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You shall know a word by the company it keeps—Firth

Consider the following sentences about the rabbit in Alice in Wonderland-
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You shall know a word by the company it keeps—Firth

Consider the following sentences about the rabbit in Alice in Wonderland-
@ Suddenly a white rabbit with pink eyes ran close by her.

@ She was walking by the white rabbit who was peeping anxiously into
her face.

@ The rabbit actually took a watch out of its waistcoat pocket and
looked at it.

@ ‘Oh hush’, the rabbit whispered, in a frightened tone.

@ The white rabbit read out at the top of his shrill little voice the name
Alice.

We learn a lot about the rabbit from the words in the local context.
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You shall know a word by the company it keeps—Firth

@ So far, we have been discussing grammars with discrete alphabets and
algorithms that have discrete symbols as input.

@ Many Natural Language Processing tasks require some notion of
similarity between the symbols.

e.g. The queen looked angry. Her majesty enjoyed beheading.

To understand the implication of these sentences we need to know
that the queen and her majesty are similar ways of expressing the
same thing.
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@ So far, we have been discussing grammars with discrete alphabets and
algorithms that have discrete symbols as input.

@ Many Natural Language Processing tasks require some notion of
similarity between the symbols.

e.g. The queen looked angry. Her majesty enjoyed beheading.

To understand the implication of these sentences we need to know
that the queen and her majesty are similar ways of expressing the
same thing.

@ Instead of symbols we can represent a word by a collection of key
words from its context (as a proxy to its meaning)

e.g instead of rabbit we could use

rabbit = {white, pink, eyes, voice, read, watch, waistcoat, ...}
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You shall know a word by the company it keeps—Firth

@ But which key words do we include in the collection?

Paula Buttery (Computer Lab) Formal Models of Language 4/24



You shall know a word by the company it keeps—Firth

@ But which key words do we include in the collection?
@ We could look at a +=n-word context window around the target word.

@ We could select (and weight) keywords based on their frequency in
the window:

rabbit = {the 56, white 22, a 17, was 11, in 10, it 9, said 8, and 8, to 7...}
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@ We could select (and weight) keywords based on their frequency in
the window:

rabbit = {the 56, white 22, a 17, was 11, in 10, it 9, said 8, and 8, to 7...}

@ This would become a little more informative if we removed the
function words:

rabbit ={white 22, said 8, alice 7, king 4, hole 4, hush 3, say 3, anxiously 2...}
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@ But which key words do we include in the collection?
@ We could look at a +=n-word context window around the target word.

@ We could select (and weight) keywords based on their frequency in
the window:

rabbit = {the 56, white 22, a 17, was 11, in 10, it 9, said 8, and 8, to 7...}

@ This would become a little more informative if we removed the
function words:

rabbit ={white 22, said 8, alice 7, king 4, hole 4, hush 3, say 3, anxiously 2...}
queen ={said 21, king 6, shouted 5, croquet 4, alice 4, play 4, hearts 4, head 3... }
cat ={said 19, alice 5, cheshire 5, sitting 3, think 3, queen 2, vanished 2, grin 2...}

e This is all just illustrative, we can of course, do this for all words (not
just the characters)—called distributional semantics.
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Distributional semantics

We can replace symbols with vector representations

@ Two words can be expected to be semantically similar if they have
similar word co-occurrence behaviour in texts.

e.g. in large amounts of general text we would expect queen and
monarch to have similar word co-occurrences.
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Distributional semantics

We

can replace symbols with vector representations

Two words can be expected to be semantically similar if they have
similar word co-occurrence behaviour in texts.

e.g. in large amounts of general text we would expect queen and
monarch to have similar word co-occurrences.

Simple collections of context words don’t help us easily calculate any
notion of similarity.

A trend in modern Natural Language Processing technology is to
replace symbolic representation with a vector representation

Every word is encoded into some vector that represents a point in a
multi-dimensional word space.

