

# Logic and Proof

Computer Science Tripos Part IB  
Lent Term

Mateja Jamnik

Department of Computer Science and Technology  
University of Cambridge

[mateja.jamnik@cl.cam.ac.uk](mailto:mateja.jamnik@cl.cam.ac.uk)

## Introduction to Logic

Logic concerns **statements** in some **language**.

The language can be natural (English, Latin, ...) or **formal**.

Some statements are **true**, others **false** or **meaningless**.

Logic concerns **relationships** between statements: satisfiability, entailment, ...

Logical **proofs** model human reasoning (supposedly).



## Statements

Statements are declarative assertions:

Black is the colour of my true love's hair.

They are not greetings, questions or commands:

What is the colour of my true love's hair?

I wish my true love had hair.

Get a haircut!



## Schematic Statements

Now let the variables  $X$ ,  $Y$ ,  $Z$ , ... range over 'real' objects

Black is the colour of  $X$ 's hair.

Black is the colour of  $Y$ .

$Z$  is the colour of  $Y$ .

Schematic statements can even express questions:

What things are black?



## Interpretations and Validity

An **interpretation** maps variables to real objects:

The interpretation  $Y \mapsto \text{coal}$  **satisfies** the statement

**Black is the colour of  $Y$ .**

but the interpretation  $Y \mapsto \text{strawberries}$  does not!

A statement  $A$  is **valid** if all interpretations satisfy  $A$ .



## Satisfiability

A set  $S$  of statements is **satisfiable** if some interpretation satisfies all elements of  $S$  at the same time. Otherwise  $S$  is **unsatisfiable**.

Examples of unsatisfiable sets:

$$\{X \subseteq Y, Y \subseteq Z, \neg(X \subseteq Z)\}$$

$$\{n \text{ is a positive integer, } n \neq 1, n \neq 2, \dots\}$$



## Entailment, or Logical Consequence

A set  $S$  of statements **entails**  $A$  if every interpretation that satisfies all elements of  $S$ , also satisfies  $A$ . We write  $S \models A$ .

$$\{X \subseteq Y, Y \subseteq Z\} \models X \subseteq Z$$

$$\{n \neq 1, n \neq 2, \dots\} \models n \text{ is NOT a positive integer}$$

$S \models A$  if and only if  $\{\neg A\} \cup S$  is unsatisfiable.

If  $S$  is unsatisfiable, then  $S \models A$  for any  $A$ .

$\models A$  if and only if  $A$  is valid, if and only if  $\{\neg A\}$  is unsatisfiable.



## Formal Proof

How can we **prove** that  $A$  is valid? We can't test infinitely many cases.

A **formal system** is a model of mathematical reasoning

- theorems are inferred from axioms using inference rules.
- formal systems are **themselves** mathematical objects, hence we have meta-mathematics



## Inference Rules

An inference rule yields a **conclusion** from one or more **premises**.

Let  $\{A_1, \dots, A_n\} \models B$ . If  $A_1, \dots, A_n$  are true then  $B$  must be true.

This entailment suggests the inference rule

$$\frac{A_1 \quad \dots \quad A_n}{B}$$

A system's axioms and inference rules must be selected carefully.

**Theorems** are constructed inductively from the axioms using rules.



## Schematic Inference Rules

$$\frac{X \subseteq Y \quad Y \subseteq Z}{X \subseteq Z}$$

- A proof is correct if it has the **right syntactic form**, regardless of
- Whether the conclusion is desirable
- Whether the premises or conclusion are true
- Who (or what) created the proof



## Consistency vs Satisfiability

A formal system defines a set of theorems.

If **every** statement is a theorem, then the system is **inconsistent**.

An unsatisfiable set of axioms leads to an inconsistent formal system (in normal circumstances).

**Satisfiability is the semantic counterpart of consistency.**



## Richard's Paradox

Consider the list of **all English phrases** that define real numbers, e.g. “the base of the natural logarithm” or “the positive solution to  $x^2 = 2$ .”

