
BASH(1) General Commands Manual BASH(1)

NAME
bash − GNU Bourne-Again SHell

SYNOPSIS
bash [options] [command_string | file]

COPYRIGHT
Bash is Copyright © 1989-2022 by the Free Software Foundation, Inc.

DESCRIPTION
Bash is an sh-compatible command language interpreter that executes commands read from the stan-
dard input or from a file. Bash also incorporates useful features from the Korn and C shells (ksh and
csh).

Bash is intended to be a conformant implementation of the Shell and Utilities portion of the IEEE
POSIX specification (IEEE Standard 1003.1). Bash can be configured to be POSIX-conformant by de-
fault.

OPTIONS
All of the single-character shell options documented in the description of the set builtin command, in-
cluding −o, can be used as options when the shell is invoked. In addition, bash interprets the following
options when it is invoked:

−c If the −c option is present, then commands are read from the first non-option argument
command_string. If there are arguments after the command_string, the first argument is
assigned to $0 and any remaining arguments are assigned to the positional parameters.
The assignment to $0 sets the name of the shell, which is used in warning and error mes-
sages.

−i If the −i option is present, the shell is interactive.
−l Make bash act as if it had been invoked as a login shell (see INVOCATION below).
−r If the −r option is present, the shell becomes restricted (see RESTRICTED SHELL below).
−s If the −s option is present, or if no arguments remain after option processing, then com-

mands are read from the standard input. This option allows the positional parameters to be
set when invoking an interactive shell or when reading input through a pipe.

−v Print shell input lines as they are read.
−x Print commands and their arguments as they are executed.
−D A list of all double-quoted strings preceded by $ is printed on the standard output. These

are the strings that are subject to language translation when the current locale is not C or
POSIX. This implies the −n option; no commands will be executed.

[−+]O [shopt_option]
shopt_option is one of the shell options accepted by the shopt builtin (see SHELL

BUILTIN COMMANDS below). If shopt_option is present, −O sets the value of that op-
tion; +O unsets it. If shopt_option is not supplied, the names and values of the shell op-
tions accepted by shopt are printed on the standard output. If the invocation option is +O,
the output is displayed in a format that may be reused as input.

−− A −− signals the end of options and disables further option processing. Any arguments af-
ter the −− are treated as filenames and arguments. An argument of − is equivalent to −−.

Bash also interprets a number of multi-character options. These options must appear on the command
line before the single-character options to be recognized.

−−debugger
Arrange for the debugger profile to be executed before the shell starts. Turns on extended de-
bugging mode (see the description of the extdebug option to the shopt builtin below).

−−dump−po−strings
Equivalent to −D, but the output is in the GNU gettext po (portable object) file format.

−−dump−strings
Equivalent to −D.

−−help Display a usage message on standard output and exit successfully.
−−init−file file

−−rcfile file

Execute commands from file instead of the system wide initialization file /etc/bash.bashrc

and the standard personal initialization file ˜/.bashrc if the shell is interactive (see

GNU Bash 5.2 2022 September 19 1

BASH(1) General Commands Manual BASH(1)

INVOCATION below).

−−login
Equivalent to −l.

−−noediting
Do not use the GNU readline library to read command lines when the shell is interactive.

−−noprofile
Do not read either the system-wide startup file /etc/profile or any of the personal initialization
files ˜/.bash_profile, ˜/.bash_login, or ˜/.profile. By default, bash reads these files when it is
invoked as a login shell (see INVOCATION below).

−−norc Do not read and execute the system wide initialization file /etc/bash.bashrc and the personal
initialization file ˜/.bashrc if the shell is interactive. This option is on by default if the shell is
invoked as sh.

−−posix
Change the behavior of bash where the default operation differs from the POSIX standard to
match the standard (posix mode). See SEE ALSO below for a reference to a document that de-
tails how posix mode affects bash’s behavior.

−−restricted
The shell becomes restricted (see RESTRICTED SHELL below).

−−verbose
Equivalent to −v.

−−version
Show version information for this instance of bash on the standard output and exit success-
fully.

ARGUMENTS
If arguments remain after option processing, and neither the −c nor the −s option has been supplied, the
first argument is assumed to be the name of a file containing shell commands. If bash is invoked in this
fashion, $0 is set to the name of the file, and the positional parameters are set to the remaining argu-
ments. Bash reads and executes commands from this file, then exits. Bash’s exit status is the exit sta-
tus of the last command executed in the script. If no commands are executed, the exit status is 0. An
attempt is first made to open the file in the current directory, and, if no file is found, then the shell
searches the directories in PATH for the script.

INVOCATION
A login shell is one whose first character of argument zero is a −, or one started with the −−login op-
tion.

An interactive shell is one started without non-option arguments (unless −s is specified) and without
the −c option, whose standard input and error are both connected to terminals (as determined by
isatty(3)), or one started with the −i option. PS1 is set and $− includes i if bash is interactive, allowing
a shell script or a startup file to test this state.

The following paragraphs describe how bash executes its startup files. If any of the files exist but can-
not be read, bash reports an error. Tildes are expanded in filenames as described below under Tilde
Expansion in the EXPANSION section.

When bash is invoked as an interactive login shell, or as a non-interactive shell with the −−login op-
tion, it first reads and executes commands from the file /etc/profile, if that file exists. After reading that
file, it looks for ˜/.bash_profile, ˜/.bash_login, and ˜/.profile, in that order, and reads and executes com-
mands from the first one that exists and is readable. The −−noprofile option may be used when the
shell is started to inhibit this behavior.

When an interactive login shell exits, or a non-interactive login shell executes the exit builtin com-
mand, bash reads and executes commands from the file ˜/.bash_logout, if it exists.

When an interactive shell that is not a login shell is started, bash reads and executes commands from
/etc/bash.bashrc and ˜/.bashrc, if these files exist. This may be inhibited by using the −−norc option.
The −−rcfile file option will force bash to read and execute commands from file instead of
/etc/bash.bashrc and ˜/.bashrc.

2 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

When bash is started non-interactively, to run a shell script, for example, it looks for the variable
BASH_ENV in the environment, expands its value if it appears there, and uses the expanded value as the
name of a file to read and execute. Bash behaves as if the following command were executed:

if [−n "$BASH_ENV"]; then . "$BASH_ENV"; fi

but the value of the PATH variable is not used to search for the filename.

If bash is invoked with the name sh, it tries to mimic the startup behavior of historical versions of sh as
closely as possible, while conforming to the POSIX standard as well. When invoked as an interactive
login shell, or a non-interactive shell with the −−login option, it first attempts to read and execute com-
mands from /etc/profile and ˜/.profile, in that order. The −−noprofile option may be used to inhibit this
behavior. When invoked as an interactive shell with the name sh, bash looks for the variable ENV, ex-
pands its value if it is defined, and uses the expanded value as the name of a file to read and execute.
Since a shell invoked as sh does not attempt to read and execute commands from any other startup files,
the −−rcfile option has no effect. A non-interactive shell invoked with the name sh does not attempt to
read any other startup files. When invoked as sh, bash enters posix mode after the startup files are
read.

When bash is started in posix mode, as with the −−posix command line option, it follows the POSIX
standard for startup files. In this mode, interactive shells expand the ENV variable and commands are
read and executed from the file whose name is the expanded value. No other startup files are read.

Bash attempts to determine when it is being run with its standard input connected to a network connec-
tion, as when executed by the historical remote shell daemon, usually rshd, or the secure shell daemon
sshd. If bash determines it is being run non-interactively in this fashion, it reads and executes com-
mands from /etc/bash.bashrc and ˜/.bashrc, if these files exist and are readable. It will not do this if in-
voked as sh. The −−norc option may be used to inhibit this behavior, and the −−rcfile option may be
used to force another file to be read, but neither rshd nor sshd generally invoke the shell with those op-
tions or allow them to be specified.

If the shell is started with the effective user (group) id not equal to the real user (group) id, and the −p
option is not supplied, no startup files are read, shell functions are not inherited from the environment,
the SHELLOPTS, BASHOPTS, CDPATH, and GLOBIGNORE variables, if they appear in the environ-
ment, are ignored, and the effective user id is set to the real user id. If the −p option is supplied at invo-
cation, the startup behavior is the same, but the effective user id is not reset.

DEFINITIONS
The following definitions are used throughout the rest of this document.
blank A space or tab.
word A sequence of characters considered as a single unit by the shell. Also known as a token.
name A word consisting only of alphanumeric characters and underscores, and beginning with an

alphabetic character or an underscore. Also referred to as an identifier.
metacharacter

A character that, when unquoted, separates words. One of the following:
| & ; () < > space tab newline

control operator
A token that performs a control function. It is one of the following symbols:
|| & && ; ;; ;& ;;& () | |& <newline>

RESERVED WORDS
Reserved words are words that have a special meaning to the shell. The following words are recog-
nized as reserved when unquoted and either the first word of a command (see SHELL GRAMMAR be-
low), the third word of a case or select command (only in is valid), or the third word of a for command
(only in and do are valid):

! case coproc do done elif else esac fi for function if in select then
until while { } time [[]]

SHELL GRAMMAR
This section describes the syntax of the various forms of shell commands.

Simple Commands
A simple command is a sequence of optional variable assignments followed by blank-separated words
and redirections, and terminated by a control operator. The first word specifies the command to be

GNU Bash 5.2 2022 September 19 3

BASH(1) General Commands Manual BASH(1)

executed, and is passed as argument zero. The remaining words are passed as arguments to the invoked
command.

The return value of a simple command is its exit status, or 128+n if the command is terminated by sig-
nal n.

Pipelines
A pipeline is a sequence of one or more commands separated by one of the control operators | or |&.
The format for a pipeline is:

[time [−p]] [!] command1 [[| |&] command2 ...]

The standard output of command1 is connected via a pipe to the standard input of command2. This
connection is performed before any redirections specified by the command1(see REDIRECTION be-
low). If |& is used, command1’s standard error, in addition to its standard output, is connected to com-

mand2’s standard input through the pipe; it is shorthand for 2>&1 |. This implicit redirection of the
standard error to the standard output is performed after any redirections specified by command1.

The return status of a pipeline is the exit status of the last command, unless the pipefail option is en-
abled. If pipefail is enabled, the pipeline’s return status is the value of the last (rightmost) command to
exit with a non-zero status, or zero if all commands exit successfully. If the reserved word ! precedes a
pipeline, the exit status of that pipeline is the logical negation of the exit status as described above. The
shell waits for all commands in the pipeline to terminate before returning a value.

If the time reserved word precedes a pipeline, the elapsed as well as user and system time consumed by
its execution are reported when the pipeline terminates. The −p option changes the output format to
that specified by POSIX. When the shell is in posix mode, it does not recognize time as a reserved
word if the next token begins with a ‘-’. The TIMEFORMAT variable may be set to a format string that
specifies how the timing information should be displayed; see the description of TIMEFORMAT under
Shell Variables below.

When the shell is in posix mode, time may be followed by a newline. In this case, the shell displays the
total user and system time consumed by the shell and its children. The TIMEFORMAT variable may be
used to specify the format of the time information.

Each command in a multi-command pipeline, where pipes are created, is executed in a subshell, which
is a separate process. See COMMAND EXECUTION ENVIRONMENT for a description of subshells
and a subshell environment. If the lastpipe option is enabled using the shopt builtin (see the descrip-
tion of shopt below), the last element of a pipeline may be run by the shell process when job control is
not active.

Lists
A list is a sequence of one or more pipelines separated by one of the operators ;, &, &&, or ||, and op-
tionally terminated by one of ;, &, or <newline>.

Of these list operators, && and || have equal precedence, followed by ; and &, which have equal prece-
dence.

A sequence of one or more newlines may appear in a list instead of a semicolon to delimit commands.

If a command is terminated by the control operator &, the shell executes the command in the back-

ground in a subshell. The shell does not wait for the command to finish, and the return status is 0.
These are referred to as asynchronous commands. Commands separated by a ; are executed sequen-
tially; the shell waits for each command to terminate in turn. The return status is the exit status of the
last command executed.

AND and OR lists are sequences of one or more pipelines separated by the && and || control operators,
respectively. AND and OR lists are executed with left associativity. An AND list has the form

command1 && command2

command2 is executed if, and only if, command1 returns an exit status of zero (success).

An OR list has the form

command1 || command2

command2 is executed if, and only if, command1 returns a non-zero exit status. The return status of
AND and OR lists is the exit status of the last command executed in the list.

4 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

Compound Commands
A compound command is one of the following. In most cases a list in a command’s description may be
separated from the rest of the command by one or more newlines, and may be followed by a newline in
place of a semicolon.

(list) list is executed in a subshell (see COMMAND EXECUTION ENVIRONMENT below for a de-
scription of a subshell environment). Variable assignments and builtin commands that affect
the shell’s environment do not remain in effect after the command completes. The return sta-
tus is the exit status of list.

{ list; } list is simply executed in the current shell environment. list must be terminated with a newline
or semicolon. This is known as a group command. The return status is the exit status of list.
Note that unlike the metacharacters (and), { and } are reserved words and must occur where a
reserved word is permitted to be recognized. Since they do not cause a word break, they must
be separated from list by whitespace or another shell metacharacter.

((expression))
The expression is evaluated according to the rules described below under ARITHMETIC

EVALUATION. If the value of the expression is non-zero, the return status is 0; otherwise the
return status is 1. The expression undergoes the same expansions as if it were within double
quotes, but double quote characters in expression are not treated specially and are removed.

[[expression]]
Return a status of 0 or 1 depending on the evaluation of the conditional expression expression.
Expressions are composed of the primaries described below under CONDITIONAL EXPRES-

SIONS. The words between the [[and]] do not undergo word splitting and pathname expan-
sion. The shell performs tilde expansion, parameter and variable expansion, arithmetic expan-
sion, command substitution, process substitution, and quote removal on those words (the ex-
pansions that would occur if the words were enclosed in double quotes). Conditional opera-
tors such as −f must be unquoted to be recognized as primaries.

When used with [[, the < and > operators sort lexicographically using the current locale.

See the description of the test builtin command (section SHELL BUILTIN COMMANDS below) for
the handling of parameters (i.e. missing parameters).

When the == and != operators are used, the string to the right of the operator is considered a pattern
and matched according to the rules described below under Pattern Matching, as if the extglob shell
option were enabled. The = operator is equivalent to ==. If the nocasematch shell option is enabled,
the match is performed without regard to the case of alphabetic characters. The return value is 0 if the
string matches (==) or does not match (!=) the pattern, and 1 otherwise. Any part of the pattern may be
quoted to force the quoted portion to be matched as a string.

An additional binary operator, =˜, is available, with the same precedence as == and !=. When it is used,
the string to the right of the operator is considered a POSIX extended regular expression and matched
accordingly (using the POSIX regcomp and regexec interfaces usually described in regex(3)). The re-
turn value is 0 if the string matches the pattern, and 1 otherwise. If the regular expression is syntacti-
cally incorrect, the conditional expression’s return value is 2. If the nocasematch shell option is en-
abled, the match is performed without regard to the case of alphabetic characters. If any part of the pat-
tern is quoted, the quoted portion is matched literally. This means every character in the quoted portion
matches itself, instead of having any special pattern matching meaning. If the pattern is stored in a
shell variable, quoting the variable expansion forces the entire pattern to be matched literally. Treat
bracket expressions in regular expressions carefully, since normal quoting and pattern characters lose
their meanings between brackets.

The pattern will match if it matches any part of the string. Anchor the pattern using the ˆ and $ regular
expression operators to force it to match the entire string. The array variable BASH_REMATCH

records which parts of the string matched the pattern. The element of BASH_REMATCH with index 0
contains the portion of the string matching the entire regular expression. Substrings matched by paren-
thesized subexpressions within the regular expression are saved in the remaining BASH_REMATCH in-
dices. The element of BASH_REMATCH with index n is the portion of the string matching the nth
parenthesized subexpression. Bash sets BASH_REMATCH in the global scope; declaring it as a local
variable will lead to unexpected results.

GNU Bash 5.2 2022 September 19 5

BASH(1) General Commands Manual BASH(1)

Expressions may be combined using the following operators, listed in decreasing order of precedence:

(expression)
Returns the value of expression. This may be used to override the normal precedence
of operators.

! expression

True if expression is false.
expression1 && expression2

True if both expression1 and expression2 are true.
expression1 || expression2

True if either expression1 or expression2 is true.

The && and || operators do not evaluate expression2 if the value of expression1 is sufficient to
determine the return value of the entire conditional expression.

for name [[in [word ...]] ;] do list ; done
The list of words following in is expanded, generating a list of items. The variable name is set
to each element of this list in turn, and list is executed each time. If the in word is omitted, the
for command executes list once for each positional parameter that is set (see PARAMETERS

below). The return status is the exit status of the last command that executes. If the expansion
of the items following in results in an empty list, no commands are executed, and the return
status is 0.

for ((expr1 ; expr2 ; expr3)) ; do list ; done
First, the arithmetic expression expr1 is evaluated according to the rules described below un-
der ARITHMETIC EVALUATION. The arithmetic expression expr2 is then evaluated repeat-
edly until it evaluates to zero. Each time expr2 evaluates to a non-zero value, list is executed
and the arithmetic expression expr3 is evaluated. If any expression is omitted, it behaves as if
it evaluates to 1. The return value is the exit status of the last command in list that is executed,
or false if any of the expressions is invalid.

select name [in word] ; do list ; done
The list of words following in is expanded, generating a list of items, and the set of expanded
words is printed on the standard error, each preceded by a number. If the in word is omitted,
the positional parameters are printed (see PARAMETERS below). select then displays the PS3

prompt and reads a line from the standard input. If the line consists of a number correspond-
ing to one of the displayed words, then the value of name is set to that word. If the line is
empty, the words and prompt are displayed again. If EOF is read, the select command com-
pletes and returns 1. Any other value read causes name to be set to null. The line read is
saved in the variable REPLY. The list is executed after each selection until a break command
is executed. The exit status of select is the exit status of the last command executed in list, or
zero if no commands were executed.

case word in [[(] pattern [| pattern] ...) list ;;] ... esac
A case command first expands word, and tries to match it against each pattern in turn, using
the matching rules described under Pattern Matching below. The word is expanded using
tilde expansion, parameter and variable expansion, arithmetic expansion, command substitu-
tion, process substitution and quote removal. Each pattern examined is expanded using tilde
expansion, parameter and variable expansion, arithmetic expansion, command substitution,
process substitution, and quote removal. If the nocasematch shell option is enabled, the
match is performed without regard to the case of alphabetic characters. When a match is
found, the corresponding list is executed. If the ;; operator is used, no subsequent matches are
attempted after the first pattern match. Using ;& in place of ;; causes execution to continue
with the list associated with the next set of patterns. Using ;;& in place of ;; causes the shell
to test the next pattern list in the statement, if any, and execute any associated list on a success-
ful match, continuing the case statement execution as if the pattern list had not matched. The
exit status is zero if no pattern matches. Otherwise, it is the exit status of the last command
executed in list.

if list; then list; [elif list; then list;] ... [else list;] fi
The if list is executed. If its exit status is zero, the then list is executed. Otherwise, each elif
list is executed in turn, and if its exit status is zero, the corresponding then list is executed and
the command completes. Otherwise, the else list is executed, if present. The exit status is the

6 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

exit status of the last command executed, or zero if no condition tested true.

while list-1; do list-2; done
until list-1; do list-2; done

The while command continuously executes the list list-2 as long as the last command in the
list list-1 returns an exit status of zero. The until command is identical to the while command,
except that the test is negated: list-2 is executed as long as the last command in list-1 returns a
non-zero exit status. The exit status of the while and until commands is the exit status of the
last command executed in list-2, or zero if none was executed.

Coprocesses
A coprocess is a shell command preceded by the coproc reserved word. A coprocess is executed asyn-
chronously in a subshell, as if the command had been terminated with the & control operator, with a
two-way pipe established between the executing shell and the coprocess.

The syntax for a coprocess is:

coproc [NAME] command [redirections]

This creates a coprocess named NAME. command may be either a simple command or a compound
command (see above). NAME is a shell variable name. If NAME is not supplied, the default name is
COPROC.

The recommended form to use for a coprocess is

coproc NAME { command [redirections]; }

This form is recommended because simple commands result in the coprocess always being named CO-
PROC, and it is simpler to use and more complete than the other compound commands.

If command is a compound command, NAME is optional. The word following coproc determines
whether that word is interpreted as a variable name: it is interpreted as NAME if it is not a reserved
word that introduces a compound command. If command is a simple command, NAME is not allowed;
this is to avoid confusion between NAME and the first word of the simple command.

When the coprocess is executed, the shell creates an array variable (see Arrays below) named NAME

in the context of the executing shell. The standard output of command is connected via a pipe to a file
descriptor in the executing shell, and that file descriptor is assigned to NAME[0]. The standard input of
command is connected via a pipe to a file descriptor in the executing shell, and that file descriptor is as-
signed to NAME[1]. This pipe is established before any redirections specified by the command (see
REDIRECTION below). The file descriptors can be utilized as arguments to shell commands and redi-
rections using standard word expansions. Other than those created to execute command and process
substitutions, the file descriptors are not available in subshells.

The process ID of the shell spawned to execute the coprocess is available as the value of the variable
NAME_PID. The wait builtin command may be used to wait for the coprocess to terminate.

Since the coprocess is created as an asynchronous command, the coproc command always returns suc-
cess. The return status of a coprocess is the exit status of command.

Shell Function Definitions
A shell function is an object that is called like a simple command and executes a compound command
with a new set of positional parameters. Shell functions are declared as follows:

fname () compound−command [redirection]
function fname [()] compound−command [redirection]

This defines a function named fname. The reserved word function is optional. If the function
reserved word is supplied, the parentheses are optional. The body of the function is the com-
pound command compound−command (see Compound Commands above). That command
is usually a list of commands between { and }, but may be any command listed under Com-
pound Commands above. If the function reserved word is used, but the parentheses are not
supplied, the braces are recommended. compound−command is executed whenever fname is
specified as the name of a simple command. When in posix mode, fname must be a valid shell
name and may not be the name of one of the POSIX special builtins. In default mode, a func-
tion name can be any unquoted shell word that does not contain $. Any redirections (see
REDIRECTION below) specified when a function is defined are performed when the function
is executed. The exit status of a function definition is zero unless a syntax error occurs or a

GNU Bash 5.2 2022 September 19 7

BASH(1) General Commands Manual BASH(1)

readonly function with the same name already exists. When executed, the exit status of a
function is the exit status of the last command executed in the body. (See FUNCTIONS be-
low.)

COMMENTS
In a non-interactive shell, or an interactive shell in which the interactive_comments option to the
shopt builtin is enabled (see SHELL BUILTIN COMMANDS below), a word beginning with # causes
that word and all remaining characters on that line to be ignored. An interactive shell without the in-
teractive_comments option enabled does not allow comments. The interactive_comments option is
on by default in interactive shells.

QUOTING
Quoting is used to remove the special meaning of certain characters or words to the shell. Quoting can
be used to disable special treatment for special characters, to prevent reserved words from being recog-
nized as such, and to prevent parameter expansion.

Each of the metacharacters listed above under DEFINITIONS has special meaning to the shell and
must be quoted if it is to represent itself.

When the command history expansion facilities are being used (see HISTORY EXPANSION below), the
history expansion character, usually !, must be quoted to prevent history expansion.

There are three quoting mechanisms: the escape character, single quotes, and double quotes.

A non-quoted backslash (\) is the escape character. It preserves the literal value of the next character
that follows, with the exception of <newline>. If a \<newline> pair appears, and the backslash is not it-
self quoted, the \<newline> is treated as a line continuation (that is, it is removed from the input stream
and effectively ignored).

Enclosing characters in single quotes preserves the literal value of each character within the quotes. A
single quote may not occur between single quotes, even when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters within the quotes,
with the exception of $, `, \, and, when history expansion is enabled, !. When the shell is in posix

mode, the ! has no special meaning within double quotes, even when history expansion is enabled. The
characters $ and ` retain their special meaning within double quotes. The backslash retains its special
meaning only when followed by one of the following characters: $, `, " , \, or <newline>. A double
quote may be quoted within double quotes by preceding it with a backslash. If enabled, history expan-
sion will be performed unless an ! appearing in double quotes is escaped using a backslash. The back-
slash preceding the ! is not removed.

The special parameters * and @ have special meaning when in double quotes (see PARAMETERS be-
low).

Character sequences of the form $'string' are treated as a special variant of single quotes. The sequence
expands to string, with backslash-escaped characters in string replaced as specified by the ANSI C
standard. Backslash escape sequences, if present, are decoded as follows:

\a alert (bell)
\b backspace
\e
\E an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\' single quote
\" double quote
\? question mark
\nnn the eight-bit character whose value is the octal value nnn (one to three octal digits)
\xHH the eight-bit character whose value is the hexadecimal value HH (one or two hex dig-

its)

8 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

\uHHHH

the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value
HHHH (one to four hex digits)

\UHHHHHHHH

the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value HHH-

HHHHH (one to eight hex digits)
\cx a control-x character

The expanded result is single-quoted, as if the dollar sign had not been present.

A double-quoted string preceded by a dollar sign ($"string") will cause the string to be translated ac-
cording to the current locale. The gettext infrastructure performs the lookup and translation, using the
LC_MESSAGES, TEXTDOMAINDIR, and TEXTDOMAIN shell variables. If the current locale is
C or POSIX, if there are no translations available, or if the string is not translated, the dollar sign is ig-
nored. This is a form of double quoting, so the string remains double-quoted by default, whether or not
it is translated and replaced. If the noexpand_translation option is enabled using the shopt builtin,
translated strings are single-quoted instead of double-quoted. See the description of shopt below under
SHELLBUILTINCOMMANDS.

PARAMETERS
A parameter is an entity that stores values. It can be a name, a number, or one of the special charac-
ters listed below under Special Parameters. A variable is a parameter denoted by a name. A variable
has a value and zero or more attributes. Attributes are assigned using the declare builtin command
(see declare below in SHELL BUILTIN COMMANDS).

A parameter is set if it has been assigned a value. The null string is a valid value. Once a variable is
set, it may be unset only by using the unset builtin command (see SHELL BUILTIN COMMANDS be-
low).

A variable may be assigned to by a statement of the form

name=[value]

If value is not given, the variable is assigned the null string. All values undergo tilde expansion, para-
meter and variable expansion, command substitution, arithmetic expansion, and quote removal (see EX-

PANSION below). If the variable has its integer attribute set, then value is evaluated as an arithmetic
expression even if the $((...)) expansion is not used (see Arithmetic Expansion below). Word splitting
and pathname expansion are not performed. Assignment statements may also appear as arguments to
the alias, declare, typeset, export, readonly, and local builtin commands (declaration commands).
When in posix mode, these builtins may appear in a command after one or more instances of the com-
mand builtin and retain these assignment statement properties.

In the context where an assignment statement is assigning a value to a shell variable or array index, the
+= operator can be used to append to or add to the variable’s previous value. This includes arguments
to builtin commands such as declare that accept assignment statements (declaration commands).
When += is applied to a variable for which the integer attribute has been set, value is evaluated as an
arithmetic expression and added to the variable’s current value, which is also evaluated. When += is
applied to an array variable using compound assignment (see Arrays below), the variable’s value is not
unset (as it is when using =), and new values are appended to the array beginning at one greater than
the array’s maximum index (for indexed arrays) or added as additional key−value pairs in an associa-
tive array. When applied to a string-valued variable, value is expanded and appended to the variable’s
value.

A variable can be assigned the nameref attribute using the −n option to the declare or local builtin
commands (see the descriptions of declare and local below) to create a nameref, or a reference to an-
other variable. This allows variables to be manipulated indirectly. Whenever the nameref variable is
referenced, assigned to, unset, or has its attributes modified (other than using or changing the nameref

attribute itself), the operation is actually performed on the variable specified by the nameref variable’s
value. A nameref is commonly used within shell functions to refer to a variable whose name is passed
as an argument to the function. For instance, if a variable name is passed to a shell function as its first
argument, running

declare -n ref=$1

inside the function creates a nameref variable ref whose value is the variable name passed as the first

GNU Bash 5.2 2022 September 19 9

BASH(1) General Commands Manual BASH(1)

argument. References and assignments to ref, and changes to its attributes, are treated as references,
assignments, and attribute modifications to the variable whose name was passed as $1. If the control
variable in a for loop has the nameref attribute, the list of words can be a list of shell variables, and a
name reference will be established for each word in the list, in turn, when the loop is executed. Array
variables cannot be given the nameref attribute. However, nameref variables can reference array vari-
ables and subscripted array variables. Namerefs can be unset using the −n option to the unset builtin.
Otherwise, if unset is executed with the name of a nameref variable as an argument, the variable refer-
enced by the nameref variable will be unset.

Positional Parameters
A positional parameter is a parameter denoted by one or more digits, other than the single digit 0. Po-
sitional parameters are assigned from the shell’s arguments when it is invoked, and may be reassigned
using the set builtin command. Positional parameters may not be assigned to with assignment state-
ments. The positional parameters are temporarily replaced when a shell function is executed (see
FUNCTIONS below).

When a positional parameter consisting of more than a single digit is expanded, it must be enclosed in
braces (see EXPANSION below).

Special Parameters
The shell treats several parameters specially. These parameters may only be referenced; assignment to
them is not allowed.
* Expands to the positional parameters, starting from one. When the expansion is not within

double quotes, each positional parameter expands to a separate word. In contexts where it is
performed, those words are subject to further word splitting and pathname expansion. When
the expansion occurs within double quotes, it expands to a single word with the value of each
parameter separated by the first character of the IFS special variable. That is, "$*" is equiva-
lent to "$1c$2c...", where c is the first character of the value of the IFS variable. If IFS is un-
set, the parameters are separated by spaces. If IFS is null, the parameters are joined without
intervening separators.

@ Expands to the positional parameters, starting from one. In contexts where word splitting is
performed, this expands each positional parameter to a separate word; if not within double
quotes, these words are subject to word splitting. In contexts where word splitting is not per-
formed, this expands to a single word with each positional parameter separated by a space.
When the expansion occurs within double quotes, each parameter expands to a separate word.
That is, "$@" is equivalent to "$1" "$2" ... If the double-quoted expansion occurs within a
word, the expansion of the first parameter is joined with the beginning part of the original
word, and the expansion of the last parameter is joined with the last part of the original word.
When there are no positional parameters, "$@" and $@ expand to nothing (i.e., they are re-
moved).

Expands to the number of positional parameters in decimal.
? Expands to the exit status of the most recently executed foreground pipeline.
− Expands to the current option flags as specified upon invocation, by the set builtin command,

or those set by the shell itself (such as the −i option).
$ Expands to the process ID of the shell. In a subshell, it expands to the process ID of the cur-

rent shell, not the subshell.
! Expands to the process ID of the job most recently placed into the background, whether exe-

cuted as an asynchronous command or using the bg builtin (see JOB CONTROL below).
0 Expands to the name of the shell or shell script. This is set at shell initialization. If bash is in-

voked with a file of commands, $0 is set to the name of that file. If bash is started with the −c
option, then $0 is set to the first argument after the string to be executed, if one is present.
Otherwise, it is set to the filename used to invoke bash, as giv en by argument zero.

