pwd`;,
rather than as chomp($cwd = `pwd`) which you might expect. Similarly, chomp $a,
$b is interpreted as chomp($a), $b rather than as chomp($a, $b).

chop VARIABLE
chop(LIST)
chop

Chops off the last character of a string and returns the character chopped. It is much more
efficient than s/.$//s because it neither scans nor copies the string. If VARIABLE is omitted,
chops $_. If VARIABLE is a hash, it chops the hash’s values, but not its keys, resetting the each
iterator in the process.

You can actually chop anything that’s an lvalue, including an assignment.

If you chop a list, each element is chopped. Only the value of the last chop is returned.

Note that chop returns the last character. To return all but the last character, use
substr($string, 0, −1).

See also chomp.

chown LIST
Changes the owner (and group) of a list of files. The first two elements of the list must be the
numeric uid and gid, in that order. A value of −1 in either position is interpreted by most systems
to leave that value unchanged. Returns the number of files successfully changed.

my $cnt = chown $uid, $gid, 'foo', 'bar';
chown $uid, $gid, @filenames;

On systems that support fchown (2), you may pass filehandles among the files. On systems that
don’t support fchown (2), passing filehandles raises an exception. Filehandles must be passed as
globs or glob references to be recognized; barewords are considered filenames.

Here’s an example that looks up nonnumeric uids in the passwd file:

print "User: ";
chomp(my $user = <STDIN>);
print "Files: ";
chomp(my $pattern = <STDIN>);

my ($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

my @ary = glob($pattern); # expand filenames
chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you’re the
superuser, although you should be able to change the group to any of your secondary groups. On
insecure systems, these restrictions may be relaxed, but this is not a portable assumption. On
POSIX systems, you can detect this condition this way:

use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
my $can_chown_giveaway = ! sysconf(_PC_CHOWN_RESTRICTED);

Portability issues: "chown" in perlport.

126 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

chr NUMBER
chr Returns the character represented by that NUMBER in the character set. For example, chr(65)

is "A" in either ASCII or Unicode, and chr(0x263a) is a Unicode smiley face.

Negative values give the Unicode replacement character (chr (0xfffd)), except under the bytes
pragma, where the low eight bits of the value (truncated to an integer) are used.

If NUMBER is omitted, uses $_.

For the reverse, use ord.

Note that characters from 128 to 255 (inclusive) are by default internally not encoded as UTF−8
for backward compatibility reasons.

See perlunicode for more about Unicode.

chroot FILENAME
chroot

This function works like the system call by the same name: it makes the named directory the new
root directory for all further pathnames that begin with a / by your process and all its children. (It
doesn’t change your current working directory, which is unaffected.) For security reasons, this
call is restricted to the superuser. If FILENAME is omitted, does a chroot to $_.

NOTE: It is mandatory for security to chdir("/") (chdir to the root directory) immediately
after a chroot, otherwise the current working directory may be outside of the new root.

Portability issues: "chroot" in perlport.

class NAMESPACE
class NAMESPACE VERSION
class NAMESPACE BLOCK
class NAMESPACE VERSION BLOCK

Declares the BLOCK or the rest of the compilation unit as being in the given namespace, which
implements an object class. This behaves similarly to package, except that the newly-created
package behaves as a class.

close FILEHANDLE
close

Closes the file or pipe associated with the filehandle, flushes the IO buffers, and closes the system
file descriptor. Returns true if those operations succeed and if no error was reported by any PerlIO
layer. Closes the currently selected filehandle if the argument is omitted.

You don’t hav e to close FILEHANDLE if you are immediately going to do another open on it,
because open closes it for you. (See open.) However, an explicit close on an input file resets
the line counter ($.), while the implicit close done by open does not.

If the filehandle came from a piped open, close returns false if one of the other syscalls involved
fails or if its program exits with non-zero status. If the only problem was that the program exited
non-zero, $! will be set to 0. Closing a pipe also waits for the process executing on the pipe to
exit−−in case you wish to look at the output of the pipe afterwards−−and implicitly puts the exit
status value of that command into $? and ${ˆCHILD_ERROR_NATIVE}.

If there are multiple threads running, close on a filehandle from a piped open returns true
without waiting for the child process to terminate, if the filehandle is still open in another thread.

Closing the read end of a pipe before the process writing to it at the other end is done writing
results in the writer receiving a SIGPIPE. If the other end can’t handle that, be sure to read all the
data before closing the pipe.

Example:

perl v5.38.2 2025-07-25 127

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

open(OUTPUT, '|sort >foo') # pipe to sort
or die "Can't start sort: $!";

#... # print stuff to output
close OUTPUT # wait for sort to finish

or warn $! ? "Error closing sort pipe: $!"
: "Exit status $? from sort";

open(INPUT, 'foo') # get sort's results
or die "Can't open 'foo' for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect filehandle, usually
the real filehandle name or an autovivified handle.

closedir DIRHANDLE
Closes a directory opened by opendir and returns the success of that system call.

connect SOCKET,NAME
Attempts to connect to a remote socket, just like connect (2). Returns true if it succeeded, false
otherwise. NAME should be a packed address of the appropriate type for the socket. See the
examples in "Sockets: Client/Server Communication" in perlipc.

continue BLOCK
continue

When followed by a BLOCK, continue is actually a flow control statement rather than a
function. If there is a continue BLOCK attached to a BLOCK (typically in a while or
foreach), it is always executed just before the conditional is about to be evaluated again, just
like the third part of a for loop in C. Thus it can be used to increment a loop variable, even when
the loop has been continued via the next statement (which is similar to the C continue
statement).

last, next, or redo may appear within a continue block; last and redo behave as if they
had been executed within the main block. So will next, but since it will execute a continue
block, it may be more entertaining.

while (EXPR) {
redo always comes here
do_something;

} continue {
next always comes here
do_something_else;
then back the top to re−check EXPR

}
last always comes here

Omitting the continue section is equivalent to using an empty one, logically enough, so next
goes directly back to check the condition at the top of the loop.

When there is no BLOCK, continue is a function that falls through the current when or
default block instead of iterating a dynamically enclosing foreach or exiting a lexically
enclosing given. In Perl 5.14 and earlier, this form of continue was only available when the
"switch" feature was enabled. See feature and "Switch Statements" in perlsyn for more
information.

cos EXPR
cos Returns the cosine of EXPR (expressed in radians). If EXPR is omitted, takes the cosine of $_.

For the inverse cosine operation, you may use the Math::Trig::acos function, or use this
relation:

sub acos { atan2(sqrt(1 − $_[0] * $_[0]), $_[0]) }

crypt PLAINTEXT,SALT
Creates a digest string exactly like the crypt (3) function in the C library (assuming that you
actually have a version there that has not been extirpated as a potential munition).

crypt is a one-way hash function. The PLAINTEXT and SALT are turned into a short string,
called a digest, which is returned. The same PLAINTEXT and SALT will always return the same

128 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

string, but there is no (known) way to get the original PLAINTEXT from the hash. Small changes
in the PLAINTEXT or SALT will result in large changes in the digest.

There is no decrypt function. This function isn’t all that useful for cryptography (for that, look for
Crypt modules on your nearby CPAN mirror) and the name "crypt" is a bit of a misnomer. Instead
it is primarily used to check if two pieces of text are the same without having to transmit or store
the text itself. An example is checking if a correct password is given. The digest of the password
is stored, not the password itself. The user types in a password that is crypt’d with the same salt
as the stored digest. If the two digests match, the password is correct.

When verifying an existing digest string you should use the digest as the salt (like
crypt($plain, $digest) eq $digest). The SALT used to create the digest is visible
as part of the digest. This ensures crypt will hash the new string with the same salt as the digest.
This allows your code to work with the standard crypt and with more exotic implementations.
In other words, assume nothing about the returned string itself nor about how many bytes of SALT
may matter.

Traditionally the result is a string of 13 bytes: two first bytes of the salt, followed by 11 bytes from
the set [./0−9A−Za−z], and only the first eight bytes of PLAINTEXT mattered. But
alternative hashing schemes (like MD5), higher level security schemes (like C2), and
implementations on non-Unix platforms may produce different strings.

When choosing a new salt create a random two character string whose characters come from the
set [./0−9A−Za−z] (like join '', ('.', '/', 0..9, 'A'..'Z',
'a'..'z')[rand 64, rand 64]). This set of characters is just a recommendation; the
characters allowed in the salt depend solely on your system’s crypt library, and Perl can’t restrict
what salts crypt accepts.

Here’s an example that makes sure that whoever runs this program knows their password:

my $pwd = (getpwuid($<))[1];

system "stty −echo";
print "Password: ";
chomp(my $word = <STDIN>);
print "\n";
system "stty echo";

if (crypt($word, $pwd) ne $pwd) {
die "Sorry...\n";

} else {
print "ok\n";

}

Of course, typing in your own password to whoever asks you for it is unwise.

The crypt function is unsuitable for hashing large quantities of data, not least of all because you
can’t get the information back. Look at the Digest module for more robust algorithms.

If using crypt on a Unicode string (which potentially has characters with codepoints above 255),
Perl tries to make sense of the situation by trying to downgrade (a copy of) the string back to an
eight-bit byte string before calling crypt (on that copy). If that works, good. If not, crypt dies
with Wide character in crypt.

Portability issues: "crypt" in perlport.

dbmclose HASH
[This function has been largely superseded by the untie function.]

Breaks the binding between a DBM file and a hash.

Portability issues: "dbmclose" in perlport.

dbmopen HASH,DBNAME,MASK
[This function has been largely superseded by the tie function.]

perl v5.38.2 2025-07-25 129

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

This binds a dbm (3), ndbm (3), sdbm (3), gdbm (3), or Berkeley DB file to a hash. HASH is the
name of the hash. (Unlike normal open, the first argument is not a filehandle, even though it
looks like one). DBNAME is the name of the database (without the .dir or .pag extension if any).
If the database does not exist, it is created with protection specified by MASK (as modified by the
umask). To prevent creation of the database if it doesn’t exist, you may specify a MASK of 0,
and the function will return a false value if it can’t find an existing database. If your system
supports only the older DBM functions, you may make only one dbmopen call in your program.
In older versions of Perl, if your system had neither DBM nor ndbm, calling dbmopen produced
a fatal error; it now falls back to sdbm (3).

If you don’t hav e write access to the DBM file, you can only read hash variables, not set them. If
you want to test whether you can write, either use file tests or try setting a dummy hash entry
inside an eval to trap the error.

Note that functions such as keys and values may return huge lists when used on large DBM
files. You may prefer to use the each function to iterate over large DBM files. Example:

print out history file offsets
dbmopen(%HIST,'/usr/lib/news/history',0666);
while (($key,$val) = each %HIST) {

print $key, ' = ', unpack('L',$val), "\n";
}
dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and cons of the various dbm
approaches, as well as DB_File for a particularly rich implementation.

You can control which DBM library you use by loading that library before you call dbmopen:

use DB_File;
dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")

or die "Can't open netscape history file: $!";

Portability issues: "dbmopen" in perlport.

defined EXPR
defined

Returns a Boolean value telling whether EXPR has a value other than the undefined value undef.
If EXPR is not present, $_ is checked.

Many operations return undef to indicate failure, end of file, system error, uninitialized variable,
and other exceptional conditions. This function allows you to distinguish undef from other
values. (A simple Boolean test will not distinguish among undef, zero, the empty string, and
"0", which are all equally false.) Note that since undef is a valid scalar, its presence doesn’t
necessarily indicate an exceptional condition: pop returns undef when its argument is an empty
array, or when the element to return happens to be undef.

You may also use defined(&func) to check whether subroutine func has ever been defined.
The return value is unaffected by any forward declarations of func. A subroutine that is not
defined may still be callable: its package may have an AUTOLOAD method that makes it spring
into existence the first time that it is called; see perlsub.

Use of defined on aggregates (hashes and arrays) is no longer supported. It used to report
whether memory for that aggregate had ever been allocated. You should instead use a simple test
for size:

if (@an_array) { print "has array elements\n" }
if (%a_hash) { print "has hash members\n" }

When used on a hash element, it tells you whether the value is defined, not whether the key exists
in the hash. Use exists for the latter purpose.

Examples:

130 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

print if defined $switch{D};
print "$val\n" while defined($val = pop(@ary));
die "Can't readlink $sym: $!"

unless defined($value = readlink $sym);
sub foo { defined &$bar ? $bar−>(@_) : die "No bar"; }
$debugging = 0 unless defined $debugging;

Note: Many folks tend to overuse defined and are then surprised to discover that the number 0
and "" (the zero-length string) are, in fact, defined values. For example, if you say

"ab" =˜ /a(.*)b/;

The pattern match succeeds and $1 is defined, although it matched "nothing". It didn’t really fail
to match anything. Rather, it matched something that happened to be zero characters long. This is
all very above-board and honest. When a function returns an undefined value, it’s an admission
that it couldn’t giv e you an honest answer. So you should use defined only when questioning
the integrity of what you’re trying to do. At other times, a simple comparison to 0 or "" is what
you want.

See also undef, exists, ref.

delete EXPR
Given an expression that specifies an element or slice of a hash, delete deletes the specified
elements from that hash so that exists on that element no longer returns true. Setting a hash
element to the undefined value does not remove its key, but deleting it does; see exists.

In list context, usually returns the value or values deleted, or the last such element in scalar
context. The return list’s length corresponds to that of the argument list: deleting non-existent
elements returns the undefined value in their corresponding positions. Since Perl 5.28, a key/value
hash slice can be passed to delete, and the return value is a list of key/value pairs (two elements
for each item deleted from the hash).

delete may also be used on arrays and array slices, but its behavior is less straightforward.
Although exists will return false for deleted entries, deleting array elements never changes
indices of existing values; use shift or splice for that. However, if any deleted elements fall
at the end of an array, the array’s size shrinks to the position of the highest element that still tests
true for exists, or to 0 if none do. In other words, an array won’t hav e trailing nonexistent
elements after a delete.

WARNING: Calling delete on array values is strongly discouraged. The notion of deleting or
checking the existence of Perl array elements is not conceptually coherent, and can lead to
surprising behavior.

Deleting from %ENV modifies the environment. Deleting from a hash tied to a DBM file deletes
the entry from the DBM file. Deleting from a tied hash or array may not necessarily return
anything; it depends on the implementation of the tied package’s DELETE method, which may
do whatever it pleases.

The delete local EXPR construct localizes the deletion to the current block at run time.
Until the block exits, elements locally deleted temporarily no longer exist. See "Localized
deletion of elements of composite types" in perlsub.

my %hash = (foo => 11, bar => 22, baz => 33);
my $scalar = delete $hash{foo}; # $scalar is 11
$scalar = delete @hash{qw(foo bar)}; # $scalar is 22
my @array = delete @hash{qw(foo baz)}; # @array is (undef,33)

The following (inefficiently) deletes all the values of %HASH and @ARRAY:

foreach my $key (keys %HASH) {
delete $HASH{$key};

}

foreach my $index (0 .. $#ARRAY) {
delete $ARRAY[$index];

perl v5.38.2 2025-07-25 131

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

}

And so do these:

delete @HASH{keys %HASH};

delete @ARRAY[0 .. $#ARRAY];

But both are slower than assigning the empty list or undefining %HASH or @ARRAY, which is the
customary way to empty out an aggregate:

%HASH = (); # completely empty %HASH
undef %HASH; # forget %HASH ever existed

@ARRAY = (); # completely empty @ARRAY
undef @ARRAY; # forget @ARRAY ever existed

The EXPR can be arbitrarily complicated provided its final operation is an element or slice of an
aggregate:

delete $ref−>[$x][$y]{$key};
delete $ref−>[$x][$y]−>@{$key1, $key2, @morekeys};

delete $ref−>[$x][$y][$index];
delete $ref−>[$x][$y]−>@[$index1, $index2, @moreindices];

die LIST
die raises an exception. Inside an eval the exception is stuffed into $@ and the eval is
terminated with the undefined value. If the exception is outside of all enclosing evals, then the
uncaught exception is printed to STDERR and perl exits with an exit code indicating failure. If
you need to exit the process with a specific exit code, see exit.

Equivalent examples:

die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"

Most of the time, die is called with a string to use as the exception. You may either give a single
non-reference operand to serve as the exception, or a list of two or more items, which will be
stringified and concatenated to make the exception.

If the string exception does not end in a newline, the current script line number and input line
number (if any) and a newline are appended to it. Note that the "input line number" (also known
as "chunk") is subject to whatever notion of "line" happens to be currently in effect, and is also
available as the special variable $.. See "$/" in perlvar and "$." in perlvar.

Hint: sometimes appending ", stopped" to your message will cause it to make better sense
when the string "at foo line 123" is appended. Suppose you are running script "canasta".

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respectively

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

If LIST was empty or made an empty string, and $@ already contains an exception value (typically
from a previous eval), then that value is reused after appending "\t...propagated". This
is useful for propagating exceptions:

eval { ... };
die unless $@ =˜ /Expected exception/;

If LIST was empty or made an empty string, and $@ contains an object reference that has a
PROPAGATE method, that method will be called with additional file and line number parameters.
The return value replaces the value in $@; i.e., as if $@ = eval {
$@−>PROPAGATE(_ _FILE_ _, __LINE_ _) }; were called.

132 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

If LIST was empty or made an empty string, and $@ is also empty, then the string "Died" is
used.

You can also call die with a reference argument, and if this is trapped within an eval, $@
contains that reference. This permits more elaborate exception handling using objects that
maintain arbitrary state about the exception. Such a scheme is sometimes preferable to matching
particular string values of $@ with regular expressions.

Because Perl stringifies uncaught exception messages before display, you’ll probably want to
overload stringification operations on exception objects. See overload for details about that. The
stringified message should be non-empty, and should end in a newline, in order to fit in with the
treatment of string exceptions. Also, because an exception object reference cannot be stringified
without destroying it, Perl doesn’t attempt to append location or other information to a reference
exception. If you want location information with a complex exception object, you’ll have to
arrange to put the location information into the object yourself.

Because $@ is a global variable, be careful that analyzing an exception caught by eval doesn’t
replace the reference in the global variable. It’s easiest to make a local copy of the reference
before any manipulations. Here’s an example:

use Scalar::Util "blessed";

eval { ... ; die Some::Module::Exception−>new(FOO => "bar") };
if (my $ev_err = $@) {

if (blessed($ev_err)
&& $ev_err−>isa("Some::Module::Exception")) {
handle Some::Module::Exception

}
else {

handle all other possible exceptions
}

}

If an uncaught exception results in interpreter exit, the exit code is determined from the values of
$! and $? with this pseudocode:

exit $! if $!; # errno
exit $? >> 8 if $? >> 8; # child exit status
exit 255; # last resort

As with exit, $? is set prior to unwinding the call stack; any DESTROY or END handlers can
then alter this value, and thus Perl’s exit code.

The intent is to squeeze as much possible information about the likely cause into the limited space
of the system exit code. However, as $! is the value of C’s errno, which can be set by any
system call, this means that the value of the exit code used by die can be non-predictable, so
should not be relied upon, other than to be non-zero.

You can arrange for a callback to be run just before the die does its deed, by setting the
$SIG{_ _DIE_ _} hook. The associated handler is called with the exception as an argument,
and can change the exception, if it sees fit, by calling die again. See "%SIG" in perlvar for
details on setting %SIG entries, and eval for some examples. Although this feature was to be
run only right before your program was to exit, this is not currently so: the $SIG{_ _DIE_ _}
hook is currently called even inside evaled blocks/strings! If one wants the hook to do nothing
in such situations, put

die @_ if $ˆS;

as the first line of the handler (see "$ˆS" in perlvar). Because this promotes strange action at a
distance, this counterintuitive behavior may be fixed in a future release.

See also exit, warn, and the Carp module.

perl v5.38.2 2025-07-25 133

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

do BLOCK
Not really a function. Returns the value of the last command in the sequence of commands
indicated by BLOCK. When modified by the while or until loop modifier, executes the
BLOCK once before testing the loop condition. (On other statements the loop modifiers test the
conditional first.)

do BLOCK does not count as a loop, so the loop control statements next, last, or redo
cannot be used to leave or restart the block. See perlsyn for alternative strategies.

do EXPR
Uses the value of EXPR as a filename and executes the contents of the file as a Perl script:

load the exact specified file (./ and ../ special−cased)
do '/foo/stat.pl';
do './stat.pl';
do '../foo/stat.pl';

search for the named file within @INC
do 'stat.pl';
do 'foo/stat.pl';

do './stat.pl' is largely like

eval `cat stat.pl`;

except that it’s more concise, runs no external processes, and keeps track of the current filename
for error messages. It also differs in that code evaluated with do FILE cannot see lexicals in the
enclosing scope; eval STRING does. It’s the same, however, in that it does reparse the file
ev ery time you call it, so you probably don’t want to do this inside a loop.

Using do with a relative path (except for ./ and ../), like

do 'foo/stat.pl';

will search the @INC directories, and update %INC if the file is found. See "@INC" in perlvar and
"%INC" in perlvar for these variables. In particular, note that whilst historically @INC contained
’.’ (the current directory) making these two cases equivalent, that is no longer necessarily the case,
as ’.’ is not included in @INC by default in perl versions 5.26.0 onwards. Instead, perl will now
warn:

do "stat.pl" failed, '.' is no longer in @INC;
did you mean do "./stat.pl"?

If do can read the file but cannot compile it, it returns undef and sets an error message in $@. If
do cannot read the file, it returns undef and sets $! to the error. Always check $@ first, as
compilation could fail in a way that also sets $!. If the file is successfully compiled, do returns
the value of the last expression evaluated.

Inclusion of library modules is better done with the use and require operators, which also do
automatic error checking and raise an exception if there’s a problem.

You might like to use do to read in a program configuration file. Manual error checking can be
done this way:

Read in config files: system first, then user.
Beware of using relative pathnames here.
for $file ("/share/prog/defaults.rc",

"$ENV{HOME}/.someprogrc")
{

unless ($return = do $file) {
warn "couldn't parse $file: $@" if $@;
warn "couldn't do $file: $!" unless defined $return;
warn "couldn't run $file" unless $return;

}
}

134 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

dump LABEL
dump EXPR
dump

This function causes an immediate core dump. See also the −u command-line switch in perlrun,
which does the same thing. Primarily this is so that you can use the undump program (not
supplied) to turn your core dump into an executable binary after having initialized all your
variables at the beginning of the program. When the new binary is executed it will begin by
executing a goto LABEL (with all the restrictions that goto suffers). Think of it as a goto with
an intervening core dump and reincarnation. If LABEL is omitted, restarts the program from the
top. The dump EXPR form, available starting in Perl 5.18.0, allows a name to be computed at
run time, being otherwise identical to dump LABEL.

WARNING: Any files opened at the time of the dump will not be open any more when the
program is reincarnated, with possible resulting confusion by Perl.

This function is now largely obsolete, mostly because it’s very hard to convert a core file into an
executable. As of Perl 5.30, it must be invoked as CORE::dump().

Unlike most named operators, this has the same precedence as assignment. It is also exempt from
the looks-like-a-function rule, so dump ("foo")."bar" will cause "bar" to be part of the
argument to dump.

Portability issues: "dump" in perlport.

each HASH
each ARRAY

When called on a hash in list context, returns a 2−element list consisting of the key and value for
the next element of a hash. In Perl 5.12 and later only, it will also return the index and value for
the next element of an array so that you can iterate over it; older Perls consider this a syntax error.
When called in scalar context, returns only the key (not the value) in a hash, or the index in an
array.

Hash entries are returned in an apparently random order. The actual random order is specific to a
given hash; the exact same series of operations on two hashes may result in a different order for
each hash. Any insertion into the hash may change the order, as will any deletion, with the
exception that the most recent key returned by each or keys may be deleted without changing
the order. So long as a given hash is unmodified you may rely on keys, values and each to
repeatedly return the same order as each other. See "Algorithmic Complexity Attacks" in perlsec
for details on why hash order is randomized. Aside from the guarantees provided here the exact
details of Perl’s hash algorithm and the hash traversal order are subject to change in any release of
Perl.

After each has returned all entries from the hash or array, the next call to each returns the empty
list in list context and undef in scalar context; the next call following that one restarts iteration.
Each hash or array has its own internal iterator, accessed by each, keys, and values. The
iterator is implicitly reset when each has reached the end as just described; it can be explicitly
reset by calling keys or values on the hash or array, or by referencing the hash (but not array)
in list context. If you add or delete a hash’s elements while iterating over it, the effect on the
iterator is unspecified; for example, entries may be skipped or duplicated−−so don’t do that.
Exception: It is always safe to delete the item most recently returned by each, so the following
code works properly:

while (my ($key, $value) = each %hash) {
print $key, "\n";
delete $hash{$key}; # This is safe

}

Tied hashes may have a different ordering behaviour to perl’s hash implementation.

The iterator used by each is attached to the hash or array, and is shared between all iteration
operations applied to the same hash or array. Thus all uses of each on a single hash or array
advance the same iterator location. All uses of each are also subject to having the iterator reset
by any use of keys or values on the same hash or array, or by the hash (but not array) being
referenced in list context. This makes each−based loops quite fragile: it is easy to arrive at such

perl v5.38.2 2025-07-25 135

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

a loop with the iterator already part way through the object, or to accidentally clobber the iterator
state during execution of the loop body. It’s easy enough to explicitly reset the iterator before
starting a loop, but there is no way to insulate the iterator state used by a loop from the iterator
state used by anything else that might execute during the loop body. To avoid these problems, use
a foreach loop rather than while−each.

This extends to using each on the result of an anonymous hash or array constructor. A new
underlying array or hash is created each time so each will always start iterating from scratch, eg:

loops forever
while (my ($key, $value) = each @{ +{ a => 1 } }) {

print "$key=$value\n";
}

This prints out your environment like the printenv (1) program, but in a different order:

while (my ($key,$value) = each %ENV) {
print "$key=$value\n";

}

Starting with Perl 5.14, an experimental feature allowed each to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

As of Perl 5.18 you can use a bare each in a while loop, which will set $_ on every iteration.
If either an each expression or an explicit assignment of an each expression to a scalar is used
as a while/for condition, then the condition actually tests for definedness of the expression’s
value, not for its regular truth value.

while (each %ENV) {
print "$_=$ENV{$_}\n";

}

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your code will
work only on Perls of a recent vintage:

use v5.12; # so keys/values/each work on arrays
use v5.18; # so each assigns to $_ in a lone while test

See also keys, values, and sort.

eof FILEHANDLE
eof ()
eof Returns 1 if the next read on FILEHANDLE will return end of file or if FILEHANDLE is not

open. FILEHANDLE may be an expression whose value gives the real filehandle. (Note that this
function actually reads a character and then ungetcs it, so isn’t useful in an interactive context.)
Do not read from a terminal file (or call eof(FILEHANDLE) on it) after end-of-file is reached.
File types such as terminals may lose the end-of-file condition if you do.

An eof without an argument uses the last file read. Using eof() with empty parentheses is
different. It refers to the pseudo file formed from the files listed on the command line and
accessed via the <> operator. Since <> isn’t explicitly opened, as a normal filehandle is, an
eof() before <> has been used will cause @ARGV to be examined to determine if input is
available. Similarly, an eof() after <> has returned end-of-file will assume you are processing
another @ARGV list, and if you haven’t set @ARGV, will read input from STDIN; see "I/O
Operators" in perlop.

In a while (<>) loop, eof or eof(ARGV) can be used to detect the end of each file, whereas
eof() will detect the end of the very last file only. Examples:

136 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

reset line numbering on each input file
while (<>) {

next if /ˆ\s*#/; # skip comments
print "$.\t$_";

} continue {
close ARGV if eof; # Not eof()!

}

insert dashes just before last line of last file
while (<>) {

if (eof()) { # check for end of last file
print "−−−−−−−−−−−−−−\n";

}
print;
last if eof(); # needed if we're reading from a terminal

}

Practical hint: you almost never need to use eof in Perl, because the input operators typically
return undef when they run out of data or encounter an error.

eval EXPR
eval BLOCK
eval

eval in all its forms is used to execute a little Perl program, trapping any errors encountered so
they don’t crash the calling program.

Plain eval with no argument is just eval EXPR, where the expression is understood to be
contained in $_. Thus there are only two real eval forms; the one with an EXPR is often called
"string eval". In a string eval, the value of the expression (which is itself determined within scalar
context) is first parsed, and if there were no errors, executed as a block within the lexical context
of the current Perl program. This form is typically used to delay parsing and subsequent execution
of the text of EXPR until run time. Note that the value is parsed every time the eval executes.

The other form is called "block eval". It is less general than string eval, but the code within the
BLOCK is parsed only once (at the same time the code surrounding the eval itself was parsed)
and executed within the context of the current Perl program. This form is typically used to trap
exceptions more efficiently than the first, while also providing the benefit of checking the code
within BLOCK at compile time. BLOCK is parsed and compiled just once. Since errors are
trapped, it often is used to check if a given feature is available.

In both forms, the value returned is the value of the last expression evaluated inside the mini-
program; a return statement may also be used, just as with subroutines. The expression providing
the return value is evaluated in void, scalar, or list context, depending on the context of the eval
itself. See wantarray for more on how the evaluation context can be determined.

If there is a syntax error or runtime error, or a die statement is executed, eval returns undef in
scalar context, or an empty list in list context, and $@ is set to the error message. (Prior to 5.16, a
bug caused undef to be returned in list context for syntax errors, but not for runtime errors.) If
there was no error, $@ is set to the empty string. A control flow operator like last or goto can
bypass the setting of $@. Bew are that using eval neither silences Perl from printing warnings to
STDERR, nor does it stuff the text of warning messages into $@. To do either of those, you have
to use the $SIG{_ _WARN_ _} facility, or turn off warnings inside the BLOCK or EXPR using
no warnings 'all'. See warn, perlvar, and warnings.

Note that, because eval traps otherwise-fatal errors, it is useful for determining whether a
particular feature (such as socket or symlink) is implemented. It is also Perl’s exception-
trapping mechanism, where the die operator is used to raise exceptions.

Before Perl 5.14, the assignment to $@ occurred before restoration of localized variables, which
means that for your code to run on older versions, a temporary is required if you want to mask
some, but not all errors:

perl v5.38.2 2025-07-25 137

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

alter $@ on nefarious repugnancy only
{

my $e;
{
local $@; # protect existing $@
eval { test_repugnancy() };
$@ =˜ /nefarious/ and die $@; # Perl 5.14 and higher only
$@ =˜ /nefarious/ and $e = $@;

}
die $e if defined $e

}

There are some different considerations for each form:

String eval
Since the return value of EXPR is executed as a block within the lexical context of the
current Perl program, any outer lexical variables are visible to it, and any package variable
settings or subroutine and format definitions remain afterwards.

Note that when BEGIN {} blocks are embedded inside of an eval block the contents of the
block will be executed immediately and before the rest of the eval code is executed. You can
disable this entirely by

local ${ˆMAX_NESTED_EVAL_BEGIN_BLOCKS} = 0;
eval $string;

which will cause any embedded BEGIN blocks in $string to throw an exception.

Under the "unicode_eval" feature
If this feature is enabled (which is the default under a use 5.16 or higher
declaration), Perl assumes that EXPR is a character string. Any use utf8 or
no utf8 declarations within the string thus have no effect. Source filters are forbidden
as well. (unicode_strings, howev er, can appear within the string.)

See also the evalbytes operator, which works properly with source filters.

Outside the "unicode_eval" feature
In this case, the behavior is problematic and is not so easily described. Here are two
bugs that cannot easily be fixed without breaking existing programs:

• Perl’s internal storage of EXPR affects the behavior of the executed code. For
example:

my $v = eval "use utf8; '$expr'";

If $expr is "\xc4\x80" (U+0100 in UTF−8), then the value stored in $v will
depend on whether Perl stores $expr "upgraded" (cf. utf8) or not:

• If upgraded, $v will be "\xc4\x80" (i.e., the use utf8 has no effect.)

• If non-upgraded, $v will be "\x{100}".

This is undesirable since being upgraded or not should not affect a string’s
behavior.

• Source filters activated within eval leak out into whichever file scope is currently
being compiled. To giv e an example with the CPAN module Semi::Semicolons:

BEGIN { eval "use Semi::Semicolons; # not filtered" }
filtered here!

evalbytes fixes that to work the way one would expect:

use feature "evalbytes";
BEGIN { evalbytes "use Semi::Semicolons; # filtered" }
not filtered

Problems can arise if the string expands a scalar containing a floating point number. That
scalar can expand to letters, such as "NaN" or "Infinity"; or, within the scope of a use

138 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

locale, the decimal point character may be something other than a dot (such as a comma).
None of these are likely to parse as you are likely expecting.

You should be especially careful to remember what’s being looked at when:

eval $x; # CASE 1
eval "$x"; # CASE 2

eval '$x'; # CASE 3
eval { $x }; # CASE 4

eval "\$$x++"; # CASE 5
$$x++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in the variable $x.
(Although case 2 has misleading double quotes making the reader wonder what else might be
happening (nothing is).) Cases 3 and 4 likewise behave in the same way: they run the code
'$x', which does nothing but return the value of $x. (Case 4 is preferred for purely visual
reasons, but it also has the advantage of compiling at compile-time instead of at run-time.)
Case 5 is a place where normally you would like to use double quotes, except that in this
particular situation, you can just use symbolic references instead, as in case 6.

An eval '' executed within a subroutine defined in the DB package doesn’t see the usual
surrounding lexical scope, but rather the scope of the first non-DB piece of code that called it.
You don’t normally need to worry about this unless you are writing a Perl debugger.

The final semicolon, if any, may be omitted from the value of EXPR.

Block eval
If the code to be executed doesn’t vary, you may use the eval-BLOCK form to trap run-time
errors without incurring the penalty of recompiling each time. The error, if any, is still
returned in $@. Examples:

make divide−by−zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;

same thing, but less efficient
eval '$answer = $a / $b'; warn $@ if $@;

a compile−time error
eval { $answer = }; # WRONG

a run−time error
eval '$answer ='; # sets $@

If you want to trap errors when loading an XS module, some problems with the binary
interface (such as Perl version skew) may be fatal even with eval unless
$ENV{PERL_DL_NONLAZY} is set. See perlrun.

Using the eval {} form as an exception trap in libraries does have some issues. Due to the
current arguably broken state of __DIE_ _ hooks, you may wish not to trigger any
__DIE_ _ hooks that user code may have installed. You can use the local
$SIG{_ _DIE_ _} construct for this purpose, as this example shows:

a private exception trap for divide−by−zero
eval { local $SIG{'__DIE_ _'}; $answer = $a / $b; };
warn $@ if $@;

This is especially significant, given that __DIE_ _ hooks can call die again, which has the
effect of changing their error messages:

perl v5.38.2 2025-07-25 139

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

__DIE_ _ hooks may modify error messages
{

local $SIG{'__DIE_ _'} =
sub { (my $x = $_[0]) =˜ s/foo/bar/g; die $x };

eval { die "foo lives here" };
print $@ if $@; # prints "bar lives here"

}

Because this promotes action at a distance, this counterintuitive behavior may be fixed in a
future release.

eval BLOCK does not count as a loop, so the loop control statements next, last, or
redo cannot be used to leave or restart the block.

The final semicolon, if any, may be omitted from within the BLOCK.

evalbytes EXPR
evalbytes

This function is similar to a string eval, except it always parses its argument (or $_ if EXPR is
omitted) as a byte string. If the string contains any code points above 255, then it cannot be a byte
string, and the evalbytes will fail with the error stored in $@.

use utf8 and no utf8 within the string have their usual effect.

Source filters activated within the evaluated code apply to the code itself.

evalbytes is available starting in Perl v5.16. To access it, you must say CORE::evalbytes,
but you can omit the CORE:: if the "evalbytes" feature is enabled. This is enabled
automatically with a use v5.16 (or higher) declaration in the current scope.

exec LIST
exec PROGRAM LIST

The exec function executes a system command and never returns; use system instead of exec
if you want it to return. It fails and returns false only if the command does not exist and it is
executed directly instead of via your system’s command shell (see below).

Since it’s a common mistake to use exec instead of system, Perl warns you if exec is called in
void context and if there is a following statement that isn’t die, warn, or exit (if warnings are
enabled−−but you always do that, right?). If you really want to follow an exec with some other
statement, you can use one of these styles to avoid the warning:

exec ('foo') or print STDERR "couldn't exec foo: $!";
{ exec ('foo') }; print STDERR "couldn't exec foo: $!";

If there is more than one argument in LIST, this calls execvp (3) with the arguments in LIST. If
there is only one element in LIST, the argument is checked for shell metacharacters, and if there
are any, the entire argument is passed to the system’s command shell for parsing (this is /bin/sh
−c on Unix platforms, but varies on other platforms). If there are no shell metacharacters in the
argument, it is split into words and passed directly to execvp, which is more efficient.
Examples:

exec '/bin/echo', 'Your arguments are: ', @ARGV;
exec "sort $outfile | uniq";

If you don’t really want to execute the first argument, but want to lie to the program you are
executing about its own name, you can specify the program you actually want to run as an
"indirect object" (without a comma) in front of the LIST, as in exec PROGRAM LIST. (This
always forces interpretation of the LIST as a multivalued list, even if there is only a single scalar
in the list.) Example:

my $shell = '/bin/csh';
exec $shell '−sh'; # pretend it's a login shell

or, more directly,

exec {'/bin/csh'} '−sh'; # pretend it's a login shell

140 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

When the arguments get executed via the system shell, results are subject to its quirks and
capabilities. See "‘STRING‘" in perlop for details.

Using an indirect object with exec or system is also more secure. This usage (which also
works fine with system) forces interpretation of the arguments as a multivalued list, even if the
list had just one argument. That way you’re safe from the shell expanding wildcards or splitting
up words with whitespace in them.

my @args = ("echo surprise");

exec @args; # subject to shell escapes
if @args == 1

exec { $args[0] } @args; # safe even with one−arg list

The first version, the one without the indirect object, ran the echo program, passing it
"surprise" an argument. The second version didn’t; it tried to run a program named "echo
surprise", didn’t find it, and set $? to a non-zero value indicating failure.

On Windows, only the exec PROGRAM LIST indirect object syntax will reliably avoid using
the shell; exec LIST, even with more than one element, will fall back to the shell if the first
spawn fails.

Perl attempts to flush all files opened for output before the exec, but this may not be supported on
some platforms (see perlport). To be safe, you may need to set $| ($AUTOFLUSH in English) or
call the autoflush method of IO::Handle on any open handles to avoid lost output.

Note that exec will not call your END blocks, nor will it invoke DESTROY methods on your
objects.

Portability issues: "exec" in perlport.

exists EXPR
Given an expression that specifies an element of a hash, returns true if the specified element in the
hash has ever been initialized, even if the corresponding value is undefined.

print "Exists\n" if exists $hash{$key};
print "Defined\n" if defined $hash{$key};
print "True\n" if $hash{$key};

exists may also be called on array elements, but its behavior is much less obvious and is strongly
tied to the use of delete on arrays.

WARNING: Calling exists on array values is strongly discouraged. The notion of deleting or
checking the existence of Perl array elements is not conceptually coherent, and can lead to
surprising behavior.

print "Exists\n" if exists $array[$index];
print "Defined\n" if defined $array[$index];
print "True\n" if $array[$index];

A hash or array element can be true only if it’s defined and defined only if it exists, but the reverse
doesn’t necessarily hold true.

Given an expression that specifies the name of a subroutine, returns true if the specified subroutine
has ever been declared, even if it is undefined. Mentioning a subroutine name for exists or defined
does not count as declaring it. Note that a subroutine that does not exist may still be callable: its
package may have an AUTOLOAD method that makes it spring into existence the first time that it is
called; see perlsub.

print "Exists\n" if exists &subroutine;
print "Defined\n" if defined &subroutine;

Note that the EXPR can be arbitrarily complicated as long as the final operation is a hash or array
key lookup or subroutine name:

perl v5.38.2 2025-07-25 141

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

if (exists $ref−>{A}−>{B}−>{$key}) { }
if (exists $hash{A}{B}{$key}) { }

if (exists $ref−>{A}−>{B}−>[$ix]) { }
if (exists $hash{A}{B}[$ix]) { }

if (exists &{$ref−>{A}{B}{$key}}) { }

Although the most deeply nested array or hash element will not spring into existence just because
its existence was tested, any intervening ones will. Thus $ref−>{"A"} and
$ref−>{"A"}−>{"B"} will spring into existence due to the existence test for the $key
element above. This happens anywhere the arrow operator is used, including even here:

undef $ref;
if (exists $ref−>{"Some key"}) { }
print $ref; # prints HASH(0x80d3d5c)

Use of a subroutine call, rather than a subroutine name, as an argument to exists is an error.

exists ⊂ # OK
exists &sub(); # Error

exit EXPR
exit Evaluates EXPR and exits immediately with that value. Example:

my $ans = <STDIN>;
exit 0 if $ans =˜ /ˆ[Xx]/;

See also die. If EXPR is omitted, exits with 0 status. The only universally recognized values for
EXPR are 0 for success and 1 for error; other values are subject to interpretation depending on the
environment in which the Perl program is running. For example, exiting 69
(EX_UNAVAILABLE) from a sendmail incoming-mail filter will cause the mailer to return the
item undelivered, but that’s not true everywhere.

Don’t use exit to abort a subroutine if there’s any chance that someone might want to trap
whatever error happened. Use die instead, which can be trapped by an eval.

The exit function does not always exit immediately. It calls any defined END routines first, but
these END routines may not themselves abort the exit. Likewise any object destructors that need
to be called are called before the real exit. END routines and destructors can change the exit status
by modifying $?. If this is a problem, you can call POSIX::_exit($status) to avoid END
and destructor processing. See perlmod for details.

Portability issues: "exit" in perlport.

exp EXPR
exp Returns e (the natural logarithm base) to the power of EXPR. If EXPR is omitted, gives

exp($_).

fc EXPR
fc Returns the casefolded version of EXPR. This is the internal function implementing the \F

escape in double-quoted strings.

Casefolding is the process of mapping strings to a form where case differences are erased;
comparing two strings in their casefolded form is effectively a way of asking if two strings are
equal, regardless of case.

Roughly, if you ever found yourself writing this

lc($this) eq lc($that) # Wrong!
or

uc($this) eq uc($that) # Also wrong!
or

$this =˜ /ˆ\Q$that\E\z/i # Right!

Now you can write

142 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

fc($this) eq fc($that)

And get the correct results.

Perl only implements the full form of casefolding, but you can access the simple folds using
"casefold()" in Unicode::UCD and "prop_invmap()" in Unicode::UCD. For further information
on casefolding, refer to the Unicode Standard, specifically sections 3.13 Default Case
Operations, 4.2 Case−Normative, and 5.18 Case Mappings, available at
<https://www.unicode.org/versions/latest/>, as well as the Case Charts available at
<https://www.unicode.org/charts/case/>.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragmas, such as within
"use feature 'unicode_strings", as lc does, with the single exception of fc of
LATIN CAPITAL LETTER SHARP S (U+1E9E) within the scope of use locale. The foldcase
of this character would normally be "ss", but as explained in the lc section, case changes that
cross the 255/256 boundary are problematic under locales, and are hence prohibited. Therefore,
this function under locale returns instead the string "\x{17F}\x{17F}", which is the LATIN
SMALL LETTER LONG S. Since that character itself folds to "s", the string of two of them
together should be equivalent to a single U+1E9E when foldcased.

While the Unicode Standard defines two additional forms of casefolding, one for Turkic languages
and one that never maps one character into multiple characters, these are not provided by the Perl
core. However, the CPAN module Unicode::Casing may be used to provide an
implementation.

fc is available only if the "fc" feature is enabled or if it is prefixed with CORE::. The "fc"
feature is enabled automatically with a use v5.16 (or higher) declaration in the current scope.

fcntl FILEHANDLE,FUNCTION,SCALAR
Implements the fcntl (2) function. You’ll probably have to say

use Fcntl;

first to get the correct constant definitions. Argument processing and value returned work just like
ioctl below. For example:

use Fcntl;
my $flags = fcntl($filehandle, F_GETFL, 0)

or die "Can't fcntl F_GETFL: $!";

You don’t hav e to check for defined on the return from fcntl. Like ioctl, it maps a 0
return from the system call into "0 but true" in Perl. This string is true in boolean context
and 0 in numeric context. It is also exempt from the normal Argument "..." isn't
numeric warnings on improper numeric conversions.

Note that fcntl raises an exception if used on a machine that doesn’t implement fcntl (2). See
the Fcntl module or your fcntl (2) manpage to learn what functions are available on your system.

Here’s an example of setting a filehandle named $REMOTE to be non-blocking at the system level.
You’ll have to negotiate $| on your own, though.

use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

my $flags = fcntl($REMOTE, F_GETFL, 0)
or die "Can't get flags for the socket: $!\n";

fcntl($REMOTE, F_SETFL, $flags | O_NONBLOCK)
or die "Can't set flags for the socket: $!\n";

Portability issues: "fcntl" in perlport.

_ _FILE_ _
A special token that returns the name of the file in which it occurs. It can be altered by the
mechanism described at "Plain Old Comments (Not!)" in perlsyn.

perl v5.38.2 2025-07-25 143

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

field VARNAME
Declares a new field variable within the current class. Methods and ADJUST blocks of the class
will have access to this variable as if it was a lexical in scope at that point.

fileno FILEHANDLE
fileno DIRHANDLE

Returns the file descriptor for a filehandle or directory handle, or undefined if the filehandle is not
open. If there is no real file descriptor at the OS level, as can happen with filehandles connected to
memory objects via open with a reference for the third argument, −1 is returned.

This is mainly useful for constructing bitmaps for select and low-level POSIX tty-handling
operations. If FILEHANDLE is an expression, the value is taken as an indirect filehandle,
generally its name.

You can use this to find out whether two handles refer to the same underlying descriptor:

if (fileno($this) != −1 && fileno($this) == fileno($that)) {
print "\$this and \$that are dups\n";

} elsif (fileno($this) != −1 && fileno($that) != −1) {
print "\$this and \$that have different " .

"underlying file descriptors\n";
} else {

print "At least one of \$this and \$that does " .
"not have a real file descriptor\n";

}

The behavior of fileno on a directory handle depends on the operating system. On a system
with dirfd (3) or similar, fileno on a directory handle returns the underlying file descriptor
associated with the handle; on systems with no such support, it returns the undefined value, and
sets $! (errno).

flock FILEHANDLE,OPERATION
Calls flock (2), or an emulation of it, on FILEHANDLE. Returns true for success, false on failure.
Produces a fatal error if used on a machine that doesn’t implement flock (2), fcntl (2) locking, or
lockf (3). flock is Perl’s portable file-locking interface, although it locks entire files only, not
records.

Tw o potentially non-obvious but traditional flock semantics are that it waits indefinitely until
the lock is granted, and that its locks are merely advisory. Such discretionary locks are more
flexible, but offer fewer guarantees. This means that programs that do not also use flock may
modify files locked with flock. See perlport, your port’s specific documentation, and your
system-specific local manpages for details. It’s best to assume traditional behavior if you’re
writing portable programs. (But if you’re not, you should as always feel perfectly free to write for
your own system’s idiosyncrasies (sometimes called "features"). Slavish adherence to portability
concerns shouldn’t get in the way of your getting your job done.)

OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
LOCK_NB. These constants are traditionally valued 1, 2, 8 and 4, but you can use the symbolic
names if you import them from the Fcntl module, either individually, or as a group using the
:flock tag. LOCK_SH requests a shared lock, LOCK_EX requests an exclusive lock, and
LOCK_UN releases a previously requested lock. If LOCK_NB is bitwise-or’ed with LOCK_SH
or LOCK_EX, then flock returns immediately rather than blocking waiting for the lock; check
the return status to see if you got it.

To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE before locking or
unlocking it.

Note that the emulation built with lockf (3) doesn’t provide shared locks, and it requires that
FILEHANDLE be open with write intent. These are the semantics that lockf (3) implements.
Most if not all systems implement lockf (3) in terms of fcntl (2) locking, though, so the differing
semantics shouldn’t bite too many people.

Note that the fcntl (2) emulation of flock (3) requires that FILEHANDLE be open with read intent
to use LOCK_SH and requires that it be open with write intent to use LOCK_EX.

144 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Note also that some versions of flock cannot lock things over the network; you would need to
use the more system-specific fcntl for that. If you like you can force Perl to ignore your
system’s flock (2) function, and so provide its own fcntl (2)−based emulation, by passing the
switch −Ud_flock to the Configure program when you configure and build a new Perl.

Here’s a mailbox appender for BSD systems.

import LOCK_* and SEEK_END constants
use Fcntl qw(:flock SEEK_END);

sub lock {
my ($fh) = @_;
flock($fh, LOCK_EX) or die "Cannot lock mailbox − $!\n";
and, in case we're running on a very old UNIX
variant without the modern O_APPEND semantics...
seek($fh, 0, SEEK_END) or die "Cannot seek − $!\n";

}

sub unlock {
my ($fh) = @_;
flock($fh, LOCK_UN) or die "Cannot unlock mailbox − $!\n";

}

open(my $mbox, ">>", "/usr/spool/mail/$ENV{'USER'}")
or die "Can't open mailbox: $!";

lock($mbox);
print $mbox $msg,"\n\n";
unlock($mbox);

On systems that support a real flock (2), locks are inherited across fork calls, whereas those that
must resort to the more capricious fcntl (2) function lose their locks, making it seriously harder to
write servers.

See also DB_File for other flock examples.

Portability issues: "flock" in perlport.

fork
Does a fork (2) system call to create a new process running the same program at the same point.
It returns the child pid to the parent process, 0 to the child process, or undef if the fork is
unsuccessful. File descriptors (and sometimes locks on those descriptors) are shared, while
ev erything else is copied. On most systems supporting fork (2), great care has gone into making it
extremely efficient (for example, using copy-on-write technology on data pages), making it the
dominant paradigm for multitasking over the last few decades.

Perl attempts to flush all files opened for output before forking the child process, but this may not
be supported on some platforms (see perlport). To be safe, you may need to set $|
($AUTOFLUSH in English) or call the autoflush method of IO::Handle on any open
handles to avoid duplicate output.

If you fork without ever waiting on your children, you will accumulate zombies. On some
systems, you can avoid this by setting $SIG{CHLD} to "IGNORE". See also perlipc for more
examples of forking and reaping moribund children.

Note that if your forked child inherits system file descriptors like STDIN and STDOUT that are
actually connected by a pipe or socket, even if you exit, then the remote server (such as, say, a
CGI script or a backgrounded job launched from a remote shell) won’t think you’re done. You
should reopen those to /dev/null if it’s any issue.

On some platforms such as Windows, where the fork (2) system call is not available, Perl can be
built to emulate fork in the Perl interpreter. The emulation is designed, at the level of the Perl
program, to be as compatible as possible with the "Unix" fork (2). However it has limitations that
have to be considered in code intended to be portable. See perlfork for more details.

perl v5.38.2 2025-07-25 145

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Portability issues: "fork" in perlport.

format
Declare a picture format for use by the write function. For example:

format Something =
Test: @<<<<<<<< @||||| @>>>>>

$str, $%, '$' . int($num)
.

$str = "widget";
$num = $cost/$quantity;
$˜ = 'Something';
write;

See perlform for many details and examples.

formline PICTURE,LIST
This is an internal function used by formats, though you may call it, too. It formats (see
perlform) a list of values according to the contents of PICTURE, placing the output into the
format output accumulator, $ˆA (or $ACCUMULATOR in English). Eventually, when a write is
done, the contents of $ˆA are written to some filehandle. You could also read $ˆA and then set
$ˆA back to "". Note that a format typically does one formline per line of form, but the
formline function itself doesn’t care how many newlines are embedded in the PICTURE. This
means that the ˜ and ˜˜ tokens treat the entire PICTURE as a single line. You may therefore
need to use multiple formlines to implement a single record format, just like the format
compiler.

Be careful if you put double quotes around the picture, because an @ character may be taken to
mean the beginning of an array name. formline always returns true. See perlform for other
examples.

If you are trying to use this instead of write to capture the output, you may find it easier to open
a filehandle to a scalar (open my $fh, ">", \$output) and write to that instead.

getc FILEHANDLE
getc

Returns the next character from the input file attached to FILEHANDLE, or the undefined value at
end of file or if there was an error (in the latter case $! is set). If FILEHANDLE is omitted, reads
from STDIN. This is not particularly efficient. However, it cannot be used by itself to fetch single
characters without waiting for the user to hit enter. For that, try something more like:

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";

}
else {

system "stty", '−icanon', 'eol', "\001";
}

my $key = getc(STDIN);

if ($BSD_STYLE) {
system "stty −cbreak </dev/tty >/dev/tty 2>&1";

}
else {

system 'stty', 'icanon', 'eol', 'ˆ@'; # ASCII NUL
}
print "\n";

Determination of whether $BSD_STYLE should be set is left as an exercise to the reader.

The POSIX::getattr function can do this more portably on systems purporting POSIX
compliance. See also the Term::ReadKey module on CPAN.

146 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

getlogin
This implements the C library function of the same name, which on most systems returns the
current login from /etc/utmp, if any. If it returns the empty string, use getpwuid.

my $login = getlogin || getpwuid($<) || "Kilroy";

Do not consider getlogin for authentication: it is not as secure as getpwuid.

Portability issues: "getlogin" in perlport.

getpeername SOCKET
Returns the packed sockaddr address of the other end of the SOCKET connection.

use Socket;
my $hersockaddr = getpeername($sock);
my ($port, $iaddr) = sockaddr_in($hersockaddr);
my $herhostname = gethostbyaddr($iaddr, AF_INET);
my $herstraddr = inet_ntoa($iaddr);

getpgrp PID
Returns the current process group for the specified PID. Use a PID of 0 to get the current process
group for the current process. Will raise an exception if used on a machine that doesn’t implement
getpgrp (2). If PID is omitted, returns the process group of the current process. Note that the
POSIX version of getpgrp does not accept a PID argument, so only PID==0 is truly portable.

Portability issues: "getpgrp" in perlport.

getppid
Returns the process id of the parent process.

Note for Linux users: Between v5.8.1 and v5.16.0 Perl would work around non-POSIX thread
semantics the minority of Linux systems (and Debian GNU/kFreeBSD systems) that used
LinuxThreads, this emulation has since been removed. See the documentation for $$ for details.

Portability issues: "getppid" in perlport.

getpriority WHICH,WHO
Returns the current priority for a process, a process group, or a user. (See getpriority (2).) Will
raise a fatal exception if used on a machine that doesn’t implement getpriority (2).

WHICH can be any of PRIO_PROCESS, PRIO_PGRP or PRIO_USER imported from
"RESOURCE CONSTANTS" in POSIX.

Portability issues: "getpriority" in perlport.

getpwnam NAME
getgrnam NAME
gethostbyname NAME
getnetbyname NAME
getprotobyname NAME
getpwuid UID
getgrgid GID
getservbyname NAME,PROT O
gethostbyaddr ADDR,ADDRTYPE
getnetbyaddr ADDR,ADDRTYPE
getprotobynumber NUMBER
getservbyport PORT,PROT O
getpwent
getgrent
gethostent
getnetent
getprotoent
getservent
setpwent

perl v5.38.2 2025-07-25 147

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

setgrent
sethostent STAY OPEN
setnetent STAY OPEN
setprotoent STAY OPEN
setservent STAY OPEN
endpwent
endgrent
endhostent
endnetent
endprotoent
endservent

These routines are the same as their counterparts in the system C library. In list context, the return
values from the various get routines are as follows:

0 1 2 3 4
my ($name, $passwd, $gid, $members) = getgr*
my ($name, $aliases, $addrtype, $net) = getnet*
my ($name, $aliases, $port, $proto) = getserv*
my ($name, $aliases, $proto) = getproto*
my ($name, $aliases, $addrtype, $length, @addrs) = gethost*
my ($name, $passwd, $uid, $gid, $quota,

$comment, $gcos, $dir, $shell, $expire) = getpw*
5 6 7 8 9

(If the entry doesn’t exist, the return value is a single meaningless true value.)

The exact meaning of the $gcos field varies but it usually contains the real name of the user (as
opposed to the login name) and other information pertaining to the user. Bew are, however, that in
many system users are able to change this information and therefore it cannot be trusted and
therefore the $gcos is tainted (see perlsec). The $passwd and $shell, user’s encrypted
password and login shell, are also tainted, for the same reason.

In scalar context, you get the name, unless the function was a lookup by name, in which case you
get the other thing, whatever it is. (If the entry doesn’t exist you get the undefined value.) For
example:

my $uid = getpwnam($name);
my $name = getpwuid($num);
my $name = getpwent();
my $gid = getgrnam($name);
my $name = getgrgid($num);
my $name = getgrent();
etc.

In getpw*() the fields $quota, $comment, and $expire are special in that they are
unsupported on many systems. If the $quota is unsupported, it is an empty scalar. If it is
supported, it usually encodes the disk quota. If the $comment field is unsupported, it is an empty
scalar. If it is supported it usually encodes some administrative comment about the user. In some
systems the $quota field may be $change or $age, fields that have to do with password aging.
In some systems the $comment field may be $class. The $expire field, if present, encodes
the expiration period of the account or the password. For the availability and the exact meaning of
these fields in your system, please consult getpwnam (3) and your system’s pwd.h file. You can
also find out from within Perl what your $quota and $comment fields mean and whether you
have the $expire field by using the Config module and the values d_pwquota, d_pwage,
d_pwchange, d_pwcomment, and d_pwexpire. Shadow password files are supported only
if your vendor has implemented them in the intuitive fashion that calling the regular C library
routines gets the shadow versions if you’re running under privilege or if there exists the
shadow (3) functions as found in System V (this includes Solaris and Linux). Those systems that
implement a proprietary shadow password facility are unlikely to be supported.

The $members value returned by getgr*() is a space-separated list of the login names of the
members of the group.

148 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

For the gethost*() functions, if the h_errno variable is supported in C, it will be returned to you
via $? if the function call fails. The @addrs value returned by a successful call is a list of raw
addresses returned by the corresponding library call. In the Internet domain, each address is four
bytes long; you can unpack it by saying something like:

my ($w,$x,$y,$z) = unpack('W4',$addr[0]);

The Socket library makes this slightly easier:

use Socket;
my $iaddr = inet_aton("127.1"); # or whatever address
my $name = gethostbyaddr($iaddr, AF_INET);

or going the other way
my $straddr = inet_ntoa($iaddr);

In the opposite way, to resolve a hostname to the IP address you can write this:

use Socket;
my $packed_ip = gethostbyname("www.perl.org");
my $ip_address;
if (defined $packed_ip) {

$ip_address = inet_ntoa($packed_ip);
}

Make sure gethostbyname is called in SCALAR context and that its return value is checked
for definedness.

