DENOTATIONAL SEMANTICS

Meven LENNON-BERTRAND
Lectures for Part Il CST 2023/2024

1/104

PRACTICALITIES

- My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
- Course notes will be updated, keep an eye on the course webpage.

2/104

mailto:mgapb2@cam.ac.uk

INTRODUCTION

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

3/104

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

- Programming language theory: how to design, implement and reason about
programming languages?

3/104

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

- Programming language theory: how to design, implement and reason about
programming languages?

- Programming language semantics: what is the (mathematical) meaning of a
program?

3/104

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

- Programming language theory: how to design, implement and reason about
programming languages?

- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/104

WHY SHOULD WE CARE?

- Insight: exposes the mathematical “essence” of programming language concepts.

4/104

WHY SHOULD WE CARE?

- Insight: exposes the mathematical “essence” of programming language concepts.

- Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers...).

4/104

WHY SHOULD WE CARE?

- Insight: exposes the mathematical “essence” of programming language concepts.

- Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers...).

- Rigour: semantics is necessary to specify/justify formal methods (compilers, type
systems, code analysis, certification...).

4/104

STYLES OF FORMAL SEMANTICS

- Operational
- Axiomatic

- Denotational

5/104

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic

- Denotational

5/104

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part Il Hoare Logic & Model Checking).

- Denotational

5/104

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part Il Hoare Logic & Model Checking).

- Denotational: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

5/104

DENOTATIONAL SEMANTICS IN A NUTSHELL

-1 .
Syntax —— Semantics
Program P+ Denotation [P]
Recursive program +— Partial recursive function
Boolean circuit + Boolean function

6/104

DENOTATIONAL SEMANTICS IN A NUTSHELL

-] :
Syntax —— Semantics

Program P+ Denotation [P]

Recursive program > Partial recursive function
Boolean circuit + Boolean function
Type +— Domain
Program +— Continuous functions between domains

6/104

PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;

- should relate to practical implementations, though...

7/104

PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;

- should relate to practical implementations, though...

Compositionality
- The denotation of a phrase is defined using the denotation of its sub-phrases.
- [P] represents the contribution of P to any program containing P.

- Much more flexible than whole-program semantics.

7/104

INTRODUCTION
A BASIC EXAMPLE

IMP SYNTAX

C € Comm ::= skip | L:= A|C;C | if B then C else C |while Bdo C

8/104

IMP SYNTAX

K ranges over a set L of locations
C € Comm ::= skip | L:= A|C;C | if B then C else C |while Bdo C

8/104

IMP SYNTAX

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C

8/104

IMP SYNTAX

ranges over integers

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C

8/104

IMP SYNTAX

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

|Boolean expressions|

B € Bexp = true | false | A= A|-B] ..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C

8/104

DENOTATION FUNCTIONS — NAIVELY

A: Aexp - 7/

where

Z = {.,-1,0,1,..}

9/104

DENOTATION FUNCTIONS — NAIVELY

A: Aexp - 7/
B: Bexp— B
where

Z = {.,-1,0,1,.1}
B = {true,false}

9/104

ARITHMETIC EXPRESSIONS?

AM] = n

AlAr+4;] = AlAL + A[4,]

10/104

ARITHMETIC EXPRESSIONS?

A[[Q]] = n
AlAy + 4z] = AfA] + A[A,]

277?

A[L]

10/104

DENOTATION FUNCTIONS

State = (L —» Z)

11/104

DENOTATION FUNCTIONS

State = (L —» Z)

A : Aexp — (State —» Z)
B : Bexp — (State — B)

where

Z=A.,-1,01,..}
B = {true, false}.

11/104

DENOTATION FUNCTIONS

State = (L —» Z)

A : Aexp — (State —» Z)
B : Bexp — (State — B)
C : Comm — (State — State)

where — denotes partial functions and

Z=A.,-1,01,..}
B = {true, false}.

11/104

SEMANTICS OF ARITHMETIC EXPRESSIONS

As € State.n

Aln]

AlA; + Ag]

As € State. A[A;] (s) + A[A5] (s)

12/104

SEMANTICS OF ARITHMETIC EXPRESSIONS

As € State.n

Aln]

AlA; + Ag]

As € State. A[A;] (s) + A[A5] (s)

A[L] As € State. s(L)

12/104

SEMANTICS OF BOOLEAN EXPRESSIONS

Bltrue]
Blfalse]

B[A; = Ay]

As € State. true
As € State. false
As € State. eq (A[A{] (s), A[A5] ()

true ifa=a’

where eq(a,a”) = { false ifa =+ a’

13/104

SEMANTICS OF COMMANDS

Clskip] = As € State.s

14/104

SEMANTICS OF COMMANDS

Clskip]

As € State. s

C[if B then C else C’] = As € State. if (C[B] (s),C[CI (s),c[C"] (s))
x ifb=true

where if (b, x, x") = { x’ ifb = false

14/104

SEMANTICS OF COMMANDS

Clskip] As € State. s

This is compositionality!

C[if B then C else C’] = As € State.if (C[B] (s),C[CI (s),c[C"] (s))
x ifb=true

where if (b, x, x") = { x’ ifb = false

14/104

SEMANTICS OF COMMANDS

Clskip]

C[if B then C else C’]

CIL := A]

As € State. s

As € State. if (C[B] (s),CIC] (s),c[C’] (s))

‘ , x ifb =true
where if (b, x, x”) :{ x’ ifb = false

As € State. s|L — A[A] (s)]

n ifL" =1L
where s[L = n](L’) = { S(L) otherwise

14/104

SEMANTICS OF COMMANDS

Clskip]

C[if B then C else C’]

CIL := A]

c[C;C’]

As € State. s

As € State. if (C[B] (s),CIC] (s),c[C’] (s))

‘ , x ifb =true
where if (b, x, x”) :{ x’ ifb = false

As € State. s|L — A[A] (s)]

n ifL" =1L
where s[L = n](L’) = { S(L) otherwise

c[c’] - clC]
As € State. C[C’] (C[C] (s))

14/104

INTRODUCTION
A SEMANTICS FOR LOOPS

SEMANTICS OF LOOPS?

This is all very nice, but...

[while B do C] = ???

15/104

SEMANTICS OF LOOPS?

This is all very nice, but...

[while B do C] = ???

Remember:

- (while Bdo C,s) — (if B then (C;while Bdo C) else skip,s)

- we want a compositional semantic: we should give [while B do C] in terms of [C]
and [B]

15/104

LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if([B] , [while B do C] ~ [C] (s), s)

16/104

LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if([B] , [while B do C] ~ [C] (s), s)

Not a direct definition for [while B do CJ... But a fixed point equation!

[while B do C] = Fypj jcj(while B do C)

where F,.: (State — State) — (State — State)
w > As € State. if (b(s), w o ¢(s), 5).

16/104

NOwW WE HAVE A GOAL

- Why/when does w = Fj, .(w) have a solution?
- What if it has several solutions? Which one should be our [while B do CJ?

17/104

NOwW WE HAVE A GOAL

- Why/when does w = Fj, .(w) have a solution?
- What if it has several solutions? Which one should be our [while B do CJ?

Our occupation for the next few lectures...

17/104

INTRODUCTION
A TASTE OF DOMAIN THEORY

AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]

18/104

AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]

should be some w such that:

w = Fixsopv:=x+v:x:=x-1](W).