- Sort this list alphabetically, yielding a series  $\{r_n\}$  of real numbers.
- Now define a new real number such that its  $n$ th decimal place is 1 if the  $n$ th decimal place of  $r_n$  is not 1; otherwise 2.
- This is a real number not in our list of all definable real numbers.



## Why Should we use a Formal Language?

And again: consider this 'definition': (Berry's paradox)

The smallest positive integer not definable using nine words

Greater than The number of atoms in the Milky Way galaxy

This number is so large, it is greater than **itself!**

A formal language prevents **ambiguity**.



## Survey of Formal Logics

**propositional logic** is traditional **boolean algebra**.

**first-order logic** can say **for all** and **there exists**.

**higher-order logic** reasons about sets and functions.

**modal/temporal logics** reason about what **must**, or **may**, happen.

**type theories** support **constructive** mathematics.

All have been used to prove correctness of computer systems.



## Syntax of Propositional Logic

$P, Q, R, \dots$  propositional letter

$t$  true

$f$  false

$\neg A$  not  $A$

$A \wedge B$   $A$  and  $B$

$A \vee B$   $A$  or  $B$

$A \rightarrow B$  if  $A$  then  $B$

$A \leftrightarrow B$   $A$  if and only if  $B$



## Semantics of Propositional Logic

$\neg, \wedge, \vee, \rightarrow$  and  $\leftrightarrow$  are **truth-functional**: functions of their operands.

| A | B | $\neg A$ | $A \wedge B$ | $A \vee B$ | $A \rightarrow B$ | $A \leftrightarrow B$ |
|---|---|----------|--------------|------------|-------------------|-----------------------|
| 1 | 1 | 0        | 1            | 1          | 1                 | 1                     |
| 1 | 0 | 0        | 0            | 1          | 0                 | 0                     |
| 0 | 1 | 1        | 0            | 1          | 1                 | 0                     |
| 0 | 0 | 1        | 0            | 0          | 1                 | 1                     |

Later we shall see things like  $\Box A$  that are not.



## Interpretations of Propositional Logic

An **interpretation** is a function from the propositional letters to  $\{1, 0\}$ .

Interpretation  $I$  **satisfies** a formula  $A$  if it evaluates to 1 (true).

Write  $\models_I A$

$A$  is **valid** (a **tautology**) if every interpretation satisfies  $A$ .

Write  $\models A$

$S$  is **satisfiable** if some interpretation satisfies every formula in  $S$ .



## Implication, Entailment, Equivalence

$A \rightarrow B$  means simply  $\neg A \vee B$ .

$A \models B$  means if  $\models_I A$  then  $\models_I B$  for every interpretation  $I$ .

$A \models B$  if and only if  $\models A \rightarrow B$ .

### Equivalence

$A \simeq B$  means  $A \models B$  and  $B \models A$ .

$A \simeq B$  if and only if  $\models A \leftrightarrow B$ .



## An Issue: $A \rightarrow B$ Versus $\neg A \vee B$

It's called **material implication**, and it admits “paradoxes”\* such as

$$P \rightarrow (Q \rightarrow P) \quad \text{and} \quad (P \rightarrow Q) \vee (Q \rightarrow R)$$

Some say that if  $A \rightarrow B$  is true then  $A$  should somehow **cause**  $B$

Some “solutions”:

- Relevance logic: still investigated by philosophers
- An interpretation in **modal logic**: see lecture 11

\*these are not paradoxes



## Aside: Propositions as Types

Idea: instead of “ $A$  is true”, say “ $a$  is evidence for  $A$ ”, written  $a : A$

- If  $a : A$  and  $b : B$  then  $(a, b) : A \times B$       Looks like conjunction!
- If  $a : A$  then  $\text{Inl}(a) : A + B$   
If  $b : B$  then  $\text{Inr}(b) : A + B$       Looks like disjunction!
- if  $f(x) : B$  for all  $x : A$   
then  $\lambda x : A. b(x) : A \rightarrow B$       Looks like implication!

