Foundations of Computer Science
Lecture #8: Currying

Anil Madhavapeddy
2023-2024

‘ Warm-Up I

Question 1: How many arguments does this function have?
let rec append = function

| (1, ys) -> ys
| (x::xs, ys) -> x :: append (xs,ys)
One (the argument is a tuple)

Question 2: What property does an inorder conversion of a
binary tree to a list preserve?

List will be sorted

Question 3: What is the depth of a balanced binary search tree with
n elements?

O (log n)

‘Functions as VaIuesI

In OCaml, functions can be

* passed as arguments to other functions,

e returned as results, say “Lambda”
* put into lists, tree, etc.:

[(fun n -=> n * 2); (fun n -=> n * 3); (fun k -> k + 1)];;

- : (int -> int) list [<fun>; <fun>; <fun>]

* but not tested for equality.

‘Functions without NamesI

fun x -> FE isthe function f suchthat f(x) = E

The function (fun n -> n * 2) is a doubling function.
(fun n -> n * 2);;

— : 1nt -> int = <fun>

(fun n -> n * 2) 17;;

34

- : 1int

‘Functions without NamesI

In ¢: (fun n -> n * 2) 2;;
Out: - : int = 4

... can be given a name by a 1let declaration

In : let double = fun n -> n * 2;;
Out: val double : int -> int = <fun>
In : 1let double n = n * 2;;

Out: val double : int -> int = <fun>

In both cases:

In : double 2;
Out: - : int = 4

‘Functions without NamesI

function can be used for pattern-matching:

function P;->E; | ... | Pn->E)
for example:

function 0 -> true | -> false

which is equivalent to:

fun x -> match x with 0 -> true | -> false

let is zero = fun X -> match x with 0 -> true | -> false

let is zero = function 0 -> true | -> false

‘Curried FunctionsI

* Consider that a function can only have one argument
* Two options for multiple arguments:
1. tuples (e.q., pairs) [as seen in previous lectures]
2. a function that returns another function as a result

— this is called currying (after H. B. Curry) 1

e Currying: expressing a function taking multiple arguments as
nested functions.

1 Credited to Schonfinkel, but Schénfinkeling didn’t catch on...

‘Curried FunctionsI

Taking multiple arguments as nested functions, so,
instead of:

In : fun (n, k) -> n * 2 + k;;
Out: - : int * int -> int = <fun>

We can nest the fun-notation:

In : let i1t = fun k -> (fun n -=> n * 2 + k);;
Out: wval it : int -> int -> int = <fun>

R»
"
In : 1t 1 3;
Out: - : 1int = 7

‘Curried FunctionsI

A curried function returns another function as its result.

let prefix = (fun a -> (fun b -> a © b))
val prefix : string -> string -> string = <fun>

prefix yields functions of type string —> string.

let promote prefix "Professor ";;
val promote : string -> string = <fun>

promote "Mopp";;
- : string = "Professor Mopp"

‘Shorthand for Curried FunctionsI

A function-returning function is just a function of two arguments

A function over pairs has type (61 x 62) — 1.
A curried function has type 61 — (62 — 1).

This curried function is nicer than nested fun binders:
let prefix a b = a © b;;
val prefix : string ->(§tring -> string>

Syntax: the svmbc}t -> associates to the right

fun x; x2 ... x» => E let £ x7 x2 ... xp = E

let dub = prefix “Lady ";;
val dub : string -> string = <fun>

Curried functions allows partial application (to the first argument).

