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From discrete to continuous RV

So far, all RV were discrete: can only take on integer values.

If RV need to take on values in the real number domain (R), then
continuous random variable.

Examples of continuous RV: Uniform RV, Exponential RV, Normal RV.

Continuous RV are just like discrete RV, except that every sum becomes
an integral.

Example of possible values of continuous RV X :

(0, 1) = {x ∈ R; 0 < x < 1}
[0, 1] = {x ∈ R; 0 ≤ x ≤ 1}
[0, 1) = {x ∈ R; 0 ≤ x < 1}

(−∞,∞) = all real numbers

Examples:
X : price of a stock
X : time that a machine works before breakdown
X : error in an experimental measurement
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Integrals revision

g(x)

ba
x

∫ b

x=a
g(x)dx

Integral = area under a curve =
∫ b

x=a
g(x)dx = G(x)

∣∣∣∣b
a
= G(b)− G(a)

where G(x) is the antiderivative for g(x).

Some examples:∫ b

a
x2dx =

x3

3

∣∣∣∣b
a
=

b3 − a3

3

∫
a dx = ax + C∫

1
x

dx = ln|x |+ C
∫

ex dx = ex + C
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Continuous paradigm

The most important property of discrete RV was probability mass function
(PMF) denoting the probability of the RV taking on a certain value.

But in the continuous world this is impossible:
What is the probability that a newborn child weighs exactly
3.215438765432532 kg? NONE

Real values are defined with infinite precision, thus the probability that a
RV takes on a specific value is not meaningful when the RV is continuous.

We need a function that says how likely is it that a RV takes on a
particular value relative to other values that it could take on: probability
density function.
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Definition of continuous RV

A random variable X is continuous if there is a probability density
function (PDF), f (x) ≥ 0 such that for −∞ < x < ∞:

P [ a ≤ X ≤ b ] =

∫ b

a
f (x)dx

To preserve the axioms that guarantee that P [ a ≤ X ≤ b ] is a
probability, the following properties must hold:

0 ≤ P [ a ≤ X ≤ b ] ≤ 1

P [−∞ < X < ∞ ] = 1
(
=

∫ ∞

−∞
f (x)dx

)

Continuous random variable

Note: we also write f (x) as fX (x).

In continuous world, every RV has a PDF: its relative value wrt to other
possible values.

Integrate f (x) to get probabilities.
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Comparing PMF and PDF

Discrete random variable X Continuous random variable X

Probability mass function (PMF): Probability density function (PDF):

p(x) f (x)

Compute probability: Compute probability:

P [X = x ] = p(x)

P [ a ≤ X ≤ b ] =
b∑

x=a

p(x) P [ a ≤ X ≤ b ] =

∫ b

x=a
f (x)dx

Both are measures of how likely is X to take on a value.
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Computing probability example

Let X be a continuous RV with PDF:

f (x) =

{
1
2 x if 0 ≤ x ≤ 2
0 otherwise

What is P [X ≥ 1 ]?
Answer

f (x)

0 1.0 2.0

0.5

1.0

x

Method 1: integrate

P [ 1 ≤ X < ∞ ] =

∫ ∞

1
f (x)dx =

∫ 2

1

1
2

xdx

=
1
2

(
1
2

x2
) ∣∣∣∣2

1
=

1
2

(
2 −

1
2

)
=

3
4

Method 2: areas of triangles

area= (2)(1)
2 − (1)(0.5)

2 = 1 − 1
4 = 3

4

Example
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PDF properties

f (x) is NOT a probability, it is probability density:

P [X = a ] =

∫ a

a
f (x)dx = 0 ̸= f (a)

f (x)

a
x

f (x)

a︸︷︷︸
ϵ

x

P
[

a − ϵ

2
≤ X ≤ a +

ϵ

2

]
=

∫ a+ ϵ
2

a− ϵ
2

f (x)dx ≈ width × height = ϵf (a)

Thus, P [X = a ] = lim
ϵ→0

ϵf (a) = 0.

P [ a ≤ X ≤ b ] = P [ a < X ≤ b ] = P [ a ≤ X < b ] = P [ a < X < b ]
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PDF and probability example

Let X be a continuous RV with PDF:

f (x) =

{
C(4x − 2x2) when 0 < x < 2
0 otherwise

What is the value of the constant C? What is P [X > 1 ]?

Answer

0 1 2
x

f (x)

C is a normalisation constant. We know that
PDF must sum to 1:

1 =

∫ ∞

−∞
f (x)dx =

∫ 0

−∞
f (x)dx +

∫ 2

0
f (x)dx +

∫ ∞

2
f (x)dx

=

∫ 0

−∞
0dx +

∫ 2

0
C(4x − 2x2)dx +

∫ ∞

2
0dx

=

∫ 2

0
C(4x − 2x2)dx = C

(
2x2 −

2x3

3

)∣∣∣∣2
0
= C

(
8 −

16
3

)
= C

8
3

Thus C =
3
8

Example
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PDF and probability example cont.