18/104

AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]

should be some w such that:

w = Fixsopv:=x+v:x:=x-1](W).

That is, we are looking for a fixed point of the following F : D — D, where D is
(State — State):

[X - x,Y — y] ifx <0

F(w)([XHx,Y'—’J/]):{ w(X+ x—1LY - x-y]) ifx>0.

18/104

THE POSET OF PARTIAL FUNCTIONS

Partial order C on D (= State — State):

wEw’ if forall s € State, if wis defined at s
then so is w” and moreover w(s) = w’(s).
if the graph of wis included in the graph of w’.

19/104

THE POSET OF PARTIAL FUNCTIONS

Partial order C on D (= State — State):

wEw’ if forall s € State, if wis defined at s
then so is w” and moreover w(s) = w’(s).
if the graph of wis included in the graph of w’.

Least element L € D:
1

totally undefined partial function
partial function with empty graph

19/104

APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is { .
! Wn+1 = F(Wn)

20/104

APPROXIMATING THE FIXED POINT

wo = L

Define w,, = F*(w), that is { .
Wor1 = F(wy)

[X > x,Y—>y] ifx<0

W1[X'_’X’Y'_>Y]:F(J-)[X'_’x’y'_)y]:gundeﬁned ifx > 1

20/104

APPROXIMATING THE FIXED POINT

=1
Define w,, = F*(w), that is {WO .
Wor1 = F(wy)
[X—>x,Y>y] ifx<0
WX > x,Y >yl = Fw)[X —» x,Y > y] =4[X—» 0,Y > y] ifx=1
undefined ifx>2

20/104

APPROXIMATING THE FIXED POINT

wo = AL

Define w, = F*(w), that is { .
Wor1 = F(wy)

[X > x,Y—>y] ifx<0
[X—>0,Y»y] ifx=1
[X > 0,Y —» 2y] ifx=2
undefined ifx>3

ws[X > x,Y > y] = Fwp)[X > x,Y > y] =

20/104

APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n

20/104

APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n

20/104

APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n

20/104

APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n

WwoEw E..Ew,E L Ewy
[X — x,Y > y] if x <0

OOX sY = i — .
Weol X 12>, Y 12y |—|Wl [X~ 0,Y~ (x!)-y] ifx>0

ieN

20/104

WE HAVE OUR SEMANTICS

F(weo)[X = x,Y > y]

21/104

WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[X = x,Y > y] = {

21/104

WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[X = x,Y > y] = {

X Y ifx<0
:g[= %Yoyl ' (by definition of W)

[X—>0,Y» (x—1)!-x-y] ifx>0

21/104

WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[X = x,Y > y] = {

X Y ifx<0
:g[= %Yoyl ' (by definition of W)

[X—>0,Y» (x—1)!-x-y] ifx>0
= Weo| X P x,Y 5 y]

21/104

WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx <0

) (by definition of F)
WolX > x—1,Y > x-y] ifx>0

H%MXH&YHﬂZE

% Y ifx <0
B {[= xY > y] I (by definition of w,,)

[X=0Y> (x—1D-x-y] ifx>0
= Weo| X P x,Y 5 y]

* Wy IS a fixed point

- which moreover agrees with the operational semantics (!)

21/104

LEAST FIXED POINTS

LEAST FIXED POINTS
POSETS AND MONOTONE FUNCTIONS

PARTIALLY ORDERED SET

A partial order on a set D is a binary relation C that is

reflexive: Vd € D. d C d
transitive: Vd,d’,d” €e D.dCd’ Cd” =dCd”
antisymmetric: Vd,d’ € D.dCd’'Cd=d=d’.

22/104

PARTIALLY ORDERED SET

A partial order on a set D is a binary relation C that is
reflexive: Vvd € D.d C d

transitive: Vd,d’,d” €e D.dCd’' Cd”’ =dCd”
antisymmetric: Vd,d’ € D.dCd’'Cd=d=d’.

REFL

22/104

DOMAIN OF PARTIAL FUNCTIONS X — Y

Underlying set: partial functions f with domain of definition dom(f) € X and taking
valuesinY;

23/104

DOMAIN OF PARTIAL FUNCTIONS X — Y

Underlying set: partial functions f with domain of definition dom(f) € X and taking
valuesinY;

Order: f C gif dom(f) C dom(g) and Vx € dom(f). f(x) = g(x), i.e. if
graph(f) < graph(g).

23/104

MONOTONICITY

A function f: D — E between posets is monotone if

vd,d’ € D.dC d’ = f(d)C f(d).

24/104

MONOTONICITY

A function f: D — E between posets is monotone if

vd,d’ € D.dC d’ = f(d)C f(d).

xLy

MON ————
fGE f»)

24/104

LEAST FIXED POINTS
LEAST ELEMENTS AND PRE-FIXED POINTS

LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

25/104

LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

If it exists, it is unique , and is written Lg, or simply L.

X€S

LEAST
J_SEx

25/104

LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

If it exists, it is unique , and is written Lg, or simply L.

1lseS 1lg€S
LEAST ———— LEAST ————
1gE 1g 15C 1g
x€S ASYM
LEAST lg =13
J—S E X

25/104

PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

26/104

PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

The least pre-fixed point of f if it exists, will be written

fix(f)

26/104

PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

The least pre-fixed point of f if it exists, will be written

fix(f)

It is thus (uniquely) specified by the two properties:

fdcd
LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d

26/104

PROOFS WITH LEAST FIXED POINTS

LFP-FIX

f(fix(f)) C fix(f)

The least pre-fixed point is a fixed point.

27/104

PROOFS WITH LEAST FIXED POINTS

f(d)cd

LFP-FIX LFP-LEAST

() € i) fix(f) C d
To prove fix(f) C d, it is enough to show f(d) C d.

27/104

PROOFS WITH LEAST FIXED POINTS

fd)cd

LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d

Application: least pre-fixed points of monotone functions are (least) fixed points.

LFP-FI

" FEx() € fix(f) fix(f) C f(fix(f))
F(Eix(f)) = fix(f)

ASYmM

27/104

PROOFS WITH LEAST FIXED POINTS

f(dcd
LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d

Application: least pre-fixed points of monotone functions are (least) fixed points.

LFP-FIX

R)
FUE(N) T fEix()
CfEx(CER) 0 fix(f) T fEx()
() = fix(f)

LFP-FI

ASYmM

27/104

LEAST FIXED POINTS
LEAST UPPER BOUNDS

LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chainsdy C d; C dy C ..., written
|_|n20 d,,, satisfies the two following properties:

Vvn>0.x,Cx
LUB-BOUND ———— LUB-LEAST

e[[Joc>

n=>0 n>0

28/104

PROPERTIES OF LUBS

Lubs are unique.

29/104

PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if foralln € N. d, C ey, then | |, d, E ||, en.

29/104

PROPERTIES OF LUBS

Lubs are unique.
Lubs are monotone: if for alln € N. d, € e,, then | |, d, T | |, .

Vi. di C €

|_|dn C |_|en
n n

LUB-MON

29/104

PROPERTIES OF LUBS

Lubs are unique.
Lubs are monotone: if foralln € N. d, C ey, then | |, d, E ||, en.

Foranyd, | |,d=4d.

