DENOTATIONAL SEMANTICS

Meven LENNON-BERTRAND
Lectures for Part Il CST 2023/2024
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PRACTICALITIES

- My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
- Course notes will be updated, keep an eye on the course webpage.
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INTRODUCTION



WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.
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WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

- Programming language theory: how to design, implement and reason about
programming languages?

- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.
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WHY SHOULD WE CARE?

- Insight: exposes the mathematical “essence” of programming language concepts.
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WHY SHOULD WE CARE?

- Insight: exposes the mathematical “essence” of programming language concepts.

- Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers...).

- Rigour: semantics is necessary to specify/justify formal methods (compilers, type
systems, code analysis, certification...).
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STYLES OF FORMAL SEMANTICS

- Operational
- Axiomatic

- Denotational
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STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part Il Hoare Logic & Model Checking).

- Denotational: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).
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DENOTATIONAL SEMANTICS IN A NUTSHELL

-1 .
Syntax —— Semantics
Program P+  Denotation [P]
Recursive program +—  Partial recursive function
Boolean circuit +  Boolean function
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DENOTATIONAL SEMANTICS IN A NUTSHELL

-] :
Syntax —— Semantics

Program P+  Denotation [P]

Recursive program >  Partial recursive function
Boolean circuit +  Boolean function
Type +— Domain
Program +—  Continuous functions between domains
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PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;

- should relate to practical implementations, though...
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PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;

- should relate to practical implementations, though...

Compositionality
- The denotation of a phrase is defined using the denotation of its sub-phrases.
- [P] represents the contribution of P to any program containing P.

- Much more flexible than whole-program semantics.
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INTRODUCTION
A BASIC EXAMPLE



IMP SYNTAX

C € Comm ::= skip | L:= A|C;C | if B then C else C |while Bdo C
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IMP SYNTAX

K ranges over a set L of locations
C € Comm ::= skip | L:= A|C;C | if B then C else C |while Bdo C
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IMP SYNTAX

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C
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IMP SYNTAX

ranges over integers

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C
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IMP SYNTAX

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

|Boolean expressions|

B € Bexp = true | false | A= A|-B] ..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C
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DENOTATION FUNCTIONS — NAIVELY

A: Aexp - 7/

where

Z = {.,-1,0,1,..}
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DENOTATION FUNCTIONS — NAIVELY

A: Aexp - 7/
B: Bexp— B
where

Z = {.,-1,0,1,.1}
B = {true,false}
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ARITHMETIC EXPRESSIONS?

AM] = n

AlAr+4;] = AlAL + A[4,]
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ARITHMETIC EXPRESSIONS?

A[[Q]] = n
AlAy + 4z] = AfA] + A[A,]

277?

A[L]
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DENOTATION FUNCTIONS

State = (L —» Z)
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DENOTATION FUNCTIONS

State = (L —» Z)

A : Aexp — (State —» Z)
B : Bexp — (State — B)

where

Z=A.,-1,01,..}
B = {true, false}.
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DENOTATION FUNCTIONS

State = (L —» Z)

A : Aexp — (State —» Z)
B : Bexp — (State — B)
C : Comm — (State — State)

where — denotes partial functions and

Z=A.,-1,01,..}
B = {true, false}.
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SEMANTICS OF ARITHMETIC EXPRESSIONS

As € State.n

Aln]

AlA; + Ag]

As € State. A[A;] (s) + A[A5] (s)
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SEMANTICS OF ARITHMETIC EXPRESSIONS

As € State.n

Aln]

AlA; + Ag]

As € State. A[A;] (s) + A[A5] (s)

A[L] As € State. s(L)
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SEMANTICS OF BOOLEAN EXPRESSIONS

Bltrue]
Blfalse]

B[A; = Ay]

As € State. true
As € State. false
As € State. eq (A[A{] (s), A[A5] ()

true ifa=a’

where eq(a,a”) = { false ifa =+ a’
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SEMANTICS OF COMMANDS

Clskip] = As € State.s
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SEMANTICS OF COMMANDS

Clskip]

As € State. s

C[if B then C else C’] = As € State. if (C[B] (s),C[CI (s),c[C"] (s))
x ifb=true

where if (b, x, x") = { x’ ifb = false
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SEMANTICS OF COMMANDS

Clskip] As € State. s

This is compositionality!

C[if B then C else C’] = As € State.if (C[B] (s),C[CI (s),c[C"] (s))
x ifb=true

where if (b, x, x") = { x’ ifb = false
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SEMANTICS OF COMMANDS

Clskip]

C[if B then C else C’]

CIL := A]

As € State. s

As € State. if (C[B] (s),CIC] (s),c[C’] (s))

‘ , x ifb =true
where if (b, x, x”) :{ x’ ifb = false

As € State. s|L — A[A] (s)]

n ifL" =1L
where s[L = n](L’) = { S(L) otherwise

14/104



SEMANTICS OF COMMANDS

Clskip]

C[if B then C else C’]

CIL := A]

c[C;C’]

As € State. s

As € State. if (C[B] (s),CIC] (s),c[C’] (s))

‘ , x ifb =true
where if (b, x, x”) :{ x’ ifb = false

As € State. s|L — A[A] (s)]

n ifL" =1L
where s[L = n](L’) = { S(L) otherwise

c[c’] - clC]
As € State. C[C’] (C[C] (s))
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INTRODUCTION
A SEMANTICS FOR LOOPS



SEMANTICS OF LOOPS?

This is all very nice, but...

[while B do C] = ???
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SEMANTICS OF LOOPS?

This is all very nice, but...

[while B do C] = ???

Remember:

- (while Bdo C,s) — (if B then (C;while Bdo C) else skip,s)

- we want a compositional semantic: we should give [while B do C] in terms of [C]
and [B]
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LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if([B] , [while B do C] ~ [C] (s), s)
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LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if([B] , [while B do C] ~ [C] (s), s)

Not a direct definition for [while B do CJ... But a fixed point equation!

[while B do C] = Fypj jcj(while B do C)

where F,.: (State — State) — (State — State)
w > As € State. if (b(s), w o ¢(s), 5).
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NOwW WE HAVE A GOAL

- Why/when does w = Fj, .(w) have a solution?
- What if it has several solutions? Which one should be our [while B do CJ?
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NOwW WE HAVE A GOAL

- Why/when does w = Fj, .(w) have a solution?
- What if it has several solutions? Which one should be our [while B do CJ?

Our occupation for the next few lectures...
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INTRODUCTION
A TASTE OF DOMAIN THEORY



AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]
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AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]

should be some w such that:

w = Fixsopv:=x+v:x:=x-1](W).
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AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]

should be some w such that:

w = Fixsopv:=x+v:x:=x-1](W).

