
DENOTATIONAL SEMANTICS

Meven LENNON-BERTRAND
Lectures for Part II CST 2023/2024

1/104



PRACTICALITIES

• My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
• Course notes will be updated, keep an eye on the course webpage.

2/104

mailto:mgapb2@cam.ac.uk


INTRODUCTION



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a
program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/104



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a
program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/104



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a
program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/104



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/104



WHY SHOULD WE CARE?

• Insight: exposes the mathematical “essence” of programming language concepts.

• Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers…).

• Rigour: semantics is necessary to specify/justify formal methods (compilers, type
systems, code analysis, certification…).

4/104



WHY SHOULD WE CARE?

• Insight: exposes the mathematical “essence” of programming language concepts.
• Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers…).

• Rigour: semantics is necessary to specify/justify formal methods (compilers, type
systems, code analysis, certification…).

4/104



WHY SHOULD WE CARE?

• Insight: exposes the mathematical “essence” of programming language concepts.
• Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers…).

• Rigour: semantics is necessary to specify/justify formal methods (compilers, type
systems, code analysis, certification…).

4/104



STYLES OF FORMAL SEMANTICS

• Operational

: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

• Axiomatic

: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part II Hoare Logic & Model Checking).

• Denotational

: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

5/104



STYLES OF FORMAL SEMANTICS

• Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

• Axiomatic

: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part II Hoare Logic & Model Checking).

• Denotational

: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

5/104



STYLES OF FORMAL SEMANTICS

• Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

• Axiomatic: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part II Hoare Logic & Model Checking).

• Denotational

: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

5/104



STYLES OF FORMAL SEMANTICS

• Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

• Axiomatic: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part II Hoare Logic & Model Checking).

• Denotational: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

5/104



DENOTATIONAL SEMANTICS IN A NUTSHELL

Syntax
J−K⟶ Semantics

Program 𝑃 ↦ Denotation J𝑃K
Recursive program ↦ Partial recursive function

Boolean circuit ↦ Boolean function
…

Type ↦ Domain
Program ↦ Continuous functions between domains

6/104



DENOTATIONAL SEMANTICS IN A NUTSHELL

Syntax
J−K⟶ Semantics

Program 𝑃 ↦ Denotation J𝑃K
Recursive program ↦ Partial recursive function

Boolean circuit ↦ Boolean function
…

Type ↦ Domain
Program ↦ Continuous functions between domains

6/104



PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

• mathematical object, implementation/machine independent;
• captures the abstract essence of programming language concepts;
• should relate to practical implementations, though…

Compositionality
• The denotation of a phrase is defined using the denotation of its sub-phrases.
• J𝑃K represents the contribution of 𝑃 to any program containing 𝑃 .
• Much more flexible than whole-program semantics.

7/104



PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

• mathematical object, implementation/machine independent;
• captures the abstract essence of programming language concepts;
• should relate to practical implementations, though…

Compositionality
• The denotation of a phrase is defined using the denotation of its sub-phrases.
• J𝑃K represents the contribution of 𝑃 to any program containing 𝑃 .
• Much more flexible than whole-program semantics.

7/104



INTRODUCTION
A BASIC EXAMPLE



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …
Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/104



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …
Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶
ranges over a set 𝕃 of locations

8/104



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …

Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/104



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …

Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/104



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …
Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …
Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/104



DENOTATION FUNCTIONS – NAÏVELY

A : 𝐀𝐞𝐱𝐩 → ℤ

B : 𝐁𝐞𝐱𝐩 → 𝔹

where
ℤ = {… , −1, 0, 1, …}

𝔹 = {true, false}

9/104



DENOTATION FUNCTIONS – NAÏVELY

A : 𝐀𝐞𝐱𝐩 → ℤ
B : 𝐁𝐞𝐱𝐩 → 𝔹

where
ℤ = {… , −1, 0, 1, …}
𝔹 = {true, false}

9/104



ARITHMETIC EXPRESSIONS?

A
r
𝑛
z

= 𝑛

A
q𝐴1 + 𝐴2

y = A
q𝐴1

y + A
q𝐴2

y

AJ𝐿K = ???

10/104



ARITHMETIC EXPRESSIONS?