29/104

PROPERTIES OF LUBS

Lubs are unique.
Lubs are monotone: if foralln € N. d, C ey, then | |, d, E ||, en.
Foranyd, | |,d=4d.

Forany chainand N € N, | |, d, = ||, dusn-

29/104

PROPERTIES OF LUBS

Lubs are unique (if they exist).

Lubs are monotone: if for alln € N. dy, C ey, then | |, d, T |_|, e, (if they exist).
Foranyd, | |, d = d (and in particular it exists).

For any chain and N € N, | |, d, = ||, d,+n (if any of the two exists).

29/104

DIAGONALISATION

Assume dp, , € D (m,n > 0) satisfies

m<m' an<n’ = dy, Cdy,y.

30/104

DIAGONALISATION

Assume dp, , € D (m,n > 0) satisfies
m<m' an<n’ = dy, Cdy,y. (1)

Then, assuming they exist, the lubs form two chains

|_|d0>n = |_|d1,n C |_|d2,n S oo

n=>0 n=>0 n>0
and
|_| dm,O C |_| dm,l C |_| dm,2 C ..
m>0 m>0 m>0

30/104

DIAGONALISATION

Assume dp, , € D (m,n > 0) satisfies
m<m' an<n’ = dy, Cdy,y. (1)

Then, assuming they exist, the lubs form two chains

|_|d0>n = |_|d1,n C |_|d2,n S oo

n=>0 n=>0 n>0
and
|_| dm,O C |_| dm,l C |_| dm,2 C ..
m>0 m>0 m>0

Moreover, again assuming they exist,

LI dmn) = | e =]| [] dnn

m>0 \n>0 k>0 n>0 \m>0

30/104

LEAST FIXED POINTS
COMPLETE PARTIAL ORDERS AND DOMAINS

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, C) in which all chains have least upper
bounds.

31/104

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, C) in which all chains have least upper
bounds.

Beware: the lub need only exist if the x; form a chain!

31/104

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, C) in which all chains have least upper
bounds.

Beware: the lub need only exist if the x; form a chain!

A domain is a cpo with a least element L.

31/104

DOMAIN OF PARTIAL FUNCTIONS

Least element: L is the totally undefined function.

32/104

DOMAIN OF PARTIAL FUNCTIONS

Least element: L is the totally undefined function.

Lub of a chain: fy C f; C f, C ... has lub f such that

fn() if x € dom(f,) for some n
undefined otherwise

flx) =

32/104

DOMAIN OF PARTIAL FUNCTIONS

Least element: L is the totally undefined function.

Lub of a chain: fy C f; C f, C ... has lub f such that

fn() if x € dom(f,) for some n
undefined otherwise

flx) =

Beware: the definition of | |5 f, is unambiguous only if the f; form a chain!

32/104

THE FLAT NATURAL NUMBERS D\IJ_

0‘1\&:%"“”.

33/104

LEAST FIXED POINTS
CONTINUOUS FUNCTIONS

CONTINUITY AND STRICTNESS

Given two cpos D and E, a function f: D — E is continuous if

- it is monotone, and

- it preserves lubs of chains, i.e. for all chainsdy C d; C ... in D, we have

f) = | fd

n>0 n>0

34/104

CONTINUITY AND STRICTNESS

Given two cpos D and E, a function f: D — E is continuous if

- it is monotone, and

- it preserves lubs of chains, i.e. for all chainsdy C d; C ... in D, we have

f) = | fd

n>0 n>0
A function fis strict if f(Lp) = Lg.

34/104

THESIS

All computable functions are continuous.

35/104

THESIS

All computable functions are continuous.

35/104

THESIS

All computable functions are continuous.
The typical non-continuous function: “is a sequence the constant 0"?

0o 0 L .. — L
0 0 O

0 1 .. =1

000 0 0 0 - 0

35/104

THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0"?

0o 0 L .. — L
00 0 0 1 .. — 1
0 0 0 O — ?

00 0 O O0 O — 0

35/104

THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0"?

0o o0 L .. ——
000 0 1 .. - 1
000 0O0OOTO L —> 1
000 00O OGO O > ?
000 0 0 O - 0

35/104

THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0"?

0O 0 L .. —
000 0 1 .. - 1
000 00O OO0 L .y
000 00O OO O > ?
000 0 0 O - 0

Intuition: non-continuity = “jump at infinity” = non-computability

35/104

THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0"?

0O 0 L .. —
000 0 1 .. - 1
000 00O OO0 L .y
000 00O OO O > ?
000 0 0 O - 0

Intuition: non-continuity = “jump at infinity” = non-computability
Later in the course: show the thesis... by giving a denotational semantics.

35/104

LEAST FIXED POINTS
KLEENE'S FIXED POINT THEOREM

KLEENE’'S FIXED POINT THEOREM

Let f: D — D be a continuous function on a domain D. Then f possesses a least

pre-fixed point, given by
fix(f) = |_| (0.
n>0

36/104

KLEENE’'S FIXED POINT THEOREM

Let f: D — D be a continuous function on a domain D. Then f possesses a least

pre-fixed point, given by
fix(f) = |_| (0.
n>0

It is thus also the least fixed point of f!

36/104

CONSTRUCTIONS ON DOMAINS

CONSTRUCTIONS ON DOMAINS

FLAT DOMAINS

FLAT DOMAIN ON X

The flat domain on a set X is defined by:

- its underlying set X (+J{_};
- xC x’ifeitherx=_Lorx=x".

37/104

FLAT DOMAIN LIFTING

Let f : X — Y be a partial function between two sets. Then

X - Y,
f(d) ifd e X and fis defined atd
d - {1 ifd € X and f is not defined at d
4 ifd =1

defines a continuous function between the corresponding flat domains.

38/104

CONSTRUCTIONS ON DOMAINS

PRODUCTS OF DOMAINS

BINARY PRODUCT

The product of two posets (Dy,C4) and (D,, Cy) has underlying set
Dy x Dy ={(dy,dy) | dy € Dy ndy € Dy}

and partial order C defined by

def
(dy,dy) C (d{,dy) & dy Cy d{ ndy Cy dy

39/104

BINARY PRODUCT

The product of two posets (Dy,C4) and (D,, Cy) has underlying set
Dy x Dy ={(dy,dy) | dy € Dy ndy € Dy}

and partial order C defined by

def
(dy,dy) C (d{,dy) & dy Cy d{ ndy Cy dy

dCidi dCyd
X

(dy,dp) C (dy,d3)

PO

39/104

COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

| |W@ipdep) =(|diss| | o))

n>0 i>0 >0

40/104

COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

| |W@ipdep) =(|diss| | o))

n>0 i>0 >0

If (D1,C4) and (D, C5) have least elements, so does (Dy x Dy, C) with

Lpxp, = (Lp,s1p,)

40/104

COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

| |W@ipdep) =(|diss| | o))

n>0 i>0 >0

If (D1,C4) and (D, C5) have least elements, so does (Dy x Dy, C) with

Lpxp, = (Lp,s1p,)

Products of cpos (domains) are cpos (domains).

40/104

FUNCTIONS OF TWO ARGUMENTS

A function f : (D x E) — F is monotone if and only if it is monotone in each argument
separately:

vd,d’ € D,e€ E.dC d" = f(d,e) C f(d’,e)
Vd € D,e,e’ € E.eC e’ = f(d,e) C f(d,e).