Shell Variables
The following variables are set by the shell:

_ At shell startup, set to the pathname used to invoke the shell or shell script being executed as
passed in the environment or argument list. Subsequently, expands to the last argument to the
previous simple command executed in the foreground, after expansion. Also set to the full
pathname used to invoke each command executed and placed in the environment exported to
that command. When checking mail, this parameter holds the name of the mail file currently
being checked.

10 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

BASH Expands to the full filename used to invoke this instance of bash.
BASHOPTS

A colon-separated list of enabled shell options. Each word in the list is a valid argument for
the −s option to the shopt builtin command (see SHELL BUILTIN COMMANDS below). The
options appearing in BASHOPTS are those reported as on by shopt. If this variable is in the
environment when bash starts up, each shell option in the list will be enabled before reading
any startup files. This variable is read-only.

BASHPID
Expands to the process ID of the current bash process. This differs from $$ under certain cir-
cumstances, such as subshells that do not require bash to be re-initialized. Assignments to
BASHPID have no effect. If BASHPID is unset, it loses its special properties, even if it is sub-
sequently reset.

BASH_ALIASES
An associative array variable whose members correspond to the internal list of aliases as main-
tained by the alias builtin. Elements added to this array appear in the alias list; however, un-
setting array elements currently does not cause aliases to be removed from the alias list. If
BASH_ALIASES is unset, it loses its special properties, even if it is subsequently reset.

BASH_ARGC
An array variable whose values are the number of parameters in each frame of the current
bash execution call stack. The number of parameters to the current subroutine (shell function
or script executed with . or source) is at the top of the stack. When a subroutine is executed,
the number of parameters passed is pushed onto BASH_ARGC. The shell sets BASH_ARGC

only when in extended debugging mode (see the description of the extdebug option to the
shopt builtin below). Setting extdebug after the shell has started to execute a script, or refer-
encing this variable when extdebug is not set, may result in inconsistent values.

BASH_ARGV
An array variable containing all of the parameters in the current bash execution call stack.
The final parameter of the last subroutine call is at the top of the stack; the first parameter of
the initial call is at the bottom. When a subroutine is executed, the parameters supplied are
pushed onto BASH_ARGV. The shell sets BASH_ARGV only when in extended debugging
mode (see the description of the extdebug option to the shopt builtin below). Setting extde-
bug after the shell has started to execute a script, or referencing this variable when extdebug
is not set, may result in inconsistent values.

BASH_ARGV0
When referenced, this variable expands to the name of the shell or shell script (identical to $0;
see the description of special parameter 0 above). Assignment to BASH_ARGV0 causes the
value assigned to also be assigned to $0. If BASH_ARGV0 is unset, it loses its special prop-
erties, even if it is subsequently reset.

BASH_CMDS
An associative array variable whose members correspond to the internal hash table of com-
mands as maintained by the hash builtin. Elements added to this array appear in the hash ta-
ble; however, unsetting array elements currently does not cause command names to be re-
moved from the hash table. If BASH_CMDS is unset, it loses its special properties, even if it
is subsequently reset.

BASH_COMMAND
The command currently being executed or about to be executed, unless the shell is executing a
command as the result of a trap, in which case it is the command executing at the time of the
trap. If BASH_COMMAND is unset, it loses its special properties, even if it is subsequently
reset.

BASH_EXECUTION_STRING
The command argument to the −c invocation option.

BASH_LINENO
An array variable whose members are the line numbers in source files where each correspond-
ing member of FUNCNAME was inv oked. ${BASH_LINENO[$i]} is the line number in the
source file (${BASH_SOURCE[$i+1]}) where ${FUNCNAME[$i]} was called (or
${BASH_LINENO[$i-1]} if referenced within another shell function). Use LINENO to ob-
tain the current line number.

GNU Bash 5.2 2022 September 19 11

BASH(1) General Commands Manual BASH(1)

BASH_LOADABLES_PATH
A colon-separated list of directories in which the shell looks for dynamically loadable builtins
specified by the enable command.

BASH_REMATCH
An array variable whose members are assigned by the =˜ binary operator to the [[conditional
command. The element with index 0 is the portion of the string matching the entire regular
expression. The element with index n is the portion of the string matching the nth parenthe-
sized subexpression.

BASH_SOURCE
An array variable whose members are the source filenames where the corresponding shell
function names in the FUNCNAME array variable are defined. The shell function ${FUNC-
NAME[$i]} is defined in the file ${BASH_SOURCE[$i]} and called from
${BASH_SOURCE[$i+1]}.

BASH_SUBSHELL
Incremented by one within each subshell or subshell environment when the shell begins exe-
cuting in that environment. The initial value is 0. If BASH_SUBSHELL is unset, it loses its
special properties, even if it is subsequently reset.

BASH_VERSINFO
A readonly array variable whose members hold version information for this instance of bash.
The values assigned to the array members are as follows:

BASH_VERSINFO[0] The major version number (the release).
BASH_VERSINFO[1] The minor version number (the version).
BASH_VERSINFO[2] The patch level.
BASH_VERSINFO[3] The build version.
BASH_VERSINFO[4] The release status (e.g., beta1).
BASH_VERSINFO[5] The value of MACHTYPE.

BASH_VERSION
Expands to a string describing the version of this instance of bash.

COMP_CWORD
An index into ${COMP_WORDS} of the word containing the current cursor position. This
variable is available only in shell functions invoked by the programmable completion facilities
(see Programmable Completion below).

COMP_KEY
The key (or final key of a key sequence) used to invoke the current completion function.

COMP_LINE
The current command line. This variable is available only in shell functions and external com-
mands invoked by the programmable completion facilities (see Programmable Completion
below).

COMP_POINT
The index of the current cursor position relative to the beginning of the current command. If
the current cursor position is at the end of the current command, the value of this variable is
equal to ${#COMP_LINE}. This variable is available only in shell functions and external
commands invoked by the programmable completion facilities (see Programmable Comple-
tion below).

COMP_TYPE
Set to an integer value corresponding to the type of completion attempted that caused a com-
pletion function to be called: TAB, for normal completion, ?, for listing completions after suc-
cessive tabs, !, for listing alternatives on partial word completion, @, to list completions if the
word is not unmodified, or %, for menu completion. This variable is available only in shell
functions and external commands invoked by the programmable completion facilities (see
Programmable Completion below).

COMP_WORDBREAKS
The set of characters that the readline library treats as word separators when performing word
completion. If COMP_WORDBREAKS is unset, it loses its special properties, even if it is sub-
sequently reset.

COMP_WORDS
An array variable (see Arrays below) consisting of the individual words in the current com-
mand line. The line is split into words as readline would split it, using

12 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

COMP_WORDBREAKS as described above. This variable is available only in shell functions
invoked by the programmable completion facilities (see Programmable Completion below).

COPROC
An array variable (see Arrays below) created to hold the file descriptors for output from and
input to an unnamed coprocess (see Coprocesses above).

DIRSTACK
An array variable (see Arrays below) containing the current contents of the directory stack.
Directories appear in the stack in the order they are displayed by the dirs builtin. Assigning to
members of this array variable may be used to modify directories already in the stack, but the
pushd and popd builtins must be used to add and remove directories. Assignment to this vari-
able will not change the current directory. If DIRSTACK is unset, it loses its special proper-
ties, even if it is subsequently reset.

EPOCHREALTIME
Each time this parameter is referenced, it expands to the number of seconds since the Unix
Epoch (see time(3)) as a floating point value with micro-second granularity. Assignments to
EPOCHREALTIME are ignored. If EPOCHREALTIME is unset, it loses its special properties,
ev en if it is subsequently reset.

EPOCHSECONDS
Each time this parameter is referenced, it expands to the number of seconds since the Unix
Epoch (see time(3)). Assignments to EPOCHSECONDS are ignored. If EPOCHSECONDS is
unset, it loses its special properties, even if it is subsequently reset.

EUID Expands to the effective user ID of the current user, initialized at shell startup. This variable is
readonly.

FUNCNAME
An array variable containing the names of all shell functions currently in the execution call
stack. The element with index 0 is the name of any currently-executing shell function. The
bottom-most element (the one with the highest index) is "main". This variable exists only
when a shell function is executing. Assignments to FUNCNAME have no effect. If FUNC-

NAME is unset, it loses its special properties, even if it is subsequently reset.

This variable can be used with BASH_LINENO and BASH_SOURCE. Each element of
FUNCNAME has corresponding elements in BASH_LINENO and BASH_SOURCE to de-
scribe the call stack. For instance, ${FUNCNAME[$i]} was called from the file
${BASH_SOURCE[$i+1]} at line number ${BASH_LINENO[$i]}. The caller builtin dis-
plays the current call stack using this information.

GROUPS
An array variable containing the list of groups of which the current user is a member. Assign-
ments to GROUPS have no effect. If GROUPS is unset, it loses its special properties, even if it
is subsequently reset.

HISTCMD
The history number, or index in the history list, of the current command. Assignments to
HISTCMD are ignored. If HISTCMD is unset, it loses its special properties, even if it is subse-
quently reset.

HOSTNAME
Automatically set to the name of the current host.

HOSTTYPE
Automatically set to a string that uniquely describes the type of machine on which bash is ex-
ecuting. The default is system-dependent.

LINENO
Each time this parameter is referenced, the shell substitutes a decimal number representing the
current sequential line number (starting with 1) within a script or function. When not in a
script or function, the value substituted is not guaranteed to be meaningful. If LINENO is un-
set, it loses its special properties, even if it is subsequently reset.

MACHTYPE
Automatically set to a string that fully describes the system type on which bash is executing,
in the standard GNU cpu-company-system format. The default is system-dependent.

MAPFILE
An array variable (see Arrays below) created to hold the text read by the mapfile builtin when
no variable name is supplied.

GNU Bash 5.2 2022 September 19 13

BASH(1) General Commands Manual BASH(1)

OLDPWD
The previous working directory as set by the cd command.

OPTARG
The value of the last option argument processed by the getopts builtin command (see SHELL

BUILTIN COMMANDS below).
OPTIND

The index of the next argument to be processed by the getopts builtin command (see SHELL

BUILTIN COMMANDS below).
OSTYPE

Automatically set to a string that describes the operating system on which bash is executing.
The default is system-dependent.

PIPESTATUS
An array variable (see Arrays below) containing a list of exit status values from the processes
in the most-recently-executed foreground pipeline (which may contain only a single com-
mand).

PPID The process ID of the shell’s parent. This variable is readonly.
PWD The current working directory as set by the cd command.
RANDOM

Each time this parameter is referenced, it expands to a random integer between 0 and 32767.
Assigning a value to RANDOM initializes (seeds) the sequence of random numbers. If RAN-

DOM is unset, it loses its special properties, even if it is subsequently reset.
READLINE_ARGUMENT

Any numeric argument given to a readline command that was defined using bind -x (see
SHELL BUILTIN COMMANDS below) when it was invoked.

READLINE_LINE
The contents of the readline line buffer, for use with bind -x (see SHELL BUILTIN COM-

MANDS below).
READLINE_MARK

The position of the mark (saved insertion point) in the readline line buffer, for use with bind
-x (see SHELL BUILTIN COMMANDS below). The characters between the insertion point
and the mark are often called the region.

READLINE_POINT
The position of the insertion point in the readline line buffer, for use with bind -x (see
SHELL BUILTIN COMMANDS below).

REPLY
Set to the line of input read by the read builtin command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, it expands to the number of seconds since shell invoca-
tion. If a value is assigned to SECONDS, the value returned upon subsequent references is the
number of seconds since the assignment plus the value assigned. The number of seconds at
shell invocation and the current time are always determined by querying the system clock. If
SECONDS is unset, it loses its special properties, even if it is subsequently reset.

SHELLOPTS
A colon-separated list of enabled shell options. Each word in the list is a valid argument for
the −o option to the set builtin command (see SHELL BUILTIN COMMANDS below). The
options appearing in SHELLOPTS are those reported as on by set −o. If this variable is in the
environment when bash starts up, each shell option in the list will be enabled before reading
any startup files. This variable is read-only.

SHLVL
Incremented by one each time an instance of bash is started.

SRANDOM
This variable expands to a 32-bit pseudo-random number each time it is referenced. The ran-
dom number generator is not linear on systems that support /dev/urandom or arc4random,
so each returned number has no relationship to the numbers preceding it. The random number
generator cannot be seeded, so assignments to this variable have no effect. If SRANDOM is
unset, it loses its special properties, even if it is subsequently reset.

UID Expands to the user ID of the current user, initialized at shell startup. This variable is read-
only.

14 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

The following variables are used by the shell. In some cases, bash assigns a default value to a variable;
these cases are noted below.

BASH_COMPAT
The value is used to set the shell’s compatibility level. See SHELL COMPATIBILITY MODE

below for a description of the various compatibility levels and their effects. The value may be
a decimal number (e.g., 4.2) or an integer (e.g., 42) corresponding to the desired compatibility
level. If BASH_COMPAT is unset or set to the empty string, the compatibility level is set to
the default for the current version. If BASH_COMPAT is set to a value that is not one of the
valid compatibility levels, the shell prints an error message and sets the compatibility level to
the default for the current version. The valid values correspond to the compatibility levels de-
scribed below under SHELL COMPATIBILITY MODE. For example, 4.2 and 42 are valid val-
ues that correspond to the compat42 shopt option and set the compatibility level to 42. The
current version is also a valid value.

BASH_ENV
If this parameter is set when bash is executing a shell script, its value is interpreted as a file-
name containing commands to initialize the shell, as in ˜/.bashrc. The value of BASH_ENV is
subjected to parameter expansion, command substitution, and arithmetic expansion before be-
ing interpreted as a filename. PATH is not used to search for the resultant filename.

BASH_XTRACEFD
If set to an integer corresponding to a valid file descriptor, bash will write the trace output
generated when set -x is enabled to that file descriptor. The file descriptor is closed when
BASH_XTRACEFD is unset or assigned a new value. Unsetting BASH_XTRACEFD or assign-
ing it the empty string causes the trace output to be sent to the standard error. Note that setting
BASH_XTRACEFD to 2 (the standard error file descriptor) and then unsetting it will result in
the standard error being closed.

CDPATH
The search path for the cd command. This is a colon-separated list of directories in which the
shell looks for destination directories specified by the cd command. A sample value is
".:˜:/usr".

CHILD_MAX
Set the number of exited child status values for the shell to remember. Bash will not allow this
value to be decreased below a POSIX-mandated minimum, and there is a maximum value
(currently 8192) that this may not exceed. The minimum value is system-dependent.

COLUMNS
Used by the select compound command to determine the terminal width when printing selec-
tion lists. Automatically set if the checkwinsize option is enabled or in an interactive shell
upon receipt of a SIGWINCH.

COMPREPLY
An array variable from which bash reads the possible completions generated by a shell func-
tion invoked by the programmable completion facility (see Programmable Completion be-
low). Each array element contains one possible completion.

EMACS
If bash finds this variable in the environment when the shell starts with value t, it assumes
that the shell is running in an Emacs shell buffer and disables line editing.

ENV Expanded and executed similarly to BASH_ENV (see INVOCATION above) when an interac-
tive shell is invoked in posix mode.

EXECIGNORE
A colon-separated list of shell patterns (see Pattern Matching) defining the list of filenames
to be ignored by command search using PATH. Files whose full pathnames match one of
these patterns are not considered executable files for the purposes of completion and command
execution via PATH lookup. This does not affect the behavior of the [, test, and [[commands.
Full pathnames in the command hash table are not subject to EXECIGNORE. Use this vari-
able to ignore shared library files that have the executable bit set, but are not executable files.
The pattern matching honors the setting of the extglob shell option.

FCEDIT
The default editor for the fc builtin command.

GNU Bash 5.2 2022 September 19 15

BASH(1) General Commands Manual BASH(1)

FIGNORE
A colon-separated list of suffixes to ignore when performing filename completion (see READ-

LINE below). A filename whose suffix matches one of the entries in FIGNORE is excluded
from the list of matched filenames. A sample value is ".o:˜". (Quoting is needed when as-
signing a value to this variable, which contains tildes).

FUNCNEST
If set to a numeric value greater than 0, defines a maximum function nesting level. Function
invocations that exceed this nesting level will cause the current command to abort.

GLOBIGNORE
A colon-separated list of patterns defining the set of file names to be ignored by pathname ex-
pansion. If a file name matched by a pathname expansion pattern also matches one of the pat-
terns in GLOBIGNORE, it is removed from the list of matches.

HISTCONTROL
A colon-separated list of values controlling how commands are saved on the history list. If the
list of values includes ignorespace, lines which begin with a space character are not saved in
the history list. A value of ignoredups causes lines matching the previous history entry to not
be saved. A value of ignoreboth is shorthand for ignorespace and ignoredups. A value of
erasedups causes all previous lines matching the current line to be removed from the history
list before that line is saved. Any value not in the above list is ignored. If HISTCONTROL is
unset, or does not include a valid value, all lines read by the shell parser are saved on the his-
tory list, subject to the value of HISTIGNORE. The second and subsequent lines of a multi-
line compound command are not tested, and are added to the history regardless of the value of
HISTCONTROL.

HISTFILE
The name of the file in which command history is saved (see HISTORY below). The default
value is ˜/.bash_history. If unset, the command history is not saved when a shell exits.

HISTFILESIZE
The maximum number of lines contained in the history file. When this variable is assigned a
value, the history file is truncated, if necessary, to contain no more than that number of lines
by removing the oldest entries. The history file is also truncated to this size after writing it
when a shell exits. If the value is 0, the history file is truncated to zero size. Non-numeric val-
ues and numeric values less than zero inhibit truncation. The shell sets the default value to the
value of HISTSIZE after reading any startup files.

HISTIGNORE
A colon-separated list of patterns used to decide which command lines should be saved on the
history list. Each pattern is anchored at the beginning of the line and must match the complete
line (no implicit ‘*’ is appended). Each pattern is tested against the line after the checks spec-
ified by HISTCONTROL are applied. In addition to the normal shell pattern matching charac-
ters, ‘&’ matches the previous history line. ‘&’ may be escaped using a backslash; the back-
slash is removed before attempting a match. The second and subsequent lines of a multi-line
compound command are not tested, and are added to the history regardless of the value of
HISTIGNORE. The pattern matching honors the setting of the extglob shell option.

HISTSIZE
The number of commands to remember in the command history (see HISTORY below). If the
value is 0, commands are not saved in the history list. Numeric values less than zero result in
ev ery command being saved on the history list (there is no limit). The shell sets the default
value to 500 after reading any startup files.

HISTTIMEFORMAT
If this variable is set and not null, its value is used as a format string for strftime(3) to print the
time stamp associated with each history entry displayed by the history builtin. If this variable
is set, time stamps are written to the history file so they may be preserved across shell ses-
sions. This uses the history comment character to distinguish timestamps from other history
lines.

HOME
The home directory of the current user; the default argument for the cd builtin command. The
value of this variable is also used when performing tilde expansion.

HOSTFILE
Contains the name of a file in the same format as /etc/hosts that should be read when the shell
needs to complete a hostname. The list of possible hostname completions may be changed

16 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

while the shell is running; the next time hostname completion is attempted after the value is
changed, bash adds the contents of the new file to the existing list. If HOSTFILE is set, but
has no value, or does not name a readable file, bash attempts to read /etc/hosts to obtain the
list of possible hostname completions. When HOSTFILE is unset, the hostname list is cleared.

IFS The Internal Field Separator that is used for word splitting after expansion and to split lines
into words with the read builtin command. The default value is ‘‘<space><tab><newline>’’.

IGNOREEOF
Controls the action of an interactive shell on receipt of an EOF character as the sole input. If
set, the value is the number of consecutive EOF characters which must be typed as the first
characters on an input line before bash exits. If the variable exists but does not have a nu-
meric value, or has no value, the default value is 10. If it does not exist, EOF signifies the end
of input to the shell.

INPUTRC
The filename for the readline startup file, overriding the default of ˜/.inputrc (see READLINE

below).
INSIDE_EMACS

If this variable appears in the environment when the shell starts, bash assumes that it is run-
ning inside an Emacs shell buffer and may disable line editing, depending on the value of
TERM.

LANG Used to determine the locale category for any category not specifically selected with a variable
starting with LC_.

LC_ALL
This variable overrides the value of LANG and any other LC_ variable specifying a locale cat-
egory.

LC_COLLATE
This variable determines the collation order used when sorting the results of pathname expan-
sion, and determines the behavior of range expressions, equivalence classes, and collating se-
quences within pathname expansion and pattern matching.

LC_CTYPE
This variable determines the interpretation of characters and the behavior of character classes
within pathname expansion and pattern matching.

LC_MESSAGES
This variable determines the locale used to translate double-quoted strings preceded by a $.

LC_NUMERIC
This variable determines the locale category used for number formatting.

LC_TIME
This variable determines the locale category used for data and time formatting.

LINES Used by the select compound command to determine the column length for printing selection
lists. Automatically set if the checkwinsize option is enabled or in an interactive shell upon
receipt of a SIGWINCH.

MAIL If this parameter is set to a file or directory name and the MAILPATH variable is not set, bash
informs the user of the arrival of mail in the specified file or Maildir-format directory.

MAILCHECK
Specifies how often (in seconds) bash checks for mail. The default is 60 seconds. When it is
time to check for mail, the shell does so before displaying the primary prompt. If this variable
is unset, or set to a value that is not a number greater than or equal to zero, the shell disables
mail checking.

MAILPATH
A colon-separated list of filenames to be checked for mail. The message to be printed when
mail arrives in a particular file may be specified by separating the filename from the message
with a ‘?’. When used in the text of the message, $_ expands to the name of the current mail-
file. Example:
MAILPATH='/var/mail/bfox?"You have mail":˜/shell−mail?"$_ has mail!"'
Bash can be configured to supply a default value for this variable (there is no value by de-
fault), but the location of the user mail files that it uses is system dependent (e.g.,
/var/mail/$USER).

OPTERR
If set to the value 1, bash displays error messages generated by the getopts builtin command
(see SHELL BUILTIN COMMANDS below). OPTERR is initialized to 1 each time the shell is

GNU Bash 5.2 2022 September 19 17

BASH(1) General Commands Manual BASH(1)

invoked or a shell script is executed.
PATH The search path for commands. It is a colon-separated list of directories in which the shell

looks for commands (see COMMAND EXECUTION below). A zero-length (null) directory
name in the value of PATH indicates the current directory. A null directory name may appear
as two adjacent colons, or as an initial or trailing colon. The default path is system-dependent,
and is set by the administrator who installs bash. A common value is /usr/local/bin:
/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin.

POSIXLY_CORRECT
If this variable is in the environment when bash starts, the shell enters posix mode before read-
ing the startup files, as if the −−posix invocation option had been supplied. If it is set while
the shell is running, bash enables posix mode, as if the command set -o posix had been
executed. When the shell enters posix mode, it sets this variable if it was not already set.

PROMPT_COMMAND
If this variable is set, and is an array, the value of each set element is executed as a command
prior to issuing each primary prompt. If this is set but not an array variable, its value is used
as a command to execute instead.

PROMPT_DIRTRIM
If set to a number greater than zero, the value is used as the number of trailing directory com-
ponents to retain when expanding the \w and \W prompt string escapes (see PROMPTING be-
low). Characters removed are replaced with an ellipsis.

PS0 The value of this parameter is expanded (see PROMPTING below) and displayed by interac-
tive shells after reading a command and before the command is executed.

PS1 The value of this parameter is expanded (see PROMPTING below) and used as the primary
prompt string. The default value is ‘‘\s−\v\$ ’’.

PS2 The value of this parameter is expanded as with PS1 and used as the secondary prompt string.
The default is ‘‘> ’’.

PS3 The value of this parameter is used as the prompt for the select command (see SHELL GRAM-

MAR above).
PS4 The value of this parameter is expanded as with PS1 and the value is printed before each com-

mand bash displays during an execution trace. The first character of the expanded value of
PS4 is replicated multiple times, as necessary, to indicate multiple levels of indirection. The
default is ‘‘+ ’’.

SHELL
This variable expands to the full pathname to the shell. If it is not set when the shell starts,
bash assigns to it the full pathname of the current user’s login shell.

TIMEFORMAT
The value of this parameter is used as a format string specifying how the timing information
for pipelines prefixed with the time reserved word should be displayed. The % character in-
troduces an escape sequence that is expanded to a time value or other information. The escape
sequences and their meanings are as follows; the braces denote optional portions.

%% A literal %.
%[p][l]R The elapsed time in seconds.
%[p][l]U The number of CPU seconds spent in user mode.
%[p][l]S The number of CPU seconds spent in system mode.
%P The CPU percentage, computed as (%U + %S) / %R.

The optional p is a digit specifying the precision, the number of fractional digits after a deci-
mal point. A value of 0 causes no decimal point or fraction to be output. At most three places
after the decimal point may be specified; values of p greater than 3 are changed to 3. If p is
not specified, the value 3 is used.

The optional l specifies a longer format, including minutes, of the form MMmSS.FFs. The
value of p determines whether or not the fraction is included.

If this variable is not set, bash acts as if it had the value
$'\nreal\t%3lR\nuser\t%3lU\nsys\t%3lS'. If the value is null, no timing information is dis-
played. A trailing newline is added when the format string is displayed.

TMOUT
If set to a value greater than zero, TMOUT is treated as the default timeout for the read builtin.
The select command terminates if input does not arrive after TMOUT seconds when input is

18 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

coming from a terminal. In an interactive shell, the value is interpreted as the number of sec-
onds to wait for a line of input after issuing the primary prompt. Bash terminates after waiting
for that number of seconds if a complete line of input does not arrive.

TMPDIR
If set, bash uses its value as the name of a directory in which bash creates temporary files for
the shell’s use.

auto_resume
This variable controls how the shell interacts with the user and job control. If this variable is
set, single word simple commands without redirections are treated as candidates for resump-
tion of an existing stopped job. There is no ambiguity allowed; if there is more than one job
beginning with the string typed, the job most recently accessed is selected. The name of a
stopped job, in this context, is the command line used to start it. If set to the value exact, the
string supplied must match the name of a stopped job exactly; if set to substring, the string
supplied needs to match a substring of the name of a stopped job. The substring value pro-
vides functionality analogous to the %? job identifier (see JOB CONTROL below). If set to
any other value, the supplied string must be a prefix of a stopped job’s name; this provides
functionality analogous to the %string job identifier.

histchars
The two or three characters which control history expansion and tokenization (see HISTORY

EXPANSION below). The first character is the history expansion character, the character
which signals the start of a history expansion, normally ‘!’. The second character is the quick

substitution character, which is used as shorthand for re-running the previous command en-
tered, substituting one string for another in the command. The default is ‘ˆ’. The optional
third character is the character which indicates that the remainder of the line is a comment
when found as the first character of a word, normally ‘#’. The history comment character
causes history substitution to be skipped for the remaining words on the line. It does not nec-
essarily cause the shell parser to treat the rest of the line as a comment.

Arrays
Bash provides one-dimensional indexed and associative array variables. Any variable may be used as
an indexed array; the declare builtin will explicitly declare an array. There is no maximum limit on the
size of an array, nor any requirement that members be indexed or assigned contiguously. Indexed ar-
rays are referenced using integers (including arithmetic expressions) and are zero-based; associative ar-
rays are referenced using arbitrary strings. Unless otherwise noted, indexed array indices must be non-
negative integers.

An indexed array is created automatically if any variable is assigned to using the syntax name[sub-

script]=value. The subscript is treated as an arithmetic expression that must evaluate to a number. To
explicitly declare an indexed array, use declare −a name (see SHELL BUILTIN COMMANDS below).
declare −a name[subscript] is also accepted; the subscript is ignored.

Associative arrays are created using declare −A name.

Attributes may be specified for an array variable using the declare and readonly builtins. Each at-
tribute applies to all members of an array.

Arrays are assigned to using compound assignments of the form name=(value1 ... valuen), where each
value may be of the form [subscript]=string. Indexed array assignments do not require anything but
string. Each value in the list is expanded using all the shell expansions described below under EXPAN-

SION. When assigning to indexed arrays, if the optional brackets and subscript are supplied, that index
is assigned to; otherwise the index of the element assigned is the last index assigned to by the statement
plus one. Indexing starts at zero.

When assigning to an associative array, the words in a compound assignment may be either assignment
statements, for which the subscript is required, or a list of words that is interpreted as a sequence of al-
ternating keys and values: name=(key1 value1 key2 value2 ...). These are treated identically to name=(
[key1]=value1 [key2]=value2 ...). The first word in the list determines how the remaining words are in-
terpreted; all assignments in a list must be of the same type. When using key/value pairs, the keys may
not be missing or empty; a final missing value is treated like the empty string.

This syntax is also accepted by the declare builtin. Individual array elements may be assigned to using
the name[subscript]=value syntax introduced above. When assigning to an indexed array, if name is
subscripted by a negative number, that number is interpreted as relative to one greater than the

GNU Bash 5.2 2022 September 19 19

BASH(1) General Commands Manual BASH(1)

maximum index of name, so neg ative indices count back from the end of the array, and an index of −1
references the last element.

The += operator will append to an array variable when assigning using the compound assignment syn-
tax; see PARAMETERS above.

Any element of an array may be referenced using ${name[subscript]}. The braces are required to
avoid conflicts with pathname expansion. If subscript is @ or *, the word expands to all members of
name. These subscripts differ only when the word appears within double quotes. If the word is dou-
ble-quoted, ${name[*]} expands to a single word with the value of each array member separated by the
first character of the IFS special variable, and ${name[@]} expands each element of name to a separate
word. When there are no array members, ${name[@]} expands to nothing. If the double-quoted ex-
pansion occurs within a word, the expansion of the first parameter is joined with the beginning part of
the original word, and the expansion of the last parameter is joined with the last part of the original
word. This is analogous to the expansion of the special parameters * and @ (see Special Parameters
above). ${#name[subscript]} expands to the length of ${name[subscript]}. If subscript is * or @, the
expansion is the number of elements in the array. If the subscript used to reference an element of an
indexed array evaluates to a number less than zero, it is interpreted as relative to one greater than the
maximum index of the array, so neg ative indices count back from the end of the array, and an index of
−1 references the last element.

Referencing an array variable without a subscript is equivalent to referencing the array with a subscript
of 0. Any reference to a variable using a valid subscript is legal, and bash will create an array if neces-
sary.

An array variable is considered set if a subscript has been assigned a value. The null string is a valid
value.

It is possible to obtain the keys (indices) of an array as well as the values. ${!name[@]} and
${!name[*]} expand to the indices assigned in array variable name. The treatment when in double
quotes is similar to the expansion of the special parameters @ and * within double quotes.

The unset builtin is used to destroy arrays. unset name[subscript] destroys the array element at index
subscript, for both indexed and associative arrays. Negative subscripts to indexed arrays are interpreted
as described above. Unsetting the last element of an array variable does not unset the variable. unset
name, where name is an array, removes the entire array. unset name[subscript], where subscript is * or
@, behaves differently depending on whether name is an indexed or associative array. If name is an as-
sociative array, this unsets the element with subscript * or @. If name is an indexed array, unset re-
moves all of the elements but does not remove the array itself.