‘alice croquet grin  hurried king say shouted vanished

rabbit 7 0 0 2 4 3 0 1
queen 4 4 0 1 6 1 5 0
cat 5 1 2 0 0 0 0 2
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Distributional semantics

We can replace symbols with vector representations

o Note that there is an issue with polysemy (words that have more than
one meaning):

@ E.g. we have obtained the following vector for cat:
cat=1[5,1,2,0,0,0, 0 2]
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Distributional semantics

We can replace symbols with vector representations

o Note that there is an issue with polysemy (words that have more than
one meaning):

@ E.g. we have obtained the following vector for cat:
cat=1[5,1,2,0,0,0, 0 2]

@ But cat referred to two entities in our story:
I wish | could show you our cat Dinah

I didn't know that Cheshire cats always grinned in fact | didn't know
that cats could grin
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Similarity

@ The vector provides the coordinates of point/vector in the
multi-dimensional word space.

@ Assumption: proximity in word space correlates with similarity in
meaning

@ Similarity can now be measured using distance measures such as
Jaccard, Cosine, Euclidean...
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@ The vector provides the coordinates of point/vector in the
multi-dimensional word space.

@ Assumption: proximity in word space correlates with similarity in
meaning

@ Similarity can now be measured using distance measures such as
Jaccard, Cosine, Euclidean...

Q
S
§ @ e.g. cosine similarity
o cosine(vy,vp) = A2
3 L Y2) = Tui]val
w1 e Equivalent to dot product of

normalised vectors (not affected
W by magnitude)
@ cosine is 0 between orthogonal

023 w3 vectors

@ cosine is 1 if vy = avn, where
a>0

contxt_wq
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Dimensionality reduction

Automatically derived vectors will be very large and sparse

@ In certain circumstances we might select dimensions expertly

@ For general purpose vectors we want to simply count in a large
collection of texts, the number of times each word appears inside a
window of a particular size around the target word.
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Automatically derived vectors will be very large and sparse

@ In certain circumstances we might select dimensions expertly

@ For general purpose vectors we want to simply count in a large
collection of texts, the number of times each word appears inside a
window of a particular size around the target word.

@ This leads to very large sparse vectors (remember Zipf's law)

@ There are an estimated 13 million tokens for the English language—we
can reduce this a bit by removing (or discounting) function words,
grouping morphological variants (e.g, grin, grins, grinning)

o Is there some k-dimensional space (such that k << 13million) that
is sufficient to encode the word meanings of natural language?

e Dimensions might hypothetically encode tense (past vs. present vs.
future), count (singular vs. plural), and gender (masculine vs.
feminine)...
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Dimensionality reduction

It is possible to reduce the dimensions of the vector

To find reduced dimensionality vectors (usually called word embeddings)
@ Loop over a massive dataset and accumulate word co-occurrence
counts in some form of a large sparse matrix X (dimensions n x n
where n is vocabulary size)
@ Perform Singular Value Decomposition on X to get a USV' "
decomposition of X.

: . . S]_ O 0 N V].]. - Vln
X11 ... Xin uii . . . 0 S5 0 L o v
X = u» Up 0 0
X, e X : : :
nt mn B N A
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Dimensionality reduction

It is possible to reduce the dimensions of the vector

@ Note S matrix has diagonal entries only.

o Cut diagonal matrix at index k based on desired dimensionality (can
be decided by desired percentage variance): (Ef;l si)/ (027 si)

X11 ... Xin uil . . S1 0 0 Vit ... Vip
Xl =Eh L w| o o0

Xpl ... X : : 0 0 s AU V7%

n nn Uip : :

@ Use rows of U for the word embeddings.

@ This gives us a k-dimensional representation of every word in the
vocabulary.
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Dimensionality reduction

It is possible to reduce the dimensions of the vector

Things to note:
Need all the counts before we do the SVD reduction.

The matrix is extremely sparse (most words do not co-occur)
The matrix is very large (=~ 10°x10°)
SVD is quadratic
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Dimensionality reduction

It is possible to reduce the dimensions of the vector

Things to note:
Need all the counts before we do the SVD reduction.