41/104

FUNCTIONS OF TWO ARGUMENTS

A function f : (D x E) — F is monotone if and only if it is monotone in each argument
separately:

vd,d’ € D,e€ E.dC d" = f(d,e) C f(d’,e)
Vd € D,e,e’ € E.eC e’ = f(d,e) C f(d,e).

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

f | dn. o) =] | fdme)

m>0 m>0
f@, | Jen =]] fd.en.
n>0 n>0

41/104

DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

’

f monotone x C x’ yCy

fGe,y) T f(x",y")

MONX

f (U X |_|yn> = ||| fGomo) = || £ G 30
m n m n k

42/104

PROJECTION AND PAIRING

Let D; and D, be cpos. The projections

i DlxDZ — Dl Ty © DlxDZ — Dz
(di.dy) — 4 (di.dy) — dy

are continuous functions.

43/104

PROJECTION AND PAIRING

Let D; and D, be cpos. The projections

i DIXDZ — Dl Ty © DlxDZ — Dz
(di.dy) — 4 (di.dy) — dy

are continuous functions.

If f{: D — D;and f, : D — D, are continuous functions from a cpo D, then the
pairing function
(f.fo1 D — Dy xDy
d — (fi(d), fo(d))

is continuous.

43/104

DOMAIN CONDITIONAL

The conditional function

if: Byx(DxD) — D
m(d) if x = true
(x,d) — 1my(d) if x = false
J_D ifx=_1

is continuous.

44/104

GENERAL PRODUCT

Given a set I, suppose that for each i € I we are given a set X;. The (cartesian) product of
the Xj is

[1x

iel
Two ways to see it:

- tuples: (..., x;, ...)jer such that x; € X;;

45/104

GENERAL PRODUCT

Given a set I, suppose that for each i € I we are given a set X;. The (cartesian) product of
the Xj is

[1x

iel
Two ways to see it:

- tuples: (..., x;, ...)jer such that x; € X;;
- heterogeneous functions: p defined on I such that p(i) € X;.

45/104

GENERAL PRODUCT

Given a set I, suppose that for each i € I we are given a set X;. The (cartesian) product of
the Xj is

[1x

iel
Two ways to see it:

- tuples: (..., x;, ...)jer such that x; € X;;
- heterogeneous functions: p defined on I such that p(i) € X;.

Special case: [[;cg D; corresponds to Dypye X Dialse-

45/104

GENERAL PRODUCT

Given a set I, suppose that for each i € I we are given a set X;. The (cartesian) product of
the Xj is

[1x

iel
Two ways to see it:

- tuples: (..., x;, ...)jer such that x; € X;;
- heterogeneous functions: p defined on I such that p(i) € X;.

Special case: [[;cg D; corresponds to Dypye X Dialse-

Projections (for any i € I):

m:(HXi)aXi

i€l

45/104

GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each i € I we are given a cpo (D;, ;). The product of this
whole family of cpos has

- underlying set equal to [[ic; Dj;

46/104

GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each i € I we are given a cpo (D;, ;). The product of this
whole family of cpos has

- underlying set equal to [[ic; Dj;
* componentwise order

C /def el pCs ,
pP=p Ve PSP

46/104

GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each i € I we are given a cpo (D;, ;). The product of this
whole family of cpos has

- underlying set equal to [[ic; Dj;
* componentwise order

C /def el pCs ,
pP=p Ve PSP

I-indexed products of cpos (domains) are cpos (domains), and projections are
continuous.

46/104

CONSTRUCTIONS ON DOMAINS

FUNCTION DOMAINS

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (D,Cp) and (E,Cg), the function cpo (D — E,C) has underlying set
{f : D> E| is a continuous function}

equipped with the pointwise order:

FC ' SvdeD. f(d) g f/(d).

47/104

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (D,Cp) and (E,Cg), the function cpo (D — E, C) has underlying set
{f : D — E| is a continuous function}

equipped with the pointwise order:

fCfSvdeD. f(d) g f/(d).

fCpseg& xCpy

f(x) Cg g(»)

47/104

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (D,Cp) and (E,Cg), the function cpo (D — E,C) has underlying set
{f : D> E| is a continuous function}

equipped with the pointwise order:
def
fCfSvdeD. f(d)Cg f(d).

Argumentwise least elements and lubs:

Lpop(d) = Lg (U fn> @ =] | @

n=>0 n>0

47/104

FUNCTION OPERATIONS ARE CONTINUOUS

Evaluation, currying (f : (D’ x D) — E) and composition

eval: (D> E)xD — E
(f.d) = f(d)

cur(f): D' — (D—E)
& — AeD. f(d,d)

o: (E->F)x(D—>E)) — (D—F)
(f. &) — Ad € D. g(f(d))

are all well-defined and continuous.

48/104

CONTINUITY OF THE FIXED POINT OPERATOR

fixx: (D—>D) — D

is continuous.

49/104

CONSTRUCTIONS ON DOMAINS

BACK TO THE INTRODUCTION

THE SEMANTICS OF A WHILE LOOP

[while X >0do (Y :=X*Y; X := X —1)]

is a fixed point of the following F : D — D, where D is (State — State):

[X - x,Y > y] ifx <0

Fw)([X = x,Y = y]) = zw([XHx—l,Y'—’x'Y]) if x > 0.

50/104

THE SEMANTICS OF A WHILE LOOP

[while X >0do (Y :=X*Y; X := X —1)]

is a fixed point of the following F : D — D, where D is (State |, — State |):

B (X — x,Y > y] ifx<0
Fw)[X > x, Y y]) = {W([X,_,x_l,Yny]) if x > 0.

F(1) = 1

State, — State is a domain!

50/104

KLEENE’'S FIXED POINT THEOREM

Kleene's fixed point theorem:
weo = || F"(1)
ieN

is the least fixed point of F, and in particular a fixed point.

51/104

KLEENE’'S FIXED POINT THEOREM

Kleene's fixed point theorem:
weo = || F"(1)

ieN

is the least fixed point of F, and in particular a fixed point.

We can compute explicitly

[X - x,Y — y] ifx <0

oo | X Y =
Weol X 12 26, Y 1>y [X—>0,Y—>(x)-y] ifx>0

And check this agrees with the operational semantics.

51/104

SCOTT INDUCTION

REASONING ON FIXED POINTS: SCOTT INDUCTION

Let D be a domain, f: D — D be a continuous function and S € D be a subset of D. If
the set S

(i) contains L,
(i) is stable under f,ie. f(S)CS,

(iii) is chain-closed, i.e. the lub of any chain of elements of S is also in S,

then fix(f) € S.