When using a variable name with a subscript as an argument to a command, such as with unset, with-
out using the word expansion syntax described above, the argument is subject to pathname expansion.
If pathname expansion is not desired, the argument should be quoted.

The declare, local, and readonly builtins each accept a −a option to specify an indexed array and a −A
option to specify an associative array. If both options are supplied, −A takes precedence. The read
builtin accepts a −a option to assign a list of words read from the standard input to an array. The set
and declare builtins display array values in a way that allows them to be reused as assignments.

EXPANSION
Expansion is performed on the command line after it has been split into words. There are seven kinds
of expansion performed: brace expansion, tilde expansion, parameter and variable expansion, com-

mand substitution, arithmetic expansion, word splitting, and pathname expansion.

The order of expansions is: brace expansion; tilde expansion, parameter and variable expansion, arith-
metic expansion, and command substitution (done in a left-to-right fashion); word splitting; and path-
name expansion.

On systems that can support it, there is an additional expansion available: process substitution. This is
performed at the same time as tilde, parameter, variable, and arithmetic expansion and command sub-
stitution.

After these expansions are performed, quote characters present in the original word are removed unless
they hav e been quoted themselves (quote removal).

Only brace expansion, word splitting, and pathname expansion can increase the number of words of the

20 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

expansion; other expansions expand a single word to a single word. The only exceptions to this are the
expansions of "$@" and "${name[@]}", and, in most cases, $* and ${name[*]} as explained above (see
PARAMETERS).

Brace Expansion
Brace expansion is a mechanism by which arbitrary strings may be generated. This mechanism is sim-
ilar to pathname expansion, but the filenames generated need not exist. Patterns to be brace expanded
take the form of an optional preamble, followed by either a series of comma-separated strings or a se-
quence expression between a pair of braces, followed by an optional postscript. The preamble is pre-
fixed to each string contained within the braces, and the postscript is then appended to each resulting
string, expanding left to right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right order
is preserved. For example, a{d,c,b}e expands into ‘ade ace abe’.

A sequence expression takes the form {x..y[..incr]}, where x and y are either integers or single letters,
and incr, an optional increment, is an integer. When integers are supplied, the expression expands to
each number between x and y, inclusive. Supplied integers may be prefixed with 0 to force each term
to have the same width. When either x or y begins with a zero, the shell attempts to force all generated
terms to contain the same number of digits, zero-padding where necessary. When letters are supplied,
the expression expands to each character lexicographically between x and y, inclusive, using the default
C locale. Note that both x and y must be of the same type (integer or letter). When the increment is
supplied, it is used as the difference between each term. The default increment is 1 or −1 as appropri-
ate.

Brace expansion is performed before any other expansions, and any characters special to other expan-
sions are preserved in the result. It is strictly textual. Bash does not apply any syntactic interpretation
to the context of the expansion or the text between the braces.

A correctly-formed brace expansion must contain unquoted opening and closing braces, and at least
one unquoted comma or a valid sequence expression. Any incorrectly formed brace expansion is left
unchanged. A { or , may be quoted with a backslash to prevent its being considered part of a brace ex-
pression. To avoid conflicts with parameter expansion, the string ${ is not considered eligible for brace
expansion, and inhibits brace expansion until the closing }.

This construct is typically used as shorthand when the common prefix of the strings to be generated is
longer than in the above example:

mkdir /usr/local/src/bash/{old,new,dist,bugs}
or

chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

Brace expansion introduces a slight incompatibility with historical versions of sh. sh does not treat
opening or closing braces specially when they appear as part of a word, and preserves them in the out-
put. Bash removes braces from words as a consequence of brace expansion. For example, a word en-
tered to sh as file{1,2} appears identically in the output. The same word is output as file1 file2 after ex-
pansion by bash. If strict compatibility with sh is desired, start bash with the +B option or disable
brace expansion with the +B option to the set command (see SHELL BUILTIN COMMANDS below).

Tilde Expansion
If a word begins with an unquoted tilde character (‘˜’), all of the characters preceding the first unquoted
slash (or all characters, if there is no unquoted slash) are considered a tilde-prefix. If none of the char-
acters in the tilde-prefix are quoted, the characters in the tilde-prefix following the tilde are treated as a
possible login name. If this login name is the null string, the tilde is replaced with the value of the shell
parameter HOME. If HOME is unset, the home directory of the user executing the shell is substituted
instead. Otherwise, the tilde-prefix is replaced with the home directory associated with the specified lo-
gin name.

If the tilde-prefix is a ‘˜+’, the value of the shell variable PWD replaces the tilde-prefix. If the tilde-pre-
fix is a ‘˜−’, the value of the shell variable OLDPWD, if it is set, is substituted. If the characters follow-
ing the tilde in the tilde-prefix consist of a number N, optionally prefixed by a ‘+’ or a ‘−’, the tilde-pre-
fix is replaced with the corresponding element from the directory stack, as it would be displayed by the
dirs builtin invoked with the tilde-prefix as an argument. If the characters following the tilde in the
tilde-prefix consist of a number without a leading ‘+’ or ‘−’, ‘+’ is assumed.

GNU Bash 5.2 2022 September 19 21

BASH(1) General Commands Manual BASH(1)

If the login name is invalid, or the tilde expansion fails, the word is unchanged.

Each variable assignment is checked for unquoted tilde-prefixes immediately following a : or the first
=. In these cases, tilde expansion is also performed. Consequently, one may use filenames with tildes
in assignments to PATH, MAILPATH, and CDPATH, and the shell assigns the expanded value.

Bash also performs tilde expansion on words satisfying the conditions of variable assignments (as de-
scribed above under PARAMETERS) when they appear as arguments to simple commands. Bash does
not do this, except for the declaration commands listed above, when in posix mode.

Parameter Expansion
The ‘$’ character introduces parameter expansion, command substitution, or arithmetic expansion. The
parameter name or symbol to be expanded may be enclosed in braces, which are optional but serve to
protect the variable to be expanded from characters immediately following it which could be inter-
preted as part of the name.

When braces are used, the matching ending brace is the first ‘}’ not escaped by a backslash or within a
quoted string, and not within an embedded arithmetic expansion, command substitution, or parameter
expansion.

${parameter}
The value of parameter is substituted. The braces are required when parameter is a positional
parameter with more than one digit, or when parameter is followed by a character which is
not to be interpreted as part of its name. The parameter is a shell parameter as described
above PARAMETERS) or an array reference (Arrays).

If the first character of parameter is an exclamation point (!), and parameter is not a nameref, it intro-
duces a level of indirection. Bash uses the value formed by expanding the rest of parameter as the new
parameter; this is then expanded and that value is used in the rest of the expansion, rather than the ex-
pansion of the original parameter. This is known as indirect expansion. The value is subject to tilde
expansion, parameter expansion, command substitution, and arithmetic expansion. If parameter is a
nameref, this expands to the name of the parameter referenced by parameter instead of performing the
complete indirect expansion. The exceptions to this are the expansions of ${!prefix*} and
${!name[@]} described below. The exclamation point must immediately follow the left brace in order
to introduce indirection.

In each of the cases below, word is subject to tilde expansion, parameter expansion, command substitu-
tion, and arithmetic expansion.

When not performing substring expansion, using the forms documented below (e.g., :-), bash tests for
a parameter that is unset or null. Omitting the colon results in a test only for a parameter that is unset.

${parameter:−word}
Use Default Values. If parameter is unset or null, the expansion of word is substituted. Oth-
erwise, the value of parameter is substituted.

${parameter:=word}
Assign Default Values. If parameter is unset or null, the expansion of word is assigned to
parameter. The value of parameter is then substituted. Positional parameters and special pa-
rameters may not be assigned to in this way.

${parameter:?word}
Display Error if Null or Unset. If parameter is null or unset, the expansion of word (or a
message to that effect if word is not present) is written to the standard error and the shell, if it
is not interactive, exits. Otherwise, the value of parameter is substituted.

${parameter:+word}
Use Alternate Value. If parameter is null or unset, nothing is substituted, otherwise the ex-
pansion of word is substituted.

${parameter:offset}
${parameter:offset:length}

Substring Expansion. Expands to up to length characters of the value of parameter starting
at the character specified by offset. If parameter is @ or *, an indexed array subscripted by @
or *, or an associative array name, the results differ as described below. If length is omitted,
expands to the substring of the value of parameter starting at the character specified by offset

and extending to the end of the value. length and offset are arithmetic expressions (see
ARITHMETIC EVALUATION below).

22 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

If offset evaluates to a number less than zero, the value is used as an offset in characters from
the end of the value of parameter. If length evaluates to a number less than zero, it is inter-
preted as an offset in characters from the end of the value of parameter rather than a number
of characters, and the expansion is the characters between offset and that result. Note that a
negative offset must be separated from the colon by at least one space to avoid being confused
with the :- expansion.

If parameter is @ or *, the result is length positional parameters beginning at offset. A nega-
tive offset is taken relative to one greater than the greatest positional parameter, so an offset of
−1 evaluates to the last positional parameter. It is an expansion error if length evaluates to a
number less than zero.

If parameter is an indexed array name subscripted by @ or *, the result is the length members
of the array beginning with ${parameter[offset]}. A negative offset is taken relative to one
greater than the maximum index of the specified array. It is an expansion error if length evalu-
ates to a number less than zero.

Substring expansion applied to an associative array produces undefined results.

Substring indexing is zero-based unless the positional parameters are used, in which case the
indexing starts at 1 by default. If offset is 0, and the positional parameters are used, $0 is pre-
fixed to the list.

${!prefix*}
${!prefix@}

Names matching prefix. Expands to the names of variables whose names begin with prefix,
separated by the first character of the IFS special variable. When @ is used and the expansion
appears within double quotes, each variable name expands to a separate word.

${!name[@]}
${!name[*]}

List of array keys. If name is an array variable, expands to the list of array indices (keys) as-
signed in name. If name is not an array, expands to 0 if name is set and null otherwise. When
@ is used and the expansion appears within double quotes, each key expands to a separate
word.

${#parameter}
Parameter length. The length in characters of the value of parameter is substituted. If para-

meter is * or @, the value substituted is the number of positional parameters. If parameter is
an array name subscripted by * or @, the value substituted is the number of elements in the ar-
ray. If parameter is an indexed array name subscripted by a negative number, that number is
interpreted as relative to one greater than the maximum index of parameter, so neg ative in-
dices count back from the end of the array, and an index of −1 references the last element.

${parameter#word}
${parameter##word}

Remove matching prefix pattern. The word is expanded to produce a pattern just as in path-
name expansion, and matched against the expanded value of parameter using the rules de-
scribed under Pattern Matching below. If the pattern matches the beginning of the value of
parameter, then the result of the expansion is the expanded value of parameter with the
shortest matching pattern (the ‘‘#’’ case) or the longest matching pattern (the ‘‘##’’ case)
deleted. If parameter is @ or *, the pattern removal operation is applied to each positional
parameter in turn, and the expansion is the resultant list. If parameter is an array variable
subscripted with @ or *, the pattern removal operation is applied to each member of the array
in turn, and the expansion is the resultant list.

${parameter%word}
${parameter%%word}

Remove matching suffix pattern. The word is expanded to produce a pattern just as in path-
name expansion, and matched against the expanded value of parameter using the rules de-
scribed under Pattern Matching below. If the pattern matches a trailing portion of the ex-
panded value of parameter, then the result of the expansion is the expanded value of

GNU Bash 5.2 2022 September 19 23

BASH(1) General Commands Manual BASH(1)

parameter with the shortest matching pattern (the ‘‘%’’ case) or the longest matching pattern
(the ‘‘%%’’ case) deleted. If parameter is @ or *, the pattern removal operation is applied to
each positional parameter in turn, and the expansion is the resultant list. If parameter is an ar-
ray variable subscripted with @ or *, the pattern removal operation is applied to each member
of the array in turn, and the expansion is the resultant list.

${parameter/pattern/string}
${parameter//pattern/string}
${parameter/#pattern/string}
${parameter/%pattern/string}

Pattern substitution. The pattern is expanded to produce a pattern just as in pathname ex-
pansion. Parameter is expanded and the longest match of pattern against its value is replaced
with string. string undergoes tilde expansion, parameter and variable expansion, arithmetic
expansion, command and process substitution, and quote removal. The match is performed
using the rules described under Pattern Matching below. In the first form above, only the
first match is replaced. If there are two slashes separating parameter and pattern (the second
form above), all matches of pattern are replaced with string. If pattern is preceded by # (the
third form above), it must match at the beginning of the expanded value of parameter. If pat-

tern is preceded by % (the fourth form above), it must match at the end of the expanded value
of parameter. If the expansion of string is null, matches of pattern are deleted. If string is
null, matches of pattern are deleted and the / following pattern may be omitted.

If the patsub_replacement shell option is enabled using shopt, any unquoted instances of &
in string are replaced with the matching portion of pattern.

Quoting any part of string inhibits replacement in the expansion of the quoted portion, includ-
ing replacement strings stored in shell variables. Backslash will escape & in string; the back-
slash is removed in order to permit a literal & in the replacement string. Backslash can also
be used to escape a backslash; \\ results in a literal backslash in the replacement. Users should
take care if string is double-quoted to avoid unwanted interactions between the backslash and
double-quoting, since backslash has special meaning within double quotes. Pattern substitu-
tion performs the check for unquoted & after expanding string; shell programmers should
quote any occurrences of & they want to be taken literally in the replacement and ensure any
instances of & they want to be replaced are unquoted.

If the nocasematch shell option is enabled, the match is performed without regard to the case
of alphabetic characters. If parameter is @ or *, the substitution operation is applied to each
positional parameter in turn, and the expansion is the resultant list. If parameter is an array
variable subscripted with @ or *, the substitution operation is applied to each member of the
array in turn, and the expansion is the resultant list.

${parameterˆpattern}
${parameterˆˆpattern}
${parameter,pattern}
${parameter,,pattern}

Case modification. This expansion modifies the case of alphabetic characters in parameter.
The pattern is expanded to produce a pattern just as in pathname expansion. Each character in
the expanded value of parameter is tested against pattern, and, if it matches the pattern, its
case is converted. The pattern should not attempt to match more than one character. The ˆ op-
erator converts lowercase letters matching pattern to uppercase; the , operator converts match-
ing uppercase letters to lowercase. The ˆˆ and ,, expansions convert each matched character in
the expanded value; the ˆ and , expansions match and convert only the first character in the ex-
panded value. If pattern is omitted, it is treated like a ?, which matches every character. If
parameter is @ or *, the case modification operation is applied to each positional parameter
in turn, and the expansion is the resultant list. If parameter is an array variable subscripted
with @ or *, the case modification operation is applied to each member of the array in turn,
and the expansion is the resultant list.

24 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

${parameter@operator}
Parameter transformation. The expansion is either a transformation of the value of parame-

ter or information about parameter itself, depending on the value of operator. Each operator

is a single letter:

U The expansion is a string that is the value of parameter with lowercase alphabetic
characters converted to uppercase.

u The expansion is a string that is the value of parameter with the first character con-
verted to uppercase, if it is alphabetic.

L The expansion is a string that is the value of parameter with uppercase alphabetic
characters converted to lowercase.

Q The expansion is a string that is the value of parameter quoted in a format that can be
reused as input.

E The expansion is a string that is the value of parameter with backslash escape se-
quences expanded as with the $'...' quoting mechanism.

P The expansion is a string that is the result of expanding the value of parameter as if it
were a prompt string (see PROMPTING below).

A The expansion is a string in the form of an assignment statement or declare com-
mand that, if evaluated, will recreate parameter with its attributes and value.

K Produces a possibly-quoted version of the value of parameter, except that it prints the
values of indexed and associative arrays as a sequence of quoted key-value pairs (see
Arrays above).

a The expansion is a string consisting of flag values representing parameter’s attrib-
utes.

k Like the K transformation, but expands the keys and values of indexed and associa-
tive arrays to separate words after word splitting.

If parameter is @ or *, the operation is applied to each positional parameter in turn, and the
expansion is the resultant list. If parameter is an array variable subscripted with @ or *, the
operation is applied to each member of the array in turn, and the expansion is the resultant list.

The result of the expansion is subject to word splitting and pathname expansion as described
below.

Command Substitution
Command substitution allows the output of a command to replace the command name. There are two
forms:

$(command)
or

`command`

Bash performs the expansion by executing command in a subshell environment and replacing the com-
mand substitution with the standard output of the command, with any trailing newlines deleted. Em-
bedded newlines are not deleted, but they may be removed during word splitting. The command substi-
tution $(cat file) can be replaced by the equivalent but faster $(< file).

When the old-style backquote form of substitution is used, backslash retains its literal meaning except
when followed by $, `, or \. The first backquote not preceded by a backslash terminates the command
substitution. When using the $(command) form, all characters between the parentheses make up the
command; none are treated specially.

Command substitutions may be nested. To nest when using the backquoted form, escape the inner
backquotes with backslashes.

If the substitution appears within double quotes, word splitting and pathname expansion are not per-
formed on the results.

Arithmetic Expansion
Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the re-
sult. The format for arithmetic expansion is:

$((expression))

The old format $[expression] is deprecated and will be removed in upcoming versions of bash.

GNU Bash 5.2 2022 September 19 25

BASH(1) General Commands Manual BASH(1)

The expression undergoes the same expansions as if it were within double quotes, but double quote
characters in expression are not treated specially and are removed. All tokens in the expression un-
dergo parameter and variable expansion, command substitution, and quote removal. The result is
treated as the arithmetic expression to be evaluated. Arithmetic expansions may be nested.

The evaluation is performed according to the rules listed below under ARITHMETIC EVALUATION. If
expression is invalid, bash prints a message indicating failure and no substitution occurs.

Process Substitution
Process substitution allows a process’s input or output to be referred to using a filename. It takes the
form of <(list) or >(list). The process list is run asynchronously, and its input or output appears as a
filename. This filename is passed as an argument to the current command as the result of the expan-
sion. If the >(list) form is used, writing to the file will provide input for list. If the <(list) form is used,
the file passed as an argument should be read to obtain the output of list. Process substitution is sup-
ported on systems that support named pipes (FIFOs) or the /dev/fd method of naming open files.

When available, process substitution is performed simultaneously with parameter and variable expan-
sion, command substitution, and arithmetic expansion.

Word Splitting
The shell scans the results of parameter expansion, command substitution, and arithmetic expansion
that did not occur within double quotes for word splitting.

The shell treats each character of IFS as a delimiter, and splits the results of the other expansions into
words using these characters as field terminators. If IFS is unset, or its value is exactly
<space><tab><newline>, the default, then sequences of <space>, <tab>, and <newline> at the begin-
ning and end of the results of the previous expansions are ignored, and any sequence of IFS characters
not at the beginning or end serves to delimit words. If IFS has a value other than the default, then se-
quences of the whitespace characters space, tab, and newline are ignored at the beginning and end of
the word, as long as the whitespace character is in the value of IFS (an IFS whitespace character). Any
character in IFS that is not IFS whitespace, along with any adjacent IFS whitespace characters, delimits
a field. A sequence of IFS whitespace characters is also treated as a delimiter. If the value of IFS is
null, no word splitting occurs.

Explicit null arguments ("" or '') are retained and passed to commands as empty strings. Unquoted
implicit null arguments, resulting from the expansion of parameters that have no values, are removed.
If a parameter with no value is expanded within double quotes, a null argument results and is retained
and passed to a command as an empty string. When a quoted null argument appears as part of a word
whose expansion is non-null, the null argument is removed. That is, the word −d' ' becomes −d after
word splitting and null argument removal.

Note that if no expansion occurs, no splitting is performed.

Pathname Expansion
After word splitting, unless the −f option has been set, bash scans each word for the characters *, ?,
and [. If one of these characters appears, and is not quoted, then the word is regarded as a pattern, and
replaced with an alphabetically sorted list of filenames matching the pattern (see Pattern Matching be-
low). If no matching filenames are found, and the shell option nullglob is not enabled, the word is left
unchanged. If the nullglob option is set, and no matches are found, the word is removed. If the fail-
glob shell option is set, and no matches are found, an error message is printed and the command is not
executed. If the shell option nocaseglob is enabled, the match is performed without regard to the case
of alphabetic characters. Note that when using range expressions like [a-z] (see below), letters of the
other case may be included, depending on the setting of LC_COLLATE. When a pattern is used for
pathname expansion, the character ‘‘.’’ at the start of a name or immediately following a slash must be
matched explicitly, unless the shell option dotglob is set. In order to match the filenames ‘‘.’’ and ‘‘..’’,
the pattern must begin with ‘‘.’’ (for example, ‘‘.?’’), even if dotglob is set. If the globskipdots shell
option is enabled, the filenames ‘‘.’’ and ‘‘..’’ are never matched, even if the pattern begins with a ‘‘.’’.
When not matching pathnames, the ‘‘.’’ character is not treated specially. When matching a pathname,
the slash character must always be matched explicitly by a slash in the pattern, but in other matching
contexts it can be matched by a special pattern character as described below under Pattern Matching.

See the description of shopt below under SHELL BUILTIN COMMANDS for a description of the no-
caseglob, nullglob, globskipdots, failglob, and dotglob shell options.

The GLOBIGNORE shell variable may be used to restrict the set of file names matching a pattern. If

26 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

GLOBIGNORE is set, each matching file name that also matches one of the patterns in GLOBIGNORE

is removed from the list of matches. If the nocaseglob option is set, the matching against the patterns
in GLOBIGNORE is performed without regard to case. The filenames ‘‘.’’ and ‘‘..’’ are always ig-
nored when GLOBIGNORE is set and not null. However, setting GLOBIGNORE to a non-null value
has the effect of enabling the dotglob shell option, so all other filenames beginning with a ‘‘.’’ will
match. To get the old behavior of ignoring filenames beginning with a ‘‘.’’, make ‘‘.*’’ one of the pat-
terns in GLOBIGNORE. The dotglob option is disabled when GLOBIGNORE is unset. The pattern
matching honors the setting of the extglob shell option.

Pattern Matching

Any character that appears in a pattern, other than the special pattern characters described below,
matches itself. The NUL character may not occur in a pattern. A backslash escapes the following
character; the escaping backslash is discarded when matching. The special pattern characters must be
quoted if they are to be matched literally.

The special pattern characters have the following meanings:

* Matches any string, including the null string. When the globstar shell option is en-
abled, and * is used in a pathname expansion context, two adjacent *s used as a sin-
gle pattern will match all files and zero or more directories and subdirectories. If fol-
lowed by a /, two adjacent *s will match only directories and subdirectories.

? Matches any single character.
[...] Matches any one of the enclosed characters. A pair of characters separated by a hy-

phen denotes a range expression; any character that falls between those two charac-
ters, inclusive, using the current locale’s collating sequence and character set, is
matched. If the first character following the [is a ! or a ˆ then any character not en-
closed is matched. The sorting order of characters in range expressions, and the char-
acters included in the range, are determined by the current locale and the values of
the LC_COLLATE or LC_ALL shell variables, if set. To obtain the traditional inter-
pretation of range expressions, where [a−d] is equivalent to [abcd], set value of the
LC_ALL shell variable to C, or enable the globasciiranges shell option. A − may
be matched by including it as the first or last character in the set. A] may be
matched by including it as the first character in the set.

Within [and], character classes can be specified using the syntax [:class:], where
class is one of the following classes defined in the POSIX standard:
alnum alpha ascii blank cntrl digit graph lower print punct space
upper word xdigit
A character class matches any character belonging to that class. The word character
class matches letters, digits, and the character _.

Within [and], an equivalence class can be specified using the syntax [=c=], which
matches all characters with the same collation weight (as defined by the current lo-
cale) as the character c.

Within [and], the syntax [.symbol.] matches the collating symbol symbol.

If the extglob shell option is enabled using the shopt builtin, the shell recognizes several extended pat-
tern matching operators. In the following description, a pattern-list is a list of one or more patterns
separated by a |. Composite patterns may be formed using one or more of the following sub-patterns:

?(pattern-list)
Matches zero or one occurrence of the given patterns

*(pattern-list)
Matches zero or more occurrences of the given patterns

+(pattern-list)
Matches one or more occurrences of the given patterns

@(pattern-list)
Matches one of the given patterns

!(pattern-list)
Matches anything except one of the given patterns

Theextglob option changes the behavior of the parser, since the parentheses are normally treated as

GNU Bash 5.2 2022 September 19 27

BASH(1) General Commands Manual BASH(1)

operators with syntactic meaning. To ensure that extended matching patterns are parsed correctly,
make sure that extglob is enabled before parsing constructs containing the patterns, including shell
functions and command substitutions.

When matching filenames, the dotglob shell option determines the set of filenames that are tested:
when dotglob is enabled, the set of filenames includes all files beginning with ‘‘.’’, but ‘‘.’’ and ‘‘..’’
must be matched by a pattern or sub-pattern that begins with a dot; when it is disabled, the set does not
include any filenames beginning with ‘‘.’’ unless the pattern or sub-pattern begins with a ‘‘.’’. As
above, ‘‘.’’ only has a special meaning when matching filenames.

Complicated extended pattern matching against long strings is slow, especially when the patterns con-
tain alternations and the strings contain multiple matches. Using separate matches against shorter
strings, or using arrays of strings instead of a single long string, may be faster.

Quote Removal
After the preceding expansions, all unquoted occurrences of the characters \, ', and " that did not result
from one of the above expansions are removed.

REDIRECTION
Before a command is executed, its input and output may be redirected using a special notation inter-
preted by the shell. Redirection allows commands’ file handles to be duplicated, opened, closed, made
to refer to different files, and can change the files the command reads from and writes to. Redirection
may also be used to modify file handles in the current shell execution environment. The following redi-
rection operators may precede or appear anywhere within a simple command or may follow a com-

mand . Redirections are processed in the order they appear, from left to right.

Each redirection that may be preceded by a file descriptor number may instead be preceded by a word
of the form {varname}. In this case, for each redirection operator except >&- and <&-, the shell will
allocate a file descriptor greater than or equal to 10 and assign it to varname. If >&- or <&- is preceded
by {varname}, the value of varname defines the file descriptor to close. If {varname} is supplied, the
redirection persists beyond the scope of the command, allowing the shell programmer to manage the
file descriptor’s lifetime manually. The varredir_close shell option manages this behavior.

In the following descriptions, if the file descriptor number is omitted, and the first character of the redi-
rection operator is <, the redirection refers to the standard input (file descriptor 0). If the first character
of the redirection operator is >, the redirection refers to the standard output (file descriptor 1).

The word following the redirection operator in the following descriptions, unless otherwise noted, is
subjected to brace expansion, tilde expansion, parameter and variable expansion, command substitu-
tion, arithmetic expansion, quote removal, pathname expansion, and word splitting. If it expands to
more than one word, bash reports an error.

Note that the order of redirections is significant. For example, the command

ls > dirlist 2>&1

directs both standard output and standard error to the file dirlist, while the command

ls 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard error was duplicated from the stan-
dard output before the standard output was redirected to dirlist.

Bash handles several filenames specially when they are used in redirections, as described in the follow-
ing table. If the operating system on which bash is running provides these special files, bash will use
them; otherwise it will emulate them internally with the behavior described below.

/dev/fd/fd
If fd is a valid integer, file descriptor fd is duplicated.

/dev/stdin
File descriptor 0 is duplicated.

/dev/stdout
File descriptor 1 is duplicated.

/dev/stderr
File descriptor 2 is duplicated.

28 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

/dev/tcp/host/port

If host is a valid hostname or Internet address, and port is an integer port number or
service name, bash attempts to open the corresponding TCP socket.

/dev/udp/host/port

If host is a valid hostname or Internet address, and port is an integer port number or
service name, bash attempts to open the corresponding UDP socket.

A failure to open or create a file causes the redirection to fail.

Redirections using file descriptors greater than 9 should be used with care, as they may conflict with
file descriptors the shell uses internally.

Note that the exec builtin command can make redirections take effect in the current shell.

Redirecting Input
Redirection of input causes the file whose name results from the expansion of word to be opened for
reading on file descriptor n, or the standard input (file descriptor 0) if n is not specified.

The general format for redirecting input is:

[n]<word

Redirecting Output
Redirection of output causes the file whose name results from the expansion of word to be opened for
writing on file descriptor n, or the standard output (file descriptor 1) if n is not specified. If the file
does not exist it is created; if it does exist it is truncated to zero size.

The general format for redirecting output is:

[n]>word

If the redirection operator is >, and the noclobber option to the set builtin has been enabled, the redi-
rection will fail if the file whose name results from the expansion of word exists and is a regular file. If
the redirection operator is >|, or the redirection operator is > and the noclobber option to the set builtin
command is not enabled, the redirection is attempted even if the file named by word exists.

Appending Redirected Output
Redirection of output in this fashion causes the file whose name results from the expansion of word to
be opened for appending on file descriptor n, or the standard output (file descriptor 1) if n is not speci-
fied. If the file does not exist it is created.

The general format for appending output is:

[n]>>word

Redirecting Standard Output and Standard Error
This construct allows both the standard output (file descriptor 1) and the standard error output (file de-
scriptor 2) to be redirected to the file whose name is the expansion of word .

There are two formats for redirecting standard output and standard error:

&>word

and
>&word

Of the two forms, the first is preferred. This is semantically equivalent to

>word 2>&1

When using the second form, word may not expand to a number or −. If it does, other redirection oper-
ators apply (see Duplicating File Descriptors below) for compatibility reasons.

Appending Standard Output and Standard Error
This construct allows both the standard output (file descriptor 1) and the standard error output (file de-
scriptor 2) to be appended to the file whose name is the expansion of word .

The format for appending standard output and standard error is:

&>>word

This is semantically equivalent to

>>word 2>&1

GNU Bash 5.2 2022 September 19 29

BASH(1) General Commands Manual BASH(1)

(see Duplicating File Descriptors below).

Here Documents
This type of redirection instructs the shell to read input from the current source until a line containing
only delimiter (with no trailing blanks) is seen. All of the lines read up to that point are then used as
the standard input (or file descriptor n if n is specified) for a command.

The format of here-documents is:

[n]<<[−]word

here-document

delimiter

No parameter and variable expansion, command substitution, arithmetic expansion, or pathname ex-
pansion is performed on word . If any part of word is quoted, the delimiter is the result of quote re-
moval on word , and the lines in the here-document are not expanded. If word is unquoted, all lines of
the here-document are subjected to parameter expansion, command substitution, and arithmetic expan-
sion, the character sequence \<newline> is ignored, and \ must be used to quote the characters \, $, and
`.

If the redirection operator is <<−, then all leading tab characters are stripped from input lines and the
line containing delimiter. This allows here-documents within shell scripts to be indented in a natural
fashion.

Here Strings
A variant of here documents, the format is:

[n]<<<word

The word undergoes tilde expansion, parameter and variable expansion, command substitution, arith-
metic expansion, and quote removal. Pathname expansion and word splitting are not performed. The
result is supplied as a single string, with a newline appended, to the command on its standard input (or
file descriptor n if n is specified).