The getprotobynumber function, even though it only takes one argument, has the precedence
of a list operator, so bew are:

getprotobynumber $number eq 'icmp' # WRONG
getprotobynumber($number eq 'icmp') # actually means this
getprotobynumber($number) eq 'icmp' # better this way

If you get tired of remembering which element of the return list contains which return value, by-
name interfaces are provided in standard modules: File::stat, Net::hostent,
Net::netent, Net::protoent, Net::servent, Time::gmtime,
Time::localtime, and User::grent. These override the normal built-ins, supplying
versions that return objects with the appropriate names for each field. For example:

use File::stat;
use User::pwent;
my $is_his = (stat($filename)−>uid == pwent($whoever)−>uid);

Even though it looks as though they’re the same method calls (uid), they aren’t, because a
File::stat object is different from a User::pwent object.

Many of these functions are not safe in a multi-threaded environment where more than one thread
can be using them. In particular, functions like getpwent() iterate per-process and not per-
thread, so if two threads are simultaneously iterating, neither will get all the records.

Some systems have thread-safe versions of some of the functions, such as getpwnam_r()
instead of getpwnam(). There, Perl automatically and invisibly substitutes the thread-safe
version, without notice. This means that code that safely runs on some systems can fail on others
that lack the thread-safe versions.

Portability issues: "getpwnam" in perlport to "endservent" in perlport.

getsockname SOCKET
Returns the packed sockaddr address of this end of the SOCKET connection, in case you don’t
know the address because you have sev eral different IPs that the connection might have come in
on.

perl v5.38.2 2025-07-25 149

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

use Socket;
my $mysockaddr = getsockname($sock);
my ($port, $myaddr) = sockaddr_in($mysockaddr);
printf "Connect to %s [%s]\n",

scalar gethostbyaddr($myaddr, AF_INET),
inet_ntoa($myaddr);

getsockopt SOCKET,LEVEL,OPTNAME
Queries the option named OPTNAME associated with SOCKET at a given LEVEL. Options may
exist at multiple protocol levels depending on the socket type, but at least the uppermost socket
level SOL_SOCKET (defined in the Socket module) will exist. To query options at another
level the protocol number of the appropriate protocol controlling the option should be supplied.
For example, to indicate that an option is to be interpreted by the TCP protocol, LEVEL should be
set to the protocol number of TCP, which you can get using getprotobyname.

The function returns a packed string representing the requested socket option, or undef on error,
with the reason for the error placed in $!. Just what is in the packed string depends on LEVEL
and OPTNAME; consult getsockopt (2) for details. A common case is that the option is an
integer, in which case the result is a packed integer, which you can decode using unpack with the
i (or I) format.

Here’s an example to test whether Nagle’s algorithm is enabled on a socket:

use Socket qw(:all);

defined(my $tcp = getprotobyname("tcp"))
or die "Could not determine the protocol number for tcp";

my $tcp = IPPROTO_TCP; # Alternative
my $packed = getsockopt($socket, $tcp, TCP_NODELAY)

or die "getsockopt TCP_NODELAY: $!";
my $nodelay = unpack("I", $packed);
print "Nagle's algorithm is turned ",

$nodelay ? "off\n" : "on\n";

Portability issues: "getsockopt" in perlport.

glob EXPR
glob

In list context, returns a (possibly empty) list of filename expansions on the value of EXPR such
as the Unix shell Bash would do. In scalar context, glob iterates through such filename expansions,
returning undef when the list is exhausted. If EXPR is omitted, $_ is used.

List context
my @txt_files = glob("*.txt");
my @perl_files = glob("*.pl *.pm");

Scalar context
while (my $file = glob("*.mp3")) {

Do stuff
}

Glob also supports an alternate syntax using < > as delimiters. While this syntax is supported, it is
recommended that you use glob instead as it is more readable and searchable.

my @txt_files = <"*.txt">;

If you need case insensitive file globbing that can be achieved using the :nocase parameter of
the bsd_glob module.

use File::Glob qw(:globally :nocase);

my @txt = glob("readme*"); # README readme.txt Readme.md

Note that glob splits its arguments on whitespace and treats each segment as separate pattern. As
such, glob("*.c *.h") matches all files with a .c or .h extension. The expression

150 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

glob(".* *") matches all files in the current working directory. If you want to glob filenames
that might contain whitespace, you’ll have to use extra quotes around the spacey filename to
protect it. For example, to glob filenames that have an e followed by a space followed by an f,
use one of:

my @spacies = <"*e f*">;
my @spacies = glob('"*e f*"');
my @spacies = glob(q("*e f*"));

If you had to get a variable through, you could do this:

my @spacies = glob("'*${var}e f*'");
my @spacies = glob(qq("*${var}e f*"));

If non-empty braces are the only wildcard characters used in the glob, no filenames are matched,
but potentially many strings are returned. For example, this produces nine strings, one for each
pairing of fruits and colors:

my @many = glob("{apple,tomato,cherry}={green,yellow,red}");

This operator is implemented using the standard File::Glob extension. See bsd_glob for
details, including bsd_glob, which does not treat whitespace as a pattern separator.

If a glob expression is used as the condition of a while or for loop, then it will be implicitly
assigned to $_. If either a glob expression or an explicit assignment of a glob expression to a
scalar is used as a while/for condition, then the condition actually tests for definedness of the
expression’s value, not for its regular truth value.

Internal implemenation details:

This is the internal function implementing the <*.c> operator, but you can use it directly. The
<*.c> operator is discussed in more detail in "I/O Operators" in perlop.

Portability issues: "glob" in perlport.

gmtime EXPR
gmtime

Works just like localtime, but the returned values are localized for the standard Greenwich
time zone.

Note: When called in list context, $isdst, the last value returned by gmtime, is always 0. There
is no Daylight Saving Time in GMT.

Portability issues: "gmtime" in perlport.

goto LABEL
goto EXPR
goto &NAME

The goto LABEL form finds the statement labeled with LABEL and resumes execution there. It
can’t be used to get out of a block or subroutine given to sort. It can be used to go almost
anywhere else within the dynamic scope, including out of subroutines, but it’s usually better to use
some other construct such as last or die. The author of Perl has never felt the need to use this
form of goto (in Perl, that is; C is another matter). (The difference is that C does not offer named
loops combined with loop control. Perl does, and this replaces most structured uses of goto in
other languages.)

The goto EXPR form expects to evaluate EXPR to a code reference or a label name. If it
evaluates to a code reference, it will be handled like goto &NAME, below. This is especially
useful for implementing tail recursion via goto __SUB_ _.

If the expression evaluates to a label name, its scope will be resolved dynamically. This allows for
computed gotos per FORTRAN, but isn’t necessarily recommended if you’re optimizing for
maintainability:

goto ("FOO", "BAR", "GLARCH")[$i];

As shown in this example, goto EXPR is exempt from the "looks like a function" rule. A pair of
parentheses following it does not (necessarily) delimit its argument. goto("NE")."XT" is

perl v5.38.2 2025-07-25 151

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

equivalent to goto NEXT. Also, unlike most named operators, this has the same precedence as
assignment.

Use of goto LABEL or goto EXPR to jump into a construct is deprecated and will issue a
warning. Even then, it may not be used to go into any construct that requires initialization, such as
a subroutine, a foreach loop, or a given block. In general, it may not be used to jump into the
parameter of a binary or list operator, but it may be used to jump into the first parameter of a
binary operator. (The = assignment operator’s "first" operand is its right-hand operand.) It also
can’t be used to go into a construct that is optimized away.

The goto &NAME form is quite different from the other forms of goto. In fact, it isn’t a goto in
the normal sense at all, and doesn’t hav e the stigma associated with other gotos. Instead, it exits
the current subroutine (losing any changes set by local) and immediately calls in its place the
named subroutine using the current value of @_. This is used by AUTOLOAD subroutines that
wish to load another subroutine and then pretend that the other subroutine had been called in the
first place (except that any modifications to @_ in the current subroutine are propagated to the
other subroutine.) After the goto, not even caller will be able to tell that this routine was
called first.

NAME needn’t be the name of a subroutine; it can be a scalar variable containing a code reference
or a block that evaluates to a code reference.

grep BLOCK LIST
grep EXPR,LIST

This is similar in spirit to, but not the same as, grep (1) and its relatives. In particular, it is not
limited to using regular expressions.

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element) and
returns the list value consisting of those elements for which the expression evaluated to true. In
scalar context, returns the number of times the expression was true.

my @foo = grep(!/ˆ#/, @bar); # weed out comments

or equivalently,

my @foo = grep {!/ˆ#/} @bar; # weed out comments

Note that $_ is an alias to the list value, so it can be used to modify the elements of the LIST.
While this is useful and supported, it can cause bizarre results if the elements of LIST are not
variables. Similarly, grep returns aliases into the original list, much as a for loop’s index variable
aliases the list elements. That is, modifying an element of a list returned by grep (for example, in
a foreach, map or another grep) actually modifies the element in the original list. This is
usually something to be avoided when writing clear code.

See also map for a list composed of the results of the BLOCK or EXPR.

hex EXPR
hex Interprets EXPR as a hex string and returns the corresponding numeric value. If EXPR is omitted,

uses $_.

print hex '0xAf'; # prints '175'
print hex 'aF'; # same
$valid_input =˜ /\A(?:0?[xX])?(?:_?[0−9a−fA−F])*\z/

A hex string consists of hex digits and an optional 0x or x prefix. Each hex digit may be preceded
by a single underscore, which will be ignored. Any other character triggers a warning and causes
the rest of the string to be ignored (even leading whitespace, unlike oct). Only integers can be
represented, and integer overflow triggers a warning.

To convert strings that might start with any of 0, 0x, or 0b, see oct. To present something as
hex, look into printf, sprintf, and unpack.

import LIST
There is no builtin import function. It is just an ordinary method (subroutine) defined (or
inherited) by modules that wish to export names to another module. The use function calls the
import method for the package used. See also use, perlmod, and Exporter.

152 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

index STR,SUBSTR,POSITION
index STR,SUBSTR

The index function searches for one string within another, but without the wildcard-like behavior
of a full regular-expression pattern match. It returns the position of the first occurrence of
SUBSTR in STR at or after POSITION. If POSITION is omitted, starts searching from the
beginning of the string. POSITION before the beginning of the string or after its end is treated as
if it were the beginning or the end, respectively. POSITION and the return value are based at zero.
If the substring is not found, index returns −1.

Find characters or strings:

index("Perl is great", "P"); # Returns 0
index("Perl is great", "g"); # Returns 8
index("Perl is great", "great"); # Also returns 8

Attempting to find something not there:

index("Perl is great", "Z"); # Returns −1 (not found)

Using an offset to find the second occurrence:

index("Perl is great", "e", 5); # Returns 10

int EXPR
int Returns the integer portion of EXPR. If EXPR is omitted, uses $_. You should not use this

function for rounding: one because it truncates towards 0, and two because machine
representations of floating-point numbers can sometimes produce counterintuitive results. For
example, int(−6.725/0.025) produces −268 rather than the correct −269; that’s because it’s
really more like −268.99999999999994315658 instead. Usually, the sprintf, printf, or the
POSIX::floor and POSIX::ceil functions will serve you better than will int.

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements the ioctl (2) function. You’ll probably first have to say

require "sys/ioctl.ph"; # probably in
$Config{archlib}/sys/ioctl.ph

to get the correct function definitions. If sys/ioctl.ph doesn’t exist or doesn’t hav e the correct
definitions you’ll have to roll your own, based on your C header files such as <sys/ioctl.h>.
(There is a Perl script called h2ph that comes with the Perl kit that may help you in this, but it’s
nontrivial.) SCALAR will be read and/or written depending on the FUNCTION; a C pointer to
the string value of SCALAR will be passed as the third argument of the actual ioctl call. (If
SCALAR has no string value but does have a numeric value, that value will be passed rather than
a pointer to the string value. To guarantee this to be true, add a 0 to the scalar before using it.)
The pack and unpack functions may be needed to manipulate the values of structures used by
ioctl.

The return value of ioctl (and fcntl) is as follows:

if OS returns: then Perl returns:
−1 undefined value
0 string "0 but true"

anything else that number

Thus Perl returns true on success and false on failure, yet you can still easily determine the actual
value returned by the operating system:

my $retval = ioctl(...) || −1;
printf "System returned %d\n", $retval;

The special string "0 but true" is exempt from Argument "..." isn't numeric
warnings on improper numeric conversions.

Portability issues: "ioctl" in perlport.

perl v5.38.2 2025-07-25 153

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

join EXPR,LIST
Joins the separate strings of LIST into a single string with fields separated by the value of EXPR,
and returns that new string. Example:

my $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);

Beware that unlike split, join doesn’t take a pattern as its first argument. Compare split.

keys HASH
keys ARRAY

Called in list context, returns a list consisting of all the keys of the named hash, or in Perl 5.12 or
later only, the indices of an array. Perl releases prior to 5.12 will produce a syntax error if you try
to use an array argument. In scalar context, returns the number of keys or indices.

Hash entries are returned in an apparently random order. The actual random order is specific to a
given hash; the exact same series of operations on two hashes may result in a different order for
each hash. Any insertion into the hash may change the order, as will any deletion, with the
exception that the most recent key returned by each or keys may be deleted without changing
the order. So long as a given hash is unmodified you may rely on keys, values and each to
repeatedly return the same order as each other. See "Algorithmic Complexity Attacks" in perlsec
for details on why hash order is randomized. Aside from the guarantees provided here the exact
details of Perl’s hash algorithm and the hash traversal order are subject to change in any release of
Perl. Tied hashes may behave differently to Perl’s hashes with respect to changes in order on
insertion and deletion of items.

As a side effect, calling keys resets the internal iterator of the HASH or ARRAY (see each)
before yielding the keys. In particular, calling keys in void context resets the iterator with no
other overhead.

Here is yet another way to print your environment:

my @keys = keys %ENV;
my @values = values %ENV;
while (@keys) {

print pop(@keys), '=', pop(@values), "\n";
}

or how about sorted by key:

foreach my $key (sort(keys %ENV)) {
print $key, '=', $ENV{$key}, "\n";

}

The returned values are copies of the original keys in the hash, so modifying them will not affect
the original hash. Compare values.

To sort a hash by value, you’ll need to use a sort function. Here’s a descending numeric sort of
a hash by its values:

foreach my $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
printf "%4d %s\n", $hash{$key}, $key;

}

Used as an lvalue, keys allows you to increase the number of hash buckets allocated for the given
hash. This can gain you a measure of efficiency if you know the hash is going to get big. (This is
similar to pre-extending an array by assigning a larger number to $#array.) If you say

keys %hash = 200;

then %hash will have at least 200 buckets allocated for it−−256 of them, in fact, since it rounds
up to the next power of two. These buckets will be retained even if you do %hash = (), use
undef %hash if you want to free the storage while %hash is still in scope. You can’t shrink
the number of buckets allocated for the hash using keys in this way (but you needn’t worry about
doing this by accident, as trying has no effect). keys @array in an lvalue context is a syntax
error.

Starting with Perl 5.14, an experimental feature allowed keys to take a scalar expression. This

154 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your code will
work only on Perls of a recent vintage:

use v5.12; # so keys/values/each work on arrays

See also each, values, and sort.

kill SIGNAL, LIST
kill SIGNAL

Sends a signal to a list of processes. Returns the number of arguments that were successfully used
to signal (which is not necessarily the same as the number of processes actually killed, e.g. where
a process group is killed).

my $cnt = kill 'HUP', $child1, $child2;
kill 'KILL', @goners;

SIGNAL may be either a signal name (a string) or a signal number. A signal name may start with
a SIG prefix, thus FOO and SIGFOO refer to the same signal. The string form of SIGNAL is
recommended for portability because the same signal may have different numbers in different
operating systems.

A list of signal names supported by the current platform can be found in
$Config{sig_name}, which is provided by the Config module. See Config for more
details.

A neg ative signal name is the same as a negative signal number, killing process groups instead of
processes. For example, kill '−KILL', $pgrp and kill −9, $pgrp will send
SIGKILL to the entire process group specified. That means you usually want to use positive not
negative signals.

If SIGNAL is either the number 0 or the string ZERO (or SIGZERO), no signal is sent to the
process, but kill checks whether it’s possible to send a signal to it (that means, to be brief, that
the process is owned by the same user, or we are the super-user). This is useful to check that a
child process is still alive (ev en if only as a zombie) and hasn’t changed its UID. See perlport for
notes on the portability of this construct.

The behavior of kill when a PROCESS number is zero or negative depends on the operating
system. For example, on POSIX-conforming systems, zero will signal the current process group,
−1 will signal all processes, and any other negative PROCESS number will act as a negative signal
number and kill the entire process group specified.

If both the SIGNAL and the PROCESS are negative, the results are undefined. A warning may be
produced in a future version.

See "Signals" in perlipc for more details.

On some platforms such as Windows where the fork (2) system call is not available, Perl can be
built to emulate fork at the interpreter level. This emulation has limitations related to kill that
have to be considered, for code running on Windows and in code intended to be portable.

See perlfork for more details.

If there is no LIST of processes, no signal is sent, and the return value is 0. This form is
sometimes used, however, because it causes tainting checks to be run, if your perl support taint
checks. But see "Laundering and Detecting Tainted Data" in perlsec.

Portability issues: "kill" in perlport.

last LABEL
last EXPR
last The last command is like the break statement in C (as used in loops); it immediately exits the

loop in question. If the LABEL is omitted, the command refers to the innermost enclosing loop.
The last EXPR form, available starting in Perl 5.18.0, allows a label name to be computed at
run time, and is otherwise identical to last LABEL. The continue block, if any, is not

perl v5.38.2 2025-07-25 155

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

executed:

LINE: while (<STDIN>) {
last LINE if /ˆ$/; # exit when done with header
#...

}

last cannot return a value from a block that typically returns a value, such as eval {}, sub
{}, or do {}. It will perform its flow control behavior, which precludes any return value. It
should not be used to exit a grep or map operation.

Note that a block by itself is semantically identical to a loop that executes once. Thus last can
be used to effect an early exit out of such a block.

See also continue for an illustration of how last, next, and redo work.

Unlike most named operators, this has the same precedence as assignment. It is also exempt from
the looks-like-a-function rule, so last ("foo")."bar" will cause "bar" to be part of the
argument to last.

lc EXPR
lc Returns a lowercased version of EXPR. If EXPR is omitted, uses $_.

my $str = lc("Perl is GREAT"); # "perl is great"

What gets returned depends on several factors:

If use bytes is in effect:
The results follow ASCII rules. Only the characters A−Z change, to a−z respectively.

Otherwise, if use locale for LC_CTYPE is in effect:
Respects current LC_CTYPE locale for code points < 256; and uses Unicode rules for the
remaining code points (this last can only happen if the UTF8 flag is also set). See perllocale.

Starting in v5.20, Perl uses full Unicode rules if the locale is UTF−8. Otherwise, there is a
deficiency in this scheme, which is that case changes that cross the 255/256 boundary are not
well-defined. For example, the lower case of LATIN CAPITAL LETTER SHARP S
(U+1E9E) in Unicode rules is U+00DF (on ASCII platforms). But under use locale
(prior to v5.20 or not a UTF−8 locale), the lower case of U+1E9E is itself, because 0xDF
may not be LATIN SMALL LETTER SHARP S in the current locale, and Perl has no way of
knowing if that character even exists in the locale, much less what code point it is. Perl
returns a result that is above 255 (almost always the input character unchanged), for all
instances (and there aren’t many) where the 255/256 boundary would otherwise be crossed;
and starting in v5.22, it raises a locale warning.

Otherwise, If EXPR has the UTF8 flag set:
Unicode rules are used for the case change.

Otherwise, if use feature 'unicode_strings' or use locale
':not_characters' is in effect:

Unicode rules are used for the case change.

Otherwise:
ASCII rules are used for the case change. The lowercase of any character outside the ASCII
range is the character itself.

Note: This is the internal function implementing the \L escape in double-quoted strings.

my $str = "Perl is \LGREAT\E"; # "Perl is great"

lcfirst EXPR
lcfirst

Returns the value of EXPR with the first character lowercased. This is the internal function
implementing the \l escape in double-quoted strings.

If EXPR is omitted, uses $_.

This function behaves the same way under various pragmas, such as in a locale, as lc does.

156 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

length EXPR
length

Returns the length in characters of the value of EXPR. If EXPR is omitted, returns the length of
$_. If EXPR is undefined, returns undef.

This function cannot be used on an entire array or hash to find out how many elements these have.
For that, use scalar @array and scalar keys %hash, respectively.

Like all Perl character operations, length normally deals in logical characters, not physical
bytes. For how many bytes a string encoded as UTF−8 would take up, use
length(Encode::encode('UTF−8', EXPR)) (you’ll have to use Encode first). See
Encode and perlunicode.

_ _LINE_ _
A special token that compiles to the current line number. It can be altered by the mechanism
described at "Plain Old Comments (Not!)" in perlsyn.

link OLDFILE,NEWFILE
Creates a new filename linked to the old filename. Returns true for success, false otherwise.

Portability issues: "link" in perlport.

listen SOCKET,QUEUESIZE
Does the same thing that the listen (2) system call does. Returns true if it succeeded, false
otherwise. See the example in "Sockets: Client/Server Communication" in perlipc.

local EXPR
You really probably want to be using my instead, because local isn’t what most people think of
as "local". See "Private Variables via my()" in perlsub for details.

A local modifies the listed variables to be local to the enclosing block, file, or eval. If more than
one value is listed, the list must be placed in parentheses. See "Temporary Values via local()" in
perlsub for details, including issues with tied arrays and hashes.

The delete local EXPR construct can also be used to localize the deletion of array/hash
elements to the current block. See "Localized deletion of elements of composite types" in perlsub.

localtime EXPR
localtime

Converts a time as returned by the time function to a 9−element list with the time analyzed for the
local time zone. Typically used as follows:

0 1 2 3 4 5 6 7 8
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

localtime(time);

All list elements are numeric and come straight out of the C ‘struct tm’. $sec, $min, and
$hour are the seconds, minutes, and hours of the specified time.

$mday is the day of the month and $mon the month in the range 0..11, with 0 indicating
January and 11 indicating December. This makes it easy to get a month name from a list:

my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
print "$abbr[$mon] $mday";
$mon=9, $mday=18 gives "Oct 18"

$year contains the number of years since 1900. To get the full year write:

$year += 1900;

To get the last two digits of the year (e.g., "01" in 2001) do:

$year = sprintf("%02d", $year % 100);

$wday is the day of the week, with 0 indicating Sunday and 3 indicating Wednesday. $yday is
the day of the year, in the range 0..364 (or 0..365 in leap years.)

$isdst is true if the specified time occurs when Daylight Saving Time is in effect, false
otherwise.

perl v5.38.2 2025-07-25 157

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

If EXPR is omitted, localtime uses the current time (as returned by time).

In scalar context, localtime returns the ctime (3) value:

my $now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

This scalar value is always in English, and is not locale-dependent. To get similar but locale-
dependent date strings, try for example:

use POSIX qw(strftime);
my $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
or for GMT formatted appropriately for your locale:
my $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

C$now_string> will be formatted according to the current LC_TIME locale the program or thread
is running in. See perllocale for how to set up and change that locale. Note that %a and %b, the
short forms of the day of the week and the month of the year, may not necessarily be three
characters wide.

The Time::gmtime and Time::localtime modules provide a convenient, by-name access
mechanism to the gmtime and localtime functions, respectively.

For a comprehensive date and time representation look at the DateTime module on CPAN.

For GMT instead of local time use the gmtime builtin.

See also the Time::Local module (for converting seconds, minutes, hours, and such back to
the integer value returned by time), and the POSIX module’s mktime function.

Portability issues: "localtime" in perlport.

lock THING
This function places an advisory lock on a shared variable or referenced object contained in
THING until the lock goes out of scope.

The value returned is the scalar itself, if the argument is a scalar, or a reference, if the argument is
a hash, array or subroutine.

lock is a "weak keyword"; this means that if you’ve defined a function by this name (before any
calls to it), that function will be called instead. If you are not under use threads::shared
this does nothing. See threads::shared.

log EXPR
log Returns the natural logarithm (base e) of EXPR. If EXPR is omitted, returns the log of $_. To

get the log of another base, use basic algebra: The base-N log of a number is equal to the natural
log of that number divided by the natural log of N. For example:

sub log10 {
my $n = shift;
return log($n)/log(10);

}

See also exp for the inverse operation.

lstat FILEHANDLE
lstat EXPR
lstat DIRHANDLE
lstat

Does the same thing as the stat function (including setting the special _ filehandle) but stats a
symbolic link instead of the file the symbolic link points to. If symbolic links are unimplemented
on your system, a normal stat is done. For much more detailed information, please see the
documentation for stat.

If EXPR is omitted, stats $_.

Portability issues: "lstat" in perlport.

158 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

m// The match operator. See "Regexp Quote-Like Operators" in perlop.

map BLOCK LIST
map EXPR,LIST

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element) and
composes a list of the results of each such evaluation. Each element of LIST may produce zero,
one, or more elements in the generated list, so the number of elements in the generated list may
differ from that in LIST. In scalar context, returns the total number of elements so generated. In
list context, returns the generated list.

my @chars = map(chr, @numbers);

translates a list of numbers to the corresponding characters.

my @squares = map { $_ * $_ } @numbers;

translates a list of numbers to their squared values.

my @squares = map { $_ > 5 ? ($_ * $_) : () } @numbers;

shows that number of returned elements can differ from the number of input elements. To omit an
element, return an empty list (). This could also be achieved by writing

my @squares = map { $_ * $_ } grep { $_ > 5 } @numbers;

which makes the intention more clear.

Map always returns a list, which can be assigned to a hash such that the elements become
key/value pairs. See perldata for more details.

my %hash = map { get_a_key_for($_) => $_ } @array;

is just a funny way to write

my %hash;
foreach (@array) {

$hash{get_a_key_for($_)} = $_;
}

Note that $_ is an alias to the list value, so it can be used to modify the elements of the LIST.
While this is useful and supported, it can cause bizarre results if the elements of LIST are not
variables. Using a regular foreach loop for this purpose would be clearer in most cases. See
also grep for a list composed of those items of the original list for which the BLOCK or EXPR
evaluates to true.

{ starts both hash references and blocks, so map { ... could be either the start of map BLOCK
LIST or map EXPR, LIST. Because Perl doesn’t look ahead for the closing } it has to take a
guess at which it’s dealing with based on what it finds just after the {. Usually it gets it right, but
if it doesn’t it won’t realize something is wrong until it gets to the } and encounters the missing
(or unexpected) comma. The syntax error will be reported close to the }, but you’ll need to
change something near the { such as using a unary + or semicolon to give Perl some help:

my %hash = map { "\L$_" => 1 } @array # perl guesses EXPR. wrong
my %hash = map { +"\L$_" => 1 } @array # perl guesses BLOCK. right
my %hash = map {; "\L$_" => 1 } @array # this also works
my %hash = map { ("\L$_" => 1) } @array # as does this
my %hash = map { lc($_) => 1 } @array # and this.
my %hash = map +(lc($_) => 1), @array # this is EXPR and works!

my %hash = map (lc($_), 1), @array # evaluates to (1, @array)

or to force an anon hash constructor use +{:

my @hashes = map +{ lc($_) => 1 }, @array # EXPR, so needs
comma at end

to get a list of anonymous hashes each with only one entry apiece.

perl v5.38.2 2025-07-25 159

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

method NAME BLOCK
method NAME : ATTRS BLOCK

Creates a new named method in the scope of the class that it appears within. This is only valid
inside a class declaration.

mkdir FILENAME,MODE
mkdir FILENAME
mkdir

Creates the directory specified by FILENAME, with permissions specified by MODE (as modified
by umask). If it succeeds it returns true; otherwise it returns false and sets $! (errno). MODE
defaults to 0777 if omitted, and FILENAME defaults to $_ if omitted.

In general, it is better to create directories with a permissive MODE and let the user modify that
with their umask than it is to supply a restrictive MODE and give the user no way to be more
permissive. The exceptions to this rule are when the file or directory should be kept private (mail
files, for instance). The documentation for umask discusses the choice of MODE in more detail.
If bits in MODE other than the permission bits are set, the result may be implementation defined,
per POSIX 1003.1−2008.

Note that according to the POSIX 1003.1−1996 the FILENAME may have any number of trailing
slashes. Some operating and filesystems do not get this right, so Perl automatically removes all
trailing slashes to keep everyone happy.

To recursively create a directory structure, look at the make_path function of the File::Path
module.

msgctl ID,CMD,ARG
Calls the System V IPC function msgctl (2). You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT, then ARG must be a variable
that will hold the returned msqid_ds structure. Returns like ioctl: the undefined value for
error, "0 but true" for zero, or the actual return value otherwise. See also "SysV IPC" in
perlipc and the documentation for IPC::SysV and IPC::Semaphore.

Portability issues: "msgctl" in perlport.

msgget KEY,FLAGS
Calls the System V IPC function msgget (2). Returns the message queue id, or undef on error.
See also "SysV IPC" in perlipc and the documentation for IPC::SysV and IPC::Msg.

Portability issues: "msgget" in perlport.

msgrcv ID,VAR,SIZE,TYPE,FLAGS
Calls the System V IPC function msgrcv to receive a message from message queue ID into
variable VAR with a maximum message size of SIZE. Note that when a message is received, the
message type as a native long integer will be the first thing in VAR, followed by the actual
message. This packing may be opened with unpack("l! a*"). Taints the variable. Returns
true if successful, false on error. See also "SysV IPC" in perlipc and the documentation for
IPC::SysV and IPC::Msg.

Portability issues: "msgrcv" in perlport.

msgsnd ID,MSG,FLAGS
Calls the System V IPC function msgsnd to send the message MSG to the message queue ID.
MSG must begin with the native long integer message type, followed by the message itself. This
kind of packing can be achieved with pack("l! a*", $type, $message). Returns true
if successful, false on error. See also "SysV IPC" in perlipc and the documentation for
IPC::SysV and IPC::Msg.

Portability issues: "msgsnd" in perlport.

my VARLIST
my TYPE VARLIST

160 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

my VARLIST : ATTRS
my TYPE VARLIST : ATTRS

A my declares the listed variables to be local (lexically) to the enclosing block, file, or eval. If
more than one variable is listed, the list must be placed in parentheses.

Note that with a parenthesised list, undef can be used as a dummy placeholder, for example to
skip assignment of initial values:

my (undef, $min, $hour) = localtime;

Redeclaring a variable in the same scope or statement will "shadow" the previous declaration,
creating a new instance and preventing access to the previous one. This is usually undesired and, if
warnings are enabled, will result in a warning in the shadow category.

The exact semantics and interface of TYPE and ATTRS are still evolving. TYPE may be a
bareword, a constant declared with use constant, or __PACKAGE_ _. It is currently bound
to the use of the fields pragma, and attributes are handled using the attributes pragma, or starting
from Perl 5.8.0 also via the Attribute::Handlers module. See "Private Variables via my()" in
perlsub for details.

next LABEL
next EXPR
next

The next command is like the continue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /ˆ#/; # discard comments
#...

}

Note that if there were a continue block on the above, it would get executed even on discarded
lines. If LABEL is omitted, the command refers to the innermost enclosing loop. The next
EXPR form, available as of Perl 5.18.0, allows a label name to be computed at run time, being
otherwise identical to next LABEL.

next cannot return a value from a block that typically returns a value, such as eval {}, sub
{}, or do {}. It will perform its flow control behavior, which precludes any return value. It
should not be used to exit a grep or map operation.

Note that a block by itself is semantically identical to a loop that executes once. Thus next will
exit such a block early.

See also continue for an illustration of how last, next, and redo work.

Unlike most named operators, this has the same precedence as assignment. It is also exempt from
the looks-like-a-function rule, so next ("foo")."bar" will cause "bar" to be part of the
argument to next.

no MODULE VERSION LIST
no MODULE VERSION
no MODULE LIST
no MODULE
no VERSION

See the use function, of which no is the opposite.

oct EXPR
oct Interprets EXPR as an octal string and returns the corresponding value. An octal string consists of

octal digits and, as of Perl 5.33.5, an optional 0o or o prefix. Each octal digit may be preceded by
a single underscore, which will be ignored. (If EXPR happens to start off with 0x or x, interprets
it as a hex string. If EXPR starts off with 0b or b, it is interpreted as a binary string. Leading
whitespace is ignored in all three cases.) The following will handle decimal, binary, octal, and hex
in standard Perl notation:

$val = oct($val) if $val =˜ /ˆ0/;

If EXPR is omitted, uses $_. To go the other way (produce a number in octal), use sprintf or

perl v5.38.2 2025-07-25 161

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

printf:

my $dec_perms = (stat("filename"))[2] & 07777;
my $oct_perm_str = sprintf "%o", $perms;

The oct function is commonly used when a string such as 644 needs to be converted into a file
mode, for example. Although Perl automatically converts strings into numbers as needed, this
automatic conversion assumes base 10.

Leading white space is ignored without warning, as too are any trailing non-digits, such as a
decimal point (oct only handles non-negative integers, not negative integers or floating point).

open FILEHANDLE,MODE,EXPR
open FILEHANDLE,MODE,EXPR,LIST
open FILEHANDLE,MODE,REFERENCE
open FILEHANDLE,EXPR
open FILEHANDLE

Associates an internal FILEHANDLE with the external file specified by EXPR. That filehandle
will subsequently allow you to perform I/O operations on that file, such as reading from it or
writing to it.

Instead of a filename, you may specify an external command (plus an optional argument list) or a
scalar reference, in order to open filehandles on commands or in-memory scalars, respectively.

A thorough reference to open follows. For a gentler introduction to the basics of open, see also
the perlopentut manual page.

Working with files
Most often, open gets invoked with three arguments: the required FILEHANDLE (usually
an empty scalar variable), followed by MODE (usually a literal describing the I/O mode the
filehandle will use), and then the filename that the new filehandle will refer to.

Simple examples
Reading from a file:

open(my $fh, "<", "input.txt")
or die "Can't open < input.txt: $!";

Process every line in input.txt
while (my $line = readline($fh)) {

#
... do something interesting with $line here ...
#

}

or writing to one:

open(my $fh, ">", "output.txt")
or die "Can't open > output.txt: $!";

print $fh "This line gets printed into output.txt.\n";

For a summary of common filehandle operations such as these, see "Files and I/O" in
perlintro.

About filehandles
The first argument to open, labeled FILEHANDLE in this reference, is usually a scalar
variable. (Exceptions exist, described in "Other considerations", below.) If the call to
open succeeds, then the expression provided as FILEHANDLE will get assigned an
open filehandle. That filehandle provides an internal reference to the specified external
file, conveniently stored in a Perl variable, and ready for I/O operations such as reading
and writing.

About modes
When calling open with three or more arguments, the second argument −− labeled
MODE here −− defines the open mode. MODE is usually a literal string comprising

162 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

special characters that define the intended I/O role of the filehandle being created:
whether it’s read-only, or read-and-write, and so on.

If MODE is <, the file is opened for input (read-only). If MODE is >, the file is opened
for output, with existing files first being truncated ("clobbered") and nonexisting files
newly created. If MODE is >>, the file is opened for appending, again being created if
necessary.

You can put a + in front of the > or < to indicate that you want both read and write
access to the file; thus +< is almost always preferred for read/write updates−−the +>
mode would clobber the file first. You can’t usually use either read-write mode for
updating textfiles, since they hav e variable-length records. See the −i switch in perlrun
for a better approach. The file is created with permissions of 0666 modified by the
process’s umask value.

These various prefixes correspond to the fopen (3) modes of r, r+, w, w+, a, and a+.

More examples of different modes in action:

Open a file for concatenation
open(my $log, ">>", "/usr/spool/news/twitlog")

or warn "Couldn't open log file; discarding input";

Open a file for reading and writing
open(my $dbase, "+<", "dbase.mine")

or die "Can't open 'dbase.mine' for update: $!";

Checking the return value
Open returns nonzero on success, the undefined value otherwise. If the open involved a
pipe, the return value happens to be the pid of the subprocess.

When opening a file, it’s seldom a good idea to continue if the request failed, so open is
frequently used with die. Even if you want your code to do something other than die
on a failed open, you should still always check the return value from opening a file.

Specifying I/O layers in MODE
You can use the three-argument form of open to specify I/O layers (sometimes referred to as
"disciplines") to apply to the new filehandle. These affect how the input and output are
processed (see open and PerlIO for more details). For example:

loads PerlIO::encoding automatically
open(my $fh, "<:encoding(UTF−8)", $filename)

|| die "Can't open UTF−8 encoded $filename: $!";

This opens the UTF8−encoded file containing Unicode characters; see perluniintro. Note
that if layers are specified in the three-argument form, then default layers stored in
${ˆOPEN} (usually set by the open pragma or the switch −CioD) are ignored. Those layers
will also be ignored if you specify a colon with no name following it. In that case the default
layer for the operating system (:raw on Unix, :crlf on Windows) is used.

On some systems (in general, DOS− and Windows-based systems) binmode is necessary
when you’re not working with a text file. For the sake of portability it is a good idea always
to use it when appropriate, and never to use it when it isn’t appropriate. Also, people can set
their I/O to be by default UTF8−encoded Unicode, not bytes.

Using undef for temporary files
As a special case the three-argument form with a read/write mode and the third argument
being undef:

open(my $tmp, "+>", undef) or die ...

opens a filehandle to a newly created empty anonymous temporary file. (This happens under
any mode, which makes +> the only useful and sensible mode to use.) You will need to
seek to do the reading.

perl v5.38.2 2025-07-25 163

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Opening a filehandle into an in-memory scalar
You can open filehandles directly to Perl scalars instead of a file or other resource external to
the program. To do so, provide a reference to that scalar as the third argument to open, like
so:

open(my $memory, ">", \$var)
or die "Can't open memory file: $!";

print $memory "foo!\n"; # output will appear in $var

To (re)open STDOUT or STDERR as an in-memory file, close it first:

close STDOUT;
open(STDOUT, ">", \$variable)

or die "Can't open STDOUT: $!";

The scalars for in-memory files are treated as octet strings: unless the file is being opened
with truncation the scalar may not contain any code points over 0xFF.

Opening in-memory files can fail for a variety of reasons. As with any other open, check
the return value for success.

Technical note: This feature works only when Perl is built with PerlIO −− the default, except
with older (pre−5.16) Perl installations that were configured to not include it (e.g. via
Configure −Uuseperlio). You can see whether your Perl was built with PerlIO by
running perl −V:useperlio. If it says 'define', you have PerlIO; otherwise you
don’t.

See perliol for detailed info on PerlIO.

Opening a filehandle into a command
If MODE is |−, then the filename is interpreted as a command to which output is to be piped,
and if MODE is −|, the filename is interpreted as a command that pipes output to us. In the
two-argument (and one-argument) form, one should replace dash (−) with the command. See
"Using open() for IPC" in perlipc for more examples of this. (You are not allowed to open
to a command that pipes both in and out, but see IPC::Open2, IPC::Open3, and "Bidirectional
Communication with Another Process" in perlipc for alternatives.)

open(my $article_fh, "−|", "caesar <$article") # decrypt
article

or die "Can't start caesar: $!";

open(my $article_fh, "caesar <$article |") # ditto
or die "Can't start caesar: $!";

open(my $out_fh, "|−", "sort >Tmp$$") # $$ is our process id
or die "Can't start sort: $!";

In the form of pipe opens taking three or more arguments, if LIST is specified (extra
arguments after the command name) then LIST becomes arguments to the command invoked
if the platform supports it. The meaning of open with more than three arguments for non-
pipe modes is not yet defined, but experimental "layers" may give extra LIST arguments
meaning.

If you open a pipe on the command − (that is, specify either |− or −| with the one− or two-
argument forms of open), an implicit fork is done, so open returns twice: in the parent
process it returns the pid of the child process, and in the child process it returns (a defined) 0.
Use defined($pid) or // to determine whether the open was successful.

For example, use either

my $child_pid = open(my $from_kid, "−|")
// die "Can't fork: $!";

or

164 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

my $child_pid = open(my $to_kid, "|−")
// die "Can't fork: $!";

followed by

if ($child_pid) {
am the parent:
either write $to_kid or else read $from_kid
...
waitpid $child_pid, 0;

} else {
am the child; use STDIN/STDOUT normally
...
exit;

}

The filehandle behaves normally for the parent, but I/O to that filehandle is piped from/to the
STDOUT/STDIN of the child process. In the child process, the filehandle isn’t opened−−I/O
happens from/to the new STDOUT/STDIN. Typically this is used like the normal piped open
when you want to exercise more control over just how the pipe command gets executed, such
as when running setuid and you don’t want to have to scan shell commands for
metacharacters.

The following blocks are more or less equivalent:

open(my $fh, "|tr '[a−z]' '[A−Z]'");
open(my $fh, "|−", "tr '[a−z]' '[A−Z]'");
open(my $fh, "|−") || exec 'tr', '[a−z]', '[A−Z]';
open(my $fh, "|−", "tr", '[a−z]', '[A−Z]');

open(my $fh, "cat −n '$file'|");
open(my $fh, "−|", "cat −n '$file'");
open(my $fh, "−|") || exec "cat", "−n", $file;
open(my $fh, "−|", "cat", "−n", $file);

The last two examples in each block show the pipe as "list form", which is not yet supported
on all platforms. (If your platform has a real fork, such as Linux and macOS, you can use
the list form; it also works on Windows with Perl 5.22 or later.) You would want to use the
list form of the pipe so you can pass literal arguments to the command without risk of the
shell interpreting any shell metacharacters in them. However, this also bars you from opening
pipes to commands that intentionally contain shell metacharacters, such as:

open(my $fh, "|cat −n | expand −4 | lpr")
|| die "Can't open pipeline to lpr: $!";

See "Safe Pipe Opens" in perlipc for more examples of this.

Duping filehandles
You may also, in the Bourne shell tradition, specify an EXPR beginning with >&, in which
case the rest of the string is interpreted as the name of a filehandle (or file descriptor, if
numeric) to be duped (as in dup (2)) and opened. You may use & after >, >>, <, +>, +>>,
and +<. The mode you specify should match the mode of the original filehandle. (Duping a
filehandle does not take into account any existing contents of IO buffers.) If you use the
three-argument form, then you can pass either a number, the name of a filehandle, or the
normal "reference to a glob".

Here is a script that saves, redirects, and restores STDOUT and STDERR using various
methods:

perl v5.38.2 2025-07-25 165

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

#!/usr/bin/perl
open(my $oldout, ">&STDOUT")

or die "Can't dup STDOUT: $!";
open(OLDERR, ">&", *STDERR)

or die "Can't dup STDERR: $!";

open(STDOUT, '>', "foo.out")
or die "Can't redirect STDOUT: $!";

open(STDERR, ">&STDOUT")
or die "Can't dup STDOUT: $!";

select STDERR; $| = 1; # make unbuffered
select STDOUT; $| = 1; # make unbuffered

print STDOUT "stdout 1\n"; # this works for
print STDERR "stderr 1\n"; # subprocesses too

open(STDOUT, ">&", $oldout)
or die "Can't dup \$oldout: $!";

open(STDERR, ">&OLDERR")
or die "Can't dup OLDERR: $!";

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you specify '<&=X', where X is a file descriptor number or a filehandle, then Perl will do
an equivalent of C’s fdopen (3) of that file descriptor (and not call dup (2)); this is more
parsimonious of file descriptors. For example:

open for input, reusing the fileno of $fd
open(my $fh, "<&=", $fd)

or

open(my $fh, "<&=$fd")

or

open for append, using the fileno of $oldfh
open(my $fh, ">>&=", $oldfh)

Being parsimonious on filehandles is also useful (besides being parsimonious) for example
when something is dependent on file descriptors, like for example locking using flock. If
you do just open(my $A, ">>&", $B), the filehandle $A will not have the same file
descriptor as $B, and therefore flock($A) will not flock($B) nor vice versa. But with
open(my $A, ">>&=", $B), the filehandles will share the same underlying system file
descriptor.

Note that under Perls older than 5.8.0, Perl uses the standard C library’s’ fdopen (3) to
implement the = functionality. On many Unix systems, fdopen (3) fails when file descriptors
exceed a certain value, typically 255. For Perls 5.8.0 and later, PerlIO is (most often) the
default.

Legacy usage
This section describes ways to call open outside of best practices; you may encounter these
uses in older code. Perl does not consider their use deprecated, exactly, but neither is it
recommended in new code, for the sake of clarity and readability.

Specifying mode and filename as a single argument
In the one− and two-argument forms of the call, the mode and filename should be
concatenated (in that order), preferably separated by white space. You can−−but
shouldn’t−−omit the mode in these forms when that mode is <. It is safe to use the two-
argument form of open if the filename argument is a known literal.

166 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

open(my $dbase, "+<dbase.mine") # ditto
or die "Can't open 'dbase.mine' for update: $!";

In the two-argument (and one-argument) form, opening <− or − opens STDIN and
opening >− opens STDOUT.

New code should favor the three-argument form of open over this older form.
Declaring the mode and the filename as two distinct arguments avoids any confusion
between the two.

Calling open with one argument via global variables
As a shortcut, a one-argument call takes the filename from the global scalar variable of
the same name as the filehandle:

$ARTICLE = 100;
open(ARTICLE)

or die "Can't find article $ARTICLE: $!\n";

Here $ARTICLE must be a global (package) scalar variable − not one declared with my
or state.

Assigning a filehandle to a bareword
An older style is to use a bareword as the filehandle, as

open(FH, "<", "input.txt")
or die "Can't open < input.txt: $!";

Then you can use FH as the filehandle, in close FH and <FH> and so on. Note that
it’s a global variable, so this form is not recommended when dealing with filehandles
other than Perl’s built-in ones (e.g. STDOUT and STDIN). In fact, using a bareword for
the filehandle is an error when the bareword_filehandles feature has been
disabled. This feature is disabled by default when in the scope of use v5.36.0 or
later.

Other considerations
Automatic filehandle closure

The filehandle will be closed when its reference count reaches zero. If it is a lexically
scoped variable declared with my, that usually means the end of the enclosing scope.
However, this automatic close does not check for errors, so it is better to explicitly close
filehandles, especially those used for writing:

close($handle)
|| warn "close failed: $!";

Automatic pipe flushing
Perl will attempt to flush all files opened for output before any operation that may do a
fork, but this may not be supported on some platforms (see perlport). To be safe, you
may need to set $| ($AUTOFLUSH in English) or call the autoflush method of
IO::Handle on any open handles.

On systems that support a close-on-exec flag on files, the flag will be set for the newly
opened file descriptor as determined by the value of $ˆF. See "$ˆF" in perlvar.

Closing any piped filehandle causes the parent process to wait for the child to finish,
then returns the status value in $? and ${ˆCHILD_ERROR_NATIVE}.

Direct versus by-reference assignment of filehandles
If FILEHANDLE −− the first argument in a call to open −− is an undefined scalar
variable (or array or hash element), a new filehandle is autovivified, meaning that the
variable is assigned a reference to a newly allocated anonymous filehandle. Otherwise if
FILEHANDLE is an expression, its value is the real filehandle. (This is considered a
symbolic reference, so use strict "refs" should not be in effect.)

Whitespace and special characters in the filename argument
The filename passed to the one− and two-argument forms of open will have leading
and trailing whitespace deleted and normal redirection characters honored. This
property, known as "magic open", can often be used to good effect. A user could

perl v5.38.2 2025-07-25 167

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

specify a filename of "rsh cat file |", or you could change certain filenames as needed:

$filename =˜ s/(.*\.gz)\s*$/gzip −dc < $1|/;
open(my $fh, $filename)

or die "Can't open $filename: $!";

Use the three-argument form to open a file with arbitrary weird characters in it,

open(my $fh, "<", $file)
|| die "Can't open $file: $!";

otherwise it’s necessary to protect any leading and trailing whitespace:

$file =˜ s#ˆ(\s)#./$1#;
open(my $fh, "< $file\0")

|| die "Can't open $file: $!";

(this may not work on some bizarre filesystems). One should conscientiously choose
between the magic and three-argument form of open:

open(my $in, $ARGV[0]) || die "Can't open $ARGV[0]: $!";

will allow the user to specify an argument of the form "rsh cat file |", but will
not work on a filename that happens to have a trailing space, while

open(my $in, "<", $ARGV[0])
|| die "Can't open $ARGV[0]: $!";

will have exactly the opposite restrictions. (However, some shells support the syntax
perl your_program.pl <(rsh cat file), which produces a filename
that can be opened normally.)

Invoking C−style open
If you want a "real" C open (2), then you should use the sysopen function, which
involves no such magic (but uses different filemodes than Perl open, which corresponds
to C fopen (3)). This is another way to protect your filenames from interpretation. For
example:

use IO::Handle;
sysopen(my $fh, $path, O_RDWR|O_CREAT|O_EXCL)

or die "Can't open $path: $!";
$fh−>autoflush(1);
print $fh "stuff $$\n";
seek($fh, 0, 0);
print "File contains: ", readline($fh);

See seek for some details about mixing reading and writing.

Portability issues
See "open" in perlport.

opendir DIRHANDLE,EXPR
Opens a directory named EXPR for processing by readdir, telldir, seekdir,
rewinddir, and closedir. Returns true if successful. DIRHANDLE may be an expression
whose value can be used as an indirect dirhandle, usually the real dirhandle name. If
DIRHANDLE is an undefined scalar variable (or array or hash element), the variable is assigned a
reference to a new anonymous dirhandle; that is, it’s autovivified. Dirhandles are the same objects
as filehandles; an I/O object can only be open as one of these handle types at once.

See the example at readdir.

ord EXPR
ord Returns the numeric value of the first character of EXPR. If EXPR is an empty string, returns 0.

If EXPR is omitted, uses $_. (Note character, not byte.)

For the reverse, see chr. See perlunicode for more about Unicode.

168 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

our VARLIST
our TYPE VARLIST
our VARLIST : ATTRS
our TYPE VARLIST : ATTRS

our makes a lexical alias to a package (i.e. global) variable of the same name in the current
package for use within the current lexical scope.

our has the same scoping rules as my or state, meaning that it is only valid within a lexical
scope. Unlike my and state, which both declare new (lexical) variables, our only creates an
alias to an existing variable: a package variable of the same name.

This means that when use strict 'vars' is in effect, our lets you use a package variable
without qualifying it with the package name, but only within the lexical scope of the our
declaration. This applies immediately−−even within the same statement.

package Foo;
use v5.36; # which implies "use strict;"

$Foo::foo = 23;

{
our $foo; # alias to $Foo::foo
print $foo; # prints 23

}

print $Foo::foo; # prints 23

print $foo; # ERROR: requires explicit package name

This works even if the package variable has not been used before, as package variables spring into
existence when first used.

package Foo;
use v5.36;

our $foo = 23; # just like $Foo::foo = 23

print $Foo::foo; # prints 23

Because the variable becomes legal immediately under use strict 'vars', so long as there
is no variable with that name is already in scope, you can then reference the package variable
again even within the same statement.

package Foo;
use v5.36;

my $foo = $foo; # error, undeclared $foo on right−hand side
our $foo = $foo; # no errors

If more than one variable is listed, the list must be placed in parentheses.

our($bar, $baz);

An our declaration declares an alias for a package variable that will be visible across its entire
lexical scope, even across package boundaries. The package in which the variable is entered is
determined at the point of the declaration, not at the point of use. This means the following
behavior holds:

package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
print $bar; # prints 20, as it refers to $Foo::bar

perl v5.38.2 2025-07-25 169

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Multiple our declarations with the same name in the same lexical scope are allowed if they are in
different packages. If they happen to be in the same package, Perl will emit warnings if you have
asked for them, just like multiple my declarations. Unlike a second my declaration, which will
bind the name to a fresh variable, a second our declaration in the same package, in the same
scope, is merely redundant.

use warnings;
package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
our $bar = 30; # declares $Bar::bar for rest of lexical scope
print $bar; # prints 30

our $bar; # emits warning but has no other effect
print $bar; # still prints 30

An our declaration may also have a list of attributes associated with it.

The exact semantics and interface of TYPE and ATTRS are still evolving. TYPE is currently
bound to the use of the fields pragma, and attributes are handled using the attributes pragma, or,
starting from Perl 5.8.0, also via the Attribute::Handlers module. See "Private Variables via my()"
in perlsub for details.

Note that with a parenthesised list, undef can be used as a dummy placeholder, for example to
skip assignment of initial values:

our (undef, $min, $hour) = localtime;

our differs from use vars, which allows use of an unqualified name only within the affected
package, but across scopes.

pack TEMPLATE,LIST
Takes a LIST of values and converts it into a string using the rules given by the TEMPLATE. The
resulting string is the concatenation of the converted values. Typically, each converted value looks
like its machine-level representation. For example, on 32−bit machines an integer may be
represented by a sequence of 4 bytes, which will in Perl be presented as a string that’s 4
characters long.

See perlpacktut for an introduction to this function.

The TEMPLATE is a sequence of characters that give the order and type of values, as follows:

a A string with arbitrary binary data, will be null padded.
A A text (ASCII) string, will be space padded.
Z A null−terminated (ASCIZ) string, will be null padded.

b A bit string (ascending bit order inside each byte,
like vec()).

B A bit string (descending bit order inside each byte).
h A hex string (low nybble first).
H A hex string (high nybble first).

c A signed char (8−bit) value.
C An unsigned char (octet) value.
W An unsigned char value (can be greater than 255).

s A signed short (16−bit) value.
S An unsigned short value.

l A signed long (32−bit) value.
L An unsigned long value.

170 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

q A signed quad (64−bit) value.
Q An unsigned quad value.

(Quads are available only if your system supports 64−bit
integer values _and_ if Perl has been compiled to support
those. Raises an exception otherwise.)

i A signed integer value.
I An unsigned integer value.

(This 'integer' is _at_least_ 32 bits wide. Its exact
size depends on what a local C compiler calls 'int'.)

n An unsigned short (16−bit) in "network" (big−endian) order.
N An unsigned long (32−bit) in "network" (big−endian) order.
v An unsigned short (16−bit) in "VAX" (little−endian) order.
V An unsigned long (32−bit) in "VAX" (little−endian) order.

j A Perl internal signed integer value (IV).
J A Perl internal unsigned integer value (UV).

f A single−precision float in native format.
d A double−precision float in native format.

F A Perl internal floating−point value (NV) in native format
D A float of long−double precision in native format.

(Long doubles are available only if your system supports
long double values. Raises an exception otherwise.
Note that there are different long double formats.)

p A pointer to a null−terminated string.
P A pointer to a structure (fixed−length string).

u A uuencoded string.
U A Unicode character number. Encodes to a character in char−

acter mode and UTF−8 (or UTF−EBCDIC in EBCDIC platforms) in
byte mode. Also on EBCDIC platforms, the character number will
be the native EBCDIC value for character numbers below 256.
This allows most programs using this feature to not have to
care which type of platform they are running on.

w A BER compressed integer (not an ASN.1 BER, see perlpacktut
for details). Its bytes represent an unsigned integer in
base 128, most significant digit first, with as few digits
as possible. Bit eight (the high bit) is set on each byte
except the last.

x A null byte (a.k.a ASCII NUL, "\000", chr(0))
X Back up a byte.
@ Null−fill or truncate to absolute position, counted from the

start of the innermost ()−group.
. Null−fill or truncate to absolute position specified by

the value.
(Start of a ()−group.

One or more modifiers below may optionally follow certain letters in the TEMPLATE (the second
column lists letters for which the modifier is valid):

! sSlLiI Forces native (short, long, int) sizes instead
of fixed (16−/32−bit) sizes.

! xX Make x and X act as alignment commands.

perl v5.38.2 2025-07-25 171

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

! nNvV Treat integers as signed instead of unsigned.

! @. Specify position as byte offset in the internal
representation of the packed string. Efficient
but dangerous.

> sSiIlLqQ Force big−endian byte−order on the type.
jJfFdDpP (The "big end" touches the construct.)

< sSiIlLqQ Force little−endian byte−order on the type.
jJfFdDpP (The "little end" touches the construct.)

The > and < modifiers can also be used on () groups to force a particular byte-order on all
components in that group, including all its subgroups.

The following rules apply:

• Each letter may optionally be followed by a number indicating the repeat count. A numeric
repeat count may optionally be enclosed in brackets, as in pack("C[80]", @arr). The
repeat count gobbles that many values from the LIST when used with all format types other
than a, A, Z, b, B, h, H, @, ., x, X, and P, where it means something else, described below.
Supplying a * for the repeat count instead of a number means to use however many items are
left, except for:

• @, x, and X, where it is equivalent to 0.

• <.>, where it means relative to the start of the string.

• u, where it is equivalent to 1 (or 45, which here is equivalent).

One can replace a numeric repeat count with a template letter enclosed in brackets to use the
packed byte length of the bracketed template for the repeat count.

For example, the template x[L] skips as many bytes as in a packed long, and the template
"$t X[$t] $t" unpacks twice whatever $t (when variable-expanded) unpacks. If the
template in brackets contains alignment commands (such as x![d]), its packed length is
calculated as if the start of the template had the maximal possible alignment.

When used with Z, a * as the repeat count is guaranteed to add a trailing null byte, so the
resulting string is always one byte longer than the byte length of the item itself.

When used with @, the repeat count represents an offset from the start of the innermost ()
group.

When used with ., the repeat count determines the starting position to calculate the value
offset as follows:

• If the repeat count is 0, it’s relative to the current position.

• If the repeat count is *, the offset is relative to the start of the packed string.

• And if it’s an integer n, the offset is relative to the start of the nth innermost () group,
or to the start of the string if n is bigger then the group level.

The repeat count for u is interpreted as the maximal number of bytes to encode per line of
output, with 0, 1 and 2 replaced by 45. The repeat count should not be more than 65.

• The a, A, and Z types gobble just one value, but pack it as a string of length count, padding
with nulls or spaces as needed. When unpacking, A strips trailing whitespace and nulls, Z
strips everything after the first null, and a returns data with no stripping at all.

If the value to pack is too long, the result is truncated. If it’s too long and an explicit count is
provided, Z packs only $count−1 bytes, followed by a null byte. Thus Z always packs a
trailing null, except when the count is 0.

• Likewise, the b and B formats pack a string that’s that many bits long. Each such format
generates 1 bit of the result. These are typically followed by a repeat count like B8 or B64.

172 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Each result bit is based on the least-significant bit of the corresponding input character, i.e.,
on ord($char)%2. In particular, characters "0" and "1" generate bits 0 and 1, as do
characters "\000" and "\001".

Starting from the beginning of the input string, each 8−tuple of characters is converted to 1
character of output. With format b, the first character of the 8−tuple determines the least-
significant bit of a character; with format B, it determines the most-significant bit of a
character.