Let X be a continuous RV with PDF:

f (x) =
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0 1 2
x

f (x)
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f (x)dx =

∫ 2

1
f (x)dx +

∫ ∞

2
0dx

=

∫ 2

1

3
8
(4x − 2x2)dx =

3
8

(
2x2 −

2x3

3

)∣∣∣∣2
1
=

=
3
8

((
8 −

16
3

)
−
(

2 −
2
3

))
=

1
2

Example
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Outline

Continuous random variables

Cumulative distribution function, expectation, variance

Uniform random variable

Exponential random variable
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Cumulative distribution function

Since PDF is not a probability, we need to solve an integral every single
time we want to calculate a probability.

To save effort, cumulative distribution function (CDF) computes this:
F (a) = FX (a) = P [X ≤ a ] where −∞ < a < ∞.

Recall: CDF for discrete RV is F (a) =
∑

all x≤a

p(x)

For a continuous random variable X with PDF f (x), the cumulative
distribution function (CDF) is:

FX (a) = P [X ≤ a ] =

∫ a

−∞
f (x)dx

a
x

f (x)

F (a)

−∞

Cumulative distribution function for a continuous RV

Intro to Probability Cumulative distribution function, expectation, variance 13



Cumulative distribution function

Since PDF is not a probability, we need to solve an integral every single
time we want to calculate a probability.

To save effort, cumulative distribution function (CDF) computes this:
F (a) = FX (a) = P [X ≤ a ] where −∞ < a < ∞.

Recall: CDF for discrete RV is F (a) =
∑

all x≤a

p(x)

For a continuous random variable X with PDF f (x), the cumulative
distribution function (CDF) is:

FX (a) = P [X ≤ a ] =

∫ a

−∞
f (x)dx

a
x

f (x)

F (a)

−∞

Cumulative distribution function for a continuous RV

Intro to Probability Cumulative distribution function, expectation, variance 13



Cumulative distribution function

Since PDF is not a probability, we need to solve an integral every single
time we want to calculate a probability.

To save effort, cumulative distribution function (CDF) computes this:
F (a) = FX (a) = P [X ≤ a ] where −∞ < a < ∞.

Recall: CDF for discrete RV is F (a) =
∑

all x≤a

p(x)

For a continuous random variable X with PDF f (x), the cumulative
distribution function (CDF) is:

FX (a) = P [X ≤ a ] =

∫ a

−∞
f (x)dx

a
x

f (x)

F (a)

−∞

Cumulative distribution function for a continuous RV

Intro to Probability Cumulative distribution function, expectation, variance 13



Cumulative distribution function

Since PDF is not a probability, we need to solve an integral every single
time we want to calculate a probability.

To save effort, cumulative distribution function (CDF) computes this:
F (a) = FX (a) = P [X ≤ a ] where −∞ < a < ∞.

Recall: CDF for discrete RV is F (a) =
∑

all x≤a

p(x)

For a continuous random variable X with PDF f (x), the cumulative
distribution function (CDF) is:

FX (a) = P [X ≤ a ] =

∫ a

−∞
f (x)dx

a
x

f (x)

F (a)

−∞

Cumulative distribution function for a continuous RV

Intro to Probability Cumulative distribution function, expectation, variance 13



CDF properties

While PDF is not a probability, CDF is.

If you learn to use CDFs, you can avoid integrating the PDF.

It is a matter of convention that CDF is probability that a RV takes on a
value less than (or equal to) the input value as opposed to greater than.

Useful examples of using CDF:

Probability question Solution Explanation

P [X ≤ a ] F (a) Definition of CDF

P [X < a ] F (a) Note that P [X = a ] = 0

P [X > a ] 1 − F (a) P [X ≤ a ] + P [X > a ] = 1

P [ a < X < b ] F (b)− F (a) F (a) + P [ a < X < b ] = F (b)

Intro to Probability Cumulative distribution function, expectation, variance 14



Computing CDF

a b
x

f (x)
P [ a ≤ X ≤ b ]

F (a)

b

F (b)

–
a

F (a)
=

a b

P [ a ≤ X ≤ b ]

F (b)− F (a) =
∫ b

−∞
f (x)dx −

∫ a

−∞
f (x)dx

=

(∫ a

−∞
f (x)dx +

∫ b

a
f (x)dx

)
−

∫ a

−∞
f (x)dx

=

∫ b

a
f (x)dx = P [ a < X < b ] = P [ a ≤ X ≤ b ]

Intro to Probability Cumulative distribution function, expectation, variance 15



Computing CDF

a b
x

f (x)
P [ a ≤ X ≤ b ]