Duplicating File Descriptors
The redirection operator

[n]<&word

is used to duplicate input file descriptors. If word expands to one or more digits, the file descriptor de-
noted by n is made to be a copy of that file descriptor. If the digits in word do not specify a file de-
scriptor open for input, a redirection error occurs. If word evaluates to −, file descriptor n is closed. If
n is not specified, the standard input (file descriptor 0) is used.

The operator

[n]>&word

is used similarly to duplicate output file descriptors. If n is not specified, the standard output (file de-
scriptor 1) is used. If the digits in word do not specify a file descriptor open for output, a redirection
error occurs. If word evaluates to −, file descriptor n is closed. As a special case, if n is omitted, and
word does not expand to one or more digits or −, the standard output and standard error are redirected
as described previously.

Moving File Descriptors
The redirection operator

[n]<&digit−

moves the file descriptor digit to file descriptor n, or the standard input (file descriptor 0) if n is not
specified. digit is closed after being duplicated to n.

Similarly, the redirection operator

[n]>&digit−

moves the file descriptor digit to file descriptor n, or the standard output (file descriptor 1) if n is not
specified.

30 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

Opening File Descriptors for Reading and Writing
The redirection operator

[n]<>word

causes the file whose name is the expansion of word to be opened for both reading and writing on file
descriptor n, or on file descriptor 0 if n is not specified. If the file does not exist, it is created.

ALIASES
Aliases allow a string to be substituted for a word when it is used as the first word of a simple com-
mand. The shell maintains a list of aliases that may be set and unset with the alias and unalias builtin
commands (see SHELL BUILTIN COMMANDS below). The first word of each simple command, if un-
quoted, is checked to see if it has an alias. If so, that word is replaced by the text of the alias. The
characters /, $, `, and = and any of the shell metacharacters or quoting characters listed above may not
appear in an alias name. The replacement text may contain any valid shell input, including shell
metacharacters. The first word of the replacement text is tested for aliases, but a word that is identical
to an alias being expanded is not expanded a second time. This means that one may alias ls to ls −F,
for instance, and bash does not try to recursively expand the replacement text. If the last character of
the alias value is a blank, then the next command word following the alias is also checked for alias ex-
pansion.

Aliases are created and listed with the alias command, and removed with the unalias command.

There is no mechanism for using arguments in the replacement text. If arguments are needed, use a
shell function (see FUNCTIONS below).

Aliases are not expanded when the shell is not interactive, unless the expand_aliases shell option is set
using shopt (see the description of shopt under SHELL BUILTIN COMMANDS below).

The rules concerning the definition and use of aliases are somewhat confusing. Bash always reads at
least one complete line of input, and all lines that make up a compound command, before executing any
of the commands on that line or the compound command. Aliases are expanded when a command is
read, not when it is executed. Therefore, an alias definition appearing on the same line as another com-
mand does not take effect until the next line of input is read. The commands following the alias defini-
tion on that line are not affected by the new alias. This behavior is also an issue when functions are ex-
ecuted. Aliases are expanded when a function definition is read, not when the function is executed, be-
cause a function definition is itself a command. As a consequence, aliases defined in a function are not
available until after that function is executed. To be safe, always put alias definitions on a separate line,
and do not use alias in compound commands.

For almost every purpose, aliases are superseded by shell functions.

FUNCTIONS
A shell function, defined as described above under SHELL GRAMMAR, stores a series of commands
for later execution. When the name of a shell function is used as a simple command name, the list of
commands associated with that function name is executed. Functions are executed in the context of the
current shell; no new process is created to interpret them (contrast this with the execution of a shell
script). When a function is executed, the arguments to the function become the positional parameters
during its execution. The special parameter # is updated to reflect the change. Special parameter 0 is
unchanged. The first element of the FUNCNAME variable is set to the name of the function while the
function is executing.

All other aspects of the shell execution environment are identical between a function and its caller with
these exceptions: the DEBUG and RETURN traps (see the description of the trap builtin under SHELL

BUILTIN COMMANDS below) are not inherited unless the function has been given the trace attribute
(see the description of the declare builtin below) or the −o functrace shell option has been enabled with
the set builtin (in which case all functions inherit the DEBUG and RETURN traps), and the ERR trap
is not inherited unless the −o errtrace shell option has been enabled.

Variables local to the function may be declared with the local builtin command (local variables). Ordi-
narily, variables and their values are shared between the function and its caller. If a variable is declared
local, the variable’s visible scope is restricted to that function and its children (including the functions
it calls).

In the following description, the current scope is a currently- executing function. Previous scopes con-
sist of that function’s caller and so on, back to the "global" scope, where the shell is not executing any

GNU Bash 5.2 2022 September 19 31

BASH(1) General Commands Manual BASH(1)

shell function. Consequently, a local variable at the current scope is a variable declared using the local
or declare builtins in the function that is currently executing.

Local variables "shadow" variables with the same name declared at previous scopes. For instance, a lo-
cal variable declared in a function hides a global variable of the same name: references and assign-
ments refer to the local variable, leaving the global variable unmodified. When the function returns, the
global variable is once again visible.

The shell uses dynamic scoping to control a variable’s visibility within functions. With dynamic scop-
ing, visible variables and their values are a result of the sequence of function calls that caused execution
to reach the current function. The value of a variable that a function sees depends on its value within
its caller, if any, whether that caller is the "global" scope or another shell function. This is also the
value that a local variable declaration "shadows", and the value that is restored when the function re-
turns.

For example, if a variable var is declared as local in function func1, and func1 calls another function
func2, references to var made from within func2 will resolve to the local variable var from func1, shad-
owing any global variable named var.

The unset builtin also acts using the same dynamic scope: if a variable is local to the current scope, un-
set will unset it; otherwise the unset will refer to the variable found in any calling scope as described
above. If a variable at the current local scope is unset, it will remain so (appearing as unset) until it is
reset in that scope or until the function returns. Once the function returns, any instance of the variable
at a previous scope will become visible. If the unset acts on a variable at a previous scope, any instance
of a variable with that name that had been shadowed will become visible (see below how the local-
var_unset shell option changes this behavior).

The FUNCNEST variable, if set to a numeric value greater than 0, defines a maximum function nest-
ing level. Function invocations that exceed the limit cause the entire command to abort.

If the builtin command return is executed in a function, the function completes and execution resumes
with the next command after the function call. Any command associated with the RETURN trap is ex-
ecuted before execution resumes. When a function completes, the values of the positional parameters
and the special parameter # are restored to the values they had prior to the function’s execution.

Function names and definitions may be listed with the −f option to the declare or typeset builtin com-
mands. The −F option to declare or typeset will list the function names only (and optionally the
source file and line number, if the extdebug shell option is enabled). Functions may be exported so
that child shell processes (those created when executing a separate shell invocation) automatically have
them defined with the −f option to the export builtin. A function definition may be deleted using the −f
option to the unset builtin.

Functions may be recursive. The FUNCNEST variable may be used to limit the depth of the function
call stack and restrict the number of function invocations. By default, no limit is imposed on the num-
ber of recursive calls.

ARITHMETIC EVALUATION
The shell allows arithmetic expressions to be evaluated, under certain circumstances (see the let and
declare builtin commands, the ((compound command, and Arithmetic Expansion). Evaluation is
done in fixed-width integers with no check for overflow, though division by 0 is trapped and flagged as
an error. The operators and their precedence, associativity, and values are the same as in the C lan-
guage. The following list of operators is grouped into levels of equal-precedence operators. The levels
are listed in order of decreasing precedence.

id++ id−−
variable post-increment and post-decrement

− + unary minus and plus
++id −−id

variable pre-increment and pre-decrement
! ˜ logical and bitwise negation
** exponentiation
* / % multiplication, division, remainder
+ − addition, subtraction

32 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

<< >> left and right bitwise shifts
<= >= < >

comparison
== != equality and inequality
& bitwise AND
ˆ bitwise exclusive OR
| bitwise OR
&& logical AND
|| logical OR
expr?expr:expr

conditional operator
= *= /= %= += −= <<= >>= &= ˆ= |=

assignment
expr1 , expr2

comma

Shell variables are allowed as operands; parameter expansion is performed before the expression is
evaluated. Within an expression, shell variables may also be referenced by name without using the pa-
rameter expansion syntax. A shell variable that is null or unset evaluates to 0 when referenced by name
without using the parameter expansion syntax. The value of a variable is evaluated as an arithmetic ex-
pression when it is referenced, or when a variable which has been given the integer attribute using de-
clare −i is assigned a value. A null value evaluates to 0. A shell variable need not have its integer at-
tribute turned on to be used in an expression.

Integer constants follow the C language definition, without suffixes or character constants. Constants
with a leading 0 are interpreted as octal numbers. A leading 0x or 0X denotes hexadecimal. Other-
wise, numbers take the form [base#]n, where the optional base is a decimal number between 2 and 64
representing the arithmetic base, and n is a number in that base. If base# is omitted, then base 10 is
used. When specifying n, if a non-digit is required, the digits greater than 9 are represented by the low-
ercase letters, the uppercase letters, @, and _, in that order. If base is less than or equal to 36, lower-
case and uppercase letters may be used interchangeably to represent numbers between 10 and 35.

Operators are evaluated in order of precedence. Sub-expressions in parentheses are evaluated first and
may override the precedence rules above.

CONDITIONAL EXPRESSIONS
Conditional expressions are used by the [[compound command and the test and [builtin commands to
test file attributes and perform string and arithmetic comparisons. The test and [commands determine
their behavior based on the number of arguments; see the descriptions of those commands for any other
command-specific actions.

Expressions are formed from the following unary or binary primaries. Bash handles several filenames
specially when they are used in expressions. If the operating system on which bash is running provides
these special files, bash will use them; otherwise it will emulate them internally with this behavior: If
any file argument to one of the primaries is of the form /dev/fd/n, then file descriptor n is checked. If
the file argument to one of the primaries is one of /dev/stdin, /dev/stdout, or /dev/stderr, file descriptor
0, 1, or 2, respectively, is checked.

Unless otherwise specified, primaries that operate on files follow symbolic links and operate on the tar-
get of the link, rather than the link itself.

When used with [[, the < and > operators sort lexicographically using the current locale. The test com-
mand sorts using ASCII ordering.

−a file True if file exists.
−b file True if file exists and is a block special file.
−c file True if file exists and is a character special file.
−d file True if file exists and is a directory.
−e file True if file exists.
−f file True if file exists and is a regular file.
−g file True if file exists and is set-group-id.

GNU Bash 5.2 2022 September 19 33

BASH(1) General Commands Manual BASH(1)

−h file True if file exists and is a symbolic link.
−k file True if file exists and its ‘‘sticky’’ bit is set.
−p file True if file exists and is a named pipe (FIFO).
−r file True if file exists and is readable.
−s file True if file exists and has a size greater than zero.
−t fd True if file descriptor fd is open and refers to a terminal.
−u file True if file exists and its set-user-id bit is set.
−w file True if file exists and is writable.
−x file True if file exists and is executable.
−G file True if file exists and is owned by the effective group id.
−L file True if file exists and is a symbolic link.
−N file True if file exists and has been modified since it was last read.
−O file True if file exists and is owned by the effective user id.
−S file True if file exists and is a socket.
file1 −ef file2

True if file1 and file2 refer to the same device and inode numbers.
file1 −nt file2

True if file1 is newer (according to modification date) than file2, or if file1 exists and file2 does
not.

file1 −ot file2

True if file1 is older than file2, or if file2 exists and file1 does not.
−o optname

True if the shell option optname is enabled. See the list of options under the description of the
−o option to the set builtin below.

−v varname

True if the shell variable varname is set (has been assigned a value).
−R varname

True if the shell variable varname is set and is a name reference.
−z string

True if the length of string is zero.
string

−n string

True if the length of string is non-zero.

string1 == string2

string1 = string2

True if the strings are equal. = should be used with the test command for POSIX confor-
mance. When used with the [[command, this performs pattern matching as described above
(Compound Commands).

string1 != string2

True if the strings are not equal.

string1 < string2

True if string1 sorts before string2 lexicographically.

string1 > string2

True if string1 sorts after string2 lexicographically.

arg1 OP arg2

OP is one of −eq, −ne, −lt, −le, −gt, or −ge. These arithmetic binary operators return true if
arg1 is equal to, not equal to, less than, less than or equal to, greater than, or greater than or
equal to arg2, respectively. Arg1 and arg2 may be positive or neg ative integers. When used
with the [[command, Arg1 and Arg2 are evaluated as arithmetic expressions (see ARITH-

METIC EVALUATION above).

SIMPLE COMMAND EXPANSION
When a simple command is executed, the shell performs the following expansions, assignments, and
redirections, from left to right, in the following order.

1. The words that the parser has marked as variable assignments (those preceding the command
name) and redirections are saved for later processing.

34 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

2. The words that are not variable assignments or redirections are expanded. If any words re-
main after expansion, the first word is taken to be the name of the command and the remaining
words are the arguments.

3. Redirections are performed as described above under REDIRECTION.

4. The text after the = in each variable assignment undergoes tilde expansion, parameter expan-
sion, command substitution, arithmetic expansion, and quote removal before being assigned to
the variable.

If no command name results, the variable assignments affect the current shell environment. In the case
of such a command (one that consists only of assignment statements and redirections), assignment
statements are performed before redirections. Otherwise, the variables are added to the environment of
the executed command and do not affect the current shell environment. If any of the assignments at-
tempts to assign a value to a readonly variable, an error occurs, and the command exits with a non-zero
status.

If no command name results, redirections are performed, but do not affect the current shell environ-
ment. A redirection error causes the command to exit with a non-zero status.

If there is a command name left after expansion, execution proceeds as described below. Otherwise,
the command exits. If one of the expansions contained a command substitution, the exit status of the
command is the exit status of the last command substitution performed. If there were no command
substitutions, the command exits with a status of zero.

COMMAND EXECUTION
After a command has been split into words, if it results in a simple command and an optional list of ar-
guments, the following actions are taken.

If the command name contains no slashes, the shell attempts to locate it. If there exists a shell function
by that name, that function is invoked as described above in FUNCTIONS. If the name does not match
a function, the shell searches for it in the list of shell builtins. If a match is found, that builtin is in-
voked.

If the name is neither a shell function nor a builtin, and contains no slashes, bash searches each ele-
ment of the PATH for a directory containing an executable file by that name. Bash uses a hash table to
remember the full pathnames of executable files (see hash under SHELL BUILTIN COMMANDS be-
low). A full search of the directories in PATH is performed only if the command is not found in the
hash table. If the search is unsuccessful, the shell searches for a defined shell function named com-
mand_not_found_handle. If that function exists, it is invoked in a separate execution environment
with the original command and the original command’s arguments as its arguments, and the function’s
exit status becomes the exit status of that subshell. If that function is not defined, the shell prints an er-
ror message and returns an exit status of 127.

If the search is successful, or if the command name contains one or more slashes, the shell executes the
named program in a separate execution environment. Argument 0 is set to the name given, and the re-
maining arguments to the command are set to the arguments given, if any.

If this execution fails because the file is not in executable format, and the file is not a directory, it is as-
sumed to be a shell script, a file containing shell commands, and the shell creates a new instance of it-
self to execute it. This subshell reinitializes itself, so that the effect is as if a new shell had been in-
voked to handle the script, with the exception that the locations of commands remembered by the par-
ent (see hash below under SHELL BUILTIN COMMANDS) are retained by the child.

If the program is a file beginning with #!, the remainder of the first line specifies an interpreter for the
program. The shell executes the specified interpreter on operating systems that do not handle this exe-
cutable format themselves. The arguments to the interpreter consist of a single optional argument fol-
lowing the interpreter name on the first line of the program, followed by the name of the program, fol-
lowed by the command arguments, if any.

COMMAND EXECUTION ENVIRONMENT
The shell has an execution environment, which consists of the following:

• open files inherited by the shell at invocation, as modified by redirections supplied to the exec
builtin

GNU Bash 5.2 2022 September 19 35

BASH(1) General Commands Manual BASH(1)

• the current working directory as set by cd, pushd, or popd, or inherited by the shell at invoca-
tion

• the file creation mode mask as set by umask or inherited from the shell’s parent

• current traps set by trap

• shell parameters that are set by variable assignment or with set or inherited from the shell’s
parent in the environment

• shell functions defined during execution or inherited from the shell’s parent in the environment

• options enabled at invocation (either by default or with command-line arguments) or by set

• options enabled by shopt

• shell aliases defined with alias

• various process IDs, including those of background jobs, the value of $$, and the value of
PPID

When a simple command other than a builtin or shell function is to be executed, it is invoked in a sepa-
rate execution environment that consists of the following. Unless otherwise noted, the values are inher-
ited from the shell.

• the shell’s open files, plus any modifications and additions specified by redirections to the
command

• the current working directory

• the file creation mode mask

• shell variables and functions marked for export, along with variables exported for the com-
mand, passed in the environment

• traps caught by the shell are reset to the values inherited from the shell’s parent, and traps ig-
nored by the shell are ignored

A command invoked in this separate environment cannot affect the shell’s execution environment.

A subshell is a copy of the shell process.

Command substitution, commands grouped with parentheses, and asynchronous commands are in-
voked in a subshell environment that is a duplicate of the shell environment, except that traps caught by
the shell are reset to the values that the shell inherited from its parent at invocation. Builtin commands
that are invoked as part of a pipeline are also executed in a subshell environment. Changes made to the
subshell environment cannot affect the shell’s execution environment.

Subshells spawned to execute command substitutions inherit the value of the −e option from the parent
shell. When not in posix mode, bash clears the −e option in such subshells.

If a command is followed by a & and job control is not active, the default standard input for the com-
mand is the empty file /dev/null. Otherwise, the invoked command inherits the file descriptors of the
calling shell as modified by redirections.

ENVIRONMENT
When a program is invoked it is giv en an array of strings called the environment. This is a list of
name−value pairs, of the form name=value.

The shell provides several ways to manipulate the environment. On invocation, the shell scans its own
environment and creates a parameter for each name found, automatically marking it for export to child
processes. Executed commands inherit the environment. The export and declare −x commands allow
parameters and functions to be added to and deleted from the environment. If the value of a parameter
in the environment is modified, the new value becomes part of the environment, replacing the old. The
environment inherited by any executed command consists of the shell’s initial environment, whose val-
ues may be modified in the shell, less any pairs removed by the unset command, plus any additions via
the export and declare −x commands.

The environment for any simple command or function may be augmented temporarily by prefixing it
with parameter assignments, as described above in PARAMETERS. These assignment statements affect
only the environment seen by that command.

36 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

If the −k option is set (see the set builtin command below), then all parameter assignments are placed
in the environment for a command, not just those that precede the command name.

When bash invokes an external command, the variable _ is set to the full filename of the command and
passed to that command in its environment.

EXIT STATUS
The exit status of an executed command is the value returned by the waitpid system call or equivalent
function. Exit statuses fall between 0 and 255, though, as explained below, the shell may use values
above 125 specially. Exit statuses from shell builtins and compound commands are also limited to this
range. Under certain circumstances, the shell will use special values to indicate specific failure modes.

For the shell’s purposes, a command which exits with a zero exit status has succeeded. An exit status
of zero indicates success. A non-zero exit status indicates failure. When a command terminates on a
fatal signal N, bash uses the value of 128+N as the exit status.

If a command is not found, the child process created to execute it returns a status of 127. If a command
is found but is not executable, the return status is 126.

If a command fails because of an error during expansion or redirection, the exit status is greater than
zero.

Shell builtin commands return a status of 0 (true) if successful, and non-zero (false) if an error occurs
while they execute. All builtins return an exit status of 2 to indicate incorrect usage, generally invalid
options or missing arguments.

The exit status of the last command is available in the special parameter $?.

Bash itself returns the exit status of the last command executed, unless a syntax error occurs, in which
case it exits with a non-zero value. See also the exit builtin command below.

SIGNALS
When bash is interactive, in the absence of any traps, it ignores SIGTERM (so that kill 0 does not kill
an interactive shell), and SIGINT is caught and handled (so that the wait builtin is interruptible). In all
cases, bash ignores SIGQUIT. If job control is in effect, bash ignores SIGTTIN, SIGTTOU, and SIGT-

STP.

Non-builtin commands run by bash have signal handlers set to the values inherited by the shell from its
parent. When job control is not in effect, asynchronous commands ignore SIGINT and SIGQUIT in ad-
dition to these inherited handlers. Commands run as a result of command substitution ignore the key-
board-generated job control signals SIGTTIN, SIGTTOU, and SIGTSTP.

The shell exits by default upon receipt of a SIGHUP. Before exiting, an interactive shell resends the
SIGHUP to all jobs, running or stopped. Stopped jobs are sent SIGCONT to ensure that they receive the
SIGHUP. To prevent the shell from sending the signal to a particular job, it should be removed from the
jobs table with the disown builtin (see SHELL BUILTIN COMMANDS below) or marked to not receive
SIGHUP using disown −h.

If the huponexit shell option has been set with shopt, bash sends a SIGHUP to all jobs when an inter-
active login shell exits.

If bash is waiting for a command to complete and receives a signal for which a trap has been set, the
trap will not be executed until the command completes. When bash is waiting for an asynchronous
command via the wait builtin, the reception of a signal for which a trap has been set will cause the wait
builtin to return immediately with an exit status greater than 128, immediately after which the trap is
executed.

When job control is not enabled, and bash is waiting for a foreground command to complete, the shell
receives keyboard-generated signals such as SIGINT (usually generated by ˆC) that users commonly in-
tend to send to that command. This happens because the shell and the command are in the same
process group as the terminal, and ˆC sends SIGINT to all processes in that process group.

When bash is running without job control enabled and receives SIGINT while waiting for a foreground
command, it waits until that foreground command terminates and then decides what to do about the
SIGINT:

GNU Bash 5.2 2022 September 19 37

BASH(1) General Commands Manual BASH(1)

1. If the command terminates due to the SIGINT, bash concludes that the user meant to end the
entire script, and acts on the SIGINT (e.g., by running a SIGINT trap or exiting itself);

2. If the command does not terminate due to SIGINT, the program handled the SIGINT itself and
did not treat it as a fatal signal. In that case, bash does not treat SIGINT as a fatal signal, ei-
ther, instead assuming that the SIGINT was used as part of the program’s normal operation
(e.g., emacs uses it to abort editing commands) or deliberately discarded. However, bash will
run any trap set on SIGINT, as it does with any other trapped signal it receives while it is wait-
ing for the foreground command to complete, for compatibility.

JOB CONTROL
Job control refers to the ability to selectively stop (suspend) the execution of processes and continue
(resume) their execution at a later point. A user typically employs this facility via an interactive inter-
face supplied jointly by the operating system kernel’s terminal driver and bash.

The shell associates a job with each pipeline. It keeps a table of currently executing jobs, which may
be listed with the jobs command. When bash starts a job asynchronously (in the background), it prints
a line that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last process in the pipeline associ-
ated with this job is 25647. All of the processes in a single pipeline are members of the same job.
Bash uses the job abstraction as the basis for job control.

To facilitate the implementation of the user interface to job control, the operating system maintains the
notion of a current terminal process group ID. Members of this process group (processes whose
process group ID is equal to the current terminal process group ID) receive keyboard-generated signals
such as SIGINT. These processes are said to be in the foreground . Background processes are those
whose process group ID differs from the terminal’s; such processes are immune to keyboard-generated
signals. Only foreground processes are allowed to read from or, if the user so specifies with stty

tostop, write to the terminal. Background processes which attempt to read from (write to when
stty tostop is in effect) the terminal are sent a SIGTTIN (SIGTTOU) signal by the kernel’s termi-
nal driver, which, unless caught, suspends the process.

If the operating system on which bash is running supports job control, bash contains facilities to use it.
Typing the suspend character (typically ˆZ, Control-Z) while a process is running causes that process to
be stopped and returns control to bash. Typing the delayed suspend character (typically ˆY, Control-
Y) causes the process to be stopped when it attempts to read input from the terminal, and control to be
returned to bash. The user may then manipulate the state of this job, using the bg command to con-
tinue it in the background, the fg command to continue it in the foreground, or the kill command to kill
it. A ˆZ takes effect immediately, and has the additional side effect of causing pending output and ty-
peahead to be discarded.

There are a number of ways to refer to a job in the shell. The character % introduces a job specifica-
tion (jobspec). Job number n may be referred to as %n. A job may also be referred to using a prefix of
the name used to start it, or using a substring that appears in its command line. For example, %ce
refers to a stopped job whose command name begins with ce. If a prefix matches more than one job,
bash reports an error. Using %?ce, on the other hand, refers to any job containing the string ce in its
command line. If the substring matches more than one job, bash reports an error. The symbols %%
and %+ refer to the shell’s notion of the current job, which is the last job stopped while it was in the
foreground or started in the background. The previous job may be referenced using %−. If there is
only a single job, %+ and %− can both be used to refer to that job. In output pertaining to jobs (e.g.,
the output of the jobs command), the current job is always flagged with a +, and the previous job with a
−. A single % (with no accompanying job specification) also refers to the current job.

Simply naming a job can be used to bring it into the foreground: %1 is a synonym for ‘‘fg %1’’, bring-
ing job 1 from the background into the foreground. Similarly, ‘‘%1 &’’ resumes job 1 in the back-
ground, equivalent to ‘‘bg %1’’.

The shell learns immediately whenever a job changes state. Normally, bash waits until it is about to
print a prompt before reporting changes in a job’s status so as to not interrupt any other output. If the
−b option to the set builtin command is enabled, bash reports such changes immediately. Any trap on
SIGCHLD is executed for each child that exits.

38 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

If an attempt to exit bash is made while jobs are stopped (or, if the checkjobs shell option has been en-
abled using the shopt builtin, running), the shell prints a warning message, and, if the checkjobs option
is enabled, lists the jobs and their statuses. The jobs command may then be used to inspect their status.
If a second attempt to exit is made without an intervening command, the shell does not print another
warning, and any stopped jobs are terminated.

When the shell is waiting for a job or process using the wait builtin, and job control is enabled, wait
will return when the job changes state. The −f option causes wait to wait until the job or process termi-
nates before returning.

PROMPTING
When executing interactively, bash displays the primary prompt PS1 when it is ready to read a com-
mand, and the secondary prompt PS2 when it needs more input to complete a command. Bash displays
PS0 after it reads a command but before executing it. Bash displays PS4 as described above before
tracing each command when the −x option is enabled. Bash allows these prompt strings to be cus-
tomized by inserting a number of backslash-escaped special characters that are decoded as follows:

\a an ASCII bell character (07)
\d the date in "Weekday Month Date" format (e.g., "Tue May 26")
\D{format}

the format is passed to strftime(3) and the result is inserted into the prompt string; an
empty format results in a locale-specific time representation. The braces are required

\e an ASCII escape character (033)
\h the hostname up to the first ‘.’
\H the hostname
\j the number of jobs currently managed by the shell
\l the basename of the shell’s terminal device name
\n newline
\r carriage return
\s the name of the shell, the basename of $0 (the portion following the final slash)
\t the current time in 24-hour HH:MM:SS format
\T the current time in 12-hour HH:MM:SS format
\@ the current time in 12-hour am/pm format
\A the current time in 24-hour HH:MM format
\u the username of the current user
\v the version of bash (e.g., 2.00)
\V the release of bash, version + patch level (e.g., 2.00.0)
\w the value of the PWD shell variable ($PWD), with $HOME abbreviated with a tilde

(uses the value of the PROMPT_DIRTRIM variable)
\W the basename of $PWD, with $HOME abbreviated with a tilde
\! the history number of this command
\# the command number of this command
\$ if the effective UID is 0, a #, otherwise a $
\nnn the character corresponding to the octal number nnn

\\ a backslash
\[begin a sequence of non-printing characters, which could be used to embed a termi-

nal control sequence into the prompt
\] end a sequence of non-printing characters

The command number and the history number are usually different: the history number of a command
is its position in the history list, which may include commands restored from the history file (see HIS-

TORY below), while the command number is the position in the sequence of commands executed dur-
ing the current shell session. After the string is decoded, it is expanded via parameter expansion, com-
mand substitution, arithmetic expansion, and quote removal, subject to the value of the promptvars
shell option (see the description of the shopt command under SHELL BUILTIN COMMANDS below).
This can have unwanted side effects if escaped portions of the string appear within command substitu-
tion or contain characters special to word expansion.

READLINE
This is the library that handles reading input when using an interactive shell, unless the −−noediting
option is given at shell invocation. Line editing is also used when using the −e option to the read
builtin. By default, the line editing commands are similar to those of Emacs. A vi-style line editing

GNU Bash 5.2 2022 September 19 39

BASH(1) General Commands Manual BASH(1)

interface is also available. Line editing can be enabled at any time using the −o emacs or −o vi options
to the set builtin (see SHELL BUILTIN COMMANDS below). To turn off line editing after the shell is
running, use the +o emacs or +o vi options to the set builtin.

Readline Notation
In this section, the Emacs-style notation is used to denote keystrokes. Control keys are denoted by
C−key, e.g., C−n means Control−N. Similarly, meta keys are denoted by M−key, so M−x means
Meta−X. (On keyboards without a meta key, M−x means ESC x, i.e., press the Escape key then the x

key. This makes ESC the meta prefix. The combination M−C−x means ESC−Control−x, or press the
Escape key then hold the Control key while pressing the x key.)

Readline commands may be given numeric arguments, which normally act as a repeat count. Some-
times, however, it is the sign of the argument that is significant. Passing a negative argument to a com-
mand that acts in the forward direction (e.g., kill−line) causes that command to act in a backward di-
rection. Commands whose behavior with arguments deviates from this are noted below.

When a command is described as killing text, the text deleted is saved for possible future retrieval
(yanking). The killed text is saved in a kill ring. Consecutive kills cause the text to be accumulated
into one unit, which can be yanked all at once. Commands which do not kill text separate the chunks
of text on the kill ring.

Readline Initialization
Readline is customized by putting commands in an initialization file (the inputrc file). The name of this
file is taken from the value of the INPUTRC variable. If that variable is unset, the default is ˜/.inputrc.
If that file does not exist or cannot be read, the ultimate default is /etc/inputrc. When a program which
uses the readline library starts up, the initialization file is read, and the key bindings and variables are
set. There are only a few basic constructs allowed in the readline initialization file. Blank lines are ig-
nored. Lines beginning with a # are comments. Lines beginning with a $ indicate conditional con-
structs. Other lines denote key bindings and variable settings.

The default key-bindings may be changed with an inputrc file. Other programs that use this library
may add their own commands and bindings.

For example, placing

M−Control−u: universal−argument
or

C−Meta−u: universal−argument
into the inputrc would make M−C−u execute the readline command universal−argument.

The following symbolic character names are recognized: RUBOUT , DEL, ESC, LFD, NEWLINE,
RET , RETURN , SPC, SPACE, and TAB.

In addition to command names, readline allows keys to be bound to a string that is inserted when the
key is pressed (a macro).