A
r
𝑛
z

= 𝑛

A
q𝐴1 + 𝐴2

y = A
q𝐴1

y + A
q𝐴2

y
AJ𝐿K = ???

10/104



DENOTATION FUNCTIONS

State = (𝕃 → ℤ)

A : 𝐀𝐞𝐱𝐩 → (State → ℤ)
B : 𝐁𝐞𝐱𝐩 → (State → 𝔹)

C : 𝐂𝐨𝐦𝐦 → (State ⇀ State)

where

⇀ denotes partial functions and

ℤ = {… , −1, 0, 1, …}
𝔹 = {true, false} .

11/104



DENOTATION FUNCTIONS

State = (𝕃 → ℤ)

A : 𝐀𝐞𝐱𝐩 → (State → ℤ)
B : 𝐁𝐞𝐱𝐩 → (State → 𝔹)

C : 𝐂𝐨𝐦𝐦 → (State ⇀ State)

where

⇀ denotes partial functions and

ℤ = {… , −1, 0, 1, …}
𝔹 = {true, false} .

11/104



DENOTATION FUNCTIONS

State = (𝕃 → ℤ)

A : 𝐀𝐞𝐱𝐩 → (State → ℤ)
B : 𝐁𝐞𝐱𝐩 → (State → 𝔹)
C : 𝐂𝐨𝐦𝐦 → (State ⇀ State)

where⇀ denotes partial functions and

ℤ = {… , −1, 0, 1, …}
𝔹 = {true, false} .

11/104



SEMANTICS OF ARITHMETIC EXPRESSIONS

A
r
𝑛
z

= 𝜆𝑠 ∈ State. 𝑛

A
q𝐴1 + 𝐴2

y = 𝜆𝑠 ∈ State. Aq𝐴1
y (𝑠) + A

q𝐴2
y (𝑠)

AJ𝐿K = 𝜆𝑠 ∈ State. 𝑠(𝐿)

12/104



SEMANTICS OF ARITHMETIC EXPRESSIONS

A
r
𝑛
z

= 𝜆𝑠 ∈ State. 𝑛

A
q𝐴1 + 𝐴2

y = 𝜆𝑠 ∈ State. Aq𝐴1
y (𝑠) + A

q𝐴2
y (𝑠)

AJ𝐿K = 𝜆𝑠 ∈ State. 𝑠(𝐿)

12/104



SEMANTICS OF BOOLEAN EXPRESSIONS

BJtrueK = 𝜆𝑠 ∈ State. true

BJfalseK = 𝜆𝑠 ∈ State. false

B
q𝐴1 = 𝐴2

y = 𝜆𝑠 ∈ State. eq (Aq𝐴1
y (𝑠),Aq𝐴2

y (𝑠))
where eq(𝑎, 𝑎′) = { true if 𝑎 = 𝑎′

false if 𝑎 ≠ 𝑎′

13/104



SEMANTICS OF COMMANDS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

C
q
if 𝐵 then 𝐶 else 𝐶′y = 𝜆𝑠 ∈ State. if (CJ𝐵K (𝑠), CJ𝐶K (𝑠), Cq𝐶′y (𝑠))

where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true
𝑥′ if 𝑏 = false

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

C
q𝐶; 𝐶′y = C

q𝐶′y ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. Cq𝐶′y (CJ𝐶K (𝑠))

14/104



SEMANTICS OF COMMANDS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

C
q
if 𝐵 then 𝐶 else 𝐶′y = 𝜆𝑠 ∈ State. if (CJ𝐵K (𝑠), CJ𝐶K (𝑠), Cq𝐶′y (𝑠))

where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true
𝑥′ if 𝑏 = false

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

C
q𝐶; 𝐶′y = C

q𝐶′y ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. Cq𝐶′y (CJ𝐶K (𝑠))

14/104



SEMANTICS OF COMMANDS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

C
q
if 𝐵 then 𝐶 else 𝐶′y = 𝜆𝑠 ∈ State. if (CJ𝐵K (𝑠), CJ𝐶K (𝑠), Cq𝐶′y (𝑠))

where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true
𝑥′ if 𝑏 = false

This is compositionality!