If the length of the input string is not evenly divisible by 8, the remainder is packed as if the
input string were padded by null characters at the end. Similarly during unpacking, "extra"
bits are ignored.

If the input string is longer than needed, remaining characters are ignored.

A * for the repeat count uses all characters of the input field. On unpacking, bits are
converted to a string of 0s and 1s.

• The h and H formats pack a string that many nybbles (4−bit groups, representable as
hexadecimal digits, "0".."9" "a".."f") long.

For each such format, pack generates 4 bits of result. With non-alphabetical characters, the
result is based on the 4 least-significant bits of the input character, i.e., on
ord($char)%16. In particular, characters "0" and "1" generate nybbles 0 and 1, as do
bytes "\000" and "\001". For characters "a".."f" and "A".."F", the result is
compatible with the usual hexadecimal digits, so that "a" and "A" both generate the nybble
0xA==10. Use only these specific hex characters with this format.

Starting from the beginning of the template to pack, each pair of characters is converted to 1
character of output. With format h, the first character of the pair determines the least-
significant nybble of the output character; with format H, it determines the most-significant
nybble.

If the length of the input string is not even, it behaves as if padded by a null character at the
end. Similarly, "extra" nybbles are ignored during unpacking.

If the input string is longer than needed, extra characters are ignored.

A * for the repeat count uses all characters of the input field. For unpack, nybbles are
converted to a string of hexadecimal digits.

• The p format packs a pointer to a null-terminated string. You are responsible for ensuring
that the string is not a temporary value, as that could potentially get deallocated before you
got around to using the packed result. The P format packs a pointer to a structure of the size
indicated by the length. A null pointer is created if the corresponding value for p or P is
undef; similarly with unpack, where a null pointer unpacks into undef.

If your system has a strange pointer size−−meaning a pointer is neither as big as an int nor as
big as a long−−it may not be possible to pack or unpack pointers in big− or little-endian byte
order. Attempting to do so raises an exception.

• The / template character allows packing and unpacking of a sequence of items where the
packed structure contains a packed item count followed by the packed items themselves.
This is useful when the structure you’re unpacking has encoded the sizes or repeat counts for
some of its fields within the structure itself as separate fields.

For pack, you write length-item/sequence-item, and the length-item describes how the
length value is packed. Formats likely to be of most use are integer-packing ones like n for
Java strings, w for ASN.1 or SNMP, and N for Sun XDR.

For pack, sequence-item may have a repeat count, in which case the minimum of that and
the number of available items is used as the argument for length-item. If it has no repeat
count or uses a ’*’, the number of available items is used.

For unpack, an internal stack of integer arguments unpacked so far is used. You write
/sequence-item and the repeat count is obtained by popping off the last element from the
stack. The sequence-item must not have a repeat count.

perl v5.38.2 2025-07-25 173

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

If sequence-item refers to a string type ("A", "a", or "Z"), the length-item is the string
length, not the number of strings. With an explicit repeat count for pack, the packed string is
adjusted to that length. For example:

This code: gives this result:

unpack("W/a", "\004Gurusamy") ("Guru")
unpack("a3/A A*", "007 Bond J ") (" Bond", "J")
unpack("a3 x2 /A A*", "007: Bond, J.") ("Bond, J", ".")

pack("n/a* w/a","hello,","world") "\000\006hello,\005world"
pack("a/W2", ord("a") .. ord("z")) "2ab"

The length-item is not returned explicitly from unpack.

Supplying a count to the length-item format letter is only useful with A, a, or Z. Packing
with a length-item of a or Z may introduce "\000" characters, which Perl does not regard
as legal in numeric strings.

• The integer types s, S, l, and L may be followed by a ! modifier to specify native shorts or
longs. As shown in the example above, a bare l means exactly 32 bits, although the native
long as seen by the local C compiler may be larger. This is mainly an issue on 64−bit
platforms. You can see whether using ! makes any difference this way:

printf "format s is %d, s! is %d\n",
length pack("s"), length pack("s!");

printf "format l is %d, l! is %d\n",
length pack("l"), length pack("l!");

i! and I! are also allowed, but only for completeness’ sake: they are identical to i and I.

The actual sizes (in bytes) of native shorts, ints, longs, and long longs on the platform where
Perl was built are also available from the command line:

$ perl −V:{short,int,long{,long}}size
shortsize='2';
intsize='4';
longsize='4';
longlongsize='8';

or programmatically via the Config module:

use Config;
print $Config{shortsize}, "\n";
print $Config{intsize}, "\n";
print $Config{longsize}, "\n";
print $Config{longlongsize}, "\n";

$Config{longlongsize} is undefined on systems without long long support.

• The integer formats s, S, i, I, l, L, j, and J are inherently non-portable between processors
and operating systems because they obey native byteorder and endianness. For example, a
4−byte integer 0x12345678 (305419896 decimal) would be ordered natively (arranged in and
handled by the CPU registers) into bytes as

0x12 0x34 0x56 0x78 # big−endian
0x78 0x56 0x34 0x12 # little−endian

Basically, Intel and VAX CPUs are little-endian, while everybody else, including Motorola
m68k/88k, PPC, Sparc, HP PA, Power, and Cray, are big-endian. Alpha and MIPS can be
either: Digital/Compaq uses (well, used) them in little-endian mode, but SGI/Cray uses them
in big-endian mode.

The names big-endian and little-endian are comic references to the egg-eating habits of the
little-endian Lilliputians and the big-endian Blefuscudians from the classic Jonathan Swift

174 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

satire, Gulliver’s Travels. This entered computer lingo via the paper "On Holy Wars and a
Plea for Peace" by Danny Cohen, USC/ISI IEN 137, April 1, 1980.

Some systems may have even weirder byte orders such as

0x56 0x78 0x12 0x34
0x34 0x12 0x78 0x56

These are called mid-endian, middle-endian, mixed-endian, or just weird.

You can determine your system endianness with this incantation:

printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678);

The byteorder on the platform where Perl was built is also available via Config:

use Config;
print "$Config{byteorder}\n";

or from the command line:

$ perl −V:byteorder

Byteorders "1234" and "12345678" are little-endian; "4321" and "87654321" are
big-endian. Systems with multiarchitecture binaries will have "ffff", signifying that static
information doesn’t work, one must use runtime probing.

For portably packed integers, either use the formats n, N, v, and V or else use the > and <
modifiers described immediately below. See also perlport.

• Also floating point numbers have endianness. Usually (but not always) this agrees with the
integer endianness. Even though most platforms these days use the IEEE 754 binary format,
there are differences, especially if the long doubles are involved. You can see the Config
variables doublekind and longdblkind (also doublesize, longdblsize): the
"kind" values are enums, unlike byteorder.

Portability-wise the best option is probably to keep to the IEEE 754 64−bit doubles, and of
agreed-upon endianness. Another possibility is the "%a") format of printf.

• Starting with Perl 5.10.0, integer and floating-point formats, along with the p and P formats
and () groups, may all be followed by the > or < endianness modifiers to respectively
enforce big− or little-endian byte-order. These modifiers are especially useful given how n,
N, v, and V don’t cover signed integers, 64−bit integers, or floating-point values.

Here are some concerns to keep in mind when using an endianness modifier:

• Exchanging signed integers between different platforms works only when all platforms
store them in the same format. Most platforms store signed integers in two’s-
complement notation, so usually this is not an issue.

• The > or < modifiers can only be used on floating-point formats on big− or little-endian
machines. Otherwise, attempting to use them raises an exception.

• Forcing big− or little-endian byte-order on floating-point values for data exchange can
work only if all platforms use the same binary representation such as IEEE floating-
point. Even if all platforms are using IEEE, there may still be subtle differences. Being
able to use > or < on floating-point values can be useful, but also dangerous if you don’t
know exactly what you’re doing. It is not a general way to portably store floating-point
values.

• When using > or < on a () group, this affects all types inside the group that accept
byte-order modifiers, including all subgroups. It is silently ignored for all other types.
You are not allowed to override the byte-order within a group that already has a byte-
order modifier suffix.

• Real numbers (floats and doubles) are in native machine format only. Due to the multiplicity
of floating-point formats and the lack of a standard "network" representation for them, no
facility for interchange has been made. This means that packed floating-point data written on
one machine may not be readable on another, even if both use IEEE floating-point arithmetic

perl v5.38.2 2025-07-25 175

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

(because the endianness of the memory representation is not part of the IEEE spec). See also
perlport.

If you know exactly what you’re doing, you can use the > or < modifiers to force big− or
little-endian byte-order on floating-point values.

Because Perl uses doubles (or long doubles, if configured) internally for all numeric
calculation, converting from double into float and thence to double again loses precision, so
unpack("f", pack("f", $foo)) will not in general equal $foo.

• Pack and unpack can operate in two modes: character mode (C0 mode) where the packed
string is processed per character, and UTF−8 byte mode (U0 mode) where the packed string
is processed in its UTF−8−encoded Unicode form on a byte-by-byte basis. Character mode
is the default unless the format string starts with U. You can always switch mode mid-format
with an explicit C0 or U0 in the format. This mode remains in effect until the next mode
change, or until the end of the () group it (directly) applies to.

Using C0 to get Unicode characters while using U0 to get non−Unicode bytes is not
necessarily obvious. Probably only the first of these is what you want:

$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |
perl −CS −ne 'printf "%v04X\n", $_ for unpack("C0A*", $_)'

03B1.03C9
$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |
perl −CS −ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'

CE.B1.CF.89
$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |
perl −C0 −ne 'printf "%v02X\n", $_ for unpack("C0A*", $_)'

CE.B1.CF.89
$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |
perl −C0 −ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'

C3.8E.C2.B1.C3.8F.C2.89

Those examples also illustrate that you should not try to use pack/unpack as a substitute
for the Encode module.

• You must yourself do any alignment or padding by inserting, for example, enough "x"es
while packing. There is no way for pack and unpack to know where characters are going
to or coming from, so they handle their output and input as flat sequences of characters.

• A () group is a sub-TEMPLATE enclosed in parentheses. A group may take a repeat count
either as postfix, or for unpack, also via the / template character. Within each repetition of
a group, positioning with @ starts over at 0. Therefore, the result of

pack("@1A((@2A)@3A)", qw[X Y Z])

is the string "\0X\0\0YZ".

• x and X accept the ! modifier to act as alignment commands: they jump forward or back to
the closest position aligned at a multiple of count characters. For example, to pack or
unpack a C structure like

struct {
char c; /* one signed, 8−bit character */
double d;
char cc[2];

}

one may need to use the template c x![d] d c[2]. This assumes that doubles must be
aligned to the size of double.

For alignment commands, a count of 0 is equivalent to a count of 1; both are no-ops.

• n, N, v and V accept the ! modifier to represent signed 16−/32−bit integers in
big−/little−endian order. This is portable only when all platforms sharing packed data use the
same binary representation for signed integers; for example, when all platforms use two’s-
complement representation.

176 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

• Comments can be embedded in a TEMPLATE using # through the end of line. White space
can separate pack codes from each other, but modifiers and repeat counts must follow
immediately. Breaking complex templates into individual line-by-line components, suitably
annotated, can do as much to improve legibility and maintainability of pack/unpack formats
as /x can for complicated pattern matches.

• If TEMPLATE requires more arguments than pack is given, pack assumes additional ""
arguments. If TEMPLATE requires fewer arguments than given, extra arguments are
ignored.

• Attempting to pack the special floating point values Inf and NaN (infinity, also in negative,
and not-a-number) into packed integer values (like "L") is a fatal error. The reason for this
is that there simply isn’t any sensible mapping for these special values into integers.

Examples:

$foo = pack("WWWW",65,66,67,68);
foo eq "ABCD"
$foo = pack("W4",65,66,67,68);
same thing
$foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);
same thing with Unicode circled letters.
$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
same thing with Unicode circled letters. You don't get the
UTF−8 bytes because the U at the start of the format caused
a switch to U0−mode, so the UTF−8 bytes get joined into
characters
$foo = pack("C0U4",0x24b6,0x24b7,0x24b8,0x24b9);
foo eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"
This is the UTF−8 encoding of the string in the
previous example

$foo = pack("ccxxcc",65,66,67,68);
foo eq "AB\0\0CD"

NOTE: The examples above featuring "W" and "c" are true
only on ASCII and ASCII−derived systems such as ISO Latin 1
and UTF−8. On EBCDIC systems, the first example would be
$foo = pack("WWWW",193,194,195,196);

$foo = pack("s2",1,2);
"\001\000\002\000" on little−endian
"\000\001\000\002" on big−endian

$foo = pack("a4","abcd","x","y","z");
"abcd"

$foo = pack("aaaa","abcd","x","y","z");
"axyz"

$foo = pack("a14","abcdefg");
"abcdefg\0\0\0\0\0\0\0"

$foo = pack("i9pl", gmtime);
a real struct tm (on my system anyway)

$utmp_template = "Z8 Z8 Z16 L";
$utmp = pack($utmp_template, @utmp1);
a struct utmp (BSDish)

@utmp2 = unpack($utmp_template, $utmp);

perl v5.38.2 2025-07-25 177

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

"@utmp1" eq "@utmp2"

sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, −32)));

}

$foo = pack('sx2l', 12, 34);
short 12, two zero bytes padding, long 34
$bar = pack('s@4l', 12, 34);
short 12, zero fill to position 4, long 34
$foo eq $bar
$baz = pack('s.l', 12, 4, 34);
short 12, zero fill to position 4, long 34

$foo = pack('nN', 42, 4711);
pack big−endian 16− and 32−bit unsigned integers
$foo = pack('S>L>', 42, 4711);
exactly the same
$foo = pack('s<l<', −42, 4711);
pack little−endian 16− and 32−bit signed integers
$foo = pack('(sl)<', −42, 4711);
exactly the same

The same template may generally also be used in unpack.

package NAMESPACE
package NAMESPACE VERSION
package NAMESPACE BLOCK
package NAMESPACE VERSION BLOCK

Declares the BLOCK or the rest of the compilation unit as being in the given namespace. The
scope of the package declaration is either the supplied code BLOCK or, in the absence of a
BLOCK, from the declaration itself through the end of current scope (the enclosing block, file, or
eval). That is, the forms without a BLOCK are operative through the end of the current scope,
just like the my, state, and our operators. All unqualified dynamic identifiers in this scope will
be in the given namespace, except where overridden by another package declaration or when
they’re one of the special identifiers that qualify into main::, like STDOUT, ARGV, ENV, and the
punctuation variables.

A package statement affects dynamic variables only, including those you’ve used local on, but
not lexically-scoped variables, which are created with my, state, or our. Typically it would be
the first declaration in a file included by require or use. You can switch into a package in
more than one place, since this only determines which default symbol table the compiler uses for
the rest of that block. You can refer to identifiers in other packages than the current one by
prefixing the identifier with the package name and a double colon, as in $SomePack::var or
ThatPack::INPUT_HANDLE. If package name is omitted, the main package is assumed.
That is, $::sail is equivalent to $main::sail (as well as to $main'sail, still seen in
ancient code, mostly from Perl 4).

If VERSION is provided, package sets the $VERSION variable in the given namespace to a
version object with the VERSION provided. VERSION must be a "strict" style version number as
defined by the version module: a positive decimal number (integer or decimal-fraction) without
exponentiation or else a dotted-decimal v−string with a leading ’v’ character and at least three
components. You should set $VERSION only once per package.

See "Packages" in perlmod for more information about packages, modules, and classes. See
perlsub for other scoping issues.

_ _PA CKAGE_ _
A special token that returns the name of the package in which it occurs.

178 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

pipe READHANDLE,WRITEHANDLE
Opens a pair of connected pipes like the corresponding system call. Note that if you set up a loop
of piped processes, deadlock can occur unless you are very careful. In addition, note that Perl’s
pipes use IO buffering, so you may need to set $| to flush your WRITEHANDLE after each
command, depending on the application.

Returns true on success.

See IPC::Open2, IPC::Open3, and "Bidirectional Communication with Another Process" in
perlipc for examples of such things.

On systems that support a close-on-exec flag on files, that flag is set on all newly opened file
descriptors whose filenos are higher than the current value of $ˆF (by default 2 for STDERR).
See "$ˆF" in perlvar.

pop ARRAY
pop Removes and returns the last element of the array, shortening the array by one element.

my @arr = ('cat', 'dog', 'mouse');
my $item = pop(@arr); # 'mouse'

@arr is now ('cat', 'dog')

Returns undef if the array is empty.

Note: pop may also return undef if the last element in the array is undef.

my @arr = ('one', 'two', undef);
my $item = pop(@arr); # undef

If ARRAY is omitted, pop operates on the @ARGV array in the main program, but the @_ array in
subroutines. pop will operate on the @ARGV array in eval STRING, BEGIN {}, INIT {},
CHECK {} blocks.

Starting with Perl 5.14, an experimental feature allowed pop to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

pos SCALAR
pos Returns the offset of where the last m//g search left off for the variable in question ($_ is used

when the variable is not specified). This offset is in characters unless the (no-longer-
recommended) use bytes pragma is in effect, in which case the offset is in bytes. Note that 0
is a valid match offset. undef indicates that the search position is reset (usually due to match
failure, but can also be because no match has yet been run on the scalar).

pos directly accesses the location used by the regexp engine to store the offset, so assigning to
pos will change that offset, and so will also influence the \G zero-width assertion in regular
expressions. Both of these effects take place for the next match, so you can’t affect the position
with pos during the current match, such as in (?{pos() = 5}) or s//pos() = 5/e.

Setting pos also resets the matched with zero-length flag, described under "Repeated Patterns
Matching a Zero-length Substring" in perlre.

Because a failed m//gc match doesn’t reset the offset, the return from pos won’t change either
in this case. See perlre and perlop.

print FILEHANDLE LIST
print FILEHANDLE
print LIST
print

Prints a string or a list of strings. Returns true if successful. FILEHANDLE may be a scalar
variable containing the name of or a reference to the filehandle, thus introducing one level of
indirection. (NOTE: If FILEHANDLE is a variable and the next token is a term, it may be
misinterpreted as an operator unless you interpose a + or put parentheses around the arguments.)
If FILEHANDLE is omitted, prints to the last selected (see select) output handle. If LIST is
omitted, prints $_ to the currently selected output handle. To use FILEHANDLE alone to print
the content of $_ to it, you must use a bareword filehandle like FH, not an indirect one like $fh.

perl v5.38.2 2025-07-25 179

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

To set the default output handle to something other than STDOUT, use the select operation.

The current value of $, (if any) is printed between each LIST item. The current value of $\ (if
any) is printed after the entire LIST has been printed. Because print takes a LIST, anything in the
LIST is evaluated in list context, including any subroutines whose return lists you pass to print.
Be careful not to follow the print keyword with a left parenthesis unless you want the
corresponding right parenthesis to terminate the arguments to the print; put parentheses around all
arguments (or interpose a +, but that doesn’t look as good).

If you’re storing handles in an array or hash, or in general whenever you’re using any expression
more complex than a bareword handle or a plain, unsubscripted scalar variable to retrieve it, you
will have to use a block returning the filehandle value instead, in which case the LIST may not be
omitted:

print { $files[$i] } "stuff\n";
print { $OK ? *STDOUT : *STDERR } "stuff\n";

Printing to a closed pipe or socket will generate a SIGPIPE signal. See perlipc for more on signal
handling.

printf FILEHANDLE FORMAT, LIST
printf FILEHANDLE
printf FORMAT, LIST
printf

Equivalent to print FILEHANDLE sprintf(FORMAT, LIST), except that $\ (the output
record separator) is not appended. The FORMAT and the LIST are actually parsed as a single list.
The first argument of the list will be interpreted as the printf format. This means that
printf(@_) will use $_[0] as the format. See sprintf for an explanation of the format
argument. If use locale (including use locale ':not_characters') is in effect and
POSIX::setlocale has been called, the character used for the decimal separator in formatted
floating-point numbers is affected by the LC_NUMERIC locale setting. See perllocale and POSIX.

For historical reasons, if you omit the list, $_ is used as the format; to use FILEHANDLE without
a list, you must use a bareword filehandle like FH, not an indirect one like $fh. Howev er, this
will rarely do what you want; if $_ contains formatting codes, they will be replaced with the
empty string and a warning will be emitted if warnings are enabled. Just use print if you want
to print the contents of $_.

Don’t fall into the trap of using a printf when a simple print would do. The print is more
efficient and less error prone.

prototype FUNCTION
prototype

Returns the prototype of a function as a string (or undef if the function has no prototype).
FUNCTION is a reference to, or the name of, the function whose prototype you want to retrieve.
If FUNCTION is omitted, $_ is used.

If FUNCTION is a string starting with CORE::, the rest is taken as a name for a Perl builtin. If
the builtin’s arguments cannot be adequately expressed by a prototype (such as system),
prototype returns undef, because the builtin does not really behave like a Perl function.
Otherwise, the string describing the equivalent prototype is returned.

push ARRAY,LIST
Adds one or more items to the end of an array.

my @animals = ("cat");
push(@animals, "mouse"); # ("cat", "mouse")

my @colors = ("red");
push(@colors, ("blue", "green")); # ("red", "blue", "green")

Returns the number of elements in the array following the completed push.

my $color_count = push(@colors, ("yellow", "purple"));

180 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

say "There are $color_count colors in the updated array";

Starting with Perl 5.14, an experimental feature allowed push to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

q/STRING/
qq/STRING/
qw/STRING/
qx/STRING/

Generalized quotes. See "Quote-Like Operators" in perlop.

qr/STRING/
Regexp-like quote. See "Regexp Quote-Like Operators" in perlop.

quotemeta EXPR
quotemeta

Returns the value of EXPR with all the ASCII non−"word" characters backslashed. (That is, all
ASCII characters not matching /[A−Za−z_0−9]/ will be preceded by a backslash in the
returned string, regardless of any locale settings.) This is the internal function implementing the
\Q escape in double-quoted strings. (See below for the behavior on non-ASCII code points.)

If EXPR is omitted, uses $_.

quotemeta (and \Q ... \E) are useful when interpolating strings into regular expressions, because
by default an interpolated variable will be considered a mini-regular expression. For example:

my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
$sentence =˜ s{$substring}{big bad wolf};

Will cause $sentence to become 'The big bad wolf jumped over...'.

On the other hand:

my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
$sentence =˜ s{\Q$substring\E}{big bad wolf};

Or:

my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
my $quoted_substring = quotemeta($substring);
$sentence =˜ s{$quoted_substring}{big bad wolf};

Will both leave the sentence as is. Normally, when accepting literal string input from the user,
quotemeta or \Q must be used.

Beware that if you put literal backslashes (those not inside interpolated variables) between \Q and
\E, double-quotish backslash interpolation may lead to confusing results. If you need to use
literal backslashes within \Q...\E, consult "Gory details of parsing quoted constructs" in
perlop.

Because the result of "\Q STRING \E" has all metacharacters quoted, there is no way to insert
a literal $ or @ inside a \Q\E pair. If protected by \, $ will be quoted to become "\\\$"; if not,
it is interpreted as the start of an interpolated scalar.

In Perl v5.14, all non-ASCII characters are quoted in non−UTF−8−encoded strings, but not quoted
in UTF−8 strings.

Starting in Perl v5.16, Perl adopted a Unicode-defined strategy for quoting non-ASCII characters;
the quoting of ASCII characters is unchanged.

Also unchanged is the quoting of non−UTF−8 strings when outside the scope of a use
feature 'unicode_strings', which is to quote all characters in the upper Latin1 range.
This provides complete backwards compatibility for old programs which do not use Unicode.
(Note that unicode_strings is automatically enabled within the scope of a use v5.12 or
greater.)

perl v5.38.2 2025-07-25 181

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Within the scope of use locale, all non-ASCII Latin1 code points are quoted whether the
string is encoded as UTF−8 or not. As mentioned above, locale does not affect the quoting of
ASCII-range characters. This protects against those locales where characters such as "|" are
considered to be word characters.

Otherwise, Perl quotes non-ASCII characters using an adaptation from Unicode (see
<https://www.unicode.org/reports/tr31/>). The only code points that are quoted are those that
have any of the Unicode properties: Pattern_Syntax, Pattern_White_Space, White_Space,
Default_Ignorable_Code_Point, or General_Category=Control.

Of these properties, the two important ones are Pattern_Syntax and Pattern_White_Space. They
have been set up by Unicode for exactly this purpose of deciding which characters in a regular
expression pattern should be quoted. No character that can be in an identifier has these properties.

Perl promises, that if we ever add regular expression pattern metacharacters to the dozen already
defined (\ | () [{ ˆ $ * + ? .), that we will only use ones that have the
Pattern_Syntax property. Perl also promises, that if we ever add characters that are considered to
be white space in regular expressions (currently mostly affected by /x), they will all have the
Pattern_White_Space property.

Unicode promises that the set of code points that have these two properties will never change, so
something that is not quoted in v5.16 will never need to be quoted in any future Perl release. (Not
all the code points that match Pattern_Syntax have actually had characters assigned to them; so
there is room to grow, but they are quoted whether assigned or not. Perl, of course, would never
use an unassigned code point as an actual metacharacter.)

Quoting characters that have the other 3 properties is done to enhance the readability of the regular
expression and not because they actually need to be quoted for regular expression purposes
(characters with the White_Space property are likely to be indistinguishable on the page or screen
from those with the Pattern_White_Space property; and the other two properties contain non-
printing characters).

rand EXPR
rand

Returns a random fractional number greater than or equal to 0 and less than the value of EXPR.
(EXPR should be positive.) If EXPR is omitted, the value 1 is used. Currently EXPR with the
value 0 is also special-cased as 1 (this was undocumented before Perl 5.8.0 and is subject to
change in future versions of Perl). Automatically calls srand unless srand has already been
called. See also srand.

Apply int to the value returned by rand if you want random integers instead of random
fractional numbers. For example,

int(rand(10))

returns a random integer between 0 and 9, inclusive.

(Note: If your rand function consistently returns numbers that are too large or too small, then your
version of Perl was probably compiled with the wrong number of RANDBITS.)

rand is not cryptographically secure. You should not rely on it in security-sensitive
situations. As of this writing, a number of third-party CPAN modules offer random number
generators intended by their authors to be cryptographically secure, including: Data::Entropy,
Crypt::Random, Math::Random::Secure, and Math::TrulyRandom.

read FILEHANDLE,SCALAR,LENGTH,OFFSET
read FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH characters of data into variable SCALAR from the specified
FILEHANDLE. Returns the number of characters actually read, 0 at end of file, or undef if there
was an error (in the latter case $! is also set). SCALAR will be grown or shrunk so that the last
character actually read is the last character of the scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other than the
beginning. A negative OFFSET specifies placement at that many characters counting backwards
from the end of the string. A positive OFFSET greater than the length of SCALAR results in the

182 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

string being padded to the required size with "\0" bytes before the result of the read is appended.

The call is implemented in terms of either Perl’s or your system’s native fread (3) library function,
via the PerlIO layers applied to the handle. To get a true read (2) system call, see sysread.

Note the characters: depending on the status of the filehandle, either (8−bit) bytes or characters
are read. By default, all filehandles operate on bytes, but for example if the filehandle has been
opened with the :utf8 I/O layer (see open, and the open pragma), the I/O will operate on
UTF8−encoded Unicode characters, not bytes. Similarly for the :encoding layer: in that case
pretty much any characters can be read.

readdir DIRHANDLE
Returns the next directory entry for a directory opened by opendir. If used in list context,
returns all the rest of the entries in the directory. If there are no more entries, returns the undefined
value in scalar context and the empty list in list context.

If you’re planning to filetest the return values out of a readdir, you’d better prepend the
directory in question. Otherwise, because we didn’t chdir there, it would have been testing the
wrong file.

opendir(my $dh, $some_dir) || die "Can't opendir $some_dir: $!";
my @dots = grep { /ˆ\./ && −f "$some_dir/$_" } readdir($dh);
closedir $dh;

As of Perl 5.12 you can use a bare readdir in a while loop, which will set $_ on every
iteration. If either a readdir expression or an explicit assignment of a readdir expression to
a scalar is used as a while/for condition, then the condition actually tests for definedness of the
expression’s value, not for its regular truth value.

opendir(my $dh, $some_dir) || die "Can't open $some_dir: $!";
while (readdir $dh) {

print "$some_dir/$_\n";
}
closedir $dh;

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious failures, put this sort of thing at the top of your file to signal that your code will work
only on Perls of a recent vintage:

use v5.12; # so readdir assigns to $_ in a lone while test

readline EXPR
readline

Reads from the filehandle whose typeglob is contained in EXPR (or from *ARGV if EXPR is not
provided). In scalar context, each call reads and returns the next line until end-of-file is reached,
whereupon the subsequent call returns undef. In list context, reads until end-of-file is reached
and returns a list of lines. Note that the notion of "line" used here is whatever you may have
defined with $/ (or $INPUT_RECORD_SEPARATOR in English). See "$/" in perlvar.

When $/ is set to undef, when readline is in scalar context (i.e., file slurp mode), and when
an empty file is read, it returns '' the first time, followed by undef subsequently.

This is the internal function implementing the <EXPR> operator, but you can use it directly. The
<EXPR> operator is discussed in more detail in "I/O Operators" in perlop.

my $line = <STDIN>;
my $line = readline(STDIN); # same thing

If readline encounters an operating system error, $! will be set with the corresponding error
message. It can be helpful to check $! when you are reading from filehandles you don’t trust,
such as a tty or a socket. The following example uses the operator form of readline and dies if
the result is not defined.

perl v5.38.2 2025-07-25 183

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

while (! eof($fh)) {
defined($_ = readline $fh) or die "readline failed: $!";
...

}

Note that you can’t handle readline errors that way with the ARGV filehandle. In that case, you
have to open each element of @ARGV yourself since eof handles ARGV differently.

foreach my $arg (@ARGV) {
open(my $fh, $arg) or warn "Can't open $arg: $!";

while (! eof($fh)) {
defined($_ = readline $fh)

or die "readline failed for $arg: $!";
...

}
}

Like the <EXPR> operator, if a readline expression is used as the condition of a while or
for loop, then it will be implicitly assigned to $_. If either a readline expression or an
explicit assignment of a readline expression to a scalar is used as a while/for condition,
then the condition actually tests for definedness of the expression’s value, not for its regular truth
value.

readlink EXPR
readlink

Returns the value of a symbolic link, if symbolic links are implemented. If not, raises an
exception. If there is a system error, returns the undefined value and sets $! (errno). If EXPR is
omitted, uses $_.

Portability issues: "readlink" in perlport.

readpipe EXPR
readpipe

EXPR is executed as a system command. The collected standard output of the command is
returned. In scalar context, it comes back as a single (potentially multi-line) string. In list context,
returns a list of lines (however you’ve defined lines with $/ (or $INPUT_RECORD_SEPARATOR
in English)). This is the internal function implementing the qx/EXPR/ operator, but you can use
it directly. The qx/EXPR/ operator is discussed in more detail in "qx/STRING/" in perlop. If
EXPR is omitted, uses $_.

recv SOCKET,SCALAR,LENGTH,FLAGS
Receives a message on a socket. Attempts to receive LENGTH characters of data into variable
SCALAR from the specified SOCKET filehandle. SCALAR will be grown or shrunk to the
length actually read. Takes the same flags as the system call of the same name. Returns the
address of the sender if SOCKET’s protocol supports this; returns an empty string otherwise. If
there’s an error, returns the undefined value. This call is actually implemented in terms of the
recvfrom (2) system call. See "UDP: Message Passing" in perlipc for examples.

Note that if the socket has been marked as :utf8, recv will throw an exception. The
:encoding(...) layer implicitly introduces the :utf8 layer. See binmode.

redo LABEL
redo EXPR
redo

The redo command restarts the loop block without evaluating the conditional again. The
continue block, if any, is not executed. If the LABEL is omitted, the command refers to the
innermost enclosing loop. The redo EXPR form, available starting in Perl 5.18.0, allows a label
name to be computed at run time, and is otherwise identical to redo LABEL. Programs that
want to lie to themselves about what was just input normally use this command:

184 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

a simpleminded Pascal comment stripper
(warning: assumes no { or } in strings)
LINE: while (<STDIN>) {

while (s|({.*}.*){.*}|$1 |) {}
s|{.*}| |;
if (s|{.*| |) {

my $front = $_;
while (<STDIN>) {

if (/}/) { # end of comment?
s|ˆ|$front\{|;
redo LINE;

}
}

}
print;

}

redo cannot return a value from a block that typically returns a value, such as eval {}, sub
{}, or do {}. It will perform its flow control behavior, which precludes any return value. It
should not be used to exit a grep or map operation.

Note that a block by itself is semantically identical to a loop that executes once. Thus redo
inside such a block will effectively turn it into a looping construct.

See also continue for an illustration of how last, next, and redo work.

Unlike most named operators, this has the same precedence as assignment. It is also exempt from
the looks-like-a-function rule, so redo ("foo")."bar" will cause "bar" to be part of the
argument to redo.

ref EXPR
ref Examines the value of EXPR, expecting it to be a reference, and returns a string giving

information about the reference and the type of referent. If EXPR is not specified, $_ will be
used.

If the operand is not a reference, then the empty string will be returned. An empty string will only
be returned in this situation. ref is often useful to just test whether a value is a reference, which
can be done by comparing the result to the empty string. It is a common mistake to use the result
of ref directly as a truth value: this goes wrong because 0 (which is false) can be returned for a
reference.

If the operand is a reference to a blessed object, then the name of the class into which the referent
is blessed will be returned. ref doesn’t care what the physical type of the referent is; blessing
takes precedence over such concerns. Beware that exact comparison of ref results against a class
name doesn’t perform a class membership test: a class’s members also include objects blessed into
subclasses, for which ref will return the name of the subclass. Also beware that class names can
clash with the built-in type names (described below).

If the operand is a reference to an unblessed object, then the return value indicates the type of
object. If the unblessed referent is not a scalar, then the return value will be one of the strings
ARRAY, HASH, CODE, FORMAT, or IO, indicating only which kind of object it is. If the unblessed
referent is a scalar, then the return value will be one of the strings SCALAR, VSTRING, REF,
GLOB, LVALUE, or REGEXP, depending on the kind of value the scalar currently has. But note
that qr// scalars are created already blessed, so ref qr/.../ will likely return Regexp.
Beware that these built-in type names can also be used as class names, so ref returning one of
these names doesn’t unambiguously indicate that the referent is of the kind to which the name
refers.

The ambiguity between built-in type names and class names significantly limits the utility of ref.
For unambiguous information, use Scalar::Util::blessed() for information about
blessing, and Scalar::Util::reftype() for information about physical types. Use the
isa method for class membership tests, though one must be sure of blessedness before attempting
a method call. Alternatively, the isa operator can test class membership without checking

perl v5.38.2 2025-07-25 185

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

blessedness first.

See also perlref and perlobj.

rename OLDNAME,NEWNAME
Changes the name of a file; an existing file NEWNAME will be clobbered. Returns true for
success; on failure returns false and sets $!.

Behavior of this function varies wildly depending on your system implementation. For example,
it will usually not work across file system boundaries, even though the system mv command
sometimes compensates for this. Other restrictions include whether it works on directories, open
files, or pre-existing files. Check perlport and either the rename (2) manpage or equivalent system
documentation for details.

For a platform independent move function look at the File::Copy module.

Portability issues: "rename" in perlport.

require VERSION
require EXPR
require

Demands a version of Perl specified by VERSION, or demands some semantics specified by
EXPR or by $_ if EXPR is not supplied.

VERSION may be either a literal such as v5.24.1, which will be compared to $ˆV (or
$PERL_VERSION in English), or a numeric argument of the form 5.024001, which will be
compared to $]. An exception is raised if VERSION is greater than the version of the current Perl
interpreter. Compare with use, which can do a similar check at compile time.

Specifying VERSION as a numeric argument of the form 5.024001 should generally be avoided as
older less readable syntax compared to v5.24.1. Before perl 5.8.0 (released in 2002), the more
verbose numeric form was the only supported syntax, which is why you might see it in older code.

require v5.24.1; # run time version check
require 5.24.1; # ditto
require 5.024_001; # ditto; older syntax compatible

with perl 5.6

Otherwise, require demands that a library file be included if it hasn’t already been included.
The file is included via the do-FILE mechanism, which is essentially just a variety of eval with
the caveat that lexical variables in the invoking script will be invisible to the included code. If it
were implemented in pure Perl, it would have semantics similar to the following:

use Carp 'croak';
use version;

sub require {
my ($filename) = @_;
if (my $version = eval { version−>parse($filename) }) {

if ($version > $ˆV) {
my $vn = $version−>normal;
croak "Perl $vn required−−this is only $ˆV, stopped";

}
return 1;

}

if (exists $INC{$filename}) {
return 1 if $INC{$filename};
croak "Compilation failed in require";

}

local $INC;
this type of loop lets a hook overwrite $INC if they wish
for($INC = 0; $INC < @INC; $INC++) {

186 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

my $prefix = $INC[$INC];
if (!defined $prefix) {

next;
}
if (ref $prefix) {

#... do other stuff − see text below
}
(see text below about possible appending of .pmc
suffix to $filename)
my $realfilename = "$prefix/$filename";
next if ! −e $realfilename || −d _ || −b _;
$INC{$filename} = $realfilename;
my $result = do($realfilename);

but run in caller's namespace

if (!defined $result) {
$INC{$filename} = undef;
croak $@ ? "$@Compilation failed in require"

: "Can't locate $filename: $!\n";
}
if (!$result) {

delete $INC{$filename};
croak "$filename did not return true value";

}
$! = 0;
return $result;

}
croak "Can't locate $filename in \@INC ...";

}

Note that the file will not be included twice under the same specified name.

Historically the file must return true as the last statement to indicate successful execution of any
initialization code, so it’s customary to end such a file with 1; unless you’re sure it’ll return true
otherwise. But it’s better just to put the 1;, in case you add more statements. As of 5.37.6 this
requirement may be avoided by enabling the ’module_true’ feature, which is enabled by default in
modern version bundles. Thus code with use v5.37; no longer needs to concern itself with this
issue. See feature for more details. Note that this affects the compilation unit within which the
feature is used, and using it before requiring a module will not change the behavior of existing
modules that do not themselves also use it.

If EXPR is a bareword, require assumes a .pm extension and replaces :: with / in the
filename for you, to make it easy to load standard modules. This form of loading of modules does
not risk altering your namespace, however it will autovivify the stash for the required module.

In other words, if you try this:

require Foo::Bar; # a splendid bareword

The require function will actually look for the Foo/Bar.pm file in the directories specified in the
@INC array, and it will autovivify the Foo::Bar:: stash at compile time.

But if you try this:

my $class = 'Foo::Bar';
require $class; # $class is not a bareword

#or
require "Foo::Bar"; # not a bareword because of the ""

The require function will look for the Foo::Bar file in the @INC array and will complain about
not finding Foo::Bar there. In this case you can do:

eval "require $class";

perl v5.38.2 2025-07-25 187

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

or you could do

require "Foo/Bar.pm";

Neither of these forms will autovivify any stashes at compile time and only have run time effects.

Now that you understand how require looks for files with a bareword argument, there is a little
extra functionality going on behind the scenes. Before require looks for a .pm extension, it will
first look for a similar filename with a .pmc extension. If this file is found, it will be loaded in
place of any file ending in a .pm extension. This applies to both the explicit require
"Foo/Bar.pm"; form and the require Foo::Bar; form.

You can also insert hooks into the import facility by putting Perl coderefs or objects directly into
the @INC array. There are two types of hooks, INC filters, and INCDIR hooks, and there are three
forms of representing a hook: subroutine references, array references, and blessed objects.

Subroutine references are the simplest case. When the inclusion system walks through @INC and
encounters a subroutine, unless this subroutine is blessed and supports an INCDIR hook this
subroutine will be assumed to be an INC hook will be called with two parameters, the first a
reference to itself, and the second the name of the file to be included (e.g., Foo/Bar.pm). The
subroutine should return either nothing or else a list of up to four values in the following order:

1. A reference to a scalar, containing any initial source code to prepend to the file or generator
output.

2. A filehandle, from which the file will be read.

3. A reference to a subroutine. If there is no filehandle (previous item), then this subroutine is
expected to generate one line of source code per call, writing the line into $_ and returning 1,
then finally at end of file returning 0. If there is a filehandle, then the subroutine will be
called to act as a simple source filter, with the line as read in $_. Again, return 1 for each
valid line, and 0 after all lines have been returned. For historical reasons the subroutine will
receive a meaningless argument (in fact always the numeric value zero) as $_[0].

4. Optional state for the subroutine. The state is passed in as $_[1].

AUTOLOAD cannot be used to resolve the INCDIR method, INC is checked first, and AUTOLOAD
would resolve that.

If an empty list, undef, or nothing that matches the first 3 values above is returned, then
require looks at the remaining elements of @INC. Note that this filehandle must be a real
filehandle (strictly a typeglob or reference to a typeglob, whether blessed or unblessed); tied
filehandles will be ignored and processing will stop there.

If the hook is an object, it should provide an INC or INCDIR method that will be called as above,
the first parameter being the object itself. If it does not provide either method, and the object is not
CODE ref then an exception will be thrown, otherwise it will simply be executed like an unblessed
CODE ref would. Note that you must fully qualify the method name when you declare an INC sub
(unlike the INCDIR sub), as the unqualified symbol INC is always forced into package main.
Here is a typical code layout for an INC hook:

In Foo.pm
package Foo;
sub new { ... }
sub Foo::INC {

my ($self, $filename) = @_;
...

}

In the main program
push @INC, Foo−>new(...);

If the hook is an array reference, its first element must be a subroutine reference or an object as
described above. When the first element is an object that supports an INC or INCDIR method
then the method will be called with the object as the first argument, the filename requested as the
second, and the hook array reference as the the third. When the first element is a subroutine then it

188 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

will be called with the array as the first argument, and the filename as the second, no third
parameter will be passed in. In both forms you can modify the contents of the array to provide
state between calls, or whatever you like.

In other words, you can write:

push @INC, \&my_sub;
sub my_sub {

my ($coderef, $filename) = @_; # $coderef is \&my_sub
...

}

or:

push @INC, [\&my_sub, $x, $y, ...];
sub my_sub {

my ($arrayref, $filename) = @_;
Retrieve $x, $y, ...
my (undef, @parameters) = @$arrayref;
...

}

or:

push @INC, [HookObj−>new(), $x, $y, ...];
sub HookObj::INC {

my ($self, $filename, $arrayref)= @_;
my (undef, @parameters) = @$arrayref;
...

}

These hooks are also permitted to set the %INC entry corresponding to the files they hav e loaded.
See "%INC" in perlvar. Should an INC hook not do this then perl will set the %INC entry to be
the hook reference itself.

A hook may also be used to rewrite the @INC array. While this might sound strange, there are
situations where it can be very useful to do this. Such hooks usually just return undef and do not
mix filtering and @INC modifications. While in older versions of perl having a hook modify @INC
was fraught with issues and could even result in segfaults or assert failures, as of 5.37.7 the logic
has been made much more robust and the hook now has control over the loop iteration if it wishes
to do so.

There is a now a facility to control the iterator for the @INC array traversal that is performed
during require. The $INC variable will be initialized with the index of the currently executing
hook. Once the hook returns the next slot in @INC that will be checked will be the integer
successor of value in $INC (or −1 if it is undef). For example the following code

push @INC, sub {
splice @INC, $INC, 1; # remove this hook from @INC
unshift @INC, sub { warn "A" };
undef $INC; # reset the $INC iterator so we

execute the newly installed sub
immediately.

};

would install a sub into @INC that when executed as a hook (by for instance a require of a file that
does not exist), the hook will splice itself out of @INC, and add a new sub to the front that will
warn whenever someone does a require operation that requires an @INC search, and then
immediately execute that hook.

Prior to 5.37.7, there was no way to cause perl to use the newly installed hook immediately, or to
inspect any changed items in @INC to the left of the iterator, and so the warning would only be
generated on the second call to require. In more recent perl the presence of the last statement
which undefines $INC will cause perl to restart the traversal of the @INC array at the beginning
and execute the newly installed sub immediately.

perl v5.38.2 2025-07-25 189

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Whatever value $INC held, if any, will be restored at the end of the require. Any changes made to
$INC during the lifetime of the hook will be unrolled after the hook exits, and its value only has
meaning immediately after execution of the hook, thus setting $INC to some value prior to
executing a require will have no effect on how the require executes at all.

As of 5.37.7 @INC values of undef will be silently ignored.

The function require() is difficult to wrap properly. Many modules consult the stack to find
information about their caller, and injecting a new stack frame by wrapping require() often
breaks things. Nevertheless it can be very helpful to have the ability to perform actions before and
after a require, for instance for trace utilities like Devel::TraceUse or to measure time to
load and the memory consumption of the require graph. Because of the difficulties in safely
creating a require() wrapper in 5.37.10 we introduced a new mechanism.

As of 5.37.10, prior to any other actions it performs, require will check if
${ˆHOOK}{require_ _before} contains a coderef, and if it does it will be called with the
filename form of the item being loaded. The hook may modify $_[0] to load a different
filename, or it may throw a fatal exception to cause the require to fail, which will be treated as
though the required code itself had thrown an exception.

The ${ˆHOOK}{require_ _before} hook may return a code reference, in which case the
code reference will be executed (in an eval with the filname as a parameter) after the require
completes. It will be executed regardless of how the compilation completed, and even if the
require throws a fatal exception. The function may consult %INC to determine if the require failed
or not. For instance the following code will print some diagnostics before and after every
require statement. The example also includes logic to chain the signal, so that multiple signals
can cooperate. Well behaved ${ˆHOOK}{require_ _before} handlers should always take
this into account.

{
use Scalar::Util qw(reftype);
my $old_hook = ${ˆHOOK}{require__before};
local ${ˆHOOK}{require__before} = sub {

my ($name) = @_;
my $old_hook_ret;
$old_hook_ret = $old_hook−>($name) if $old_hook;
warn "Requiring: $name\n";
return sub {

$old_hook_ret−>() if ref($old_hook_ret)
&& reftype($old_hook_ret) eq "CODE";

warn sprintf "Finished requiring %s: %s\n",
$name, $INC{$name} ? "loaded" :"failed";

};
};
require Whatever;

}

This hook executes for ALL require statements, unlike INC and INCDIR hooks, which are
only executed for relative file names, and it executes first before any other special behaviour inside
of require. Note that the initial hook in ${ˆHOOK}{require_ _before} is *not* executed
inside of an eval, and throwing an exception will stop further processing, but the after hook it may
return is executed inside of an eval, and any exceptions it throws will be silently ignored. This is
because it executes inside of the scope cleanup logic that is triggered after the require completes,
and an exception at this time would not stop the module from being loaded, etc.

There is a similar hook that fires after require completes, ${ˆHOOK}{require_ _after},
which will be called after each require statement completes, either via an exception or
successfully. It will be called with the filename of the most recently executed require statement. It
is executed in an eval, and will not in any way affect execution.

For a yet-more-powerful import facility built around require, see use and perlmod.

190 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

reset EXPR
reset

Generally used in a continue block at the end of a loop to clear variables and reset
m?pattern? searches so that they work again. The expression is interpreted as a list of single
characters (hyphens allowed for ranges). All variables (scalars, arrays, and hashes) in the current
package beginning with one of those letters are reset to their pristine state. If the expression is
omitted, one-match searches (m?pattern?) are reset to match again. Only resets variables or
searches in the current package. Always returns 1. Examples:

reset 'X'; # reset all X variables
reset 'a−z'; # reset lower case variables
reset; # just reset m?one−time? searches

Resetting "A−Z" is not recommended because you’ll wipe out your @ARGV and @INC arrays and
your %ENV hash.

Resets only package variables; lexical variables are unaffected, but they clean themselves up on
scope exit anyway, so you’ll probably want to use them instead. See my.

return EXPR
return

Returns from a subroutine, eval, do FILE, sort block or regex eval block (but not a grep,
map, or do BLOCK block) with the value given in EXPR. Evaluation of EXPR may be in list,
scalar, or void context, depending on how the return value will be used, and the context may vary
from one execution to the next (see wantarray). If no EXPR is given, returns an empty list in
list context, the undefined value in scalar context, and (of course) nothing at all in void context.

(In the absence of an explicit return, a subroutine, eval, or do FILE automatically returns
the value of the last expression evaluated.)

Unlike most named operators, this is also exempt from the looks-like-a-function rule, so return
("foo")."bar" will cause "bar" to be part of the argument to return.

reverse LIST
In list context, returns a list value consisting of the elements of LIST in the opposite order. In
scalar context, concatenates the elements of LIST and returns a string value with all characters in
the opposite order.

print join(", ", reverse "world", "Hello"); # Hello, world

print scalar reverse "dlrow ,", "olleH"; # Hello, world

Used without arguments in scalar context, reverse reverses $_.

$_ = "dlrow ,olleH";
print reverse; # No output, list context
print scalar reverse; # Hello, world

Note that reversing an array to itself (as in @a = reverse @a) will preserve non-existent
elements whenever possible; i.e., for non-magical arrays or for tied arrays with EXISTS and
DELETE methods.

This operator is also handy for inverting a hash, although there are some caveats. If a value is
duplicated in the original hash, only one of those can be represented as a key in the inverted hash.
Also, this has to unwind one hash and build a whole new one, which may take some time on a
large hash, such as from a DBM file.

my %by_name = reverse %by_address; # Invert the hash

rewinddir DIRHANDLE
Sets the current position to the beginning of the directory for the readdir routine on
DIRHANDLE.

Portability issues: "rewinddir" in perlport.

perl v5.38.2 2025-07-25 191

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

rindex STR,SUBSTR,POSITION
rindex STR,SUBSTR

Works just like index except that it returns the position of the last occurrence of SUBSTR in
STR. If POSITION is specified, returns the last occurrence beginning at or before that position.

rmdir FILENAME
rmdir

Deletes the directory specified by FILENAME if that directory is empty. If it succeeds it returns
true; otherwise it returns false and sets $! (errno). If FILENAME is omitted, uses $_.

To remove a directory tree recursively (rm −rf on Unix) look at the rmtree function of the
File::Path module.

s/// The substitution operator. See "Regexp Quote-Like Operators" in perlop.

say FILEHANDLE LIST
say FILEHANDLE
say LIST
say Just like print, but implicitly appends a newline at the end of the LIST instead of any value $\

might have. To use FILEHANDLE without a LIST to print the contents of $_ to it, you must use
a bareword filehandle like FH, not an indirect one like $fh.

say is available only if the "say" feature is enabled or if it is prefixed with CORE::. The
"say" feature is enabled automatically with a use v5.10 (or higher) declaration in the current
scope.

scalar EXPR
Forces EXPR to be interpreted in scalar context and returns the value of EXPR.

my @counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to be interpolated in list context because in
practice, this is never needed. If you really wanted to do so, however, you could use the
construction @{[(some expression)]}, but usually a simple (some expression)
suffices.

Because scalar is a unary operator, if you accidentally use a parenthesized list for the EXPR,
this behaves as a scalar comma expression, evaluating all but the last element in void context and
returning the final element evaluated in scalar context. This is seldom what you want.

The following single statement:

print uc(scalar(foo(), $bar)), $baz;

is the moral equivalent of these two:

foo();
print(uc($bar), $baz);

See perlop for more details on unary operators and the comma operator, and perldata for details on
evaluating a hash in scalar context.

seek FILEHANDLE,POSITION,WHENCE
Sets FILEHANDLE’s position, just like the fseek (3) call of C stdio. FILEHANDLE may be an
expression whose value gives the name of the filehandle. The values for WHENCE are 0 to set
the new position in bytes to POSITION; 1 to set it to the current position plus POSITION; and 2
to set it to EOF plus POSITION, typically negative. For WHENCE you may use the constants
SEEK_SET, SEEK_CUR, and SEEK_END (start of the file, current position, end of the file) from
the Fcntl module. Returns 1 on success, false otherwise.

Note the emphasis on bytes: even if the filehandle has been set to operate on characters (for
example using the :encoding(UTF−8) I/O layer), the seek, tell, and sysseek family of
functions use byte offsets, not character offsets, because seeking to a character offset would be
very slow in a UTF−8 file.

If you want to position the file for sysread or syswrite, don’t use seek, because buffering
makes its effect on the file’s read-write position unpredictable and non-portable. Use sysseek
instead.

192 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Due to the rules and rigors of ANSI C, on some systems you have to do a seek whenever you
switch between reading and writing. Amongst other things, this may have the effect of calling
stdio’s clearerr (3). A WHENCE of 1 (SEEK_CUR) is useful for not moving the file position:

seek($fh, 0, 1);

This is also useful for applications emulating tail −f. Once you hit EOF on your read and then
sleep for a while, you (probably) have to stick in a dummy seek to reset things. The seek
doesn’t change the position, but it does clear the end-of-file condition on the handle, so that the
next readline FILE makes Perl try again to read something. (We hope.)

If that doesn’t work (some I/O implementations are particularly cantankerous), you might need
something like this:

for (;;) {
for ($curpos = tell($fh); $_ = readline($fh);

$curpos = tell($fh)) {
search for some stuff and put it into files

}
sleep($for_a_while);
seek($fh, $curpos, 0);

}

seekdir DIRHANDLE,POS
Sets the current position for the readdir routine on DIRHANDLE. POS must be a value
returned by telldir. seekdir also has the same caveats about possible directory compaction
as the corresponding system library routine.

select FILEHANDLE
select

Returns the currently selected filehandle. If FILEHANDLE is supplied, sets the new current
default filehandle for output. This has two effects: first, a write, print, or say without a
filehandle default to this FILEHANDLE. Second, references to variables related to output will
refer to this output channel.

For example, to set the top-of-form format for more than one output channel, you might do the
following:

select(REPORT1);
$ˆ = 'report1_top';
select(REPORT2);
$ˆ = 'report2_top';

FILEHANDLE may be an expression whose value gives the name of the actual filehandle. Thus:

my $oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferring to write
the last example as:

STDERR−>autoflush(1);

(Prior to Perl version 5.14, you have to use IO::Handle; explicitly first.)

Whilst you can use select to temporarily "capture" the output of print like this:

{
my $old_handle = select $new_handle;

This goes to $new_handle:
print "ok 1\n";
...

select $old_handle;
}

you might find it easier to localize the typeglob instead:

perl v5.38.2 2025-07-25 193

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

{
local *STDOUT = $new_handle;

print "ok 1\n";
...

}

The two are not exactly equivalent, but the latter might be clearer and will restore STDOUT if the
wrapped code dies. The difference is that in the former, the original STDOUT can still be
accessed by explicitly using it in a print statement (as print STDOUT ...), whereas in the
latter the meaning of the STDOUT handle itself has temporarily been changed.

Portability issues: "select" in perlport.

select RBITS,WBITS,EBITS,TIMEOUT
This calls the select (2) syscall with the bit masks specified, which can be constructed using
fileno and vec, along these lines:

my $rin = my $win = my $ein = '';
vec($rin, fileno(STDIN), 1) = 1;
vec($win, fileno(STDOUT), 1) = 1;
$ein = $rin | $win;

If you want to select on many filehandles, you may wish to write a subroutine like this:

sub fhbits {
my @fhlist = @_;
my $bits = "";
for my $fh (@fhlist) {

vec($bits, fileno($fh), 1) = 1;
}
return $bits;

}
my $rin = fhbits(*STDIN, $tty, $mysock);

The usual idiom is:

my ($nfound, $timeleft) =
select(my $rout = $rin, my $wout = $win, my $eout = $ein,

$timeout);

or to block until something becomes ready just do this

my $nfound =
select(my $rout = $rin, my $wout = $win, my $eout = $ein, undef);

Most systems do not bother to return anything useful in $timeleft, so calling select in
scalar context just returns $nfound.

Any of the bit masks can also be undef. The timeout, if specified, is in seconds, which may be
fractional. Note: not all implementations are capable of returning the $timeleft. If not, they
always return $timeleft equal to the supplied $timeout.

You can effect a sleep of 250 milliseconds this way:

select(undef, undef, undef, 0.25);

Note that whether select gets restarted after signals (say, SIGALRM) is implementation-
dependent. See also perlport for notes on the portability of select.

On error, select behaves just like select (2): it returns −1 and sets $!.

On some Unixes, select (2) may report a socket file descriptor as "ready for reading" even when no
data is available, and thus any subsequent read would block. This can be avoided if you always
use O_NONBLOCK on the socket. See select (2) and fcntl (2) for further details.

The standard IO::Select module provides a user-friendlier interface to select, mostly
because it does all the bit-mask work for you.

194 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

WARNING: One should not attempt to mix buffered I/O (like read or readline) with
select, except as permitted by POSIX, and even then only on POSIX systems. You hav e to use
sysread instead.

Portability issues: "select" in perlport.

semctl ID,SEMNUM,CMD,ARG
Calls the System V IPC function semctl (2). You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT or GETALL, then ARG must be
a variable that will hold the returned semid_ds structure or semaphore value array. Returns like
ioctl: the undefined value for error, "0 but true" for zero, or the actual return value
otherwise. The ARG must consist of a vector of native short integers, which may be created with
pack("s!",(0)x$nsem). See also "SysV IPC" in perlipc and the documentation for
IPC::SysV and IPC::Semaphore.

Portability issues: "semctl" in perlport.

semget KEY,NSEMS,FLAGS
Calls the System V IPC function semget (2). Returns the semaphore id, or the undefined value on
error. See also "SysV IPC" in perlipc and the documentation for IPC::SysV and
IPC::Semaphore.

Portability issues: "semget" in perlport.

semop KEY,OPSTRING
Calls the System V IPC function semop (2) for semaphore operations such as signalling and
waiting. OPSTRING must be a packed array of semop structures. Each semop structure can be
generated with pack("s!3", $semnum, $semop, $semflag). The length of
OPSTRING implies the number of semaphore operations. Returns true if successful, false on
error. As an example, the following code waits on semaphore $semnum of semaphore id
$semid:

my $semop = pack("s!3", $semnum, −1, 0);
die "Semaphore trouble: $!\n" unless semop($semid, $semop);

To signal the semaphore, replace −1 with 1. See also "SysV IPC" in perlipc and the
documentation for IPC::SysV and IPC::Semaphore.

Portability issues: "semop" in perlport.

send SOCKET,MSG,FLAGS,TO
send SOCKET,MSG,FLAGS

Sends a message on a socket. Attempts to send the scalar MSG to the SOCKET filehandle. Takes
the same flags as the system call of the same name. On unconnected sockets, you must specify a
destination to send to, in which case it does a sendto (2) syscall. Returns the number of characters
sent, or the undefined value on error. The sendmsg (2) syscall is currently unimplemented. See
"UDP: Message Passing" in perlipc for examples.