Readline Key Bindings
The syntax for controlling key bindings in the inputrc file is simple. All that is required is the name of
the command or the text of a macro and a key sequence to which it should be bound. The name may be
specified in one of two ways: as a symbolic key name, possibly with Meta− or Control− prefixes, or as
a key sequence.

When using the form keyname:function−name or macro, keyname is the name of a key spelled out in
English. For example:

Control-u: universal−argument
Meta-Rubout: backward-kill-word
Control-o: "> output"

In the above example, C−u is bound to the function universal−argument, M−DEL is bound to the
function backward−kill−word, and C−o is bound to run the macro expressed on the right hand side
(that is, to insert the text > output into the line).

In the second form, "keyseq":function−name or macro, keyseq differs from keyname above in that
strings denoting an entire key sequence may be specified by placing the sequence within double quotes.
Some GNU Emacs style key escapes can be used, as in the following example, but the symbolic

40 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

character names are not recognized.

"\C−u": universal−argument
"\C−x\C−r": re−read−init−file
"\e[11˜": "Function Key 1"

In this example, C−u is again bound to the function universal−argument. C−x C−r is bound to the
function re−read−init−file, and ESC [1 1 ˜ is bound to insert the text Function Key 1.

The full set of GNU Emacs style escape sequences is
\C− control prefix
\M− meta prefix
\e an escape character
\\ backslash
\" literal "
\' literal '

In addition to the GNU Emacs style escape sequences, a second set of backslash escapes is available:
\a alert (bell)
\b backspace
\d delete
\f form feed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\nnn the eight-bit character whose value is the octal value nnn (one to three digits)
\xHH the eight-bit character whose value is the hexadecimal value HH (one or two hex dig-

its)

When entering the text of a macro, single or double quotes must be used to indicate a macro definition.
Unquoted text is assumed to be a function name. In the macro body, the backslash escapes described
above are expanded. Backslash will quote any other character in the macro text, including " and '.

Bash allows the current readline key bindings to be displayed or modified with the bind builtin com-
mand. The editing mode may be switched during interactive use by using the −o option to the set
builtin command (see SHELL BUILTIN COMMANDS below).

Readline Variables
Readline has variables that can be used to further customize its behavior. A variable may be set in the
inputrc file with a statement of the form

set variable−name value

or using the bind builtin command (see SHELL BUILTIN COMMANDS below).

Except where noted, readline variables can take the values On or Off (without regard to case). Unrec-
ognized variable names are ignored. When a variable value is read, empty or null values, "on" (case-in-
sensitive), and "1" are equivalent to On. All other values are equivalent to Off. The variables and their
default values are:

active−region−start−color
A string variable that controls the text color and background when displaying the text in the
active region (see the description of enable−active−region below). This string must not take
up any physical character positions on the display, so it should consist only of terminal escape
sequences. It is output to the terminal before displaying the text in the active region. This
variable is reset to the default value whenever the terminal type changes. The default value is
the string that puts the terminal in standout mode, as obtained from the terminal’s terminfo de-
scription. A sample value might be "\e[01;33m".

active−region−end−color
A string variable that "undoes" the effects of active−region−start−color and restores "nor-
mal" terminal display appearance after displaying text in the active region. This string must
not take up any physical character positions on the display, so it should consist only of termi-
nal escape sequences. It is output to the terminal after displaying the text in the active region.
This variable is reset to the default value whenever the terminal type changes. The default

GNU Bash 5.2 2022 September 19 41

BASH(1) General Commands Manual BASH(1)

value is the string that restores the terminal from standout mode, as obtained from the termi-
nal’s terminfo description. A sample value might be "\e[0m".

bell−style (audible)
Controls what happens when readline wants to ring the terminal bell. If set to none, readline
never rings the bell. If set to visible, readline uses a visible bell if one is available. If set to
audible, readline attempts to ring the terminal’s bell.

bind−tty−special−chars (On)
If set to On, readline attempts to bind the control characters treated specially by the kernel’s
terminal driver to their readline equivalents.

blink−matching−paren (Off)
If set to On, readline attempts to briefly move the cursor to an opening parenthesis when a
closing parenthesis is inserted.

colored−completion−prefix (Off)
If set to On, when listing completions, readline displays the common prefix of the set of possi-
ble completions using a different color. The color definitions are taken from the value of the
LS_COLORS environment variable. If there is a color definition in $LS_COLORS for the
custom suffix "readline-colored-completion-prefix", readline uses this color for the common
prefix instead of its default.

colored−stats (Off)
If set to On, readline displays possible completions using different colors to indicate their file
type. The color definitions are taken from the value of the LS_COLORS environment vari-
able.

comment−begin (‘‘#’’)
The string that is inserted when the readline insert−comment command is executed. This
command is bound to M−# in emacs mode and to # in vi command mode.

completion−display−width (−1)
The number of screen columns used to display possible matches when performing completion.
The value is ignored if it is less than 0 or greater than the terminal screen width. A value of 0
will cause matches to be displayed one per line. The default value is −1.

completion−ignore−case (Off)
If set to On, readline performs filename matching and completion in a case−insensitive fash-
ion.

completion−map−case (Off)
If set to On, and completion−ignore−case is enabled, readline treats hyphens (−) and under-
scores (_) as equivalent when performing case−insensitive filename matching and completion.

completion−prefix−display−length (0)
The length in characters of the common prefix of a list of possible completions that is dis-
played without modification. When set to a value greater than zero, common prefixes longer
than this value are replaced with an ellipsis when displaying possible completions.

completion−query−items (100)
This determines when the user is queried about viewing the number of possible completions
generated by the possible−completions command. It may be set to any integer value greater
than or equal to zero. If the number of possible completions is greater than or equal to the
value of this variable, readline will ask whether or not the user wishes to view them; otherwise
they are simply listed on the terminal. A zero value means readline should never ask; negative
values are treated as zero.

convert−meta (On)
If set to On, readline will convert characters with the eighth bit set to an ASCII key sequence
by stripping the eighth bit and prefixing an escape character (in effect, using escape as the
meta prefix). The default is On, but readline will set it to Off if the locale contains eight-bit
characters. This variable is dependent on the LC_CTYPE locale category, and may change if
the locale is changed.

disable−completion (Off)
If set to On, readline will inhibit word completion. Completion characters will be inserted
into the line as if they had been mapped to self-insert.

echo−control−characters (On)
When set to On, on operating systems that indicate they support it, readline echoes a character
corresponding to a signal generated from the keyboard.

42 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

editing−mode (emacs)
Controls whether readline begins with a set of key bindings similar to Emacs or vi. edit-
ing−mode can be set to either emacs or vi.

emacs−mode−string (@)
If the show−mode−in−prompt variable is enabled, this string is displayed immediately before
the last line of the primary prompt when emacs editing mode is active. The value is expanded
like a key binding, so the standard set of meta- and control prefixes and backslash escape se-
quences is available. Use the \1 and \2 escapes to begin and end sequences of non-printing
characters, which can be used to embed a terminal control sequence into the mode string.

enable−active−region (On)
The point is the current cursor position, and mark refers to a saved cursor position. The text
between the point and mark is referred to as the region. When this variable is set to On, read-
line allows certain commands to designate the region as active. When the region is active,
readline highlights the text in the region using the value of the active−region−start−color,
which defaults to the string that enables the terminal’s standout mode. The active region
shows the text inserted by bracketed-paste and any matching text found by incremental and
non-incremental history searches.

enable−bracketed−paste (On)
When set to On, readline configures the terminal to insert each paste into the editing buffer as
a single string of characters, instead of treating each character as if it had been read from the
keyboard. This prevents readline from executing any editing commands bound to key se-
quences appearing in the pasted text.

enable−keypad (Off)
When set to On, readline will try to enable the application keypad when it is called. Some
systems need this to enable the arrow keys.

enable−meta−key (On)
When set to On, readline will try to enable any meta modifier key the terminal claims to sup-
port when it is called. On many terminals, the meta key is used to send eight-bit characters.

expand−tilde (Off)
If set to On, tilde expansion is performed when readline attempts word completion.

history−preserve−point (Off)
If set to On, the history code attempts to place point at the same location on each history line
retrieved with previous-history or next-history.

history−size (unset)
Set the maximum number of history entries saved in the history list. If set to zero, any exist-
ing history entries are deleted and no new entries are saved. If set to a value less than zero, the
number of history entries is not limited. By default, the number of history entries is set to the
value of the HISTSIZE shell variable. If an attempt is made to set history−size to a non-nu-
meric value, the maximum number of history entries will be set to 500.

horizontal−scroll−mode (Off)
When set to On, makes readline use a single line for display, scrolling the input horizontally
on a single screen line when it becomes longer than the screen width rather than wrapping to a
new line. This setting is automatically enabled for terminals of height 1.

input−meta (Off)
If set to On, readline will enable eight-bit input (that is, it will not strip the eighth bit from the
characters it reads), regardless of what the terminal claims it can support. The name
meta−flag is a synonym for this variable. The default is Off, but readline will set it to On if
the locale contains eight-bit characters. This variable is dependent on the LC_CTYPE locale
category, and may change if the locale is changed.

isearch−terminators (‘‘C−[C−J’’)
The string of characters that should terminate an incremental search without subsequently exe-
cuting the character as a command. If this variable has not been given a value, the characters
ESC and C−J will terminate an incremental search.

keymap (emacs)
Set the current readline keymap. The set of valid keymap names is emacs, emacs−standard,

emacs−meta, emacs−ctlx, vi, vi−command, and vi−insert. vi is equivalent to vi−command;
emacs is equivalent to emacs−standard. The default value is emacs; the value of edit-
ing−mode also affects the default keymap.

GNU Bash 5.2 2022 September 19 43

BASH(1) General Commands Manual BASH(1)

keyseq−timeout (500)
Specifies the duration readline will wait for a character when reading an ambiguous key se-
quence (one that can form a complete key sequence using the input read so far, or can take ad-
ditional input to complete a longer key sequence). If no input is received within the timeout,
readline will use the shorter but complete key sequence. The value is specified in millisec-
onds, so a value of 1000 means that readline will wait one second for additional input. If this
variable is set to a value less than or equal to zero, or to a non-numeric value, readline will
wait until another key is pressed to decide which key sequence to complete.

mark−directories (On)
If set to On, completed directory names have a slash appended.

mark−modified−lines (Off)
If set to On, history lines that have been modified are displayed with a preceding asterisk (*).

mark−symlinked−directories (Off)
If set to On, completed names which are symbolic links to directories have a slash appended
(subject to the value of mark−directories).

match−hidden−files (On)
This variable, when set to On, causes readline to match files whose names begin with a ‘.’
(hidden files) when performing filename completion. If set to Off, the leading ‘.’ must be sup-
plied by the user in the filename to be completed.

menu−complete−display−prefix (Off)
If set to On, menu completion displays the common prefix of the list of possible completions
(which may be empty) before cycling through the list.

output−meta (Off)
If set to On, readline will display characters with the eighth bit set directly rather than as a
meta-prefixed escape sequence. The default is Off, but readline will set it to On if the locale
contains eight-bit characters. This variable is dependent on the LC_CTYPE locale category,
and may change if the locale is changed.

page−completions (On)
If set to On, readline uses an internal more-like pager to display a screenful of possible com-
pletions at a time.

print−completions−horizontally (Off)
If set to On, readline will display completions with matches sorted horizontally in alphabetical
order, rather than down the screen.

re vert−all−at−newline (Off)
If set to On, readline will undo all changes to history lines before returning when accept−line
is executed. By default, history lines may be modified and retain individual undo lists across
calls to readline.

show−all−if−ambiguous (Off)
This alters the default behavior of the completion functions. If set to On, words which have
more than one possible completion cause the matches to be listed immediately instead of ring-
ing the bell.

show−all−if−unmodified (Off)
This alters the default behavior of the completion functions in a fashion similar to
show−all−if−ambiguous. If set to On, words which have more than one possible completion
without any possible partial completion (the possible completions don’t share a common pre-
fix) cause the matches to be listed immediately instead of ringing the bell.

show−mode−in−prompt (Off)
If set to On, add a string to the beginning of the prompt indicating the editing mode: emacs, vi
command, or vi insertion. The mode strings are user-settable (e.g., emacs−mode−string).

skip−completed−text (Off)
If set to On, this alters the default completion behavior when inserting a single match into the
line. It’s only active when performing completion in the middle of a word. If enabled, read-
line does not insert characters from the completion that match characters after point in the
word being completed, so portions of the word following the cursor are not duplicated.

vi−cmd−mode−string ((cmd))
If the show−mode−in−prompt variable is enabled, this string is displayed immediately before
the last line of the primary prompt when vi editing mode is active and in command mode. The
value is expanded like a key binding, so the standard set of meta- and control prefixes and
backslash escape sequences is available. Use the \1 and \2 escapes to begin and end sequences

44 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

of non-printing characters, which can be used to embed a terminal control sequence into the
mode string.

vi−ins−mode−string ((ins))
If the show−mode−in−prompt variable is enabled, this string is displayed immediately before
the last line of the primary prompt when vi editing mode is active and in insertion mode. The
value is expanded like a key binding, so the standard set of meta- and control prefixes and
backslash escape sequences is available. Use the \1 and \2 escapes to begin and end sequences
of non-printing characters, which can be used to embed a terminal control sequence into the
mode string.

visible−stats (Off)
If set to On, a character denoting a file’s type as reported by stat(2) is appended to the file-
name when listing possible completions.

Readline Conditional Constructs
Readline implements a facility similar in spirit to the conditional compilation features of the C pre-
processor which allows key bindings and variable settings to be performed as the result of tests. There
are four parser directives used.

$if The $if construct allows bindings to be made based on the editing mode, the terminal being
used, or the application using readline. The text of the test, after any comparison operator,
extends to the end of the line; unless otherwise noted, no characters are required to isolate it.

mode The mode= form of the $if directive is used to test whether readline is in emacs or vi
mode. This may be used in conjunction with the set keymap command, for instance,
to set bindings in the emacs−standard and emacs−ctlx keymaps only if readline is
starting out in emacs mode.

term The term= form may be used to include terminal-specific key bindings, perhaps to
bind the key sequences output by the terminal’s function keys. The word on the right
side of the = is tested against both the full name of the terminal and the portion of the
terminal name before the first −. This allows sun to match both sun and sun−cmd ,
for instance.

version
The version test may be used to perform comparisons against specific readline ver-
sions. The version expands to the current readline version. The set of comparison
operators includes =, (and ==), !=, <=, >=, <, and >. The version number supplied on
the right side of the operator consists of a major version number, an optional decimal
point, and an optional minor version (e.g., 7.1). If the minor version is omitted, it is
assumed to be 0. The operator may be separated from the string version and from
the version number argument by whitespace.

application
The application construct is used to include application-specific settings. Each pro-
gram using the readline library sets the application name, and an initialization file
can test for a particular value. This could be used to bind key sequences to functions
useful for a specific program. For instance, the following command adds a key se-
quence that quotes the current or previous word in bash:

$if Bash
Quote the current or previous word
"\C−xq": "\eb\"\ef\""
$endif

variable

The variable construct provides simple equality tests for readline variables and val-
ues. The permitted comparison operators are =, ==, and !=. The variable name
must be separated from the comparison operator by whitespace; the operator may be
separated from the value on the right hand side by whitespace. Both string and
boolean variables may be tested. Boolean variables must be tested against the values
on and off.

GNU Bash 5.2 2022 September 19 45

BASH(1) General Commands Manual BASH(1)

$endif This command, as seen in the previous example, terminates an $if command.

$else Commands in this branch of the $if directive are executed if the test fails.

$include
This directive takes a single filename as an argument and reads commands and bindings from
that file. For example, the following directive would read /etc/inputrc:

$include /etc/inputrc

Searching
Readline provides commands for searching through the command history (see HISTORY below) for
lines containing a specified string. There are two search modes: incremental and non-incremental.

Incremental searches begin before the user has finished typing the search string. As each character of
the search string is typed, readline displays the next entry from the history matching the string typed so
far. An incremental search requires only as many characters as needed to find the desired history entry.
The characters present in the value of the isearch-terminators variable are used to terminate an incre-
mental search. If that variable has not been assigned a value the Escape and Control-J characters will
terminate an incremental search. Control-G will abort an incremental search and restore the original
line. When the search is terminated, the history entry containing the search string becomes the current
line.

To find other matching entries in the history list, type Control-S or Control-R as appropriate. This will
search backward or forward in the history for the next entry matching the search string typed so far.
Any other key sequence bound to a readline command will terminate the search and execute that com-
mand. For instance, a newline will terminate the search and accept the line, thereby executing the com-
mand from the history list.

Readline remembers the last incremental search string. If two Control-Rs are typed without any inter-
vening characters defining a new search string, any remembered search string is used.

Non-incremental searches read the entire search string before starting to search for matching history
lines. The search string may be typed by the user or be part of the contents of the current line.

Readline Command Names
The following is a list of the names of the commands and the default key sequences to which they are
bound. Command names without an accompanying key sequence are unbound by default. In the fol-
lowing descriptions, point refers to the current cursor position, and mark refers to a cursor position
saved by the set−mark command. The text between the point and mark is referred to as the region.

Commands for Moving
beginning−of−line (C−a)

Move to the start of the current line.
end−of−line (C−e)

Move to the end of the line.
forward−char (C−f)

Move forward a character.
backward−char (C−b)

Move back a character.
forward−word (M−f)

Move forward to the end of the next word. Words are composed of alphanumeric characters
(letters and digits).

backward−word (M−b)
Move back to the start of the current or previous word. Words are composed of alphanumeric
characters (letters and digits).

shell−forward−word
Move forward to the end of the next word. Words are delimited by non-quoted shell
metacharacters.

shell−backward−word
Move back to the start of the current or previous word. Words are delimited by non-quoted
shell metacharacters.

46 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

previous−screen−line
Attempt to move point to the same physical screen column on the previous physical screen
line. This will not have the desired effect if the current readline line does not take up more
than one physical line or if point is not greater than the length of the prompt plus the screen
width.

next−screen−line
Attempt to move point to the same physical screen column on the next physical screen line.
This will not have the desired effect if the current readline line does not take up more than one
physical line or if the length of the current readline line is not greater than the length of the
prompt plus the screen width.

clear−display (M−C−l)
Clear the screen and, if possible, the terminal’s scrollback buffer, then redraw the current line,
leaving the current line at the top of the screen.

clear−screen (C−l)
Clear the screen, then redraw the current line, leaving the current line at the top of the screen.
With an argument, refresh the current line without clearing the screen.

redraw−current−line
Refresh the current line.

Commands for Manipulating the History
accept−line (Newline, Return)

Accept the line regardless of where the cursor is. If this line is non-empty, add it to the history
list according to the state of the HISTCONTROL variable. If the line is a modified history
line, then restore the history line to its original state.

previous−history (C−p)
Fetch the previous command from the history list, moving back in the list.

next−history (C−n)
Fetch the next command from the history list, moving forward in the list.

beginning−of−history (M−<)
Move to the first line in the history.

end−of−history (M−>)
Move to the end of the input history, i.e., the line currently being entered.

operate−and−get−next (C−o)
Accept the current line for execution and fetch the next line relative to the current line from
the history for editing. A numeric argument, if supplied, specifies the history entry to use in-
stead of the current line.

fetch−history
With a numeric argument, fetch that entry from the history list and make it the current line.
Without an argument, move back to the first entry in the history list.

re verse−search−history (C−r)
Search backward starting at the current line and moving ‘up’ through the history as necessary.
This is an incremental search.

forward−search−history (C−s)
Search forward starting at the current line and moving ‘down’ through the history as neces-
sary. This is an incremental search.

non−incremental−rev erse−search−history (M−p)
Search backward through the history starting at the current line using a non-incremental
search for a string supplied by the user.

non−incremental−forward−search−history (M−n)
Search forward through the history using a non-incremental search for a string supplied by the
user.

history−search−forward
Search forward through the history for the string of characters between the start of the current
line and the point. This is a non-incremental search.

history−search−backward
Search backward through the history for the string of characters between the start of the cur-
rent line and the point. This is a non-incremental search.

GNU Bash 5.2 2022 September 19 47

BASH(1) General Commands Manual BASH(1)

history−substring−search−backward
Search backward through the history for the string of characters between the start of the cur-
rent line and the current cursor position (the point). The search string may match anywhere in
a history line. This is a non-incremental search.

history−substring−search−forward
Search forward through the history for the string of characters between the start of the current
line and the point. The search string may match anywhere in a history line. This is a non-in-
cremental search.

yank−nth−arg (M−C−y)
Insert the first argument to the previous command (usually the second word on the previous
line) at point. With an argument n, insert the nth word from the previous command (the words
in the previous command begin with word 0). A neg ative argument inserts the nth word from
the end of the previous command. Once the argument n is computed, the argument is ex-
tracted as if the "!n" history expansion had been specified.

yank−last−arg (M−. , M−_)
Insert the last argument to the previous command (the last word of the previous history entry).
With a numeric argument, behave exactly like yank−nth−arg. Successive calls to
yank−last−arg move back through the history list, inserting the last word (or the word speci-
fied by the argument to the first call) of each line in turn. Any numeric argument supplied to
these successive calls determines the direction to move through the history. A negative argu-
ment switches the direction through the history (back or forward). The history expansion fa-
cilities are used to extract the last word, as if the "!$" history expansion had been specified.

shell−expand−line (M−C−e)
Expand the line as the shell does. This performs alias and history expansion as well as all of
the shell word expansions. See HISTORY EXPANSION below for a description of history ex-
pansion.

history−expand−line (M−ˆ)
Perform history expansion on the current line. See HISTORY EXPANSION below for a de-
scription of history expansion.

magic−space
Perform history expansion on the current line and insert a space. See HISTORY EXPANSION

below for a description of history expansion.
alias−expand−line

Perform alias expansion on the current line. See ALIASES above for a description of alias ex-
pansion.

history−and−alias−expand−line
Perform history and alias expansion on the current line.

insert−last−argument (M−., M−_)
A synonym for yank−last−arg.

edit−and−execute−command (C−x C−e)
Invoke an editor on the current command line, and execute the result as shell commands.
Bash attempts to invoke $VISUAL, $EDITOR, and emacs as the editor, in that order.

Commands for Changing Text
end−of−file (usually C−d)

The character indicating end-of-file as set, for example, by stty. If this character is read
when there are no characters on the line, and point is at the beginning of the line, readline in-
terprets it as the end of input and returns EOF.

delete−char (C−d)
Delete the character at point. If this function is bound to the same character as the tty EOF
character, as C−d commonly is, see above for the effects.

backward−delete−char (Rubout)
Delete the character behind the cursor. When given a numeric argument, save the deleted text
on the kill ring.

forward−backward−delete−char
Delete the character under the cursor, unless the cursor is at the end of the line, in which case
the character behind the cursor is deleted.

48 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

quoted−insert (C−q, C−v)
Add the next character typed to the line verbatim. This is how to insert characters like C−q,
for example.

tab−insert (C−v TAB)
Insert a tab character.

self−insert (a, b, A, 1, !, ...)
Insert the character typed.

transpose−chars (C−t)
Drag the character before point forward over the character at point, moving point forward as
well. If point is at the end of the line, then this transposes the two characters before point.
Negative arguments have no effect.

transpose−words (M−t)
Drag the word before point past the word after point, moving point over that word as well. If
point is at the end of the line, this transposes the last two words on the line.

upcase−word (M−u)
Uppercase the current (or following) word. With a negative argument, uppercase the previous
word, but do not move point.

downcase−word (M−l)
Lowercase the current (or following) word. With a negative argument, lowercase the previous
word, but do not move point.

capitalize−word (M−c)
Capitalize the current (or following) word. With a negative argument, capitalize the previous
word, but do not move point.

overwrite−mode
Toggle overwrite mode. With an explicit positive numeric argument, switches to overwrite
mode. With an explicit non-positive numeric argument, switches to insert mode. This com-
mand affects only emacs mode; vi mode does overwrite differently. Each call to readline()

starts in insert mode. In overwrite mode, characters bound to self−insert replace the text at
point rather than pushing the text to the right. Characters bound to backward−delete−char
replace the character before point with a space. By default, this command is unbound.

Killing and Yanking
kill−line (C−k)

Kill the text from point to the end of the line.
backward−kill−line (C−x Rubout)

Kill backward to the beginning of the line.
unix−line−discard (C−u)

Kill backward from point to the beginning of the line. The killed text is saved on the kill-ring.
kill−whole−line

Kill all characters on the current line, no matter where point is.
kill−word (M−d)

Kill from point to the end of the current word, or if between words, to the end of the next
word. Word boundaries are the same as those used by forward−word.

backward−kill−word (M−Rubout)
Kill the word behind point. Word boundaries are the same as those used by backward−word.

shell−kill−word
Kill from point to the end of the current word, or if between words, to the end of the next
word. Word boundaries are the same as those used by shell−forward−word.

shell−backward−kill−word
Kill the word behind point. Word boundaries are the same as those used by shell−back-
ward−word.

unix−word−rubout (C−w)
Kill the word behind point, using white space as a word boundary. The killed text is saved on
the kill-ring.

unix−filename−rubout
Kill the word behind point, using white space and the slash character as the word boundaries.
The killed text is saved on the kill-ring.

GNU Bash 5.2 2022 September 19 49

BASH(1) General Commands Manual BASH(1)

delete−horizontal−space (M−\)
Delete all spaces and tabs around point.

kill−region
Kill the text in the current region.

copy−region−as−kill
Copy the text in the region to the kill buffer.

copy−backward−word
Copy the word before point to the kill buffer. The word boundaries are the same as back-
ward−word.

copy−forward−word
Copy the word following point to the kill buffer. The word boundaries are the same as for-
ward−word.

yank (C−y)
Yank the top of the kill ring into the buffer at point.

yank−pop (M−y)
Rotate the kill ring, and yank the new top. Only works following yank or yank−pop.

Numeric Arguments
digit−argument (M−0, M−1, ..., M−−)

Add this digit to the argument already accumulating, or start a new argument. M−− starts a
negative argument.

universal−argument
This is another way to specify an argument. If this command is followed by one or more dig-
its, optionally with a leading minus sign, those digits define the argument. If the command is
followed by digits, executing universal−argument again ends the numeric argument, but is
otherwise ignored. As a special case, if this command is immediately followed by a character
that is neither a digit nor minus sign, the argument count for the next command is multiplied
by four. The argument count is initially one, so executing this function the first time makes
the argument count four, a second time makes the argument count sixteen, and so on.

Completing
complete (TAB)

Attempt to perform completion on the text before point. Bash attempts completion treating
the text as a variable (if the text begins with $), username (if the text begins with ˜), hostname
(if the text begins with @), or command (including aliases and functions) in turn. If none of
these produces a match, filename completion is attempted.

possible−completions (M−?)
List the possible completions of the text before point.

insert−completions (M−*)
Insert all completions of the text before point that would have been generated by possi-
ble−completions.

menu−complete
Similar to complete, but replaces the word to be completed with a single match from the list
of possible completions. Repeated execution of menu−complete steps through the list of pos-
sible completions, inserting each match in turn. At the end of the list of completions, the bell
is rung (subject to the setting of bell−style) and the original text is restored. An argument of n

moves n positions forward in the list of matches; a negative argument may be used to move
backward through the list. This command is intended to be bound to TAB, but is unbound by
default.

menu−complete−backward
Identical to menu−complete, but moves backward through the list of possible completions, as
if menu−complete had been given a neg ative argument. This command is unbound by de-
fault.

delete−char−or−list
Deletes the character under the cursor if not at the beginning or end of the line (like
delete−char). If at the end of the line, behaves identically to possible−completions. This
command is unbound by default.

complete−filename (M−/)
Attempt filename completion on the text before point.

50 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

possible−filename−completions (C−x /)
List the possible completions of the text before point, treating it as a filename.

complete−username (M−˜)
Attempt completion on the text before point, treating it as a username.

possible−username−completions (C−x ˜)
List the possible completions of the text before point, treating it as a username.

complete−variable (M−$)
Attempt completion on the text before point, treating it as a shell variable.

possible−variable−completions (C−x $)
List the possible completions of the text before point, treating it as a shell variable.

complete−hostname (M−@)
Attempt completion on the text before point, treating it as a hostname.

possible−hostname−completions (C−x @)
List the possible completions of the text before point, treating it as a hostname.

complete−command (M−!)
Attempt completion on the text before point, treating it as a command name. Command com-
pletion attempts to match the text against aliases, reserved words, shell functions, shell
builtins, and finally executable filenames, in that order.

possible−command−completions (C−x !)
List the possible completions of the text before point, treating it as a command name.

dynamic−complete−history (M−TAB)
Attempt completion on the text before point, comparing the text against lines from the history
list for possible completion matches.

dabbrev−expand
Attempt menu completion on the text before point, comparing the text against lines from the
history list for possible completion matches.

complete−into−braces (M−{)
Perform filename completion and insert the list of possible completions enclosed within
braces so the list is available to the shell (see Brace Expansion above).

Keyboard Macros
start−kbd−macro (C−x ()

Begin saving the characters typed into the current keyboard macro.
end−kbd−macro (C−x))

Stop saving the characters typed into the current keyboard macro and store the definition.
call−last−kbd−macro (C−x e)

Re-execute the last keyboard macro defined, by making the characters in the macro appear as
if typed at the keyboard.

print−last−kbd−macro ()
Print the last keyboard macro defined in a format suitable for the inputrc file.

Miscellaneous
re−read−init−file (C−x C−r)

Read in the contents of the inputrc file, and incorporate any bindings or variable assignments
found there.

abort (C−g)
Abort the current editing command and ring the terminal’s bell (subject to the setting of
bell−style).

do−lowercase−version (M−A, M−B, M−x, ...)
If the metafied character x is uppercase, run the command that is bound to the corresponding
metafied lowercase character. The behavior is undefined if x is already lowercase.

prefix−meta (ESC)
Metafy the next character typed. ESC f is equivalent to Meta−f.

undo (C−_, C−x C−u)
Incremental undo, separately remembered for each line.

re vert−line (M−r)
Undo all changes made to this line. This is like executing the undo command enough times to
return the line to its initial state.