That is, we are looking for a fixed point of the following F : D — D, where D is
(State — State):

[X - x,Y — y] ifx <0

F(w)([XHx,Y'—’J/]):{ w( X+ x—1LY - x-y]) ifx>0.
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THE POSET OF PARTIAL FUNCTIONS

Partial order C on D (= State — State):

wEw’ if forall s € State, if wis defined at s
then so is w” and moreover w(s) = w’(s).
if the graph of wis included in the graph of w’.
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THE POSET OF PARTIAL FUNCTIONS

Partial order C on D (= State — State):

wEw’ if forall s € State, if wis defined at s
then so is w” and moreover w(s) = w’(s).
if the graph of wis included in the graph of w’.

Least element L € D:
1

totally undefined partial function
partial function with empty graph
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APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is { .
! Wn+1 = F(Wn)
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APPROXIMATING THE FIXED POINT

wo = L

Define w,, = F*(w), that is { .
Wor1 = F(wy)

[X > x,Y—>y] ifx<0

W1[X'_’X’Y'_>Y]:F(J-)[X'_’x’y'_)y]:gundeﬁned ifx > 1
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APPROXIMATING THE FIXED POINT

=1
Define w,, = F*(w), that is {WO .
Wor1 = F(wy)
[X—>x,Y>y] ifx<0
WX > x,Y >yl = Fw)[X —» x,Y > y] =4[X—» 0,Y > y] ifx=1
undefined ifx>2
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APPROXIMATING THE FIXED POINT

wo = AL

Define w, = F*(w), that is { .
Wor1 = F(wy)

[X > x,Y—>y] ifx<0
[X—>0,Y»y] ifx=1
[X > 0,Y —» 2y] ifx=2
undefined ifx>3

ws[X > x,Y > y] = Fwp)[X > x,Y > y] =
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APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n
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Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
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APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n

WwoEw E..Ew,E L Ewy
[X — x,Y > y] if x <0

OOX sY = i — .
Weol X 12>, Y 12y |—|Wl [ X~ 0,Y~ (x!)-y] ifx>0

ieN
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WE HAVE OUR SEMANTICS

F(weo)[X = x,Y > y]
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WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[ X = x,Y > y] = {
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WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[ X = x,Y > y] = {

X Y ifx<0
:g[ = %Yoyl ' (by definition of W)

[X—>0,Y» (x—1)!-x-y] ifx>0
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WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[ X = x,Y > y] = {

X Y ifx<0
:g[ = %Yoyl ' (by definition of W)

[X—>0,Y» (x—1)!-x-y] ifx>0
= Weo| X P x,Y 5 y]
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WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx <0

) (by definition of F)
WolX > x—1,Y > x-y] ifx>0

H%MXH&YHﬂZE

% Y ifx <0
B {[ = xY > y] I (by definition of w,,)

[X=0Y> (x—1D-x-y] ifx>0
= Weo| X P x,Y 5 y]

* Wy IS a fixed point

- which moreover agrees with the operational semantics (!)
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LEAST FIXED POINTS



LEAST FIXED POINTS
POSETS AND MONOTONE FUNCTIONS



PARTIALLY ORDERED SET

A partial order on a set D is a binary relation C that is

reflexive: Vd € D. d C d
transitive: Vd,d’,d” €e D.dCd’ Cd” =dCd”
antisymmetric: Vd,d’ € D.dCd’'Cd=d=d’.
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PARTIALLY ORDERED SET

A partial order on a set D is a binary relation C that is
reflexive: Vvd € D.d C d

transitive: Vd,d’,d” €e D.dCd’' Cd”’ =dCd”
antisymmetric: Vd,d’ € D.dCd’'Cd=d=d’.

REFL
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DOMAIN OF PARTIAL FUNCTIONS X — Y

Underlying set: partial functions f with domain of definition dom( f) € X and taking
valuesinY;
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DOMAIN OF PARTIAL FUNCTIONS X — Y

Underlying set: partial functions f with domain of definition dom( f) € X and taking
valuesinY;

Order: f C gif dom(f) C dom(g) and Vx € dom(f). f(x) = g(x), i.e. if
graph(f) < graph(g).
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MONOTONICITY

A function f: D — E between posets is monotone if

vd,d’ € D.dC d’ = f(d)C f(d).
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MONOTONICITY

A function f: D — E between posets is monotone if

vd,d’ € D.dC d’ = f(d)C f(d).

xLy

MON ————
fGE f»)
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LEAST FIXED POINTS
LEAST ELEMENTS AND PRE-FIXED POINTS



LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.
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LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

If it exists, it is unique , and is written Lg, or simply L.

X€S

LEAST
J_SEx
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LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

If it exists, it is unique , and is written Lg, or simply L.

1lseS 1lg€S
LEAST ———— LEAST ————
1gE 1g 15C 1g
x€S ASYM
LEAST lg =13
J—S E X
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PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.
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PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

The least pre-fixed point of f if it exists, will be written

fix(f)
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PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

The least pre-fixed point of f if it exists, will be written

fix(f)

It is thus (uniquely) specified by the two properties:

fdcd
LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d
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PROOFS WITH LEAST FIXED POINTS

LFP-FIX

f(fix(f)) C fix(f)

The least pre-fixed point is a fixed point.
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PROOFS WITH LEAST FIXED POINTS

f(d)cd

LFP-FIX LFP-LEAST

() € i) fix(f) C d
To prove fix(f) C d, it is enough to show f(d) C d.
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PROOFS WITH LEAST FIXED POINTS

fd)cd

LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d

Application: least pre-fixed points of monotone functions are (least) fixed points.

LFP-FI

" FEx() € fix(f) fix(f) C f(fix(f))
F(Eix(f)) = fix(f)

ASYmM
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PROOFS WITH LEAST FIXED POINTS

f(dcd
LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d

Application: least pre-fixed points of monotone functions are (least) fixed points.

LFP-FIX

R )
FUE(N) T fEix()
CfEx(CER) 0 fix(f) T fEx()
() = fix(f)

LFP-FI

ASYmM
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LEAST FIXED POINTS
LEAST UPPER BOUNDS



LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chainsdy C d; C dy C ..., written
|_|n20 d,,, satisfies the two following properties:

Vvn>0.x,Cx
LUB-BOUND ———— LUB-LEAST

e[ [Joc>

n=>0 n>0
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PROPERTIES OF LUBS

Lubs are unique.
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PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if foralln € N. d, C ey, then | |, d, E ||, en.
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PROPERTIES OF LUBS

Lubs are unique.
Lubs are monotone: if for alln € N. d, € e,, then | |, d, T | |, .