Note that if the socket has been marked as :utf8, send will throw an exception. The
:encoding(...) layer implicitly introduces the :utf8 layer. See binmode.

setpgrp PID,PGRP
Sets the current process group for the specified PID, 0 for the current process. Raises an
exception when used on a machine that doesn’t implement POSIX setpgid (2) or BSD setpgrp (2).
If the arguments are omitted, it defaults to 0,0. Note that the BSD 4.2 version of setpgrp does
not accept any arguments, so only setpgrp(0,0) is portable. See also POSIX::setsid().

Portability issues: "setpgrp" in perlport.

setpriority WHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or a user. (See setpriority (2).) Raises an
exception when used on a machine that doesn’t implement setpriority (2).

WHICH can be any of PRIO_PROCESS, PRIO_PGRP or PRIO_USER imported from
"RESOURCE CONSTANTS" in POSIX.

perl v5.38.2 2025-07-25 195

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Portability issues: "setpriority" in perlport.

setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requested. Returns undef on error. Use integer constants provided by the
Socket module for LEVEL and OPNAME. Values for LEVEL can also be obtained from
getprotobyname. OPTVAL might either be a packed string or an integer. An integer OPTVAL is
shorthand for pack("i", OPTVAL).

An example disabling Nagle’s algorithm on a socket:

use Socket qw(IPPROTO_TCP TCP_NODELAY);
setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);

Portability issues: "setsockopt" in perlport.

shift ARRAY
shift

Removes and returns the first element of an array. This shortens the array by one and moves
ev erything down.

my @arr = ('cat', 'dog');
my $item = shift(@arr); # 'cat'

@arr is now ('dog');

Returns undef if the array is empty.

Note: shift may also return undef if the first element in the array is undef.

my @arr = (undef, 'two', 'three');
my $item = shift(@arr); # undef

If ARRAY is omitted, shift operates on the @ARGV array in the main program, and the @_ array
in subroutines. shift will operate on the @ARGV array in eval STRING, BEGIN {}, INIT
{}, CHECK {} blocks.

Starting with Perl 5.14, an experimental feature allowed shift to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

See also unshift, push, and pop. shift and unshift do the same thing to the left end of
an array that pop and push do to the right end.

shmctl ID,CMD,ARG
Calls the System V IPC function shmctl. You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT, then ARG must be a variable
that will hold the returned shmid_ds structure. Returns like ioctl: undef for error; "0 but true"
for zero; and the actual return value otherwise. See also "SysV IPC" in perlipc and the
documentation for IPC::SysV.

Portability issues: "shmctl" in perlport.

shmget KEY,SIZE,FLAGS
Calls the System V IPC function shmget. Returns the shared memory segment id, or undef on
error. See also "SysV IPC" in perlipc and the documentation for IPC::SysV.

Portability issues: "shmget" in perlport.

shmread ID,VAR,POS,SIZE
shmwrite ID,STRING,POS,SIZE

Reads or writes the System V shared memory segment ID starting at position POS for size SIZE
by attaching to it, copying in/out, and detaching from it. When reading, VAR must be a variable
that will hold the data read. When writing, if STRING is too long, only SIZE bytes are used; if
STRING is too short, nulls are written to fill out SIZE bytes. Return true if successful, false on
error. shmread taints the variable. See also "SysV IPC" in perlipc and the documentation for
IPC::SysV and the IPC::Shareable module from CPAN.

196 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Portability issues: "shmread" in perlport and "shmwrite" in perlport.

shutdown SOCKET,HOW
Shuts down a socket connection in the manner indicated by HOW, which has the same
interpretation as in the syscall of the same name.

shutdown($socket, 0); # I/we have stopped reading data
shutdown($socket, 1); # I/we have stopped writing data
shutdown($socket, 2); # I/we have stopped using this socket

This is useful with sockets when you want to tell the other side you’re done writing but not done
reading, or vice versa. It’s also a more insistent form of close because it also disables the file
descriptor in any forked copies in other processes.

Returns 1 for success; on error, returns undef if the first argument is not a valid filehandle, or
returns 0 and sets $! for any other failure.

sin EXPR
sin Returns the sine of EXPR (expressed in radians). If EXPR is omitted, returns sine of $_.

For the inverse sine operation, you may use the Math::Trig::asin function, or use this
relation:

sub asin { atan2($_[0], sqrt(1 − $_[0] * $_[0])) }

sleep EXPR
sleep

Causes the script to sleep for (integer) EXPR seconds, or forever if no argument is given. Returns
the integer number of seconds actually slept.

EXPR should be a positive integer. If called with a negative integer, sleep does not sleep but
instead emits a warning, sets $! (errno), and returns zero.

If called with a non-integer, the fractional part is ignored.

sleep 0 is permitted, but a function call to the underlying platform implementation still occurs,
with any side effects that may have. sleep 0 is therefore not exactly identical to not sleeping at
all.

May be interrupted if the process receives a signal such as SIGALRM.

eval {
local $SIG{ALRM} = sub { die "Alarm!\n" };
sleep;

};
die $@ unless $@ eq "Alarm!\n";

You probably cannot mix alarm and sleep calls, because sleep is often implemented using
alarm.

On some older systems, it may sleep up to a full second less than what you requested, depending
on how it counts seconds. Most modern systems always sleep the full amount. They may appear
to sleep longer than that, however, because your process might not be scheduled right away in a
busy multitasking system.

For delays of finer granularity than one second, the Time::HiRes module (from CPAN, and
starting from Perl 5.8 part of the standard distribution) provides usleep. You may also use
Perl’s four-argument version of select leaving the first three arguments undefined, or you might
be able to use the syscall interface to access setitimer (2) if your system supports it. See
perlfaq8 for details.

See also the POSIX module’s pause function.

socket SOCKET,DOMAIN,TYPE,PROT OCOL
Opens a socket of the specified kind and attaches it to filehandle SOCKET. DOMAIN, TYPE, and
PROT OCOL are specified the same as for the syscall of the same name. You should use
Socket first to get the proper definitions imported. See the examples in "Sockets: Client/Server
Communication" in perlipc.

perl v5.38.2 2025-07-25 197

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor, as determined by the value of $ˆF. See "$ˆF" in perlvar.

socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROT OCOL
Creates an unnamed pair of sockets in the specified domain, of the specified type. DOMAIN,
TYPE, and PROT OCOL are specified the same as for the syscall of the same name. If
unimplemented, raises an exception. Returns true if successful.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptors, as determined by the value of $ˆF. See "$ˆF" in perlvar.

Some systems define pipe in terms of socketpair, in which a call to pipe($rdr, $wtr)
is essentially:

use Socket;
socketpair(my $rdr, my $wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
shutdown($rdr, 1); # no more writing for reader
shutdown($wtr, 0); # no more reading for writer

See perlipc for an example of socketpair use. Perl 5.8 and later will emulate socketpair using IP
sockets to localhost if your system implements sockets but not socketpair.

Portability issues: "socketpair" in perlport.

sort SUBNAME LIST
sort BLOCK LIST
sort LIST

In list context, this sorts the LIST and returns the sorted list value. In scalar context, the behaviour
of sort is undefined.

If SUBNAME or BLOCK is omitted, sorts in standard string comparison order. If SUBNAME
is specified, it gives the name of a subroutine that returns a numeric value less than, equal to, or
greater than 0, depending on how the elements of the list are to be ordered. (The <=> and cmp
operators are extremely useful in such routines.) SUBNAME may be a scalar variable name
(unsubscripted), in which case the value provides the name of (or a reference to) the actual
subroutine to use. In place of a SUBNAME, you can provide a BLOCK as an anonymous, in-line
sort subroutine.

If the subroutine’s prototype is ($$), the elements to be compared are passed by reference in @_,
as for a normal subroutine. This is slower than unprototyped subroutines, where the elements to
be compared are passed into the subroutine as the package global variables $a and $b (see
example below).

If the subroutine is an XSUB, the elements to be compared are pushed on to the stack, the way
arguments are usually passed to XSUBs. $a and $b are not set.

The values to be compared are always passed by reference and should not be modified.

You also cannot exit out of the sort block or subroutine using any of the loop control operators
described in perlsyn or with goto.

When use locale (but not use locale ':not_characters') is in effect, sort
LIST sorts LIST according to the current collation locale. See perllocale.

sort returns aliases into the original list, much as a for loop’s index variable aliases the list
elements. That is, modifying an element of a list returned by sort (for example, in a foreach,
map or grep) actually modifies the element in the original list. This is usually something to be
avoided when writing clear code.

Historically Perl has varied in whether sorting is stable by default. If stability matters, it can be
controlled explicitly by using the sort pragma.

Examples:

sort lexically
my @articles = sort @files;

198 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

same thing, but with explicit sort routine
my @articles = sort {$a cmp $b} @files;

now case−insensitively
my @articles = sort {fc($a) cmp fc($b)} @files;

same thing in reversed order
my @articles = sort {$b cmp $a} @files;

sort numerically ascending
my @articles = sort {$a <=> $b} @files;

sort numerically descending
my @articles = sort {$b <=> $a} @files;

this sorts the %age hash by value instead of key
using an in−line function
my @eldest = sort { $age{$b} <=> $age{$a} } keys %age;

sort using explicit subroutine name
sub byage {

$age{$a} <=> $age{$b}; # presuming numeric
}
my @sortedclass = sort byage @class;

sub backwards { $b cmp $a }
my @harry = qw(dog cat x Cain Abel);
my @george = qw(gone chased yz Punished Axed);
print sort @harry;

prints AbelCaincatdogx
print sort backwards @harry;

prints xdogcatCainAbel
print sort @george, 'to', @harry;

prints AbelAxedCainPunishedcatchaseddoggonetoxyz

inefficiently sort by descending numeric compare using
the first integer after the first = sign, or the
whole record case−insensitively otherwise

my @new = sort {
($b =˜ /=(\d+)/)[0] <=> ($a =˜ /=(\d+)/)[0]

||
fc($a) cmp fc($b)

} @old;

same thing, but much more efficiently;
we'll build auxiliary indices instead
for speed
my (@nums, @caps);
for (@old) {

push @nums, (/=(\d+)/ ? $1 : undef);
push @caps, fc($_);

}

my @new = @old[sort {
$nums[$b] <=> $nums[$a]

||
$caps[$a] cmp $caps[$b]

} 0..$#old

perl v5.38.2 2025-07-25 199

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

];

same thing, but without any temps
my @new = map { $_−>[0] }

sort { $b−>[1] <=> $a−>[1]
||

$a−>[2] cmp $b−>[2]
} map { [$_, /=(\d+)/, fc($_)] } @old;

using a prototype allows you to use any comparison subroutine
as a sort subroutine (including other package's subroutines)
package Other;
sub backwards ($$) { $_[1] cmp $_[0]; } # $a and $b are

not set here
package main;
my @new = sort Other::backwards @old;

using a prototype with function signature
use feature 'signatures';
sub function_with_signature :prototype($$) ($one, $two) {

return $one <=> $two
}

my @new = sort function_with_signature @old;

guarantee stability
use sort 'stable';
my @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

Warning: syntactical care is required when sorting the list returned from a function. If you want to
sort the list returned by the function call find_records(@key), you can use:

my @contact = sort { $a cmp $b } find_records @key;
my @contact = sort +find_records(@key);
my @contact = sort &find_records(@key);
my @contact = sort(find_records(@key));

If instead you want to sort the array @key with the comparison routine find_records() then
you can use:

my @contact = sort { find_records() } @key;
my @contact = sort find_records(@key);
my @contact = sort(find_records @key);
my @contact = sort(find_records (@key));

$a and $b are set as package globals in the package the sort() is called from. That means
$main::a and $main::b (or $::a and $::b) in the main package, $FooPack::a and
$FooPack::b in the FooPack package, etc. If the sort block is in scope of a my or state
declaration of $a and/or $b, you must spell out the full name of the variables in the sort block :

package main;
my $a = "C"; # DANGER, Will Robinson, DANGER !!!

print sort { $a cmp $b } qw(A C E G B D F H);
WRONG

sub badlexi { $a cmp $b }
print sort badlexi qw(A C E G B D F H);

WRONG
the above prints BACFEDGH or some other incorrect ordering

print sort { $::a cmp $::b } qw(A C E G B D F H);
OK

200 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

print sort { our $a cmp our $b } qw(A C E G B D F H);
also OK

print sort { our ($a, $b); $a cmp $b } qw(A C E G B D F H);
also OK

sub lexi { our $a cmp our $b }
print sort lexi qw(A C E G B D F H);

also OK
the above print ABCDEFGH

With proper care you may mix package and my (or state) $a and/or $b:

my $a = {
tiny => −2,
small => −1,
normal => 0,
big => 1,
huge => 2

};

say sort { $a−>{our $a} <=> $a−>{our $b} }
qw{ huge normal tiny small big};

prints tinysmallnormalbighuge

$a and $b are implicitly local to the sort() execution and regain their former values upon
completing the sort.

Sort subroutines written using $a and $b are bound to their calling package. It is possible, but of
limited interest, to define them in a different package, since the subroutine must still refer to the
calling package’s $a and $b :

package Foo;
sub lexi { $Bar::a cmp $Bar::b }
package Bar;
... sort Foo::lexi ...

Use the prototyped versions (see above) for a more generic alternative.

The comparison function is required to behave. If it returns inconsistent results (sometimes saying
$x[1] is less than $x[2] and sometimes saying the opposite, for example) the results are not
well-defined.

Because <=> returns undef when either operand is NaN (not-a-number), be careful when sorting
with a comparison function like $a <=> $b any lists that might contain a NaN. The following
example takes advantage that NaN != NaN to eliminate any NaNs from the input list.

my @result = sort { $a <=> $b } grep { $_ == $_ } @input;

In this version of perl, the sort function is implemented via the mergesort algorithm.

splice ARRAY,OFFSET,LENGTH,LIST
splice ARRAY,OFFSET,LENGTH
splice ARRAY,OFFSET
splice ARRAY

Removes the elements designated by OFFSET and LENGTH from an array, and replaces them
with the elements of LIST, if any. In list context, returns the elements removed from the array. In
scalar context, returns the last element removed, or undef if no elements are removed. The array
grows or shrinks as necessary. If OFFSET is negative then it starts that far from the end of the
array. If LENGTH is omitted, removes everything from OFFSET onward. If LENGTH is
negative, removes the elements from OFFSET onward except for −LENGTH elements at the end
of the array. If both OFFSET and LENGTH are omitted, removes everything. If OFFSET is past
the end of the array and a LENGTH was provided, Perl issues a warning, and splices at the end of
the array.

The following equivalences hold (assuming $#a >= $i)

perl v5.38.2 2025-07-25 201

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

push(@a,$x,$y) splice(@a,@a,0,$x,$y)
pop(@a) splice(@a,−1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
$a[$i] = $y splice(@a,$i,1,$y)

splice can be used, for example, to implement n−ary queue processing:

sub nary_print {
my $n = shift;
while (my @next_n = splice @_, 0, $n) {
say join q{ −− }, @next_n;

}
}

nary_print(3, qw(a b c d e f g h));
prints:
a −− b −− c
d −− e −− f
g −− h

Starting with Perl 5.14, an experimental feature allowed splice to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/
split

Splits the string EXPR into a list of strings and returns the list in list context, or the size of the list
in scalar context. (Prior to Perl 5.11, it also overwrote @_ with the list in void and scalar context.
If you target old perls, beware.)

If only PATTERN is given, EXPR defaults to $_.

Anything in EXPR that matches PATTERN is taken to be a separator that separates the EXPR into
substrings (called "fields") that do not include the separator. Note that a separator may be longer
than one character or even hav e no characters at all (the empty string, which is a zero-width
match).

The PATTERN need not be constant; an expression may be used to specify a pattern that varies at
runtime.

If PATTERN matches the empty string, the EXPR is split at the match position (between
characters). As an example, the following:

my @x = split(/b/, "abc"); # ("a", "c")

uses the b in 'abc' as a separator to produce the list ("a", "c"). However, this:

my @x = split(//, "abc"); # ("a", "b", "c")

uses empty string matches as separators; thus, the empty string may be used to split EXPR into a
list of its component characters.

As a special case for split, the empty pattern given in match operator syntax (//) specifically
matches the empty string, which is contrary to its usual interpretation as the last successful match.

If PATTERN is /ˆ/, then it is treated as if it used the multiline modifier (/ˆ/m), since it isn’t
much use otherwise.

/m and any of the other pattern modifiers valid for qr (summarized in "qr/STRING/msixpodualn"
in perlop) may be specified explicitly.

As another special case, split emulates the default behavior of the command line tool awk
when the PATTERN is either omitted or a string composed of a single space character (such as
' ' or "\x20", but not e.g. / /). In this case, any leading whitespace in EXPR is removed
before splitting occurs, and the PATTERN is instead treated as if it were /\s+/; in particular, this

202 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

means that any contiguous whitespace (not just a single space character) is used as a separator.

my @x = split(" ", " Quick brown fox\n");
("Quick", "brown", "fox")

my @x = split(" ", "RED\tGREEN\tBLUE");
("RED", "GREEN", "BLUE")

Using split in this fashion is very similar to how qw// works.

However, this special treatment can be avoided by specifying the pattern / / instead of the string
" ", thereby allowing only a single space character to be a separator. In earlier Perls this special
case was restricted to the use of a plain " " as the pattern argument to split; in Perl 5.18.0 and
later this special case is triggered by any expression which evaluates to the simple string " ".

As of Perl 5.28, this special-cased whitespace splitting works as expected in the scope of
"use feature 'unicode_strings'". In previous versions, and outside the scope of that
feature, it exhibits "The "Unicode Bug"" in perlunicode: characters that are whitespace according
to Unicode rules but not according to ASCII rules can be treated as part of fields rather than as
field separators, depending on the string’s internal encoding.

If omitted, PATTERN defaults to a single space, " ", triggering the previously described awk
emulation.

If LIMIT is specified and positive, it represents the maximum number of fields into which the
EXPR may be split; in other words, LIMIT is one greater than the maximum number of times
EXPR may be split. Thus, the LIMIT value 1 means that EXPR may be split a maximum of zero
times, producing a maximum of one field (namely, the entire value of EXPR). For instance:

my @x = split(//, "abc", 1); # ("abc")
my @x = split(//, "abc", 2); # ("a", "bc")
my @x = split(//, "abc", 3); # ("a", "b", "c")
my @x = split(//, "abc", 4); # ("a", "b", "c")

If LIMIT is negative, it is treated as if it were instead arbitrarily large; as many fields as possible
are produced.

If LIMIT is omitted (or, equivalently, zero), then it is usually treated as if it were instead negative
but with the exception that trailing empty fields are stripped (empty leading fields are always
preserved); if all fields are empty, then all fields are considered to be trailing (and are thus stripped
in this case). Thus, the following:

my @x = split(/,/, "a,b,c,,,"); # ("a", "b", "c")

produces only a three element list.

my @x = split(/,/, "a,b,c,,,", −1); # ("a", "b", "c", "", "", "")

produces a six element list.

In time-critical applications, it is worthwhile to avoid splitting into more fields than necessary.
Thus, when assigning to a list, if LIMIT is omitted (or zero), then LIMIT is treated as though it
were one larger than the number of variables in the list; for the following, LIMIT is implicitly 3:

my ($login, $passwd) = split(/:/);

Note that splitting an EXPR that evaluates to the empty string always produces zero fields,
regardless of the LIMIT specified.

An empty leading field is produced when there is a positive-width match at the beginning of
EXPR. For instance:

my @x = split(/ /, " abc"); # ("", "abc")

splits into two elements. However, a zero-width match at the beginning of EXPR never produces
an empty field, so that:

my @x = split(//, " abc"); # (" ", "a", "b", "c")

perl v5.38.2 2025-07-25 203

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

splits into four elements instead of five.

An empty trailing field, on the other hand, is produced when there is a match at the end of EXPR,
regardless of the length of the match (of course, unless a non-zero LIMIT is given explicitly, such
fields are removed, as in the last example). Thus:

my @x = split(//, " abc", −1); # (" ", "a", "b", "c", "")

If the PATTERN contains capturing groups, then for each separator, an additional field is produced
for each substring captured by a group (in the order in which the groups are specified, as per
backreferences); if any group does not match, then it captures the undef value instead of a
substring. Also, note that any such additional field is produced whenever there is a separator (that
is, whenever a split occurs), and such an additional field does not count towards the LIMIT.
Consider the following expressions evaluated in list context (each returned list is provided in the
associated comment):

my @x = split(/−|,/ , "1−10,20", 3);
("1", "10", "20")

my @x = split(/(−|,)/ , "1−10,20", 3);
("1", "−", "10", ",", "20")

my @x = split(/−|(,)/ , "1−10,20", 3);
("1", undef, "10", ",", "20")

my @x = split(/(−)|,/ , "1−10,20", 3);
("1", "−", "10", undef, "20")

my @x = split(/(−)|(,)/, "1−10,20", 3);
("1", "−", undef, "10", undef, ",", "20")

sprintf FORMAT, LIST
Returns a string formatted by the usual printf conventions of the C library function sprintf.
See below for more details and see sprintf (3) or printf (3) on your system for an explanation of
the general principles.

For example:

Format number with up to 8 leading zeroes
my $result = sprintf("%08d", $number);

Round number to 3 digits after decimal point
my $rounded = sprintf("%.3f", $number);

Perl does its own sprintf formatting: it emulates the C function sprintf (3), but doesn’t use it
except for floating-point numbers, and even then only standard modifiers are allowed. Non-
standard extensions in your local sprintf (3) are therefore unavailable from Perl.

Unlike printf, sprintf does not do what you probably mean when you pass it an array as
your first argument. The array is given scalar context, and instead of using the 0th element of the
array as the format, Perl will use the count of elements in the array as the format, which is almost
never useful.

Perl’s sprintf permits the following universally-known conversions:

204 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

%% a percent sign
%c a character with the given number
%s a string
%d a signed integer, in decimal
%u an unsigned integer, in decimal
%o an unsigned integer, in octal
%x an unsigned integer, in hexadecimal
%e a floating−point number, in scientific notation
%f a floating−point number, in fixed decimal notation
%g a floating−point number, in %e or %f notation

In addition, Perl permits the following widely-supported conversions:

%X like %x, but using upper−case letters
%E like %e, but using an upper−case "E"
%G like %g, but with an upper−case "E" (if applicable)
%b an unsigned integer, in binary
%B like %b, but using an upper−case "B" with the # flag
%p a pointer (outputs the Perl value's address in hexadecimal)
%n special: *stores* the number of characters output so far

into the next argument in the parameter list
%a hexadecimal floating point
%A like %a, but using upper−case letters

Finally, for backward (and we do mean "backward") compatibility, Perl permits these unnecessary
but widely-supported conversions:

%i a synonym for %d
%D a synonym for %ld
%U a synonym for %lu
%O a synonym for %lo
%F a synonym for %f

Note that the number of exponent digits in the scientific notation produced by %e, %E, %g and %G
for numbers with the modulus of the exponent less than 100 is system-dependent: it may be three
or less (zero-padded as necessary). In other words, 1.23 times ten to the 99th may be either
"1.23e99" or "1.23e099". Similarly for %a and %A: the exponent or the hexadecimal digits may
float: especially the "long doubles" Perl configuration option may cause surprises.

Between the % and the format letter, you may specify several additional attributes controlling the
interpretation of the format. In order, these are:

format parameter index
An explicit format parameter index, such as 2$. By default sprintf will format the next
unused argument in the list, but this allows you to take the arguments out of order:

printf '%2$d %1$d', 12, 34; # prints "34 12"
printf '%3$d %d %1$d', 1, 2, 3; # prints "3 1 1"

flags
one or more of:

space prefix non−negative number with a space
+ prefix non−negative number with a plus sign
− left−justify within the field
0 use zeros, not spaces, to right−justify
ensure the leading "0" for any octal,

prefix non−zero hexadecimal with "0x" or "0X",
prefix non−zero binary with "0b" or "0B"

For example:

perl v5.38.2 2025-07-25 205

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

printf '<% d>', 12; # prints "< 12>"
printf '<% d>', 0; # prints "< 0>"
printf '<% d>', −12; # prints "<−12>"
printf '<%+d>', 12; # prints "<+12>"
printf '<%+d>', 0; # prints "<+0>"
printf '<%+d>', −12; # prints "<−12>"
printf '<%6s>', 12; # prints "< 12>"
printf '<%−6s>', 12; # prints "<12 >"
printf '<%06s>', 12; # prints "<000012>"
printf '<%#o>', 12; # prints "<014>"
printf '<%#x>', 12; # prints "<0xc>"
printf '<%#X>', 12; # prints "<0XC>"
printf '<%#b>', 12; # prints "<0b1100>"
printf '<%#B>', 12; # prints "<0B1100>"

When a space and a plus sign are given as the flags at once, the space is ignored.

printf '<%+ d>', 12; # prints "<+12>"
printf '<% +d>', 12; # prints "<+12>"

When the # flag and a precision are given in the %o conversion, the precision is incremented
if it’s necessary for the leading "0".

printf '<%#.5o>', 012; # prints "<00012>"
printf '<%#.5o>', 012345; # prints "<012345>"
printf '<%#.0o>', 0; # prints "<0>"

vector flag
This flag tells Perl to interpret the supplied string as a vector of integers, one for each
character in the string. Perl applies the format to each integer in turn, then joins the resulting
strings with a separator (a dot . by default). This can be useful for displaying ordinal values
of characters in arbitrary strings:

printf "%vd", "AB\x{100}"; # prints "65.66.256"
printf "version is v%vd\n", $ˆV; # Perl's version

Put an asterisk * before the v to override the string to use to separate the numbers:

printf "address is %*vX\n", ":", $addr; # IPv6 address
printf "bits are %0*v8b\n", " ", $bits; # random bitstring

You can also explicitly specify the argument number to use for the join string using
something like *2$v; for example:

printf '%*4$vX %*4$vX %*4$vX', # 3 IPv6 addresses
@addr[1..3], ":";

(minimum) width
Arguments are usually formatted to be only as wide as required to display the given value.
You can override the width by putting a number here, or get the width from the next
argument (with *) or from a specified argument (e.g., with *2$):

printf "<%s>", "a"; # prints "<a>"
printf "<%6s>", "a"; # prints "< a>"
printf "<%*s>", 6, "a"; # prints "< a>"
printf '<%*2$s>', "a", 6; # prints "< a>"
printf "<%2s>", "long"; # prints "<long>" (does not truncate)

If a field width obtained through * is negative, it has the same effect as the − flag: left-
justification.

precision, or maximum width
You can specify a precision (for numeric conversions) or a maximum width (for string
conversions) by specifying a . followed by a number. For floating-point formats except g
and G, this specifies how many places right of the decimal point to show (the default being 6).
For example:

206 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

these examples are subject to system−specific variation
printf '<%f>', 1; # prints "<1.000000>"
printf '<%.1f>', 1; # prints "<1.0>"
printf '<%.0f>', 1; # prints "<1>"
printf '<%e>', 10; # prints "<1.000000e+01>"
printf '<%.1e>', 10; # prints "<1.0e+01>"

For "g" and "G", this specifies the maximum number of significant digits to show; for
example:

These examples are subject to system−specific variation.
printf '<%g>', 1; # prints "<1>"
printf '<%.10g>', 1; # prints "<1>"
printf '<%g>', 100; # prints "<100>"
printf '<%.1g>', 100; # prints "<1e+02>"
printf '<%.2g>', 100.01; # prints "<1e+02>"
printf '<%.5g>', 100.01; # prints "<100.01>"
printf '<%.4g>', 100.01; # prints "<100>"
printf '<%.1g>', 0.0111; # prints "<0.01>"
printf '<%.2g>', 0.0111; # prints "<0.011>"
printf '<%.3g>', 0.0111; # prints "<0.0111>"

For integer conversions, specifying a precision implies that the output of the number itself
should be zero-padded to this width, where the 0 flag is ignored:

printf '<%.6d>', 1; # prints "<000001>"
printf '<%+.6d>', 1; # prints "<+000001>"
printf '<%−10.6d>', 1; # prints "<000001 >"
printf '<%10.6d>', 1; # prints "< 000001>"
printf '<%010.6d>', 1; # prints "< 000001>"
printf '<%+10.6d>', 1; # prints "< +000001>"

printf '<%.6x>', 1; # prints "<000001>"
printf '<%#.6x>', 1; # prints "<0x000001>"
printf '<%−10.6x>', 1; # prints "<000001 >"
printf '<%10.6x>', 1; # prints "< 000001>"
printf '<%010.6x>', 1; # prints "< 000001>"
printf '<%#10.6x>', 1; # prints "< 0x000001>"

For string conversions, specifying a precision truncates the string to fit the specified width:

printf '<%.5s>', "truncated"; # prints "<trunc>"
printf '<%10.5s>', "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using .*, or from a specified argument
(e.g., with .*2$):

printf '<%.6x>', 1; # prints "<000001>"
printf '<%.*x>', 6, 1; # prints "<000001>"

printf '<%.*2$x>', 1, 6; # prints "<000001>"

printf '<%6.*2$x>', 1, 4; # prints "< 0001>"

If a precision obtained through * is negative, it counts as having no precision at all.

printf '<%.*s>', 7, "string"; # prints "<string>"
printf '<%.*s>', 3, "string"; # prints "<str>"
printf '<%.*s>', 0, "string"; # prints "<>"
printf '<%.*s>', −1, "string"; # prints "<string>"

printf '<%.*d>', 1, 0; # prints "<0>"
printf '<%.*d>', 0, 0; # prints "<>"
printf '<%.*d>', −1, 0; # prints "<0>"

perl v5.38.2 2025-07-25 207

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

size
For numeric conversions, you can specify the size to interpret the number as using l, h, V, q,
L, or ll. For integer conversions (d u o x X b i D U O), numbers are usually
assumed to be whatever the default integer size is on your platform (usually 32 or 64 bits),
but you can override this to use instead one of the standard C types, as supported by the
compiler used to build Perl:

hh interpret integer as C type "char" or "unsigned
char" on Perl 5.14 or later

h interpret integer as C type "short" or
"unsigned short"

j interpret integer as C type "intmax_t" on Perl
5.14 or later; and prior to Perl 5.30, only with
a C99 compiler (unportable)

l interpret integer as C type "long" or
"unsigned long"

q, L, or ll interpret integer as C type "long long",
"unsigned long long", or "quad" (typically
64−bit integers)

t interpret integer as C type "ptrdiff_t" on Perl
5.14 or later

z interpret integer as C types "size_t" or
"ssize_t" on Perl 5.14 or later

Note that, in general, using the l modifier (for example, when writing "%ld" or "%lu"
instead of "%d" and "%u") is unnecessary when used from Perl code. Moreover, it may be
harmful, for example on Windows 64−bit where a long is 32−bits.

As of 5.14, none of these raises an exception if they are not supported on your platform.
However, if warnings are enabled, a warning of the printf warning class is issued on an
unsupported conversion flag. Should you instead prefer an exception, do this:

use warnings FATAL => "printf";

If you would like to know about a version dependency before you start running the program,
put something like this at its top:

use v5.14; # for hh/j/t/z/ printf modifiers

You can find out whether your Perl supports quads via Config:

use Config;
if ($Config{use64bitint} eq "define"

|| $Config{longsize} >= 8) {
print "Nice quads!\n";

}

For floating-point conversions (e f g E F G), numbers are usually assumed to be the
default floating-point size on your platform (double or long double), but you can force "long
double" with q, L, or ll if your platform supports them. You can find out whether your Perl
supports long doubles via Config:

use Config;
print "long doubles\n" if $Config{d_longdbl} eq "define";

You can find out whether Perl considers "long double" to be the default floating-point size to
use on your platform via Config:

use Config;
if ($Config{uselongdouble} eq "define") {

print "long doubles by default\n";
}

It can also be that long doubles and doubles are the same thing:

208 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

use Config;
($Config{doublesize} == $Config{longdblsize}) &&

print "doubles are long doubles\n";

The size specifier V has no effect for Perl code, but is supported for compatibility with XS
code. It means "use the standard size for a Perl integer or floating-point number", which is
the default.

order of arguments
Normally, sprintf takes the next unused argument as the value to format for each format
specification. If the format specification uses * to require additional arguments, these are
consumed from the argument list in the order they appear in the format specification before
the value to format. Where an argument is specified by an explicit index, this does not affect
the normal order for the arguments, even when the explicitly specified index would have been
the next argument.

So:

printf "<%*.*s>", $a, $b, $c;

uses $a for the width, $b for the precision, and $c as the value to format; while:

printf '<%*1$.*s>', $a, $b;

would use $a for the width and precision, and $b as the value to format.

Here are some more examples; be aware that when using an explicit index, the $ may need
escaping:

printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"
printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"
printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"
printf "%*1\$.*f\n", 4, 5, 10; # will print "5.0000\n"

If use locale (including use locale ':not_characters') is in effect and
POSIX::setlocale has been called, the character used for the decimal separator in formatted
floating-point numbers is affected by the LC_NUMERIC locale. See perllocale and POSIX.

sqrt EXPR
sqrt Return the positive square root of EXPR. If EXPR is omitted, uses $_. Works only for non-

negative operands unless you’ve loaded the Math::Complex module.

use Math::Complex;
print sqrt(−4); # prints 2i

srand EXPR
srand

Sets and returns the random number seed for the rand operator.

The point of the function is to "seed" the rand function so that rand can produce a different
sequence each time you run your program. When called with a parameter, srand uses that for
the seed; otherwise it (semi−)randomly chooses a seed (see below). In either case, starting with
Perl 5.14, it returns the seed. To signal that your code will work only on Perls of a recent vintage:

use v5.14; # so srand returns the seed

If srand is not called explicitly, it is called implicitly without a parameter at the first use of the
rand operator. Howev er, there are a few situations where programs are likely to want to call
srand. One is for generating predictable results, generally for testing or debugging. There, you
use srand($seed), with the same $seed each time. Another case is that you may want to call
srand after a fork to avoid child processes sharing the same seed value as the parent (and
consequently each other).

Do not call srand() (i.e., without an argument) more than once per process. The internal state
of the random number generator should contain more entropy than can be provided by any seed,
so calling srand again actually loses randomness.

perl v5.38.2 2025-07-25 209

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Most implementations of srand take an integer and will silently truncate decimal numbers. This
means srand(42) will usually produce the same results as srand(42.1). To be safe, always
pass srand an integer.

A typical use of the returned seed is for a test program which has too many combinations to test
comprehensively in the time available to it each run. It can test a random subset each time, and
should there be a failure, log the seed used for that run so that it can later be used to reproduce the
same results.

If the PERL_RAND_SEED environment variable is set to a non-negative integer during process
startup then calls to srand() with no arguments will initialize the perl random number generator
with a consistent seed each time it is called, whether called explicitly with no arguments or
implicitly via use of rand(). The exact seeding that a given PERL_RAND_SEED will produce is
deliberately unspecified, but using different values for PERL_RAND_SEED should produce
different results. This is intended for debugging and performance analysis and is only guaranteed
to produce consistent results between invocations of the same perl executable running the same
code when all other factors are equal. The environment variable is read only once during process
startup, and changing it during the program flow will not affect the currently running process. See
perlrun for more details.

rand is not cryptographically secure. You should not rely on it in security-sensitive
situations. As of this writing, a number of third-party CPAN modules offer random number
generators intended by their authors to be cryptographically secure, including: Data::Entropy,
Crypt::Random, Math::Random::Secure, and Math::TrulyRandom.

stat FILEHANDLE
stat EXPR
stat DIRHANDLE
stat Returns a 13−element list giving the status info for a file, either the file opened via FILEHANDLE

or DIRHANDLE, or named by EXPR. If EXPR is omitted, it stats $_ (not _!). Returns the
empty list if stat fails. Typically used as follows:

my ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
$atime,$mtime,$ctime,$blksize,$blocks)

= stat($filename);

Not all fields are supported on all filesystem types. Here are the meanings of the fields:

0 dev device number of filesystem
1 ino inode number
2 mode file mode (type and permissions)
3 nlink number of (hard) links to the file
4 uid numeric user ID of file's owner
5 gid numeric group ID of file's owner
6 rdev the device identifier (special files only)
7 size total size of file, in bytes
8 atime last access time in seconds since the epoch
9 mtime last modify time in seconds since the epoch
10 ctime inode change time in seconds since the epoch (*)
11 blksize preferred I/O size in bytes for interacting with the

file (may vary from file to file)
12 blocks actual number of system−specific blocks allocated

on disk (often, but not always, 512 bytes each)

(The epoch was at 00:00 January 1, 1970 GMT.)

(*) Not all fields are supported on all filesystem types. Notably, the ctime field is non-portable. In
particular, you cannot expect it to be a "creation time"; see "Files and Filesystems" in perlport for
details.

If stat is passed the special filehandle consisting of an underline, no stat is done, but the current
contents of the stat structure from the last stat, lstat, or filetest are returned. Example:

210 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

if (−x $file && (($d) = stat(_)) && $d < 0) {
print "$file is executable NFS file\n";

}

(This works on machines only for which the device number is negative under NFS.)

On some platforms inode numbers are of a type larger than perl knows how to handle as integer
numerical values. If necessary, an inode number will be returned as a decimal string in order to
preserve the entire value. If used in a numeric context, this will be converted to a floating-point
numerical value, with rounding, a fate that is best avoided. Therefore, you should prefer to
compare inode numbers using eq rather than ==. eq will work fine on inode numbers that are
represented numerically, as well as those represented as strings.

Because the mode contains both the file type and its permissions, you should mask off the file type
portion and (s)printf using a "%o" if you want to see the real permissions.

my $mode = (stat($filename))[2];
printf "Permissions are %04o\n", $mode & 07777;

In scalar context, stat returns a boolean value indicating success or failure, and, if successful,
sets the information associated with the special filehandle _.

The File::stat module provides a convenient, by-name access mechanism:

use File::stat;
my $sb = stat($filename);
printf "File is %s, size is %s, perm %04o, mtime %s\n",

$filename, $sb−>size, $sb−>mode & 07777,
scalar localtime $sb−>mtime;

You can import symbolic mode constants (S_IF*) and functions (S_IS*) from the Fcntl module:

use Fcntl ':mode';

my $mode = (stat($filename))[2];

my $user_rwx = ($mode & S_IRWXU) >> 6;
my $group_read = ($mode & S_IRGRP) >> 3;
my $other_execute = $mode & S_IXOTH;

printf "Permissions are %04o\n", S_IMODE($mode), "\n";

my $is_setuid = $mode & S_ISUID;
my $is_directory = S_ISDIR($mode);

You could write the last two using the −u and −d operators. Commonly available S_IF*
constants are:

Permissions: read, write, execute, for user, group, others.

S_IRWXU S_IRUSR S_IWUSR S_IXUSR
S_IRWXG S_IRGRP S_IWGRP S_IXGRP
S_IRWXO S_IROTH S_IWOTH S_IXOTH

Setuid/Setgid/Stickiness/SaveText.
Note that the exact meaning of these is system−dependent.

S_ISUID S_ISGID S_ISVTX S_ISTXT

File types. Not all are necessarily available on
your system.

S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR
S_IFIFO S_IFSOCK S_IFWHT S_ENFMT

perl v5.38.2 2025-07-25 211

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

The following are compatibility aliases for S_IRUSR,
S_IWUSR, and S_IXUSR.

S_IREAD S_IWRITE S_IEXEC

and the S_IF* functions are

S_IMODE($mode) the part of $mode containing the permission
bits and the setuid/setgid/sticky bits

S_IFMT($mode) the part of $mode containing the file type
which can be bit−anded with (for example)
S_IFREG or with the following functions

The operators −f, −d, −l, −b, −c, −p, and −S.

S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

No direct −X operator counterpart, but for the first one
the −g operator is often equivalent. The ENFMT stands for
record flocking enforcement, a platform−dependent feature.

S_ISENFMT($mode) S_ISWHT($mode)

See your native chmod (2) and stat (2) documentation for more details about the S_* constants.
To get status info for a symbolic link instead of the target file behind the link, use the lstat
function.

Portability issues: "stat" in perlport.

state VARLIST
state TYPE VARLIST
state VARLIST : ATTRS
state TYPE VARLIST : ATTRS

state declares a lexically scoped variable, just like my. Howev er, those variables will never be
reinitialized, contrary to lexical variables that are reinitialized each time their enclosing block is
entered. See "Persistent Private Variables" in perlsub for details.

If more than one variable is listed, the list must be placed in parentheses. With a parenthesised
list, undef can be used as a dummy placeholder. Howev er, since initialization of state variables
in such lists is currently not possible this would serve no purpose.

Redeclaring a variable in the same scope or statement will "shadow" the previous declaration,
creating a new instance and preventing access to the previous one. This is usually undesired and, if
warnings are enabled, will result in a warning in the shadow category.

state is available only if the "state" feature is enabled or if it is prefixed with CORE::. The
"state" feature is enabled automatically with a use v5.10 (or higher) declaration in the
current scope.

study SCALAR
study

At this time, study does nothing. This may change in the future.

Prior to Perl version 5.16, it would create an inverted index of all characters that occurred in the
given SCALAR (or $_ if unspecified). When matching a pattern, the rarest character from the
pattern would be looked up in this index. Rarity was based on some static frequency tables
constructed from some C programs and English text.

sub NAME BLOCK

212 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

sub NAME (PROT O) BLOCK
sub NAME : ATTRS BLOCK
sub NAME (PROT O) : ATTRS BLOCK

This is subroutine definition, not a real function per se. Without a BLOCK it’s just a forward
declaration. Without a NAME, it’s an anonymous function declaration, so does return a value: the
CODE ref of the closure just created.

See perlsub and perlref for details about subroutines and references; see attributes and
Attribute::Handlers for more information about attributes.

_ _SUB_ _
A special token that returns a reference to the current subroutine, or undef outside of a
subroutine.

The behaviour of __SUB_ _ within a regex code block (such as /(?{...})/) is subject to
change.

This token is only available under use v5.16 or the "current_sub" feature. See feature.

substr EXPR,OFFSET,LENGTH,REPLACEMENT
substr EXPR,OFFSET,LENGTH
substr EXPR,OFFSET

Extracts a substring out of EXPR and returns it. First character is at offset zero. If OFFSET is
negative, starts that far back from the end of the string. If LENGTH is omitted, returns everything
through the end of the string. If LENGTH is negative, leaves that many characters off the end of
the string.

my $s = "The black cat climbed the green tree";
my $color = substr $s, 4, 5; # black
my $middle = substr $s, 4, −11; # black cat climbed the
my $end = substr $s, 14; # climbed the green tree
my $tail = substr $s, −4; # tree
my $z = substr $s, −4, 2; # tr

You can use the substr function as an lvalue, in which case EXPR must itself be an lvalue. If
you assign something shorter than LENGTH, the string will shrink, and if you assign something
longer than LENGTH, the string will grow to accommodate it. To keep the string the same length,
you may need to pad or chop your value using sprintf.

If OFFSET and LENGTH specify a substring that is partly outside the string, only the part within
the string is returned. If the substring is beyond either end of the string, substr returns the
undefined value and produces a warning. When used as an lvalue, specifying a substring that is
entirely outside the string raises an exception. Here’s an example showing the behavior for
boundary cases:

my $name = 'fred';
substr($name, 4) = 'dy'; # $name is now 'freddy'
my $null = substr $name, 6, 2; # returns "" (no warning)
my $oops = substr $name, 7; # returns undef, with warning
substr($name, 7) = 'gap'; # raises an exception

An alternative to using substr as an lvalue is to specify the REPLACEMENT string as the 4th
argument. This allows you to replace parts of the EXPR and return what was there before in one
operation, just as you can with splice.

my $s = "The black cat climbed the green tree";
my $z = substr $s, 14, 7, "jumped from"; # climbed
$s is now "The black cat jumped from the green tree"

Note that the lvalue returned by the three-argument version of substr acts as a ’magic bullet’;
each time it is assigned to, it remembers which part of the original string is being modified; for
example:

perl v5.38.2 2025-07-25 213

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

my $x = '1234';
for (substr($x,1,2)) {

$_ = 'a'; print $x,"\n"; # prints 1a4
$_ = 'xyz'; print $x,"\n"; # prints 1xyz4
$x = '56789';
$_ = 'pq'; print $x,"\n"; # prints 5pq9

}

With negative offsets, it remembers its position from the end of the string when the target string is
modified:

my $x = '1234';
for (substr($x, −3, 2)) {

$_ = 'a'; print $x,"\n"; # prints 1a4, as above
$x = 'abcdefg';
print $_,"\n"; # prints f

}

Prior to Perl version 5.10, the result of using an lvalue multiple times was unspecified. Prior to
5.16, the result with negative offsets was unspecified.

symlink OLDFILE,NEWFILE
Creates a new filename symbolically linked to the old filename. Returns 1 for success, 0
otherwise. On systems that don’t support symbolic links, raises an exception. To check for that,
use eval:

my $symlink_exists = eval { symlink("",""); 1 };

Portability issues: "symlink" in perlport.

syscall NUMBER, LIST
Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call. If unimplemented, raises an exception. The arguments are
interpreted as follows: if a given argument is numeric, the argument is passed as an int. If not, the
pointer to the string value is passed. You are responsible to make sure a string is pre-extended
long enough to receive any result that might be written into a string. You can’t use a string literal
(or other read-only string) as an argument to syscall because Perl has to assume that any string
pointer might be written through. If your integer arguments are not literals and have nev er been
interpreted in a numeric context, you may need to add 0 to them to force them to look like
numbers. This emulates the syswrite function (or vice versa):

require 'syscall.ph'; # may need to run h2ph
my $s = "hi there\n";
syscall(SYS_write(), fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only 14 arguments to your syscall, which in practice
should (usually) suffice.

Syscall returns whatever value returned by the system call it calls. If the system call fails,
syscall returns −1 and sets $! (errno). Note that some system calls can legitimately return
−1. The proper way to handle such calls is to assign $! = 0 before the call, then check the
value of $! if syscall returns −1.

There’s a problem with syscall(SYS_pipe()): it returns the file number of the read end of
the pipe it creates, but there is no way to retrieve the file number of the other end. You can avoid
this problem by using pipe instead.

Portability issues: "syscall" in perlport.

sysopen FILEHANDLE,FILENAME,MODE
sysopen FILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it with FILEHANDLE. If
FILEHANDLE is an expression, its value is used as the real filehandle wanted; an undefined
scalar will be suitably autovivified. This function calls the underlying operating system’s open (2)
function with the parameters FILENAME, MODE, and PERMS.

214 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Returns true on success and undef otherwise.

PerlIO layers will be applied to the handle the same way they would in an open call that does not
specify layers. That is, the current value of ${ˆOPEN} as set by the open pragma in a lexical
scope, or the −C commandline option or PERL_UNICODE environment variable in the main
program scope, falling back to the platform defaults as described in "Defaults and how to override
them" in PerlIO. If you want to remove any layers that may transform the byte stream, use
binmode after opening it.

The possible values and flag bits of the MODE parameter are system-dependent; they are available
via the standard module Fcntl. See the documentation of your operating system’s open (2)
syscall to see which values and flag bits are available. You may combine several flags using the
|−operator.

Some of the most common values are O_RDONLY for opening the file in read-only mode,
O_WRONLY for opening the file in write-only mode, and O_RDWR for opening the file in read-
write mode.

For historical reasons, some values work on almost every system supported by Perl: 0 means read-
only, 1 means write-only, and 2 means read/write. We know that these values do not work under
OS/390; you probably don’t want to use them in new code.

If the file named by FILENAME does not exist and the open call creates it (typically because
MODE includes the O_CREAT flag), then the value of PERMS specifies the permissions of the
newly created file. If you omit the PERMS argument to sysopen, Perl uses the octal value
0666. These permission values need to be in octal, and are modified by your process’s current
umask.

In many systems the O_EXCL flag is available for opening files in exclusive mode. This is not
locking: exclusiveness means here that if the file already exists, sysopen fails. O_EXCL may
not work on network filesystems, and has no effect unless the O_CREAT flag is set as well.
Setting O_CREAT|O_EXCL prevents the file from being opened if it is a symbolic link. It does
not protect against symbolic links in the file’s path.

Sometimes you may want to truncate an already-existing file. This can be done using the
O_TRUNC flag. The behavior of O_TRUNC with O_RDONLY is undefined.

You should seldom if ever use 0644 as argument to sysopen, because that takes away the user’s
option to have a more permissive umask. Better to omit it. See umask for more on this.

This function has no direct relation to the usage of sysread, syswrite, or sysseek. A
handle opened with this function can be used with buffered IO just as one opened with open can
be used with unbuffered IO.

Note that under Perls older than 5.8.0, sysopen depends on the fdopen (3) C library function.
On many Unix systems, fdopen (3) is known to fail when file descriptors exceed a certain value,
typically 255. If you need more file descriptors than that, consider using the POSIX::open
function. For Perls 5.8.0 and later, PerlIO is (most often) the default.

See perlopentut for a kinder, gentler explanation of opening files.

Portability issues: "sysopen" in perlport.

sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
sysread FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the specified
FILEHANDLE, using read (2). It bypasses any PerlIO layers including buffered IO (but is
affected by the presence of the :utf8 layer as described later), so mixing this with other kinds of
reads, print, write, seek, tell, or eof can cause confusion because the :perlio or
:crlf layers usually buffer data. Returns the number of bytes actually read, 0 at end of file, or
undef if there was an error (in the latter case $! is also set). SCALAR will be grown or shrunk so
that the last byte actually read is the last byte of the scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other than the
beginning. A negative OFFSET specifies placement at that many characters counting backwards
from the end of the string. A positive OFFSET greater than the length of SCALAR results in the

perl v5.38.2 2025-07-25 215

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

string being padded to the required size with "\0" bytes before the result of the read is appended.

There is no syseof() function, which is ok, since eof doesn’t work well on device files (like ttys)
anyway. Use sysread and check for a return value of 0 to decide whether you’re done.

Note that if the filehandle has been marked as :utf8, sysread will throw an exception. The
:encoding(...) layer implicitly introduces the :utf8 layer. See binmode, open, and the
open pragma.

sysseek FILEHANDLE,POSITION,WHENCE
Sets FILEHANDLE’s system position in bytes using lseek (2). FILEHANDLE may be an
expression whose value gives the name of the filehandle. The values for WHENCE are 0 to set
the new position to POSITION; 1 to set it to the current position plus POSITION; and 2 to set it
to EOF plus POSITION, typically negative.

Note the emphasis on bytes: even if the filehandle has been set to operate on characters (for
example using the :encoding(UTF−8) I/O layer), the seek, tell, and sysseek family of
functions use byte offsets, not character offsets, because seeking to a character offset would be
very slow in a UTF−8 file.

sysseek bypasses normal buffered IO, so mixing it with reads other than sysread (for
example readline or read), print, write, seek, tell, or eof may cause confusion.

For WHENCE, you may also use the constants SEEK_SET, SEEK_CUR, and SEEK_END (start of
the file, current position, end of the file) from the Fcntl module. Use of the constants is also more
portable than relying on 0, 1, and 2. For example to define a "systell" function:

use Fcntl 'SEEK_CUR';
sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the new position, or the undefined value on failure. A position of zero is returned as the
string "0 but true"; thus sysseek returns true on success and false on failure, yet you can
still easily determine the new position.

system LIST
system PROGRAM LIST

Does exactly the same thing as exec, except that a fork is done first and the parent process waits
for the child process to exit. Note that argument processing varies depending on the number of
arguments. If there is more than one argument in LIST, or if LIST is an array with more than one
value, starts the program given by the first element of the list with arguments given by the rest of
the list. If there is only one scalar argument, the argument is checked for shell metacharacters, and
if there are any, the entire argument is passed to the system’s command shell for parsing (this is
/bin/sh −c on Unix platforms, but varies on other platforms). If there are no shell
metacharacters in the argument, it is split into words and passed directly to execvp, which is
more efficient. On Windows, only the system PROGRAM LIST syntax will reliably avoid
using the shell; system LIST, even with more than one element, will fall back to the shell if the
first spawn fails.

Perl will attempt to flush all files opened for output before any operation that may do a fork, but
this may not be supported on some platforms (see perlport). To be safe, you may need to set $|
($AUTOFLUSH in English) or call the autoflush method of IO::Handle on any open
handles.

The return value is the exit status of the program as returned by the wait call. To get the actual
exit value, shift right by eight (see below). See also exec. This is not what you want to use to
capture the output from a command; for that you should use merely backticks or qx//, as
described in "‘STRING‘" in perlop. Return value of −1 indicates a failure to start the program or
an error of the wait (2) system call (inspect $! for the reason).

If you’d like to make system (and many other bits of Perl) die on error, hav e a look at the
autodie pragma.

Like exec, system allows you to lie to a program about its name if you use the system
PROGRAM LIST syntax. Again, see exec.

Since SIGINT and SIGQUIT are ignored during the execution of system, if you expect your

216 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

program to terminate on receipt of these signals you will need to arrange to do so yourself based
on the return value.

my @args = ("command", "arg1", "arg2");
system(@args) == 0

or die "system @args failed: $?";

If you’d like to manually inspect system’s failure, you can check all possible failure modes by
inspecting $? like this:

if ($? == −1) {
print "failed to execute: $!\n";

}
elsif ($? & 127) {

printf "child died with signal %d, %s coredump\n",
($? & 127), ($? & 128) ? 'with' : 'without';

}
else {

printf "child exited with value %d\n", $? >> 8;
}

Alternatively, you may inspect the value of ${ˆCHILD_ERROR_NATIVE} with the W*() calls
from the POSIX module.

When system’s arguments are executed indirectly by the shell, results and return codes are
subject to its quirks. See "‘STRING‘" in perlop and exec for details.

Since system does a fork and wait it may affect a SIGCHLD handler. See perlipc for details.

Portability issues: "system" in perlport.

syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
syswrite FILEHANDLE,SCALAR,LENGTH
syswrite FILEHANDLE,SCALAR

Attempts to write LENGTH bytes of data from variable SCALAR to the specified FILEHANDLE,
using write (2). If LENGTH is not specified, writes whole SCALAR. It bypasses any PerlIO
layers including buffered IO (but is affected by the presence of the :utf8 layer as described
later), so mixing this with reads (other than sysread)), print, write, seek, tell, or eof
may cause confusion because the :perlio and :crlf layers usually buffer data. Returns the
number of bytes actually written, or undef if there was an error (in this case the errno variable
$! is also set). If the LENGTH is greater than the data available in the SCALAR after the
OFFSET, only as much data as is available will be written.

An OFFSET may be specified to write the data from some part of the string other than the
beginning. A negative OFFSET specifies writing that many characters counting backwards from
the end of the string. If SCALAR is of length zero, you can only use an OFFSET of 0.

WARNING: If the filehandle is marked :utf8, syswrite will raise an exception. The
:encoding(...) layer implicitly introduces the :utf8 layer. Alternately, if the handle is not
marked with an encoding but you attempt to write characters with code points over 255, raises an
exception. See binmode, open, and the open pragma.

tell FILEHANDLE
tell Returns the current position in bytes for FILEHANDLE, or −1 on error. FILEHANDLE may be

an expression whose value gives the name of the actual filehandle. If FILEHANDLE is omitted,
assumes the file last read.

Note the emphasis on bytes: even if the filehandle has been set to operate on characters (for
example using the :encoding(UTF−8) I/O layer), the seek, tell, and sysseek family of
functions use byte offsets, not character offsets, because seeking to a character offset would be
very slow in a UTF−8 file.

The return value of tell for the standard streams like the STDIN depends on the operating
system: it may return −1 or something else. tell on pipes, fifos, and sockets usually returns −1.

There is no systell function. Use sysseek($fh, 0, 1) for that.

perl v5.38.2 2025-07-25 217

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Do not use tell (or other buffered I/O operations) on a filehandle that has been manipulated by
sysread, syswrite, or sysseek. Those functions ignore the buffering, while tell does
not.

telldir DIRHANDLE
Returns the current position of the readdir routines on DIRHANDLE. Value may be given to
seekdir to access a particular location in a directory. telldir has the same caveats about
possible directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST
This function binds a variable to a package class that will provide the implementation for the
variable. VARIABLE is the name of the variable to be enchanted. CLASSNAME is the name of
a class implementing objects of correct type. Any additional arguments are passed to the
appropriate constructor method of the class (meaning TIESCALAR, TIEHANDLE, TIEARRAY, or
TIEHASH). Typically these are arguments such as might be passed to the dbm_open (3) function
of C. The object returned by the constructor is also returned by the tie function, which would be
useful if you want to access other methods in CLASSNAME.

Note that functions such as keys and values may return huge lists when used on large objects,
like DBM files. You may prefer to use the each function to iterate over such. Example:

print out history file offsets
use NDBM_File;
tie(my %HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
while (my ($key,$val) = each %HIST) {

print $key, ' = ', unpack('L', $val), "\n";
}

A class implementing a hash should have the following methods:

TIEHASH classname, LIST
FETCH this, key
STORE this, key, value
DELETE this, key
CLEAR this
EXISTS this, key
FIRSTKEY this
NEXTKEY this, lastkey
SCALAR this
DESTROY this
UNTIE this

A class implementing an ordinary array should have the following methods:

TIEARRAY classname, LIST
FETCH this, key
STORE this, key, value
FETCHSIZE this
STORESIZE this, count
CLEAR this
PUSH this, LIST
POP this
SHIFT this
UNSHIFT this, LIST
SPLICE this, offset, length, LIST
EXTEND this, count
DELETE this, key
EXISTS this, key
DESTROY this
UNTIE this

A class implementing a filehandle should have the following methods:

218 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

TIEHANDLE classname, LIST
READ this, scalar, length, offset
READLINE this
GETC this
WRITE this, scalar, length, offset
PRINT this, LIST
PRINTF this, format, LIST
BINMODE this
EOF this
FILENO this
SEEK this, position, whence
TELL this
OPEN this, mode, LIST
CLOSE this
DESTROY this
UNTIE this

A class implementing a scalar should have the following methods:

TIESCALAR classname, LIST
FETCH this,
STORE this, value
DESTROY this
UNTIE this

Not all methods indicated above need be implemented. See perltie, Tie::Hash, Tie::Array,
Tie::Scalar, and Tie::Handle.

Unlike dbmopen, the tie function will not use or require a module for you; you need to do
that explicitly yourself. See DB_File or the Config module for interesting tie implementations.

For further details see perltie, tied.

tied VARIABLE
Returns a reference to the object underlying VARIABLE (the same value that was originally
returned by the tie call that bound the variable to a package.) Returns the undefined value if
VARIABLE isn’t tied to a package.

time
Returns the number of non-leap seconds since whatever time the system considers to be the epoch,
suitable for feeding to gmtime and localtime. On most systems the epoch is 00:00:00 UTC,
January 1, 1970; a prominent exception being Mac OS Classic which uses 00:00:00, January 1,
1904 in the current local time zone for its epoch.