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

C
q𝐶; 𝐶′y = C

q𝐶′y ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. Cq𝐶′y (CJ𝐶K (𝑠))

14/104



SEMANTICS OF COMMANDS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

C
q
if 𝐵 then 𝐶 else 𝐶′y = 𝜆𝑠 ∈ State. if (CJ𝐵K (𝑠), CJ𝐶K (𝑠), Cq𝐶′y (𝑠))

where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true
𝑥′ if 𝑏 = false

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

C
q𝐶; 𝐶′y = C

q𝐶′y ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. Cq𝐶′y (CJ𝐶K (𝑠))

14/104



SEMANTICS OF COMMANDS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

C
q
if 𝐵 then 𝐶 else 𝐶′y = 𝜆𝑠 ∈ State. if (CJ𝐵K (𝑠), CJ𝐶K (𝑠), Cq𝐶′y (𝑠))

where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true
𝑥′ if 𝑏 = false

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

C
q𝐶; 𝐶′y = C

q𝐶′y ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. Cq𝐶′y (CJ𝐶K (𝑠))

14/104



INTRODUCTION
A SEMANTICS FOR LOOPS



SEMANTICS OF LOOPS?

This is all very nice, but…

Jwhile 𝐵 do 𝐶K = ???

Remember:

• (while 𝐵 do 𝐶, 𝑠) → (if 𝐵 then (𝐶; while 𝐵 do 𝐶) else skip, 𝑠)
• we want a compositional semantic: we should give Jwhile 𝐵 do 𝐶K in terms of J𝐶K
and J𝐵K

15/104



SEMANTICS OF LOOPS?

This is all very nice, but…

Jwhile 𝐵 do 𝐶K = ???

Remember:

• (while 𝐵 do 𝐶, 𝑠) → (if 𝐵 then (𝐶; while 𝐵 do 𝐶) else skip, 𝑠)
• we want a compositional semantic: we should give Jwhile 𝐵 do 𝐶K in terms of J𝐶K
and J𝐵K

15/104



LOOP AS A FIXPOINT

Jwhile 𝐵 do 𝐶K = q
if 𝐵 then (𝐶; while 𝐵 do 𝐶) else skip

y
= 𝜆𝑠 ∈ State. if(J𝐵K , Jwhile 𝐵 do 𝐶K ∘ J𝐶K (𝑠), 𝑠)

Not a direct definition for Jwhile 𝐵 do 𝐶K… But a fixed point equation!
Jwhile 𝐵 do 𝐶K = 𝐹J𝐵K,J𝐶K(while 𝐵 do 𝐶)

where 𝐹𝑏,𝑐 : (State ⇀ State) → (State ⇀ State)
𝑤 ↦ 𝜆𝑠 ∈ State. if(𝑏(𝑠), 𝑤 ∘ 𝑐(𝑠), 𝑠).

16/104



LOOP AS A FIXPOINT

Jwhile 𝐵 do 𝐶K = q
if 𝐵 then (𝐶; while 𝐵 do 𝐶) else skip

y
= 𝜆𝑠 ∈ State. if(J𝐵K , Jwhile 𝐵 do 𝐶K ∘ J𝐶K (𝑠), 𝑠)

Not a direct definition for Jwhile 𝐵 do 𝐶K… But a fixed point equation!
Jwhile 𝐵 do 𝐶K = 𝐹J𝐵K,J𝐶K(while 𝐵 do 𝐶)

where 𝐹𝑏,𝑐 : (State ⇀ State) → (State ⇀ State)
𝑤 ↦ 𝜆𝑠 ∈ State. if(𝑏(𝑠), 𝑤 ∘ 𝑐(𝑠), 𝑠).

16/104



NOW WE HAVE A GOAL

• Why/when does 𝑤 = 𝐹𝑏,𝑐(𝑤) have a solution?
• What if it has several solutions? Which one should be our Jwhile 𝐵 do 𝐶K?

Our occupation for the next few lectures…

17/104



NOW WE HAVE A GOAL

• Why/when does 𝑤 = 𝐹𝑏,𝑐(𝑤) have a solution?
• What if it has several solutions? Which one should be our Jwhile 𝐵 do 𝐶K?