Vi. di C €

|_|dn C |_|en
n n

LUB-MON
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PROPERTIES OF LUBS

Lubs are unique.
Lubs are monotone: if foralln € N. d, C ey, then | |, d, E ||, en.

Foranyd, | |,d=4d.

29/104



PROPERTIES OF LUBS

Lubs are unique.
Lubs are monotone: if foralln € N. d, C ey, then | |, d, E ||, en.
Foranyd, | |,d=4d.

Forany chainand N € N, | |, d, = ||, dusn-
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PROPERTIES OF LUBS

Lubs are unique (if they exist).

Lubs are monotone: if for alln € N. dy, C ey, then | |, d, T |_|, e, (if they exist).
Foranyd, | |, d = d (and in particular it exists).

For any chain and N € N, | |, d, = ||, d,+n (if any of the two exists).
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DIAGONALISATION

Assume dp, , € D (m,n > 0) satisfies

m<m' an<n’ = dy, Cdy,y.
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DIAGONALISATION

Assume dp, , € D (m,n > 0) satisfies
m<m' an<n’ = dy, Cdy,y. (1)

Then, assuming they exist, the lubs form two chains

|_|d0>n = |_|d1,n C |_|d2,n S oo

n=>0 n=>0 n>0
and
|_| dm,O C |_| dm,l C |_| dm,2 C ..
m>0 m>0 m>0
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DIAGONALISATION

Assume dp, , € D (m,n > 0) satisfies
m<m' an<n’ = dy, Cdy,y. (1)

Then, assuming they exist, the lubs form two chains

|_|d0>n = |_|d1,n C |_|d2,n S oo

n=>0 n=>0 n>0
and
|_| dm,O C |_| dm,l C |_| dm,2 C ..
m>0 m>0 m>0

Moreover, again assuming they exist,

LI dmn ) = | e = ]| [ ] dnn

m>0 \n>0 k>0 n>0 \m>0
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LEAST FIXED POINTS
COMPLETE PARTIAL ORDERS AND DOMAINS



CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, C) in which all chains have least upper
bounds.
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CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, C) in which all chains have least upper
bounds.

Beware: the lub need only exist if the x; form a chain!
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CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, C) in which all chains have least upper
bounds.

Beware: the lub need only exist if the x; form a chain!

A domain is a cpo with a least element L.
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DOMAIN OF PARTIAL FUNCTIONS

Least element: L is the totally undefined function.
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DOMAIN OF PARTIAL FUNCTIONS

Least element: L is the totally undefined function.

Lub of a chain: fy C f; C f, C ... has lub f such that

fn() if x € dom(f,) for some n
undefined otherwise

flx) =
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DOMAIN OF PARTIAL FUNCTIONS

Least element: L is the totally undefined function.

Lub of a chain: fy C f; C f, C ... has lub f such that

fn() if x € dom(f,) for some n
undefined otherwise

flx) =

Beware: the definition of | |5 f, is unambiguous only if the f; form a chain!
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THE FLAT NATURAL NUMBERS D\IJ_

0‘1\&:%"“”.
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LEAST FIXED POINTS
CONTINUOUS FUNCTIONS



CONTINUITY AND STRICTNESS

Given two cpos D and E, a function f: D — E is continuous if

- it is monotone, and

- it preserves lubs of chains, i.e. for all chainsdy C d; C ... in D, we have

f ) = | fd

n>0 n>0
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CONTINUITY AND STRICTNESS

Given two cpos D and E, a function f: D — E is continuous if

- it is monotone, and

- it preserves lubs of chains, i.e. for all chainsdy C d; C ... in D, we have

f ) = | fd

n>0 n>0
A function fis strict if f(Lp) = Lg.

34/104



THESIS

All computable functions are continuous.
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THESIS

All computable functions are continuous.
The typical non-continuous function: “is a sequence the constant 0"?

0o 0 L .. — L
0 0 O

0 1 .. =1

000 0 0 0 - 0
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THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0"?

0o 0 L .. — L
00 0 0 1 .. — 1
0 0 0 O — ?

00 0 O O0 O — 0

35/104



THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0"?

0o o0 L .. ——
000 0 1 .. - 1
000 0O0OOTO L —> 1
000 00O OGO O > ?
000 0 0 O - 0
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THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0"?

0O 0 L .. —
000 0 1 .. - 1
000 00O OO0 L .y
000 00O OO O > ?
000 0 0 O - 0

Intuition: non-continuity = “jump at infinity” = non-computability
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THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0"?

0O 0 L .. —
000 0 1 .. - 1
000 00O OO0 L .y
000 00O OO O > ?
000 0 0 O - 0

Intuition: non-continuity = “jump at infinity” = non-computability
Later in the course: show the thesis... by giving a denotational semantics.
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KLEENE'S FIXED POINT THEOREM



KLEENE’'S FIXED POINT THEOREM

Let f: D — D be a continuous function on a domain D. Then f possesses a least

pre-fixed point, given by
fix(f) = |_| (0.
n>0

36/104



KLEENE’'S FIXED POINT THEOREM

Let f: D — D be a continuous function on a domain D. Then f possesses a least

pre-fixed point, given by
fix(f) = |_| (0.
n>0

It is thus also the least fixed point of f!

36/104
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CONSTRUCTIONS ON DOMAINS

FLAT DOMAINS



FLAT DOMAIN ON X

The flat domain on a set X is defined by:

- its underlying set X (+J{_};
- xC x’ifeitherx=_Lorx=x".
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FLAT DOMAIN LIFTING

Let f : X — Y be a partial function between two sets. Then

X - Y,
f(d) ifd e X and fis defined atd
d - {1 ifd € X and f is not defined at d
4 ifd =1

defines a continuous function between the corresponding flat domains.
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CONSTRUCTIONS ON DOMAINS

PRODUCTS OF DOMAINS



BINARY PRODUCT

The product of two posets (Dy,C4) and (D,, Cy) has underlying set
Dy x Dy ={(dy,dy) | dy € Dy ndy € Dy}

and partial order C defined by

def
(dy,dy) C (d{,dy) & dy Cy d{ ndy Cy dy
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BINARY PRODUCT

The product of two posets (Dy,C4) and (D,, Cy) has underlying set
Dy x Dy ={(dy,dy) | dy € Dy ndy € Dy}

and partial order C defined by

def
(dy,dy) C (d{,dy) & dy Cy d{ ndy Cy dy

dCidi dCyd
X

(dy,dp) C (dy,d3)