52/104

REASONING ON FIXED POINTS: SCOTT INDUCTION

Let D be a domain, f: D — D be a continuous function and S € D be a subset of D. If
the set S

(i) contains L,
(i) is stable under f,ie. f(S)CS,

(iii) is chain-closed, i.e. the lub of any chain of elements of S is also in S,

then fix(f) € S.

o) O(x) = &(f(x) (vieN.d(x) =0 |x)

iEN

SCOTTIND

O(fix(f))

52/104

BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

53/104

BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

{(x,y) e DxD | x C y}, did:ef{xeD|xEd} and {(x,y) € DxD | x = y}

53/104

BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

{(x,y) e DxD | x C y}, did:ef{xeD|xEd} and {(x,y) € DxD | x = y}

flS={xeD]| f(x)eS} ifSCEischain-closed, and f: D — E is continuous

53/104

BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:
{(x,y) e DxD | x C y}, did:ef{xeD |xCd} and {(x,y) € DxD|x =y}
flS={xeD]| f(x)eS} ifSCEischain-closed, and f: D — E is continuous
SuT and mSi if S, T and §; are

i€l

53/104

BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

{(x,y) e DxD | x C y}, did:ef{xeD|xEd} and {(x,y) € DxD | x = y}
flS={xeD]| f(x)eS} ifSCEischain-closed, and f: D — E is continuous

SuT and mSi if S, T and §; are

i€l

VSdzef{yeE|Vx€D.(x,y)€S}§E ifSCDxEis

53/104

EXAMPLE: DOWNSET

Assume f(d) C d, ie. dis a pre-fixed point of the continuous f : D — D. By Scott
induction on d |, fix(f) C d.

54/104

EXAMPLE: DOWNSET

Assume f(d) C d, ie. dis a pre-fixed point of the continuous f : D — D. By Scott
induction on d |, fix(f) C d.

Proof!

54/104

EXAMPLE: PARTIAL CORRECTNESS

Let wy: State; — State | be the denotation of
while X >0do (Y :=X*Y; X:=X—-1)

Recall that w,, = fix(F) where

ECE)) ifx<0
F(w)(x,y) = { wx—1,x-y) ifx>0

Fw)(L) = L

55/104

EXAMPLE: PARTIAL CORRECTNESS

Let wy: State; — State | be the denotation of
while X >0do (Y :=X*Y; X:=X—-1)

Recall that w,, = fix(F) where

ECE)) ifx<0
F(w)(x,y) = { wx—1,x-y) ifx>0

Fw)(L) = L

Claim:
Vx. Yy 2> 0. Weo(x, y) | = 71y (Weo(x,y)) >0

55/104

EXAMPLE: PARTIAL CORRECTNESS

Let wy: State; — State | be the denotation of
while X >0do (Y :=X*Y; X:=X—-1)

Recall that w,, = fix(F) where

ECE)) ifx<0
F(w)(x,y) = { wx—1,x-y) ifx>0

Fw)(L) = L

Claim:
Vx. Yy 2> 0. Weo(x, y) | = 71y (Weo(x,y)) >0

Proof: by Scott induction!

55/104

PCF

PCF

TERMS AND TYPES

SYNTAX OF PCF

Types: T u=nat|bool |7 > 1

56/104

SYNTAX OF PCF

Types: T u=nat|bool |7 > 1

Terms: t == 0]succ(t)]|pred(t)]
true | false | zero?(¢) | if t thent elset
x| funx:z.t|tt] fix(t)

56/104

TYPING FOR PCF (I)

The term t has type 7 in context I’

I'—t:nat I'—t:nat

/ERO ——M8M8M8888 succ PRED
I'—0:nat I' + succ(t) : nat I' - pred(?) : nat

57/104

TYPING FOR PCF (I)

The term t has type 7 in context I’

I'~t:nat I'~t:nat
/ERO ——M8M8M8888 succ PRED
I'—0:nat I' + succ(t) : nat I' - pred(?) : nat
I'~t:nat
TRUE FALSE IsZ
I' - true : bool I' false : bool I' - zero?(t) : bool
I'—b:bool

T'Ht:1 Tt :1
|

F
' i1if b thentelset’ : 7

57/104

TYPING FOR PCF (II)

I'x)=1 Ixiokt:T '-f:o0>71 Thru:o
VAR ———— FUN ApP
F'Hx:7 '+ funxio.t:o =1 I'fu:r
I'f:t—>71

N TEFix) 7

58/104

TYPING FOR PCF (II)

I'x)=1 Ixiokt:T '-f:o0>7 Thru:o
VAR ———— FUN ApP
F'Hx:7 '+ funxio.t:o =1 I'fu:r
I'f:t—>71

N TEFix) 7

def def

PCFr, = {t | T+t : 1} PCF, = PCF.,

58/104

PCF

OPERATIONAL SEMANTICS

PCF EVALUATION

Values: v = 0| succ(v) | true | false | funx:z.t
| S —
n

59/104

PCF EVALUATION

Values: v = 0| succ(v) | true | false | funx:z.t
| S —
n

vt

VAL
vi,v

59/104

PCF EVALUATION

Values: v = 0| succ(v) | true | false | funx:z.t
| S —
n
Fv:T tlnat v t lnat succ(v)
VAL succ PRED ————
vi v succ(t) Jpat succ(v) pred(t) lpac v

59/104

PCF EVALUATION

Values: v = 0| succ(v) | true | false | funx:z.t
| S —
n

Fv:t t Upat v t Upat succ(v)
succ PRED ———— X
vi v succ(t) Jpat succ(v) pred(t) lpac v

VAL

t lpat @ blpoor true 1 l; v
ZEROZ IFT -
zero?(t) Jpoor true if b thent; elsety |, v

59/104

PCF EVALUATION

Values: vi=0|succ(v)|true| false| funx:z.t
| —
n
Fv:t t Upat v t Upat succ(v)
VAL succ PRED ——m8M888@8 ™
vigv succ(t) Upat succ(v) pred(t) Unat v
t lpat @ blpoor true 1 l; v
ZEROZ IFT =
zero?(t) Jpoor true if b thent; elsety |, v
tlos; funx:o.t” t'[u/x] ;v t (Fix(@)) U, v
FUN FIX ——————————
tul, v fix(t) I, v

59/104

PCF EVALUATION

Values: vi=0|succ(v)|true| false| funx:z.t
| —
n
Fv:t t Upat v t Upat succ(v)
VAL succ PRED ——m8M888@8 ™
vigv succ(t) Upat succ(v) pred(t) Unat v
t lpat @ blpoor true 1 l; v
ZEROZ IFT =
zero?(t) Jpoor true if b thent; elsety |, v
tlos; funx:o.t” t'[u/x] ;v t (Fix(@)) U, v
FUN FIX ——————————
tul, v fix(t) I, v

Alternatively: small-step t ~», u, we have t |, v ifft w; u. 59/104

EXAMPLES

plus L fun x: nat. fix(fun(p:nat — nat)(y:nat).
if zero?(y) then x else succ(p pred(y)))

plus31 Unat 4

60/104

EXAMPLES

plus L fun x: nat. fix(fun(p:nat — nat)(y:nat).
if zero?(y) then x else succ(p pred(y)))

plus31 Unat 4

def
Q, = fix(funx:7. x)

Q1 (diverges)

60/104

EXAMPLES

plus L fun x: nat. fix(fun(p:nat — nat)(y:nat).
if zero?(y) then x else succ(p pred(y)))

plus31 Unat 4

def
Q, = fix(funx:7. x)

Q1 (diverges)

Try it out!

60/104

TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function ¢, there is a PCF term ¢ such
that for all n € N, if ¢(n) is defined then ¢ n 51 H(n).

61/104

TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function ¢, there is a PCF term ¢ such
that for all n € N, if ¢(n) is defined then ¢ n 51 H(n).

(Lateron: ¢ = H?ﬂ).