GNU Bash 5.2 2022 September 19 51

BASH(1) General Commands Manual BASH(1)

tilde−expand (M−&)
Perform tilde expansion on the current word.

set−mark (C−@, M−<space>)
Set the mark to the point. If a numeric argument is supplied, the mark is set to that position.

exchange−point−and−mark (C−x C−x)
Swap the point with the mark. The current cursor position is set to the saved position, and the
old cursor position is saved as the mark.

character−search (C−])
A character is read and point is moved to the next occurrence of that character. A negative ar-
gument searches for previous occurrences.

character−search−backward (M−C−])
A character is read and point is moved to the previous occurrence of that character. A nega-
tive argument searches for subsequent occurrences.

skip−csi−sequence
Read enough characters to consume a multi-key sequence such as those defined for keys like
Home and End. Such sequences begin with a Control Sequence Indicator (CSI), usually
ESC−[. If this sequence is bound to "\[", keys producing such sequences will have no effect
unless explicitly bound to a readline command, instead of inserting stray characters into the
editing buffer. This is unbound by default, but usually bound to ESC−[.

insert−comment (M−#)
Without a numeric argument, the value of the readline comment−begin variable is inserted at
the beginning of the current line. If a numeric argument is supplied, this command acts as a
toggle: if the characters at the beginning of the line do not match the value of comment−be-
gin, the value is inserted, otherwise the characters in comment−begin are deleted from the be-
ginning of the line. In either case, the line is accepted as if a newline had been typed. The de-
fault value of comment−begin causes this command to make the current line a shell com-
ment. If a numeric argument causes the comment character to be removed, the line will be ex-
ecuted by the shell.

spell−correct−word (C−x s)
Perform spelling correction on the current word, treating it as a directory or filename, in the
same way as the cdspell shell option. Word boundaries are the same as those used by
shell−forward−word.

glob−complete−word (M−g)
The word before point is treated as a pattern for pathname expansion, with an asterisk implic-
itly appended. This pattern is used to generate a list of matching filenames for possible com-
pletions.

glob−expand−word (C−x *)
The word before point is treated as a pattern for pathname expansion, and the list of matching
filenames is inserted, replacing the word. If a numeric argument is supplied, an asterisk is ap-
pended before pathname expansion.

glob−list−expansions (C−x g)
The list of expansions that would have been generated by glob−expand−word is displayed,
and the line is redrawn. If a numeric argument is supplied, an asterisk is appended before
pathname expansion.

dump−functions
Print all of the functions and their key bindings to the readline output stream. If a numeric ar-
gument is supplied, the output is formatted in such a way that it can be made part of an inputrc

file.
dump−variables

Print all of the settable readline variables and their values to the readline output stream. If a
numeric argument is supplied, the output is formatted in such a way that it can be made part of
an inputrc file.

dump−macros
Print all of the readline key sequences bound to macros and the strings they output. If a nu-
meric argument is supplied, the output is formatted in such a way that it can be made part of
an inputrc file.

display−shell−version (C−x C−v)
Display version information about the current instance of bash.

52 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

Programmable Completion
When word completion is attempted for an argument to a command for which a completion specifica-
tion (a compspec) has been defined using the complete builtin (see SHELL BUILTIN COMMANDS be-
low), the programmable completion facilities are invoked.

First, the command name is identified. If the command word is the empty string (completion attempted
at the beginning of an empty line), any compspec defined with the −E option to complete is used. If a
compspec has been defined for that command, the compspec is used to generate the list of possible
completions for the word. If the command word is a full pathname, a compspec for the full pathname
is searched for first. If no compspec is found for the full pathname, an attempt is made to find a comp-
spec for the portion following the final slash. If those searches do not result in a compspec, any comp-
spec defined with the −D option to complete is used as the default. If there is no default compspec,
bash attempts alias expansion on the command word as a final resort, and attempts to find a compspec
for the command word from any successful expansion.

Once a compspec has been found, it is used to generate the list of matching words. If a compspec is
not found, the default bash completion as described above under Completing is performed.

First, the actions specified by the compspec are used. Only matches which are prefixed by the word be-
ing completed are returned. When the −f or −d option is used for filename or directory name comple-
tion, the shell variable FIGNORE is used to filter the matches.

Any completions specified by a pathname expansion pattern to the −G option are generated next. The
words generated by the pattern need not match the word being completed. The GLOBIGNORE shell
variable is not used to filter the matches, but the FIGNORE variable is used.

Next, the string specified as the argument to the −W option is considered. The string is first split using
the characters in the IFS special variable as delimiters. Shell quoting is honored. Each word is then ex-
panded using brace expansion, tilde expansion, parameter and variable expansion, command substitu-
tion, and arithmetic expansion, as described above under EXPANSION. The results are split using the
rules described above under Word Splitting. The results of the expansion are prefix-matched against
the word being completed, and the matching words become the possible completions.

After these matches have been generated, any shell function or command specified with the −F and −C
options is invoked. When the command or function is invoked, the COMP_LINE, COMP_POINT,

COMP_KEY, and COMP_TYPE variables are assigned values as described above under Shell Vari-
ables. If a shell function is being invoked, the COMP_WORDS and COMP_CWORD variables are also
set. When the function or command is invoked, the first argument ($1) is the name of the command
whose arguments are being completed, the second argument ($2) is the word being completed, and the
third argument ($3) is the word preceding the word being completed on the current command line. No
filtering of the generated completions against the word being completed is performed; the function or
command has complete freedom in generating the matches.

Any function specified with −F is invoked first. The function may use any of the shell facilities, includ-
ing the compgen builtin described below, to generate the matches. It must put the possible completions
in the COMPREPLY array variable, one per array element.

Next, any command specified with the −C option is invoked in an environment equivalent to command
substitution. It should print a list of completions, one per line, to the standard output. Backslash may
be used to escape a newline, if necessary.

After all of the possible completions are generated, any filter specified with the −X option is applied to
the list. The filter is a pattern as used for pathname expansion; a & in the pattern is replaced with the
text of the word being completed. A literal & may be escaped with a backslash; the backslash is re-
moved before attempting a match. Any completion that matches the pattern will be removed from the
list. A leading ! negates the pattern; in this case any completion not matching the pattern will be re-
moved. If the nocasematch shell option is enabled, the match is performed without regard to the case
of alphabetic characters.

Finally, any prefix and suffix specified with the −P and −S options are added to each member of the
completion list, and the result is returned to the readline completion code as the list of possible comple-
tions.

If the previously-applied actions do not generate any matches, and the −o dirnames option was sup-
plied to complete when the compspec was defined, directory name completion is attempted.

GNU Bash 5.2 2022 September 19 53

BASH(1) General Commands Manual BASH(1)

If the −o plusdirs option was supplied to complete when the compspec was defined, directory name
completion is attempted and any matches are added to the results of the other actions.

By default, if a compspec is found, whatever it generates is returned to the completion code as the full
set of possible completions. The default bash completions are not attempted, and the readline default
of filename completion is disabled. If the −o bashdefault option was supplied to complete when the
compspec was defined, the bash default completions are attempted if the compspec generates no
matches. If the −o default option was supplied to complete when the compspec was defined, read-
line’s default completion will be performed if the compspec (and, if attempted, the default bash com-
pletions) generate no matches.

When a compspec indicates that directory name completion is desired, the programmable completion
functions force readline to append a slash to completed names which are symbolic links to directories,
subject to the value of the mark−directories readline variable, regardless of the setting of the mark-
symlinked−directories readline variable.

There is some support for dynamically modifying completions. This is most useful when used in com-
bination with a default completion specified with complete −D. It’s possible for shell functions exe-
cuted as completion handlers to indicate that completion should be retried by returning an exit status of
124. If a shell function returns 124, and changes the compspec associated with the command on which
completion is being attempted (supplied as the first argument when the function is executed), program-
mable completion restarts from the beginning, with an attempt to find a new compspec for that com-
mand. This allows a set of completions to be built dynamically as completion is attempted, rather than
being loaded all at once.

For instance, assuming that there is a library of compspecs, each kept in a file corresponding to the
name of the command, the following default completion function would load completions dynamically:

_completion_loader()

{

. "/etc/bash_completion.d/$1.sh" >/dev/null 2>&1 && return 124

}

complete -D -F _completion_loader -o bashdefault -o default

HISTORY
When the −o history option to the set builtin is enabled, the shell provides access to the command his-

tory, the list of commands previously typed. The value of the HISTSIZE variable is used as the number
of commands to save in a history list. The text of the last HISTSIZE commands (default 500) is saved.
The shell stores each command in the history list prior to parameter and variable expansion (see EX-

PANSION above) but after history expansion is performed, subject to the values of the shell variables
HISTIGNORE and HISTCONTROL.

On startup, the history is initialized from the file named by the variable HISTFILE (default ˜/.bash_his-

tory). The file named by the value of HISTFILE is truncated, if necessary, to contain no more than the
number of lines specified by the value of HISTFILESIZE. If HISTFILESIZE is unset, or set to null, a
non-numeric value, or a numeric value less than zero, the history file is not truncated. When the history
file is read, lines beginning with the history comment character followed immediately by a digit are in-
terpreted as timestamps for the following history line. These timestamps are optionally displayed de-
pending on the value of the HISTTIMEFORMAT variable. When a shell with history enabled exits, the
last $HISTSIZE lines are copied from the history list to $HISTFILE. If the histappend shell option is
enabled (see the description of shopt under SHELL BUILTIN COMMANDS below), the lines are ap-
pended to the history file, otherwise the history file is overwritten. If HISTFILE is unset, or if the his-
tory file is unwritable, the history is not saved. If the HISTTIMEFORMAT variable is set, time stamps
are written to the history file, marked with the history comment character, so they may be preserved
across shell sessions. This uses the history comment character to distinguish timestamps from other
history lines. After saving the history, the history file is truncated to contain no more than HISTFILE-

SIZE lines. If HISTFILESIZE is unset, or set to null, a non-numeric value, or a numeric value less than
zero, the history file is not truncated.

The builtin command fc (see SHELL BUILTIN COMMANDS below) may be used to list or edit and re-
execute a portion of the history list. The history builtin may be used to display or modify the history
list and manipulate the history file. When using command-line editing, search commands are available

54 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

in each editing mode that provide access to the history list.

The shell allows control over which commands are saved on the history list. The HISTCONTROL and
HISTIGNORE variables may be set to cause the shell to save only a subset of the commands entered.
The cmdhist shell option, if enabled, causes the shell to attempt to save each line of a multi-line com-
mand in the same history entry, adding semicolons where necessary to preserve syntactic correctness.
The lithist shell option causes the shell to save the command with embedded newlines instead of semi-
colons. See the description of the shopt builtin below under SHELL BUILTIN COMMANDS for infor-
mation on setting and unsetting shell options.

HISTORY EXPANSION
The shell supports a history expansion feature that is similar to the history expansion in csh. This sec-
tion describes what syntax features are available. This feature is enabled by default for interactive
shells, and can be disabled using the +H option to the set builtin command (see SHELL BUILTIN

COMMANDS below). Non-interactive shells do not perform history expansion by default.

History expansions introduce words from the history list into the input stream, making it easy to repeat
commands, insert the arguments to a previous command into the current input line, or fix errors in pre-
vious commands quickly.

History expansion is performed immediately after a complete line is read, before the shell breaks it into
words, and is performed on each line individually without taking quoting on previous lines into ac-
count. It takes place in two parts. The first is to determine which line from the history list to use dur-
ing substitution. The second is to select portions of that line for inclusion into the current one. The
line selected from the history is the event, and the portions of that line that are acted upon are words.
Various modifiers are available to manipulate the selected words. The line is broken into words in the
same fashion as when reading input, so that several metacharacter-separated words surrounded by
quotes are considered one word. History expansions are introduced by the appearance of the history
expansion character, which is ! by default. Only backslash (\) and single quotes can quote the history
expansion character, but the history expansion character is also treated as quoted if it immediately pre-
cedes the closing double quote in a double-quoted string.

Several characters inhibit history expansion if found immediately following the history expansion char-
acter, even if it is unquoted: space, tab, newline, carriage return, and =. If the extglob shell option is
enabled, (will also inhibit expansion.

Several shell options settable with the shopt builtin may be used to tailor the behavior of history expan-
sion. If the histverify shell option is enabled (see the description of the shopt builtin below), and
readline is being used, history substitutions are not immediately passed to the shell parser. Instead, the
expanded line is reloaded into the readline editing buffer for further modification. If readline is being
used, and the histreedit shell option is enabled, a failed history substitution will be reloaded into the
readline editing buffer for correction. The −p option to the history builtin command may be used to
see what a history expansion will do before using it. The −s option to the history builtin may be used
to add commands to the end of the history list without actually executing them, so that they are avail-
able for subsequent recall.

The shell allows control of the various characters used by the history expansion mechanism (see the de-
scription of histchars above under Shell Variables). The shell uses the history comment character to
mark history timestamps when writing the history file.

Event Designators
An event designator is a reference to a command line entry in the history list. Unless the reference is
absolute, events are relative to the current position in the history list.

! Start a history substitution, except when followed by a blank, newline, carriage return, = or (
(when the extglob shell option is enabled using the shopt builtin).

!n Refer to command line n.
!−n Refer to the current command minus n.
!! Refer to the previous command. This is a synonym for ‘!−1’.
!string Refer to the most recent command preceding the current position in the history list starting

with string.
!?string[?]

Refer to the most recent command preceding the current position in the history list containing
string. The trailing ? may be omitted if string is followed immediately by a newline. If string

GNU Bash 5.2 2022 September 19 55

BASH(1) General Commands Manual BASH(1)

is missing, the string from the most recent search is used; it is an error if there is no previous
search string.

ˆstring1ˆstring2ˆ
Quick substitution. Repeat the previous command, replacing string1 with string2. Equivalent
to ‘‘!!:sˆstring1ˆstring2ˆ’’ (see Modifiers below).

!# The entire command line typed so far.

Word Designators
Word designators are used to select desired words from the event. A : separates the event specification
from the word designator. It may be omitted if the word designator begins with a ˆ, $, *, −, or %.
Words are numbered from the beginning of the line, with the first word being denoted by 0 (zero).
Words are inserted into the current line separated by single spaces.

0 (zero)
The zeroth word. For the shell, this is the command word.

n The nth word.
ˆ The first argument. That is, word 1.
$ The last word. This is usually the last argument, but will expand to the zeroth word if there is

only one word in the line.
% The first word matched by the most recent ‘?string?’ search, if the search string begins with a

character that is part of a word.
x−y A range of words; ‘−y’ abbreviates ‘0−y’.
* All of the words but the zeroth. This is a synonym for ‘1−$’. It is not an error to use * if

there is just one word in the event; the empty string is returned in that case.
x* Abbreviates x−$.
x− Abbreviates x−$ like x*, but omits the last word. If x is missing, it defaults to 0.

If a word designator is supplied without an event specification, the previous command is used as the
ev ent.

Modifiers
After the optional word designator, there may appear a sequence of one or more of the following modi-
fiers, each preceded by a ‘:’. These modify, or edit, the word or words selected from the history event.

h Remove a trailing filename component, leaving only the head.
t Remove all leading filename components, leaving the tail.
r Remove a trailing suffix of the form .xxx, leaving the basename.
e Remove all but the trailing suffix.
p Print the new command but do not execute it.
q Quote the substituted words, escaping further substitutions.
x Quote the substituted words as with q, but break into words at blanks and newlines. The q

and x modifiers are mutually exclusive; the last one supplied is used.
s/old/new/

Substitute new for the first occurrence of old in the event line. Any character may be used as
the delimiter in place of /. The final delimiter is optional if it is the last character of the event
line. The delimiter may be quoted in old and new with a single backslash. If & appears in
new, it is replaced by old . A single backslash will quote the &. If old is null, it is set to the
last old substituted, or, if no previous history substitutions took place, the last string in a
!?string[?] search. If new is null, each matching old is deleted.

& Repeat the previous substitution.
g Cause changes to be applied over the entire event line. This is used in conjunction with ‘:s’

(e.g., ‘:gs/old/new/’) or ‘:&’. If used with ‘:s’, any delimiter can be used in place of /, and the
final delimiter is optional if it is the last character of the event line. An a may be used as a
synonym for g.

G Apply the following ‘s’ or ‘&’ modifier once to each word in the event line.

SHELL BUILTIN COMMANDS
Unless otherwise noted, each builtin command documented in this section as accepting options pre-
ceded by − accepts −− to signify the end of the options. The :, true, false, and test/[builtins do not ac-
cept options and do not treat −− specially. The exit, logout, return, break, continue, let, and shift
builtins accept and process arguments beginning with − without requiring −−. Other builtins that ac-
cept arguments but are not specified as accepting options interpret arguments beginning with − as

56 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

invalid options and require −− to prevent this interpretation.

: [arguments]
No effect; the command does nothing beyond expanding arguments and performing any speci-
fied redirections. The return status is zero.

. filename [arguments]
source filename [arguments]

Read and execute commands from filename in the current shell environment and return the
exit status of the last command executed from filename. If filename does not contain a slash,
filenames in PATH are used to find the directory containing filename, but filename does not
need to be executable. The file searched for in PATH need not be executable. When bash is
not in posix mode, it searches the current directory if no file is found in PATH. If the sour-
cepath option to the shopt builtin command is turned off, the PATH is not searched. If any ar-

guments are supplied, they become the positional parameters when filename is executed. Oth-
erwise the positional parameters are unchanged. If the −T option is enabled, . inherits any trap
on DEBUG; if it is not, any DEBUG trap string is saved and restored around the call to ., and
. unsets the DEBUG trap while it executes. If −T is not set, and the sourced file changes the
DEBUG trap, the new value is retained when . completes. The return status is the status of the
last command exited within the script (0 if no commands are executed), and false if filename

is not found or cannot be read.

alias [−p] [name[=value] ...]
Alias with no arguments or with the −p option prints the list of aliases in the form alias
name=value on standard output. When arguments are supplied, an alias is defined for each
name whose value is given. A trailing space in value causes the next word to be checked for
alias substitution when the alias is expanded. For each name in the argument list for which no
value is supplied, the name and value of the alias is printed. Alias returns true unless a name

is given for which no alias has been defined.

bg [jobspec ...]
Resume each suspended job jobspec in the background, as if it had been started with &. If
jobspec is not present, the shell’s notion of the current job is used. bg jobspec returns 0 un-
less run when job control is disabled or, when run with job control enabled, any specified job-

spec was not found or was started without job control.

bind [−m keymap] [−lpsvPSVX]
bind [−m keymap] [−q function] [−u function] [−r keyseq]
bind [−m keymap] −f filename

bind [−m keymap] −x keyseq:shell−command

bind [−m keymap] keyseq:function−name

bind [−m keymap] keyseq:readline−command

bind readline-command-line

Display current readline key and function bindings, bind a key sequence to a readline func-
tion or macro, or set a readline variable. Each non-option argument is a command as it would
appear in a readline initialization file such as .inputrc, but each binding or command must be
passed as a separate argument; e.g., ’"\C−x\C−r": re−read−init−file’. Options, if supplied,
have the following meanings:
−m keymap

Use keymap as the keymap to be affected by the subsequent bindings. Acceptable
keymap names are emacs, emacs−standard, emacs−meta, emacs−ctlx, vi, vi−move,

vi−command, and vi−insert. vi is equivalent to vi−command (vi−move is also a syn-
onym); emacs is equivalent to emacs−standard.

−l List the names of all readline functions.
−p Display readline function names and bindings in such a way that they can be re-read.
−P List current readline function names and bindings.
−s Display readline key sequences bound to macros and the strings they output in such

a way that they can be re-read.
−S Display readline key sequences bound to macros and the strings they output.
−v Display readline variable names and values in such a way that they can be re-read.

GNU Bash 5.2 2022 September 19 57

BASH(1) General Commands Manual BASH(1)

−V List current readline variable names and values.
−f filename

Read key bindings from filename.
−q function

Query about which keys inv oke the named function.
−u function

Unbind all keys bound to the named function.
−r keyseq

Remove any current binding for keyseq.
−x keyseq:shell−command

Cause shell−command to be executed whenever keyseq is entered. When shell−com-

mand is executed, the shell sets the READLINE_LINE variable to the contents of the
readline line buffer and the READLINE_POINT and READLINE_MARK variables to
the current location of the insertion point and the saved insertion point (the mark), re-
spectively. The shell assigns any numeric argument the user supplied to the READ-

LINE_ARGUMENT variable. If there was no argument, that variable is not set. If the
executed command changes the value of any of READLINE_LINE, READ-

LINE_POINT, or READLINE_MARK, those new values will be reflected in the edit-
ing state.

−X List all key sequences bound to shell commands and the associated commands in a
format that can be reused as input.

The return value is 0 unless an unrecognized option is given or an error occurred.

break [n]
Exit from within a for, while, until, or select loop. If n is specified, break n levels. n must be
≥ 1. If n is greater than the number of enclosing loops, all enclosing loops are exited. The re-
turn value is 0 unless n is not greater than or equal to 1.

builtin shell−builtin [arguments]
Execute the specified shell builtin, passing it arguments, and return its exit status. This is use-
ful when defining a function whose name is the same as a shell builtin, retaining the function-
ality of the builtin within the function. The cd builtin is commonly redefined this way. The
return status is false if shell−builtin is not a shell builtin command.

caller [expr]
Returns the context of any active subroutine call (a shell function or a script executed with the
. or source builtins). Without expr, caller displays the line number and source filename of the
current subroutine call. If a non-negative integer is supplied as expr, caller displays the line
number, subroutine name, and source file corresponding to that position in the current execu-
tion call stack. This extra information may be used, for example, to print a stack trace. The
current frame is frame 0. The return value is 0 unless the shell is not executing a subroutine
call or expr does not correspond to a valid position in the call stack.

cd [−L|[−P [−e]] [−@]] [dir]
Change the current directory to dir. if dir is not supplied, the value of the HOME shell vari-
able is the default. The variable CDPATH defines the search path for the directory containing
dir: each directory name in CDPATH is searched for dir. Alternative directory names in CD-

PATH are separated by a colon (:). A null directory name in CDPATH is the same as the cur-
rent directory, i.e., ‘‘.’’. If dir begins with a slash (/), then CDPATH is not used. The −P op-
tion causes cd to use the physical directory structure by resolving symbolic links while tra-
versing dir and before processing instances of .. in dir (see also the −P option to the set builtin
command); the −L option forces symbolic links to be followed by resolving the link after pro-
cessing instances of .. in dir. If .. appears in dir, it is processed by removing the immediately
previous pathname component from dir, back to a slash or the beginning of dir. If the −e op-
tion is supplied with −P, and the current working directory cannot be successfully determined
after a successful directory change, cd will return an unsuccessful status. On systems that
support it, the −@ option presents the extended attributes associated with a file as a directory.
An argument of − is converted to $OLDPWD before the directory change is attempted. If a
non-empty directory name from CDPATH is used, or if − is the first argument, and the direc-
tory change is successful, the absolute pathname of the new working directory is written to the
standard output. If the directory change is successful, cd sets the value of the PWD

58 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

environment variable to the new directory name, and sets the OLDPWD environment variable
to the value of the current working directory before the change. The return value is true if the
directory was successfully changed; false otherwise.

command [−pVv] command [arg ...]
Run command with args suppressing the normal shell function lookup. Only builtin com-
mands or commands found in the PATH are executed. If the −p option is given, the search for
command is performed using a default value for PATH that is guaranteed to find all of the
standard utilities. If either the −V or −v option is supplied, a description of command is
printed. The −v option causes a single word indicating the command or filename used to in-
voke command to be displayed; the −V option produces a more verbose description. If the −V
or −v option is supplied, the exit status is 0 if command was found, and 1 if not. If neither op-
tion is supplied and an error occurred or command cannot be found, the exit status is 127.
Otherwise, the exit status of the command builtin is the exit status of command .

compgen [option] [word]
Generate possible completion matches for word according to the options, which may be any
option accepted by the complete builtin with the exception of −p and −r, and write the
matches to the standard output. When using the −F or −C options, the various shell variables
set by the programmable completion facilities, while available, will not have useful values.

The matches will be generated in the same way as if the programmable completion code had
generated them directly from a completion specification with the same flags. If word is speci-
fied, only those completions matching word will be displayed.

The return value is true unless an invalid option is supplied, or no matches were generated.

complete [−abcdefgjksuv] [−o comp-option] [−DEI] [−A action] [−G globpat] [−W wordlist]
[−F function] [−C command] [−X filterpat] [−P prefix] [−S suffix] name [name ...]

complete −pr [−DEI] [name ...]
Specify how arguments to each name should be completed. If the −p option is supplied, or if
no options are supplied, existing completion specifications are printed in a way that allows
them to be reused as input. The −r option removes a completion specification for each name,
or, if no names are supplied, all completion specifications. The −D option indicates that other
supplied options and actions should apply to the ‘‘default’’ command completion; that is, com-
pletion attempted on a command for which no completion has previously been defined. The
−E option indicates that other supplied options and actions should apply to ‘‘empty’’ com-
mand completion; that is, completion attempted on a blank line. The −I option indicates that
other supplied options and actions should apply to completion on the initial non-assignment
word on the line, or after a command delimiter such as ; or |, which is usually command name
completion. If multiple options are supplied, the −D option takes precedence over −E, and
both take precedence over −I. If any of −D, −E, or −I are supplied, any other name arguments
are ignored; these completions only apply to the case specified by the option.

The process of applying these completion specifications when word completion is attempted is
described above under Programmable Completion.

Other options, if specified, have the following meanings. The arguments to the −G, −W, and
−X options (and, if necessary, the −P and −S options) should be quoted to protect them from
expansion before the complete builtin is invoked.
−o comp-option

The comp-option controls several aspects of the compspec’s behavior beyond the
simple generation of completions. comp-option may be one of:
bashdefault

Perform the rest of the default bash completions if the compspec gener-
ates no matches.

default Use readline’s default filename completion if the compspec generates no
matches.

GNU Bash 5.2 2022 September 19 59

BASH(1) General Commands Manual BASH(1)

dirnames
Perform directory name completion if the compspec generates no
matches.

filenames
Tell readline that the compspec generates filenames, so it can perform any
filename−specific processing (like adding a slash to directory names, quot-
ing special characters, or suppressing trailing spaces). Intended to be used
with shell functions.

noquote Tell readline not to quote the completed words if they are filenames (quot-
ing filenames is the default).

nosort Tell readline not to sort the list of possible completions alphabetically.
nospace Tell readline not to append a space (the default) to words completed at the

end of the line.
plusdirs After any matches defined by the compspec are generated, directory name

completion is attempted and any matches are added to the results of the
other actions.

−A action

The action may be one of the following to generate a list of possible completions:
alias Alias names. May also be specified as −a.
arrayvar

Array variable names.
binding Readline key binding names.
builtin Names of shell builtin commands. May also be specified as −b.
command

Command names. May also be specified as −c.
directory

Directory names. May also be specified as −d.
disabled

Names of disabled shell builtins.
enabled Names of enabled shell builtins.
export Names of exported shell variables. May also be specified as −e.
file File names. May also be specified as −f.
function

Names of shell functions.
group Group names. May also be specified as −g.
helptopic

Help topics as accepted by the help builtin.
hostname

Hostnames, as taken from the file specified by the HOSTFILE shell vari-
able.

job Job names, if job control is active. May also be specified as −j.
keyword

Shell reserved words. May also be specified as −k.
running Names of running jobs, if job control is active.
service Service names. May also be specified as −s.
setopt Valid arguments for the −o option to the set builtin.
shopt Shell option names as accepted by the shopt builtin.
signal Signal names.
stopped Names of stopped jobs, if job control is active.
user User names. May also be specified as −u.
variable Names of all shell variables. May also be specified as −v.

−C command

command is executed in a subshell environment, and its output is used as the possi-
ble completions. Arguments are passed as with the −F option.

−F function

The shell function function is executed in the current shell environment. When the
function is executed, the first argument ($1) is the name of the command whose ar-
guments are being completed, the second argument ($2) is the word being com-
pleted, and the third argument ($3) is the word preceding the word being completed

60 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

on the current command line. When it finishes, the possible completions are re-
trieved from the value of the COMPREPLY array variable.

−G globpat

The pathname expansion pattern globpat is expanded to generate the possible com-
pletions.

−P prefix

prefix is added at the beginning of each possible completion after all other options
have been applied.

−S suffix suffix is appended to each possible completion after all other options have been ap-
plied.

−W wordlist

The wordlist is split using the characters in the IFS special variable as delimiters,
and each resultant word is expanded. Shell quoting is honored within wordlist, in
order to provide a mechanism for the words to contain shell metacharacters or char-
acters in the value of IFS. The possible completions are the members of the resul-
tant list which match the word being completed.

−X filterpat

filterpat is a pattern as used for pathname expansion. It is applied to the list of pos-
sible completions generated by the preceding options and arguments, and each com-
pletion matching filterpat is removed from the list. A leading ! in filterpat negates
the pattern; in this case, any completion not matching filterpat is removed.

The return value is true unless an invalid option is supplied, an option other than −p or −r is
supplied without a name argument, an attempt is made to remove a completion specification
for a name for which no specification exists, or an error occurs adding a completion specifica-
tion.

compopt [−o option] [−DEI] [+o option] [name]
Modify completion options for each name according to the options, or for the currently-exe-
cuting completion if no names are supplied. If no options are given, display the completion
options for each name or the current completion. The possible values of option are those valid
for the complete builtin described above. The −D option indicates that other supplied options
should apply to the ‘‘default’’ command completion; that is, completion attempted on a com-
mand for which no completion has previously been defined. The −E option indicates that
other supplied options should apply to ‘‘empty’’ command completion; that is, completion at-
tempted on a blank line. The −I option indicates that other supplied options should apply to
completion on the initial non-assignment word on the line, or after a command delimiter such
as ; or |, which is usually command name completion.

The return value is true unless an invalid option is supplied, an attempt is made to modify the
options for a name for which no completion specification exists, or an output error occurs.

continue [n]
Resume the next iteration of the enclosing for, while, until, or select loop. If n is specified,
resume at the nth enclosing loop. n must be ≥ 1. If n is greater than the number of enclosing
loops, the last enclosing loop (the ‘‘top-level’’ loop) is resumed. The return value is 0 unless n

is not greater than or equal to 1.

declare [−aAfFgiIlnrtux] [−p] [name[=value] ...]
typeset [−aAfFgiIlnrtux] [−p] [name[=value] ...]

Declare variables and/or give them attributes. If no names are given then display the values of
variables. The −p option will display the attributes and values of each name. When −p is
used with name arguments, additional options, other than −f and −F, are ignored. When −p is
supplied without name arguments, it will display the attributes and values of all variables hav-
ing the attributes specified by the additional options. If no other options are supplied with −p,
declare will display the attributes and values of all shell variables. The −f option will restrict
the display to shell functions. The −F option inhibits the display of function definitions; only
the function name and attributes are printed. If the extdebug shell option is enabled using
shopt, the source file name and line number where each name is defined are displayed as well.
The −F option implies −f. The −g option forces variables to be created or modified at the
global scope, even when declare is executed in a shell function. It is ignored in all other

GNU Bash 5.2 2022 September 19 61

BASH(1) General Commands Manual BASH(1)

cases. The −I option causes local variables to inherit the attributes (except the nameref at-
tribute) and value of any existing variable with the same name at a surrounding scope. If there
is no existing variable, the local variable is initially unset. The following options can be used
to restrict output to variables with the specified attribute or to give variables attributes:
−a Each name is an indexed array variable (see Arrays above).
−A Each name is an associative array variable (see Arrays above).
−f Use function names only.
−i The variable is treated as an integer; arithmetic evaluation (see ARITHMETIC EVAL-

UATION above) is performed when the variable is assigned a value.
−l When the variable is assigned a value, all upper-case characters are converted to

lower-case. The upper-case attribute is disabled.
−n Give each name the nameref attribute, making it a name reference to another variable.