PO
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COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

| |W@ipdep) =( |diss| | o))

n>0 i>0 >0
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lubs of chains are computed componentwise:

| |W@ipdep) =( |diss| | o))

n>0 i>0 >0

If (D1,C4) and (D, C5) have least elements, so does (Dy x Dy, C) with

Lpxp, = (Lp,s1p,)
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COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

| |W@ipdep) =( |diss| | o))

n>0 i>0 >0

If (D1,C4) and (D, C5) have least elements, so does (Dy x Dy, C) with

Lpxp, = (Lp,s1p,)

Products of cpos (domains) are cpos (domains).
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FUNCTIONS OF TWO ARGUMENTS

A function f : (D x E) — F is monotone if and only if it is monotone in each argument
separately:

vd,d’ € D,e€ E.dC d" = f(d,e) C f(d’,e)
Vd € D,e,e’ € E.eC e’ = f(d,e) C f(d,e).
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FUNCTIONS OF TWO ARGUMENTS

A function f : (D x E) — F is monotone if and only if it is monotone in each argument
separately:

vd,d’ € D,e€ E.dC d" = f(d,e) C f(d’,e)
Vd € D,e,e’ € E.eC e’ = f(d,e) C f(d,e).

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

f | dn. o) =] | fdme)

m>0 m>0
f@, | Jen =] ] fd.en.
n>0 n>0
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DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

’

f monotone x C x’ yCy

fGe,y) T f(x",y")

MONX

f (U X |_|yn> = ||| fGomo) = || £ G 30
m n m n k
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PROJECTION AND PAIRING

Let D; and D, be cpos. The projections

i DlxDZ — Dl Ty © DlxDZ — Dz
(di.dy) — 4 (di.dy) — dy

are continuous functions.
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PROJECTION AND PAIRING

Let D; and D, be cpos. The projections

i DIXDZ — Dl Ty © DlxDZ — Dz
(di.dy) — 4 (di.dy) — dy

are continuous functions.

If f{: D — D;and f, : D — D, are continuous functions from a cpo D, then the
pairing function
(f.fo1 D — Dy xDy
d — (fi(d), fo(d))

is continuous.
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DOMAIN CONDITIONAL

The conditional function

if: Byx(DxD) — D
m(d) if x = true
(x,d) — 1my(d) if x = false
J_D ifx=_1

is continuous.
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GENERAL PRODUCT

Given a set I, suppose that for each i € I we are given a set X;. The (cartesian) product of
the Xj is

[1x

iel
Two ways to see it:

- tuples: (..., x;, ... )jer such that x; € X;;
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GENERAL PRODUCT

Given a set I, suppose that for each i € I we are given a set X;. The (cartesian) product of
the Xj is

[1x

iel
Two ways to see it:

- tuples: (..., x;, ... )jer such that x; € X;;
- heterogeneous functions: p defined on I such that p(i) € X;.

Special case: [ [;cg D; corresponds to Dypye X Dialse-

Projections (for any i € I):

m:(HXi)aXi

i€l

45/104



GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each i € I we are given a cpo (D;, ;). The product of this
whole family of cpos has

- underlying set equal to [ [ic; Dj;
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Given a set I, suppose that for each i € I we are given a cpo (D;, ;). The product of this
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- underlying set equal to [ [ic; Dj;
* componentwise order
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GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each i € I we are given a cpo (D;, ;). The product of this
whole family of cpos has

- underlying set equal to [ [ic; Dj;
* componentwise order

C /def el pCs ,
pP=p Ve PSP

I-indexed products of cpos (domains) are cpos (domains), and projections are
continuous.

46/104



CONSTRUCTIONS ON DOMAINS

FUNCTION DOMAINS



CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (D,Cp) and (E,Cg), the function cpo (D — E,C) has underlying set
{f : D> E| is a continuous function}

equipped with the pointwise order:

FC ' SvdeD. f(d) g f/(d).
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CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (D,Cp) and (E,Cg), the function cpo (D — E, C) has underlying set
{f : D — E| is a continuous function}

equipped with the pointwise order:

fCfSvdeD. f(d) g f/(d).

fCpseg& xCpy

f(x) Cg g(»)
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CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (D,Cp) and (E,Cg), the function cpo (D — E,C) has underlying set
{f : D> E| is a continuous function}

equipped with the pointwise order:
def
fCfSvdeD. f(d)Cg f(d).

Argumentwise least elements and lubs:

Lpop(d) = Lg (U fn> @ =] | @

n=>0 n>0
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FUNCTION OPERATIONS ARE CONTINUOUS

Evaluation, currying (f : (D’ x D) — E) and composition

eval: (D> E)xD — E
(f.d) = f(d)

cur(f): D' — (D—E)
& — AeD. f(d,d)

o: (E->F)x(D—>E)) — (D—F)
(f. &) — Ad € D. g(f(d))

are all well-defined and continuous.
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CONTINUITY OF THE FIXED POINT OPERATOR

fixx: (D—>D) — D

is continuous.
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CONSTRUCTIONS ON DOMAINS

BACK TO THE INTRODUCTION



THE SEMANTICS OF A WHILE LOOP

[while X >0do (Y :=X*Y; X := X —1)]

is a fixed point of the following F : D — D, where D is (State — State):

[X - x,Y > y] ifx <0

Fw)([X = x,Y = y]) = zw([XHx—l,Y'—’x'Y]) if x > 0.
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THE SEMANTICS OF A WHILE LOOP

[while X >0do (Y :=X*Y; X := X —1)]

is a fixed point of the following F : D — D, where D is (State |, — State | ):

B (X — x,Y > y] ifx<0
Fw)[X > x, Y y]) = {W([X,_,x_l,Yny]) if x > 0.

F(1) = 1

State, — State is a domain!
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KLEENE’'S FIXED POINT THEOREM

Kleene's fixed point theorem:
weo = || F"(1)
ieN

is the least fixed point of F, and in particular a fixed point.
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KLEENE’'S FIXED POINT THEOREM

Kleene's fixed point theorem:
weo = || F"(1)

ieN

is the least fixed point of F, and in particular a fixed point.