For measuring time in better granularity than one second, use the Time::HiRes module from Perl
5.8 onwards (or from CPAN before then), or, if you have gettimeofday (2), you may be able to use
the syscall interface of Perl. See perlfaq8 for details.

For date and time processing look at the many related modules on CPAN. For a comprehensive
date and time representation look at the DateTime module.

times
Returns a four-element list giving the user and system times in seconds for this process and any
exited children of this process.

my ($user,$system,$cuser,$csystem) = times;

In scalar context, times returns $user.

Children’s times are only included for terminated children.

Portability issues: "times" in perlport.

tr/// The transliteration operator. Same as y///. See "Quote-Like Operators" in perlop.

perl v5.38.2 2025-07-25 219

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

truncate FILEHANDLE,LENGTH
truncate EXPR,LENGTH

Truncates the file opened on FILEHANDLE, or named by EXPR, to the specified length. Raises
an exception if truncate isn’t implemented on your system. Returns true if successful, undef on
error.

The behavior is undefined if LENGTH is greater than the length of the file.

The position in the file of FILEHANDLE is left unchanged. You may want to call seek before
writing to the file.

Portability issues: "truncate" in perlport.

uc EXPR
uc Returns an uppercased version of EXPR. If EXPR is omitted, uses $_.

my $str = uc("Perl is GREAT"); # "PERL IS GREAT"

This function behaves the same way under various pragmas, such as in a locale, as lc does.

If you want titlecase mapping on initial letters see ucfirst instead.

Note: This is the internal function implementing the \U escape in double-quoted strings.

my $str = "Perl is \Ugreat\E"; # "Perl is GREAT"

ucfirst EXPR
ucfirst

Returns the value of EXPR with the first character in uppercase (Unicode calls this titlecase). If
EXPR is omitted, ucfirst uses $_.

my $str = ucfirst("hello world!"); # "Hello world!"

This function behaves the same way under various pragmas, such as in a locale, as lc does.

Note: This is the internal function implementing the \u escape in double-quoted strings.

my $str = "\uperl\E is great"; # "Perl is great"

umask EXPR
umask

Sets the umask for the process to EXPR and returns the previous value. If EXPR is omitted,
merely returns the current umask.

The Unix permission rwxr−x−−− is represented as three sets of three bits, or three octal digits:
0750 (the leading 0 indicates octal and isn’t one of the digits). The umask value is such a
number representing disabled permissions bits. The permission (or "mode") values you pass
mkdir or sysopen are modified by your umask, so even if you tell sysopen to create a file
with permissions 0777, if your umask is 0022, then the file will actually be created with
permissions 0755. If your umask were 0027 (group can’t write; others can’t read, write, or
execute), then passing sysopen 0666 would create a file with mode 0640 (because 0666 &˜
027 is 0640).

Here’s some advice: supply a creation mode of 0666 for regular files (in sysopen) and one of
0777 for directories (in mkdir) and executable files. This gives users the freedom of choice: if
they want protected files, they might choose process umasks of 022, 027, or even the particularly
antisocial mask of 077. Programs should rarely if ever make policy decisions better left to the
user. The exception to this is when writing files that should be kept private: mail files, web
browser cookies, .rhosts files, and so on.

If umask (2) is not implemented on your system and you are trying to restrict access for yourself
(i.e., (EXPR & 0700) > 0), raises an exception. If umask (2) is not implemented and you are
not trying to restrict access for yourself, returns undef.

Remember that a umask is a number, usually given in octal; it is not a string of octal digits. See
also oct, if all you have is a string.

Portability issues: "umask" in perlport.

220 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

undef EXPR
undef

Undefines the value of EXPR, which must be an lvalue. Use only on a scalar value, an array
(using @), a hash (using %), a subroutine (using &), or a typeglob (using *). Saying undef
$hash{$key} will probably not do what you expect on most predefined variables or DBM list
values, so don’t do that; see delete. Always returns the undefined value. You can omit the
EXPR, in which case nothing is undefined, but you still get an undefined value that you could, for
instance, return from a subroutine, assign to a variable, or pass as a parameter. Examples:

undef $foo;
undef $bar{'blurfl'}; # Compare to: delete $bar{'blurfl'};
undef @ary;
undef %hash;
undef &mysub;
undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
select undef, undef, undef, 0.25;
my ($x, $y, undef, $z) = foo(); # Ignore third value returned

Note that this is a unary operator, not a list operator.

unlink LIST
unlink

Deletes a list of files. On success, it returns the number of files it successfully deleted. On failure,
it returns false and sets $! (errno):

my $unlinked = unlink 'a', 'b', 'c';
unlink @goners;
unlink glob "*.bak";

On error, unlink will not tell you which files it could not remove. If you want to know which
files you could not remove, try them one at a time:

foreach my $file (@goners) {
unlink $file or warn "Could not unlink $file: $!";

}

Note: unlink will not attempt to delete directories unless you are superuser and the −U flag is
supplied to Perl. Even if these conditions are met, be warned that unlinking a directory can inflict
damage on your filesystem. Finally, using unlink on directories is not supported on many
operating systems. Use rmdir instead.

If LIST is omitted, unlink uses $_.

unpack TEMPLATE,EXPR
unpack TEMPLATE

unpack does the reverse of pack: it takes a string and expands it out into a list of values. (In
scalar context, it returns merely the first value produced.)

If EXPR is omitted, unpacks the $_ string. See perlpacktut for an introduction to this function.

The string is broken into chunks described by the TEMPLATE. Each chunk is converted
separately to a value. Typically, either the string is a result of pack, or the characters of the string
represent a C structure of some kind.

The TEMPLATE has the same format as in the pack function. Here’s a subroutine that does
substring:

sub substr {
my ($what, $where, $howmuch) = @_;
unpack("x$where a$howmuch", $what);

}

and then there’s

perl v5.38.2 2025-07-25 221

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

sub ordinal { unpack("W",$_[0]); } # same as ord()

In addition to fields allowed in pack, you may prefix a field with a %<number> to indicate that
you want a <number>−bit checksum of the items instead of the items themselves. Default is a
16−bit checksum. The checksum is calculated by summing numeric values of expanded values
(for string fields the sum of ord($char) is taken; for bit fields the sum of zeroes and ones).

For example, the following computes the same number as the System V sum program:

my $checksum = do {
local $/; # slurp!
unpack("%32W*", readline) % 65535;

};

The following efficiently counts the number of set bits in a bit vector:

my $setbits = unpack("%32b*", $selectmask);

The p and P formats should be used with care. Since Perl has no way of checking whether the
value passed to unpack corresponds to a valid memory location, passing a pointer value that’s
not known to be valid is likely to have disastrous consequences.

If there are more pack codes or if the repeat count of a field or a group is larger than what the
remainder of the input string allows, the result is not well defined: the repeat count may be
decreased, or unpack may produce empty strings or zeros, or it may raise an exception. If the
input string is longer than one described by the TEMPLATE, the remainder of that input string is
ignored.

See pack for more examples and notes.

unshift ARRAY,LIST
Add one or more elements to the beginning of an array. This is the opposite of a shift.

my @animals = ("cat");
unshift(@animals, "mouse"); # ("mouse", "cat")

my @colors = ("red");
unshift(@colors, ("blue", "green")); # ("blue", "green", "red")

Returns the new number of elements in the updated array.

Return value is the number of items in the updated array
my $color_count = unshift(@colors, ("yellow", "purple"));

say "There are $color_count colors in the updated array";

Note the LIST is prepended whole, not one element at a time, so the prepended elements stay in
the same order. Use reverse to do the reverse.

Starting with Perl 5.14, an experimental feature allowed unshift to take a scalar expression.
This experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

untie VARIABLE
Breaks the binding between a variable and a package. (See tie.) Has no effect if the variable is
not tied.

use Module VERSION LIST
use Module VERSION
use Module LIST
use Module

Imports some semantics into the current package from the named module, generally by aliasing
certain subroutine or variable names into your package. It is exactly equivalent to

BEGIN { require Module; Module−>import(LIST); }

except that Module must be a bareword. The importation can be made conditional by using the if
module.

222 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

The BEGIN forces the require and import to happen at compile time. The require makes
sure the module is loaded into memory if it hasn’t been yet. The import is not a builtin; it’s just
an ordinary static method call into the Module package to tell the module to import the list of
features back into the current package. The module can implement its import method any way
it likes, though most modules just choose to derive their import method via inheritance from the
Exporter class that is defined in the Exporter module. See Exporter. If no import method
can be found, then the call is skipped, even if there is an AUTOLOAD method.

If you do not want to call the package’s import method (for instance, to stop your namespace
from being altered), explicitly supply the empty list:

use Module ();

That is exactly equivalent to

BEGIN { require Module }

If the VERSION argument is present between Module and LIST, then the use will call the
VERSION method in class Module with the given version as an argument:

use Module 12.34;

is equivalent to:

BEGIN { require Module; Module−>VERSION(12.34) }

The default VERSION method, inherited from the UNIVERSAL class, croaks if the given version
is larger than the value of the variable $Module::VERSION.

The VERSION argument cannot be an arbitrary expression. It only counts as a VERSION
argument if it is a version number literal, starting with either a digit or v followed by a digit.
Anything that doesn’t look like a version literal will be parsed as the start of the LIST.
Nevertheless, many attempts to use an arbitrary expression as a VERSION argument will appear
to work, because Exporter’s import method handles numeric arguments specially, performing
version checks rather than treating them as things to export.

Again, there is a distinction between omitting LIST (import called with no arguments) and an
explicit empty LIST () (import not called). Note that there is no comma after VERSION!

Because this is a wide-open interface, pragmas (compiler directives) are also implemented this
way. Some of the currently implemented pragmas are:

use constant;
use diagnostics;
use integer;
use sigtrap qw(SEGV BUS);
use strict qw(subs vars refs);
use subs qw(afunc blurfl);
use warnings qw(all);
use sort qw(stable);

Some of these pseudo-modules import semantics into the current block scope (like strict or
integer, unlike ordinary modules, which import symbols into the current package (which are
effective through the end of the file).

Because use takes effect at compile time, it doesn’t respect the ordinary flow control of the code
being compiled. In particular, putting a use inside the false branch of a conditional doesn’t
prevent it from being processed. If a module or pragma only needs to be loaded conditionally, this
can be done using the if pragma:

use if $] < 5.008, "utf8";
use if WANT_WARNINGS, warnings => qw(all);

There’s a corresponding no declaration that unimports meanings imported by use, i.e., it calls
Module−>unimport(LIST) instead of import. It behaves just as import does with
VERSION, an omitted or empty LIST, or no unimport method being found.

perl v5.38.2 2025-07-25 223

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

no integer;
no strict 'refs';
no warnings;

See perlmodlib for a list of standard modules and pragmas. See perlrun for the −M and −m
command-line options to Perl that give use functionality from the command-line.

use VERSION
Lexically enables all features available in the requested version as defined by the feature pragma,
disabling any features not in the requested version’s feature bundle. See feature.

VERSION may be either a v−string such as v5.24.1, which will be compared to $ˆV (aka
$PERL_VERSION), or a numeric argument of the form 5.024001, which will be compared to $].
An exception is raised if VERSION is greater than the version of the current Perl interpreter; Perl
will not attempt to parse the rest of the file. Compare with require, which can do a similar
check at run time.

If the specified Perl version is 5.12 or higher, strictures are enabled lexically as with use
strict. Similarly, if the specified Perl version is 5.35.0 or higher, warnings are enabled. Later
use of use VERSION will override all behavior of a previous use VERSION, possibly
removing the strict, warnings, and feature added by it. use VERSION does not load
the feature.pm, strict.pm, or warnings.pm files.

In the current implementation, any explicit use of use strict or no strict overrides use
VERSION, even if it comes before it. However, this may be subject to change in a future release
of Perl, so new code should not rely on this fact. It is recommended that a use VERSION
declaration be the first significant statement within a file (possibly after a package statement or
any amount of whitespace or comment), so that its effects happen first, and other pragmata are
applied after it.

Specifying VERSION as a numeric argument of the form 5.024001 should generally be avoided as
older less readable syntax compared to v5.24.1. Before perl 5.8.0 released in 2002 the more
verbose numeric form was the only supported syntax, which is why you might see it in older code.

use v5.24.1; # compile time version check
use 5.24.1; # ditto
use 5.024_001; # ditto; older syntax compatible with perl 5.6

This is often useful if you need to check the current Perl version before useing library modules
that won’t work with older versions of Perl. (We try not to do this more than we have to.)

Symmetrically, no VERSION allows you to specify that you want a version of Perl older than the
specified one. Historically this was added during early designs of the Raku language (formerly
"Perl 6"), so that a Perl 5 program could begin

no 6;

to declare that it is not a Perl 6 program. As the two languages have different implementations,
file naming conventions, and other infrastructure, this feature is now little used in practice and
should be avoided in newly-written code.

Care should be taken when using the no VERSION form, as it is only meant to be used to assert
that the running Perl is of a earlier version than its argument and not to undo the feature-enabling
side effects of use VERSION.

utime LIST
Changes the access and modification times on each file of a list of files. The first two elements of
the list must be the NUMERIC access and modification times, in that order. Returns the number
of files successfully changed. The inode change time of each file is set to the current time. For
example, this code has the same effect as the Unix touch (1) command when the files already exist
and belong to the user running the program:

#!/usr/bin/perl
my $atime = my $mtime = time;
utime $atime, $mtime, @ARGV;

224 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Since Perl 5.8.0, if the first two elements of the list are undef, the utime (2) syscall from your C
library is called with a null second argument. On most systems, this will set the file’s access and
modification times to the current time (i.e., equivalent to the example above) and will work even
on files you don’t own provided you have write permission:

for my $file (@ARGV) {
utime(undef, undef, $file)

|| warn "Couldn't touch $file: $!";
}

Under NFS this will use the time of the NFS server, not the time of the local machine. If there is a
time synchronization problem, the NFS server and local machine will have different times. The
Unix touch (1) command will in fact normally use this form instead of the one shown in the first
example.

Passing only one of the first two elements as undef is equivalent to passing a 0 and will not have
the effect described when both are undef. This also triggers an uninitialized warning.

On systems that support futimes (2), you may pass filehandles among the files. On systems that
don’t support futimes (2), passing filehandles raises an exception. Filehandles must be passed as
globs or glob references to be recognized; barewords are considered filenames.

Portability issues: "utime" in perlport.

values HASH
values ARRAY

In list context, returns a list consisting of all the values of the named hash. In Perl 5.12 or later
only, will also return a list of the values of an array; prior to that release, attempting to use an array
argument will produce a syntax error. In scalar context, returns the number of values.

Hash entries are returned in an apparently random order. The actual random order is specific to a
given hash; the exact same series of operations on two hashes may result in a different order for
each hash. Any insertion into the hash may change the order, as will any deletion, with the
exception that the most recent key returned by each or keys may be deleted without changing
the order. So long as a given hash is unmodified you may rely on keys, values and each to
repeatedly return the same order as each other. See "Algorithmic Complexity Attacks" in perlsec
for details on why hash order is randomized. Aside from the guarantees provided here the exact
details of Perl’s hash algorithm and the hash traversal order are subject to change in any release of
Perl. Tied hashes may behave differently to Perl’s hashes with respect to changes in order on
insertion and deletion of items.

As a side effect, calling values resets the HASH or ARRAY’s internal iterator (see each)
before yielding the values. In particular, calling values in void context resets the iterator with
no other overhead.

Apart from resetting the iterator, values @array in list context is the same as plain @array.
(We recommend that you use void context keys @array for this, but reasoned that taking
values @array out would require more documentation than leaving it in.)

Note that the values are not copied, which means modifying them will modify the contents of the
hash:

for (values %hash) { s/foo/bar/g } # modifies %hash values
for (@hash{keys %hash}) { s/foo/bar/g } # same

Starting with Perl 5.14, an experimental feature allowed values to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your code will
work only on Perls of a recent vintage:

use v5.12; # so keys/values/each work on arrays

See also keys, each, and sort.

perl v5.38.2 2025-07-25 225

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

vec EXPR,OFFSET,BITS
Treats the string in EXPR as a bit vector made up of elements of width BITS and returns the value
of the element specified by OFFSET as an unsigned integer. BITS therefore specifies the number
of bits that are reserved for each element in the bit vector. This must be a power of two from 1 to
32 (or 64, if your platform supports that).

If BITS is 8, "elements" coincide with bytes of the input string.

If BITS is 16 or more, bytes of the input string are grouped into chunks of size BITS/8, and each
group is converted to a number as with pack/unpack with big-endian formats n/N (and
analogously for BITS==64). See pack for details.

If bits is 4 or less, the string is broken into bytes, then the bits of each byte are broken into 8/BITS
groups. Bits of a byte are numbered in a little-endian-ish way, as in 0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80. For example, breaking the single input byte chr(0x36) into two
groups gives a list (0x6, 0x3); breaking it into 4 groups gives (0x2, 0x1, 0x3, 0x0).

vec may also be assigned to, in which case parentheses are needed to give the expression the
correct precedence as in

vec($image, $max_x * $x + $y, 8) = 3;

If the selected element is outside the string, the value 0 is returned. If an element off the end of
the string is written to, Perl will first extend the string with sufficiently many zero bytes. It is an
error to try to write off the beginning of the string (i.e., negative OFFSET).

If the string happens to be encoded as UTF−8 internally (and thus has the UTF8 flag set), vec
tries to convert it to use a one-byte-per-character internal representation. However, if the string
contains characters with values of 256 or higher, a fatal error will occur.

Strings created with vec can also be manipulated with the logical operators |, &, ˆ, and ˜. These
operators will assume a bit vector operation is desired when both operands are strings. See
"Bitwise String Operators" in perlop.

The following code will build up an ASCII string saying 'PerlPerlPerl'. The comments
show the string after each step. Note that this code works in the same way on big-endian or little-
endian machines.

my $foo = '';
vec($foo, 0, 32) = 0x5065726C; # 'Perl'

$foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P')

vec($foo, 2, 16) = 0x5065; # 'PerlPe'
vec($foo, 3, 16) = 0x726C; # 'PerlPerl'
vec($foo, 8, 8) = 0x50; # 'PerlPerlP'
vec($foo, 9, 8) = 0x65; # 'PerlPerlPe'
vec($foo, 20, 4) = 2; # 'PerlPerlPe' . "\x02"
vec($foo, 21, 4) = 7; # 'PerlPerlPer'

'r' is "\x72"
vec($foo, 45, 2) = 3; # 'PerlPerlPer' . "\x0c"
vec($foo, 93, 1) = 1; # 'PerlPerlPer' . "\x2c"
vec($foo, 94, 1) = 1; # 'PerlPerlPerl'

'l' is "\x6c"

To transform a bit vector into a string or list of 0’s and 1’s, use these:

my $bits = unpack("b*", $vector);
my @bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the *.

Here is an example to illustrate how the bits actually fall in place:

226 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

#!/usr/bin/perl −wl

print <<'EOT';
0 1 2 3

unpack("V",$_) 01234567890123456789012345678901
−−
EOT

for $w (0..3) {
$width = 2**$w;
for ($shift=0; $shift < $width; ++$shift) {

for ($off=0; $off < 32/$width; ++$off) {
$str = pack("B*", "0"x32);
$bits = (1<<$shift);
vec($str, $off, $width) = $bits;
$res = unpack("b*",$str);
$val = unpack("V", $str);
write;

}
}

}

format STDOUT =
vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
$off, $width, $bits, $val, $res
.
__END_ _

Regardless of the machine architecture on which it runs, the example above should print the
following table:

0 1 2 3
unpack("V",$_) 01234567890123456789012345678901

−−
vec($_, 0, 1) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 1) = 1 == 2 01000000000000000000000000000000
vec($_, 2, 1) = 1 == 4 00100000000000000000000000000000
vec($_, 3, 1) = 1 == 8 00010000000000000000000000000000
vec($_, 4, 1) = 1 == 16 00001000000000000000000000000000
vec($_, 5, 1) = 1 == 32 00000100000000000000000000000000
vec($_, 6, 1) = 1 == 64 00000010000000000000000000000000
vec($_, 7, 1) = 1 == 128 00000001000000000000000000000000
vec($_, 8, 1) = 1 == 256 00000000100000000000000000000000
vec($_, 9, 1) = 1 == 512 00000000010000000000000000000000
vec($_,10, 1) = 1 == 1024 00000000001000000000000000000000
vec($_,11, 1) = 1 == 2048 00000000000100000000000000000000
vec($_,12, 1) = 1 == 4096 00000000000010000000000000000000
vec($_,13, 1) = 1 == 8192 00000000000001000000000000000000
vec($_,14, 1) = 1 == 16384 00000000000000100000000000000000
vec($_,15, 1) = 1 == 32768 00000000000000010000000000000000
vec($_,16, 1) = 1 == 65536 00000000000000001000000000000000
vec($_,17, 1) = 1 == 131072 00000000000000000100000000000000
vec($_,18, 1) = 1 == 262144 00000000000000000010000000000000
vec($_,19, 1) = 1 == 524288 00000000000000000001000000000000
vec($_,20, 1) = 1 == 1048576 00000000000000000000100000000000
vec($_,21, 1) = 1 == 2097152 00000000000000000000010000000000
vec($_,22, 1) = 1 == 4194304 00000000000000000000001000000000
vec($_,23, 1) = 1 == 8388608 00000000000000000000000100000000
vec($_,24, 1) = 1 == 16777216 00000000000000000000000010000000
vec($_,25, 1) = 1 == 33554432 00000000000000000000000001000000

perl v5.38.2 2025-07-25 227

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

vec($_,26, 1) = 1 == 67108864 00000000000000000000000000100000
vec($_,27, 1) = 1 == 134217728 00000000000000000000000000010000
vec($_,28, 1) = 1 == 268435456 00000000000000000000000000001000
vec($_,29, 1) = 1 == 536870912 00000000000000000000000000000100
vec($_,30, 1) = 1 == 1073741824 00000000000000000000000000000010
vec($_,31, 1) = 1 == 2147483648 00000000000000000000000000000001
vec($_, 0, 2) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 2) = 1 == 4 00100000000000000000000000000000
vec($_, 2, 2) = 1 == 16 00001000000000000000000000000000
vec($_, 3, 2) = 1 == 64 00000010000000000000000000000000
vec($_, 4, 2) = 1 == 256 00000000100000000000000000000000
vec($_, 5, 2) = 1 == 1024 00000000001000000000000000000000
vec($_, 6, 2) = 1 == 4096 00000000000010000000000000000000
vec($_, 7, 2) = 1 == 16384 00000000000000100000000000000000
vec($_, 8, 2) = 1 == 65536 00000000000000001000000000000000
vec($_, 9, 2) = 1 == 262144 00000000000000000010000000000000
vec($_,10, 2) = 1 == 1048576 00000000000000000000100000000000
vec($_,11, 2) = 1 == 4194304 00000000000000000000001000000000
vec($_,12, 2) = 1 == 16777216 00000000000000000000000010000000
vec($_,13, 2) = 1 == 67108864 00000000000000000000000000100000
vec($_,14, 2) = 1 == 268435456 00000000000000000000000000001000
vec($_,15, 2) = 1 == 1073741824 00000000000000000000000000000010
vec($_, 0, 2) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 2) = 2 == 8 00010000000000000000000000000000
vec($_, 2, 2) = 2 == 32 00000100000000000000000000000000
vec($_, 3, 2) = 2 == 128 00000001000000000000000000000000
vec($_, 4, 2) = 2 == 512 00000000010000000000000000000000
vec($_, 5, 2) = 2 == 2048 00000000000100000000000000000000
vec($_, 6, 2) = 2 == 8192 00000000000001000000000000000000
vec($_, 7, 2) = 2 == 32768 00000000000000010000000000000000
vec($_, 8, 2) = 2 == 131072 00000000000000000100000000000000
vec($_, 9, 2) = 2 == 524288 00000000000000000001000000000000
vec($_,10, 2) = 2 == 2097152 00000000000000000000010000000000
vec($_,11, 2) = 2 == 8388608 00000000000000000000000100000000
vec($_,12, 2) = 2 == 33554432 00000000000000000000000001000000
vec($_,13, 2) = 2 == 134217728 00000000000000000000000000010000
vec($_,14, 2) = 2 == 536870912 00000000000000000000000000000100
vec($_,15, 2) = 2 == 2147483648 00000000000000000000000000000001
vec($_, 0, 4) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 4) = 1 == 16 00001000000000000000000000000000
vec($_, 2, 4) = 1 == 256 00000000100000000000000000000000
vec($_, 3, 4) = 1 == 4096 00000000000010000000000000000000
vec($_, 4, 4) = 1 == 65536 00000000000000001000000000000000
vec($_, 5, 4) = 1 == 1048576 00000000000000000000100000000000
vec($_, 6, 4) = 1 == 16777216 00000000000000000000000010000000
vec($_, 7, 4) = 1 == 268435456 00000000000000000000000000001000
vec($_, 0, 4) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 4) = 2 == 32 00000100000000000000000000000000
vec($_, 2, 4) = 2 == 512 00000000010000000000000000000000
vec($_, 3, 4) = 2 == 8192 00000000000001000000000000000000
vec($_, 4, 4) = 2 == 131072 00000000000000000100000000000000
vec($_, 5, 4) = 2 == 2097152 00000000000000000000010000000000
vec($_, 6, 4) = 2 == 33554432 00000000000000000000000001000000
vec($_, 7, 4) = 2 == 536870912 00000000000000000000000000000100
vec($_, 0, 4) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 4) = 4 == 64 00000010000000000000000000000000
vec($_, 2, 4) = 4 == 1024 00000000001000000000000000000000
vec($_, 3, 4) = 4 == 16384 00000000000000100000000000000000
vec($_, 4, 4) = 4 == 262144 00000000000000000010000000000000

228 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

vec($_, 5, 4) = 4 == 4194304 00000000000000000000001000000000
vec($_, 6, 4) = 4 == 67108864 00000000000000000000000000100000
vec($_, 7, 4) = 4 == 1073741824 00000000000000000000000000000010
vec($_, 0, 4) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 4) = 8 == 128 00000001000000000000000000000000
vec($_, 2, 4) = 8 == 2048 00000000000100000000000000000000
vec($_, 3, 4) = 8 == 32768 00000000000000010000000000000000
vec($_, 4, 4) = 8 == 524288 00000000000000000001000000000000
vec($_, 5, 4) = 8 == 8388608 00000000000000000000000100000000
vec($_, 6, 4) = 8 == 134217728 00000000000000000000000000010000
vec($_, 7, 4) = 8 == 2147483648 00000000000000000000000000000001
vec($_, 0, 8) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 8) = 1 == 256 00000000100000000000000000000000
vec($_, 2, 8) = 1 == 65536 00000000000000001000000000000000
vec($_, 3, 8) = 1 == 16777216 00000000000000000000000010000000
vec($_, 0, 8) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 8) = 2 == 512 00000000010000000000000000000000
vec($_, 2, 8) = 2 == 131072 00000000000000000100000000000000
vec($_, 3, 8) = 2 == 33554432 00000000000000000000000001000000
vec($_, 0, 8) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 8) = 4 == 1024 00000000001000000000000000000000
vec($_, 2, 8) = 4 == 262144 00000000000000000010000000000000
vec($_, 3, 8) = 4 == 67108864 00000000000000000000000000100000
vec($_, 0, 8) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 8) = 8 == 2048 00000000000100000000000000000000
vec($_, 2, 8) = 8 == 524288 00000000000000000001000000000000
vec($_, 3, 8) = 8 == 134217728 00000000000000000000000000010000
vec($_, 0, 8) = 16 == 16 00001000000000000000000000000000
vec($_, 1, 8) = 16 == 4096 00000000000010000000000000000000
vec($_, 2, 8) = 16 == 1048576 00000000000000000000100000000000
vec($_, 3, 8) = 16 == 268435456 00000000000000000000000000001000
vec($_, 0, 8) = 32 == 32 00000100000000000000000000000000
vec($_, 1, 8) = 32 == 8192 00000000000001000000000000000000
vec($_, 2, 8) = 32 == 2097152 00000000000000000000010000000000
vec($_, 3, 8) = 32 == 536870912 00000000000000000000000000000100
vec($_, 0, 8) = 64 == 64 00000010000000000000000000000000
vec($_, 1, 8) = 64 == 16384 00000000000000100000000000000000
vec($_, 2, 8) = 64 == 4194304 00000000000000000000001000000000
vec($_, 3, 8) = 64 == 1073741824 00000000000000000000000000000010
vec($_, 0, 8) = 128 == 128 00000001000000000000000000000000
vec($_, 1, 8) = 128 == 32768 00000000000000010000000000000000
vec($_, 2, 8) = 128 == 8388608 00000000000000000000000100000000
vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001

wait
Behaves like wait (2) on your system: it waits for a child process to terminate and returns the pid
of the deceased process, or −1 if there are no child processes. The status is returned in $? and
${ˆCHILD_ERROR_NATIVE}. Note that a return value of −1 could mean that child processes
are being automatically reaped, as described in perlipc.

If you use wait in your handler for $SIG{CHLD}, it may accidentally wait for the child created
by qx or system. See perlipc for details.

Portability issues: "wait" in perlport.

waitpid PID,FLAGS
Waits for a particular child process to terminate and returns the pid of the deceased process, or −1
if there is no such child process. A non-blocking wait (with WNOHANG in FLAGS) can return 0
if there are child processes matching PID but none have terminated yet. The status is returned in
$? and ${ˆCHILD_ERROR_NATIVE}.

perl v5.38.2 2025-07-25 229

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

A PID of 0 indicates to wait for any child process whose process group ID is equal to that of the
current process. A PID of less than −1 indicates to wait for any child process whose process
group ID is equal to −PID. A PID of −1 indicates to wait for any child process.

If you say

use POSIX ":sys_wait_h";

my $kid;
do {

$kid = waitpid(−1, WNOHANG);
} while $kid > 0;

or

1 while waitpid(−1, WNOHANG) > 0;

then you can do a non-blocking wait for all pending zombie processes (see "WAIT" in POSIX).
Non-blocking wait is available on machines supporting either the waitpid (2) or wait4 (2) syscalls.
However, waiting for a particular pid with FLAGS of 0 is implemented everywhere. (Perl
emulates the system call by remembering the status values of processes that have exited but have
not been harvested by the Perl script yet.)

Note that on some systems, a return value of −1 could mean that child processes are being
automatically reaped. See perlipc for details, and for other examples.

Portability issues: "waitpid" in perlport.

wantarray
Returns true if the context of the currently executing subroutine or eval is looking for a list
value. Returns false if the context is looking for a scalar. Returns the undefined value if the
context is looking for no value (void context).

return unless defined wantarray; # don't bother doing more
my @a = complex_calculation();
return wantarray ? @a : "@a";

wantarray’s result is unspecified in the top level of a file, in a BEGIN, UNITCHECK, CHECK,
INIT or END block, or in a DESTROY method.

This function should have been named wantlist() instead.

warn LIST
Emits a warning, usually by printing it to STDERR. warn interprets its operand LIST in the same
way as die, but is slightly different in what it defaults to when LIST is empty or makes an empty
string. If it is empty and $@ already contains an exception value then that value is used after
appending "\t...caught". If it is empty and $@ is also empty then the string "Warning:
Something's wrong" is used.

By default, the exception derived from the operand LIST is stringified and printed to STDERR.
This behaviour can be altered by installing a $SIG{_ _WARN_ _} handler. If there is such a
handler then no message is automatically printed; it is the handler’s responsibility to deal with the
exception as it sees fit (like, for instance, converting it into a die). Most handlers must therefore
arrange to actually display the warnings that they are not prepared to deal with, by calling warn
again in the handler. Note that this is quite safe and will not produce an endless loop, since
__WARN_ _ hooks are not called from inside one.

You will find this behavior is slightly different from that of $SIG{_ _DIE_ _} handlers (which
don’t suppress the error text, but can instead call die again to change it).

Using a __WARN_ _ handler provides a powerful way to silence all warnings (even the so-called
mandatory ones). An example:

230 2025-07-25 perl v5.38.2

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

wipe out *all* compile−time warnings
BEGIN { $SIG{'__WARN_ _'} = sub { warn $_[0] if $DOWARN } }
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,

but hey, you asked for it!
no compile−time or run−time warnings before here
$DOWARN = 1;

run−time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

See perlvar for details on setting %SIG entries and for more examples. See the Carp module for
other kinds of warnings using its carp and cluck functions.

write FILEHANDLE
write EXPR
write

Writes a formatted record (possibly multi-line) to the specified FILEHANDLE, using the format
associated with that file. By default the format for a file is the one having the same name as the
filehandle, but the format for the current output channel (see the select function) may be set
explicitly by assigning the name of the format to the $˜ variable.

Top of form processing is handled automatically: if there is insufficient room on the current page
for the formatted record, the page is advanced by writing a form feed and a special top-of-page
format is used to format the new page header before the record is written. By default, the top-of-
page format is the name of the filehandle with _TOP appended, or top in the current package if
the former does not exist. This would be a problem with autovivified filehandles, but it may be
dynamically set to the format of your choice by assigning the name to the $ˆ variable while that
filehandle is selected. The number of lines remaining on the current page is in variable $−, which
can be set to 0 to force a new page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which starts
out as STDOUT but may be changed by the select operator. If the FILEHANDLE is an EXPR,
then the expression is evaluated and the resulting string is used to look up the name of the
FILEHANDLE at run time. For more on formats, see perlform.

Note that write is not the opposite of read. Unfortunately.

y/// The transliteration operator. Same as tr///. See "Quote-Like Operators" in perlop.

Non-function Keywords by Cross-reference
perldata

_ _DATA_ _
_ _END_ _

These keywords are documented in "Special Literals" in perldata.

perlmod

BEGIN
CHECK
END
INIT
UNITCHECK

These compile phase keywords are documented in "BEGIN, UNITCHECK, CHECK, INIT and
END" in perlmod.

perlobj

DESTROY
This method keyword is documented in "Destructors" in perlobj.

perlop

and

perl v5.38.2 2025-07-25 231

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

cmp
eq
ge
gt
isa
le
lt
ne
not
or
x
xor These operators are documented in perlop.

perlsub

AUTOLOAD
This keyword is documented in "Autoloading" in perlsub.

perlsyn

else
elsif
for
foreach
if
unless
until
while

These flow-control keywords are documented in "Compound Statements" in perlsyn.

elseif
The "else if" keyword is spelled elsif in Perl. There’s no elif or else if either. It does
parse elseif, but only to warn you about not using it.

See the documentation for flow-control keywords in "Compound Statements" in perlsyn.

default
given
when

These flow-control keywords related to the experimental switch feature are documented in
"Switch Statements" in perlsyn.

try
catch
finally

These flow-control keywords related to the experimental try feature are documented in "Try
Catch Exception Handling" in perlsyn.

defer
This flow-control keyword related to the experimental defer feature is documented in "defer
blocks" in perlsyn.

ADJUST
This class-related phaser block is documented in perlclass.

232 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

NAME
perlvar − Perl predefined variables

DESCRIPTION
The Syntax of Variable Names

Variable names in Perl can have sev eral formats. Usually, they must begin with a letter or underscore,
in which case they can be arbitrarily long (up to an internal limit of 251 characters) and may contain
letters, digits, underscores, or the special sequence :: or '. In this case, the part before the last :: or
' is taken to be a package qualifier; see perlmod. A Unicode letter that is not ASCII is not considered
to be a letter unless "use utf8" is in effect, and somewhat more complicated rules apply; see
"Identifier parsing" in perldata for details.

Perl variable names may also be a sequence of digits, a single punctuation character, or the two-
character sequence: ˆ (caret or CIRCUMFLEX ACCENT) followed by any one of the characters
[][A−Zˆ_?\]. These names are all reserved for special uses by Perl; for example, the all-digits
names are used to hold data captured by backreferences after a regular expression match.

Since Perl v5.6.0, Perl variable names may also be alphanumeric strings preceded by a caret. These
must all be written using the demarcated variable form using curly braces such as ${ˆFoo}; the
braces are not optional. ${ˆFoo} denotes the scalar variable whose name is considered to be a
control−F followed by two o’s. (See "Demarcated variable names using braces" in perldata for more
information on this form of spelling a variable name or specifying access to an element of an array or a
hash). These variables are reserved for future special uses by Perl, except for the ones that begin with
ˆ_ (caret-underscore). No name that begins with ˆ_ will acquire a special meaning in any future
version of Perl; such names may therefore be used safely in programs. $ˆ_ itself, however, is reserved.

Note that you also must use the demarcated form to access subscripts of variables of this type when
interpolating, for instance to access the first element of the @{ˆCAPTURE} variable inside of a double
quoted string you would write "${ˆCAPTURE[0]}" and NOT "${ˆCAPTURE}[0]" which would
mean to reference a scalar variable named ${ˆCAPTURE} and not index 0 of the magic
@{ˆCAPTURE} array which is populated by the regex engine.

Perl identifiers that begin with digits or punctuation characters are exempt from the effects of the
package declaration and are always forced to be in package main; they are also exempt from
strict 'vars' errors. A few other names are also exempt in these ways:

ENV STDIN
INC STDOUT
ARGV STDERR
ARGVOUT
SIG

In particular, the special ${ˆ_XYZ} variables are always taken to be in package main, reg ardless of
any package declarations presently in scope.

SPECIAL VARIABLES
The following names have special meaning to Perl. Most punctuation names have reasonable
mnemonics, or analogs in the shells. Nevertheless, if you wish to use long variable names, you need
only say:

use English;

at the top of your program. This aliases all the short names to the long names in the current package.
Some even hav e medium names, generally borrowed from awk. For more info, please see English.

Before you continue, note the sort order for variables. In general, we first list the variables in case-
insensitive, almost-lexigraphical order (ignoring the { or ˆ preceding words, as in ${ˆUNICODE} or
$ˆT), although $_ and @_ move up to the top of the pile. For variables with the same identifier, we list
it in order of scalar, array, hash, and bareword.

General Variables
$ARG
$_ The default input and pattern-searching space. The following pairs are equivalent:

perl v5.38.2 2025-07-25 233

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

while (<>) {...} # equivalent only in while!
while (defined($_ = <>)) {...}

/ˆSubject:/
$_ =˜ /ˆSubject:/

tr/a−z/A−Z/
$_ =˜ tr/a−z/A−Z/

chomp
chomp($_)

Here are the places where Perl will assume $_ ev en if you don’t use it:

• The following functions use $_ as a default argument:

abs, alarm, chomp, chop, chr, chroot, cos, defined, eval, evalbytes, exp, fc, glob, hex, int,
lc, lcfirst, length, log, lstat, mkdir, oct, ord, pos, print, printf, quotemeta, readlink,
readpipe, ref, require, reverse (in scalar context only), rmdir, say, sin, split (for its second
argument), sqrt, stat, study, uc, ucfirst, unlink, unpack.

• All file tests (−f, −d) except for −t, which defaults to STDIN. See "−X" in perlfunc

• The pattern matching operations m//, s/// and tr/// (aka y///) when used without
an =˜ operator.

• The default iterator variable in a foreach loop if no other variable is supplied.

• The implicit iterator variable in the grep() and map() functions.

• The implicit variable of given().

• The default place to put the next value or input record when a <FH>, readline,
readdir or each operation’s result is tested by itself as the sole criterion of a while
test. Outside a while test, this will not happen.

$_ is a global variable.

However, between perl v5.10.0 and v5.24.0, it could be used lexically by writing my $_.
Making $_ refer to the global $_ in the same scope was then possible with our $_. This
experimental feature was removed and is now a fatal error, but you may encounter it in older
code.

Mnemonic: underline is understood in certain operations.

@ARG
@_ Within a subroutine the array @_ contains the parameters passed to that subroutine. Inside a

subroutine, @_ is the default array for the array operators pop and shift.

See perlsub.

$LIST_SEPARATOR
$" When an array or an array slice is interpolated into a double-quoted string or a similar

context such as /.../, its elements are separated by this value. Default is a space. For
example, this:

print "The array is: @array\n";

is equivalent to this:

print "The array is: " . join($", @array) . "\n";

Mnemonic: works in double-quoted context.

$PROCESS_ID
$PID
$$ The process number of the Perl running this script. Though you can set this variable, doing

so is generally discouraged, although it can be invaluable for some testing purposes. It will
be reset automatically across fork() calls.

234 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

Note for Linux and Debian GNU/kFreeBSD users: Before Perl v5.16.0 perl would emulate
POSIX semantics on Linux systems using LinuxThreads, a partial implementation of POSIX
Threads that has since been superseded by the Native POSIX Thread Library (NPTL).

LinuxThreads is now obsolete on Linux, and caching getpid() like this made embedding
perl unnecessarily complex (since you’d hav e to manually update the value of $$), so now $$
and getppid() will always return the same values as the underlying C library.

Debian GNU/kFreeBSD systems also used LinuxThreads up until and including the 6.0
release, but after that moved to FreeBSD thread semantics, which are POSIX-like.

To see if your system is affected by this discrepancy check if getconf
GNU_LIBPTHREAD_VERSION | grep −q NPTL returns a false value. NTPL threads
preserve the POSIX semantics.

Mnemonic: same as shells.

$PROGRAM_NAME
$0 Contains the name of the program being executed.

On some (but not all) operating systems assigning to $0 modifies the argument area that the
ps program sees. On some platforms you may have to use special ps options or a different
ps to see the changes. Modifying the $0 is more useful as a way of indicating the current
program state than it is for hiding the program you’re running.

Note that there are platform-specific limitations on the maximum length of $0. In the most
extreme case it may be limited to the space occupied by the original $0.

In some platforms there may be arbitrary amount of padding, for example space characters,
after the modified name as shown by ps. In some platforms this padding may extend all the
way to the original length of the argument area, no matter what you do (this is the case for
example with Linux 2.2).

Note for BSD users: setting $0 does not completely remove "perl" from the ps (1) output.
For example, setting $0 to "foobar" may result in "perl: foobar (perl)"
(whether both the "perl: " prefix and the " (perl)" suffix are shown depends on your exact
BSD variant and version). This is an operating system feature, Perl cannot help it.

In multithreaded scripts Perl coordinates the threads so that any thread may modify its copy
of the $0 and the change becomes visible to ps (1) (assuming the operating system plays
along). Note that the view of $0 the other threads have will not change since they hav e their
own copies of it.

If the program has been given to perl via the switches −e or −E, $0 will contain the string
"−e".

On Linux as of perl v5.14.0 the legacy process name will be set with prctl(2), in addition
to altering the POSIX name via argv[0] as perl has done since version 4.000. Now system
utilities that read the legacy process name such as ps, top and killall will recognize the name
you set when assigning to $0. The string you supply will be cut off at 16 bytes, this is a
limitation imposed by Linux.

Wide characters are invalid in $0 values. For historical reasons, though, Perl accepts them
and encodes them to UTF−8. When this happens a wide-character warning is triggered.

Mnemonic: same as sh and ksh.

$REAL_GROUP_ID
$GID
$(The real gid of this process. If you are on a machine that supports membership in multiple

groups simultaneously, giv es a space separated list of groups you are in. The first number is
the one returned by getgid(), and the subsequent ones by getgroups(), one of which
may be the same as the first number.

However, a value assigned to $(must be a single number used to set the real gid. So the
value given by $(should not be assigned back to $(without being forced numeric, such as
by adding zero. Note that this is different to the effective gid ($)) which does take a list.

perl v5.38.2 2025-07-25 235

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

You can change both the real gid and the effective gid at the same time by using
POSIX::setgid(). Changes to $(require a check to $! to detect any possible errors
after an attempted change.

Mnemonic: parentheses are used to group things. The real gid is the group you left, if you’re
running setgid.

$EFFECTIVE_GROUP_ID
$EGID
$) The effective gid of this process. If you are on a machine that supports membership in

multiple groups simultaneously, giv es a space separated list of groups you are in. The first
number is the one returned by getegid(), and the subsequent ones by getgroups(),
one of which may be the same as the first number.

Similarly, a value assigned to $) must also be a space-separated list of numbers. The first
number sets the effective gid, and the rest (if any) are passed to setgroups(). To get the
effect of an empty list for setgroups(), just repeat the new effective gid; that is, to force
an effective gid of 5 and an effectively empty setgroups() list, say $) = "5 5" .

You can change both the effective gid and the real gid at the same time by using
POSIX::setgid() (use only a single numeric argument). Changes to $) require a check
to $! to detect any possible errors after an attempted change.

$<, $>, $(and $) can be set only on machines that support the corresponding
set[re][ug]id() routine. $(and $) can be swapped only on machines supporting
setregid().

Mnemonic: parentheses are used to group things. The effective gid is the group that’s right
for you, if you’re running setgid.

$REAL_USER_ID
$UID
$< The real uid of this process. You can change both the real uid and the effective uid at the

same time by using POSIX::setuid(). Since changes to $< require a system call, check
$! after a change attempt to detect any possible errors.

Mnemonic: it’s the uid you came from, if you’re running setuid.

$EFFECTIVE_USER_ID
$EUID
$> The effective uid of this process. For example:

$< = $>; # set real to effective uid
($<,$>) = ($>,$<); # swap real and effective uids

You can change both the effective uid and the real uid at the same time by using
POSIX::setuid(). Changes to $> require a check to $! to detect any possible errors
after an attempted change.

$< and $> can be swapped only on machines supporting setreuid().

Mnemonic: it’s the uid you went to, if you’re running setuid.

$SUBSCRIPT_SEPARATOR
$SUBSEP
$; The subscript separator for multidimensional array emulation. If you refer to a hash element

as

$foo{$x,$y,$z}

it really means

$foo{join($;, $x, $y, $z)}

But don’t put

@foo{$x,$y,$z} # a slice−−note the @

which means

236 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

($foo{$x},$foo{$y},$foo{$z})

Default is "\034", the same as SUBSEP in awk. If your keys contain binary data there might
not be any safe value for $;.

Consider using "real" multidimensional arrays as described in perllol.

Mnemonic: comma (the syntactic subscript separator) is a semi-semicolon.

$a
$b Special package variables when using sort(), see "sort" in perlfunc. Because of this

specialness $a and $b don’t need to be declared (using use vars, or our()) even when
using the strict 'vars' pragma. Don’t lexicalize them with my $a or my $b if you
want to be able to use them in the sort() comparison block or function.

%ENV The hash %ENV contains your current environment. Setting a value in ENV changes the
environment for any child processes you subsequently fork() off.

As of v5.18.0, both keys and values stored in %ENV are stringified.

my $foo = 1;
$ENV{'bar'} = \$foo;
if(ref $ENV{'bar'}) {

say "Pre 5.18.0 Behaviour";
} else {

say "Post 5.18.0 Behaviour";
}

Previously, only child processes received stringified values:

my $foo = 1;
$ENV{'bar'} = \$foo;

Always printed 'non ref'
system($ˆX, '−e',

q/print (ref $ENV{'bar'} ? 'ref' : 'non ref') /);

This happens because you can’t really share arbitrary data structures with foreign processes.

$OLD_PERL_VERSION
$] The revision, version, and subversion of the Perl interpreter, represented as a decimal of the

form 5.XXXYYY, where XXX is the version / 1e3 and YYY is the subversion / 1e6. For
example, Perl v5.10.1 would be "5.010001".

This variable can be used to determine whether the Perl interpreter executing a script is in the
right range of versions:

warn "No PerlIO!\n" if "$]" < 5.008;

When comparing $], numeric comparison operators should be used, but the variable should
be stringified first to avoid issues where its original numeric value is inaccurate.

See also the documentation of use VERSION and require VERSION for a convenient
way to fail if the running Perl interpreter is too old.

See "$ˆV" for a representation of the Perl version as a version object, which allows more
flexible string comparisons.

The main advantage of $] over $ˆV is that it works the same on any version of Perl. The
disadvantages are that it can’t easily be compared to versions in other formats (e.g. literal
v−strings, "v1.2.3" or version objects) and numeric comparisons are subject to the binary
floating point representation; it’s good for numeric literal version checks and bad for
comparing to a variable that hasn’t been sanity-checked.

The $OLD_PERL_VERSION form was added in Perl v5.20.0 for historical reasons but its
use is discouraged. (If your reason to use $] is to run code on old perls then referring to it as
$OLD_PERL_VERSION would be self-defeating.)

perl v5.38.2 2025-07-25 237

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

Mnemonic: Is this version of perl in the right bracket?

$SYSTEM_FD_MAX
$ˆF The maximum system file descriptor, ordinarily 2. System file descriptors are passed to

exec()ed processes, while higher file descriptors are not. Also, during an open(), system
file descriptors are preserved even if the open() fails (ordinary file descriptors are closed
before the open() is attempted). The close-on-exec status of a file descriptor will be
decided according to the value of $ˆF when the corresponding file, pipe, or socket was
opened, not the time of the exec().

@F The array @F contains the fields of each line read in when autosplit mode is turned on. See
perlrun for the −a switch. This array is package-specific, and must be declared or given a full
package name if not in package main when running under strict 'vars'.

@INC The array @INC contains the list of places that the do EXPR, require, or use constructs
look for their library files. It initially consists of the arguments to any −I command-line
switches, followed by the default Perl library, probably /usr/local/lib/perl. Prior to Perl 5.26,
. −which represents the current directory, was included in @INC; it has been removed. This
change in behavior is documented in PERL_USE_UNSAFE_INC and it is not recommended
that . be re-added to @INC. If you need to modify @INC at runtime, you should use the use
lib pragma to get the machine-dependent library properly loaded as well:

use lib '/mypath/libdir/';
use SomeMod;

You can also insert hooks into the file inclusion system by putting Perl code directly into
@INC. Those hooks may be subroutine references, array references or blessed objects. See
"require" in perlfunc for details.

%INC The hash %INC contains entries for each filename included via the do, require, or use
operators. The key is the filename you specified (with module names converted to
pathnames), and the value is the location of the file found. The require operator uses this
hash to determine whether a particular file has already been included.

If the file was loaded via a hook (e.g. a subroutine reference, see "require" in perlfunc for a
description of these hooks), this hook is by default inserted into %INC in place of a filename.
Note, however, that the hook may have set the %INC entry by itself to provide some more
specific info.

$INC As of 5.37.7 when an @INC hook is executed the index of the @INC array that holds the hook
will be localized into the $INC variable. When the hook returns the integer successor of its
value will be used to determine the next index in @INC that will be checked, thus if it is set to
−1 (or undef) the traversal over the @INC array will be restarted from its beginning.

Normally traversal through the @INC array is from beginning to end (0 .. $#INC), and if
the @INC array is modified by the hook the iterator may be left in a state where newly added
entries are skipped. Changing this value allows an @INC hook to rewrite the @INC array and
tell Perl where to continue afterwards. See "require" in perlfunc for details on @INC hooks.

$INPLACE_EDIT
$ˆI The current value of the inplace-edit extension. Use undef to disable inplace editing.

Mnemonic: value of −i switch.

@ISA Each package contains a special array called @ISA which contains a list of that class’s parent
classes, if any. This array is simply a list of scalars, each of which is a string that corresponds
to a package name. The array is examined when Perl does method resolution, which is
covered in perlobj.

To load packages while adding them to @ISA, see the parent pragma. The discouraged base
pragma does this as well, but should not be used except when compatibility with the
discouraged fields pragma is required.

$ˆM By default, running out of memory is an untrappable, fatal error. Howev er, if suitably built,
Perl can use the contents of $ˆM as an emergency memory pool after die()ing. Suppose
that your Perl were compiled with −DPERL_EMERGENCY_SBRK and used Perl’s malloc.

238 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

Then

$ˆM = 'a' x (1 << 16);

would allocate a 64K buffer for use in an emergency. See the INSTALL file in the Perl
distribution for information on how to add custom C compilation flags when compiling perl.
To discourage casual use of this advanced feature, there is no English long name for this
variable.

This variable was added in Perl 5.004.

${ˆMAX_NESTED_EVAL_BEGIN_BLOCKS}
This variable determines the maximum number eval EXPR/BEGIN or require/BEGIN
block nesting that is allowed. This means it also controls the maximum nesting of use
statements as well.

The default of 1000 should be sufficiently large for normal working purposes, and if you
must raise it then you should be conservative with your choice or you may encounter
segfaults from exhaustion of the C stack. It seems unlikely that real code has a use depth
above 1000, but we have left this configurable just in case.

When set to 0 then BEGIN blocks inside of eval EXPR or require EXPR are forbidden
entirely and will trigger an exception which will terminate the compilation and in the case of
require will throw an exception, or in the case of eval return the error in $@ as usual.

Consider the code

perl −le'sub f { eval "BEGIN { f() }"; } f()'

each invocation of f() will consume considerable C stack, and this variable is used to cause
code like this to die instead of exhausting the C stack and triggering a segfault. Needless to
say code like this is unusual, it is unlikely you will actually need to raise the setting.
However it may be useful to set it to 0 for a limited time period to prevent BEGIN{} blocks
from being executed during an eval EXPR.

Note that setting this to 1 would NOT affect code like this:

BEGIN { $n += 1; BEGIN { $n += 2; BEGIN { $n += 4 } } }

The reason is that BEGIN blocks are executed immediately after they are completed, thus the
innermost will execute before the ones which contain it have even finished compiling, and the
depth will not go above 1. In fact the above code is equivalent to

BEGIN { $n+=4 }
BEGIN { $n+=2 }
BEGIN { $n+=1 }

which makes it obvious why a ${ˆMAX_EVAL_BEGIN_DEPTH} of 1 would not block this
code.

Only BEGIN’s executed inside of an eval or require (possibly via use) are affected.

$OSNAME
$ˆO The name of the operating system under which this copy of Perl was built, as determined

during the configuration process. For examples see "PLATFORMS" in perlport.

The value is identical to $Config{'osname'}. See also Config and the −V command-
line switch documented in perlrun.

In Windows platforms, $ˆO is not very helpful: since it is always MSWin32, it doesn’t tell
the difference between 95/98/ME/NT/2000/XP/CE/.NET. Use Win32::GetOSName() or
Win32::GetOSVersion() (see Win32 and perlport) to distinguish between the variants.

This variable was added in Perl 5.003.

%SIG The hash %SIG contains signal handlers for signals. For example:

perl v5.38.2 2025-07-25 239

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

sub handler { # 1st argument is signal name
my($sig) = @_;
print "Caught a SIG$sig−−shutting down\n";
close(LOG);
exit(0);

}

$SIG{'INT'} = \&handler;
$SIG{'QUIT'} = \&handler;
...
$SIG{'INT'} = 'DEFAULT'; # restore default action
$SIG{'QUIT'} = 'IGNORE'; # ignore SIGQUIT

Using a value of 'IGNORE' usually has the effect of ignoring the signal, except for the
CHLD signal. See perlipc for more about this special case. Using an empty string or undef
as the value has the same effect as 'DEFAULT'.

Here are some other examples:

$SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not
recommended)

$SIG{"PIPE"} = \&Plumber; # just fine; assume current
Plumber

$SIG{"PIPE"} = *Plumber; # somewhat esoteric
$SIG{"PIPE"} = Plumber(); # oops, what did Plumber()

return??

Be sure not to use a bareword as the name of a signal handler, lest you inadvertently call it.

Using a string that doesn’t correspond to any existing function or a glob that doesn’t contain
a code slot is equivalent to 'IGNORE', but a warning is emitted when the handler is being
called (the warning is not emitted for the internal hooks described below).

If your system has the sigaction() function then signal handlers are installed using it.
This means you get reliable signal handling.

The default delivery policy of signals changed in Perl v5.8.0 from immediate (also known as
"unsafe") to deferred, also known as "safe signals". See perlipc for more information.

Certain internal hooks can be also set using the %SIG hash. The routine indicated by
$SIG{_ _WARN_ _} is called when a warning message is about to be printed. The warning
message is passed as the first argument. The presence of a __WARN_ _ hook causes the
ordinary printing of warnings to STDERR to be suppressed. You can use this to save
warnings in a variable, or turn warnings into fatal errors, like this:

local $SIG{__WARN_ _} = sub { die $_[0] };
eval $proggie;

As the 'IGNORE' hook is not supported by __WARN_ _, its effect is the same as using
'DEFAULT'. You can disable warnings using the empty subroutine:

local $SIG{__WARN_ _} = sub {};

The routine indicated by $SIG{_ _DIE_ _} is called when a fatal exception is about to be
thrown. The error message is passed as the first argument. When a __DIE_ _ hook routine
returns, the exception processing continues as it would have in the absence of the hook,
unless the hook routine itself exits via a goto &sub, a loop exit, or a die(). The
__DIE_ _ handler is explicitly disabled during the call, so that you can die from a
__DIE_ _ handler. Similarly for __WARN_ _.

The $SIG{_ _DIE_ _} hook is called even inside an eval(). It was never intended to
happen this way, but an implementation glitch made this possible. This used to be deprecated,
as it allowed strange action at a distance like rewriting a pending exception in $@. Plans to
rectify this have been scrapped, as users found that rewriting a pending exception is actually
a useful feature, and not a bug.

240 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

The $SIG{_ _DIE_ _} doesn’t support 'IGNORE'; it has the same effect as 'DEFAULT'.

__DIE_ _/__WARN_ _ handlers are very special in one respect: they may be called to
report (probable) errors found by the parser. In such a case the parser may be in inconsistent
state, so any attempt to evaluate Perl code from such a handler will probably result in a
segfault. This means that warnings or errors that result from parsing Perl should be used with
extreme caution, like this:

require Carp if defined $ˆS;
Carp::confess("Something wrong") if defined &Carp::confess;
die "Something wrong, but could not load Carp to give "
. "backtrace...\n\t"
. "To see backtrace try starting Perl with −MCarp switch";

Here the first line will load Carp unless it is the parser who called the handler. The second
line will print backtrace and die if Carp was available. The third line will be executed only
if Carp was not available.

Having to even think about the $ˆS variable in your exception handlers is simply wrong.
$SIG{_ _DIE_ _} as currently implemented invites grievous and difficult to track down
errors. Avoid it and use an END{} or CORE::GLOBAL::die override instead.

See "die" in perlfunc, "warn" in perlfunc, "eval" in perlfunc, and warnings for additional
information.

%{ˆHOOK}
This hash contains coderefs which are called when various perl keywords which are hard or
impossible to wrap are called. The keys of this hash are named after the keyword that is being
hooked, followed by two underbars and then a phase term; either "before" or "after".

Perl will throw an error if you attempt modify a key which is not documented to exist, or if
you attempt to store anything other than a code reference or undef in the hash. If you wish to
use an object to implement a hook you can use currying to embed the object into an
anonymous code reference.

Currently there is only one keyword which can be hooked, require, but it is expected that
in future releases there will be additional keywords with hook support.

require_ _before
The routine indicated by ${ˆHOOK}{require_ _before} is called by require
before it checks %INC, looks up @INC, calls INC hooks, or compiles any code. It is
called with a single argument, the filename for the item being required (package names
are converted to paths). It may alter this filename to change what file is loaded. If the
hook dies during execution then it will block the require from executing.