F (a)

b

F (b)

–
a

F (a)
=

a b

P [ a ≤ X ≤ b ]

F (b)− F (a) =
∫ b

−∞
f (x)dx −

∫ a

−∞
f (x)dx

=

(∫ a

−∞
f (x)dx +

∫ b

a
f (x)dx

)
−

∫ a

−∞
f (x)dx

=

∫ b

a
f (x)dx = P [ a < X < b ] = P [ a ≤ X ≤ b ]

Intro to Probability Cumulative distribution function, expectation, variance 15



Expectation and variance for continuous RV

Discrete RV X

E [X ] =
∑

x

xp(x)

E [ g(X ) ] =
∑

x

g(x)p(x)

Continuous RV X

E [X ] =

∫ ∞

−∞
xf (x)dx

E [ g(X ) ] =

∫ ∞

−∞
g(x)f (x)dx

Both continuous and discrete RVs

E [ aX + b ] = aE [X ] + b Linearity of expectation

V [X ] = E
[
(X − E [X ])2

]
= E

[
X 2

]
− (E [X ]2) Properties of

V [ aX + b ] = a2V [X ] variance
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Outline

Continuous random variables

Cumulative distribution function, expectation, variance

Uniform random variable

Exponential random variable

Normal (Gaussian) random variable

Intro to Probability Uniform random variable 17



Uniform continuous RV

A uniform continuous random variable X is defined as follows:

X∼Uni(α, β)

Range: [α, β], sometimes (α, β)

PDF: f (x) =

{
1

β−α
when α ≤ x ≤ β

0 otherwise

Expectation: E [X ] =
α+ β

2

Variance: V [X ] =
(β − α)2

12

Uniform continuous random variable

α β

1
β−α

x

f (x)
area= 1

Notice that the density 1
β−α

is exactly the
same regardless of the value of x . This
makes it uniform.

The PDF is 1
β−α

since it is a constant such
that the integral over all possible inputs
evaluates to 1.

Intro to Probability Uniform random variable 18
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Public transport example

The University bus arrives at the Computer Lab bus stop at 7:00, 7:15
and so on at 15 minute intervals. You arrive at the bus stop a time
uniformly distributed in the interval between 1pm and 1:30pm. What is
the probability that you wait less than 5 minutes for the bus?

Answer

Let X be a RV for the time you arrive after 1pm to the bus stop.

Define RVs: X ∼ Uni(0, 30)

Solve:

P [ 10<X <15 ]+P [ 25<X <30 ] =

∫ 15

10

1
30

dx+
∫ 30

25

1
30

dx =
5

30
+

5
30

=
1
3

1:00 1:15 1:30

1
30 x

f (x)

wait < 5 mins wait < 5 mins

Example
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Expectation for Uniform RV

α β

1
β−α

x

f (x)

E [X ] =

∫ ∞

−∞
x · f (x) dx =

∫ β

α

x · 1
β − α

dx

=
1

β − α

1
2

x2
∣∣∣∣β
α

=
1

β − α

1
2
(β2 − α2)

=
1
2
(β + α)(β − α)

β − α
=

α+ β

2
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Outline

Continuous random variables

Cumulative distribution function, expectation, variance

Uniform random variable

Exponential random variable

Normal (Gaussian) random variable
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Exponential continuous RV

An exponential random variable X represents the time until an event (first
success) occurs. It is parametrised by λ > 0, the constant rate at which
the event occurs.

X∼Exp(λ)

Range: [0,∞)

PDF: f (x) =

{
λe−λx when x ≥ 0
0 otherwise

Expectation: E [X ] =
1
λ

(time)

Variance: V [X ] =
1
λ2

Exponential continuous random variable

0 1 2 3 4 5 x

f (x) Examples: time until next earthquake, time for request to
reach web server, time until end of mobile phone contract.

Note that λ is the same as the one in the Poisson RV.

Poisson RV counts # of events that occur in a fixed
interval, exponential RV measures the amount of time
until the next event occurs.
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Pandemic example

Major pandemics occur once every 100 years. What is the probability of
a major pandemic in the next 5 years? What is the standard deviation of
years until the next pandemic?

Answer

Let X be a RV for the time when the next pandemic happens.
Let a unit of time be 1 year.

Define RVs: X ∼ Exp(λ),E [X ] = 1
λ
= 100, thus λ = 1

100 = 0.01
X ∼ Exp(λ = 0.01).

Solve: Compute P [X < 5 ] ,SD [X ].