The matrix is extremely sparse (most words do not co-occur)
The matrix is very large (=~ 10°x10°)
SVD is quadratic

Points of methodological variation:

@ Due to Zipf distribution of words there is large variance in
co-occurrence frequencies (need to do something about this e.g.
discount/remove stop words)

@ Refined approaches might weight the co-occurrence counts based on
distance between the words
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Predict models

Predict models can be more efficient than count models

@ word2vec is a predict model, in contrast to the distributional
models already mentioned which are count models.

@ Instead of computing and storing a large matrix from a very large
dataset, use a model that learns iteratively, eventually encoding the
probability of a word given its context.
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Predict models

Predict models can be more efficient than count models

@ word2vec is a predict model, in contrast to the distributional
models already mentioned which are count models.

@ Instead of computing and storing a large matrix from a very large
dataset, use a model that learns iteratively, eventually encoding the
probability of a word given its context.

- The parameters of the model are the word embeddings.
- The model is trained on a certain objective.

- At every iteration we run our model, evaluate the errors, and then
adjust the model parameters that caused the error.
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Predict models

Predict models can be more efficient than count models

@ Two simple word2vec architectures:

- Continuous Bag of Words CBOW: given some context word
embeddings, predict the target word embedding.

- Skip-gram: given a target word embedding, predict the context word
embeddings (below).

centre word w;
P(We—m|wt) P(Wetm|we)

[[[//j\tﬁ\x\X\

she helped herself to some tea and bread and butter and
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Predict models

@ skip-gram model predicts relationship
between a centre word w; and its context
Input

words: p(context|w;) = ...
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Predict models

@ skip-gram model predicts relationship

between a centre word w; and its context

words: p(context|w;) = ... ot
@ Predict context word embeddings based on

the target word embedding.
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Predict models

@ skip-gram model predicts relationship
between a centre word w; and its context
words: p(context|w;) = ...

Input projection  output
@ Predict context word embeddings based on . WD
the target word embedding.
@ A loss function is used to score the o
- . .// w(t-
prediction (usually cross-entropy loss
function). ) .

(Cross-entropy measures the information
difference between the expected word witr1)
embeddings and the predicted ones.)

N wi2)
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Predict models

@ skip-gram model predicts relationship
between a centre word w; and its context
words: p(context|w;) = ...

@ Predict context word embeddings based on
the target word embedding.

@ A loss function is used to score the
prediction (usually cross-entropy loss
function).

(Cross-entropy measures the information
difference between the expected word
embeddings and the predicted ones.)

@ Adjust the word embeddings to minimise
the loss function.
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Predict models

@ skip-gram model predicts relationship
between a centre word w; and its context
words: p(context|w;) = ...

@ Predict context word embeddings based on
the target word embedding.

@ A loss function is used to score the
prediction (usually cross-entropy loss
function).

(Cross-entropy measures the information
difference between the expected word
embeddings and the predicted ones.)

@ Adjust the word embeddings to minimise
the loss function.

@ Repeat over many positions of t in a very
big language corpus.
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Predict models

Distributional models have improved NLP applications

In general, distributional models have had a positive impact on NLP and
provided improvement over symbolic systems:

@ There has been a change in state-of-the-art for some applications:
(e.g. Google Translate)
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Distributional models have improved NLP applications

In general, distributional models have had a positive impact on NLP and
provided improvement over symbolic systems:

@ There has been a change in state-of-the-art for some applications:
(e.g. Google Translate)

@ Multi-modal experiments have become more straightforward (by
combining vector representations)

@ But these models are statistical (need very large amounts of data and
have to find a way to handle unseen words)

@ There has been a lot of hype and not much work on the problems the
distributional models can’t solve.
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Predict models

Methods for predict word models are fast moving research

@ There are many different methods for training word embeddings.

@ A method can be considered better than a previous method if it gives
us an improvement for a task.

@ e.g. using contextual embeddings for grammatical error detection

A. ELMo vs. baseline B. BERT base vs. baseline

ii;llilil Liae
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Change in recall
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- Part Ill project by Sam Bell 2019
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Word embeddings and humans

Word embeddings can correlate with human intuitions

Researchers test their word embeddings against datasets of human
similarity judgements:

@ For a test set of words, participants rate word pairs for relatedness
(e.g. Miller & Charles, Rubenstein & Goodenough)

@ A rank of relatedness can be drawn up between items in the test set.

o A rank correlation between embeddings and human judgements can
be calculated.