We can compute explicitly

[X - x,Y — y] ifx <0

oo | X Y =
Weol X 12 26, Y 1>y [X—>0,Y—>(x)-y] ifx>0

And check this agrees with the operational semantics.
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SCOTT INDUCTION



REASONING ON FIXED POINTS: SCOTT INDUCTION

Let D be a domain, f: D — D be a continuous function and S € D be a subset of D. If
the set S

(i) contains L,
(i) is stable under f,ie. f(S)CS,

(iii) is chain-closed, i.e. the lub of any chain of elements of S is also in S,

then fix(f) € S.
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REASONING ON FIXED POINTS: SCOTT INDUCTION

Let D be a domain, f: D — D be a continuous function and S € D be a subset of D. If
the set S

(i) contains L,
(i) is stable under f,ie. f(S)CS,

(iii) is chain-closed, i.e. the lub of any chain of elements of S is also in S,

then fix(f) € S.

o) O(x) = &(f(x)  (vieN.d(x) =0 |x)

iEN

SCOTTIND

O(fix(f))
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BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:
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BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

{(x,y) e DxD | x C y}, did:ef{xeD|xEd} and  {(x,y) € DxD | x = y}
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{(x,y) e DxD | x C y}, did:ef{xeD|xEd} and  {(x,y) € DxD | x = y}

flS={xeD]| f(x)eS} ifSCEischain-closed, and f: D — E is continuous
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BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:
{(x,y) e DxD | x C y}, did:ef{xeD |xCd} and {(x,y) € DxD|x =y}
flS={xeD]| f(x)eS} ifSCEischain-closed, and f: D — E is continuous
SuT and mSi if S, T and §; are

i€l
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BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

{(x,y) e DxD | x C y}, did:ef{xeD|xEd} and  {(x,y) € DxD | x = y}
flS={xeD]| f(x)eS} ifSCEischain-closed, and f: D — E is continuous

SuT and mSi if S, T and §; are

i€l

VSdzef{yeE|Vx€D.(x,y)€S}§E ifSCDxEis
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EXAMPLE: DOWNSET

Assume f(d) C d, ie. dis a pre-fixed point of the continuous f : D — D. By Scott
induction on d |, fix(f) C d.
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EXAMPLE: DOWNSET

Assume f(d) C d, ie. dis a pre-fixed point of the continuous f : D — D. By Scott
induction on d |, fix(f) C d.

Proof!

54/104



EXAMPLE: PARTIAL CORRECTNESS

Let wy: State; — State | be the denotation of
while X >0do (Y :=X*Y; X:=X—-1)

Recall that w,, = fix(F) where

ECE)) ifx<0
F(w)(x,y) = { wx—1,x-y) ifx>0

Fw)(L) = L
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EXAMPLE: PARTIAL CORRECTNESS

Let wy: State; — State | be the denotation of
while X >0do (Y :=X*Y; X:=X—-1)

Recall that w,, = fix(F) where

ECE)) ifx<0
F(w)(x,y) = { wx—1,x-y) ifx>0

Fw)(L) = L

Claim:
Vx. Yy 2> 0. Weo(x, y) | = 71y (Weo(x,y)) >0
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EXAMPLE: PARTIAL CORRECTNESS

Let wy: State; — State | be the denotation of
while X >0do (Y :=X*Y; X:=X—-1)

Recall that w,, = fix(F) where

ECE)) ifx<0
F(w)(x,y) = { wx—1,x-y) ifx>0

Fw)(L) = L

Claim:
Vx. Yy 2> 0. Weo(x, y) | = 71y (Weo(x,y)) >0

Proof: by Scott induction!

55/104
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PCF

TERMS AND TYPES



SYNTAX OF PCF

Types: T u=nat|bool |7 > 1
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SYNTAX OF PCF

Types: T u=nat|bool |7 > 1

Terms: t == 0]succ(t)]|pred(t)]
true | false | zero?(¢) | if t thent elset
x| funx:z.t|tt] fix(t)
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TYPING FOR PCF (I)

The term t has type 7 in context I’

I'—t:nat I'—t:nat

/ERO ——M8M8M8888 succ PRED
I'—0:nat I' + succ(t) : nat I' - pred(?) : nat

57/104



TYPING FOR PCF (I)

The term t has type 7 in context I’

I'~t:nat I'~t:nat
/ERO ——M8M8M8888 succ PRED
I'—0:nat I' + succ(t) : nat I' - pred(?) : nat
I'~t:nat
TRUE FALSE IsZ
I' - true : bool I'  false : bool I' - zero?(t) : bool
I'—b:bool

T'Ht:1 Tt :1
|

F
' i1if b thentelset’ : 7
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TYPING FOR PCF (II)

I'x)=1 Ixiokt:T '-f:o0>71 Thru:o
VAR ———— FUN ApP
F'Hx:7 '+ funxio.t:o =1 I'fu:r
I'f:t—>71

N TEFix) 7
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TYPING FOR PCF (II)

I'x)=1 Ixiokt:T '-f:o0>7 Thru:o
VAR ———— FUN ApP
F'Hx:7 '+ funxio.t:o =1 I'fu:r
I'f:t—>71

N TEFix) 7

def def

PCFr, = {t | T+t : 1} PCF, = PCF.,
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PCF

OPERATIONAL SEMANTICS



PCF EVALUATION

Values: v = 0| succ(v) | true | false | funx:z.t
| S —
n
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PCF EVALUATION

Values: v = 0| succ(v) | true | false | funx:z.t
| S —
n

vt

VAL
vi,v
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PCF EVALUATION

Values: v = 0| succ(v) | true | false | funx:z.t
| S —
n
Fv:T tlnat v t lnat succ(v)
VAL succ PRED ————
vi v succ(t) Jpat succ(v) pred(t) lpac v
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PCF EVALUATION

Values: v = 0| succ(v) | true | false | funx:z.t
| S —
n

Fv:t t Upat v t Upat succ(v)
succ PRED ———— X
vi v succ(t) Jpat succ(v) pred(t) lpac v

VAL

t lpat @ blpoor true 1 l; v
ZEROZ IFT -
zero?(t) Jpoor true if b thent; elsety |, v
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PCF EVALUATION

Values: vi=0|succ(v)|true| false| funx:z.t
| —
n
Fv:t t Upat v t Upat succ(v)
VAL succ PRED ——m8M888@8 ™
vigv succ(t) Upat succ(v) pred(t) Unat v
t lpat @ blpoor true 1 l; v
ZEROZ IFT =
zero?(t) Jpoor true if b thent; elsety |, v
tlos; funx:o.t”  t'[u/x] ;v t (Fix(@)) U, v
FUN FIX ——————————
tul, v fix(t) I, v
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PCF EVALUATION

Values: vi=0|succ(v)|true| false| funx:z.t
| —
n
Fv:t t Upat v t Upat succ(v)
VAL succ PRED ——m8M888@8 ™
vigv succ(t) Upat succ(v) pred(t) Unat v
t lpat @ blpoor true 1 l; v
ZEROZ IFT =
zero?(t) Jpoor true if b thent; elsety |, v
tlos; funx:o.t”  t'[u/x] ;v t (Fix(@)) U, v
FUN FIX ——————————
tul, v fix(t) I, v