‘Partial Application: A Curried Insertion SortI

Key question: How to generalize <= to any data type?

let rec insort lessequal =

let rec ins = function

| X, [1 == [X]

|XI y::ys ->
1f lessequal x y then x::y::ys
else y :: 1ins (X, yS)

in

let rec sort = function

| 11 -> []

| x::xs -> ins (x, sort xs)

in

sort

f Lessaqu&i. f sort

'a -> bool) ->('a list -> 'a list)

val insort : ('a ->

IN oUT

‘Partial Application: A Curried Insertion SortI

Note: (<=) denotes comparison operator as a function

In : insort (<=) [5; 3; 9; 8];;
Out: - : int list = [3; 5; 8; 9]

In : insort (>=) [5; 3; 9; 8];;
Out: - : int list = [9; 8; 5; 3]

In : insort (<=) ["bitten"; "on"; "a"; "bee"];;

Out: _ : String list — [llall; llbeell; "bitten"; llonll]

‘map: the ‘Apply to All’ FunctionaII

(,m:«&e.: builk-in as Listiwmap

let rec map £ = function

| [-> []

| x::xs => (f x) :: map f xs

In : map (fun s -> s = "ppy");
Out: -: string list -> string list = <fun>

A

In : map (fun S _> S llppyll) ["Hi"; IIHOII];;
Out: - : string list = ["Hippy"; "Hoppy"]

In : map (map double) [[1l]; [2; 311;:;
Out: - : int list list = [[2]; [4; 6]]

‘Example: Matrix Transpose'

T a d
a b c
=|b e
d e f
c f
let rec transp = function
|01 s => 0]
| rows -> (map List.hd rows)

(transp (map List.tl rows))

‘Example: Matrix Transpose'

let rec transp = function

| (1 2 => []

| rows -> (map List.hd rows)

(transp (map List.tl rows))

In : let rows = [[1; 2; 3]; [4; 5; 6]11;;

In : List.hd;;
Out: - : 'a list -> ‘a = <fun>
In : transp;

Out: - : 'a list list -> 'a list 1list

In : map List.hd rows;
Out: - : 1int list = [1; 4]
In : map tl rows;

Out: - : int list list
In : transp rows;

Out: - : int list list = [[1l; 4]; [2;

[[2; 317 [5;

6]]

5];

[37

6]]

‘Review of Matrix MuItipIicationI

—_—

The right side is the vector dot product /_1) - B

Repeat for each row of A and column of B

‘Review of Matrix MuItipIicationI

A B AXB
2 0 2 0O 4
3 —1|(1 0 2y |-1 1 6
0 1 4 —1 O 4 —1 0
1 1 5 -1 2

For element (i,j) of A x B
dot-product of row i and column ;

‘Matrix Multiplication in OCamII

Dot product of two vectors—a curried function

let rec dotprod Xxs ys =
match xs, ys with
| (1, [1 => 0.0
| x::xs, y::ys => x *. y +. dotprod xs ys

Q: What is the type of this function?
float list -> float list -> float

Matrix product

let matprod arows brows =
let cols = transp brows in
map (fun row -> map (dotprod row) cols) arows

‘Matrix Multiplication in OCamII

let rec matprod arows brows =
let cols = transp brows in
map (fun row -> map (dotprod row) cols) arows

Inner ma
< 5N

x -
o &
m E
-
- X —
@
-
o W

‘List Functionals for Predicates'

let rec exists p = function

| [1 -> false

| x::xs => (p x) || (exists p xs)

val exists : ('a -> bool) -> ('a list -> bool) = <fun>

let rec filter p = function
| 1 -> 11
| x::xs ->
if p x then
X :: filter p xs
else
filter p xs
val filter : ('a -> bool) -> ('a list -> 'a 1list) = <fun>

(A predicate is a boolean-valued function.)

‘List Functionals for Predicates'

Dual to exists:

let rec all p = function

| [1 -> true

| x::xs -> (p x) && all p xs

val all : ('a -> bool) -> 'a list -> bool = <fun>

Example:

> exists (fun x -> X mod 2
- : bool = true

0) [1; 2; 31];;

> filter (fun x -> x mod 2
- : 1nt list = [2]

0) [1; 2; 3]s

> all (fun x -> xmod 2 = 0) [1; 2; 31;;
- ¢ bool = false

‘Applications of the Predicate FunctionaIsI

let member y xs =
exists (fun x -> X = y) Xs;;

let inter xs ys
filter (fun x -> member x ys) Xs;;

Testing whether two lists have no common elements

let disjoint xs ys
all (fun x -> all (fun y -> X <> y) ys) Xs