@ Good embeddings have a correlation of 0.8 or better with the human
judgements.
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Word embeddings and humans

Reasoning may be possible based on word embeddings

@ Mikolov et al. analogy puzzles:

Can we use word embeddings to solve puzzles such as:
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Reasoning may be possible based on word embeddings

@ Mikolov et al. analogy puzzles:

Can we use word embeddings to solve puzzles such as:
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Word embeddings and humans

Reasoning may be possible based on word embeddings

@ Mikolov et al. analogy puzzles:

Can we use word embeddings to solve puzzles such as:
man is to woman as king is to .... queen

@ Can we do vector-oriented reasoning based on the offsets between
words?
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Word embeddings and humans

Reasoning may be possible based on word embeddings

@ Derive the vector between the pair of words man and woman and

then add it to king.
@ The nearest word to the region of vector space that results will be the
answer to the analogy.

MAN

WOMAN

UNCLE

KING

AUNT

QUEEN

KINGS

QUEENS

N\

N\

KING

QUEEN
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Word embeddings and humans

Reasoning may be possible based on word embeddings

@ Derive the vector between the pair of words man and woman and

then add it to king.

@ The nearest word to the region of vector space that results will be the

answer to the analogy.

WOMAN

7

MAN
UNCLE

KING

QUEEN

AUNT

KINGS

QUEENS

N\

N\

KING

QUEEN

@ Mikolov found that word2vec embeddings are good at capturing
syntactic and semantic regularities in language, and that each
relationship is characterised by a relation-specific vector offset.

@ Note that the space is very sparse and that there are word pairs for
which this does not work...
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Word embeddings and humans

Relationship between embeddings and brain activity?

@ Humans have the capacity to translate thoughts into words, and to
infer others’ thoughts from their words.

@ There must be some mental representations of meaning that are
mapped to language, but we have no direct access to these
representations.
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Word embeddings and humans

Relationship between embeddings and brain activity?

@ Humans have the capacity to translate thoughts into words, and to
infer others’ thoughts from their words.

@ There must be some mental representations of meaning that are
mapped to language, but we have no direct access to these
representations.

channel ,
— W —| encoder — X —> — Y —| decoder — W' —
ply|x)
mental words words' mental
representation representation’
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Word embeddings and humans

Relationship between embeddings and brain activity?

@ Humans have the capacity to translate thoughts into words, and to
infer others’ thoughts from their words.

@ There must be some mental representations of meaning that are
mapped to language, but we have no direct access to these

representations.

— W —| encoder

mental
representation

words

channel
p(y|x)

words’

decoder

— W -

mental

representation’

@ Do word embeddings provide a model that successfully captures some

aspects of our mental representation of meaning?
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Word embeddings and humans

Relationship between embeddings and brain activity?

o Natural language appears to be a discrete symbolic system.

@ The brain encodes information through continuous signals of
activation.

@ Language symbols are transmitted via continuous signals of
sound /vision.
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Word embeddings and humans

Relationship between embeddings and brain activity?

o Natural language appears to be a discrete symbolic system.

@ The brain encodes information through continuous signals of
activation.

@ Language symbols are transmitted via continuous signals of
sound /vision.

@ Pereira et al. trained a system using brain imaging data and word
embeddings.

@ Demonstrated the ability to generalise to new meanings from limited
imaging data.
https://www.nature.com/articles/s41467-018-03068-4
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Word embeddings and humans

Relationship between embeddings and brain activity?

Brain image for
"apartment"

R

Brain image for
"An apartment is a self-contained
home that is part of a building."

—_—

Brain image for
"Arson is the criminal act of
burning a building or wildland."
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— [N
Text semantic
vector for
"apartment"

Calculate
All 4 pairwise
correlations
— H NN [ 0 W
Decoded Text semantic
semantic vector for

vector "An apartment is a self-contained

home that is part of a building."

— H 1l N N

Decoded Text semantic
semantic vector for
vector

"Arson is the criminal act of
burning a building or wildland."
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