Also works for quantifiers, etc.: the basis of **constructive type theory**



## Constructive Logic is Weird

If  $A \vee B$  then we know which one of  $A \vee \neg A$  is not a tautology  
 $A, B$  is true

If  $\exists x A$  then we know what  $x$  is       $\exists, \forall$  are not duals

$A \rightarrow B$  isn't the same as  $\neg A \vee B$       no material implication

$(P \rightarrow Q) \vee (Q \rightarrow R)$  is not a tautology, but  $P \rightarrow (Q \rightarrow P)$  still is

Constructive (aka intuitionistic) logic is popular in theoretical CS

this material on constructive logic is NOT examinable



## Equivalences

$$A \wedge A \simeq A$$

$$A \wedge B \simeq B \wedge A$$

$$(A \wedge B) \wedge C \simeq A \wedge (B \wedge C)$$

$$A \vee (B \wedge C) \simeq (A \vee B) \wedge (A \vee C)$$

$$A \wedge f \simeq f$$

$$A \wedge t \simeq A$$

$$A \wedge \neg A \simeq f$$

Dual versions: exchange  $\wedge$  with  $\vee$  and  $t$  with  $f$  in any equivalence



## Equivalences Linking $\wedge$ , $\vee$ and $\rightarrow$

$$(A \vee B) \rightarrow C \simeq (A \rightarrow C) \wedge (B \rightarrow C)$$

$$C \rightarrow (A \wedge B) \simeq (C \rightarrow A) \wedge (C \rightarrow B)$$

The same ideas will be realised later in the [sequent calculus](#)



## Normal Forms in Computational Logic

Formal logics aim for readability,  
hence have a lot of redundancy

The connective NAND expresses  
all propositional formulas!

Negation normal form (NNF)

Conjunctive normal form (CNF)

Clause form and Prolog

Normal forms make proof procedures more efficient.



## Negation Normal Form

1. Get rid of  $\leftrightarrow$  and  $\rightarrow$ , leaving just  $\wedge$ ,  $\vee$ ,  $\neg$ :

$$A \leftrightarrow B \simeq (A \rightarrow B) \wedge (B \rightarrow A)$$

$$A \rightarrow B \simeq \neg A \vee B$$

2. Push negations in, using de Morgan's laws:

$$\neg \neg A \simeq A$$

$$\neg (A \wedge B) \simeq \neg A \vee \neg B$$

$$\neg (A \vee B) \simeq \neg A \wedge \neg B$$



## From NNF to Conjunctive Normal Form

3. Push disjunctions in, using distributive laws:

$$A \vee (B \wedge C) \simeq (A \vee B) \wedge (A \vee C)$$

$$(B \wedge C) \vee A \simeq (B \vee A) \wedge (C \vee A)$$

4. Simplify:

- Delete any disjunction containing  $P$  and  $\neg P$
- Delete any disjunction that includes another: for example, in  $(P \vee Q) \wedge P$ , delete  $P \vee Q$ .
- Replace  $(P \vee A) \wedge (\neg P \vee A)$  by  $A$



## Converting a Non-Tautology to CNF

$$P \vee Q \rightarrow Q \vee R$$

1. Elim  $\rightarrow$ :  $\neg(P \vee Q) \vee (Q \vee R)$
2. Push  $\neg$  in:  $(\neg P \wedge \neg Q) \vee (Q \vee R)$
3. Push  $\vee$  in:  $(\neg P \vee Q \vee R) \wedge (\neg Q \vee Q \vee R)$
4. Simplify:  $\neg P \vee Q \vee R$

Not a tautology: try  $P \mapsto t, Q \mapsto f, R \mapsto f$



## Tautology checking using CNF

$$((P \rightarrow Q) \rightarrow P) \rightarrow P$$

1. Elim  $\rightarrow$ :  $\neg[\neg(\neg P \vee Q) \vee P] \vee P$
2. Push  $\neg$  in:  $[\neg\neg(\neg P \vee Q) \wedge \neg P] \vee P$   
 $[(\neg P \vee Q) \wedge \neg P] \vee P$
3. Push  $\vee$  in:  $(\neg P \vee Q \vee P) \wedge (\neg P \vee P)$
4. Simplify:  $t \wedge t$   
 $t$  *It's a tautology!*



In  $A_1 \wedge \dots \wedge A_n$  each  $A_i$  can falsify the conjunction, if  $n > 0$

Dually, DNF can detect **unsatisfiability**.