P [X < 5 ] =

∫ 5

0
0.01e−0.01x dx (remember that

∫
ecx dx =

1
c

ecx )

= 0.01
1

−0.01
e−0.01x

∣∣∣∣5
0

= −(e−0.05 − e0) ≈ 0.049

SD [X ] =
√

V [X ] =

√
1
λ2

=
1
λ

= 100 years

Example
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CDF of Exponential RV

If X is an exponential continuous random variable, X ∼ Exp(λ), then its
cumulative distribution function CDF (where x ≥ 0) is

F (x) = 1 − e−λx

CDF for Exponential RV

Proof:

F (x) = P [X ≤ x ] =

∫ x

0
λe−λx dx

= λ
1
−λ

e−λx
∣∣∣∣x
0

= −1(e−λx − e−λ0)

= 1 − e−λx
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Outline

Continuous random variables

Cumulative distribution function, expectation, variance

Uniform random variable

Exponential random variable

Normal (Gaussian) random variable
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Normal continuous RV

A normal random variable X , parametrised over mean µ and variance σ2

is defined as
X∼N (µ, σ2)

Range: (−∞,∞)

PDF: f (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

Expectation: E [X ] = µ

Variance: V [X ] = σ2

Normal continuous random variable

µ
x

f (x)
The most important random variable type, AKA
Gaussian RV and Bell curve.

Generated from summing independent RV, thus occurs
often in nature (cf. Central Limit Theorem in Lecture 8).

Used to model entropic (conservative) distribution of data
with mean and variance.
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Normal RV paradigm

Goal: translate problem statement into a RV – model real life situation with
probability distributions (e.g., height distribution in a class).

Perfect fit! Same mean and variance!
But what about another class? Generalises well.
Overfit?

Let X ∼ N (µ, σ2). PDF of X :

f (x) =
1

σ
√

2π
e− (x−µ)2

2σ2

normalising constant variance σ2 manages spread

exponential tail symmetric around µ

−4 −2 0 2 4
0

0.5

1

1.5

2

N (0, 1)
N (0, 2)
N (−2, 0.5)
N (0, 0.2)
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Walking example

You spent X minutes walking to the department every day. The average
time you spend is µ = 10 minutes. The variance from day to day of the
time spent to get to the department is σ2 = 2 minutes2. Suppose X is
normally distributed. What is the probability you spend ≥ 12 minutes
travelling to the department?

Answer

X ∼ N (µ = 10, σ2 = 2)

P [X ≥ 12 ] =

∫ ∞

12
f (x)dx =

∫ ∞

12

1
σ
√

2π
e− (x−µ)2

2σ2 dx

Example

Cannot be solved analytically!
That is, no closed form for the integral of the Normal PDF. (But...)
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Properties for Normal RV

Let X ∼ N (µ, σ2) with CDF P [X ≤ x ] = F (x).

Linear tranformations of Normal RVs are also Normal RVs.

If Y = aX + b, then Y ∼ N (aµ+ b, a2σ2)

Proof outline:
E [Y ] = E [ aX + b ] = aE [X ] + b = aµ+ b (linearity of expectation)
V [Y ] = V [ aX + b ] = a2V [X ] = a2σ2

Y is also Normal.

The PDF of a Normal RV is symmetric about the mean µ.

F (µ− x) = 1 − F (µ+ x)

µ−x µ+xµ
x

f (x)

1 − P [X ≤ µ+ x ]P [X ≤ µ− x ]
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Computing probabilities with Normal RV

Let X ∼ N (µ, σ2). How do we compute CDF, P [X ≤ x ] = F (x)?

We cannot analytically solve the integral (it has no closed form).

But we can solve numerically using a function Φ, which is a precomputed
function:

F (x) = Φ

(
x − µ

σ

)
CDF of the Standard Normal, Z
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Z: Standard Normal RV

The Standard Normal continuous random variable Z is defined as

Z∼N (0, 1)

Expectation: E [Z ] = µ = 0 (zero mean)

Variance: V [Z ] = σ2 = 1 (unit variance)

Standard Normal random variable Z

Not a new distribution: a special case of the Normal (N (µ, σ2)=µ+σN (0, 1)).
CDF of Z defined as P [Z ≤ z ] = Φ(z).

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

Φ(z)

z = 0.83

P [Z ≤ 0.83 ] = Φ(0.83) = 0.7967
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Walking example revisited

You spent X minutes walking to the department every day. The average
time you spend is µ = 10 minutes. The variance from day to day of the
time spent to get to the department is σ2 = 2 minutes2. Suppose X is
normally distributed. What is the probability you spend ≥ 12 minutes
travelling to the department?

Answer

X ∼ N (µ = 10, σ2 = 2)
(But P [X ≥ 12 ] =

∫∞
12 f (x)dx has no analytic solution.)

1. Compute z = (x−µ)
σ

:

P [X ≥ 12 ] = 1 − Fx(12)

= 1 − Φ

(
12 − 10√

2

)
≈ 1 − Φ(1.41)

2. Look up Φ(z) in table:

1 − Φ(1.41) ≈ 1 − 0.9207

= 0.0793

Example
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