61/104

DETERMINISM

Fvaluation in PCF is deterministic: if both ¢ | vand ¢ |, v/ hold, then v = v,

62/104

DETERMINISM

Fvaluation in PCF is deterministic: if both ¢ | vand ¢ |, v/ hold, then v = v,

By (rule) induction on evaluation |:
{t,t,v) |t L, vAaW .t U, vV =>v=v)}

Intuition: there is always exactly one rule which applies.

62/104

PCF

CONTEXTUAL EQUIVALENCE

CONTEXTUAL EQUIVALENCE — INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

63/104

CONTEXTUAL EQUIVALENCE — INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

The intuitive notion of program equivalence for programmers.

63/104

EVALUATION CONTEXTS

¢ == —|succ(C)|pred(C)| zero?(C) |
if C thentelset|ift thenCelset|ift thentelseC |
funx:z.c|ct|tc| fix(c)

64/104

EVALUATION CONTEXTS

¢ == —|succ(C)|pred(C)| zero?(C) |
if C thentelset|ift thenCelset|ift thentelseC |
funx:z.c|ct|tc| fix(c)

Typing extended to evaluation contexts: I' =p , C : 7.

64/104

EVALUATION CONTEXTS

¢ == —|succ(C)|pred(C)| zero?(C) |
if C thentelset|ift thenCelset|ift thentelseC |
funx:z.c|ct|tc| fix(c)

Typing extended to evaluation contexts: I' =p , C : 7.

FpasCingp > ThHu:g

=, — 2@ FFpagCu:ny

64/104

CONTEXTUAL EQUIVALENCE

Given a type 7, a typing context I" and terms t,t” € PCFr;, contextual equivalence,
written T' =t =4« t’ : T is defined to hold if for all evaluation contexts C such that
- bz C 1y, wherey is nat or bool, and for all values v € PCF,,

clt] by veclt'] iy v.

When I is the empty context, we simply write t Z¢4y t’ : T for- =t =g t’ : 7.

65/104

PCF

INTRODUCING DENOTATIONAL SEMANTICS

THE AIMS OF DENOTATIONAL SEMANTICS

- a mapping of PCF types 7 to domains [z];
- a mapping of closed, well-typed PCF terms - =t : 7 to elements [t] € [z];

- denotation of open terms will be continuous functions.

66/104

THE AIMS OF DENOTATIONAL SEMANTICS

- a mapping of PCF types 7 to domains [z];
- a mapping of closed, well-typed PCF terms - =t : 7 to elements [t] € [z];

- denotation of open terms will be continuous functions.

Compositionality: [t] = [t'] = [c[t]] = [clt']].
Soundness: foranytyper,t |, v = [t] = [v].
Adequacy: fory = bool or nat, ift € PCFY and [t] = [v] thent U}, V.

66/104

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl Zctx tz T

it suffices to establish

[t1] = 2] €[]

67/104

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl ECtX tz T
it suffices to establish

[t1] = 2] €[]

Clt] Vnae v = [C[t]] = VI (soundness)
= [c[t]] = V] (compositionality on [t;] = [t])
= C[ty] Unat v (adequacy)

67/104

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl ECtX tz T
it suffices to establish

[t1] = 2] €[]

Clt] Vnae v = [C[t]] = VI (soundness)
= [c[t]] = V] (compositionality on [t;] = [t])
= C[ty] Unat v (adequacy)

and symmetrically for C[ts] Unat v = C[t1] Upat v, and similarly for bool.

67/104

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl Zctx tz T

it suffices to establish

[t1] = 2] €[]

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

67/104

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl Zctx tz T

it suffices to establish

[t1] = 2] €[]

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

67/104

DENOTATIONAL SEMANTICS FOR PCF

DENOTATIONAL SEMANTICS FOR PCF

TYPES AND CONTEXTS

SEMANTICS OF TYPES

[nat] o N, (flat domain)
[bool] o B, (flat domain)
[t = '] o [z] - [7’] (function domain)

68/104

SEMANTICS OF CONTEXTS

S [Ticdomm) [TC] (T-environments)

69/104

SEMANTICS OF CONTEXTS

S [Ticdomm) [TC] (T-environments)

- [-] = 1 (one element set)
el = ({x} - [2D) = [7]

: [[xl:fls---axn:fn]] = [[Tl]] X X [[Tn]]

69/104

DENOTATIONAL SEMANTICS FOR PCF

TERMS

DENOTATIONAL SEMANTICS OF PCF

To every typing judgement
I'Ht:t

we associate a continuous function
T=t:7]): I — [r]
between domains. In other words,

[-1:PCFr, — [I7 - [7]

70/104

DENOTATION OF OPERATIONS ON B AND N

pred : N — N
0 +— undefined
n+l1l — n

succ: N — N
n - n+1

zero? : N — B
0 — ftrue
n+1 — false

71/104

DENOTATION OF OPERATIONS ON B AND N

d, : N N
succ, : N, - N precy 6 : J_L
B 5 Bar n+1 = n
1 1
~ 1 - 1
zero?, : N, — B
0 +— ftrue
n+1 — false
1l = 1

71/104

DENOTATION OF OPERATIONS ON B AND N

[e](p) = ©
[true] (p) L true
[false] (p) L false

€N,
€eB,

eB,

71/104

DENOTATION OF OPERATIONS ON B AND N

[o](p) = 0 eN,
[true] (p) L true eB;
[false] (p) o false eB;

[succ®] (p) = suce, (I1] (p)) €N,
[pred®] (p) = pred, (It] (p) €N,
[zero?(®)] (p) = zero?, (1] (p)) €B,

[succ(®)] = succ °[t]
71/104

DENOTATION OF OPERATIONS ON B AND N

[o](p) = 0 eN,
[true] (p) L true eB;
[false] (p) o false eB;

[succ®] (p) = suce, (I1] (p)) €N,
[pred®] (p) = pred, (It] (p) €N,
[zero?(®)] (p) = zero?, (1] (p)) €B,

[if bthentelset’] < (16l (p), [(p), [] (p)) €Il

[if b thent else ¢'] =if «([b],([¢], [']))

71/104

DENOTATION OF THE A-CALCULUS OPERATIONS

def

[x](p) = p(x) € [T(x)]

[x] (p) = 7 (p)

72/104

DENOTATION OF THE A-CALCULUS OPERATIONS

(o) < px) e [F(x)]
el () £ (u] @) (L] ()

[t t,] = eval([t;] , [t2])

72/104

DENOTATION OF THE A-CALCULUS OPERATIONS

def

Ix1(p) = p(x) € [T(x)]
el () = ([u] () (L] ()
[funx:7.t] (p) L e [z]. [t (p, d)

[funx:7.t] = cur([t])

72/104

DENOTATION OF FIXED POINTS

def

[fix fl1(p) = fix([f] (p))

73/104

DENOTATION OF PCF TERMS

For any PCF term t such that " ¢ : 7, the object [t]
is well-defined and a continuous function [t] : [I'] — 7.

741104

DENOTATION OF PCF TERMS

For any PCF term t such that " ¢ : 7, the object [t]
is well-defined and a continuous function [t] : [I'] — 7.