Alternatively: small-step t ~», u, we have t |, v ifft w; u. 59/104



EXAMPLES

plus L fun x: nat. fix(fun(p:nat — nat)(y:nat).
if zero?(y) then x else succ(p pred(y)))

plus31 Unat 4
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EXAMPLES

plus L fun x: nat. fix(fun(p:nat — nat)(y:nat).
if zero?(y) then x else succ(p pred(y)))

plus31 Unat 4

def
Q, = fix(funx:7. x)

Q1 (diverges)
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EXAMPLES

plus L fun x: nat. fix(fun(p:nat — nat)(y:nat).
if zero?(y) then x else succ(p pred(y)))

plus31 Unat 4

def
Q, = fix(funx:7. x)

Q1 (diverges)

Try it out!
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TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function ¢, there is a PCF term ¢ such
that for all n € N, if ¢(n) is defined then ¢ n 51 H(n).

61/104



TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function ¢, there is a PCF term ¢ such
that for all n € N, if ¢(n) is defined then ¢ n 51 H(n).

(Lateron: ¢ = H?ﬂ ).
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DETERMINISM

Fvaluation in PCF is deterministic: if both ¢ | vand ¢ |, v/ hold, then v = v,
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DETERMINISM

Fvaluation in PCF is deterministic: if both ¢ | vand ¢ |, v/ hold, then v = v,

By (rule) induction on evaluation |:
{t,t,v) |t L, vAaW .t U, vV =>v=v)}

Intuition: there is always exactly one rule which applies.
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PCF

CONTEXTUAL EQUIVALENCE



CONTEXTUAL EQUIVALENCE — INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.
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CONTEXTUAL EQUIVALENCE — INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

The intuitive notion of program equivalence for programmers.
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EVALUATION CONTEXTS

¢ == —|succ(C)|pred(C)| zero?(C) |
if C thentelset|ift thenCelset|ift thentelseC |
funx:z.c|ct|tc| fix(c)

64/104



EVALUATION CONTEXTS

¢ == —|succ(C)|pred(C)| zero?(C) |
if C thentelset|ift thenCelset|ift thentelseC |
funx:z.c|ct|tc| fix(c)

Typing extended to evaluation contexts: I' =p , C : 7.
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EVALUATION CONTEXTS

¢ == —|succ(C)|pred(C)| zero?(C) |
if C thentelset|ift thenCelset|ift thentelseC |
funx:z.c|ct|tc| fix(c)

Typing extended to evaluation contexts: I' =p , C : 7.

FpasCingp > ThHu:g

=, — 2@ FFpagCu:ny
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CONTEXTUAL EQUIVALENCE

Given a type 7, a typing context I" and terms t,t” € PCFr;, contextual equivalence,
written T' =t =4« t’ : T is defined to hold if for all evaluation contexts C such that
- bz C 1y, wherey is nat or bool, and for all values v € PCF,,

clt] by veclt'] iy v.

When I is the empty context, we simply write t Z¢4y t’ : T for- =t =g t’ : 7.
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PCF

INTRODUCING DENOTATIONAL SEMANTICS



THE AIMS OF DENOTATIONAL SEMANTICS

- a mapping of PCF types 7 to domains [z];
- a mapping of closed, well-typed PCF terms - =t : 7 to elements [t] € [z];

- denotation of open terms will be continuous functions.
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THE AIMS OF DENOTATIONAL SEMANTICS

- a mapping of PCF types 7 to domains [z];
- a mapping of closed, well-typed PCF terms - =t : 7 to elements [t] € [z];

- denotation of open terms will be continuous functions.

Compositionality: [t] = [t'] = [c[t]] = [clt']].
Soundness: foranytyper,t |, v = [t] = [v].
Adequacy: fory = bool or nat, ift € PCFY and [t] = [v] thent U}, V.
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THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl Zctx tz T

it suffices to establish

[t1] = 2] €[]
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THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl ECtX tz T
it suffices to establish

[t1] = 2] €[]

Clt] Vnae v = [C[t]] = VI (soundness)
= [c[t]] = V] (compositionality on [t;] = [t])
= C[ty] Unat v (adequacy)
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THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl ECtX tz T
it suffices to establish

[t1] = 2] €[]

Clt] Vnae v = [C[t]] = VI (soundness)
= [c[t]] = V] (compositionality on [t;] = [t])
= C[ty] Unat v (adequacy)

and symmetrically for C[ts] Unat v = C[t1] Upat v, and similarly for bool.
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THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl Zctx tz T

it suffices to establish

[t1] = 2] €[]

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?
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THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl Zctx tz T

it suffices to establish

[t1] = 2] €[]

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

67/104
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DENOTATIONAL SEMANTICS FOR PCF

TYPES AND CONTEXTS



SEMANTICS OF TYPES

[nat] o N, (flat domain)
[bool] o B, (flat domain)
[t = '] o [z] - [7’] (function domain)
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SEMANTICS OF CONTEXTS

S [Ticdomm) [TC] (T-environments)
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SEMANTICS OF CONTEXTS

S [Ticdomm) [TC] (T-environments)

- [-] = 1 (one element set)
el = ({x} - [2D) = [7]

: [[xl:fls---axn:fn]] = [[Tl]] X X [[Tn]]
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DENOTATIONAL SEMANTICS FOR PCF

TERMS



DENOTATIONAL SEMANTICS OF PCF

To every typing judgement
I'Ht:t

we associate a continuous function
T=t:7]): I — [r]
between domains. In other words,

[-1:PCFr, — [I7 - [7]
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DENOTATION OF OPERATIONS ON B AND N

pred : N — N
0 +— undefined
n+l1l — n

succ: N — N
n - n+1

zero? : N — B
0 — ftrue
n+1 — false

71/104



DENOTATION OF OPERATIONS ON B AND N

d, : N N
succ, : N, - N precy 6 : J_L
B 5 Bar n+1 = n
1 1
~ 1 - 1
zero?, : N, — B
0 +— ftrue
n+1 — false
1l = 1
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DENOTATION OF OPERATIONS ON B AND N

[e](p) = ©
[true] (p) L true
[false] (p) L false

€N,
€eB,

eB,
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DENOTATION OF OPERATIONS ON B AND N

[o](p) = 0 eN,
[true] (p) L true eB;
[false] (p) o false eB;