In order to make it easy to perform an action with shared state both before and after the
require keyword was executed the require_ _before hook may return a "post-
action" coderef which will in turn be executed when the require completes. This
coderef will be executed regardless as to whether the require completed succesfully or
threw an exception. It will be called with the filename that was required. You can check
%INC to determine if the require was successful. Any other return from the
require_ _before hook will be silently ignored.

require_ _before hooks are called in FIFO order, and if the hook returns a code
reference those code references will be called in FILO order. In other words if A
requires B requires C, then require_ _before will be called first for A, then B and
then C, and the post-action code reference will executed first for C, then B and then
finally A.

Well behaved code should ensure that when setting up a require_ _before hook
that any prior installed hook will be called, and that their return value, if a code
reference, will be called as well. See "require" in perlfunc for an example
implementation.

perl v5.38.2 2025-07-25 241

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

require_ _after
The routine indicated by ${ˆHOOK}{require_ _after} is called by require
after the require completes. It is called with a single argument, the filename for the
item being required (package names are converted to paths). It is executed when the
require completes, either via exception or via completion of the require statement,
and you can check %INC to determine if the require was successful.

The require_ _after hook is called for each required file in FILO order. In other
words if A requires B requires C, then require_ _after will be called first for C,
then B and then A.

$BASETIME
$ˆT The time at which the program began running, in seconds since the epoch (beginning of

1970). The values returned by the −M, −A, and −C filetests are based on this value.

$PERL_VERSION
$ˆV The revision, version, and subversion of the Perl interpreter, represented as a version object.

This variable first appeared in perl v5.6.0; earlier versions of perl will see an undefined value.
Before perl v5.10.0 $ˆV was represented as a v−string rather than a version object.

$ˆV can be used to determine whether the Perl interpreter executing a script is in the right
range of versions. For example:

warn "Hashes not randomized!\n" if !$ˆV or $ˆV lt v5.8.1

While version objects overload stringification, to portably convert $ˆV into its string
representation, use sprintf()’s "%vd" conversion, which works for both v−strings or
version objects:

printf "version is v%vd\n", $ˆV; # Perl's version

See the documentation of use VERSION and require VERSION for a convenient way
to fail if the running Perl interpreter is too old.

See also "$]" for a decimal representation of the Perl version.

The main advantage of $ˆV over $] is that, for Perl v5.10.0 or later, it overloads operators,
allowing easy comparison against other version representations (e.g. decimal, literal v−string,
"v1.2.3", or objects). The disadvantage is that prior to v5.10.0, it was only a literal v−string,
which can’t be easily printed or compared, whereas the behavior of $] is unchanged on all
versions of Perl.

Mnemonic: use ˆV for a version object.

$EXECUTABLE_NAME
$ˆX The name used to execute the current copy of Perl, from C’s argv[0] or (where supported)

/proc/self/exe.

Depending on the host operating system, the value of $ˆX may be a relative or absolute
pathname of the perl program file, or may be the string used to invoke perl but not the
pathname of the perl program file. Also, most operating systems permit invoking programs
that are not in the PATH environment variable, so there is no guarantee that the value of $ˆX
is in PATH. For VMS, the value may or may not include a version number.

You usually can use the value of $ˆX to re-invoke an independent copy of the same perl that
is currently running, e.g.,

@first_run = `$ˆX −le "print int rand 100 for 1..100"`;

But recall that not all operating systems support forking or capturing of the output of
commands, so this complex statement may not be portable.

It is not safe to use the value of $ˆX as a path name of a file, as some operating systems that
have a mandatory suffix on executable files do not require use of the suffix when invoking a
command. To convert the value of $ˆX to a path name, use the following statements:

242 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

Build up a set of file names (not command names).
use Config;
my $this_perl = $ˆX;
if ($ˆO ne 'VMS') {

$this_perl .= $Config{_exe}
unless $this_perl =˜ m/$Config{_exe}$/i;

}

Because many operating systems permit anyone with read access to the Perl program file to
make a copy of it, patch the copy, and then execute the copy, the security-conscious Perl
programmer should take care to invoke the installed copy of perl, not the copy referenced by
$ˆX. The following statements accomplish this goal, and produce a pathname that can be
invoked as a command or referenced as a file.

use Config;
my $secure_perl_path = $Config{perlpath};
if ($ˆO ne 'VMS') {

$secure_perl_path .= $Config{_exe}
unless $secure_perl_path =˜ m/$Config{_exe}$/i;

}

Variables related to regular expressions
Most of the special variables related to regular expressions are side effects. Perl sets these variables
when it has completed a match successfully, so you should check the match result before using them.
For instance:

if(/P(A)TT(ER)N/) {
print "I found $1 and $2\n";

}

These variables are read-only and behave similarly to a dynamically scoped variable, with only a few
exceptions which are explicitly documented as behaving otherwise. See the following section for more
details.

Scoping Rules of Regex Variables

Regular expression variables allow the programmer to access the state of the most recent successful
regex match in the current dynamic scope.

The variables themselves are global and unscoped, but the data they access is scoped similarly to
dynamically scoped variables, in that every successful match behaves as though it localizes a global
state object to the current block or file scope. (See "Compound Statements" in perlsyn for more details
on dynamic scoping and the local keyword.)

A successful match includes any successful match performed by the search and replace operator s///
as well as those performed by the m// operator.

Consider the following code:

my @state;
sub matchit {

push @state, $1; # pushes "baz"
my $str = shift;
$str =˜ /(zat)/; # matches "zat"
push @state, $1; # pushes "zat"

}

{
$str = "foo bar baz blorp zat";
$str =˜ /(foo)/; # matches "foo"
push @state, $1; # pushes "foo"
{

$str =˜ /(pizza)/; # does NOT match
push @state, $1; # pushes "foo"
$str =˜ /(bar)/; # matches "bar"

perl v5.38.2 2025-07-25 243

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

push @state, $1; # pushes "bar"
$str =˜ /(baz)/; # matches "baz"
matchit($str); # see above
push @state, $1; # pushes "baz"

}
$str =˜ s/noodles/rice/; # does NOT match
push @state, $1; # pushes "foo"
$str =˜ s/(blorp)/zwoop/; # matches "blorp"
push @state, $1; # pushes "blorp"

}
the following prints "foo, foo, bar, baz, zat, baz, foo, blorp"
print join ",", @state;

Notice that each successful match in the exact same scope overrides the match context of the previous
successful match, but that unsuccessful matches do not. Also note that in an inner nested scope the
previous state from an outer dynamic scope persists until it has been overriden by another successful
match, but that when the inner nested scope exits whatever match context was in effect before the inner
successful match is restored when the scope concludes.

It is a known issue that goto LABEL may interact poorly with the dynamically scoped match context.
This may not be fixable, and is considered to be one of many good reasons to avoid goto LABEL.

Performance issues

Traditionally in Perl, any use of any of the three variables $`, $& or $' (or their use English
equivalents) anywhere in the code, caused all subsequent successful pattern matches to make a copy of
the matched string, in case the code might subsequently access one of those variables. This imposed a
considerable performance penalty across the whole program, so generally the use of these variables has
been discouraged.

In Perl 5.6.0 the @− and @+ dynamic arrays were introduced that supply the indices of successful
matches. So you could for example do this:

$str =˜ /pattern/;

print $`, $&, $'; # bad: performance hit

print # good: no performance hit
substr($str, 0, $−[0]),
substr($str, $−[0], $+[0]−$−[0]),
substr($str, $+[0]);

In Perl 5.10.0 the /p match operator flag and the ${ˆPREMATCH}, ${ˆMATCH}, and
${ˆPOSTMATCH} variables were introduced, that allowed you to suffer the penalties only on patterns
marked with /p.

In Perl 5.18.0 onwards, perl started noting the presence of each of the three variables separately, and
only copied that part of the string required; so in

$`; $&; "abcdefgh" =˜ /d/

perl would only copy the "abcd" part of the string. That could make a big difference in something like

$str = 'x' x 1_000_000;
$&; # whoops
$str =˜ /x/g # one char copied a million times, not a million chars

In Perl 5.20.0 a new copy-on-write system was enabled by default, which finally fixes most of the
performance issues with these three variables, and makes them safe to use anywhere.

The Devel::NYTProf and Devel::FindAmpersand modules can help you find uses of these
problematic match variables in your code.

$<digits> ($1, $2, ...)
Contains the subpattern from the corresponding set of capturing parentheses from the last
successful pattern match in the current dynamic scope. (See "Scoping Rules of Regex
Variables".)

244 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

Note there is a distinction between a capture buffer which matches the empty string a capture
buffer which is optional. Eg, (x?) and (x)? The latter may be undef, the former not.

These variables are read-only.

Mnemonic: like \digits.

@{ˆCAPTURE}
An array which exposes the contents of the capture buffers, if any, of the last successful
pattern match, not counting patterns matched in nested blocks that have been exited already.

Note that the 0 index of @{ˆCAPTURE} is equivalent to $1, the 1 index is equivalent to $2,
etc.

if ("foal"=˜/(.)(.)(.)(.)/) {
print join "−", @{ˆCAPTURE};

}

should output "f−o-a-l".

See also "$<digits> ($1, $2, ...)", "%{ˆCAPTURE}" and "%{ˆCAPTURE_ALL}".

Note that unlike most other regex magic variables there is no single letter equivalent to
@{ˆCAPTURE}. Also be aware that when interpolating subscripts of this array you must use
the demarcated variable form, for instance

print "${ˆCAPTURE[0]}"

see "Demarcated variable names using braces" in perldata for more information on this form
and its uses.

This variable was added in 5.25.7

$MATCH
$& The string matched by the last successful pattern match. (See "Scoping Rules of Regex

Variables".)

See "Performance issues" above for the serious performance implications of using this
variable (even once) in your code.

This variable is read-only, and its value is dynamically scoped.

Mnemonic: like & in some editors.

${ˆMATCH}
It is only guaranteed to return a defined value when the pattern was compiled or executed
with the /p modifier.

This is similar to $& ($MATCH) except that to use it you must use the /p modifier when
executing the pattern, and it does not incur and performance penalty associated with that
variable.

See "Performance issues" above.

This variable was added in Perl v5.10.0.

This variable is read-only, and its value is dynamically scoped.

$PREMATCH
$‘ The string preceding whatever was matched by the last successful pattern match. (See

"Scoping Rules of Regex Variables").

See "Performance issues" above for the serious performance implications of using this
variable (even once) in your code.

This variable is read-only, and its value is dynamically scoped.

Mnemonic: ` often precedes a quoted string.

${ˆPREMATCH}
It is only guaranteed to return a defined value when the pattern was executed with the /p
modifier.

perl v5.38.2 2025-07-25 245

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

This is similar to $` ($PREMATCH) except that to use it you must use the /p modifier when
executing the pattern, and it does not incur and performance penalty associated with that
variable.

See "Performance issues" above.

This variable was added in Perl v5.10.0.

This variable is read-only, and its value is dynamically scoped.

$POSTMATCH
$’ The string following whatever was matched by the last successful pattern match. (See

"Scoping Rules of Regex Variables"). Example:

local $_ = 'abcdefghi';
/def/;
print "$`:$&:$'\n"; # prints abc:def:ghi

See "Performance issues" above for the serious performance implications of using this
variable (even once) in your code.

This variable is read-only, and its value is dynamically scoped.

Mnemonic: ' often follows a quoted string.

${ˆPOSTMATCH}
It is only guaranteed to return a defined value when the pattern was compiled or executed
with the /p modifier.

This is similar to $' ($POSTMATCH) except that to use it you must use the /p modifier
when executing the pattern, and it does not incur and performance penalty associated with
that variable.

See "Performance issues" above.

This variable was added in Perl v5.10.0.

This variable is read-only, and its value is dynamically scoped.

$LAST_PAREN_MATCH
$+ The text matched by the highest used capture group of the last successful search pattern. (See

"Scoping Rules of Regex Variables"). It is logically equivalent to the highest numbered
capture variable ($1, $2, ...) which has a defined value.

This is useful if you don’t know which one of a set of alternative patterns matched. For
example:

/Version: (.*)|Revision: (.*)/ && ($rev = $+);

This variable is read-only, and its value is dynamically scoped.

Mnemonic: be positive and forward looking.

$LAST_SUBMATCH_RESULT
$ˆN The text matched by the used group most-recently closed (i.e. the group with the rightmost

closing parenthesis) of the last successful match. (See "Scoping Rules of Regex Variables").

This is subtly different from $+. For example in

"ab" =˜ /ˆ((.)(.))$/

we have

$1,$ˆN have the value "ab"
$2 has the value "a"
$3,$+ have the value "b"

This is primarily used inside (?{...}) blocks for examining text recently matched. For
example, to effectively capture text to a variable (in addition to $1, $2, etc.), replace (...)
with

246 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

(?:(...)(?{ $var = $ˆN }))

By setting and then using $var in this way relieves you from having to worry about exactly
which numbered set of parentheses they are.

This variable is read-only, and its value is dynamically scoped.

This variable was added in Perl v5.8.0.

Mnemonic: the (possibly) Nested parenthesis that most recently closed.

@LAST_MATCH_END
@+ This array holds the offsets of the ends of the last successful match and any matching capture

buffers that the pattern contains. (See "Scoping Rules of Regex Variables")

The number of elements it contains will be one more than the number of capture buffers in
the pattern, regardless of which capture buffers actually matched. You can use this to
determine how many capture buffers there are in the pattern. (As opposed to @− which may
have fewer elements.)

$+[0] is the offset into the string of the end of the entire match. This is the same value as
what the pos function returns when called on the variable that was matched against. The nth
element of this array holds the offset of the nth submatch, so $+[1] is the offset past where
$1 ends, $+[2] the offset past where $2 ends, and so on. You can use $#+ to determine
how many subgroups were in the last successful match. See the examples given for the @−
variable.

This variable is read-only, and its value is dynamically scoped.

This variable was added in Perl v5.6.0.

%{ˆCAPTURE}
%LAST_PAREN_MATCH
%+ Similar to @+, the %+ hash allows access to the named capture buffers, should they exist, in

the last successful match in the currently active dynamic scope. (See "Scoping Rules of
Regex Variables").

For example, $+{foo} is equivalent to $1 after the following match:

'foo' =˜ /(?<foo>foo)/;

The keys of the %+ hash list only the names of buffers that have captured (and that are thus
associated to defined values).

If multiple distinct capture groups have the same name, then $+{NAME} will refer to the
leftmost defined group in the match.

The underlying behaviour of %+ is provided by the Tie::Hash::NamedCapture module.

Note: %− and %+ are tied views into a common internal hash associated with the last
successful regular expression. Therefore mixing iterative access to them via each may have
unpredictable results. Likewise, if the last successful match changes, then the results may be
surprising.

This variable was added in Perl v5.10.0. The %{ˆCAPTURE} alias was added in 5.25.7.

This variable is read-only, and its value is dynamically scoped.

@LAST_MATCH_START
@− This array holds the offsets of the beginnings of the last successful match and any capture

buffers it contains. (See "Scoping Rules of Regex Variables").

The number of elements it contains will be one more than the number of the highest capture
buffers (also called a subgroup) that actually matched something. (As opposed to @+ which
may have fewer elements.)

$−[0] is the offset of the start of the last successful match. $−[n] is the offset of the start
of the substring matched by n−th subpattern, or undef if the subpattern did not match.

Thus, after a match against $_, $& coincides with substr $_, $−[0], $+[0] −

perl v5.38.2 2025-07-25 247

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

$−[0]. Similarly, $n coincides with substr $_, $−[n], $+[n] − $−[n] if
$−[n] is defined, and $+ coincides with substr $_, $−[$#−], $+[$#−] −
$−[$#−]. One can use $#− to find the last matched subgroup in the last successful match.
Contrast with $#+, the number of subgroups in the regular expression.

$−[0] is the offset into the string of the beginning of the entire match. The nth element of
this array holds the offset of the nth submatch, so $−[1] is the offset where $1 begins,
$−[2] the offset where $2 begins, and so on.

After a match against some variable $var:

$` is the same as substr($var, 0, $−[0])
$& is the same as substr($var, $−[0], $+[0] − $−[0])
$' is the same as substr($var, $+[0])
$1 is the same as substr($var, $−[1], $+[1] − $−[1])
$2 is the same as substr($var, $−[2], $+[2] − $−[2])
$3 is the same as substr($var, $−[3], $+[3] − $−[3])

This variable is read-only, and its value is dynamically scoped.

This variable was added in Perl v5.6.0.

%{ˆCAPTURE_ALL}
%− Similar to %+, this variable allows access to the named capture groups in the last successful

match in the currently active dynamic scope. (See "Scoping Rules of Regex Variables"). To
each capture group name found in the regular expression, it associates a reference to an array
containing the list of values captured by all buffers with that name (should there be several of
them), in the order where they appear.

Here’s an example:

if ('1234' =˜ /(?<A>1)(?2)(?<A>3)(?4)/) {
foreach my $bufname (sort keys %−) {

my $ary = $−{$bufname};
foreach my $idx (0..$#$ary) {

print "\$−{$bufname}[$idx] : ",
(defined($ary−>[$idx])

? "'$ary−>[$idx]'"
: "undef"),

"\n";
}

}
}

would print out:

$−{A}[0] : '1'
$−{A}[1] : '3'
$−{B}[0] : '2'
$−{B}[1] : '4'

The keys of the %− hash correspond to all buffer names found in the regular expression.

The behaviour of %− is implemented via the Tie::Hash::NamedCapture module.

Note: %− and %+ are tied views into a common internal hash associated with the last
successful regular expression. Therefore mixing iterative access to them via each may have
unpredictable results. Likewise, if the last successful match changes, then the results may be
surprising. See "Scoping Rules of Regex Variables".

This variable was added in Perl v5.10.0. The %{ˆCAPTURE_ALL} alias was added in
5.25.7.

This variable is read-only, and its value is dynamically scoped.

248 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

${ˆLAST_SUCCESSFUL_PATTERN}
The last successful pattern that matched in the current scope. The empty pattern defaults to
matching to this. For instance:

if (m/foo/ || m/bar/) {
s//BLAH/;

}

and

if (m/foo/ || m/bar/) {
s/${ˆLAST_SUCCESSFUL_PATTERN}/BLAH/;

}

are equivalent.

You can use this to debug which pattern matched last, or to match with it again.

Added in Perl 5.37.10.

$LAST_REGEXP_CODE_RESULT
$ˆR The result of evaluation of the last successful (?{ code }) regular expression assertion

(see perlre).

This variable may be written to, and its value is scoped normally, unlike most other regex
variables.

This variable was added in Perl 5.005.

${ˆRE_COMPILE_RECURSION_LIMIT}
The current value giving the maximum number of open but unclosed parenthetical groups
there may be at any point during a regular expression compilation. The default is currently
1000 nested groups. You may adjust it depending on your needs and the amount of memory
available.

This variable was added in Perl v5.30.0.

${ˆRE_DEBUG_FLAGS}
The current value of the regex debugging flags. Set to 0 for no debug output even when the
re 'debug' module is loaded. See re for details.

This variable was added in Perl v5.10.0.

${ˆRE_TRIE_MAXBUF}
Controls how certain regex optimisations are applied and how much memory they utilize.
This value by default is 65536 which corresponds to a 512kB temporary cache. Set this to a
higher value to trade memory for speed when matching large alternations. Set it to a lower
value if you want the optimisations to be as conservative of memory as possible but still
occur, and set it to a negative value to prevent the optimisation and conserve the most
memory. Under normal situations this variable should be of no interest to you.

This variable was added in Perl v5.10.0.

Variables related to filehandles
Variables that depend on the currently selected filehandle may be set by calling an appropriate object
method on the IO::Handle object, although this is less efficient than using the regular built-in
variables. (Summary lines below for this contain the word HANDLE.) First you must say

use IO::Handle;

after which you may use either

method HANDLE EXPR

or more safely,

HANDLE−>method(EXPR)

Each method returns the old value of the IO::Handle attribute. The methods each take an optional
EXPR, which, if supplied, specifies the new value for the IO::Handle attribute in question. If not
supplied, most methods do nothing to the current value−−except for autoflush(), which will

perl v5.38.2 2025-07-25 249

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

assume a 1 for you, just to be different.

Because loading in the IO::Handle class is an expensive operation, you should learn how to use the
regular built-in variables.

A few of these variables are considered "read-only". This means that if you try to assign to this
variable, either directly or indirectly through a reference, you’ll raise a run-time exception.

You should be very careful when modifying the default values of most special variables described in
this document. In most cases you want to localize these variables before changing them, since if you
don’t, the change may affect other modules which rely on the default values of the special variables that
you have changed. This is one of the correct ways to read the whole file at once:

open my $fh, "<", "foo" or die $!;
local $/; # enable localized slurp mode
my $content = <$fh>;
close $fh;

But the following code is quite bad:

open my $fh, "<", "foo" or die $!;
undef $/; # enable slurp mode
my $content = <$fh>;
close $fh;

since some other module, may want to read data from some file in the default "line mode", so if the
code we have just presented has been executed, the global value of $/ is now changed for any other
code running inside the same Perl interpreter.

Usually when a variable is localized you want to make sure that this change affects the shortest scope
possible. So unless you are already inside some short {} block, you should create one yourself. For
example:

my $content = '';
open my $fh, "<", "foo" or die $!;
{

local $/;
$content = <$fh>;

}
close $fh;

Here is an example of how your own code can go broken:

for (1..3){
$\ = "\r\n";
nasty_break();
print "$_";

}

sub nasty_break {
$\ = "\f";
do something with $_

}

You probably expect this code to print the equivalent of

"1\r\n2\r\n3\r\n"

but instead you get:

"1\f2\f3\f"

Why? Because nasty_break() modifies $\ without localizing it first. The value you set in
nasty_break() is still there when you return. The fix is to add local() so the value doesn’t leak
out of nasty_break():

local $\ = "\f";

It’s easy to notice the problem in such a short example, but in more complicated code you are looking

250 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

for trouble if you don’t localize changes to the special variables.

$ARGV Contains the name of the current file when reading from <>.

@ARGV The array @ARGV contains the command-line arguments intended for the script. $#ARGV is
generally the number of arguments minus one, because $ARGV[0] is the first argument, not
the program’s command name itself. See "$0" for the command name.

ARGV The special filehandle that iterates over command-line filenames in @ARGV. Usually written
as the null filehandle in the angle operator <>. Note that currently ARGV only has its magical
effect within the <> operator; elsewhere it is just a plain filehandle corresponding to the last
file opened by <>. In particular, passing *ARGV as a parameter to a function that expects a
filehandle may not cause your function to automatically read the contents of all the files in
@ARGV.

ARGVOUT
The special filehandle that points to the currently open output file when doing edit-in-place
processing with −i. Useful when you have to do a lot of inserting and don’t want to keep
modifying $_. See perlrun for the −i switch.

IO::Handle−>output_field_separator(EXPR)
$OUTPUT_FIELD_SEPARATOR
$OFS
$, The output field separator for the print operator. If defined, this value is printed between each

of print’s arguments. Default is undef.

You cannot call output_field_separator() on a handle, only as a static method.
See IO::Handle.

Mnemonic: what is printed when there is a "," in your print statement.

HANDLE−>input_line_number(EXPR)
$INPUT_LINE_NUMBER
$NR
$. Current line number for the last filehandle accessed.

Each filehandle in Perl counts the number of lines that have been read from it. (Depending
on the value of $/, Perl’s idea of what constitutes a line may not match yours.) When a line
is read from a filehandle (via readline() or <>), or when tell() or seek() is called
on it, $. becomes an alias to the line counter for that filehandle.

You can adjust the counter by assigning to $., but this will not actually move the seek
pointer. Localizing $. will not localize the filehandle’s line count. Instead, it will localize
perl’s notion of which filehandle $. is currently aliased to.

$. is reset when the filehandle is closed, but not when an open filehandle is reopened
without an intervening close(). For more details, see "I/O Operators" in perlop. Because
<> never does an explicit close, line numbers increase across ARGV files (but see examples in
"eof" in perlfunc).

You can also use HANDLE−>input_line_number(EXPR) to access the line counter for
a giv en filehandle without having to worry about which handle you last accessed.

Mnemonic: many programs use "." to mean the current line number.

IO::Handle−>input_record_separator(EXPR)
$INPUT_RECORD_SEPARATOR
$RS
$/ The input record separator, newline by default. This influences Perl’s idea of what a "line" is.

Works like awk’s RS variable, including treating empty lines as a terminator if set to the null
string (an empty line cannot contain any spaces or tabs). You may set it to a multi-character
string to match a multi-character terminator, or to undef to read through the end of file.
Setting it to "\n\n" means something slightly different than setting to "", if the file
contains consecutive empty lines. Setting to "" will treat two or more consecutive empty
lines as a single empty line. Setting to "\n\n" will blindly assume that the next input
character belongs to the next paragraph, even if it’s a newline.

perl v5.38.2 2025-07-25 251

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

local $/; # enable "slurp" mode
local $_ = <FH>; # whole file now here
s/\n[\t]+/ /g;

Remember: the value of $/ is a string, not a regex. awk has to be better for something. :−)

Setting $/ to an empty string −− the so-called paragraph mode −− merits special attention.
When $/ is set to "" and the entire file is read in with that setting, any sequence of one or
more consecutive newlines at the beginning of the file is discarded. With the exception of the
final record in the file, each sequence of characters ending in two or more newlines is treated
as one record and is read in to end in exactly two newlines. If the last record in the file ends
in zero or one consecutive newlines, that record is read in with that number of newlines. If
the last record ends in two or more consecutive newlines, it is read in with two newlines like
all preceding records.

Suppose we wrote the following string to a file:

my $string = "\n\n\n";
$string .= "alpha beta\ngamma delta\n\n\n";
$string .= "epsilon zeta eta\n\n";
$string .= "theta\n";

my $file = 'simple_file.txt';
open my $OUT, '>', $file or die;
print $OUT $string;
close $OUT or die;

Now we read that file in paragraph mode:

local $/ = ""; # paragraph mode
open my $IN, '<', $file or die;
my @records = <$IN>;
close $IN or die;

@records will consist of these 3 strings:

(
"alpha beta\ngamma delta\n\n",
"epsilon zeta eta\n\n",
"theta\n",

)

Setting $/ to a reference to an integer, scalar containing an integer, or scalar that’s
convertible to an integer will attempt to read records instead of lines, with the maximum
record size being the referenced integer number of characters. So this:

local $/ = \32768; # or \"32768", or \$var_containing_32768
open my $fh, "<", $myfile or die $!;
local $_ = <$fh>;

will read a record of no more than 32768 characters from $fh. If you’re not reading from a
record-oriented file (or your OS doesn’t hav e record-oriented files), then you’ll likely get a
full chunk of data with every read. If a record is larger than the record size you’ve set, you’ll
get the record back in pieces. Trying to set the record size to zero or less is deprecated and
will cause $/ to have the value of "undef", which will cause reading in the (rest of the) whole
file.

As of 5.19.9 setting $/ to any other form of reference will throw a fatal exception. This is in
preparation for supporting new ways to set $/ in the future.

On VMS only, record reads bypass PerlIO layers and any associated buffering, so you must
not mix record and non-record reads on the same filehandle. Record mode mixes with line
mode only when the same buffering layer is in use for both modes.

You cannot call input_record_separator() on a handle, only as a static method.
See IO::Handle.

252 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

See also "Newlines" in perlport. Also see "$.".

Mnemonic: / delimits line boundaries when quoting poetry.

IO::Handle−>output_record_separator(EXPR)
$OUTPUT_RECORD_SEPARATOR
$ORS
$\ The output record separator for the print operator. If defined, this value is printed after the

last of print’s arguments. Default is undef.

You cannot call output_record_separator() on a handle, only as a static method.
See IO::Handle.

Mnemonic: you set $\ instead of adding "\n" at the end of the print. Also, it’s just like $/,
but it’s what you get "back" from Perl.

HANDLE−>autoflush(EXPR)
$OUTPUT_AUTOFLUSH
$| If set to nonzero, forces a flush right away and after every write or print on the currently

selected output channel. Default is 0 (regardless of whether the channel is really buffered by
the system or not; $| tells you only whether you’ve asked Perl explicitly to flush after each
write). STDOUT will typically be line buffered if output is to the terminal and block
buffered otherwise. Setting this variable is useful primarily when you are outputting to a pipe
or socket, such as when you are running a Perl program under rsh and want to see the output
as it’s happening. This has no effect on input buffering. See "getc" in perlfunc for that. See
"select" in perlfunc on how to select the output channel. See also IO::Handle.

Mnemonic: when you want your pipes to be piping hot.

${ˆLAST_FH}
This read-only variable contains a reference to the last-read filehandle. This is set by
<HANDLE>, readline, tell, eof and seek. This is the same handle that $. and tell
and eof without arguments use. It is also the handle used when Perl appends ", <STDIN>
line 1" to an error or warning message.

This variable was added in Perl v5.18.0.

Variables related to formats

The special variables for formats are a subset of those for filehandles. See perlform for more
information about Perl’s formats.

$ACCUMULATOR
$ˆA The current value of the write() accumulator for format() lines. A format contains

formline() calls that put their result into $ˆA. After calling its format, write() prints
out the contents of $ˆA and empties. So you never really see the contents of $ˆA unless you
call formline() yourself and then look at it. See perlform and "formline
PICTURE,LIST" in perlfunc.

IO::Handle−>format_formfeed(EXPR)
$FORMAT_FORMFEED
$ˆL What formats output as a form feed. The default is \f.

You cannot call format_formfeed() on a handle, only as a static method. See
IO::Handle.

HANDLE−>format_page_number(EXPR)
$FORMAT_PAGE_NUMBER
$% The current page number of the currently selected output channel.

Mnemonic: % is page number in nroff.

HANDLE−>format_lines_left(EXPR)
$FORMAT_LINES_LEFT
$− The number of lines left on the page of the currently selected output channel.

Mnemonic: lines_on_page − lines_printed.

perl v5.38.2 2025-07-25 253

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

IO::Handle−>format_line_break_characters EXPR
$FORMAT_LINE_BREAK_CHARACTERS
$: The current set of characters after which a string may be broken to fill continuation fields

(starting with ˆ) in a format. The default is " \n−", to break on a space, newline, or a hyphen.

You cannot call format_line_break_characters() on a handle, only as a static
method. See IO::Handle.

Mnemonic: a "colon" in poetry is a part of a line.

HANDLE−>format_lines_per_page(EXPR)
$FORMAT_LINES_PER_PAGE
$= The current page length (printable lines) of the currently selected output channel. The default

is 60.

Mnemonic: = has horizontal lines.

HANDLE−>format_top_name(EXPR)
$FORMAT_TOP_NAME
$ˆ The name of the current top-of-page format for the currently selected output channel. The

default is the name of the filehandle with _TOP appended. For example, the default format
top name for the STDOUT filehandle is STDOUT_TOP.

Mnemonic: points to top of page.

HANDLE−>format_name(EXPR)
$FORMAT_NAME
$˜ The name of the current report format for the currently selected output channel. The default

format name is the same as the filehandle name. For example, the default format name for
the STDOUT filehandle is just STDOUT.

Mnemonic: brother to $ˆ.

Error Variables
The variables $@, $!, $ˆE, and $? contain information about different types of error conditions that
may appear during execution of a Perl program. The variables are shown ordered by the "distance"
between the subsystem which reported the error and the Perl process. They correspond to errors
detected by the Perl interpreter, C library, operating system, or an external program, respectively.

To illustrate the differences between these variables, consider the following Perl expression, which uses
a single-quoted string. After execution of this statement, perl may have set all four special error
variables:

eval q{
open my $pipe, "/cdrom/install |" or die $!;
my @res = <$pipe>;
close $pipe or die "bad pipe: $?, $!";

};

When perl executes the eval() expression, it translates the open(), <PIPE>, and close calls in
the C run-time library and thence to the operating system kernel. perl sets $! to the C library’s errno
if one of these calls fails.

$@ is set if the string to be eval−ed did not compile (this may happen if open or close were
imported with bad prototypes), or if Perl code executed during evaluation die()d. In these cases the
value of $@ is the compile error, or the argument to die (which will interpolate $! and $?). (See also
Fatal, though.)

Under a few operating systems, $ˆE may contain a more verbose error indicator, such as in this case,
"CDROM tray not closed." Systems that do not support extended error messages leave $ˆE the same
as $!.

Finally, $? may be set to a non−0 value if the external program /cdrom/install fails. The upper eight
bits reflect specific error conditions encountered by the program (the program’s exit() value). The
lower eight bits reflect mode of failure, like signal death and core dump information. See wait (2) for
details. In contrast to $! and $ˆE, which are set only if an error condition is detected, the variable $?
is set on each wait or pipe close, overwriting the old value. This is more like $@, which on every

254 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

eval() is always set on failure and cleared on success.

For more details, see the individual descriptions at $@, $!, $ˆE, and $?.

${ˆCHILD_ERROR_NATIVE}
The native status returned by the last pipe close, backtick (``) command, successful call to
wait() or waitpid(), or from the system() operator. On POSIX-like systems this
value can be decoded with the WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, and WSTOPSIG functions provided by the POSIX module.

Under VMS this reflects the actual VMS exit status; i.e. it is the same as $? when the pragma
use vmsish 'status' is in effect.

This variable was added in Perl v5.10.0.

$EXTENDED_OS_ERROR
$ˆE Error information specific to the current operating system. At the moment, this differs from

"$!" under only VMS, OS/2, and Win32 (and for MacPerl). On all other platforms, $ˆE is
always just the same as $!.

Under VMS, $ˆE provides the VMS status value from the last system error. This is more
specific information about the last system error than that provided by $!. This is particularly
important when $! is set to EVMSERR.

Under OS/2, $ˆE is set to the error code of the last call to OS/2 API either via CRT, or
directly from perl.

Under Win32, $ˆE always returns the last error information reported by the Win32 call
GetLastError() which describes the last error from within the Win32 API. Most
Win32−specific code will report errors via $ˆE. ANSI C and Unix-like calls set errno and
so most portable Perl code will report errors via $!.

Caveats mentioned in the description of "$!" generally apply to $ˆE, also.

This variable was added in Perl 5.003.

Mnemonic: Extra error explanation.

$EXCEPTIONS_BEING_CAUGHT
$ˆS Current state of the interpreter.

$ˆS State
−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
undef Parsing module, eval, or main program
true (1) Executing an eval or try block
false (0) Otherwise

The first state may happen in $SIG{_ _DIE_ _} and $SIG{_ _WARN_ _} handlers.

The English name $EXCEPTIONS_BEING_CAUGHT is slightly misleading, because the
undef value does not indicate whether exceptions are being caught, since compilation of the
main program does not catch exceptions.

This variable was added in Perl 5.004.

$WARNING
$ˆW The current value of the warning switch, initially true if −w was used, false otherwise, but

directly modifiable.

See also warnings.

Mnemonic: related to the −w switch.

${ˆWARNING_BITS}
The current set of warning checks enabled by the use warnings pragma. It has the same
scoping as the $ˆH and %ˆH variables. The exact values are considered internal to the
warnings pragma and may change between versions of Perl.

Each time a statement completes being compiled, the current value of
${ˆWARNING_BITS} is stored with that statement, and can later be retrieved via

perl v5.38.2 2025-07-25 255

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

(caller($level))[9].

This variable was added in Perl v5.6.0.

$OS_ERROR
$ERRNO
$! When referenced, $! retrieves the current value of the C errno integer variable. If $! is

assigned a numerical value, that value is stored in errno. When referenced as a string, $!
yields the system error string corresponding to errno.

Many system or library calls set errno if they fail, to indicate the cause of failure. They
usually do not set errno to zero if they succeed and may set errno to a non-zero value on
success. This means errno, hence $!, is meaningful only immediately after a failure:

if (open my $fh, "<", $filename) {
Here $! is meaningless.
...

}
else {

ONLY here is $! meaningful.
...
Already here $! might be meaningless.

}
Since here we might have either success or failure,
$! is meaningless.

Here, meaningless means that $! may be unrelated to the outcome of the open() operator.
Assignment to $! is similarly ephemeral. It can be used immediately before invoking the
die() operator, to set the exit value, or to inspect the system error string corresponding to
error n, or to restore $! to a meaningful state.

Perl itself may set errno to a non-zero on failure even if no system call is performed.

Mnemonic: What just went bang?

%OS_ERROR
%ERRNO
%! Each element of %! has a true value only if $! is set to that value. For example,

$!{ENOENT} is true if and only if the current value of $! is ENOENT; that is, if the most
recent error was "No such file or directory" (or its moral equivalent: not all operating systems
give that exact error, and certainly not all languages). The specific true value is not
guaranteed, but in the past has generally been the numeric value of $!. To check if a
particular key is meaningful on your system, use exists $!{the_key}; for a list of
legal keys, use keys %!. See Errno for more information, and also see "$!".

This variable was added in Perl 5.005.

$CHILD_ERROR
$? The status returned by the last pipe close, backtick (``) command, successful call to

wait() or waitpid(), or from the system() operator. This is just the 16−bit status
word returned by the traditional Unix wait() system call (or else is made up to look like it).
Thus, the exit value of the subprocess is really ($? >> 8), and $? & 127 gives which
signal, if any, the process died from, and $? & 128 reports whether there was a core dump.

Additionally, if the h_errno variable is supported in C, its value is returned via $? if any
gethost*() function fails.

If you have installed a signal handler for SIGCHLD, the value of $? will usually be wrong
outside that handler.

Inside an END subroutine $? contains the value that is going to be given to exit(). You
can modify $? in an END subroutine to change the exit status of your program. For example:

256 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

END {
$? = 1 if $? == 255; # die would make it 255

}

Under VMS, the pragma use vmsish 'status' makes $? reflect the actual VMS exit
status, instead of the default emulation of POSIX status; see "$?" in perlvms for details.

Mnemonic: similar to sh and ksh.

$EVAL_ERROR
$@ The Perl error from the last eval operator, i.e. the last exception that was caught. For eval

BLOCK, this is either a runtime error message or the string or reference die was called with.
The eval STRING form also catches syntax errors and other compile time exceptions.

If no error occurs, eval sets $@ to the empty string.

Warning messages are not collected in this variable. You can, however, set up a routine to
process warnings by setting $SIG{_ _WARN_ _} as described in "%SIG".

Mnemonic: Where was the error "at"?

Variables related to the interpreter state
These variables provide information about the current interpreter state.

$COMPILING
$ˆC The current value of the flag associated with the −c switch. Mainly of use with −MO=... to

allow code to alter its behavior when being compiled, such as for example to AUTOLOAD at
compile time rather than normal, deferred loading. Setting $ˆC = 1 is similar to calling
B::minus_c.

This variable was added in Perl v5.6.0.

$DEBUGGING
$ˆD The current value of the debugging flags. May be read or set. Like its command-line

equivalent, you can use numeric or symbolic values, e.g. $ˆD = 10 or $ˆD = "st". See
"−Dnumber" in perlrun. The contents of this variable also affects the debugger operation.
See "Debugger Internals" in perldebguts.

Mnemonic: value of −D switch.

${ˆGLOBAL_PHASE}
The current phase of the perl interpreter.

Possible values are:

CONSTRUCT
The PerlInterpreter* is being constructed via perl_construct. This
value is mostly there for completeness and for use via the underlying C variable
PL_phase. It’s not really possible for Perl code to be executed unless
construction of the interpreter is finished.

START This is the global compile-time. That includes, basically, every BEGIN block
executed directly or indirectly from during the compile-time of the top-level
program.

This phase is not called "BEGIN" to avoid confusion with BEGIN−blocks, as those
are executed during compile-time of any compilation unit, not just the top-level
program. A new, localised compile-time entered at run-time, for example by
constructs as eval "use SomeModule" are not global interpreter phases, and
therefore aren’t reflected by ${ˆGLOBAL_PHASE}.

CHECK Execution of any CHECK blocks.

INIT Similar to "CHECK", but for INIT−blocks, not CHECK blocks.

RUN The main run-time, i.e. the execution of PL_main_root.

END Execution of any END blocks.

perl v5.38.2 2025-07-25 257

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

DESTRUCT
Global destruction.

Also note that there’s no value for UNITCHECK-blocks. That’s because those are run for
each compilation unit individually, and therefore is not a global interpreter phase.

Not every program has to go through each of the possible phases, but transition from one
phase to another can only happen in the order described in the above list.

An example of all of the phases Perl code can see:

BEGIN { print "compile−time: ${ˆGLOBAL_PHASE}\n" }

INIT { print "init−time: ${ˆGLOBAL_PHASE}\n" }

CHECK { print "check−time: ${ˆGLOBAL_PHASE}\n" }

{
package Print::Phase;

sub new {
my ($class, $time) = @_;
return bless \$time, $class;

}

sub DESTROY {
my $self = shift;
print "$$self: ${ˆGLOBAL_PHASE}\n";

}
}

print "run−time: ${ˆGLOBAL_PHASE}\n";

my $runtime = Print::Phase−>new(
"lexical variables are garbage collected before END"

);

END { print "end−time: ${ˆGLOBAL_PHASE}\n" }

our $destruct = Print::Phase−>new(
"package variables are garbage collected after END"

);

This will print out

compile−time: START
check−time: CHECK
init−time: INIT
run−time: RUN
lexical variables are garbage collected before END: RUN
end−time: END
package variables are garbage collected after END: DESTRUCT

This variable was added in Perl 5.14.0.

$ˆH WARNING: This variable is strictly for internal use only. Its availability, behavior, and
contents are subject to change without notice.

This variable contains compile-time hints for the Perl interpreter. At the end of compilation
of a BLOCK the value of this variable is restored to the value when the interpreter started to
compile the BLOCK.

Each time a statement completes being compiled, the current value of $ˆH is stored with that
statement, and can later be retrieved via (caller($level))[8]. See "caller EXPR" in

258 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perlfunc.

When perl begins to parse any block construct that provides a lexical scope (e.g., eval body,
required file, subroutine body, loop body, or conditional block), the existing value of $ˆH is
saved, but its value is left unchanged. When the compilation of the block is completed, it
regains the saved value. Between the points where its value is saved and restored, code that
executes within BEGIN blocks is free to change the value of $ˆH.

This behavior provides the semantic of lexical scoping, and is used in, for instance, the use
strict pragma.

The contents should be an integer; different bits of it are used for different pragmatic flags.
Here’s an example:

sub add_100 { $ˆH |= 0x100 }

sub foo {
BEGIN { add_100() }
bar−>baz($boon);

}

Consider what happens during execution of the BEGIN block. At this point the BEGIN
block has already been compiled, but the body of foo() is still being compiled. The new
value of $ˆH will therefore be visible only while the body of foo() is being compiled.

Substitution of BEGIN { add_100() } block with:

BEGIN { require strict; strict−>import('vars') }

demonstrates how use strict 'vars' is implemented. Here’s a conditional version of
the same lexical pragma:

BEGIN {
require strict; strict−>import('vars') if $condition

}

This variable was added in Perl 5.003.

%ˆH The %ˆH hash provides the same scoping semantics as $ˆH. This makes it useful for
implementing lexically scoped pragmas. See perlpragma. All the entries are stringified when
accessed at runtime, so only simple values can be accommodated. This means no references
to objects, for example.

Each time a statement completes being compiled, the current value of %ˆH is stored with that
statement, and can later be retrieved via (caller($level))[10]. See "caller EXPR" in
perlfunc.

When putting items into %ˆH, in order to avoid conflicting with other users of the hash there
is a convention regarding which keys to use. A module should use only keys that begin with
the module’s name (the name of its main package) and a "/" character. For example, a
module Foo::Bar should use keys such as Foo::Bar/baz.

This variable was added in Perl v5.6.0.

${ˆOPEN}
An internal variable used by PerlIO. A string in two parts, separated by a \0 byte, the first
part describes the input layers, the second part describes the output layers.

This is the mechanism that applies the lexical effects of the open pragma, and the main
program scope effects of the io or D options for the −C command-line switch and
PERL_UNICODE environment variable.

The functions accept(), open(), pipe(), readpipe() (as well as the related qx and
`STRING` operators), socket(), socketpair(), and sysopen() are affected by the
lexical value of this variable. The implicit "ARGV" handle opened by readline() (or the
related <> and <<>> operators) on passed filenames is also affected (but not if it opens
STDIN). If this variable is not set, these functions will set the default layers as described in

perl v5.38.2 2025-07-25 259

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

"Defaults and how to override them" in PerlIO.

open() ignores this variable (and the default layers) when called with 3 arguments and
explicit layers are specified. Indirect calls to these functions via modules like IO::Handle are
not affected as they occur in a different lexical scope. Directory handles such as opened by
opendir() are not currently affected.

This variable was added in Perl v5.8.0.

$PERLDB
$ˆP The internal variable for debugging support. The meanings of the various bits are subject to

change, but currently indicate:

0x01 Debug subroutine enter/exit.

0x02 Line-by-line debugging. Causes DB::DB() subroutine to be called for each
statement executed. Also causes saving source code lines (like 0x400).

0x04 Switch off optimizations.

0x08 Preserve more data for future interactive inspections.

0x10 Keep info about source lines on which a subroutine is defined.

0x20 Start with single-step on.

0x40 Use subroutine address instead of name when reporting.

0x80 Report goto &subroutine as well.

0x100 Provide informative "file" names for evals based on the place they were compiled.

0x200 Provide informative names to anonymous subroutines based on the place they were
compiled.

0x400 Save source code lines into @{"_<$filename"}.

0x800 When saving source, include evals that generate no subroutines.

0x1000
When saving source, include source that did not compile.

Some bits may be relevant at compile-time only, some at run-time only. This is a new
mechanism and the details may change. See also perldebguts.

${ˆTAINT}
Reflects if taint mode is on or off. 1 for on (the program was run with −T), 0 for off, −1
when only taint warnings are enabled (i.e. with −t or −TU).

Note: if your perl was built without taint support (see perlsec), then ${ˆTAINT} will always
be 0, even if the program was run with −T).

This variable is read-only.

This variable was added in Perl v5.8.0.

${ˆSAFE_LOCALES}
Reflects if safe locale operations are available to this perl (when the value is 1) or not (the
value is 0). This variable is always 1 if the perl has been compiled without threads. It is also
1 if this perl is using thread-safe locale operations. Note that an individual thread may
choose to use the global locale (generally unsafe) by calling "switch_to_global_locale" in
perlapi. This variable currently is still set to 1 in such threads.

This variable is read-only.

This variable was added in Perl v5.28.0.

${ˆUNICODE}
Reflects certain Unicode settings of Perl. See perlrun documentation for the −C switch for
more information about the possible values.

This variable is set during Perl startup and is thereafter read-only.

This variable was added in Perl v5.8.2.

260 2025-07-25 perl v5.38.2

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

${ˆUTF8CACHE}
This variable controls the state of the internal UTF−8 offset caching code. 1 for on (the
default), 0 for off, −1 to debug the caching code by checking all its results against linear
scans, and panicking on any discrepancy.

This variable was added in Perl v5.8.9. It is subject to change or removal without notice, but
is currently used to avoid recalculating the boundaries of multi-byte UTF−8−encoded
characters.

${ˆUTF8LOCALE}
This variable indicates whether a UTF−8 locale was detected by perl at startup. This
information is used by perl when it’s in adjust−utf8ness−to−locale mode (as when run with
the −CL command-line switch); see perlrun for more info on this.

This variable was added in Perl v5.8.8.

Deprecated and removed variables
Deprecating a variable announces the intent of the perl maintainers to eventually remove the variable
from the language. It may still be available despite its status. Using a deprecated variable triggers a
warning.

Once a variable is removed, its use triggers an error telling you the variable is unsupported.

See perldiag for details about error messages.

$# $# was a variable that could be used to format printed numbers. After a deprecation cycle,
its magic was removed in Perl v5.10.0 and using it now triggers a warning: $# is no
longer supported.

This is not the sigil you use in front of an array name to get the last index, like $#array.
That’s still how you get the last index of an array in Perl. The two hav e nothing to do with
each other.

Deprecated in Perl 5.

Removed in Perl v5.10.0.

$* $* was a variable that you could use to enable multiline matching. After a deprecation cycle,
its magic was removed in Perl v5.10.0. Using it now triggers a warning: $* is no
longer supported. You should use the /s and /m regexp modifiers instead.

Deprecated in Perl 5.

Removed in Perl v5.10.0.

$[This variable stores the index of the first element in an array, and of the first character in a
substring. The default is 0, but you could theoretically set it to 1 to make Perl behave more
like awk (or Fortran) when subscripting and when evaluating the index() and substr()
functions.

As of release 5 of Perl, assignment to $[is treated as a compiler directive, and cannot
influence the behavior of any other file. (That’s why you can only assign compile-time
constants to it.) Its use is highly discouraged.

Prior to Perl v5.10.0, assignment to $[could be seen from outer lexical scopes in the same
file, unlike other compile-time directives (such as strict). Using local() on it would bind its
value strictly to a lexical block. Now it is always lexically scoped.

As of Perl v5.16.0, it is implemented by the arybase module.

As of Perl v5.30.0, or under use v5.16, or no feature "array_base", $[no
longer has any effect, and always contains 0. Assigning 0 to it is permitted, but any other
value will produce an error.

Mnemonic: [begins subscripts.

Deprecated in Perl v5.12.0.

perl v5.38.2 2025-07-25 261

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

${ˆENCODING}
This variable is no longer supported.

It used to hold the object reference to the Encode object that was used to convert the source
code to Unicode.

Its purpose was to allow your non-ASCII Perl scripts not to have to be written in UTF−8; this
was useful before editors that worked on UTF−8 encoded text were common, but that was
long ago. It caused problems, such as affecting the operation of other modules that weren’t
expecting it, causing general mayhem.

If you need something like this functionality, it is recommended that use you a simple source
filter, such as Filter::Encoding.

If you are coming here because code of yours is being adversely affected by someone’s use of
this variable, you can usually work around it by doing this:

local ${ˆENCODING};

near the beginning of the functions that are getting broken. This undefines the variable
during the scope of execution of the including function.

This variable was added in Perl 5.8.2 and removed in 5.26.0. Setting it to anything other than
undef was made fatal in Perl 5.28.0.

${ˆWIN32_SLOPPY_STAT}
This variable no longer has any function.

This variable was added in Perl v5.10.0 and removed in Perl v5.34.0.

262 2025-07-25 perl v5.38.2

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

NAME
perlrun − how to execute the Perl interpreter

SYNOPSIS
perl [−gsTtuUWX] [−h?v] [−V[:configvar]]

[−cw] [−d[t][:debugger]] [−D[number/list]]
[−pna] [−Fpattern] [−l[octal]] [−0[octal/hexadecimal]]
[−Idir] [−m[−]module] [−M[−]’module...’] [−f] [−C [number/list]]
[−S] [−x[dir]] [−i[extension]]
[[−e|−E] ’command’] [−−] [programfile] [argument]...

DESCRIPTION
The normal way to run a Perl program is by making it directly executable, or else by passing the name
of the source file as an argument on the command line. (An interactive Perl environment is also
possible−−see perldebug for details on how to do that.) Upon startup, Perl looks for your program in
one of the following places:

1. Specified line by line via −e or −E switches on the command line.

2. Contained in the file specified by the first filename on the command line. (Note that systems
supporting the #! notation invoke interpreters this way. See "Location of Perl".)

3. Passed in implicitly via standard input. This works only if there are no filename arguments−−to
pass arguments to a STDIN-read program you must explicitly specify a "−" for the program name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you’ve specified a
"−x" switch, in which case it scans for the first line starting with #! and containing the word "perl",
and starts there instead. This is useful for running a program embedded in a larger message. (In this
case you would indicate the end of the program using the __END_ _ token.)

The #! line is always examined for switches as the line is being parsed. Thus, if you’re on a machine
that allows only one argument with the #! line, or worse, doesn’t even recognize the #! line, you still
can get consistent switch behaviour regardless of how Perl was invoked, even if "−x" was used to find
the beginning of the program.

Because historically some operating systems silently chopped off kernel interpretation of the #! line
after 32 characters, some switches may be passed in on the command line, and some may not; you
could even get a "−" without its letter, if you’re not careful. You probably want to make sure that all
your switches fall either before or after that 32−character boundary. Most switches don’t actually care
if they’re processed redundantly, but getting a "−" instead of a complete switch could cause Perl to try
to execute standard input instead of your program. And a partial −I switch could also cause odd results.

Some switches do care if they are processed twice, for instance combinations of −l and −0. Either put
all the switches after the 32−character boundary (if applicable), or replace the use of −0digits by
BEGIN{ $/ = "\0digits"; }.

Parsing of the #! switches starts wherever "perl" is mentioned in the line. The sequences "−*" and "−
" are specifically ignored so that you could, if you were so inclined, say

#!/bin/sh
#! −*− perl −*− −p
eval 'exec perl −x −wS $0 ${1+"$@"}'

if 0;

to let Perl see the "−p" switch.

A similar trick involves the env program, if you have it.

#!/usr/bin/env perl

The examples above use a relative path to the perl interpreter, getting whatever version is first in the
user’s path. If you want a specific version of Perl, say, perl5.14.1, you should place that directly in the
#! line’s path.

If the #! line does not contain the word "perl" nor the word "indir", the program named after the #! is
executed instead of the Perl interpreter. This is slightly bizarre, but it helps people on machines that
don’t do #!, because they can tell a program that their SHELL is /usr/bin/perl, and Perl will then
dispatch the program to the correct interpreter for them.

perl v5.38.2 2025-07-25 263

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

After locating your program, Perl compiles the entire program to an internal form. If there are any
compilation errors, execution of the program is not attempted. (This is unlike the typical shell script,
which might run part-way through before finding a syntax error.)

If the program is syntactically correct, it is executed. If the program runs off the end without hitting an
exit() or die() operator, an implicit exit(0) is provided to indicate successful completion.

#! and quoting on non-Unix systems
Unix’s #! technique can be simulated on other systems:

OS/2
Put

extproc perl −S −your_switches

as the first line in *.cmd file ("−S" due to a bug in cmd.exe’s ‘extproc’ handling).

MS-DOS
Create a batch file to run your program, and codify it in ALTERNATE_SHEBANG (see the dosish.h
file in the source distribution for more information).

Win95/NT
The Win95/NT installation, when using the ActiveState installer for Perl, will modify the Registry
to associate the .pl extension with the perl interpreter. If you install Perl by other means
(including building from the sources), you may have to modify the Registry yourself. Note that
this means you can no longer tell the difference between an executable Perl program and a Perl
library file.

VMS
Put

$ perl −mysw 'f$env("procedure")' 'p1' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7' 'p8' !
$ exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, where −mysw are any command line switches you want to pass to
Perl. You can now inv oke the program directly, by saying perl program, or as a DCL
procedure, by saying @program (or implicitly via DCL$PATH by just using the name of the
program).

This incantation is a bit much to remember, but Perl will display it for you if you say perl
"−V:startperl".

Command-interpreters on non-Unix systems have rather different ideas on quoting than Unix shells.
You’ll need to learn the special characters in your command-interpreter (*, \ and " are common) and
how to protect whitespace and these characters to run one-liners (see −e below).

On some systems, you may have to change single-quotes to double ones, which you must not do on
Unix or Plan 9 systems. You might also have to change a single % to a %%.

For example:

Unix
perl −e 'print "Hello world\n"'

MS−DOS, etc.
perl −e "print \"Hello world\n\""

VMS
perl −e "print ""Hello world\n"""

The problem is that none of this is reliable: it depends on the command and it is entirely possible
neither works. If 4DOS were the command shell, this would probably work better:

perl −e "print <Ctrl−x>"Hello world\n<Ctrl−x>""

CMD.EXE in Windows NT slipped a lot of standard Unix functionality in when nobody was looking,
but just try to find documentation for its quoting rules.

There is no general solution to all of this. It’s just a mess.

264 2025-07-25 perl v5.38.2

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

Location of Perl
It may seem obvious to say, but Perl is useful only when users can easily find it. When possible, it’s
good for both /usr/bin/perl and /usr/local/bin/perl to be symlinks to the actual binary. If that can’t be
done, system administrators are strongly encouraged to put (symlinks to) perl and its accompanying
utilities into a directory typically found along a user’s PATH, or in some other obvious and convenient
place.

In this documentation, #!/usr/bin/perl on the first line of the program will stand in for whatever
method works on your system. You are advised to use a specific path if you care about a specific
version.

#!/usr/local/bin/perl5.14

or if you just want to be running at least version, place a statement like this at the top of your program:

use v5.14;

Command Switches
As with all standard commands, a single-character switch may be clustered with the following switch,
if any.

#!/usr/bin/perl −spi.orig # same as −s −p −i.orig

A −− signals the end of options and disables further option processing. Any arguments after the −− are
treated as filenames and arguments.

Switches include:

−0[octal/hexadecimal]
specifies the input record separator ($/) as an octal or hexadecimal number. If there are no
digits, the null character is the separator. Other switches may precede or follow the digits. For
example, if you have a version of find which can print filenames terminated by the null character,
you can say this:

find . −name '*.orig' −print0 | perl −n0e unlink

The special value 00 will cause Perl to slurp files in paragraph mode.

Any value 0400 or above will cause Perl to slurp files whole, but by convention the value 0777 is
the one normally used for this purpose. The "−g" flag is a simpler alias for it.

You can also specify the separator character using hexadecimal notation: −0xHHH..., where the
H are valid hexadecimal digits. Unlike the octal form, this one may be used to specify any
Unicode character, even those beyond 0xFF. So if you really want a record separator of 0777,
specify it as −0x1FF. (This means that you cannot use the "−x" option with a directory name
that consists of hexadecimal digits, or else Perl will think you have specified a hex number to
−0.)

−a turns on autosplit mode when used with a "−n" or "−p". An implicit split command to the @F
array is done as the first thing inside the implicit while loop produced by the "−n" or "−p".

perl −ane 'print pop(@F), "\n";'

is equivalent to

while (<>) {
@F = split(' ');
print pop(@F), "\n";

}

An alternate delimiter may be specified using −F.

−a implicitly sets "−n".

−C [number/list]
The −C flag controls some of the Perl Unicode features.

As of 5.8.1, the −C can be followed either by a number or a list of option letters. The letters,
their numeric values, and effects are as follows; listing the letters is equal to summing the
numbers.

perl v5.38.2 2025-07-25 265

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

I 1 STDIN is assumed to be in UTF−8
O 2 STDOUT will be in UTF−8
E 4 STDERR will be in UTF−8
S 7 I + O + E
i 8 UTF−8 is the default PerlIO layer for input streams
o 16 UTF−8 is the default PerlIO layer for output streams
D 24 i + o
A 32 the @ARGV elements are expected to be strings encoded

in UTF−8
L 64 normally the "IOEioA" are unconditional, the L makes

them conditional on the locale environment variables
(the LC_ALL, LC_CTYPE, and LANG, in the order of
decreasing precedence) −− if the variables indicate
UTF−8, then the selected "IOEioA" are in effect

a 256 Set ${ˆUTF8CACHE} to −1, to run the UTF−8 caching
code in debugging mode.