That other variable is defined by the value of name. All references, assignments, and
attribute modifications to name, except those using or changing the −n attribute itself,
are performed on the variable referenced by name’s value. The nameref attribute
cannot be applied to array variables.

−r Make names readonly. These names cannot then be assigned values by subsequent
assignment statements or unset.

−t Give each name the trace attribute. Traced functions inherit the DEBUG and RE-
TURN traps from the calling shell. The trace attribute has no special meaning for
variables.

−u When the variable is assigned a value, all lower-case characters are converted to
upper-case. The lower-case attribute is disabled.

−x Mark names for export to subsequent commands via the environment.

Using ‘+’ instead of ‘−’ turns off the attribute instead, with the exceptions that +a and +A may
not be used to destroy array variables and +r will not remove the readonly attribute. When
used in a function, declare and typeset make each name local, as with the local command, un-
less the −g option is supplied. If a variable name is followed by =value, the value of the vari-
able is set to value. When using −a or −A and the compound assignment syntax to create ar-
ray variables, additional attributes do not take effect until subsequent assignments. The return
value is 0 unless an invalid option is encountered, an attempt is made to define a function us-
ing −f foo=bar, an attempt is made to assign a value to a readonly variable, an attempt is
made to assign a value to an array variable without using the compound assignment syntax
(see Arrays above), one of the names is not a valid shell variable name, an attempt is made to
turn off readonly status for a readonly variable, an attempt is made to turn off array status for
an array variable, or an attempt is made to display a non-existent function with −f.

dirs [−clpv] [+n] [−n]
Without options, displays the list of currently remembered directories. The default display is
on a single line with directory names separated by spaces. Directories are added to the list
with the pushd command; the popd command removes entries from the list. The current di-
rectory is always the first directory in the stack.
−c Clears the directory stack by deleting all of the entries.
−l Produces a listing using full pathnames; the default listing format uses a tilde to de-

note the home directory.
−p Print the directory stack with one entry per line.
−v Print the directory stack with one entry per line, prefixing each entry with its index in

the stack.
+n Displays the nth entry counting from the left of the list shown by dirs when invoked

without options, starting with zero.
−n Displays the nth entry counting from the right of the list shown by dirs when invoked

without options, starting with zero.

The return value is 0 unless an invalid option is supplied or n indexes beyond the end of the di-
rectory stack.

disown [−ar] [−h] [jobspec ... | pid ...]
Without options, remove each jobspec from the table of active jobs. If jobspec is not present,
and neither the −a nor the −r option is supplied, the current job is used. If the −h option is
given, each jobspec is not removed from the table, but is marked so that SIGHUP is not sent to

62 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

the job if the shell receives a SIGHUP. If no jobspec is supplied, the −a option means to re-
move or mark all jobs; the −r option without a jobspec argument restricts operation to running
jobs. The return value is 0 unless a jobspec does not specify a valid job.

echo [−neE] [arg ...]
Output the args, separated by spaces, followed by a newline. The return status is 0 unless a
write error occurs. If −n is specified, the trailing newline is suppressed. If the −e option is
given, interpretation of the following backslash-escaped characters is enabled. The −E option
disables the interpretation of these escape characters, even on systems where they are inter-
preted by default. The xpg_echo shell option may be used to dynamically determine whether
or not echo expands these escape characters by default. echo does not interpret −− to mean
the end of options. echo interprets the following escape sequences:
\a alert (bell)
\b backspace
\c suppress further output
\e
\E an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\0nnn the eight-bit character whose value is the octal value nnn (zero to three octal digits)
\xHH the eight-bit character whose value is the hexadecimal value HH (one or two hex dig-

its)
\uHHHH

the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value
HHHH (one to four hex digits)

\UHHHHHHHH

the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value HHH-

HHHHH (one to eight hex digits)

enable [−a] [−dnps] [−f filename] [name ...]
Enable and disable builtin shell commands. Disabling a builtin allows a disk command which
has the same name as a shell builtin to be executed without specifying a full pathname, even
though the shell normally searches for builtins before disk commands. If −n is used, each
name is disabled; otherwise, names are enabled. For example, to use the test binary found via
the PATH instead of the shell builtin version, run enable -n test. The −f option means
to load the new builtin command name from shared object filename, on systems that support
dynamic loading. Bash will use the value of the BASH_LOADABLES_PATH variable as a
colon-separated list of directories in which to search for filename. The default is system-de-
pendent. The −d option will delete a builtin previously loaded with −f. If no name arguments
are given, or if the −p option is supplied, a list of shell builtins is printed. With no other op-
tion arguments, the list consists of all enabled shell builtins. If −n is supplied, only disabled
builtins are printed. If −a is supplied, the list printed includes all builtins, with an indication
of whether or not each is enabled. If −s is supplied, the output is restricted to the POSIX spe-

cial builtins. If no options are supplied and a name is not a shell builtin, enable will attempt
to load name from a shared object named name, as if the command were enable −f name

name . The return value is 0 unless a name is not a shell builtin or there is an error loading a
new builtin from a shared object.

ev al [arg ...]
The args are read and concatenated together into a single command. This command is then
read and executed by the shell, and its exit status is returned as the value of ev al. If there are
no args, or only null arguments, ev al returns 0.

exec [−cl] [−a name] [command [arguments]]
If command is specified, it replaces the shell. No new process is created. The arguments be-
come the arguments to command. If the −l option is supplied, the shell places a dash at the be-
ginning of the zeroth argument passed to command . This is what login(1) does. The −c

GNU Bash 5.2 2022 September 19 63

BASH(1) General Commands Manual BASH(1)

option causes command to be executed with an empty environment. If −a is supplied, the
shell passes name as the zeroth argument to the executed command. If command cannot be
executed for some reason, a non-interactive shell exits, unless the execfail shell option is en-
abled. In that case, it returns failure. An interactive shell returns failure if the file cannot be
executed. A subshell exits unconditionally if exec fails. If command is not specified, any
redirections take effect in the current shell, and the return status is 0. If there is a redirection
error, the return status is 1.

exit [n] Cause the shell to exit with a status of n. If n is omitted, the exit status is that of the last com-
mand executed. A trap on EXIT is executed before the shell terminates.

export [−fn] [name[=word]] ...
export −p

The supplied names are marked for automatic export to the environment of subsequently exe-
cuted commands. If the −f option is given, the names refer to functions. If no names are
given, or if the −p option is supplied, a list of names of all exported variables is printed. The
−n option causes the export property to be removed from each name. If a variable name is fol-
lowed by =word, the value of the variable is set to word. export returns an exit status of 0 un-
less an invalid option is encountered, one of the names is not a valid shell variable name, or −f
is supplied with a name that is not a function.

fc [−e ename] [−lnr] [first] [last]
fc −s [pat=rep] [cmd]

The first form selects a range of commands from first to last from the history list and displays
or edits and re-executes them. First and last may be specified as a string (to locate the last
command beginning with that string) or as a number (an index into the history list, where a
negative number is used as an offset from the current command number). When listing, a first

or last of 0 is equivalent to −1 and −0 is equivalent to the current command (usually the fc
command); otherwise 0 is equivalent to −1 and −0 is invalid. If last is not specified, it is set to
the current command for listing (so that fc −l −10 prints the last 10 commands) and to
first otherwise. If first is not specified, it is set to the previous command for editing and −16
for listing.

The −n option suppresses the command numbers when listing. The −r option reverses the or-
der of the commands. If the −l option is given, the commands are listed on standard output.
Otherwise, the editor given by ename is invoked on a file containing those commands. If
ename is not given, the value of the FCEDIT variable is used, and the value of EDITOR if
FCEDIT is not set. If neither variable is set, vi is used. When editing is complete, the edited
commands are echoed and executed.

In the second form, command is re-executed after each instance of pat is replaced by rep.
Command is interpreted the same as first above. A useful alias to use with this is r=’fc
−s’, so that typing r cc runs the last command beginning with cc and typing r re-executes
the last command.

If the first form is used, the return value is 0 unless an invalid option is encountered or first or
last specify history lines out of range. If the −e option is supplied, the return value is the
value of the last command executed or failure if an error occurs with the temporary file of
commands. If the second form is used, the return status is that of the command re-executed,
unless cmd does not specify a valid history line, in which case fc returns failure.

fg [jobspec]
Resume jobspec in the foreground, and make it the current job. If jobspec is not present, the
shell’s notion of the current job is used. The return value is that of the command placed into
the foreground, or failure if run when job control is disabled or, when run with job control en-
abled, if jobspec does not specify a valid job or jobspec specifies a job that was started with-
out job control.

getopts optstring name [arg ...]
getopts is used by shell procedures to parse positional parameters. optstring contains the op-
tion characters to be recognized; if a character is followed by a colon, the option is expected to
have an argument, which should be separated from it by white space. The colon and question

64 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

mark characters may not be used as option characters. Each time it is invoked, getopts places
the next option in the shell variable name, initializing name if it does not exist, and the index
of the next argument to be processed into the variable OPTIND. OPTIND is initialized to 1
each time the shell or a shell script is invoked. When an option requires an argument, getopts
places that argument into the variable OPTARG. The shell does not reset OPTIND automati-
cally; it must be manually reset between multiple calls to getopts within the same shell invo-
cation if a new set of parameters is to be used.

When the end of options is encountered, getopts exits with a return value greater than zero.
OPTIND is set to the index of the first non-option argument, and name is set to ?.

getopts normally parses the positional parameters, but if more arguments are supplied as arg

values, getopts parses those instead.

getopts can report errors in two ways. If the first character of optstring is a colon, silent error
reporting is used. In normal operation, diagnostic messages are printed when invalid options
or missing option arguments are encountered. If the variable OPTERR is set to 0, no error
messages will be displayed, even if the first character of optstring is not a colon.

If an invalid option is seen, getopts places ? into name and, if not silent, prints an error mes-
sage and unsets OPTARG. If getopts is silent, the option character found is placed in OP-

TARG and no diagnostic message is printed.

If a required argument is not found, and getopts is not silent, a question mark (?) is placed in
name, OPTARG is unset, and a diagnostic message is printed. If getopts is silent, then a colon
(:) is placed in name and OPTARG is set to the option character found.

getopts returns true if an option, specified or unspecified, is found. It returns false if the end
of options is encountered or an error occurs.

hash [−lr] [−p filename] [−dt] [name]
Each time hash is invoked, the full pathname of the command name is determined by search-
ing the directories in $PATH and remembered. Any previously-remembered pathname is dis-
carded. If the −p option is supplied, no path search is performed, and filename is used as the
full filename of the command. The −r option causes the shell to forget all remembered loca-
tions. The −d option causes the shell to forget the remembered location of each name. If the
−t option is supplied, the full pathname to which each name corresponds is printed. If multi-
ple name arguments are supplied with −t, the name is printed before the hashed full pathname.
The −l option causes output to be displayed in a format that may be reused as input. If no ar-
guments are given, or if only −l is supplied, information about remembered commands is
printed. The return status is true unless a name is not found or an invalid option is supplied.

help [−dms] [pattern]
Display helpful information about builtin commands. If pattern is specified, help gives de-
tailed help on all commands matching pattern; otherwise help for all the builtins and shell
control structures is printed.
−d Display a short description of each pattern

−m Display the description of each pattern in a manpage-like format
−s Display only a short usage synopsis for each pattern

The return status is 0 unless no command matches pattern.

history [n]
history −c
history −d offset

history −d start−end

history −anrw [filename]
history −p arg [arg ...]
history −s arg [arg ...]

With no options, display the command history list with line numbers. Lines listed with a *
have been modified. An argument of n lists only the last n lines. If the shell variable

GNU Bash 5.2 2022 September 19 65

BASH(1) General Commands Manual BASH(1)

HISTTIMEFORMAT is set and not null, it is used as a format string for strftime(3) to display
the time stamp associated with each displayed history entry. No intervening blank is printed
between the formatted time stamp and the history line. If filename is supplied, it is used as the
name of the history file; if not, the value of HISTFILE is used. Options, if supplied, have the
following meanings:
−c Clear the history list by deleting all the entries.
−d offset

Delete the history entry at position offset. If offset is negative, it is interpreted as rela-
tive to one greater than the last history position, so negative indices count back from
the end of the history, and an index of −1 refers to the current history -d command.

−d start−end

Delete the range of history entries between positions start and end, inclusive. Posi-
tive and negative values for start and end are interpreted as described above.

−a Append the ‘‘new’’ history lines to the history file. These are history lines entered
since the beginning of the current bash session, but not already appended to the his-
tory file.

−n Read the history lines not already read from the history file into the current history
list. These are lines appended to the history file since the beginning of the current
bash session.

−r Read the contents of the history file and append them to the current history list.
−w Write the current history list to the history file, overwriting the history file’s contents.
−p Perform history substitution on the following args and display the result on the stan-

dard output. Does not store the results in the history list. Each arg must be quoted to
disable normal history expansion.

−s Store the args in the history list as a single entry. The last command in the history
list is removed before the args are added.

If the HISTTIMEFORMAT variable is set, the time stamp information associated with each
history entry is written to the history file, marked with the history comment character. When
the history file is read, lines beginning with the history comment character followed immedi-
ately by a digit are interpreted as timestamps for the following history entry. The return value
is 0 unless an invalid option is encountered, an error occurs while reading or writing the his-
tory file, an invalid offset or range is supplied as an argument to −d, or the history expansion
supplied as an argument to −p fails.

jobs [−lnprs] [jobspec ...]
jobs −x command [args ...]

The first form lists the active jobs. The options have the following meanings:
−l List process IDs in addition to the normal information.
−n Display information only about jobs that have changed status since the user was last

notified of their status.
−p List only the process ID of the job’s process group leader.
−r Display only running jobs.
−s Display only stopped jobs.

If jobspec is given, output is restricted to information about that job. The return status is 0 un-
less an invalid option is encountered or an invalid jobspec is supplied.

If the −x option is supplied, jobs replaces any jobspec found in command or args with the
corresponding process group ID, and executes command passing it args, returning its exit sta-
tus.

kill [−s sigspec | −n signum | −sigspec] [pid | jobspec] ...
kill −l|−L [sigspec | exit_status]

Send the signal named by sigspec or signum to the processes named by pid or jobspec.
sigspec is either a case-insensitive signal name such as SIGKILL (with or without the SIG pre-
fix) or a signal number; signum is a signal number. If sigspec is not present, then SIGTERM

is assumed. An argument of −l lists the signal names. If any arguments are supplied when −l
is given, the names of the signals corresponding to the arguments are listed, and the return sta-
tus is 0. The exit_status argument to −l is a number specifying either a signal number or the
exit status of a process terminated by a signal. The −L option is equivalent to −l. kill returns
true if at least one signal was successfully sent, or false if an error occurs or an invalid option

66 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

is encountered.

let arg [arg ...]
Each arg is an arithmetic expression to be evaluated (see ARITHMETIC EVALUATION

above). If the last arg evaluates to 0, let returns 1; 0 is returned otherwise.

local [option] [name[=value] ... | −]
For each argument, a local variable named name is created, and assigned value. The option

can be any of the options accepted by declare. When local is used within a function, it causes
the variable name to have a visible scope restricted to that function and its children. If name is
−, the set of shell options is made local to the function in which local is invoked: shell options
changed using the set builtin inside the function are restored to their original values when the
function returns. The restore is effected as if a series of set commands were executed to re-
store the values that were in place before the function. With no operands, local writes a list of
local variables to the standard output. It is an error to use local when not within a function.
The return status is 0 unless local is used outside a function, an invalid name is supplied, or
name is a readonly variable.

logout Exit a login shell.

mapfile [−d delim] [−n count] [−O origin] [−s count] [−t] [−u fd] [−C callback] [−c quantum] [array]
readarray [−d delim] [−n count] [−O origin] [−s count] [−t] [−u fd] [−C callback] [−c quantum] [ar-

ray]
Read lines from the standard input into the indexed array variable array, or from file descrip-
tor fd if the −u option is supplied. The variable MAPFILE is the default array. Options, if
supplied, have the following meanings:
−d The first character of delim is used to terminate each input line, rather than newline.

If delim is the empty string, mapfile will terminate a line when it reads a NUL char-
acter.

−n Copy at most count lines. If count is 0, all lines are copied.
−O Begin assigning to array at index origin. The default index is 0.
−s Discard the first count lines read.
−t Remove a trailing delim (default newline) from each line read.
−u Read lines from file descriptor fd instead of the standard input.
−C Evaluate callback each time quantum lines are read. The −c option specifies quan-

tum.
−c Specify the number of lines read between each call to callback.

If −C is specified without −c, the default quantum is 5000. When callback is evaluated, it is
supplied the index of the next array element to be assigned and the line to be assigned to that
element as additional arguments. callback is evaluated after the line is read but before the ar-
ray element is assigned.

If not supplied with an explicit origin, mapfile will clear array before assigning to it.

mapfile returns successfully unless an invalid option or option argument is supplied, array is
invalid or unassignable, or if array is not an indexed array.

popd [−n] [+n] [−n]
Removes entries from the directory stack. The elements are numbered from 0 starting at the
first directory listed by dirs. With no arguments, popd removes the top directory from the
stack, and changes to the new top directory. Arguments, if supplied, have the following mean-
ings:
−n Suppresses the normal change of directory when removing directories from the stack,

so that only the stack is manipulated.
+n Removes the nth entry counting from the left of the list shown by dirs, starting with

zero, from the stack. For example: popd +0 removes the first directory, popd +1
the second.

−n Removes the nth entry counting from the right of the list shown by dirs, starting with
zero. For example: popd -0 removes the last directory, popd -1 the next to last.

If the top element of the directory stack is modified, and the -n option was not supplied, popd
uses the cd builtin to change to the directory at the top of the stack. If the cd fails, popd re-
turns a non-zero value.

GNU Bash 5.2 2022 September 19 67

BASH(1) General Commands Manual BASH(1)

Otherwise, popd returns false if an invalid option is encountered, the directory stack is empty,
or a non-existent directory stack entry is specified.

If the popd command is successful, bash runs dirs to show the final contents of the directory
stack, and the return status is 0.

printf [−v var] format [arguments]
Write the formatted arguments to the standard output under the control of the format. The −v
option causes the output to be assigned to the variable var rather than being printed to the
standard output.

The format is a character string which contains three types of objects: plain characters, which
are simply copied to standard output, character escape sequences, which are converted and
copied to the standard output, and format specifications, each of which causes printing of the
next successive argument. In addition to the standard printf(1) format specifications, printf
interprets the following extensions:
%b causes printf to expand backslash escape sequences in the corresponding argument

in the same way as echo −e.
%q causes printf to output the corresponding argument in a format that can be reused as

shell input.
%Q like %q, but applies any supplied precision to the argument before quoting it.
%(datefmt)T

causes printf to output the date-time string resulting from using datefmt as a format
string for strftime(3). The corresponding argument is an integer representing the
number of seconds since the epoch. Tw o special argument values may be used: −1
represents the current time, and −2 represents the time the shell was invoked. If no
argument is specified, conversion behaves as if −1 had been given. This is an excep-
tion to the usual printf behavior.

The %b, %q, and %T directives all use the field width and precision arguments from the for-
mat specification and write that many bytes from (or use that wide a field for) the expanded ar-
gument, which usually contains more characters than the original.

Arguments to non-string format specifiers are treated as C constants, except that a leading plus
or minus sign is allowed, and if the leading character is a single or double quote, the value is
the ASCII value of the following character.

The format is reused as necessary to consume all of the arguments. If the format requires
more arguments than are supplied, the extra format specifications behave as if a zero value or
null string, as appropriate, had been supplied. The return value is zero on success, non-zero
on failure.

pushd [−n] [+n] [−n]
pushd [−n] [dir]

Adds a directory to the top of the directory stack, or rotates the stack, making the new top of
the stack the current working directory. With no arguments, pushd exchanges the top two ele-
ments of the directory stack. Arguments, if supplied, have the following meanings:
−n Suppresses the normal change of directory when rotating or adding directories to the

stack, so that only the stack is manipulated.
+n Rotates the stack so that the nth directory (counting from the left of the list shown by

dirs, starting with zero) is at the top.
−n Rotates the stack so that the nth directory (counting from the right of the list shown

by dirs, starting with zero) is at the top.
dir Adds dir to the directory stack at the top

After the stack has been modified, if the −n option was not supplied, pushd uses the cd builtin
to change to the directory at the top of the stack. If the cd fails, pushd returns a non-zero
value.

Otherwise, if no arguments are supplied, pushd returns 0 unless the directory stack is empty.
When rotating the directory stack, pushd returns 0 unless the directory stack is empty or a
non-existent directory stack element is specified.

If the pushd command is successful, bash runs dirs to show the final contents of the directory

68 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

stack.

pwd [−LP]
Print the absolute pathname of the current working directory. The pathname printed contains
no symbolic links if the −P option is supplied or the −o physical option to the set builtin com-
mand is enabled. If the −L option is used, the pathname printed may contain symbolic links.
The return status is 0 unless an error occurs while reading the name of the current directory or
an invalid option is supplied.

read [−ers] [−a aname] [−d delim] [−i text] [−n nchars] [−N nchars] [−p prompt] [−t timeout] [−u fd]
[name ...]

One line is read from the standard input, or from the file descriptor fd supplied as an argument
to the −u option, split into words as described above under Word Splitting, and the first word
is assigned to the first name, the second word to the second name, and so on. If there are
more words than names, the remaining words and their intervening delimiters are assigned to
the last name. If there are fewer words read from the input stream than names, the remaining
names are assigned empty values. The characters in IFS are used to split the line into words
using the same rules the shell uses for expansion (described above under Word Splitting).
The backslash character (\) may be used to remove any special meaning for the next character
read and for line continuation. Options, if supplied, have the following meanings:
−a aname

The words are assigned to sequential indices of the array variable aname, starting at
0. aname is unset before any new values are assigned. Other name arguments are ig-
nored.

−d delim

The first character of delim is used to terminate the input line, rather than newline. If
delim is the empty string, read will terminate a line when it reads a NUL character.

−e If the standard input is coming from a terminal, readline (see READLINE above) is
used to obtain the line. Readline uses the current (or default, if line editing was not
previously active) editing settings, but uses readline’s default filename completion.

−i text If readline is being used to read the line, text is placed into the editing buffer before
editing begins.

−n nchars

read returns after reading nchars characters rather than waiting for a complete line of
input, but honors a delimiter if fewer than nchars characters are read before the de-
limiter.

−N nchars

read returns after reading exactly nchars characters rather than waiting for a com-
plete line of input, unless EOF is encountered or read times out. Delimiter charac-
ters encountered in the input are not treated specially and do not cause read to return
until nchars characters are read. The result is not split on the characters in IFS; the
intent is that the variable is assigned exactly the characters read (with the exception
of backslash; see the −r option below).

−p prompt

Display prompt on standard error, without a trailing newline, before attempting to
read any input. The prompt is displayed only if input is coming from a terminal.

−r Backslash does not act as an escape character. The backslash is considered to be part
of the line. In particular, a backslash-newline pair may not then be used as a line
continuation.

−s Silent mode. If input is coming from a terminal, characters are not echoed.
−t timeout

Cause read to time out and return failure if a complete line of input (or a specified
number of characters) is not read within timeout seconds. timeout may be a decimal
number with a fractional portion following the decimal point. This option is only ef-
fective if read is reading input from a terminal, pipe, or other special file; it has no
effect when reading from regular files. If read times out, read saves any partial input
read into the specified variable name. If timeout is 0, read returns immediately, with-
out trying to read any data. The exit status is 0 if input is available on the specified
file descriptor, or the read will return EOF, non-zero otherwise. The exit status is
greater than 128 if the timeout is exceeded.

GNU Bash 5.2 2022 September 19 69

BASH(1) General Commands Manual BASH(1)

−u fd Read input from file descriptor fd.

If no names are supplied, the line read, without the ending delimiter but otherwise unmodified,
is assigned to the variable REPLY. The exit status is zero, unless end-of-file is encountered,
read times out (in which case the status is greater than 128), a variable assignment error (such
as assigning to a readonly variable) occurs, or an invalid file descriptor is supplied as the argu-
ment to −u.

readonly [−aAf] [−p] [name[=word] ...]
The given names are marked readonly; the values of these names may not be changed by sub-
sequent assignment. If the −f option is supplied, the functions corresponding to the names are
so marked. The −a option restricts the variables to indexed arrays; the −A option restricts the
variables to associative arrays. If both options are supplied, −A takes precedence. If no name

arguments are given, or if the −p option is supplied, a list of all readonly names is printed.
The other options may be used to restrict the output to a subset of the set of readonly names.
The −p option causes output to be displayed in a format that may be reused as input. If a vari-
able name is followed by =word, the value of the variable is set to word. The return status is 0
unless an invalid option is encountered, one of the names is not a valid shell variable name, or
−f is supplied with a name that is not a function.

return [n]
Causes a function to stop executing and return the value specified by n to its caller. If n is
omitted, the return status is that of the last command executed in the function body. If return
is executed by a trap handler, the last command used to determine the status is the last com-
mand executed before the trap handler. If return is executed during a DEBUG trap, the last
command used to determine the status is the last command executed by the trap handler before
return was inv oked. If return is used outside a function, but during execution of a script by
the . (source) command, it causes the shell to stop executing that script and return either n or
the exit status of the last command executed within the script as the exit status of the script. If
n is supplied, the return value is its least significant 8 bits. The return status is non-zero if re-
turn is supplied a non-numeric argument, or is used outside a function and not during execu-
tion of a script by . or source. Any command associated with the RETURN trap is executed
before execution resumes after the function or script.

set [−abefhkmnptuvxBCEHPT] [−o option−name] [−−] [−] [arg ...]
set [+abefhkmnptuvxBCEHPT] [+o option−name] [−−] [−] [arg ...]

Without options, display the name and value of each shell variable in a format that can be
reused as input for setting or resetting the currently-set variables. Read-only variables cannot
be reset. In posix mode, only shell variables are listed. The output is sorted according to the
current locale. When options are specified, they set or unset shell attributes. Any arguments
remaining after option processing are treated as values for the positional parameters and are
assigned, in order, to $1, $2, ... $n. Options, if specified, have the following meanings:
−a Each variable or function that is created or modified is given the export attribute and

marked for export to the environment of subsequent commands.
−b Report the status of terminated background jobs immediately, rather than before the

next primary prompt. This is effective only when job control is enabled.
−e Exit immediately if a pipeline (which may consist of a single simple command), a

list, or a compound command (see SHELL GRAMMAR above), exits with a non-
zero status. The shell does not exit if the command that fails is part of the command
list immediately following a while or until keyword, part of the test following the if
or elif reserved words, part of any command executed in a && or || list except the
command following the final && or ||, any command in a pipeline but the last, or if
the command’s return value is being inverted with !. If a compound command other
than a subshell returns a non-zero status because a command failed while −e was be-
ing ignored, the shell does not exit. A trap on ERR, if set, is executed before the
shell exits. This option applies to the shell environment and each subshell environ-
ment separately (see COMMAND EXECUTION ENVIRONMENT above), and may
cause subshells to exit before executing all the commands in the subshell.

If a compound command or shell function executes in a context where −e is being
ignored, none of the commands executed within the compound command or func-
tion body will be affected by the −e setting, even if −e is set and a command returns

70 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

a failure status. If a compound command or shell function sets −e while executing
in a context where −e is ignored, that setting will not have any effect until the com-
pound command or the command containing the function call completes.

−f Disable pathname expansion.
−h Remember the location of commands as they are looked up for execution. This is

enabled by default.
−k All arguments in the form of assignment statements are placed in the environment

for a command, not just those that precede the command name.
−m Monitor mode. Job control is enabled. This option is on by default for interactive

shells on systems that support it (see JOB CONTROL above). All processes run in a
separate process group. When a background job completes, the shell prints a line
containing its exit status.

−n Read commands but do not execute them. This may be used to check a shell script
for syntax errors. This is ignored by interactive shells.

−o option−name

The option−name can be one of the following:
allexport

Same as −a.
braceexpand

Same as −B.
emacs Use an emacs-style command line editing interface. This is enabled by

default when the shell is interactive, unless the shell is started with the
−−noediting option. This also affects the editing interface used for read
−e.

errexit Same as −e.
errtrace Same as −E.
functrace

Same as −T.
hashall Same as −h.
histexpand

Same as −H.
history Enable command history, as described above under HISTORY. This op-

tion is on by default in interactive shells.
ignoreeof

The effect is as if the shell command IGNOREEOF=10 had been executed
(see Shell Variables above).

keyword
Same as −k.

monitor Same as −m.
noclobber

Same as −C.
noexec Same as −n.
noglob Same as −f.
nolog Currently ignored.
notify Same as −b.
nounset Same as −u.
onecmd Same as −t.
physical Same as −P.
pipefail If set, the return value of a pipeline is the value of the last (rightmost)

command to exit with a non-zero status, or zero if all commands in the
pipeline exit successfully. This option is disabled by default.

posix Change the behavior of bash where the default operation differs from the
POSIX standard to match the standard (posix mode). See SEE ALSO be-
low for a reference to a document that details how posix mode affects
bash’s behavior.

privileged
Same as −p.

GNU Bash 5.2 2022 September 19 71

BASH(1) General Commands Manual BASH(1)

verbose Same as −v.
vi Use a vi-style command line editing interface. This also affects the edit-

ing interface used for read −e.
xtrace Same as −x.

If −o is supplied with no option−name, the values of the current options are printed.
If +o is supplied with no option−name, a series of set commands to recreate the cur-
rent option settings is displayed on the standard output.

−p Turn on privileged mode. In this mode, the $ENV and $BASH_ENV files are not
processed, shell functions are not inherited from the environment, and the SHEL-

LOPTS, BASHOPTS, CDPATH, and GLOBIGNORE variables, if they appear in the
environment, are ignored. If the shell is started with the effective user (group) id not
equal to the real user (group) id, and the −p option is not supplied, these actions are
taken and the effective user id is set to the real user id. If the −p option is supplied
at startup, the effective user id is not reset. Turning this option off causes the effec-
tive user and group ids to be set to the real user and group ids.

−r Enable restricted shell mode. This option cannot be unset once it has been set.
−t Exit after reading and executing one command.
−u Treat unset variables and parameters other than the special parameters "@" and "*",

or array variables subscripted with "@" or "*", as an error when performing parame-
ter expansion. If expansion is attempted on an unset variable or parameter, the shell
prints an error message, and, if not interactive, exits with a non-zero status.

−v Print shell input lines as they are read.
−x After expanding each simple command, for command, case command, select com-

mand, or arithmetic for command, display the expanded value of PS4, followed by
the command and its expanded arguments or associated word list.

−B The shell performs brace expansion (see Brace Expansion above). This is on by
default.

−C If set, bash does not overwrite an existing file with the >, >&, and <> redirection
operators. This may be overridden when creating output files by using the redirec-
tion operator >| instead of >.

−E If set, any trap on ERR is inherited by shell functions, command substitutions, and
commands executed in a subshell environment. The ERR trap is normally not in-
herited in such cases.

−H Enable ! style history substitution. This option is on by default when the shell is in-
teractive.