[succ®] (p) = suce, (I1] (p)) €N,
[pred®] (p) = pred, (It] (p) €N,
[zero?(®)] (p) = zero?, (1] (p)) €B,

[succ(®)] = succ °[t]
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DENOTATION OF OPERATIONS ON B AND N

[o](p) = 0 eN,
[true] (p) L true eB;
[false] (p) o false eB;

[succ®] (p) = suce, (I1] (p)) €N,
[pred®] (p) = pred, (It] (p) €N,
[zero?(®)] (p) = zero?, (1] (p)) €B,

[if bthentelset’] < (16l (p), [ (p), [] (p)) €Il

[if b thent else ¢'] =if «([b],([¢], [']))
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DENOTATION OF THE A-CALCULUS OPERATIONS

def

[x](p) = p(x) € [T(x)]

[x] (p) = 7 (p)
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DENOTATION OF THE A-CALCULUS OPERATIONS

(o) < px) e [F(x)]
el () £ (u] @) (L] ()

[t t,] = eval([t;] , [t2])
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DENOTATION OF THE A-CALCULUS OPERATIONS

def

Ix1(p) = p(x) € [T(x)]
el () = ([u] () (L] ()
[funx:7.t] (p) L e [z]. [t (p, d)

[funx:7.t] = cur([t])
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DENOTATION OF FIXED POINTS

def

[fix fl1(p) = fix([f] (p))
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DENOTATION OF PCF TERMS

For any PCF term t such that " ¢ : 7, the object [t]
is well-defined and a continuous function [t] : [I'] — 7.
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DENOTATION OF PCF TERMS

For any PCF term t such that " ¢ : 7, the object [t]
is well-defined and a continuous function [t] : [I'] — 7.

IftePCF.: [t] € []—-[r] = 1-=[] = I[]
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DENOTATIONAL SEMANTICS FOR PCF

COMPOSITIONALITY



COMPOSITIONALITY

Suppose t,u € PCFr, such that

[] = [u] : [IT = [7]

Suppose moreover that C[—] is a PCF context such thatI'” k-, C : 7/. Then

[ele]] = [elu]] = [T'] - [T
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A DENOTATION FOR EVALUATION CONTEXTS

IfT Faq C : 7, then define [C] such that

[c] : ([A] = [o]) — [T - 7]
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A DENOTATION FOR EVALUATION CONTEXTS

IfT Faq C : 7, then define [C] such that

[c] : ([A] = [o]) — [T - 7]

[-1(d) =d
[c ] (d)(p) = (L] (P[] (p))
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A DENOTATION FOR EVALUATION CONTEXTS

IfT Faq C : 7, then define [C] such that

[c] : ([A] = [o]) — [T - 7]

[-1(d) =d
[c ] (d)(p) = (L] (P[] (p))

IfI'-pq C:Tand At : o, then

[clt]] = [T (1)
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SUBSTITUTION PROPERTY OF THE SEMANTIC FUNCTION

Assume

I'~u:o
I'x:oct:7

Then for all p € [I7
[tlu/x1] (p) = [t] (plx = [ul (p)D.

In particular when I' = - [t] : [o] — [z] and

[¢[u/x1] = 1 ([uD)
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DENOTATIONAL SEMANTICS FOR PCF
SOUNDNESS



SOUNDNESS

For all PCF types 7 and all closed terms t, v € PCF; with v a value, if t |, v is derivable,
then

[l = v] € [7]
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RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS



REMINDER: ADEQUACY

For any closed PCF term ¢ and value v of ground type y € {nat, bool}

[l=Wely] =t v
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[l=Wely] =t v

Adequacy does not hold at function types or for open terms
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REMINDER: ADEQUACY

For any closed PCF term ¢ and value v of ground type y € {nat, bool}

[l=Wely] =t v

Adequacy does not hold at function types or for open terms
[funx:z.(funy:7.y)x] = [funx:z.x] :[r] — [7]

but
funx:z. (funy:7. y) x{f; 5, funx:z. x
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RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

FORMAL APPROXIMATION RELATION



HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCF 3¢, n € N, and R(n,t), then ¢ U}, n (same for booleans);
2. for any well-typed term ¢, R([t] , t);
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HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCF 3¢, n € N, and R(n,t), then ¢ U}, n (same for booleans);
2. for any well-typed term ¢, R([t] , t);

Assume t,v € PCF ¢, [t] = [v], and v is a value.

Thus v = n for somen € N, and [v] = n.

i1 = o] =n
= R(n,t)
=tln=v
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HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that
1. ift € PCF, 3¢, n € N, and R(n,t), then ¢ Uyn (same for booleans);
2. for any well-typed term t, R([t] , t);

But at non-base types, adequacy does not hold.
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HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCF, 3¢, n € N, and R(n,t), then ¢ Uyn (same for booleans);
2. for any well-typed term t, R([t] , t);

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

<, C [r] x PCF;

80/104



FORMAL APPROXIMATION AT BASE TYPES

d<]natt C‘l:ef (den\l:tunati)

def
d <poort © (d =true =t poo true)

A(d = false = t |01 false)
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d<]natt C‘l:ef (den\l:tunati)

def
d <poort © (d =true =t poo true)
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FORMAL APPROXIMATION AT BASE TYPES

d<]natt C‘l:ef (den\l:tunati)

def
d <poort © (d =true =t poo true)

A(d = false = t |01 false)

Exactly what we need to get 1.
Note though that L <,5¢ t foranyt € PCF, ;.
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FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFya¢, n € N, and R(n, ), then t |, n (same for booleans); v
2. for any well-typed term ¢, R([t] , t).
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21 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.
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FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFya¢, n € N, and R(n, ), then t |, n (same for booleans); v

2. for any well-typed term ¢, R([t] , t).

21 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

Ft:r > 1 Fu:t

APP y
Htu:t

Assume [u] <, u and [t] <,_, t, how do we get [t u] = [t] ([ul) <, t u?

Define
def
d<;_spt S Vee [z],u € PCF; .(e <; u = d(e) < t u)

82/104



FORMAL APPROXIMATION FOR OPEN TERMS

Ix:tkt:17

ABS p
I'funx:t.t:t—>1

To prove Item 2, we need to talk about open terms.
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FORMAL APPROXIMATION FOR OPEN TERMS

Ix:tkt:17

ABS p
I'funx:t.t:t—>1

To prove Item 2, we need to talk about open terms.

[¢] ([ud) = [(tlu/x]] Semantic application = syntactic substitution
Fundamental property of formal approximation

Given a term ¢ such thatI' ¢ : 7 for some I" and 7, for any environment p and
substitution o such that p <r o, we have [t] (p) <, t[o].
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FORMAL APPROXIMATION FOR OPEN TERMS

Ix:tkt:17

ABS p
I'funx:t.t:t—>1

To prove Item 2, we need to talk about open terms.