For example, −COE and −C6 will both turn on UTF−8−ness on both STDOUT and STDERR.
Repeating letters is just redundant, not cumulative nor toggling.

The io options mean that any subsequent open() (or similar I/O operations) in main program
scope will have the :utf8 PerlIO layer implicitly applied to them, in other words, UTF−8 is
expected from any input stream, and UTF−8 is produced to any output stream. This is just the
default set via ${ˆOPEN}, with explicit layers in open() and with binmode() one can
manipulate streams as usual. This has no effect on code run in modules.

−C on its own (not followed by any number or option list), or the empty string "" for the
"PERL_UNICODE" environment variable, has the same effect as −CSDL. In other words, the
standard I/O handles and the default open() layer are UTF−8−fied but only if the locale
environment variables indicate a UTF−8 locale. This behaviour follows the implicit (and
problematic) UTF−8 behaviour of Perl 5.8.0. (See "UTF−8 no longer default under UTF−8
locales" in perl581delta.)

You can use −C0 (or "0" for PERL_UNICODE) to explicitly disable all the above Unicode
features.

The read-only magic variable ${ˆUNICODE} reflects the numeric value of this setting. This
variable is set during Perl startup and is thereafter read-only. If you want runtime effects, use the
three-arg open() (see "open" in perlfunc), the two-arg binmode() (see "binmode" in perlfunc),
and the open pragma (see open).

(In Perls earlier than 5.8.1 the −C switch was a Win32−only switch that enabled the use of
Unicode-aware "wide system call" Win32 APIs. This feature was practically unused, however,
and the command line switch was therefore "recycled".)

Note: Since perl 5.10.1, if the −C option is used on the #! line, it must be specified on the
command line as well, since the standard streams are already set up at this point in the execution
of the perl interpreter. You can also use binmode() to set the encoding of an I/O stream.

−c causes Perl to check the syntax of the program and then exit without executing it. Actually, it
will execute any BEGIN, UNITCHECK, or CHECK blocks and any use statements: these are
considered as occurring outside the execution of your program. INIT and END blocks, however,
will be skipped.

−d
−dt runs the program under the Perl debugger. See perldebug. If t is specified, it indicates to the

debugger that threads will be used in the code being debugged.

−d:MOD[=bar,baz]
−dt:MOD[=bar,baz]

runs the program under the control of a debugging, profiling, or tracing module installed as
Devel::MOD. E.g., −d:DProf executes the program using the Devel::DProf profiler. As
with the −M flag, options may be passed to the Devel::MOD package where they will be
received and interpreted by the Devel::MOD::import routine. Again, like −M, use

266 2025-07-25 perl v5.38.2

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

−−d:−MOD to call Devel::MOD::unimport instead of import. The comma-separated list
of options must follow a = character. If t is specified, it indicates to the debugger that threads
will be used in the code being debugged. See perldebug.

−Dletters
−Dnumber

sets debugging flags. This switch is enabled only if your perl binary has been built with
debugging enabled: normal production perls won’t hav e been.

For example, to watch how perl executes your program, use −Dtls. Another nice value is −Dx,
which lists your compiled syntax tree, and −Dr displays compiled regular expressions; the
format of the output is explained in perldebguts.

As an alternative, specify a number instead of list of letters (e.g., −D14 is equivalent to −Dtls):

1 p Tokenizing and parsing (with v, displays parse
stack)

2 s Stack snapshots (with v, displays all stacks)
4 l Context (loop) stack processing
8 t Trace execution
16 o Method and overloading resolution
32 c String/numeric conversions
64 P Print profiling info, source file input state
128 m Memory and SV allocation
256 f Format processing
512 r Regular expression parsing and execution
1024 x Syntax tree dump
2048 u Tainting checks
4096 U Unofficial, User hacking (reserved for private,

unreleased use)
8192 h Show hash randomization debug output (changes to

PL_hash_rand_bits and their origin)
16384 X Scratchpad allocation
32768 D Cleaning up
65536 S Op slab allocation
131072 T Tokenizing
262144 R Include reference counts of dumped variables

(eg when using −Ds)
524288 J show s,t,P−debug (don't Jump over) on opcodes within

package DB
1048576 v Verbose: use in conjunction with other flags to

increase the verbosity of the output. Is a no−op on
many of the other flags

2097152 C Copy On Write
4194304 A Consistency checks on internal structures
8388608 q quiet − currently only suppresses the "EXECUTING"

message
16777216 M trace smart match resolution
33554432 B dump suBroutine definitions, including special

Blocks like BEGIN
67108864 L trace Locale−related info; what gets output is very

subject to change
134217728 i trace PerlIO layer processing. Set PERLIO_DEBUG to

the filename to trace to.
268435456 y trace y///, tr/// compilation and execution

All these flags require −DDEBUGGING when you compile the Perl executable (but see :opd
in Devel::Peek or "’debug’ mode" in re which may change this). See the INSTALL file in the
Perl source distribution for how to do this.

If you’re just trying to get a print out of each line of Perl code as it executes, the way that sh −x
provides for shell scripts, you can’t use Perl’s −D switch. Instead do this

perl v5.38.2 2025-07-25 267

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

If you have "env" utility
env PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl −dS program

Bourne shell syntax
$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl −dS program

csh syntax
% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl −dS program)

See perldebug for details and variations.

−e commandline
may be used to enter one line of program. If −e is given, Perl will not look for a filename in the
argument list. Multiple −e commands may be given to build up a multi-line script. Make sure to
use semicolons where you would in a normal program.

−E commandline
behaves just like −e, except that it implicitly enables all optional features (in the main
compilation unit). See feature.

−f Disable executing $Config{sitelib}/sitecustomize.pl at startup.

Perl can be built so that it by default will try to execute $Config{sitelib}/sitecustomize.pl at
startup (in a BEGIN block). This is a hook that allows the sysadmin to customize how Perl
behaves. It can for instance be used to add entries to the @INC array to make Perl find modules
in non-standard locations.

Perl actually inserts the following code:

BEGIN {
do { local $!; −f "$Config{sitelib}/sitecustomize.pl"; }

&& do "$Config{sitelib}/sitecustomize.pl";
}

Since it is an actual do (not a require), sitecustomize.pl doesn’t need to return a true value.
The code is run in package main, in its own lexical scope. However, if the script dies, $@ will
not be set.

The value of $Config{sitelib} is also determined in C code and not read from
Config.pm, which is not loaded.

The code is executed very early. For example, any changes made to @INC will show up in the
output of ‘perl −V‘. Of course, END blocks will be likewise executed very late.

To determine at runtime if this capability has been compiled in your perl, you can check the
value of $Config{usesitecustomize}.

−Fpattern
specifies the pattern to split on for "−a". The pattern may be surrounded by //, "", or '',
otherwise it will be put in single quotes. You can’t use literal whitespace or NUL characters in
the pattern.

−F implicitly sets both "−a" and "−n".

−g undefines the input record separator ($/) and thus enables the slurp mode. In other words, it
causes Perl to read whole files at once, instead of line by line.

This flag is a simpler alias for −0777.

Mnemonics: gobble, grab, gulp.

−h prints a summary of the options.

−? synonym for −h: prints a summary of the options.

−i[extension]
specifies that files processed by the <> construct are to be edited in-place. It does this by
renaming the input file, opening the output file by the original name, and selecting that output file
as the default for print() statements. The extension, if supplied, is used to modify the name of

268 2025-07-25 perl v5.38.2

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

the old file to make a backup copy, following these rules:

If no extension is supplied, and your system supports it, the original file is kept open without a
name while the output is redirected to a new file with the original filename. When perl exits,
cleanly or not, the original file is unlinked.

If the extension doesn’t contain a *, then it is appended to the end of the current filename as a
suffix. If the extension does contain one or more * characters, then each * is replaced with the
current filename. In Perl terms, you could think of this as:

($backup = $extension) =˜ s/*/$file_name/g;

This allows you to add a prefix to the backup file, instead of (or in addition to) a suffix:

$ perl −pi'orig_*' −e 's/bar/baz/' fileA # backup to
'orig_fileA'

Or even to place backup copies of the original files into another directory (provided the directory
already exists):

$ perl −pi'old/*.orig' −e 's/bar/baz/' fileA # backup to
'old/fileA.orig'

These sets of one-liners are equivalent:

$ perl −pi −e 's/bar/baz/' fileA # overwrite current file
$ perl −pi'*' −e 's/bar/baz/' fileA # overwrite current file

$ perl −pi'.orig' −e 's/bar/baz/' fileA # backup to 'fileA.orig'
$ perl −pi'*.orig' −e 's/bar/baz/' fileA # backup to 'fileA.orig'

From the shell, saying

$ perl −p −i.orig −e "s/foo/bar/; ... "

is the same as using the program:

#!/usr/bin/perl −pi.orig
s/foo/bar/;

which is equivalent to

#!/usr/bin/perl
$extension = '.orig';
LINE: while (<>) {

if ($ARGV ne $oldargv) {
if ($extension !˜ /*/) {

$backup = $ARGV . $extension;
}
else {

($backup = $extension) =˜ s/*/$ARGV/g;
}
rename($ARGV, $backup);
open(ARGVOUT, ">$ARGV");
select(ARGVOUT);
$oldargv = $ARGV;

}
s/foo/bar/;

}
continue {

print; # this prints to original filename
}
select(STDOUT);

except that the −i form doesn’t need to compare $ARGV to $oldargv to know when the
filename has changed. It does, however, use ARGVOUT for the selected filehandle. Note that
STDOUT is restored as the default output filehandle after the loop.

perl v5.38.2 2025-07-25 269

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

As shown above, Perl creates the backup file whether or not any output is actually changed. So
this is just a fancy way to copy files:

$ perl −p −i'/some/file/path/*' −e 1 file1 file2 file3...
or

$ perl −p −i'.orig' −e 1 file1 file2 file3...

You can use eof without parentheses to locate the end of each input file, in case you want to
append to each file, or reset line numbering (see example in "eof" in perlfunc).

If, for a given file, Perl is unable to create the backup file as specified in the extension then it will
skip that file and continue on with the next one (if it exists).

For a discussion of issues surrounding file permissions and −i, see "Why does Perl let me delete
read-only files? Why does −i clobber protected files? Isn’t this a bug in Perl?" in perlfaq5.

You cannot use −i to create directories or to strip extensions from files.

Perl does not expand ˜ in filenames, which is good, since some folks use it for their backup files:

$ perl −pi˜ −e 's/foo/bar/' file1 file2 file3...

Note that because −i renames or deletes the original file before creating a new file of the same
name, Unix-style soft and hard links will not be preserved.

Finally, the −i switch does not impede execution when no files are given on the command line.
In this case, no backup is made (the original file cannot, of course, be determined) and processing
proceeds from STDIN to STDOUT as might be expected.

−Idirectory
Directories specified by −I are prepended to the search path for modules (@INC).

−l[octnum]
enables automatic line-ending processing. It has two separate effects. First, it automatically
chomps $/ (the input record separator) when used with "−n" or "−p". Second, it assigns $\ (the
output record separator) to have the value of octnum so that any print statements will have that
separator added back on. If octnum is omitted, sets $\ to the current value of $/. For instance,
to trim lines to 80 columns:

perl −lpe 'substr($_, 80) = ""'

Note that the assignment $\ = $/ is done when the switch is processed, so the input record
separator can be different than the output record separator if the −l switch is followed by a −0
switch:

gnufind / −print0 | perl −ln0e 'print "found $_" if −p'

This sets $\ to newline and then sets $/ to the null character.

−m[−]module
−M[−]module
−M[−]’module ...’
−[mM][−]module=arg[,arg]...

−mmodule executes use module (); before executing your program. This loads the module,
but does not call its import method, so does not import subroutines and does not give effect to
a pragma.

−Mmodule executes use module ; before executing your program. This loads the module and
calls its import method, causing the module to have its default effect, typically importing
subroutines or giving effect to a pragma. You can use quotes to add extra code after the module
name, e.g., '−MMODULE qw(foo bar)'.

If the first character after the −M or −m is a dash (−) then the ’use’ is replaced with ’no’. This
makes no difference for −m.

A little builtin syntactic sugar means you can also say −mMODULE=foo,bar or
−MMODULE=foo,bar as a shortcut for ’−MMODULE qw(foo bar)’. This avoids the need to
use quotes when importing symbols. The actual code generated by −MMODULE=foo,bar is

270 2025-07-25 perl v5.38.2

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

use module split(/,/,q{foo,bar}). Note that the = form removes the distinction
between −m and −M; that is, −mMODULE=foo,bar is the same as −MMODULE=foo,bar.

A consequence of the split formulation is that −MMODULE=number never does a version
check, unless MODULE::import() itself is set up to do a version check, which could happen
for example if MODULE inherits from Exporter.

−n causes Perl to assume the following loop around your program, which makes it iterate over
filename arguments somewhat like sed −n or awk:

LINE:
while (<>) {

... # your program goes here
}

Note that the lines are not printed by default. See "−p" to have lines printed. If a file named by
an argument cannot be opened for some reason, Perl warns you about it and moves on to the next
file.

Also note that <> passes command line arguments to "open" in perlfunc, which doesn’t
necessarily interpret them as file names. See perlop for possible security implications.

Here is an efficient way to delete all files that haven’t been modified for at least a week:

find . −mtime +7 −print | perl −nle unlink

This is faster than using the −exec switch of find because you don’t hav e to start a process on
ev ery filename found (but it’s not faster than using the −delete switch available in newer versions
of find. It does suffer from the bug of mishandling newlines in pathnames, which you can fix if
you follow the example under −0.

BEGIN and END blocks may be used to capture control before or after the implicit program loop,
just as in awk.

−p causes Perl to assume the following loop around your program, which makes it iterate over
filename arguments somewhat like sed:

LINE:
while (<>) {

... # your program goes here
} continue {

print or die "−p destination: $!\n";
}

If a file named by an argument cannot be opened for some reason, Perl warns you about it, and
moves on to the next file. Note that the lines are printed automatically. An error occurring
during printing is treated as fatal. To suppress printing use the "−n" switch. A −p overrides a −n
switch.

BEGIN and END blocks may be used to capture control before or after the implicit loop, just as
in awk.

−s enables rudimentary switch parsing for switches on the command line after the program name
but before any filename arguments (or before an argument of −−). Any switch found there is
removed from @ARGV and sets the corresponding variable in the Perl program, in the main
package. The following program prints "1" if the program is invoked with a −xyz switch, and
"abc" if it is invoked with −xyz=abc.

#!/usr/bin/perl −s
if ($xyz) { print "$xyz\n" }

Do note that a switch like −−help creates the variable ${−help}, which is not compliant with
use strict "refs". Also, when using this option on a script with warnings enabled you
may get a lot of spurious "used only once" warnings. For these reasons, use of −s is discouraged.
See Getopt::Long for much more flexible switch parsing.

perl v5.38.2 2025-07-25 271

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

−S makes Perl use the "PATH" environment variable to search for the program unless the name of
the program contains path separators.

On some platforms, this also makes Perl append suffixes to the filename while searching for it.
For example, on Win32 platforms, the ".bat" and ".cmd" suffixes are appended if a lookup for the
original name fails, and if the name does not already end in one of those suffixes. If your Perl
was compiled with DEBUGGING turned on, using the −Dp switch to Perl shows how the search
progresses.

Typically this is used to emulate #! startup on platforms that don’t support #!. It’s also
convenient when debugging a script that uses #!, and is thus normally found by the shell’s
$PATH search mechanism.

This example works on many platforms that have a shell compatible with Bourne shell:

#!/usr/bin/perl
eval 'exec /usr/bin/perl −wS $0 ${1+"$@"}'

if 0; # ˆ Run only under a shell

The system ignores the first line and feeds the program to /bin/sh, which proceeds to try to
execute the Perl program as a shell script. The shell executes the second line as a normal shell
command, and thus starts up the Perl interpreter. On some systems $0 doesn’t always contain
the full pathname, so the "−S" tells Perl to search for the program if necessary. After Perl locates
the program, it parses the lines and ignores them because the check ’if 0’ is never true. If the
program will be interpreted by csh, you will need to replace ${1+"$@"} with $*, even though
that doesn’t understand embedded spaces (and such) in the argument list. To start up sh rather
than csh, some systems may have to replace the #! line with a line containing just a colon, which
will be politely ignored by Perl. Other systems can’t control that, and need a totally devious
construct that will work under any of csh, sh, or Perl, such as the following:

eval '(exit $?0)' && eval 'exec perl −wS $0 ${1+"$@"}'
& eval 'exec /usr/bin/perl −wS $0 $argv:q'

if 0; # ˆ Run only under a shell

If the filename supplied contains directory separators (and so is an absolute or relative
pathname), and if that file is not found, platforms that append file extensions will do so and try to
look for the file with those extensions added, one by one.

On DOS-like platforms, if the program does not contain directory separators, it will first be
searched for in the current directory before being searched for on the PATH. On Unix platforms,
the program will be searched for strictly on the PATH.

−t Like "−T", but taint checks will issue warnings rather than fatal errors. These warnings can now
be controlled normally with no warnings qw(taint).

Note: This is not a substitute for −T! This is meant to be used only as a temporary development
aid while securing legacy code: for real production code and for new secure code written from
scratch, always use the real "−T".

This has no effect if your perl was built without taint support.

−T turns on "taint" so you can test them. Ordinarily these checks are done only when running setuid
or setgid. It’s a good idea to turn them on explicitly for programs that run on behalf of someone
else whom you might not necessarily trust, such as CGI programs or any internet servers you
might write in Perl. See perlsec for details. For security reasons, this option must be seen by
Perl quite early; usually this means it must appear early on the command line or in the #! line
for systems which support that construct.

−u This switch causes Perl to dump core after compiling your program. You can then in theory take
this core dump and turn it into an executable file by using the undump program (not supplied).
This speeds startup at the expense of some disk space (which you can minimize by stripping the
executable). (Still, a "hello world" executable comes out to about 200K on my machine.) If you
want to execute a portion of your program before dumping, use the CORE::dump() function
instead. Note: availability of undump is platform specific and may not be available for a specific
port of Perl.

272 2025-07-25 perl v5.38.2

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

−U allows Perl to do unsafe operations. Currently the only "unsafe" operations are attempting to
unlink directories while running as superuser and running setuid programs with fatal taint checks
turned into warnings. Note that warnings must be enabled along with this option to actually
generate the taint-check warnings.

−v prints the version and patchlevel of your perl executable.

−V prints summary of the major perl configuration values and the current values of @INC.

−V:configvar
Prints to STDOUT the value of the named configuration variable(s), with multiples when your
configvar argument looks like a regex (has non-letters). For example:

$ perl −V:libc
libc='/lib/libc−2.2.4.so';

$ perl −V:lib.
libs='−lnsl −lgdbm −ldb −ldl −lm −lcrypt −lutil −lc';
libc='/lib/libc−2.2.4.so';

$ perl −V:lib.*
libpth='/usr/local/lib /lib /usr/lib';
libs='−lnsl −lgdbm −ldb −ldl −lm −lcrypt −lutil −lc';
lib_ext='.a';
libc='/lib/libc−2.2.4.so';
libperl='libperl.a';
....

Additionally, extra colons can be used to control formatting. A trailing colon suppresses the
linefeed and terminator ";", allowing you to embed queries into shell commands. (mnemonic:
PATH separator ":".)

$ echo "compression−vars: " `perl −V:z.*: ` " are here !"
compression−vars: zcat='' zip='zip' are here !

A leading colon removes the "name=" part of the response, this allows you to map to the name
you need. (mnemonic: empty label)

$ echo "goodvfork="`./perl −Ilib −V::usevfork`
goodvfork=false;

Leading and trailing colons can be used together if you need positional parameter values without
the names. Note that in the case below, the PERL_API params are returned in alphabetical
order.

$ echo building_on `perl −V::osname: −V::PERL_API_.*:` now
building_on 'linux' '5' '1' '9' now

−w prints warnings about dubious constructs, such as variable names mentioned only once and scalar
variables used before being set; redefined subroutines; references to undefined filehandles;
filehandles opened read-only that you are attempting to write on; values used as a number that
don’t look like numbers; using an array as though it were a scalar; if your subroutines recurse
more than 100 deep; and innumerable other things.

This switch really just enables the global $ˆW variable; normally, the lexically scoped use
warnings pragma is preferred. You can disable or promote into fatal errors specific warnings
using __WARN_ _ hooks, as described in perlvar and "warn" in perlfunc. See also perldiag and
perltrap. A fine-grained warning facility is also available if you want to manipulate entire classes
of warnings; see warnings.

−W Enables all warnings regardless of no warnings or $ˆW. See warnings.

−X Disables all warnings regardless of use warnings or $ˆW. See warnings.

Forbidden in "PERL5OPT".

−x

perl v5.38.2 2025-07-25 273

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

−xdirectory
tells Perl that the program is embedded in a larger chunk of unrelated text, such as in a mail
message. Leading garbage will be discarded until the first line that starts with #! and contains
the string "perl". Any meaningful switches on that line will be applied.

All references to line numbers by the program (warnings, errors, ...) will treat the #! line as the
first line. Thus a warning on the 2nd line of the program, which is on the 100th line in the file
will be reported as line 2, not as line 100. This can be overridden by using the #line directive.
(See "Plain Old Comments (Not!)" in perlsyn)

If a directory name is specified, Perl will switch to that directory before running the program.
The −x switch controls only the disposal of leading garbage. The program must be terminated
with __END_ _ if there is trailing garbage to be ignored; the program can process any or all of
the trailing garbage via the DATA filehandle if desired.

The directory, if specified, must appear immediately following the −x with no intervening
whitespace.

ENVIRONMENT
HOME Used if chdir has no argument.

LOGDIR Used if chdir has no argument and "HOME" is not set.

PATH Used in executing subprocesses, and in finding the program if "−S" is used.

PERL5LIB A list of directories in which to look for Perl library files before looking in the standard
library. Any architecture-specific and version-specific directories, such as
version/archname/, version/, or archname/ under the specified locations are
automatically included if they exist, with this lookup done at interpreter startup time. In
addition, any directories matching the entries in $Config{inc_version_list}
are added. (These typically would be for older compatible perl versions installed in the
same directory tree.)

If PERL5LIB is not defined, "PERLLIB" is used. Directories are separated (like in
PATH) by a colon on Unixish platforms and by a semicolon on Windows (the proper
path separator being given by the command perl −V:path_sep).

When running taint checks, either because the program was running setuid or setgid, or
the "−T" or "−t" switch was specified, neither PERL5LIB nor "PERLLIB" is consulted.
The program should instead say:

use lib "/my/directory";

PERL5OPT Command-line options (switches). Switches in this variable are treated as if they were
on every Perl command line. Only the −[CDIMTUWdmtw] switches are allowed.
When running taint checks (either because the program was running setuid or setgid, or
because the "−T" or "−t" switch was used), this variable is ignored. If PERL5OPT
begins with −T, tainting will be enabled and subsequent options ignored. If PERL5OPT
begins with −t, tainting will be enabled, a writable dot removed from @INC, and
subsequent options honored.

PERLIO A space (or colon) separated list of PerlIO layers. If perl is built to use PerlIO system for
IO (the default) these layers affect Perl’s IO.

It is conventional to start layer names with a colon (for example, :perlio) to
emphasize their similarity to variable "attributes". But the code that parses layer
specification strings, which is also used to decode the PERLIO environment variable,
treats the colon as a separator.

An unset or empty PERLIO is equivalent to the default set of layers for your platform;
for example, :unix:perlio on Unix-like systems and :unix:crlf on Windows
and other DOS-like systems.

The list becomes the default for all Perl’s IO. Consequently only built-in layers can
appear in this list, as external layers (such as :encoding()) need IO in order to load
them! See "open pragma" for how to add external encodings as defaults.

274 2025-07-25 perl v5.38.2

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

Layers it makes sense to include in the PERLIO environment variable are briefly
summarized below. For more details see PerlIO.

:crlf A layer which does CRLF to "\n" translation distinguishing "text" and
"binary" files in the manner of MS-DOS and similar operating systems, and
also provides buffering similar to :perlio on these architectures.

:perlio This is a re-implementation of stdio-like buffering written as a PerlIO layer.
As such it will call whatever layer is below it for its operations, typically
:unix.

:stdio This layer provides a PerlIO interface by wrapping system’s ANSI C "stdio"
library calls. The layer provides both buffering and IO. Note that the :stdio
layer does not do CRLF translation even if that is the platform’s normal
behaviour. You will need a :crlf layer above it to do that.

:unix Low-level layer that calls read, write, lseek, etc.

The default set of layers should give acceptable results on all platforms.

For Unix platforms that will be the equivalent of ":unix:perlio" or ":stdio". Configure is
set up to prefer the ":stdio" implementation if the system’s library provides for fast
access to the buffer (not common on modern architectures); otherwise, it uses the
":unix:perlio" implementation.

On Win32 the default in this release (5.30) is ":unix:crlf". Win32’s ":stdio" has a number
of bugs/mis−features for Perl IO which are somewhat depending on the version and
vendor of the C compiler. Using our own :crlf layer as the buffer avoids those issues
and makes things more uniform.

This release (5.30) uses :unix as the bottom layer on Win32, and so still uses the C
compiler’s numeric file descriptor routines.

The PERLIO environment variable is completely ignored when Perl is run in taint mode.

PERLIO_DEBUG
If set to the name of a file or device when Perl is run with the −Di command-line switch,
the logging of certain operations of the PerlIO subsystem will be redirected to the
specified file rather than going to stderr, which is the default. The file is opened in
append mode. Typical uses are in Unix:

% env PERLIO_DEBUG=/tmp/perlio.log perl −Di script ...

and under Win32, the approximately equivalent:

> set PERLIO_DEBUG=CON
perl −Di script ...

This functionality is disabled for setuid scripts, for scripts run with "−T", and for scripts
run on a Perl built without −DDEBUGGING support.

PERLLIB A list of directories in which to look for Perl library files before looking in the standard
library. If "PERL5LIB" is defined, PERLLIB is not used.

The PERLLIB environment variable is completely ignored when Perl is run in taint
mode.

PERL5DB The command used to load the debugger code. The default is:

BEGIN { require "perl5db.pl" }

The PERL5DB environment variable is only used when Perl is started with a bare "−d"
switch.

PERL5DB_THREADED
If set to a true value, indicates to the debugger that the code being debugged uses
threads.

perl v5.38.2 2025-07-25 275

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

PERL5SHELL (specific to the Win32 port)
On Win32 ports only, may be set to an alternative shell that Perl must use internally for
executing "backtick" commands or system(). Default is cmd.exe /x/d/c on
WindowsNT and command.com /c on Windows95. The value is considered space-
separated. Precede any character that needs to be protected, like a space or backslash,
with another backslash.

Note that Perl doesn’t use COMSPEC for this purpose because COMSPEC has a high
degree of variability among users, leading to portability concerns. Besides, Perl can use
a shell that may not be fit for interactive use, and setting COMSPEC to such a shell may
interfere with the proper functioning of other programs (which usually look in
COMSPEC to find a shell fit for interactive use).

Before Perl 5.10.0 and 5.8.8, PERL5SHELL was not taint checked when running
external commands. It is recommended that you explicitly set (or delete)
$ENV{PERL5SHELL} when running in taint mode under Windows.

PERL_ALLOW_NON_IFS_LSP (specific to the Win32 port)
Set to 1 to allow the use of non-IFS compatible LSPs (Layered Service Providers). Perl
normally searches for an IFS-compatible LSP because this is required for its emulation
of Windows sockets as real filehandles. However, this may cause problems if you have
a firewall such as McAfee Guardian, which requires that all applications use its LSP but
which is not IFS-compatible, because clearly Perl will normally avoid using such an
LSP.

Setting this environment variable to 1 means that Perl will simply use the first suitable
LSP enumerated in the catalog, which keeps McAfee Guardian happy−−and in that
particular case Perl still works too because McAfee Guardian’s LSP actually plays other
games which allow applications requiring IFS compatibility to work.

PERL_DEBUG_MSTATS
Relevant only if Perl is compiled with the malloc included with the Perl distribution;
that is, if perl −V:d_mymalloc is "define".

If set, this dumps out memory statistics after execution. If set to an integer greater than
one, also dumps out memory statistics after compilation.

PERL_DESTRUCT_LEVEL
Controls the behaviour of global destruction of objects and other references. See
"PERL_DESTRUCT_LEVEL" in perlhacktips for more information.

PERL_DL_NONLAZY
Set to "1" to have Perl resolve all undefined symbols when it loads a dynamic library.
The default behaviour is to resolve symbols when they are used. Setting this variable is
useful during testing of extensions, as it ensures that you get an error on misspelled
function names even if the test suite doesn’t call them.

PERL_ENCODING
If using the use encoding pragma without an explicit encoding name, the
PERL_ENCODING environment variable is consulted for an encoding name.

PERL_HASH_SEED
(Since Perl 5.8.1, new semantics in Perl 5.18.0) Used to override the randomization of
Perl’s internal hash function. The value is expressed in hexadecimal, and may include a
leading 0x. Truncated patterns are treated as though they are suffixed with sufficient 0’s
as required.

If the option is provided, and PERL_PERTURB_KEYS is NOT set, then a value of ’0’
implies PERL_PERTURB_KEYS=0/PERL_PERTURB_KEYS=NO and any other value
implies PERL_PERTURB_KEYS=2/PERL_PERTURB_KEYS=DETERMINISTIC. See
the documentation for PERL_PERTURB_KEYS for important caveats regarding the
DETERMINISTIC mode.

PLEASE NOTE: The hash seed is sensitive information. Hashes are randomized to
protect against local and remote attacks against Perl code. By manually setting a seed,

276 2025-07-25 perl v5.38.2

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

this protection may be partially or completely lost.

See "Algorithmic Complexity Attacks" in perlsec, "PERL_PERTURB_KEYS", and
"PERL_HASH_SEED_DEBUG" for more information.

PERL_PERTURB_KEYS
(Since Perl 5.18.0) Set to "0" or "NO" then traversing keys will be repeatable from run
to run for the same PERL_HASH_SEED. Insertion into a hash will not change the
order, except to provide for more space in the hash. When combined with setting
PERL_HASH_SEED this mode is as close to pre 5.18 behavior as you can get.

When set to "1" or "RANDOM" then traversing keys will be randomized. Every time a
hash is inserted into the key order will change in a random fashion. The order may not
be repeatable in a following program run even if the PERL_HASH_SEED has been
specified. This is the default mode for perl when no PERL_HASH_SEED has been
explicitly provided.

When set to "2" or "DETERMINISTIC" then inserting keys into a hash will cause the
key order to change, but in a way that is repeatable from program run to program run,
provided that the same hash seed is used, and that the code does not itself perform any
non-deterministic operations and also provided exactly the same environment context.
Adding or removing an environment variable may and likely will change the key order.
If any part of the code builds a hash using non− deterministic keys, for instance a hash
keyed by the stringified form of a reference, or the address of the objects it contains,
then this may and likely will have a global effect on the key order of *every* hash in the
process. To work properly this setting MUST be coupled with the PERL_HASH_SEED
to produce deterministic results, and in fact, if you do set the PERL_HASH_SEED
explicitly you do not need to set this as well, it will be automatically set to this mode.

NOTE: Use of this option is considered insecure, and is intended only for debugging
non-deterministic behavior in Perl’s hash function. Do not use it in production.

See "Algorithmic Complexity Attacks" in perlsec and "PERL_HASH_SEED" and
"PERL_HASH_SEED_DEBUG" for more information. You can get and set the key
traversal mask for a specific hash by using the hash_traversal_mask() function
from Hash::Util.

PERL_HASH_SEED_DEBUG
(Since Perl 5.8.1.) Set to "1" to display (to STDERR) information about the hash
function, seed, and what type of key traversal randomization is in effect at the beginning
of execution. This, combined with "PERL_HASH_SEED" and
"PERL_PERTURB_KEYS" is intended to aid in debugging nondeterministic behaviour
caused by hash randomization.

Note that any information about the hash function, especially the hash seed is sensitive
information: by knowing it, one can craft a denial-of-service attack against Perl code,
ev en remotely; see "Algorithmic Complexity Attacks" in perlsec for more information.
Do not disclose the hash seed to people who don’t need to know it. See also
hash_seed() and hash_traversal_mask().

An example output might be:

HASH_FUNCTION = ONE_AT_A_TIME_HARD HASH_SEED = 0x652e9b9349a7a032 PERTURB_KEYS = 1 (RANDOM)

PERL_MEM_LOG
If your Perl was configured with −Accflags=−DPERL_MEM_LOG, setting the
environment variable PERL_MEM_LOG enables logging debug messages. The value has
the form <number>[m][s][t], where number is the file descriptor number you
want to write to (2 is default), and the combination of letters specifies that you want
information about (m)emory and/or (s)v, optionally with (t)imestamps. For example,
PERL_MEM_LOG=1mst logs all information to stdout. You can write to other opened
file descriptors in a variety of ways:

$ 3>foo3 PERL_MEM_LOG=3m perl ...

perl v5.38.2 2025-07-25 277

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

PERL_ROOT (specific to the VMS port)
A translation-concealed rooted logical name that contains Perl and the logical device for
the @INC path on VMS only. Other logical names that affect Perl on VMS include
PERLSHR, PERL_ENV_TABLES, and SYS$TIMEZONE_DIFFERENTIAL, but are
optional and discussed further in perlvms and in README.vms in the Perl source
distribution.

PERL_SIGNALS
Av ailable in Perls 5.8.1 and later. If set to "unsafe", the pre−Perl−5.8.0 signal
behaviour (which is immediate but unsafe) is restored. If set to safe, then safe (but
deferred) signals are used. See "Deferred Signals (Safe Signals)" in perlipc.

PERL_UNICODE
Equivalent to the −C command-line switch. Note that this is not a boolean variable.
Setting this to "1" is not the right way to "enable Unicode" (whatever that would
mean). You can use "0" to "disable Unicode", though (or alternatively unset
PERL_UNICODE in your shell before starting Perl). See the description of the −C
switch for more information.

PERL_USE_UNSAFE_INC
If perl has been configured to not have the current directory in @INC by default, this
variable can be set to "1" to reinstate it. It’s primarily intended for use while building
and testing modules that have not been updated to deal with "." not being in @INC and
should not be set in the environment for day-to-day use.

SYS$LOGIN (specific to the VMS port)
Used if chdir has no argument and "HOME" and "LOGDIR" are not set.

PERL_INTERNAL_RAND_SEED
Set to a non-negative integer to seed the random number generator used internally by
perl for a variety of purposes.

Ignored if perl is run setuid or setgid. Used only for some limited startup randomization
(hash keys) if −T or −t perl is started with tainting enabled.

Perl may be built to ignore this variable.

PERL_RAND_SEED
When set to an integer value this value will be used to seed the perl internal random
number generator used for rand() when it is used without an explicit srand() call
or for when an explicit no-argument srand() call is made.

Normally calling rand() prior to calling srand() or calling srand() explicitly
with no arguments should result in the random number generator using "best efforts" to
seed the generator state with a relatively high quality random seed. When this
environment variable is set then the seeds used will be deterministically computed from
the value provided in the env var in such a way that the application process and any
forks or threads should continue to have their own unique seed but that the program may
be run twice with identical results as far as rand() goes (assuming all else is equal).

PERL_RAND_SEED is intended for performance measurements and debugging and is
explicitly NOT intended for stable testing. The only guarantee is that a specific perl
executable will produce the same results twice in a row, there is no guarantee that the
results will be the same between perl releases or on different architectures.

Ignored if perl is run setuid or setgid.

Perl also has environment variables that control how Perl handles data specific to particular natural
languages; see perllocale.

Perl and its various modules and components, including its test frameworks, may sometimes make use
of certain other environment variables. Some of these are specific to a particular platform. Please
consult the appropriate module documentation and any documentation for your platform (like
perlsolaris, perllinux, perlmacosx, perlwin32, etc) for variables peculiar to those specific situations.

Perl makes all environment variables available to the program being executed, and passes these along to
any child processes it starts. However, programs running setuid would do well to execute the following

278 2025-07-25 perl v5.38.2

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

lines before doing anything else, just to keep people honest:

$ENV{PATH} = "/bin:/usr/bin"; # or whatever you need
$ENV{SHELL} = "/bin/sh" if exists $ENV{SHELL};
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

ORDER OF APPLICATION
Some options, in particular −I, −M, PERL5LIB and PERL5OPT can interact, and the order in which
they are applied is important.

Note that this section does not document what actually happens inside the perl interpreter, it documents
what effectively happens.

−I The effect of multiple −I options is to unshift them onto @INC from right to left. So for
example:

perl −I 1 −I 2 −I 3

will first prepend 3 onto the front of @INC, then prepend 2, and then prepend 1. The result is that
@INC begins with:

qw(1 2 3)

−M Multiple −M options are processed from left to right. So this:

perl −Mlib=1 −Mlib=2 −Mlib=3

will first use the lib pragma to prepend 1 to @INC, then it will prepend 2, then it will prepend 3,
resulting in an @INC that begins with:

qw(3 2 1)

the PERL5LIB environment variable
This contains a list of directories, separated by colons. The entire list is prepended to @INC in one
go. This:

PERL5LIB=1:2:3 perl

will result in an @INC that begins with:

qw(1 2 3)

combinations of −I, −M and PERL5LIB
PERL5LIB is applied first, then all the −I arguments, then all the −M arguments. This:

PERL5LIB=e1:e2 perl −I i1 −Mlib=m1 −I i2 −Mlib=m2

will result in an @INC that begins with:

qw(m2 m1 i1 i2 e1 e2)

the PERL5OPT environment variable
This contains a space separated list of switches. We only consider the effects of −M and −I in this
section.

After normal processing of −I switches from the command line, all the −I switches in
PERL5OPT are extracted. They are processed from left to right instead of from right to left. Also
note that while whitespace is allowed between a −I and its directory on the command line, it is
not allowed in PERL5OPT.

After normal processing of −M switches from the command line, all the −M switches in
PERL5OPT are extracted. They are processed from left to right, i.e. the same as those on the
command line.

An example may make this clearer:

export PERL5OPT="−Mlib=optm1 −Iopti1 −Mlib=optm2 −Iopti2"
export PERL5LIB=e1:e2
perl −I i1 −Mlib=m1 −I i2 −Mlib=m2

will result in an @INC that begins with:

perl v5.38.2 2025-07-25 279

PERLRUN (1) Perl Programmers Reference Guide PERLRUN (1)

qw(
optm2
optm1

m2
m1

opti2
opti1

i1
i2

e1
e2

)

Other complications
There are some complications that are ignored in the examples above:

arch and version subdirs
All of −I, PERL5LIB and use lib will also prepend arch and version subdirs if they are
present

sitecustomize.pl

280 2025-07-25 perl v5.38.2

PERLREFTUT (1) Perl Programmers Reference Guide PERLREFTUT (1)

NAME
perlreftut − Mark’s very short tutorial about references

DESCRIPTION
One of the most important new features in Perl 5 was the capability to manage complicated data
structures like multidimensional arrays and nested hashes. To enable these, Perl 5 introduced a feature
called references, and using references is the key to managing complicated, structured data in Perl.
Unfortunately, there’s a lot of funny syntax to learn, and the main manual page can be hard to follow.
The manual is quite complete, and sometimes people find that a problem, because it can be hard to tell
what is important and what isn’t.

Fortunately, you only need to know 10% of what’s in the main page to get 90% of the benefit. This
page will show you that 10%.

Who Needs Complicated Data Structures?
One problem that comes up all the time is needing a hash whose values are lists. Perl has hashes, of
course, but the values have to be scalars; they can’t be lists.

Why would you want a hash of lists? Let’s take a simple example: You have a file of city and country
names, like this:

Chicago, USA
Frankfurt, Germany
Berlin, Germany
Washington, USA
Helsinki, Finland
New York, USA

and you want to produce an output like this, with each country mentioned once, and then an
alphabetical list of the cities in that country:

Finland: Helsinki.
Germany: Berlin, Frankfurt.
USA: Chicago, New York, Washington.

The natural way to do this is to have a hash whose keys are country names. Associated with each
country name key is a list of the cities in that country. Each time you read a line of input, split it into a
country and a city, look up the list of cities already known to be in that country, and append the new
city to the list. When you’re done reading the input, iterate over the hash as usual, sorting each list of
cities before you print it out.

If hash values couldn’t be lists, you lose. You’d probably have to combine all the cities into a single
string somehow, and then when time came to write the output, you’d hav e to break the string into a list,
sort the list, and turn it back into a string. This is messy and error-prone. And it’s frustrating, because
Perl already has perfectly good lists that would solve the problem if only you could use them.

The Solution
By the time Perl 5 rolled around, we were already stuck with this design: Hash values must be scalars.
The solution to this is references.

A reference is a scalar value that refers to an entire array or an entire hash (or to just about anything
else). Names are one kind of reference that you’re already familiar with. Each human being is a
messy, inconvenient collection of cells. But to refer to a particular human, for instance the first
computer programmer, it isn’t necessary to describe each of their cells; all you need is the easy,
convenient scalar string "Ada Lovelace".

References in Perl are like names for arrays and hashes. They’re Perl’s private, internal names, so you
can be sure they’re unambiguous. Unlike a human name, a reference only refers to one thing, and you
always know what it refers to. If you have a reference to an array, you can recover the entire array from
it. If you have a reference to a hash, you can recover the entire hash. But the reference is still an easy,
compact scalar value.

You can’t hav e a hash whose values are arrays; hash values can only be scalars. We’re stuck with that.
But a single reference can refer to an entire array, and references are scalars, so you can have a hash of
references to arrays, and it’ll act a lot like a hash of arrays, and it’ll be just as useful as a hash of arrays.

We’ll come back to this city-country problem later, after we’ve seen some syntax for managing

perl v5.38.2 2025-07-25 281

PERLREFTUT (1) Perl Programmers Reference Guide PERLREFTUT (1)

references.

Syntax
There are just two ways to make a reference, and just two ways to use it once you have it.

Making References
Make Rule 1

If you put a \ in front of a variable, you get a reference to that variable.

$aref = \@array; # $aref now holds a reference to @array
$href = \%hash; # $href now holds a reference to %hash

Once the reference is stored in a variable like $aref or $href, you can copy it or store it just the
same as any other scalar value:

$xy = $aref; # $xy now holds a reference to @array
$p[3] = $href; # $p[3] now holds a reference to %hash
$z = $p[3]; # $z now holds a reference to %hash

These examples show how to make references to variables with names. Sometimes you want to make
an array or a hash that doesn’t hav e a name. This is analogous to the way you like to be able to use the
string "\n" or the number 80 without having to store it in a named variable first.

Make Rule 2

[ITEMS] makes a new, anonymous array, and returns a reference to that array. { ITEMS }
makes a new, anonymous hash, and returns a reference to that hash.

$aref = [1, "foo", undef, 13];
$aref now holds a reference to an array

$href = { APR => 4, AUG => 8 };
$href now holds a reference to a hash

The references you get from rule 2 are the same kind of references that you get from rule 1:

This:
$aref = [1, 2, 3];

Does the same as this:
@array = (1, 2, 3);
$aref = \@array;

The first line is an abbreviation for the following two lines, except that it doesn’t create the superfluous
array variable @array.

If you write just [], you get a new, empty anonymous array. If you write just {}, you get a new,
empty anonymous hash.

Using References
What can you do with a reference once you have it? It’s a scalar value, and we’ve seen that you can
store it as a scalar and get it back again just like any scalar. There are just two more ways to use it:

Use Rule 1

You can always use an array reference, in curly braces, in place of the name of an array. For example,
@{$aref} instead of @array.

Here are some examples of that:

Arrays:

@a @{$aref} An array
reverse @a reverse @{$aref} Reverse the array
$a[3] ${$aref}[3] An element of the array
$a[3] = 17; ${$aref}[3] = 17 Assigning an element

On each line are two expressions that do the same thing. The left-hand versions operate on the array
@a. The right-hand versions operate on the array that is referred to by $aref. Once they find the
array they’re operating on, both versions do the same things to the arrays.

282 2025-07-25 perl v5.38.2

PERLREFTUT (1) Perl Programmers Reference Guide PERLREFTUT (1)

Using a hash reference is exactly the same:

%h %{$href} A hash
keys %h keys %{$href} Get the keys from the hash
$h{'red'} ${$href}{'red'} An element of the hash
$h{'red'} = 17 ${$href}{'red'} = 17 Assigning an element

Whatever you want to do with a reference, Use Rule 1 tells you how to do it. You just write the Perl
code that you would have written for doing the same thing to a regular array or hash, and then replace
the array or hash name with {$reference}. "How do I loop over an array when all I have is a
reference?" Well, to loop over an array, you would write

for my $element (@array) {
...

}

so replace the array name, @array, with the reference:

for my $element (@{$aref}) {
...

}

"How do I print out the contents of a hash when all I have is a reference?" First write the code for
printing out a hash:

for my $key (keys %hash) {
print "$key => $hash{$key}\n";

}

And then replace the hash name with the reference:

for my $key (keys %{$href}) {
print "$key => ${$href}{$key}\n";

}

Use Rule 2

Use Rule 1 is all you really need, because it tells you how to do absolutely everything you ever need to
do with references. But the most common thing to do with an array or a hash is to extract a single
element, and the Use Rule 1 notation is cumbersome. So there is an abbreviation.

${$aref}[3] is too hard to read, so you can write $aref−>[3] instead.

${$href}{red} is too hard to read, so you can write $href−>{red} instead.

If $aref holds a reference to an array, then $aref−>[3] is the fourth element of the array. Don’t
confuse this with $aref[3], which is the fourth element of a totally different array, one deceptively
named @aref. $aref and @aref are unrelated the same way that $item and @item are.

Similarly, $href−>{'red'} is part of the hash referred to by the scalar variable $href, perhaps
ev en one with no name. $href{'red'} is part of the deceptively named %href hash. It’s easy to
forget to leave out the −>, and if you do, you’ll get bizarre results when your program gets array and
hash elements out of totally unexpected hashes and arrays that weren’t the ones you wanted to use.

An Example
Let’s see a quick example of how all this is useful.

First, remember that [1, 2, 3] makes an anonymous array containing (1, 2, 3), and gives you
a reference to that array.

Now think about

@a = ([1, 2, 3],
[4, 5, 6],
[7, 8, 9]

);

@a is an array with three elements, and each one is a reference to another array.

$a[1] is one of these references. It refers to an array, the array containing (4, 5, 6), and because
it is a reference to an array, Use Rule 2 says that we can write $a[1]−>[2] to get the third element

perl v5.38.2 2025-07-25 283

PERLREFTUT (1) Perl Programmers Reference Guide PERLREFTUT (1)

from that array. $a[1]−>[2] is the 6. Similarly, $a[0]−>[1] is the 2. What we have here is like
a two-dimensional array; you can write $a[ROW]−>[COLUMN] to get or set the element in any row
and any column of the array.

The notation still looks a little cumbersome, so there’s one more abbreviation:

Arrow Rule
In between two subscripts, the arrow is optional.

Instead of $a[1]−>[2], we can write $a[1][2]; it means the same thing. Instead of
$a[0]−>[1] = 23, we can write $a[0][1] = 23; it means the same thing.

Now it really looks like two-dimensional arrays!

You can see why the arrows are important. Without them, we would have had to write ${$a[1]}[2]
instead of $a[1][2]. For three-dimensional arrays, they let us write $x[2][3][5] instead of the
unreadable ${${$x[2]}[3]}[5].

Solution
Here’s the answer to the problem I posed earlier, of reformatting a file of city and country names.

1 my %table;

2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

8 for my $country (sort keys %table) {
9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join ', ', sort @cities;
12 print ".\n";
13 }

The program has two pieces: Lines 2−7 read the input and build a data structure, and lines 8−13
analyze the data and print out the report. We’re going to have a hash, %table, whose keys are country
names, and whose values are references to arrays of city names. The data structure will look like this:

%table
+−−−−−−−+−−−+
| | | +−−−−−−−−−−−+−−−−−−−−+
|Germany| *−−−−>| Frankfurt | Berlin |
| | | +−−−−−−−−−−−+−−−−−−−−+
+−−−−−−−+−−−+
| | | +−−−−−−−−−−+
|Finland| *−−−−>| Helsinki |
| | | +−−−−−−−−−−+
+−−−−−−−+−−−+
| | | +−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+
| USA | *−−−−>| Chicago | Washington | New York |
| | | +−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+
+−−−−−−−+−−−+

We’ll look at output first. Supposing we already have this structure, how do we print it out?

8 for my $country (sort keys %table) {
9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join ', ', sort @cities;
12 print ".\n";
13 }

%table is an ordinary hash, and we get a list of keys from it, sort the keys, and loop over the keys as

284 2025-07-25 perl v5.38.2

PERLREFTUT (1) Perl Programmers Reference Guide PERLREFTUT (1)

usual. The only use of references is in line 10. $table{$country} looks up the key $country
in the hash and gets the value, which is a reference to an array of cities in that country. Use Rule 1
says that we can recover the array by saying @{$table{$country}}. Line 10 is just like

@cities = @array;

except that the name array has been replaced by the reference {$table{$country}}. The @
tells Perl to get the entire array. Having gotten the list of cities, we sort it, join it, and print it out as
usual.

Lines 2−7 are responsible for building the structure in the first place. Here they are again:

2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

Lines 2−4 acquire a city and country name. Line 5 looks to see if the country is already present as a
key in the hash. If it’s not, the program uses the [] notation (Make Rule 2) to manufacture a new,
empty anonymous array of cities, and installs a reference to it into the hash under the appropriate key.

Line 6 installs the city name into the appropriate array. $table{$country} now holds a reference
to the array of cities seen in that country so far. Line 6 is exactly like

push @array, $city;

except that the name array has been replaced by the reference {$table{$country}}. The
push adds a city name to the end of the referred-to array.

There’s one fine point I skipped. Line 5 is unnecessary, and we can get rid of it.

2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 #### $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

If there’s already an entry in %table for the current $country, then nothing is different. Line 6 will
locate the value in $table{$country}, which is a reference to an array, and push $city into the
array. But what does it do when $country holds a key, say Greece, that is not yet in %table?

This is Perl, so it does the exact right thing. It sees that you want to push Athens onto an array that
doesn’t exist, so it helpfully makes a new, empty, anonymous array for you, installs it into %table,
and then pushes Athens onto it. This is called autovivification−−bringing things to life automatically.
Perl saw that the key wasn’t in the hash, so it created a new hash entry automatically. Perl saw that you
wanted to use the hash value as an array, so it created a new empty array and installed a reference to it
in the hash automatically. And as usual, Perl made the array one element longer to hold the new city
name.

The Rest
I promised to give you 90% of the benefit with 10% of the details, and that means I left out 90% of the
details. Now that you have an overview of the important parts, it should be easier to read the perlref
manual page, which discusses 100% of the details.

Some of the highlights of perlref:

• You can make references to anything, including scalars, functions, and other references.

• In Use Rule 1, you can omit the curly brackets whenever the thing inside them is an atomic scalar
variable like $aref. For example, @$aref is the same as @{$aref}, and $$aref[1] is the
same as ${$aref}[1]. If you’re just starting out, you may want to adopt the habit of always
including the curly brackets.

• This doesn’t copy the underlying array:

perl v5.38.2 2025-07-25 285

PERLREFTUT (1) Perl Programmers Reference Guide PERLREFTUT (1)

$aref2 = $aref1;

You get two references to the same array. If you modify $aref1−>[23] and then look at
$aref2−>[23] you’ll see the change.

To copy the array, use

$aref2 = [@{$aref1}];

This uses [...] notation to create a new anonymous array, and $aref2 is assigned a reference
to the new array. The new array is initialized with the contents of the array referred to by
$aref1.

Similarly, to copy an anonymous hash, you can use

$href2 = {%{$href1}};

• To see if a variable contains a reference, use the ref function. It returns true if its argument is a
reference. Actually it’s a little better than that: It returns HASH for hash references and ARRAY for
array references.

• If you try to use a reference like a string, you get strings like

ARRAY(0x80f5dec) or HASH(0x826afc0)

If you ever see a string that looks like this, you’ll know you printed out a reference by mistake.

A side effect of this representation is that you can use eq to see if two references refer to the same
thing. (But you should usually use == instead because it’s much faster.)

• You can use a string as if it were a reference. If you use the string "foo" as an array reference,
it’s taken to be a reference to the array @foo. This is called a symbolic reference. The declaration
use strict 'refs' disables this feature, which can cause all sorts of trouble if you use it by
accident.

You might prefer to go on to perllol instead of perlref; it discusses lists of lists and multidimensional
arrays in detail. After that, you should move on to perldsc; it’s a Data Structure Cookbook that shows
recipes for using and printing out arrays of hashes, hashes of arrays, and other kinds of data.

Summary
Everyone needs compound data structures, and in Perl the way you get them is with references. There
are four important rules for managing references: Two for making references and two for using them.
Once you know these rules you can do most of the important things you need to do with references.

Credits
Author: Mark Jason Dominus, Plover Systems (mjd−perl−ref+@plover.com)

This article originally appeared in The Perl Journal (<http://www.tpj.com/>) volume 3, #2. Reprinted
with permission.

The original title was Understand References Today.

Distribution Conditions
Copyright 1998 The Perl Journal.

This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

Irrespective of its distribution, all code examples in these files are hereby placed into the public
domain. You are permitted and encouraged to use this code in your own programs for fun or for profit
as you see fit. A simple comment in the code giving credit would be courteous but is not required.

286 2025-07-25 perl v5.38.2

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

NAME
perldsc − Perl Data Structures Cookbook

DESCRIPTION
Perl lets us have complex data structures. You can write something like this and all of a sudden, you’d
have an array with three dimensions!

for my $x (1 .. 10) {
for my $y (1 .. 10) {

for my $z (1 .. 10) {
$AoA[$x][$y][$z] =

$x ** $y + $z;
}

}
}

Alas, however simple this may appear, underneath it’s a much more elaborate construct than meets the
eye!

How do you print it out? Why can’t you say just print @AoA? How do you sort it? How can you
pass it to a function or get one of these back from a function? Is it an object? Can you save it to disk to
read back later? How do you access whole rows or columns of that matrix? Do all the values have to
be numeric?

As you see, it’s quite easy to become confused. While some small portion of the blame for this can be
attributed to the reference-based implementation, it’s really more due to a lack of existing
documentation with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the many different sorts of
data structures you might want to develop. It should also serve as a cookbook of examples. That way,
when you need to create one of these complex data structures, you can just pinch, pilfer, or purloin a
drop-in example from here.

Let’s look at each of these possible constructs in detail. There are separate sections on each of the
following:

• arrays of arrays

• hashes of arrays

• arrays of hashes

• hashes of hashes

• more elaborate constructs

But for now, let’s look at general issues common to all these types of data structures.

REFERENCES
The most important thing to understand about all data structures in Perl−−including multidimensional
arrays−−is that even though they might appear otherwise, Perl @ARRAYs and %HASHes are all
internally one-dimensional. They can hold only scalar values (meaning a string, number, or a
reference). They cannot directly contain other arrays or hashes, but instead contain references to other
arrays or hashes.

You can’t use a reference to an array or hash in quite the same way that you would a real array or hash.
For C or C++ programmers unused to distinguishing between arrays and pointers to the same, this can
be confusing. If so, just think of it as the difference between a structure and a pointer to a structure.

You can (and should) read more about references in perlref. Briefly, references are rather like pointers
that know what they point to. (Objects are also a kind of reference, but we won’t be needing them right
aw ay−−if ever.) This means that when you have something which looks to you like an access to a two-
or-more-dimensional array and/or hash, what’s really going on is that the base type is merely a one-
dimensional entity that contains references to the next level. It’s just that you can use it as though it
were a two-dimensional one. This is actually the way almost all C multidimensional arrays work as
well.

perl v5.38.2 2025-07-25 287

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

$array[7][12] # array of arrays
$array[7]{string} # array of hashes
$hash{string}[7] # hash of arrays
$hash{string}{'another string'} # hash of hashes

Now, because the top level contains only references, if you try to print out your array in with a simple
print() function, you’ll get something that doesn’t look very nice, like this:

my @AoA = ([2, 3], [4, 5, 7], [0]);
print $AoA[1][2];

7
print @AoA;

ARRAY(0x83c38)ARRAY(0x8b194)ARRAY(0x8b1d0)

That’s because Perl doesn’t (ev er) implicitly dereference your variables. If you want to get at the thing
a reference is referring to, then you have to do this yourself using either prefix typing indicators, like
${$blah}, @{$blah}, @{$blah[$i]}, or else postfix pointer arrows, like $a−>[3],
$h−>{fred}, or even $ob−>method()−>[3].

COMMON MISTAKES
The two most common mistakes made in constructing something like an array of arrays is either
accidentally counting the number of elements or else taking a reference to the same memory location
repeatedly. Here’s the case where you just get the count instead of a nested array:

for my $i (1..10) {
my @array = somefunc($i);
$AoA[$i] = @array; # WRONG!

}

That’s just the simple case of assigning an array to a scalar and getting its element count. If that’s what
you really and truly want, then you might do well to consider being a tad more explicit about it, like
this:

for my $i (1..10) {
my @array = somefunc($i);
$counts[$i] = scalar @array;

}

Here’s the case of taking a reference to the same memory location again and again:

Either without strict or having an outer−scope my @array;
declaration.

for my $i (1..10) {
@array = somefunc($i);
$AoA[$i] = \@array; # WRONG!

}

So, what’s the big problem with that? It looks right, doesn’t it? After all, I just told you that you need
an array of references, so by golly, you’ve made me one!

Unfortunately, while this is true, it’s still broken. All the references in @AoA refer to the very same
place, and they will therefore all hold whatever was last in @array! It’s similar to the problem
demonstrated in the following C program:

#include <pwd.h>
main() {

struct passwd *getpwnam(), *rp, *dp;
rp = getpwnam("root");
dp = getpwnam("daemon");

printf("daemon name is %s\nroot name is %s\n",
dp−>pw_name, rp−>pw_name);

}

Which will print

288 2025-07-25 perl v5.38.2

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

daemon name is daemon
root name is daemon

The problem is that both rp and dp are pointers to the same location in memory! In C, you’d hav e to
remember to malloc() yourself some new memory. In Perl, you’ll want to use the array constructor []
or the hash constructor {} instead. Here’s the right way to do the preceding broken code fragments:

Either without strict or having an outer−scope my @array;
declaration.

for my $i (1..10) {
@array = somefunc($i);
$AoA[$i] = [@array];

}

The square brackets make a reference to a new array with a copy of what’s in @array at the time of
the assignment. This is what you want.