IftePCF.: [t] € []—-[r] = 1-=[] = I[]

741104

DENOTATIONAL SEMANTICS FOR PCF

COMPOSITIONALITY

COMPOSITIONALITY

Suppose t,u € PCFr, such that

[] = [u] : [IT = [7]

Suppose moreover that C[—] is a PCF context such thatI'” k-, C : 7/. Then

[ele]] = [elu]] = [T'] - [T

75/104

A DENOTATION FOR EVALUATION CONTEXTS

IfT Faq C : 7, then define [C] such that

[c] : ([A] = [o]) — [T - 7]

76/104

A DENOTATION FOR EVALUATION CONTEXTS

IfT Faq C : 7, then define [C] such that

[c] : ([A] = [o]) — [T - 7]

[-1(d) =d
[c] (d)(p) = (L] (P[] (p))

76/104

A DENOTATION FOR EVALUATION CONTEXTS

IfT Faq C : 7, then define [C] such that

[c] : ([A] = [o]) — [T - 7]

[-1(d) =d
[c] (d)(p) = (L] (P[] (p))

IfI'-pq C:Tand At : o, then

[clt]] = [T (1)

76/104

SUBSTITUTION PROPERTY OF THE SEMANTIC FUNCTION

Assume

I'~u:o
I'x:oct:7

Then for all p € [I7
[tlu/x1] (p) = [t] (plx = [ul (p)D.

In particular when I' = - [t] : [o] — [z] and

[¢[u/x1] = 1 ([uD)

77104

DENOTATIONAL SEMANTICS FOR PCF
SOUNDNESS

SOUNDNESS

For all PCF types 7 and all closed terms t, v € PCF; with v a value, if t |, v is derivable,
then

[l = v] € [7]

78/104

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

REMINDER: ADEQUACY

For any closed PCF term ¢ and value v of ground type y € {nat, bool}

[l=Wely] =t v

79/104

REMINDER: ADEQUACY

For any closed PCF term ¢ and value v of ground type y € {nat, bool}

[l=Wely] =t v

Adequacy does not hold at function types or for open terms

79/104

REMINDER: ADEQUACY

For any closed PCF term ¢ and value v of ground type y € {nat, bool}

[l=Wely] =t v

Adequacy does not hold at function types or for open terms
[funx:z.(funy:7.y)x] = [funx:z.x] :[r] — [7]

but
funx:z. (funy:7. y) x{f; 5, funx:z. x

79/104

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

FORMAL APPROXIMATION RELATION

HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCF 3¢, n € N, and R(n,t), then ¢ U}, n (same for booleans);
2. for any well-typed term ¢, R([t] , t);

80/104

HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCF 3¢, n € N, and R(n,t), then ¢ U}, n (same for booleans);
2. for any well-typed term ¢, R([t] , t);

Assume t,v € PCF ¢, [t] = [v], and v is a value.

80/104

HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCF 3¢, n € N, and R(n,t), then ¢ U}, n (same for booleans);
2. for any well-typed term ¢, R([t] , t);

Assume t,v € PCF ¢, [t] = [v], and v is a value.

Thus v = n for somen € N, and [v] = n.

80/104

HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCF 3¢, n € N, and R(n,t), then ¢ U}, n (same for booleans);
2. for any well-typed term ¢, R([t] , t);

Assume t,v € PCF ¢, [t] = [v], and v is a value.

Thus v = n for somen € N, and [v] = n.

i1 = o] =n
= R(n,t)
=tln=v

80/104

HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that
1. ift € PCF, 3¢, n € N, and R(n,t), then ¢ Uyn (same for booleans);
2. for any well-typed term t, R([t] , t);

But at non-base types, adequacy does not hold.

80/104

HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCF, 3¢, n € N, and R(n,t), then ¢ Uyn (same for booleans);
2. for any well-typed term t, R([t] , t);

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

<, C [r] x PCF;

80/104

FORMAL APPROXIMATION AT BASE TYPES

d<]natt C‘l:ef (den\l:tunati)

def
d <poort © (d =true =t poo true)

A(d = false = t |01 false)

81/104

FORMAL APPROXIMATION AT BASE TYPES

d<]natt C‘l:ef (den\l:tunati)

def
d <poort © (d =true =t poo true)

A(d = false = t |01 false)

Exactly what we need to get 1.

81/104

FORMAL APPROXIMATION AT BASE TYPES

d<]natt C‘l:ef (den\l:tunati)

def
d <poort © (d =true =t poo true)

A(d = false = t |01 false)

Exactly what we need to get 1.
Note though that L <,5¢ t foranyt € PCF, ;.

81/104

FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFya¢, n € N, and R(n,), then t |, n (same for booleans); v
2. for any well-typed term ¢, R([t] , t).

82/104

FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFya¢, n € N, and R(n,), then t |, n (same for booleans); v

2. for any well-typed term ¢, R([t] , t).

21 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

82/104

FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFya¢, n € N, and R(n,), then t |, n (same for booleans); v

2. for any well-typed term ¢, R([t] , t).

21 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

Ft:r > 1 Fu:t

APP y
Htu:t

82/104

FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFya¢, n € N, and R(n,), then t |, n (same for booleans); v

2. for any well-typed term ¢, R([t] , t).

21 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

Ft:r > 1 Fu:t

APP y
Htu:t

Assume [u] <, u and [t] <,_, t, how do we get [t u] = [t] ([ul) <, t u?

82/104

FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFya¢, n € N, and R(n,), then t |, n (same for booleans); v

2. for any well-typed term ¢, R([t] , t).

21 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

Ft:r > 1 Fu:t

APP y
Htu:t

Assume [u] <, u and [t] <,_, t, how do we get [t u] = [t] ([ul) <, t u?

Define
def
d<;_spt S Vee [z],u € PCF; .(e <; u = d(e) < t u)

82/104

FORMAL APPROXIMATION FOR OPEN TERMS

Ix:tkt:17

ABS p
I'funx:t.t:t—>1

To prove Item 2, we need to talk about open terms.

83/104

FORMAL APPROXIMATION FOR OPEN TERMS

Ix:tkt:17

ABS p
I'funx:t.t:t—>1

To prove Item 2, we need to talk about open terms.

[¢] ([ud) = [(tlu/x]] Semantic application = syntactic substitution

83/104

FORMAL APPROXIMATION FOR OPEN TERMS

Ix:tkt:17

ABS p
I'funx:t.t:t—>1

To prove Item 2, we need to talk about open terms.

[¢] ([ud) = [(tlu/x]] Semantic application = syntactic substitution
Fundamental property of formal approximation

Given a term ¢ such thatI' ¢ : 7 for some I" and 7, for any environment p and
substitution o such that p <r o, we have [t] (p) <, t[o].

83/104

FORMAL APPROXIMATION FOR OPEN TERMS

Ix:tkt:17

ABS p
I'funx:t.t:t—>1

To prove Item 2, we need to talk about open terms.

[¢] ([ud) = [(tlu/x]] Semantic application = syntactic substitution

Fundamental property of formal approximation

Given a term ¢ such thatI' ¢ : 7 for some I" and 7, for any environment p and
substitution o such that p < o, we have [t] (p) <, t[o].

Parallel substitution: maps each x € dom(I') to o(x) € PCFry,.