[¢] ([ud) = [(tlu/x]] Semantic application = syntactic substitution

Fundamental property of formal approximation

Given a term ¢ such thatI' ¢ : 7 for some I" and 7, for any environment p and
substitution o such that p < o, we have [t] (p) <, t[o].

Parallel substitution: maps each x € dom(I') to o(x) € PCFry,.

83/104



RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

PROOF OF THE FUNDAMENTAL PROPERTY OF FORMAL APPROXIMATION



PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any 7 and t € PCF,, L < 8

2. the set{d € [r] | d <, t}is chain-closed;
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PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any 7 and t € PCF,, L < 8
2. the set{d € [r] | d <, t}is chain-closed;

3. ifvw.t |, v=1t" |, v,andd <, t, thend <, t’.
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PROOF OF THE FUNDAMENTAL PROPERTY
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RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

EXTENSIONALITY



CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: T' =1 <, t’ : T
if for all C such that - =, C : y and for all values v,

cltl by v=clt'] I, v.
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CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: T' =1 <, t’ : T
if for all C such that - =, C : y and for all values v,

cltl by v=clt'] I, v.

Ttz t' it TRt <t :TATHt <gxt:7)
ctx ctx ctx

It corresponds to formal approximation: for all PCF types 7 and closed terms
I,y € PCFT
by Sctx bp: 7 [[tlﬂ < Bp.
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LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.
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LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.

Let 1, %, be closed terms of type 7. Then t; <. tp : 7 if and only if, for every term
f:7 — bool,
J 11 Upoor true = f iz Upoor true.
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EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

Fory = bool or nat, #; <.t fp : 7 holds if and only if

.t by v=11,v)

88/104



EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

Fory = bool or nat, #; <.t fp : 7 holds if and only if

.t by v=11,v)

At a function type 7 = 7/, 1) <.x f2 : T = 7’ holds if and only if

Vt e PCF,. (1t <cix bp bt : 7).
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FULL ABSTRACTION
FAILURE OF FULL ABSTRACTION



FULL ABSTRACTION

A denotational model is fully abstract if

h ZEx o7 = [[tl]] = [tZH € [7]
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A form of completeness of semantic equivalence wrt. program equivalence.

89/104



FULL ABSTRACTION

A denotational model is fully abstract if

h ZEx o7 = [[tl]] = [tZH € [7]

A form of completeness of semantic equivalence wrt. program equivalence.
The domain model of PCF is not fully abstract.

89/104



PARALLEL OR

The parallel or function por : B} x B, — B, is defined as given by the following table:

por |true false L

true | true true frue
false | true false L

1 true 1 1
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LEFT SEQUENTIAL OR

The (left) sequential or function or : B} x B, — B is defined as

def
or = [funx:bool. funy:bool.if x then true else y]

It is given by the following table:

or |true false L

true | true true ftrue
false | true false L

1 1 1 1
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PARALLEL VS SEQUENTIAL OR

por |true false L
true | true true true
false | true false L

1 true 1 1

or |true false L

true | true true ftrue
false | true false L

1 4 1 1
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PARALLEL VS SEQUENTIAL OR

por |true false L or |true false L
true | true true true true | true true true
false | true false L false | true false L

1 true 1 1 1 1 1 1

or is sequential, but por is not.
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UNDEFINABILITY OR PARALLEL OR

There is no closed PCF term
t:bool = bool — bool

satisfying
[t] =por:B, - B, - B, .
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FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.
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FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen Ty pye and Tra1se.

Tirue Zctx Tralse : (bool = bool — bool) — bool

[[Ttrueﬂ * [[Tfalse]] e(B-B—-DB)—B
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FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen Ty pye and Tra1se.

Tirue Zctx Tralse : (bool = bool — bool) — bool

[[Ttrueﬂ * [[Tfalse]] e(B-B—-DB)—B

ldea:

- forall f € PCFy401-sbool-sbool, €nsure Ty f fpoo1 .-
- but [T] (por) = [b].
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EXAMPLE OF FULL ABSTRACTION FAILURE

T, ' fun f:bool — (bool — bool).

if(f true Qpyo1) then
if (f Qpoor true) then
if (f false false) then Q1 else b
else Qpoot
else Qpoo1
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FULL ABSTRACTION
BEYOND FULL ABSTRACTION FAILURE



INTERPRETING FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- The model does not adequately capture PCF?

- Contexts are too weak: they do not distinguish enough programs?
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PCF+por

TI—-Q o &0 FI—-Q o &
POR
I+ por(ty,t): T
t; Upoor true ty Upoor true
PORL PORR
por(t;,ty) Upoor true por(t;,ty) Upoor true

t; Upoor false ty lpoor false

PORF
por(ty,ty) Upoor false

97/104



FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with
[por] = por

the resulting denotational semantics is fully abstract.
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FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with
[por] = por

the resulting denotational semantics is fully abstract...
but is PCF+por still a reasonable model of programming language?
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FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dl-domains & stable functions — no por any more, but still not fully
abstract...

- only proper answers in the late 90s (!): logical relations and game semantics
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FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dl-domains & stable functions — no por any more, but still not fully
abstract...

- only proper answers in the late 90s (!): logical relations and game semantics

Real languages have effects

- If you add effects (references, control flow...) to a language, contexts become much
more expressive.

- Full abstraction becomes different: somewhat easier... but is contextual equivalence
still a reasonable idea?
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WHERE TO GO FROM HERE?



TOWARDS FULL ABSTRACTION

Source of a very rich literature:

- linear logic
- logical relations
- game semantics

- bisimulations techniques
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CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)

- how to construct this structure in particular examples (specific)
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Interpret:

- atype T as an object in a category;

atermI' =t : 7 as a morphism/arrow [t] : [T — [z].
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CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)

- how to construct this structure in particular examples (specific)

Interpret:

- atype T as an object in a category;

atermI' =t : 7 as a morphism/arrow [t] : [T — [z].
Example: A-calculus — cartesian closed categories
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DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml's ADT:
It is a fixed point equation! We can use domain theory to solve it.
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BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output...
An important aspect of programming languages!
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An important aspect of programming languages!

def
Modelled as a monad T (example: T(A) = (A x State)St2te)
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BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output...
An important aspect of programming languages!

def
Modelled as a monad T (example: T(A) = (A x State)St2te)
Denotation of a computation: [I'] — T([z])

103/104



MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)
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MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.
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