DNF was investigated in the 1960s for theorem proving by contradiction.

We shall look at superior alternatives:

- **Davis-Putnam** methods, aka SAT solving
- **binary decision diagrams** (BDDs)

All can take exponential time—propositional satisfiability is NP-complete—but can solve **big** problems



## A Simple Proof System

### *Axiom Schemes*

$$K \quad A \rightarrow (B \rightarrow A)$$

$$S \quad (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$DN \quad \neg\neg A \rightarrow A$$

### *Inference Rule: Modus Ponens*

$$\frac{A \rightarrow B \quad A}{B}$$

This system regards  $\neg$ ,  $\vee$ ,  $\wedge$  as **abbreviations**



## A Simple (?) Proof of $A \rightarrow A$

$(A \rightarrow ((D \rightarrow A) \rightarrow A)) \rightarrow$  (1)  
 $((A \rightarrow (D \rightarrow A)) \rightarrow (A \rightarrow A))$  by S

$A \rightarrow ((D \rightarrow A) \rightarrow A)$  by K (2)

$(A \rightarrow (D \rightarrow A)) \rightarrow (A \rightarrow A)$  by MP, (1), (2) (3)

$A \rightarrow (D \rightarrow A)$  by K (4)

$A \rightarrow A$  by MP, (3), (4) (5)

Lengths of proofs here grow **exponentially**



## Aside: Propositions as Types Again\*

Those axioms are not arbitrary (though many other such systems are)

Ever see a type-checking rule for **function application**?

$$\frac{f : A \rightarrow B \quad a : A}{f(a) : B} \quad \text{looks like Modus Ponens!}$$

Axioms S and K give the **types of combinators** for expressing functions

A correspondence between terms and proofs, with links to  $\lambda$ -calculus

\*not examinable



## Some Facts about Deducibility

$A$  is **deducible from** the set  $S$  if there is a finite proof of  $A$  starting from elements of  $S$ . Write  $S \vdash A$ . We have some fundamental results:

**Soundness Theorem.** If  $S \vdash A$  then  $S \models A$ .

**Completeness Theorem.** If  $S \models A$  then  $S \vdash A$ .

**Deduction Theorem.** If  $S \cup \{A\} \vdash B$  then  $S \vdash A \rightarrow B$ .

But **meta-theory** does not help us **use** the proof system.



## Gentzen's Natural Deduction Systems

The context of **assumptions** may vary.

To deduce  $A \rightarrow B$ , we get to assume  $A$  temporarily:

$$\frac{\begin{array}{c} A \\ \vdots \\ B \end{array}}{A \rightarrow B}$$

Each logical connective is defined **independently**.

**Introduction** and **elimination** rules: how to deduce and use  $A \wedge B$ :

$$\frac{A \quad B}{A \wedge B}$$

$$\frac{A \wedge B}{A}$$

$$\frac{A \wedge B}{B}$$



## A Typical Natural Deduction Proof

$$\frac{\frac{\cancel{A \vee B}}{B \vee A} \quad \frac{\cancel{A}}{B \vee A}}{B \vee A} \\ A \vee B \rightarrow B \vee A$$

Nice simple rules like

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \quad \frac{A \rightarrow B \quad A}{B}$$

But the “crossing-out” process is confusing, and Natural Deduction works better for constructive logic



## The Sequent Calculus

Sequent  $A_1, \dots, A_m \Rightarrow B_1, \dots, B_n$  means,

if  $A_1 \wedge \dots \wedge A_m$  then  $B_1 \vee \dots \vee B_n$

$A_1, \dots, A_m$  are **assumptions**;  $B_1, \dots, B_n$  are **goals**

$\Gamma$  and  $\Delta$  are **sets** in  $\Gamma \Rightarrow \Delta$

$A, \Gamma \Rightarrow A, \Delta$  is trivially true (and is called a **basic sequent**).