Note that this will produce something similar:

Either without strict or having an outer−scope my @array;
declaration.
for my $i (1..10) {

@array = 0 .. $i;
$AoA[$i]−>@* = @array;

}

Is it the same? Well, maybe so−−and maybe not. The subtle difference is that when you assign
something in square brackets, you know for sure it’s always a brand new reference with a new copy of
the data. Something else could be going on in this new case with the $AoA[$i]−>@* dereference on
the left-hand-side of the assignment. It all depends on whether $AoA[$i] had been undefined to start
with, or whether it already contained a reference. If you had already populated @AoA with references,
as in

$AoA[3] = \@another_array;

Then the assignment with the indirection on the left-hand-side would use the existing reference that
was already there:

$AoA[3]−>@* = @array;

Of course, this would have the "interesting" effect of clobbering @another_array. (Have you ever
noticed how when a programmer says something is "interesting", that rather than meaning "intriguing",
they’re disturbingly more apt to mean that it’s "annoying", "difficult", or both? :−)

So just remember always to use the array or hash constructors with [] or {}, and you’ll be fine,
although it’s not always optimally efficient.

Surprisingly, the following dangerous-looking construct will actually work out fine:

for my $i (1..10) {
my @array = somefunc($i);
$AoA[$i] = \@array;

}

That’s because my() is more of a run-time statement than it is a compile-time declaration per se. This
means that the my() variable is remade afresh each time through the loop. So even though it looks as
though you stored the same variable reference each time, you actually did not! This is a subtle
distinction that can produce more efficient code at the risk of misleading all but the most experienced of
programmers. So I usually advise against teaching it to beginners. In fact, except for passing
arguments to functions, I seldom like to see the gimme-a-reference operator (backslash) used much at
all in code. Instead, I advise beginners that they (and most of the rest of us) should try to use the much
more easily understood constructors [] and {} instead of relying upon lexical (or dynamic) scoping
and hidden reference-counting to do the right thing behind the scenes.

Note also that there exists another way to write a dereference! These two lines are equivalent:

perl v5.38.2 2025-07-25 289

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

$AoA[$i]−>@* = @array;
@{ $AoA[$i] } = @array;

The first form, called postfix dereference is generally easier to read, because the expression can be read
from left to right, and there are no enclosing braces to balance. On the other hand, it is also newer. It
was added to the language in 2014, so you will often encounter the other form, circumfix dereference,
in older code.

In summary:

$AoA[$i] = [@array]; # usually best
$AoA[$i] = \@array; # perilous; just how my() was that array?
$AoA[$i]−>@* = @array; # way too tricky for most programmers
@{ $AoA[$i] } = @array; # just as tricky, and also harder to read

CAVEAT ON PRECEDENCE
Speaking of things like @{$AoA[$i]}, the following are actually the same thing:

$aref−>[2][2] # clear
$$aref[2][2] # confusing

That’s because Perl’s precedence rules on its five prefix dereferencers (which look like someone
swearing: $ @ * % &) make them bind more tightly than the postfix subscripting brackets or braces!
This will no doubt come as a great shock to the C or C++ programmer, who is quite accustomed to
using *a[i] to mean what’s pointed to by the i’th element of a. That is, they first take the subscript,
and only then dereference the thing at that subscript. That’s fine in C, but this isn’t C.

The seemingly equivalent construct in Perl, $$aref[$i] first does the deref of $aref, making it
take $aref as a reference to an array, and then dereference that, and finally tell you the i’th value of
the array pointed to by $AoA. If you wanted the C notion, you could write $AoA[$i]−>$* to
explicitly dereference the i’th item, reading left to right.

WHY YOU SHOULD ALWA YS use VERSION
If this is starting to sound scarier than it’s worth, relax. Perl has some features to help you avoid its
most common pitfalls. One way to avoid getting confused is to start every program with:

use strict;

This way, you’ll be forced to declare all your variables with my() and also disallow accidental
"symbolic dereferencing". Therefore if you’d done this:

my $aref = [
["fred", "barney", "pebbles", "bambam", "dino",],
["homer", "bart", "marge", "maggie",],
["george", "jane", "elroy", "judy",],

];

print $aref[2][2];

The compiler would immediately flag that as an error at compile time, because you were accidentally
accessing @aref, an undeclared variable, and it would thereby remind you to write instead:

print $aref−>[2][2]

Since Perl version 5.12, a use VERSION declaration will also enable the strict pragma. In
addition, it will also enable a feature bundle, giving more useful features. Since version 5.36 it will
also enable the warnings pragma. Often the best way to activate all these things at once is to start a
file with:

use v5.36;

In this way, every file will start with strict, warnings, and many useful named features all
switched on, as well as several older features being switched off (such as indirect). For more
information, see "use VERSION" in perlfunc.

DEBUGGING
You can use the debugger’s x command to dump out complex data structures. For example, given the
assignment to $AoA above, here’s the debugger output:

290 2025-07-25 perl v5.38.2

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

DB<1> x $AoA
$AoA = ARRAY(0x13b5a0)

0 ARRAY(0x1f0a24)
0 'fred'
1 'barney'
2 'pebbles'
3 'bambam'
4 'dino'

1 ARRAY(0x13b558)
0 'homer'
1 'bart'
2 'marge'
3 'maggie'

2 ARRAY(0x13b540)
0 'george'
1 'jane'
2 'elroy'
3 'judy'

CODE EXAMPLES
Presented with little comment here are short code examples illustrating access of various types of data
structures.

ARRAYS OF ARRAYS
Declaration of an ARRAY OF ARRAYS

my @AoA = (
["fred", "barney"],
["george", "jane", "elroy"],
["homer", "marge", "bart"],

);

Generation of an ARRAY OF ARRAYS
reading from file
while (<>) {

push @AoA, [split];
}

calling a function
for my $i (1 .. 10) {

$AoA[$i] = [somefunc($i)];
}

using temp vars
for my $i (1 .. 10) {

my @tmp = somefunc($i);
$AoA[$i] = [@tmp];

}

add to an existing row
push $AoA[0]−>@*, "wilma", "betty";

Access and Printing of an ARRAY OF ARRAYS
one element
$AoA[0][0] = "Fred";

another element
$AoA[1][1] =˜ s/(\w)/\u$1/;

print the whole thing with refs
for my $aref (@AoA) {

print "\t [@$aref],\n";

perl v5.38.2 2025-07-25 291

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

}

print the whole thing with indices
for my $i (0 .. $#AoA) {

print "\t [$AoA[$i]−>@*],\n";
}

print the whole thing one at a time
for my $i (0 .. $#AoA) {

for my $j (0 .. $AoA[$i]−>$#*) {
print "elem at ($i, $j) is $AoA[$i][$j]\n";

}
}

HASHES OF ARRAYS
Declaration of a HASH OF ARRAYS

my %HoA = (
flintstones => ["fred", "barney"],
jetsons => ["george", "jane", "elroy"],
simpsons => ["homer", "marge", "bart"],

);

Generation of a HASH OF ARRAYS
reading from file
flintstones: fred barney wilma dino
while (<>) {

next unless s/ˆ(.*?):\s*//;
$HoA{$1} = [split];

}

reading from file; more temps
flintstones: fred barney wilma dino
while (my $line = <>) {

my ($who, $rest) = split /:\s*/, $line, 2;
my @fields = split ' ', $rest;
$HoA{$who} = [@fields];

}

calling a function that returns a list
for my $group ("simpsons", "jetsons", "flintstones") {

$HoA{$group} = [get_family($group)];
}

likewise, but using temps
for my $group ("simpsons", "jetsons", "flintstones") {

my @members = get_family($group);
$HoA{$group} = [@members];

}

append new members to an existing family
push $HoA{flintstones}−>@*, "wilma", "betty";

Access and Printing of a HASH OF ARRAYS
one element
$HoA{flintstones}[0] = "Fred";

another element
$HoA{simpsons}[1] =˜ s/(\w)/\u$1/;

print the whole thing

292 2025-07-25 perl v5.38.2

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

foreach my $family (keys %HoA) {
print "$family: $HoA{$family}−>@* \n"

}

print the whole thing with indices
foreach my $family (keys %HoA) {

print "family: ";
foreach my $i (0 .. $HoA{$family}−>$#*) {

print " $i = $HoA{$family}[$i]";
}
print "\n";

}

print the whole thing sorted by number of members
foreach my $family (sort { $HoA{$b}−>@* <=> $HoA{$a}−>@* } keys %HoA) {

print "$family: $HoA{$family}−>@* \n"
}

print the whole thing sorted by number of members and name
foreach my $family (sort {

$HoA{$b}−>@* <=> $HoA{$a}−>@*
||

$a cmp $b
} keys %HoA)

{
print "$family: ", join(", ", sort $HoA{$family}−>@*), "\n";

}

ARRAYS OF HASHES
Declaration of an ARRAY OF HASHES

my @AoH = (
{

Lead => "fred",
Friend => "barney",

},
{

Lead => "george",
Wife => "jane",
Son => "elroy",

},
{

Lead => "homer",
Wife => "marge",
Son => "bart",

}
);

Generation of an ARRAY OF HASHES
reading from file
format: LEAD=fred FRIEND=barney
while (<>) {

my $rec = {};
for my $field (split) {

my ($key, $value) = split /=/, $field;
$rec−>{$key} = $value;

}
push @AoH, $rec;

}

perl v5.38.2 2025-07-25 293

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

reading from file
format: LEAD=fred FRIEND=barney
no temp
while (<>) {

push @AoH, { split /[\s+=]/ };
}

calling a function that returns a key/value pair list, like
"lead","fred","daughter","pebbles"
while (my %fields = getnextpairset()) {

push @AoH, { %fields };
}

likewise, but using no temp vars
while (<>) {

push @AoH, { parsepairs($_) };
}

add key/value to an element
$AoH[0]{pet} = "dino";
$AoH[2]{pet} = "santa's little helper";

Access and Printing of an ARRAY OF HASHES
one element
$AoH[0]{lead} = "fred";

another element
$AoH[1]{lead} =˜ s/(\w)/\u$1/;

print the whole thing with refs
for my $href (@AoH) {

print "{ ";
for my $role (keys %$href) {

print "$role=$href−>{$role} ";
}
print "}\n";

}

print the whole thing with indices
for my $i (0 .. $#AoH) {

print "$i is { ";
for my $role (keys $AoH[$i]−>%*) {

print "$role=$AoH[$i]{$role} ";
}
print "}\n";

}

print the whole thing one at a time
for my $i (0 .. $#AoH) {

for my $role (keys $AoH[$i]−>%*) {
print "elem at ($i, $role) is $AoH[$i]{$role}\n";

}
}

HASHES OF HASHES
Declaration of a HASH OF HASHES

294 2025-07-25 perl v5.38.2

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

my %HoH = (
flintstones => {

lead => "fred",
pal => "barney",

},
jetsons => {

lead => "george",
wife => "jane",
"his boy" => "elroy",

},
simpsons => {

lead => "homer",
wife => "marge",
kid => "bart",

},
);

Generation of a HASH OF HASHES
reading from file
flintstones: lead=fred pal=barney wife=wilma pet=dino
while (<>) {

next unless s/ˆ(.*?):\s*//;
my $who = $1;
for my $field (split) {

my ($key, $value) = split /=/, $field;
$HoH{$who}{$key} = $value;

}
}

reading from file; more temps
while (<>) {

next unless s/ˆ(.*?):\s*//;
my $who = $1;
my $rec = {};
$HoH{$who} = $rec;
for my $field (split) {

my ($key, $value) = split /=/, $field;
$rec−>{$key} = $value;

}
}

calling a function that returns a key,value hash
for my $group ("simpsons", "jetsons", "flintstones") {

$HoH{$group} = { get_family($group) };
}

likewise, but using temps
for my $group ("simpsons", "jetsons", "flintstones") {

my %members = get_family($group);
$HoH{$group} = { %members };

}

append new members to an existing family
my %new_folks = (

wife => "wilma",
pet => "dino",

);

perl v5.38.2 2025-07-25 295

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

for my $what (keys %new_folks) {
$HoH{flintstones}{$what} = $new_folks{$what};

}

Access and Printing of a HASH OF HASHES
one element
$HoH{flintstones}{wife} = "wilma";

another element
$HoH{simpsons}{lead} =˜ s/(\w)/\u$1/;

print the whole thing
foreach my $family (keys %HoH) {

print "$family: { ";
for my $role (keys $HoH{$family}−>%*) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

print the whole thing somewhat sorted
foreach my $family (sort keys %HoH) {

print "$family: { ";
for my $role (sort keys $HoH{$family}−>%*) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

print the whole thing sorted by number of members
foreach my $family (sort { $HoH{$b}−>%* <=> $HoH{$a}−>%* } keys %HoH) {

print "$family: { ";
for my $role (sort keys $HoH{$family}−>%*) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

establish a sort order (rank) for each role
my $i = 0;
my %rank;
for (qw(lead wife son daughter pal pet)) { $rank{$_} = ++$i }

now print the whole thing sorted by number of members
foreach my $family (sort { $HoH{$b}−>%* <=> $HoH{$a}−>%* } keys %HoH) {

print "$family: { ";
and print these according to rank order
for my $role (sort { $rank{$a} <=> $rank{$b} }

keys $HoH{$family}−>%*)
{

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

MORE ELABORATE RECORDS
Declaration of MORE ELABORATE RECORDS

Here’s a sample showing how to create and use a record whose fields are of many different sorts:

296 2025-07-25 perl v5.38.2

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

my $rec = {
TEXT => $string,
SEQUENCE => [@old_values],
LOOKUP => { %some_table },
THATCODE => \&some_function,
THISCODE => sub { $_[0] ** $_[1] },
HANDLE => *STDOUT,

};

print $rec−>{TEXT};

print $rec−>{SEQUENCE}[0];
my $last = pop $rec−>{SEQUENCE}−>@*;

print $rec−>{LOOKUP}{"key"};
my ($first_k, $first_v) = each $rec−>{LOOKUP}−>%*;

my $answer = $rec−>{THATCODE}−>($arg);
$answer = $rec−>{THISCODE}−>($arg1, $arg2);

careful of extra block braces on fh ref
print { $rec−>{HANDLE} } "a string\n";

use FileHandle;
$rec−>{HANDLE}−>autoflush(1);
$rec−>{HANDLE}−>print(" a string\n");

Declaration of a HASH OF COMPLEX RECORDS
my %TV = (

flintstones => {
series => "flintstones",
nights => [qw(monday thursday friday)],
members => [

{ name => "fred", role => "lead", age => 36, },
{ name => "wilma", role => "wife", age => 31, },
{ name => "pebbles", role => "kid", age => 4, },

],
},

jetsons => {
series => "jetsons",
nights => [qw(wednesday saturday)],
members => [

{ name => "george", role => "lead", age => 41, },
{ name => "jane", role => "wife", age => 39, },
{ name => "elroy", role => "kid", age => 9, },

],
},

simpsons => {
series => "simpsons",
nights => [qw(monday)],
members => [

{ name => "homer", role => "lead", age => 34, },
{ name => "marge", role => "wife", age => 37, },
{ name => "bart", role => "kid", age => 11, },

],
},

);

perl v5.38.2 2025-07-25 297

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

Generation of a HASH OF COMPLEX RECORDS
reading from file
this is most easily done by having the file itself be
in the raw data format as shown above. perl is happy
to parse complex data structures if declared as data, so
sometimes it's easiest to do that

here's a piece by piece build up
my $rec = {};
$rec−>{series} = "flintstones";
$rec−>{nights} = [find_days()];

my @members = ();
assume this file in field=value syntax
while (<>) {

my %fields = split /[\s=]+/;
push @members, { %fields };

}
$rec−>{members} = [@members];

now remember the whole thing
$TV{ $rec−>{series} } = $rec;

###
now, you might want to make interesting extra fields that
include pointers back into the same data structure so if
change one piece, it changes everywhere, like for example
if you wanted a {kids} field that was a reference
to an array of the kids' records without having duplicate
records and thus update problems.
###
foreach my $family (keys %TV) {

my $rec = $TV{$family}; # temp pointer
my @kids = ();
for my $person ($rec−>{members}−>@*) {

if ($person−>{role} =˜ /kid|son|daughter/) {
push @kids, $person;

}
}
REMEMBER: $rec and $TV{$family} point to same data!!
$rec−>{kids} = [@kids];

}

you copied the array, but the array itself contains pointers
to uncopied objects. this means that if you make bart get
older via

$TV{simpsons}{kids}[0]{age}++;

then this would also change in
print $TV{simpsons}{members}[2]{age};

because $TV{simpsons}{kids}[0] and $TV{simpsons}{members}[2]
both point to the same underlying anonymous hash table

print the whole thing
foreach my $family (keys %TV) {

print "the $family";
print " is on during $TV{$family}{nights}−>@*\n";

298 2025-07-25 perl v5.38.2

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

print "its members are:\n";
for my $who ($TV{$family}{members}−>@*) {

print " $who−>{name} ($who−>{role}), age $who−>{age}\n";
}
print "it turns out that $TV{$family}{lead} has ";
print scalar ($TV{$family}{kids}−>@*), " kids named ";
print join (", ", map { $_−>{name} } $TV{$family}{kids}−>@*);
print "\n";

}

Database Ties
You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first
problem is that all but GDBM and Berkeley DB hav e size limitations, but beyond that, you also have
problems with how references are to be represented on disk. One experimental module that does
partially attempt to address this need is the MLDBM module. Check your nearest CPAN site as
described in perlmodlib for source code to MLDBM.

SEE ALSO
perlref, perllol, perldata, perlobj

AUTHOR
Tom Christiansen <tchrist@perl.com>

perl v5.38.2 2025-07-25 299

PERLREQUICK (1) Perl Programmers Reference Guide PERLREQUICK (1)

NAME
perlrequick − Perl regular expressions quick start

DESCRIPTION
This page covers the very basics of understanding, creating and using regular expressions (’regexes’) in
Perl.

The Guide
This page assumes you already know things, like what a "pattern" is, and the basic syntax of using
them. If you don’t, see perlretut.

Simple word matching
The simplest regex is simply a word, or more generally, a string of characters. A regex consisting of a
word matches any string that contains that word:

"Hello World" =˜ /World/; # matches

In this statement, World is a regex and the // enclosing /World/ tells Perl to search a string for a
match. The operator =˜ associates the string with the regex match and produces a true value if the
regex matched, or false if the regex did not match. In our case, World matches the second word in
"Hello World", so the expression is true. This idea has several variations.

Expressions like this are useful in conditionals:

print "It matches\n" if "Hello World" =˜ /World/;

The sense of the match can be reversed by using !˜ operator:

print "It doesn't match\n" if "Hello World" !˜ /World/;

The literal string in the regex can be replaced by a variable:

$greeting = "World";
print "It matches\n" if "Hello World" =˜ /$greeting/;

If you’re matching against $_, the $_ =˜ part can be omitted:

$_ = "Hello World";
print "It matches\n" if /World/;

Finally, the // default delimiters for a match can be changed to arbitrary delimiters by putting an 'm'
out front:

"Hello World" =˜ m!World!; # matches, delimited by '!'
"Hello World" =˜ m{World}; # matches, note the matching '{}'
"/usr/bin/perl" =˜ m"/perl"; # matches after '/usr/bin',

'/' becomes an ordinary char

Regexes must match a part of the string exactly in order for the statement to be true:

"Hello World" =˜ /world/; # doesn't match, case sensitive
"Hello World" =˜ /o W/; # matches, ' ' is an ordinary char
"Hello World" =˜ /World /; # doesn't match, no ' ' at end

Perl will always match at the earliest possible point in the string:

"Hello World" =˜ /o/; # matches 'o' in 'Hello'
"That hat is red" =˜ /hat/; # matches 'hat' in 'That'

Not all characters can be used ’as is’ in a match. Some characters, called metacharacters, are
considered special, and reserved for use in regex notation. The metacharacters are

{}[]()ˆ$.|*+?\

A metacharacter can be matched literally by putting a backslash before it:

"2+2=4" =˜ /2+2/; # doesn't match, + is a metacharacter
"2+2=4" =˜ /2\+2/; # matches, \+ is treated like an ordinary +
'C:\WIN32' =˜ /C:\\WIN/; # matches
"/usr/bin/perl" =˜ /\/usr\/bin\/perl/; # matches

In the last regex, the forward slash '/' is also backslashed, because it is used to delimit the regex.

Most of the metacharacters aren’t always special, and other characters (such as the ones delimiting the

300 2025-07-25 perl v5.38.2

PERLREQUICK (1) Perl Programmers Reference Guide PERLREQUICK (1)

pattern) become special under various circumstances. This can be confusing and lead to unexpected
results. use re 'strict' can notify you of potential pitfalls.

Non-printable ASCII characters are represented by escape sequences. Common examples are \t for a
tab, \n for a newline, and \r for a carriage return. Arbitrary bytes are represented by octal escape
sequences, e.g., \033, or hexadecimal escape sequences, e.g., \x1B:

"1000\t2000" =˜ m(0\t2) # matches
"cat" =˜ /\143\x61\x74/ # matches in ASCII, but

a weird way to spell cat

Regexes are treated mostly as double-quoted strings, so variable substitution works:

$foo = 'house';
'cathouse' =˜ /cat$foo/; # matches
'housecat' =˜ /${foo}cat/; # matches

With all of the regexes above, if the regex matched anywhere in the string, it was considered a match.
To specify where it should match, we would use the anchor metacharacters ˆ and $. The anchor ˆ
means match at the beginning of the string and the anchor $ means match at the end of the string, or
before a newline at the end of the string. Some examples:

"housekeeper" =˜ /keeper/; # matches
"housekeeper" =˜ /ˆkeeper/; # doesn't match
"housekeeper" =˜ /keeper$/; # matches
"housekeeper\n" =˜ /keeper$/; # matches
"housekeeper" =˜ /ˆhousekeeper$/; # matches

Using character classes
A character class allows a set of possible characters, rather than just a single character, to match at a
particular point in a regex. There are a number of different types of character classes, but usually when
people use this term, they are referring to the type described in this section, which are technically called
"Bracketed character classes", because they are denoted by brackets [...], with the set of characters
to be possibly matched inside. But we’ll drop the "bracketed" below to correspond with common
usage. Here are some examples of (bracketed) character classes:

/cat/; # matches 'cat'
/[bcr]at/; # matches 'bat', 'cat', or 'rat'
"abc" =˜ /[cab]/; # matches 'a'

In the last statement, even though 'c' is the first character in the class, the earliest point at which the
regex can match is 'a'.

/[yY][eE][sS]/; # match 'yes' in a case−insensitive way
'yes', 'Yes', 'YES', etc.

/yes/i; # also match 'yes' in a case−insensitive way

The last example shows a match with an 'i' modifier, which makes the match case-insensitive.

Character classes also have ordinary and special characters, but the sets of ordinary and special
characters inside a character class are different than those outside a character class. The special
characters for a character class are −]\ˆ$ and are matched using an escape:

/[\]c]def/; # matches ']def' or 'cdef'
$x = 'bcr';
/[$x]at/; # matches 'bat, 'cat', or 'rat'
/[\$x]at/; # matches '$at' or 'xat'
/[\\$x]at/; # matches '\at', 'bat, 'cat', or 'rat'

The special character '−' acts as a range operator within character classes, so that the unwieldy
[0123456789] and [abc...xyz] become the svelte [0−9] and [a−z]:

/item[0−9]/; # matches 'item0' or ... or 'item9'
/[0−9a−fA−F]/; # matches a hexadecimal digit

If '−' is the first or last character in a character class, it is treated as an ordinary character.

The special character ˆ in the first position of a character class denotes a negated character class,
which matches any character but those in the brackets. Both [...] and [ˆ...] must match a

perl v5.38.2 2025-07-25 301

PERLREQUICK (1) Perl Programmers Reference Guide PERLREQUICK (1)

character, or the match fails. Then

/[ˆa]at/; # doesn't match 'aat' or 'at', but matches
all other 'bat', 'cat, '0at', '%at', etc.

/[ˆ0−9]/; # matches a non−numeric character
/[aˆ]at/; # matches 'aat' or 'ˆat'; here 'ˆ' is ordinary

Perl has several abbreviations for common character classes. (These definitions are those that Perl uses
in ASCII-safe mode with the /a modifier. Otherwise they could match many more non-ASCII
Unicode characters as well. See "Backslash sequences" in perlrecharclass for details.)

• \d is a digit and represents

[0−9]

• \s is a whitespace character and represents

[\ \t\r\n\f]

• \w is a word character (alphanumeric or _) and represents

[0−9a−zA−Z_]

• \D is a negated \d; it represents any character but a digit

[ˆ0−9]

• \S is a negated \s; it represents any non-whitespace character

[ˆ\s]

• \W is a negated \w; it represents any non-word character

[ˆ\w]

• The period ’.’ matches any character but "\n"

The \d\s\w\D\S\W abbreviations can be used both inside and outside of character classes. Here are
some in use:

/\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format
/[\d\s]/; # matches any digit or whitespace character
/\w\W\w/; # matches a word char, followed by a

non−word char, followed by a word char
/..rt/; # matches any two chars, followed by 'rt'
/end\./; # matches 'end.'
/end[.]/; # same thing, matches 'end.'

The word anchor \b matches a boundary between a word character and a non-word character \w\W
or \W\w:

$x = "Housecat catenates house and cat";
$x =˜ /\bcat/; # matches cat in 'catenates'
$x =˜ /cat\b/; # matches cat in 'housecat'
$x =˜ /\bcat\b/; # matches 'cat' at end of string

In the last example, the end of the string is considered a word boundary.

For natural language processing (so that, for example, apostrophes are included in words), use instead
\b{wb}

"don't" =˜ / .+? \b{wb} /x; # matches the whole string

Matching this or that
We can match different character strings with the alternation metacharacter '|'. To match dog or
cat, we form the regex dog|cat. As before, Perl will try to match the regex at the earliest possible
point in the string. At each character position, Perl will first try to match the first alternative, dog. If
dog doesn’t match, Perl will then try the next alternative, cat. If cat doesn’t match either, then the
match fails and Perl moves to the next position in the string. Some examples:

302 2025-07-25 perl v5.38.2

PERLREQUICK (1) Perl Programmers Reference Guide PERLREQUICK (1)

"cats and dogs" =˜ /cat|dog|bird/; # matches "cat"
"cats and dogs" =˜ /dog|cat|bird/; # matches "cat"

Even though dog is the first alternative in the second regex, cat is able to match earlier in the string.

"cats" =˜ /c|ca|cat|cats/; # matches "c"
"cats" =˜ /cats|cat|ca|c/; # matches "cats"

At a given character position, the first alternative that allows the regex match to succeed will be the one
that matches. Here, all the alternatives match at the first string position, so the first matches.

Grouping things and hierarchical matching
The grouping metacharacters () allow a part of a regex to be treated as a single unit. Parts of a regex
are grouped by enclosing them in parentheses. The regex house(cat|keeper) means match
house followed by either cat or keeper. Some more examples are

/(a|b)b/; # matches 'ab' or 'bb'
/(ˆa|b)c/; # matches 'ac' at start of string or 'bc' anywhere

/house(cat|)/; # matches either 'housecat' or 'house'
/house(cat(s|)|)/; # matches either 'housecats' or 'housecat' or

'house'. Note groups can be nested.

"20" =˜ /(19|20|)\d\d/; # matches the null alternative '()\d\d',
because '20\d\d' can't match

Extracting matches
The grouping metacharacters () also allow the extraction of the parts of a string that matched. For
each grouping, the part that matched inside goes into the special variables $1, $2, etc. They can be
used just as ordinary variables:

extract hours, minutes, seconds
$time =˜ /(\d\d):(\d\d):(\d\d)/; # match hh:mm:ss format
$hours = $1;
$minutes = $2;
$seconds = $3;

In list context, a match /regex/ with groupings will return the list of matched values
($1,$2,...). So we could rewrite it as

($hours, $minutes, $second) = ($time =˜ /(\d\d):(\d\d):(\d\d)/);

If the groupings in a regex are nested, $1 gets the group with the leftmost opening parenthesis, $2 the
next opening parenthesis, etc. For example, here is a complex regex and the matching variables
indicated below it:

/(ab(cd|ef)((gi)|j))/;
1 2 34

Associated with the matching variables $1, $2, ... are the backreferences \g1, \g2, ...
Backreferences are matching variables that can be used inside a regex:

/(\w\w\w)\s\g1/; # find sequences like 'the the' in string

$1, $2, ... should only be used outside of a regex, and \g1, \g2, ... only inside a regex.

Matching repetitions
The quantifier metacharacters ?, *, +, and {} allow us to determine the number of repeats of a portion
of a regex we consider to be a match. Quantifiers are put immediately after the character, character
class, or grouping that we want to specify. They hav e the following meanings:

• a? = match ’a’ 1 or 0 times

• a* = match ’a’ 0 or more times, i.e., any number of times

• a+ = match ’a’ 1 or more times, i.e., at least once

• a{n,m} = match at least n times, but not more than m times.

perl v5.38.2 2025-07-25 303

PERLREQUICK (1) Perl Programmers Reference Guide PERLREQUICK (1)

• a{n,} = match at least n or more times

• a{,n} = match n times or fewer

• a{n} = match exactly n times

Here are some examples:

/[a−z]+\s+\d*/; # match a lowercase word, at least some space, and
any number of digits

/(\w+)\s+\g1/; # match doubled words of arbitrary length
$year =˜ /ˆ\d{2,4}$/; # make sure year is at least 2 but not more

than 4 digits
$year =˜ /ˆ\d{ 4 }$|ˆ\d{2}$/; # better match; throw out 3 digit dates

These quantifiers will try to match as much of the string as possible, while still allowing the regex to
match. So we have

$x = 'the cat in the hat';
$x =˜ /ˆ(.*)(at)(.*)$/; # matches,

$1 = 'the cat in the h'
$2 = 'at'
$3 = '' (0 matches)

The first quantifier .* grabs as much of the string as possible while still having the regex match. The
second quantifier .* has no string left to it, so it matches 0 times.

More matching
There are a few more things you might want to know about matching operators. The global modifier
/g allows the matching operator to match within a string as many times as possible. In scalar context,
successive matches against a string will have /g jump from match to match, keeping track of position
in the string as it goes along. You can get or set the position with the pos() function. For example,

$x = "cat dog house"; # 3 words
while ($x =˜ /(\w+)/g) {

print "Word is $1, ends at position ", pos $x, "\n";
}

prints

Word is cat, ends at position 3
Word is dog, ends at position 7
Word is house, ends at position 13

A failed match or changing the target string resets the position. If you don’t want the position reset
after failure to match, add the /c, as in /regex/gc.

In list context, /g returns a list of matched groupings, or if there are no groupings, a list of matches to
the whole regex. So

@words = ($x =˜ /(\w+)/g); # matches,
$word[0] = 'cat'
$word[1] = 'dog'
$word[2] = 'house'

Search and replace
Search and replace is performed using s/regex/replacement/modifiers. The
replacement is a Perl double-quoted string that replaces in the string whatever is matched with the
regex. The operator =˜ is also used here to associate a string with s///. If matching against $_,
the $_ =˜ can be dropped. If there is a match, s/// returns the number of substitutions made;
otherwise it returns false. Here are a few examples:

$x = "Time to feed the cat!";
$x =˜ s/cat/hacker/; # $x contains "Time to feed the hacker!"
$y = "'quoted words'";
$y =˜ s/ˆ'(.*)'$/$1/; # strip single quotes,

$y contains "quoted words"

With the s/// operator, the matched variables $1, $2, etc. are immediately available for use in the

304 2025-07-25 perl v5.38.2

PERLREQUICK (1) Perl Programmers Reference Guide PERLREQUICK (1)

replacement expression. With the global modifier, s///g will search and replace all occurrences of the
regex in the string:

$x = "I batted 4 for 4";
$x =˜ s/4/four/; # $x contains "I batted four for 4"
$x = "I batted 4 for 4";
$x =˜ s/4/four/g; # $x contains "I batted four for four"

The non-destructive modifier s///r causes the result of the substitution to be returned instead of
modifying $_ (or whatever variable the substitute was bound to with =˜):

$x = "I like dogs.";
$y = $x =˜ s/dogs/cats/r;
print "$x $y\n"; # prints "I like dogs. I like cats."

$x = "Cats are great.";
print $x =˜ s/Cats/Dogs/r =˜ s/Dogs/Frogs/r =˜

s/Frogs/Hedgehogs/r, "\n";
prints "Hedgehogs are great."

@foo = map { s/[a−z]/X/r } qw(a b c 1 2 3);
@foo is now qw(X X X 1 2 3)

The evaluation modifier s///e wraps an eval{...} around the replacement string and the
evaluated result is substituted for the matched substring. Some examples:

reverse all the words in a string
$x = "the cat in the hat";
$x =˜ s/(\w+)/reverse $1/ge; # $x contains "eht tac ni eht tah"

convert percentage to decimal
$x = "A 39% hit rate";
$x =˜ s!(\d+)%!$1/100!e; # $x contains "A 0.39 hit rate"

The last example shows that s/// can use other delimiters, such as s!!! and s{}{}, and even
s{}//. If single quotes are used s''', then the regex and replacement are treated as single-quoted
strings.

The split operator
split /regex/, string splits string into a list of substrings and returns that list. The regex
determines the character sequence that string is split with respect to. For example, to split a string
into words, use

$x = "Calvin and Hobbes";
@word = split /\s+/, $x; # $word[0] = 'Calvin'

$word[1] = 'and'
$word[2] = 'Hobbes'

To extract a comma-delimited list of numbers, use

$x = "1.618,2.718, 3.142";
@const = split /,\s*/, $x; # $const[0] = '1.618'

$const[1] = '2.718'
$const[2] = '3.142'

If the empty regex // is used, the string is split into individual characters. If the regex has groupings,
then the list produced contains the matched substrings from the groupings as well:

$x = "/usr/bin";
@parts = split m!(/)!, $x; # $parts[0] = ''

$parts[1] = '/'
$parts[2] = 'usr'
$parts[3] = '/'
$parts[4] = 'bin'

Since the first character of $x matched the regex, split prepended an empty initial element to the

perl v5.38.2 2025-07-25 305

PERLREQUICK (1) Perl Programmers Reference Guide PERLREQUICK (1)

list.

use re 'strict'
New in v5.22, this applies stricter rules than otherwise when compiling regular expression patterns. It
can find things that, while legal, may not be what you intended.

See ’strict’ in re.

BUGS
None.

SEE ALSO
This is just a quick start guide. For a more in-depth tutorial on regexes, see perlretut and for the
reference page, see perlre.

AUTHOR AND COPYRIGHT
Copyright (c) 2000 Mark Kvale All rights reserved.

This document may be distributed under the same terms as Perl itself.

Acknowledgments
The author would like to thank Mark-Jason Dominus, Tom Christiansen, Ilya Zakharevich, Brad
Hughes, and Mike Giroux for all their helpful comments.

306 2025-07-25 perl v5.38.2

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

NAME
perlstyle − Perl style guide

DESCRIPTION
Each programmer will, of course, have his or her own preferences in regards to formatting, but there
are some general guidelines that will make your programs easier to read, understand, and maintain.

The most important thing is to use strict and warnings in all your code or know the reason why not to.
You may turn them off explicitly for particular portions of code via no warnings or no strict,
and this can be limited to the specific warnings or strict features you wish to disable. The −w flag and
$ˆW variable should not be used for this purpose since they can affect code you use but did not write,
such as modules from core or CPAN.

A concise way to arrange for this is to use the use VERSION syntax, requesting a version 5.36 or
above, which will enable both the strict and warnings pragmata (as well as several other useful
named features).

use v5.36;

Regarding aesthetics of code layout, about the only thing Larry cares strongly about is that the closing
curly bracket of a multi-line BLOCK should line up with the keyword that started the construct.
Beyond that, he has other preferences that aren’t so strong:

• 4−column indent.

• Opening curly on same line as keyword, if possible, otherwise line up.

• Space before the opening curly of a multi-line BLOCK.

• One-line BLOCK may be put on one line, including curlies.

• No space before the semicolon.

• Semicolon omitted in "short" one-line BLOCK.

• Space around most operators.

• Space around a "complex" subscript (inside brackets).

• Blank lines between chunks that do different things.

• Uncuddled elses.

• No space between function name and its opening parenthesis.

• Space after each comma.

• Long lines broken after an operator (except and and or).

• Space after last parenthesis matching on current line.

• Line up corresponding items vertically.

• Omit redundant punctuation as long as clarity doesn’t suffer.

Larry has his reasons for each of these things, but he doesn’t claim that everyone else’s mind works the
same as his does.

Here are some other more substantive style issues to think about:

• Just because you CAN do something a particular way doesn’t mean that you SHOULD do it that
way. Perl is designed to give you several ways to do anything, so consider picking the most
readable one. For instance

open(my $fh, '<', $foo) || die "Can't open $foo: $!";

is better than

die "Can't open $foo: $!" unless open(my $fh, '<', $foo);

because the second way hides the main point of the statement in a modifier. On the other hand

print "Starting analysis\n" if $verbose;

is better than

perl v5.38.2 2025-07-25 307

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

$verbose && print "Starting analysis\n";

because the main point isn’t whether the user typed −v or not.

Similarly, just because an operator lets you assume default arguments doesn’t mean that you have
to make use of the defaults. The defaults are there for lazy systems programmers writing one-shot
programs. If you want your program to be readable, consider supplying the argument.

Along the same lines, just because you CAN omit parentheses in many places doesn’t mean that
you ought to:

return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the % key
in vi.

Even if you aren’t in doubt, consider the mental welfare of the person who has to maintain the
code after you, and who will probably put parentheses in the wrong place.

• Don’t go through silly contortions to exit a loop at the top or the bottom, when Perl provides the
last operator so you can exit in the middle. Just "outdent" it a little to make it more visible:

LINE:
for (;;) {

statements;
last LINE if $foo;
next LINE if /ˆ#/;
statements;

}

• Don’t be afraid to use loop labels−−they’re there to enhance readability as well as to allow
multilevel loop breaks. See the previous example.

• Av oid using grep() (or map()) or ‘backticks‘ in a void context, that is, when you just throw
aw ay their return values. Those functions all have return values, so use them. Otherwise use a
foreach() loop or the system() function instead.

• For portability, when using features that may not be implemented on every machine, test the
construct in an eval to see if it fails. If you know what version or patchlevel a particular feature
was implemented, you can test $] ($PERL_VERSION in English) to see if it will be there.
The Config module will also let you interrogate values determined by the Configure program
when Perl was installed.

• Choose mnemonic identifiers. If you can’t remember what mnemonic means, you’ve got a
problem.

• While short identifiers like $gotit are probably ok, use underscores to separate words in longer
identifiers. It is generally easier to read $var_names_like_this than
$VarNamesLikeThis, especially for non-native speakers of English. It’s also a simple rule that
works consistently with VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally reserves lowercase
module names for "pragma" modules like integer and strict. Other modules should begin
with a capital letter and use mixed case, but probably without underscores due to limitations in
primitive file systems’ representations of module names as files that must fit into a few sparse
bytes.

• You may find it helpful to use letter case to indicate the scope or nature of a variable. For example:

$ALL_CAPS_HERE constants only (beware clashes with perl vars!)
$Some_Caps_Here package−wide global/static
$no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercase. E.g., $obj−>as_string().

You can use a leading underscore to indicate that a variable or function should not be used outside
the package that defined it.

308 2025-07-25 perl v5.38.2

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

• If you have a really hairy regular expression, use the /x or /xx modifiers and put in some
whitespace to make it look a little less like line noise. Don’t use slash as a delimiter when your
regexp has slashes or backslashes.

• Use the and and or operators to avoid having to parenthesize list operators so much, and to
reduce the incidence of punctuation operators like && and ||. Call your subroutines as if they
were functions or list operators to avoid excessive ampersands and parentheses.

• Use here documents instead of repeated print() statements.

• Line up corresponding things vertically, especially if it’d be too long to fit on one line anyway.

$IDX = $ST_MTIME;
$IDX = $ST_ATIME if $opt_u;
$IDX = $ST_CTIME if $opt_c;
$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can't mkdir $tmpdir: $!";
chdir($tmpdir) or die "can't chdir $tmpdir: $!";
mkdir 'tmp', 0777 or die "can't mkdir $tmpdir/tmp: $!";

• Always check the return codes of system calls. Good error messages should go to STDERR,
include which program caused the problem, what the failed system call and arguments were, and
(VERY IMPORTANT) should contain the standard system error message for what went wrong.
Here’s a simple but sufficient example:

opendir(my $dh, $dir) or die "can't opendir $dir: $!";

• Line up your transliterations when it makes sense:

tr [abc]
[xyz];

• Think about reusability. Why waste brainpower on a one-shot when you might want to do
something like it again? Consider generalizing your code. Consider writing a module or object
class. Consider making your code run cleanly with use strict and use warnings in
effect. Consider giving away your code. Consider changing your whole world view. Consider...
oh, never mind.

• Try to document your code and use Pod formatting in a consistent way. Here are commonly
expected conventions:

• use C<> for function, variable and module names (and more generally anything that can be
considered part of code, like filehandles or specific values). Note that function names are
considered more readable with parentheses after their name, that is function().

• use B<> for commands names like cat or grep.

• use F<> or C<> for file names. F<> should be the only Pod code for file names, but as most
Pod formatters render it as italic, Unix and Windows paths with their slashes and backslashes
may be less readable, and better rendered with C<>.

• Be consistent.

• Be nice.

perl v5.38.2 2025-07-25 309

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

NAME
perltrap − Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting to use warnings or use the −w switch; see warnings and "−w"
in perlrun. The second biggest trap is not making your entire program runnable under use strict.
The third biggest trap is not reading the list of changes in this version of Perl; see perldelta.

Awk Traps
Accustomed awk users should take special note of the following:

• A Perl program executes only once, not once for each input line. You can do an implicit loop with
−n or −p.

• The English module, loaded via

use English;

allows you to refer to special variables (like $/) with names (like $RS), as though they were in
awk; see perlvar for details.

• Semicolons are required after all simple statements in Perl (except at the end of a block). Newline
is not a statement delimiter.

• Curly brackets are required on ifs and whiles.

• Variables begin with "$", "@" or "%" in Perl.

• Arrays index from 0. Likewise string positions in substr() and index().

• You hav e to decide whether your array has numeric or string indices.

• Hash values do not spring into existence upon mere reference.

• You hav e to decide whether you want to use string or numeric comparisons.

• Reading an input line does not split it for you. You get to split it to an array yourself. And the
split() operator has different arguments than awk’s.

• The current input line is normally in $_, not $0. It generally does not have the newline stripped.
($0 is the name of the program executed.) See perlvar.

• $<digit> does not refer to fields−−it refers to substrings matched by the last match pattern.

• The print() statement does not add field and record separators unless you set $, and $\. You can
set $OFS and $ORS if you’re using the English module.

• You must open your files before you print to them.

• The range operator is "..", not comma. The comma operator works as in C.

• The match operator is "=˜", not "˜". ("˜" is the one’s complement operator, as in C.)

• The exponentiation operator is "**", not "ˆ". "ˆ" is the XOR operator, as in C. (You know, one
could get the feeling that awk is basically incompatible with C.)

• The concatenation operator is ".", not the null string. (Using the null string would render /pat/
/pat/ unparsable, because the third slash would be interpreted as a division operator−−the
tokenizer is in fact slightly context sensitive for operators like "/", "?", and ">". And in fact, "."
itself can be the beginning of a number.)

• The next, exit, and continue keywords work differently.

• The following variables work differently:

310 2025-07-25 perl v5.38.2

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

Awk Perl
ARGC scalar @ARGV (compare with $#ARGV)
ARGV[0] $0
FILENAME $ARGV
FNR $. − something
FS (whatever you like)
NF $#Fld, or some such
NR $.
OFMT $#
OFS $,
ORS $\
RLENGTH length($&)
RS $/
RSTART length($`)
SUBSEP $;

• You cannot set $RS to a pattern, only a string.

• When in doubt, run the awk construct through a2p and see what it gives you.

C/C++ Traps
Cerebral C and C++ programmers should take note of the following:

• Curly brackets are required on if’s and while’s.

• You must use elsif rather than else if.

• The break and continue keywords from C become in Perl last and next, respectively.
Unlike in C, these do not work within a do { } while construct. See "Loop Control" in
perlsyn.

• The switch statement is called given/when and only available in perl 5.10 or newer. See
"Switch Statements" in perlsyn.

• Variables begin with "$", "@" or "%" in Perl.

• Comments begin with "#", not "/*" or "//". Perl may interpret C/C++ comments as division
operators, unterminated regular expressions or the defined-or operator.

• You can’t take the address of anything, although a similar operator in Perl is the backslash, which
creates a reference.

• ARGV must be capitalized. $ARGV[0] is C’s argv[1], and argv[0] ends up in $0.

• System calls such as link(), unlink(), rename(), etc. return nonzero for success, not 0. (system(),
however, returns zero for success.)

• Signal handlers deal with signal names, not numbers. Use kill −l to find their names on your
system.

JavaScript Traps
Judicious JavaScript programmers should take note of the following:

• In Perl, binary + is always addition. $string1 + $string2 converts both strings to numbers
and then adds them. To concatenate two strings, use the . operator.

• The + unary operator doesn’t do anything in Perl. It exists to avoid syntactic ambiguities.

• Unlike for...in, Perl’s for (also spelled foreach) does not allow the left-hand side to be an
arbitrary expression. It must be a variable:

for my $variable (keys %hash) {
...

}

Furthermore, don’t forget the keys in there, as foreach my $kv (%hash) {} iterates over
the keys and values, and is generally not useful ($kv would be a key, then a value, and so on).

perl v5.38.2 2025-07-25 311

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

• To iterate over the indices of an array, use foreach my $i (0 .. $#array) {}.
foreach my $v (@array) {} iterates over the values.

• Perl requires braces following if, while, foreach, etc.

• In Perl, else if is spelled elsif.

• ? : has higher precedence than assignment. In JavaScript, one can write:

condition ? do_something() : variable = 3

and the variable is only assigned if the condition is false. In Perl, you need parentheses:

$condition ? do_something() : ($variable = 3);

Or just use if.

• Perl requires semicolons to separate statements.

• Variables declared with my only affect code after the declaration. You cannot write $x = 1;
my $x; and expect the first assignment to affect the same variable. It will instead assign to an
$x declared previously in an outer scope, or to a global variable.

Note also that the variable is not visible until the following statement. This means that in my $x
= 1 + $x the second $x refers to one declared previously.

• my variables are scoped to the current block, not to the current function. If you write {my $x;}
$x;, the second $x does not refer to the one declared inside the block.

• An object’s members cannot be made accessible as variables. The closest Perl equivalent to
with(object) { method() } is for, which can alias $_ to the object:

for ($object) {
$_−>method;

}

• The object or class on which a method is called is passed as one of the method’s arguments, not as
a separate this value.

Sed Traps
Seasoned sed programmers should take note of the following:

• A Perl program executes only once, not once for each input line. You can do an implicit loop with
−n or −p.

• Backreferences in substitutions use "$" rather than "\".

• The pattern matching metacharacters "(", ")", and "|" do not have backslashes in front.

• The range operator is ..., rather than comma.

Shell Traps
Sharp shell programmers should take note of the following:

• The backtick operator does variable interpolation without regard to the presence of single quotes
in the command.

• The backtick operator does no translation of the return value, unlike csh.

• Shells (especially csh) do sev eral levels of substitution on each command line. Perl does
substitution in only certain constructs such as double quotes, backticks, angle brackets, and search
patterns.

• Shells interpret scripts a little bit at a time. Perl compiles the entire program before executing it
(except for BEGIN blocks, which execute at compile time).

• The arguments are available via @ARGV, not $1, $2, etc.

• The environment is not automatically made available as separate scalar variables.

• The shell’s test uses "=", "!=", "<" etc for string comparisons and "−eq", "−ne", "−lt" etc for
numeric comparisons. This is the reverse of Perl, which uses eq, ne, lt for string comparisons,
and ==, != < etc for numeric comparisons.

312 2025-07-25 perl v5.38.2

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

Perl Traps
Practicing Perl Programmers should take note of the following:

• Remember that many operations behave differently in a list context than they do in a scalar one.
See perldata for details.

• Av oid barewords if you can, especially all lowercase ones. You can’t tell by just looking at it
whether a bareword is a function or a string. By using quotes on strings and parentheses on
function calls, you won’t ever get them confused.

• You cannot discern from mere inspection which builtins are unary operators (like chop() and
chdir()) and which are list operators (like print() and unlink()). (Unless prototyped, user-defined
subroutines can only be list operators, never unary ones.) See perlop and perlsub.

• People have a hard time remembering that some functions default to $_, or @ARGV, or whatever,
but that others which you might expect to do not.

• The <FH> construct is not the name of the filehandle, it is a readline operation on that handle.
The data read is assigned to $_ only if the file read is the sole condition in a while loop:

while (<FH>) { }
while (defined($_ = <FH>)) { }..
<FH>; # data discarded!

• Remember not to use = when you need =˜; these two constructs are quite different:

$x = /foo/;
$x =˜ /foo/;

• The do {} construct isn’t a real loop that you can use loop control on.

• Use my() for local variables whenever you can get away with it (but see perlform for where you
can’t). Using local() actually gives a local value to a global variable, which leaves you open to
unforeseen side-effects of dynamic scoping.

• If you localize an exported variable in a module, its exported value will not change. The local
name becomes an alias to a new value but the external name is still an alias for the original.

As always, if any of these are ever officially declared as bugs, they’ll be fixed and removed.

perl v5.38.2 2025-07-25 313

PERLBOOK (1) Perl Programmers Reference Guide PERLBOOK (1)

NAME
perlbook − Books about and related to Perl

DESCRIPTION
There are many books on Perl and Perl-related. A few of these are good, some are OK, but many aren’t
worth your money. There is a list of these books, some with extensive reviews, at
<https://www.perl.org/books/library.html> . We list some of the books here, and while listing a book
implies our endorsement, don’t think that not including a book means anything.

Most of these books are available online through Safari Books Online (
<http://safaribooksonline.com/>).

The most popular books
The major reference book on Perl, written by the creator of Perl, is Programming Perl:

Programming Perl (the "Camel Book"):
by Tom Christiansen, brian d foy, Larry Wall with Jon Orwant
ISBN 978−0−596−00492−7 [4th edition February 2012]
ISBN 978−1−4493−9890−3 [ebook]
https://oreilly.com/catalog/9780596004927

The Ram is a cookbook with hundreds of examples of using Perl to accomplish specific tasks:

The Perl Cookbook (the "Ram Book"):
by Tom Christiansen and Nathan Torkington,
with Foreword by Larry Wall
ISBN 978−0−596−00313−5 [2nd Edition August 2003]
ISBN 978−0−596−15888−0 [ebook]
https://oreilly.com/catalog/9780596003135/

If you want to learn the basics of Perl, you might start with the Llama book, which assumes that you
already know a little about programming:

Learning Perl (the "Llama Book")
by Randal L. Schwartz, Tom Phoenix, and brian d foy
ISBN 978−1−4493−0358−7 [6th edition June 2011]
ISBN 978−1−4493−0458−4 [ebook]
https://www.learning−perl.com/

The tutorial started in the Llama continues in the Alpaca, which introduces the intermediate features of
references, data structures, object-oriented programming, and modules:

Intermediate Perl (the "Alpaca Book")
by Randal L. Schwartz and brian d foy, with Tom Phoenix

foreword by Damian Conway
ISBN 978−1−4493−9309−0 [2nd edition August 2012]
ISBN 978−1−4493−0459−1 [ebook]
https://www.intermediateperl.com/

References
You might want to keep these desktop references close by your keyboard:

Perl 5 Pocket Reference
by Johan Vromans
ISBN 978−1−4493−0370−9 [5th edition July 2011]
ISBN 978−1−4493−0813−1 [ebook]
https://oreilly.com/catalog/0636920018476/

Perl Debugger Pocket Reference
by Richard Foley
ISBN 978−0−596−00503−0 [1st edition January 2004]
ISBN 978−0−596−55625−9 [ebook]
https://oreilly.com/catalog/9780596005030/

Regular Expression Pocket Reference

314 2025-07-25 perl v5.38.2

PERLBOOK (1) Perl Programmers Reference Guide PERLBOOK (1)

by Tony Stubblebine
ISBN 978−0−596−51427−3 [2nd edition July 2007]
ISBN 978−0−596−55782−9 [ebook]
https://oreilly.com/catalog/9780596514273/

Tutorials
Beginning Perl

(There are 2 books with this title)

by Curtis 'Ovid' Poe
ISBN 978−1−118−01384−7
http://www.wrox.com/WileyCDA/WroxTitle/productCd−1118013840.html

by James Lee
ISBN 1−59059−391−X [3rd edition April 2010 & ebook]
https://www.apress.com/9781430227939

Learning Perl (the "Llama Book")
by Randal L. Schwartz, Tom Phoenix, and brian d foy
ISBN 978−1−4493−0358−7 [6th edition June 2011]
ISBN 978−1−4493−0458−4 [ebook]
https://www.learning−perl.com/

Intermediate Perl (the "Alpaca Book")
by Randal L. Schwartz and brian d foy, with Tom Phoenix

foreword by Damian Conway
ISBN 978−1−4493−9309−0 [2nd edition August 2012]
ISBN 978−1−4493−0459−1 [ebook]
https://www.intermediateperl.com/

Mastering Perl
by brian d foy

ISBN 9978−1−4493−9311−3 [2st edition January 2014]
ISBN 978−1−4493−6487−8 [ebook]
https://www.masteringperl.org/

Effective Perl Programming
by Joseph N. Hall, Joshua A. McAdams, brian d foy
ISBN 0−321−49694−9 [2nd edition 2010]
https://www.effectiveperlprogramming.com/

Task-Oriented
Writing Perl Modules for CPAN

by Sam Tregar
ISBN 1−59059−018−X [1st edition August 2002 & ebook]
https://www.apress.com/9781590590188

The Perl Cookbook
by Tom Christiansen and Nathan Torkington,

with Foreword by Larry Wall
ISBN 978−0−596−00313−5 [2nd Edition August 2003]
ISBN 978−0−596−15888−0 [ebook]
https://oreilly.com/catalog/9780596003135/

Automating System Administration with Perl
by David N. Blank−Edelman
ISBN 978−0−596−00639−6 [2nd edition May 2009]
ISBN 978−0−596−80251−6 [ebook]
https://oreilly.com/catalog/9780596006396

Real World SQL Server Administration with Perl
by Linchi Shea
ISBN 1−59059−097−X [1st edition July 2003 & ebook]
https://www.apress.com/9781590590973

perl v5.38.2 2025-07-25 315

PERLBOOK (1) Perl Programmers Reference Guide PERLBOOK (1)

Special Topics
Regular Expressions Cookbook

by Jan Goyvaerts and Steven Levithan
ISBN 978−1−4493−1943−4 [2nd edition August 2012]
ISBN 978−1−4493−2747−7 [ebook]
https://shop.oreilly.com/product/0636920023630.do

Programming the Perl DBI
by Tim Bunce and Alligator Descartes
ISBN 978−1−56592−699−8 [February 2000]
ISBN 978−1−4493−8670−2 [ebook]
https://oreilly.com/catalog/9781565926998

Perl Best Practices
by Damian Conway
ISBN 978−0−596−00173−5 [1st edition July 2005]
ISBN 978−0−596−15900−9 [ebook]
https://oreilly.com/catalog/9780596001735

Higher-Order Perl
by Mark−Jason Dominus
ISBN 1−55860−701−3 [1st edition March 2005]
free ebook https://hop.perl.plover.com/book/
https://hop.perl.plover.com/

Mastering Regular Expressions
by Jeffrey E. F. Friedl
ISBN 978−0−596−52812−6 [3rd edition August 2006]
ISBN 978−0−596−55899−4 [ebook]
https://oreilly.com/catalog/9780596528126

Network Programming with Perl
by Lincoln Stein
ISBN 0−201−61571−1 [1st edition 2001]
https://www.pearsonhighered.com/educator/product/Network−Programming−with−Perl/9780201615715.page

Perl Template Toolkit
by Darren Chamberlain, Dave Cross, and Andy Wardley
ISBN 978−0−596−00476−7 [December 2003]
ISBN 978−1−4493−8647−4 [ebook]
https://oreilly.com/catalog/9780596004767

Object Oriented Perl
by Damian Conway

with foreword by Randal L. Schwartz
ISBN 1−884777−79−1 [1st edition August 1999 & ebook]
https://www.manning.com/conway/

Data Munging with Perl
by Dave Cross
ISBN 1−930110−00−6 [1st edition 2001 & ebook]
https://www.manning.com/cross

Mastering Perl/Tk
by Steve Lidie and Nancy Walsh
ISBN 978−1−56592−716−2 [1st edition January 2002]
ISBN 978−0−596−10344−6 [ebook]
https://oreilly.com/catalog/9781565927162

Extending and Embedding Perl
by Tim Jenness and Simon Cozens
ISBN 1−930110−82−0 [1st edition August 2002 & ebook]
https://www.manning.com/jenness

316 2025-07-25 perl v5.38.2

PERLBOOK (1) Perl Programmers Reference Guide PERLBOOK (1)

Pro Perl Debugging
by Richard Foley with Andy Lester
ISBN 1−59059−454−1 [1st edition July 2005 & ebook]
https://www.apress.com/9781590594544

Free (as in beer) books
Some of these books are available as free downloads.

Higher-Order Perl: <https://hop.perl.plover.com/>

Modern Perl: <http://onyxneon.com/books/modern_perl/>

Other interesting, non-Perl books
You might notice several familiar Perl concepts in this collection of ACM columns from Jon Bentley.
The similarity to the title of the major Perl book (which came later) is not completely accidental:

Programming Pearls
by Jon Bentley
ISBN 978−0−201−65788−3 [2 edition, October 1999]

More Pro gramming Pearls
by Jon Bentley
ISBN 0−201−11889−0 [January 1988]

A note on freshness
Each version of Perl comes with the documentation that was current at the time of release. This poses a
problem for content such as book lists. There are probably very nice books published after this list was
included in your Perl release, and you can check the latest released version at
<https://perldoc.perl.org/perlbook.html> .

Some of the books we’ve listed appear almost ancient in internet scale, but we’ve included those books
because they still describe the current way of doing things. Not everything in Perl changes every day.
Many of the beginner-level books, too, go over basic features and techniques that are still valid today.
In general though, we try to limit this list to books published in the past five years.

Get your book listed
If your Perl book isn’t listed and you think it should be, let us know. <mailto:perl5−porters@perl.org>

perl v5.38.2 2025-07-25 317