−P If set, the shell does not resolve symbolic links when executing commands such as
cd that change the current working directory. It uses the physical directory structure
instead. By default, bash follows the logical chain of directories when performing
commands which change the current directory.

−T If set, any traps on DEBUG and RETURN are inherited by shell functions, com-
mand substitutions, and commands executed in a subshell environment. The DE-
BUG and RETURN traps are normally not inherited in such cases.

−− If no arguments follow this option, then the positional parameters are unset. Other-
wise, the positional parameters are set to the args, even if some of them begin with a
−.

− Signal the end of options, cause all remaining args to be assigned to the positional
parameters. The −x and −v options are turned off. If there are no args, the posi-
tional parameters remain unchanged.

The options are off by default unless otherwise noted. Using + rather than − causes these op-
tions to be turned off. The options can also be specified as arguments to an invocation of the
shell. The current set of options may be found in $−. The return status is always true unless
an invalid option is encountered.

shift [n]
The positional parameters from n+1 ... are renamed to $1 Parameters represented by the
numbers $# down to $#−n+1 are unset. n must be a non-negative number less than or equal to
$#. If n is 0, no parameters are changed. If n is not given, it is assumed to be 1. If n is
greater than $#, the positional parameters are not changed. The return status is greater than

72 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

zero if n is greater than $# or less than zero; otherwise 0.

shopt [−pqsu] [−o] [optname ...]
Toggle the values of settings controlling optional shell behavior. The settings can be either
those listed below, or, if the −o option is used, those available with the −o option to the set
builtin command. With no options, or with the −p option, a list of all settable options is dis-
played, with an indication of whether or not each is set; if optnames are supplied, the output is
restricted to those options. The −p option causes output to be displayed in a form that may be
reused as input. Other options have the following meanings:
−s Enable (set) each optname.
−u Disable (unset) each optname.
−q Suppresses normal output (quiet mode); the return status indicates whether the opt-

name is set or unset. If multiple optname arguments are given with −q, the return
status is zero if all optnames are enabled; non-zero otherwise.

−o Restricts the values of optname to be those defined for the −o option to the set
builtin.

If either −s or −u is used with no optname arguments, shopt shows only those options which
are set or unset, respectively. Unless otherwise noted, the shopt options are disabled (unset)
by default.

The return status when listing options is zero if all optnames are enabled, non-zero otherwise.
When setting or unsetting options, the return status is zero unless an optname is not a valid
shell option.

The list of shopt options is:

assoc_expand_once
If set, the shell suppresses multiple evaluation of associative array subscripts during
arithmetic expression evaluation, while executing builtins that can perform variable
assignments, and while executing builtins that perform array dereferencing.

autocd If set, a command name that is the name of a directory is executed as if it were the
argument to the cd command. This option is only used by interactive shells.

cdable_vars
If set, an argument to the cd builtin command that is not a directory is assumed to be
the name of a variable whose value is the directory to change to.

cdspell If set, minor errors in the spelling of a directory component in a cd command will be
corrected. The errors checked for are transposed characters, a missing character,
and one character too many. If a correction is found, the corrected filename is
printed, and the command proceeds. This option is only used by interactive shells.

checkhash
If set, bash checks that a command found in the hash table exists before trying to
execute it. If a hashed command no longer exists, a normal path search is per-
formed.

checkjobs
If set, bash lists the status of any stopped and running jobs before exiting an interac-
tive shell. If any jobs are running, this causes the exit to be deferred until a second
exit is attempted without an intervening command (see JOB CONTROL above). The
shell always postpones exiting if any jobs are stopped.

checkwinsize
If set, bash checks the window size after each external (non-builtin) command and,
if necessary, updates the values of LINES and COLUMNS. This option is enabled by
default.

cmdhist If set, bash attempts to save all lines of a multiple-line command in the same history
entry. This allows easy re-editing of multi-line commands. This option is enabled
by default, but only has an effect if command history is enabled, as described above
under HISTORY.

compat31
compat32
compat40

GNU Bash 5.2 2022 September 19 73

BASH(1) General Commands Manual BASH(1)

compat41
compat42
compat43
compat44
compat50

These control aspects of the shell’s compatibility mode (see SHELL COMPATIBIL-

ITY MODE below).

complete_fullquote
If set, bash quotes all shell metacharacters in filenames and directory names when
performing completion. If not set, bash removes metacharacters such as the dollar
sign from the set of characters that will be quoted in completed filenames when
these metacharacters appear in shell variable references in words to be completed.
This means that dollar signs in variable names that expand to directories will not be
quoted; however, any dollar signs appearing in filenames will not be quoted, either.
This is active only when bash is using backslashes to quote completed filenames.
This variable is set by default, which is the default bash behavior in versions through
4.2.

direxpand
If set, bash replaces directory names with the results of word expansion when per-
forming filename completion. This changes the contents of the readline editing
buffer. If not set, bash attempts to preserve what the user typed.

dirspell If set, bash attempts spelling correction on directory names during word completion
if the directory name initially supplied does not exist.

dotglob If set, bash includes filenames beginning with a ‘.’ in the results of pathname expan-
sion. The filenames ‘‘.’’ and ‘‘..’’ must always be matched explicitly, even if dot-
glob is set.

execfail If set, a non-interactive shell will not exit if it cannot execute the file specified as an
argument to the exec builtin command. An interactive shell does not exit if exec
fails.

expand_aliases
If set, aliases are expanded as described above under ALIASES. This option is en-
abled by default for interactive shells.

extdebug
If set at shell invocation, or in a shell startup file, arrange to execute the debugger
profile before the shell starts, identical to the −−debugger option. If set after invo-
cation, behavior intended for use by debuggers is enabled:

1. The −F option to the declare builtin displays the source file name and line
number corresponding to each function name supplied as an argument.

2. If the command run by the DEBUG trap returns a non-zero value, the next
command is skipped and not executed.

3. If the command run by the DEBUG trap returns a value of 2, and the shell
is executing in a subroutine (a shell function or a shell script executed by
the . or source builtins), the shell simulates a call to return.

4. BASH_ARGC and BASH_ARGV are updated as described in their descrip-
tions above).

5. Function tracing is enabled: command substitution, shell functions, and
subshells invoked with (command) inherit the DEBUG and RETURN
traps.

6. Error tracing is enabled: command substitution, shell functions, and sub-
shells invoked with (command) inherit the ERR trap.

extglob If set, the extended pattern matching features described above under Pathname Ex-
pansion are enabled.

74 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

extquote
If set, $'string' and $"string" quoting is performed within ${parameter} expansions
enclosed in double quotes. This option is enabled by default.

failglob If set, patterns which fail to match filenames during pathname expansion result in an
expansion error.

force_fignore
If set, the suffixes specified by the FIGNORE shell variable cause words to be ig-
nored when performing word completion even if the ignored words are the only pos-
sible completions. See SHELL VARIABLES above for a description of FIGNORE.

This option is enabled by default.

globasciiranges
If set, range expressions used in pattern matching bracket expressions (see Pattern

Matching above) behave as if in the traditional C locale when performing compar-
isons. That is, the current locale’s collating sequence is not taken into account, so b
will not collate between A and B, and upper-case and lower-case ASCII characters
will collate together.

globskipdots
If set, pathname expansion will never match the filenames ‘‘.’’ and ‘‘..’’, even if the
pattern begins with a ‘‘.’’. This option is enabled by default.

globstar If set, the pattern ** used in a pathname expansion context will match all files and
zero or more directories and subdirectories. If the pattern is followed by a /, only di-
rectories and subdirectories match.

gnu_errfmt
If set, shell error messages are written in the standard GNU error message format.

histappend
If set, the history list is appended to the file named by the value of the HISTFILE

variable when the shell exits, rather than overwriting the file.

histreedit
If set, and readline is being used, a user is given the opportunity to re-edit a failed
history substitution.

histverify
If set, and readline is being used, the results of history substitution are not immedi-
ately passed to the shell parser. Instead, the resulting line is loaded into the readline
editing buffer, allowing further modification.

hostcomplete
If set, and readline is being used, bash will attempt to perform hostname comple-
tion when a word containing a @ is being completed (see Completing under READ-

LINE above). This is enabled by default.

huponexit
If set, bash will send SIGHUP to all jobs when an interactive login shell exits.

inherit_errexit
If set, command substitution inherits the value of the errexit option, instead of un-
setting it in the subshell environment. This option is enabled when posix mode is
enabled.

interactive_comments
If set, allow a word beginning with # to cause that word and all remaining characters
on that line to be ignored in an interactive shell (see COMMENTS above). This op-
tion is enabled by default.

lastpipe If set, and job control is not active, the shell runs the last command of a pipeline not
executed in the background in the current shell environment.

lithist If set, and the cmdhist option is enabled, multi-line commands are saved to the his-
tory with embedded newlines rather than using semicolon separators where possible.

GNU Bash 5.2 2022 September 19 75

BASH(1) General Commands Manual BASH(1)

localvar_inherit
If set, local variables inherit the value and attributes of a variable of the same name
that exists at a previous scope before any new value is assigned. The nameref at-
tribute is not inherited.

localvar_unset
If set, calling unset on local variables in previous function scopes marks them so
subsequent lookups find them unset until that function returns. This is identical to
the behavior of unsetting local variables at the current function scope.

login_shell
The shell sets this option if it is started as a login shell (see INVOCATION above).
The value may not be changed.

mailwarn
If set, and a file that bash is checking for mail has been accessed since the last time
it was checked, the message ‘‘The mail in mailfile has been read’’ is displayed.

no_empty_cmd_completion
If set, and readline is being used, bash will not attempt to search the PATH for pos-
sible completions when completion is attempted on an empty line.

nocaseglob
If set, bash matches filenames in a case−insensitive fashion when performing path-
name expansion (see Pathname Expansion above).

nocasematch
If set, bash matches patterns in a case−insensitive fashion when performing match-
ing while executing case or [[conditional commands, when performing pattern sub-
stitution word expansions, or when filtering possible completions as part of pro-
grammable completion.

noexpand_translation
If set, bash encloses the translated results of $"..." quoting in single quotes instead
of double quotes. If the string is not translated, this has no effect.

nullglob
If set, bash allows patterns which match no files (see Pathname Expansion above)
to expand to a null string, rather than themselves.

patsub_replacement
If set, bash expands occurrences of & in the replacement string of pattern substitu-
tion to the text matched by the pattern, as described under Parameter Expansion
above. This option is enabled by default.

progcomp
If set, the programmable completion facilities (see Programmable Completion
above) are enabled. This option is enabled by default.

progcomp_alias
If set, and programmable completion is enabled, bash treats a command name that
doesn’t hav e any completions as a possible alias and attempts alias expansion. If it
has an alias, bash attempts programmable completion using the command word re-
sulting from the expanded alias.

promptvars
If set, prompt strings undergo parameter expansion, command substitution, arith-
metic expansion, and quote removal after being expanded as described in PROMPT-

ING above. This option is enabled by default.

restricted_shell
The shell sets this option if it is started in restricted mode (see RESTRICTED

SHELL below). The value may not be changed. This is not reset when the startup
files are executed, allowing the startup files to discover whether or not a shell is re-
stricted.

76 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

shift_verbose
If set, the shift builtin prints an error message when the shift count exceeds the num-
ber of positional parameters.

sourcepath
If set, the . (source) builtin uses the value of PATH to find the directory containing
the file supplied as an argument. This option is enabled by default.

varredir_close
If set, the shell automatically closes file descriptors assigned using the {varname}

redirection syntax (see REDIRECTION above) instead of leaving them open when
the command completes.

xpg_echo
If set, the echo builtin expands backslash-escape sequences by default.

suspend [−f]
Suspend the execution of this shell until it receives a SIGCONT signal. A login shell, or a
shell without job control enabled, cannot be suspended; the −f option can be used to override
this and force the suspension. The return status is 0 unless the shell is a login shell or job con-
trol is not enabled and −f is not supplied.

test expr

[expr] Return a status of 0 (true) or 1 (false) depending on the evaluation of the conditional expres-
sion expr. Each operator and operand must be a separate argument. Expressions are com-
posed of the primaries described above under CONDITIONAL EXPRESSIONS. test does not
accept any options, nor does it accept and ignore an argument of −− as signifying the end of
options.

Expressions may be combined using the following operators, listed in decreasing order of
precedence. The evaluation depends on the number of arguments; see below. Operator prece-
dence is used when there are five or more arguments.
! expr True if expr is false.
(expr) Returns the value of expr. This may be used to override the normal precedence of

operators.
expr1 −a expr2

True if both expr1 and expr2 are true.
expr1 −o expr2

True if either expr1 or expr2 is true.

test and [evaluate conditional expressions using a set of rules based on the number of argu-
ments.

0 arguments
The expression is false.

1 argument
The expression is true if and only if the argument is not null.

2 arguments
If the first argument is !, the expression is true if and only if the second argument is
null. If the first argument is one of the unary conditional operators listed above under
CONDITIONAL EXPRESSIONS, the expression is true if the unary test is true. If the
first argument is not a valid unary conditional operator, the expression is false.

3 arguments
The following conditions are applied in the order listed. If the second argument is
one of the binary conditional operators listed above under CONDITIONAL EXPRES-

SIONS, the result of the expression is the result of the binary test using the first and
third arguments as operands. The −a and −o operators are considered binary opera-
tors when there are three arguments. If the first argument is !, the value is the nega-
tion of the two-argument test using the second and third arguments. If the first argu-
ment is exactly (and the third argument is exactly), the result is the one-argument
test of the second argument. Otherwise, the expression is false.

GNU Bash 5.2 2022 September 19 77

BASH(1) General Commands Manual BASH(1)

4 arguments
The following conditions are applied in the order listed. If the first argument is !, the
result is the negation of the three-argument expression composed of the remaining ar-
guments. the two-argument test using the second and third arguments. If the first ar-
gument is exactly (and the fourth argument is exactly), the result is the two-argu-
ment test of the second and third arguments. Otherwise, the expression is parsed and
evaluated according to precedence using the rules listed above.

5 or more arguments
The expression is parsed and evaluated according to precedence using the rules listed
above.

When used with test or [, the < and > operators sort lexicographically using ASCII ordering.

times Print the accumulated user and system times for the shell and for processes run from the shell.
The return status is 0.

trap [−lp] [[arg] sigspec ...]
The command arg is to be read and executed when the shell receives signal(s) sigspec. If arg

is absent (and there is a single sigspec) or −, each specified signal is reset to its original dispo-
sition (the value it had upon entrance to the shell). If arg is the null string the signal specified
by each sigspec is ignored by the shell and by the commands it invokes. If arg is not present
and −p has been supplied, then the trap commands associated with each sigspec are displayed.
If no arguments are supplied or if only −p is given, trap prints the list of commands associ-
ated with each signal. The −l option causes the shell to print a list of signal names and their
corresponding numbers. Each sigspec is either a signal name defined in <signal.h>, or a sig-
nal number. Signal names are case insensitive and the SIG prefix is optional.

If a sigspec is EXIT (0) the command arg is executed on exit from the shell. If a sigspec is
DEBUG, the command arg is executed before every simple command, for command, case

command, select command, every arithmetic for command, and before the first command exe-
cutes in a shell function (see SHELL GRAMMAR above). Refer to the description of the
extdebug option to the shopt builtin for details of its effect on the DEBUG trap. If a sigspec

is RETURN, the command arg is executed each time a shell function or a script executed with
the . or source builtins finishes executing.

If a sigspec is ERR, the command arg is executed whenever a pipeline (which may consist of
a single simple command), a list, or a compound command returns a non−zero exit status, sub-
ject to the following conditions. The ERR trap is not executed if the failed command is part of
the command list immediately following a while or until keyword, part of the test in an if

statement, part of a command executed in a && or || list except the command following the fi-
nal && or ||, any command in a pipeline but the last, or if the command’s return value is being
inverted using !. These are the same conditions obeyed by the errexit (−e) option.

Signals ignored upon entry to the shell cannot be trapped or reset. Trapped signals that are not
being ignored are reset to their original values in a subshell or subshell environment when one
is created. The return status is false if any sigspec is invalid; otherwise trap returns true.

type [−aftpP] name [name ...]
With no options, indicate how each name would be interpreted if used as a command name. If
the −t option is used, type prints a string which is one of alias, keyword , function, builtin, or
file if name is an alias, shell reserved word, function, builtin, or disk file, respectively. If the
name is not found, then nothing is printed, and an exit status of false is returned. If the −p op-
tion is used, type either returns the name of the disk file that would be executed if name were
specified as a command name, or nothing if type -t name would not return file. The −P
option forces a PATH search for each name, even if type -t name would not return file. If
a command is hashed, −p and −P print the hashed value, which is not necessarily the file that
appears first in PATH. If the −a option is used, type prints all of the places that contain an exe-
cutable named name. This includes aliases and functions, if and only if the −p option is not
also used. The table of hashed commands is not consulted when using −a. The −f option sup-
presses shell function lookup, as with the command builtin. type returns true if all of the ar-
guments are found, false if any are not found.

78 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

ulimit [−HS] −a
ulimit [−HS] [−bcdefiklmnpqrstuvxPRT [limit]]

Provides control over the resources available to the shell and to processes started by it, on sys-
tems that allow such control. The −H and −S options specify that the hard or soft limit is set
for the given resource. A hard limit cannot be increased by a non-root user once it is set; a
soft limit may be increased up to the value of the hard limit. If neither −H nor −S is specified,
both the soft and hard limits are set. The value of limit can be a number in the unit specified
for the resource or one of the special values hard, soft, or unlimited, which stand for the cur-
rent hard limit, the current soft limit, and no limit, respectively. If limit is omitted, the current
value of the soft limit of the resource is printed, unless the −H option is given. When more
than one resource is specified, the limit name and unit, if appropriate, are printed before the
value. Other options are interpreted as follows:
−a All current limits are reported; no limits are set
−b The maximum socket buffer size
−c The maximum size of core files created
−d The maximum size of a process’s data segment
−e The maximum scheduling priority ("nice")
−f The maximum size of files written by the shell and its children
−i The maximum number of pending signals
−k The maximum number of kqueues that may be allocated
−l The maximum size that may be locked into memory
−m The maximum resident set size (many systems do not honor this limit)
−n The maximum number of open file descriptors (most systems do not allow this value

to be set)
−p The pipe size in 512-byte blocks (this may not be set)
−q The maximum number of bytes in POSIX message queues
−r The maximum real-time scheduling priority
−s The maximum stack size
−t The maximum amount of cpu time in seconds
−u The maximum number of processes available to a single user
−v The maximum amount of virtual memory available to the shell and, on some systems,

to its children
−x The maximum number of file locks
−P The maximum number of pseudoterminals
−R The maximum time a real-time process can run before blocking, in microseconds
−T The maximum number of threads

If limit is given, and the −a option is not used, limit is the new value of the specified resource.
If no option is given, then −f is assumed. Values are in 1024-byte increments, except for −t,
which is in seconds; −R, which is in microseconds; −p, which is in units of 512-byte blocks;
−P, −T, −b, −k, −n, and −u, which are unscaled values; and, when in posix mode, −c and −f,
which are in 512-byte increments. The return status is 0 unless an invalid option or argument
is supplied, or an error occurs while setting a new limit.

umask [−p] [−S] [mode]
The user file-creation mask is set to mode. If mode begins with a digit, it is interpreted as an
octal number; otherwise it is interpreted as a symbolic mode mask similar to that accepted by
chmod(1). If mode is omitted, the current value of the mask is printed. The −S option causes
the mask to be printed in symbolic form; the default output is an octal number. If the −p op-
tion is supplied, and mode is omitted, the output is in a form that may be reused as input. The
return status is 0 if the mode was successfully changed or if no mode argument was supplied,
and false otherwise.

unalias [−a] [name ...]
Remove each name from the list of defined aliases. If −a is supplied, all alias definitions are
removed. The return value is true unless a supplied name is not a defined alias.

unset [−fv] [−n] [name ...]
For each name, remove the corresponding variable or function. If the −v option is given, each
name refers to a shell variable, and that variable is removed. Read-only variables may not be
unset. If −f is specified, each name refers to a shell function, and the function definition is

GNU Bash 5.2 2022 September 19 79

BASH(1) General Commands Manual BASH(1)

removed. If the −n option is supplied, and name is a variable with the nameref attribute, name

will be unset rather than the variable it references. −n has no effect if the −f option is sup-
plied. If no options are supplied, each name refers to a variable; if there is no variable by that
name, a function with that name, if any, is unset. Each unset variable or function is removed
from the environment passed to subsequent commands. If any of BASH_ALIASES,

BASH_ARGV0, BASH_CMDS, BASH_COMMAND, BASH_SUBSHELL, BASHPID,

COMP_WORDBREAKS, DIRSTACK, EPOCHREALTIME, EPOCHSECONDS, FUNCNAME,

GROUPS, HISTCMD, LINENO, RANDOM, SECONDS, or SRANDOM are unset, they lose their
special properties, even if they are subsequently reset. The exit status is true unless a name is
readonly or may not be unset.

wait [−fn] [−p varname] [id ...]
Wait for each specified child process and return its termination status. Each id may be a
process ID or a job specification; if a job spec is given, all processes in that job’s pipeline are
waited for. If id is not given, wait waits for all running background jobs and the last-executed
process substitution, if its process id is the same as $!, and the return status is zero. If the −n
option is supplied, wait waits for a single job from the list of ids or, if no ids are supplied, any
job, to complete and returns its exit status. If none of the supplied arguments is a child of the
shell, or if no arguments are supplied and the shell has no unwaited-for children, the exit status
is 127. If the −p option is supplied, the process or job identifier of the job for which the exit
status is returned is assigned to the variable varname named by the option argument. The
variable will be unset initially, before any assignment. This is useful only when the −n option
is supplied. Supplying the −f option, when job control is enabled, forces wait to wait for id to
terminate before returning its status, instead of returning when it changes status. If id speci-
fies a non-existent process or job, the return status is 127. If wait is interrupted by a signal,
the return status will be greater than 128, as described under SIGNALS above. Otherwise, the
return status is the exit status of the last process or job waited for.

SHELL COMPATIBILITY MODE
Bash-4.0 introduced the concept of a shell compatibility level, specified as a set of options to the shopt
builtin (compat31, compat32, compat40, compat41, and so on). There is only one current compati-
bility level -- each option is mutually exclusive. The compatibility level is intended to allow users to
select behavior from previous versions that is incompatible with newer versions while they migrate
scripts to use current features and behavior. It’s intended to be a temporary solution.

This section does not mention behavior that is standard for a particular version (e.g., setting compat32
means that quoting the rhs of the regexp matching operator quotes special regexp characters in the
word, which is default behavior in bash-3.2 and subsequent versions).

If a user enables, say, compat32, it may affect the behavior of other compatibility levels up to and in-
cluding the current compatibility level. The idea is that each compatibility level controls behavior that
changed in that version of bash, but that behavior may have been present in earlier versions. For in-
stance, the change to use locale-based comparisons with the [[command came in bash-4.1, and earlier
versions used ASCII-based comparisons, so enabling compat32 will enable ASCII-based comparisons
as well. That granularity may not be sufficient for all uses, and as a result users should employ compat-
ibility levels carefully. Read the documentation for a particular feature to find out the current behavior.

Bash-4.3 introduced a new shell variable: BASH_COMPAT. The value assigned to this variable (a deci-
mal version number like 4.2, or an integer corresponding to the compatNN option, like 42) determines
the compatibility level.

Starting with bash-4.4, Bash has begun deprecating older compatibility levels. Eventually, the options
will be removed in favor of BASH_COMPAT.

Bash-5.0 is the final version for which there will be an individual shopt option for the previous version.
Users should use BASH_COMPAT on bash-5.0 and later versions.

The following table describes the behavior changes controlled by each compatibility level setting. The
compatNN tag is used as shorthand for setting the compatibility level to NN using one of the following
mechanisms. For versions prior to bash-5.0, the compatibility level may be set using the corresponding
compatNN shopt option. For bash-4.3 and later versions, the BASH_COMPAT variable is preferred,
and it is required for bash-5.1 and later versions.

80 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

compat31
• quoting the rhs of the [[command’s regexp matching operator (=˜) has no special ef-

fect

compat32
• interrupting a command list such as "a ; b ; c" causes the execution of the next com-

mand in the list (in bash-4.0 and later versions, the shell acts as if it received the in-
terrupt, so interrupting one command in a list aborts the execution of the entire list)

compat40
• the < and > operators to the [[command do not consider the current locale when

comparing strings; they use ASCII ordering. Bash versions prior to bash-4.1 use
ASCII collation and strcmp(3); bash-4.1 and later use the current locale’s collation
sequence and strcoll(3).

compat41
• in posix mode, time may be followed by options and still be recognized as a reserved

word (this is POSIX interpretation 267)
• in posix mode, the parser requires that an even number of single quotes occur in the

word portion of a double-quoted parameter expansion and treats them specially, so
that characters within the single quotes are considered quoted (this is POSIX inter-
pretation 221)

compat42
• the replacement string in double-quoted pattern substitution does not undergo quote

removal, as it does in versions after bash-4.2
• in posix mode, single quotes are considered special when expanding the word portion

of a double-quoted parameter expansion and can be used to quote a closing brace or
other special character (this is part of POSIX interpretation 221); in later versions,
single quotes are not special within double-quoted word expansions

compat43
• the shell does not print a warning message if an attempt is made to use a quoted com-

pound assignment as an argument to declare (e.g., declare -a foo='(1 2)'). Later ver-
sions warn that this usage is deprecated

• word expansion errors are considered non-fatal errors that cause the current com-
mand to fail, even in posix mode (the default behavior is to make them fatal errors
that cause the shell to exit)

• when executing a shell function, the loop state (while/until/etc.) is not reset, so
break or continue in that function will break or continue loops in the calling context.
Bash-4.4 and later reset the loop state to prevent this

compat44
• the shell sets up the values used by BASH_ARGV and BASH_ARGC so they can ex-

pand to the shell’s positional parameters even if extended debugging mode is not en-
abled

• a subshell inherits loops from its parent context, so break or continue will cause the
subshell to exit. Bash-5.0 and later reset the loop state to prevent the exit

• variable assignments preceding builtins like export and readonly that set attributes
continue to affect variables with the same name in the calling environment even if the
shell is not in posix mode

compat50
• Bash-5.1 changed the way $RANDOM is generated to introduce slightly more ran-

domness. If the shell compatibility level is set to 50 or lower, it rev erts to the method
from bash-5.0 and previous versions, so seeding the random number generator by as-
signing a value to RANDOM will produce the same sequence as in bash-5.0

• If the command hash table is empty, bash versions prior to bash-5.1 printed an infor-
mational message to that effect, even when producing output that can be reused as in-
put. Bash-5.1 suppresses that message when the −l option is supplied.

GNU Bash 5.2 2022 September 19 81

BASH(1) General Commands Manual BASH(1)

compat51
• The unset builtin treats attempts to unset array subscripts @ and * differently de-

pending on whether the array is indexed or associative, and differently than in previ-
ous versions.

RESTRICTED SHELL
If bash is started with the name rbash, or the −r option is supplied at invocation, the shell becomes re-
stricted. A restricted shell is used to set up an environment more controlled than the standard shell. It
behaves identically to bash with the exception that the following are disallowed or not performed:

• changing directories with cd

• setting or unsetting the values of SHELL, PATH, HISTFILE, ENV, or BASH_ENV

• specifying command names containing /

• specifying a filename containing a / as an argument to the . builtin command

• specifying a filename containing a slash as an argument to the history builtin command

• specifying a filename containing a slash as an argument to the −p option to the hash builtin
command

• importing function definitions from the shell environment at startup

• parsing the value of SHELLOPTS from the shell environment at startup

• redirecting output using the >, >|, <>, >&, &>, and >> redirection operators

• using the exec builtin command to replace the shell with another command

• adding or deleting builtin commands with the −f and −d options to the enable builtin com-
mand

• using the enable builtin command to enable disabled shell builtins

• specifying the −p option to the command builtin command

• turning off restricted mode with set +r or shopt -u restricted_shell.

These restrictions are enforced after any startup files are read.

When a command that is found to be a shell script is executed (see COMMAND EXECUTION above),
rbash turns off any restrictions in the shell spawned to execute the script.

SEE ALSO
Bash Reference Manual, Brian Fox and Chet Ramey
The Gnu Readline Library, Brian Fox and Chet Ramey
The Gnu History Library, Brian Fox and Chet Ramey
Portable Operating System Interface (POSIX) Part 2: Shell and Utilities, IEEE --

http://pubs.opengroup.org/onlinepubs/9699919799/
http://tiswww.case.edu/˜chet/bash/POSIX -- a description of posix mode
sh(1), ksh(1), csh(1)
emacs(1), vi(1)
readline(3)

FILES
/bin/bash

The bash executable
/etc/profile

The systemwide initialization file, executed for login shells
/etc/bash.bashrc

The systemwide per-interactive-shell startup file
/etc/bash.bash.logout

The systemwide login shell cleanup file, executed when a login shell exits
˜/.bash_profile

The personal initialization file, executed for login shells
˜/.bashrc

The individual per-interactive-shell startup file

82 2022 September 19 GNU Bash 5.2

BASH(1) General Commands Manual BASH(1)

˜/.bash_logout

The individual login shell cleanup file, executed when a login shell exits
˜/.bash_history

The default value of HISTFILE, the file in which bash saves the command history
˜/.inputrc

Individual readline initialization file

AUTHORS
Brian Fox, Free Software Foundation
bfox@gnu.org

Chet Ramey, Case Western Reserve University
chet.ramey@case.edu

BUG REPORTS
If you find a bug in bash, you should report it. But first, you should make sure that it really is a bug,
and that it appears in the latest version of bash. The latest version is always available from
ftp://ftp.gnu.org/pub/gnu/bash/ and http://git.savannah.gnu.org/cgit/bash.git/snapshot/bash-mas-

ter.tar.gz.

Once you have determined that a bug actually exists, use the bashbug command to submit a bug report.
If you have a fix, you are encouraged to mail that as well! Suggestions and ‘philosophical’ bug reports
may be mailed to bug-bash@gnu.org or posted to the Usenet newsgroup gnu.bash.bug.

ALL bug reports should include:

The version number of bash
The hardware and operating system
The compiler used to compile
A description of the bug behaviour
A short script or ‘recipe’ which exercises the bug

bashbug inserts the first three items automatically into the template it provides for filing a bug report.

Comments and bug reports concerning this manual page should be directed to chet.ramey@case.edu.

BUGS
It’s too big and too slow.

There are some subtle differences between bash and traditional versions of sh, mostly because of the
POSIX specification.

Aliases are confusing in some uses.

Shell builtin commands and functions are not stoppable/restartable.

Compound commands and command sequences of the form ‘a ; b ; c’ are not handled gracefully when
process suspension is attempted. When a process is stopped, the shell immediately executes the next
command in the sequence. It suffices to place the sequence of commands between parentheses to force
it into a subshell, which may be stopped as a unit.

Array variables may not (yet) be exported.

There may be only one active coprocess at a time.

GNU Bash 5.2 2022 September 19 83