83/104

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

PROOF OF THE FUNDAMENTAL PROPERTY OF FORMAL APPROXIMATION

PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any 7 and t € PCF,, L < 8

2. the set{d € [r] | d <, t}is chain-closed;

84/104

PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any 7 and t € PCF,, L < 8
2. the set{d € [r] | d <, t}is chain-closed;

3. ifvw.t |, v=1t" |, v,andd <, t, thend <, t’.

84/104

PROOF OF THE FUNDAMENTAL PROPERTY

85/104

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

EXTENSIONALITY

CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: T' =1 <, t’ : T
if for all C such that - =, C : y and for all values v,

cltl by v=clt'] I, v.

86/104

CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: T' =1 <, t’ : T
if for all C such that - =, C : y and for all values v,

cltl by v=clt'] I, v.

Ttz t' it TRt <t :TATHt <gxt:7)
ctx ctx ctx

86/104

CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: T' =1 <, t’ : T
if for all C such that - =, C : y and for all values v,

cltl by v=clt'] I, v.

Ttz t' it TRt <t :TATHt <gxt:7)
ctx ctx ctx

It corresponds to formal approximation: for all PCF types 7 and closed terms
I,y € PCFT
by Sctx bp: 7 [[tlﬂ < Bp.

86/104

LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.

87/104

LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.

Let 1, %, be closed terms of type 7. Then t; <. tp : 7 if and only if, for every term
f:7 — bool,
J 11 Upoor true = f iz Upoor true.

87/104

EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

Fory = bool or nat, #; <.t fp : 7 holds if and only if

.t by v=11,v)

88/104

EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

Fory = bool or nat, #; <.t fp : 7 holds if and only if

.t by v=11,v)

At a function type 7 = 7/, 1) <.x f2 : T = 7’ holds if and only if

Vt e PCF,. (1t <cix bp bt : 7).

88/104

FULL ABSTRACTION

FULL ABSTRACTION
FAILURE OF FULL ABSTRACTION

FULL ABSTRACTION

A denotational model is fully abstract if

h ZEx o7 = [[tl]] = [tZH € [7]

89/104

FULL ABSTRACTION

A denotational model is fully abstract if

h ZEx o7 = [[tl]] = [tZH € [7]

A form of completeness of semantic equivalence wrt. program equivalence.

89/104

FULL ABSTRACTION

A denotational model is fully abstract if

h ZEx o7 = [[tl]] = [tZH € [7]

A form of completeness of semantic equivalence wrt. program equivalence.
The domain model of PCF is not fully abstract.

89/104

PARALLEL OR

The parallel or function por : B} x B, — B, is defined as given by the following table:

por |true false L

true | true true frue
false | true false L

1 true 1 1

90/104

LEFT SEQUENTIAL OR

The (left) sequential or function or : B} x B, — B is defined as

def
or = [funx:bool. funy:bool.if x then true else y]

It is given by the following table:

or |true false L

true | true true ftrue
false | true false L

1 1 1 1

91/104

PARALLEL VS SEQUENTIAL OR

por |true false L
true | true true true
false | true false L

1 true 1 1

or |true false L

true | true true ftrue
false | true false L

1 4 1 1

92/104

PARALLEL VS SEQUENTIAL OR

por |true false L or |true false L
true | true true true true | true true true
false | true false L false | true false L

1 true 1 1 1 1 1 1

or is sequential, but por is not.

92/104

UNDEFINABILITY OR PARALLEL OR

There is no closed PCF term
t:bool = bool — bool

satisfying
[t] =por:B, - B, - B, .

93/104

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

94/104

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen Ty pye and Tra1se.

Tirue Zctx Tralse : (bool = bool — bool) — bool

[[Ttrueﬂ * [[Tfalse]] e(B-B—-DB)—B

94/104

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen Ty pye and Tra1se.

Tirue Zctx Tralse : (bool = bool — bool) — bool

[[Ttrueﬂ * [[Tfalse]] e(B-B—-DB)—B

ldea:

- forall f € PCFy401-sbool-sbool, €nsure Ty f fpoo1 .-
- but [T] (por) = [b].

94/104

EXAMPLE OF FULL ABSTRACTION FAILURE

T, ' fun f:bool — (bool — bool).

if(f true Qpyo1) then
if (f Qpoor true) then
if (f false false) then Q1 else b
else Qpoot
else Qpoo1

95/104

FULL ABSTRACTION
BEYOND FULL ABSTRACTION FAILURE

INTERPRETING FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- The model does not adequately capture PCF?

- Contexts are too weak: they do not distinguish enough programs?

96/104

PCF+por

TI—-Q o &0 FI—-Q o &
POR
I+ por(ty,t): T
t; Upoor true ty Upoor true
PORL PORR
por(t;,ty) Upoor true por(t;,ty) Upoor true

t; Upoor false ty lpoor false

PORF
por(ty,ty) Upoor false

97/104

FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with
[por] = por

the resulting denotational semantics is fully abstract.

98/104

FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with
[por] = por

the resulting denotational semantics is fully abstract...
but is PCF+por still a reasonable model of programming language?

98/104

FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dl-domains & stable functions — no por any more, but still not fully
abstract...

- only proper answers in the late 90s (!): logical relations and game semantics

99/104

FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dl-domains & stable functions — no por any more, but still not fully
abstract...

- only proper answers in the late 90s (!): logical relations and game semantics

Real languages have effects

- If you add effects (references, control flow...) to a language, contexts become much
more expressive.

- Full abstraction becomes different: somewhat easier... but is contextual equivalence
still a reasonable idea?

99/104

WHERE TO GO FROM HERE?

TOWARDS FULL ABSTRACTION

Source of a very rich literature:

- linear logic
- logical relations
- game semantics

- bisimulations techniques

100/104

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)

- how to construct this structure in particular examples (specific)

101/104

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)

- how to construct this structure in particular examples (specific)

Interpret:

- atype T as an object in a category;

atermI' =t : 7 as a morphism/arrow [t] : [T — [z].

101/104

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)

- how to construct this structure in particular examples (specific)

Interpret:

- atype T as an object in a category;

atermI' =t : 7 as a morphism/arrow [t] : [T — [z].
Example: A-calculus — cartesian closed categories

101/104

DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml's ADT:
It is a fixed point equation! We can use domain theory to solve it.

102/104

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output...
An important aspect of programming languages!

103/104

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output...
An important aspect of programming languages!

def
Modelled as a monad T (example: T(A) = (A x State)St2te)

103/104

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output...
An important aspect of programming languages!

def
Modelled as a monad T (example: T(A) = (A x State)St2te)
Denotation of a computation: [I'] — T([z])

103/104

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

104/104

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.

104/104

	Introduction
	A basic example
	A semantics for loops
	A taste of domain theory

	Least Fixed Points
	Posets and monotone functions
	Least elements and pre-fixed points
	Least upper bounds
	Complete partial orders and domains
	Continuous functions
	Kleene's fixed point theorem

	Constructions on Domains
	Flat domains
	Products of domains
	Function domains
	Back to the introduction

	Scott Induction
	PCF
	Terms and types
	Operational Semantics
	Contextual equivalence
	Introducing denotational semantics

	Denotational Semantics for PCF
	Types and contexts
	Terms
	Compositionality
	Soundness

	Relating Denotational and Operational Semantics
	Formal approximation relation
	Proof of the fundamental property of formal approximation
	Extensionality

	Full abstraction
	Failure of full abstraction
	Beyond full abstraction failure

	Where to go from here?