## Sequent Calculus Rules

$$\frac{\Gamma \Rightarrow \Delta, A \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \text{ (cut)}$$

$$\frac{\Gamma \Rightarrow \Delta, A}{\neg A, \Gamma \Rightarrow \Delta} \text{ (\neg l)} \quad \frac{A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg A} \text{ (\neg r)}$$

$$\frac{A, B, \Gamma \Rightarrow \Delta}{A \wedge B, \Gamma \Rightarrow \Delta} \text{ (\wedge l)} \quad \frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \wedge B} \text{ (\wedge r)}$$



## More Sequent Calculus Rules

$$\frac{A, \Gamma \Rightarrow \Delta \quad B, \Gamma \Rightarrow \Delta}{A \vee B, \Gamma \Rightarrow \Delta} \text{ (}\vee\text{l)} \quad \frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma \Rightarrow \Delta, A \vee B} \text{ (}\vee\text{r)}$$

$$\frac{\Gamma \Rightarrow \Delta, A \quad B, \Gamma \Rightarrow \Delta}{A \rightarrow B, \Gamma \Rightarrow \Delta} \text{ (}\rightarrow\text{l)} \quad \frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B} \text{ (}\rightarrow\text{r)}$$



## Proving the Formula $A \wedge B \rightarrow A$

$$\frac{\frac{\overline{A, B \Rightarrow A}}{A \wedge B \Rightarrow A} (\wedge l)}{\Rightarrow (A \wedge B) \rightarrow A} (\rightarrow r)$$

- Begin by writing down the sequent to be proved
- Be careful about skipping or combining steps
- You can't mix-and-match proof calculi. Just use sequent rules.



## Another Easy Sequent Calculus Proof

$$\frac{\frac{\frac{A, B \Rightarrow B, C}{A \Rightarrow B, B \rightarrow C} (\rightarrow r)}{\Rightarrow A \rightarrow B, B \rightarrow C} (\rightarrow r)}{\Rightarrow (A \rightarrow B) \vee (B \rightarrow C)} (\vee r)$$

this was a “paradox of material implication”



## Part of a Distributive Law

$$\frac{\frac{\frac{A \Rightarrow A, B}{B, C \Rightarrow A, B} \quad \frac{B, C \Rightarrow A, B}{B \wedge C \Rightarrow A, B} \quad (\wedge l)}{A \vee (B \wedge C) \Rightarrow A, B} \quad (\vee l)}{A \vee (B \wedge C) \Rightarrow A \vee B} \quad (\vee r) \quad \text{similar}}{A \vee (B \wedge C) \Rightarrow (A \vee B) \wedge (A \vee C)} \quad (\wedge r)$$

Second subtree proves  $A \vee (B \wedge C) \Rightarrow A \vee C$  similarly



## A Failed Proof

$$\frac{\frac{A \Rightarrow B, C \quad \overline{B \Rightarrow B, C}}{A \vee B \Rightarrow B, C} \quad \overline{A \vee B \Rightarrow B \vee C}}{\Rightarrow (A \vee B) \rightarrow (B \vee C)} \quad (\rightarrow r)$$

$A \mapsto t, B \mapsto f, C \mapsto f$  falsifies the unproved sequent!



## Relevance to Automatic Theorem Proving

- Hao Wang's "Toward mechanical mathematics" (1960): spectacular results for both propositional and first-order logic
- Based on backward proof using the sequent calculus rules
- Modern tableaux calculi generalise these ideas

The sequent calculus is not practical for proving theorems on paper, as you will soon discover!