Our occupation for the next few lectures…

17/104



INTRODUCTION
A TASTE OF DOMAIN THEORY



AN EXAMPLE

q
while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)y

should be some 𝑤 such that:

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).

That is, we are looking for a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is
(State ⇀ State):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = { [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0.

18/104



AN EXAMPLE

q
while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)y

should be some 𝑤 such that:

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).

That is, we are looking for a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is
(State ⇀ State):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = { [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0.

18/104



AN EXAMPLE

q
while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)y

should be some 𝑤 such that:

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).

That is, we are looking for a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is
(State ⇀ State):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = { [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0.

18/104



THE POSET OF PARTIAL FUNCTIONS

Partial order ⊑ on 𝐷 (= State ⇀ State):
𝑤 ⊑ 𝑤 ′ if for all 𝑠 ∈ State, if 𝑤 is defined at 𝑠

then so is 𝑤 ′ and moreover 𝑤(𝑠) = 𝑤 ′(𝑠).
if the graph of 𝑤 is included in the graph of 𝑤 ′.

Least element ⊥ ∈ 𝐷:
⊥ = totally undefined partial function

= partial function with empty graph

19/104



THE POSET OF PARTIAL FUNCTIONS

Partial order ⊑ on 𝐷 (= State ⇀ State):
𝑤 ⊑ 𝑤 ′ if for all 𝑠 ∈ State, if 𝑤 is defined at 𝑠

then so is 𝑤 ′ and moreover 𝑤(𝑠) = 𝑤 ′(𝑠).
if the graph of 𝑤 is included in the graph of 𝑤 ′.

Least element ⊥ ∈ 𝐷:
⊥ = totally undefined partial function

= partial function with empty graph

19/104



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/104



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤1[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = 𝐹(⊥)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
undefined if 𝑥 ≥ 1

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/104



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤2[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = 𝐹(𝑤1)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ 𝑦] if 𝑥 = 1
undefined if 𝑥 ≥ 2

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/104



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤3[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = 𝐹(𝑤2)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] =
⎧⎪
⎨⎪
⎩

[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ 𝑦] if 𝑥 = 1
[𝑋 ↦ 0, 𝑌 ↦ 2𝑦] if 𝑥 = 2
undefined if 𝑥 ≥ 3

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/104



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤𝑛[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 0 ≤ 𝑥 < 𝑛
undefined if 𝑥 ≥ 𝑛

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/104



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤𝑛[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 0 ≤ 𝑥 < 𝑛
undefined if 𝑥 ≥ 𝑛

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/104



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤𝑛[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 0 ≤ 𝑥 < 𝑛
undefined if 𝑥 ≥ 𝑛

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ … ⊑ 𝑤∞?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/104



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤𝑛[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 0 ≤ 𝑥 < 𝑛
undefined if 𝑥 ≥ 𝑛

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ … ⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/104



WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

21/104



WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

21/104



WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

21/104



WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

21/104



WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

• 𝑤∞ is a fixed point
• which moreover agrees with the operational semantics (!)

21/104



LEAST FIXED POINTS



LEAST FIXED POINTS
POSETS AND MONOTONE FUNCTIONS



PARTIALLY ORDERED SET

A partial order on a set 𝐷 is a binary relation ⊑ that is

reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″

antisymmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.

REFL 𝑥 ⊑ 𝑥 TRANS
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑧

𝑥 ⊑ 𝑧 ASYM
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑥

𝑥 = 𝑦

22/104



PARTIALLY ORDERED SET

A partial order on a set 𝐷 is a binary relation ⊑ that is

reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″

antisymmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.

REFL 𝑥 ⊑ 𝑥 TRANS
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑧

𝑥 ⊑ 𝑧 ASYM
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑥

𝑥 = 𝑦

22/104



DOMAIN OF PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Underlying set: partial functions 𝑓 with domain of definition dom(𝑓 ) ⊆ 𝑋 and taking
values in 𝑌 ;

Order: 𝑓 ⊑ 𝑔 if dom(𝑓 ) ⊆ dom(𝑔) and ∀𝑥 ∈ dom(𝑓 ). 𝑓 (𝑥) = 𝑔(𝑥), i.e. if
graph(𝑓 ) ⊆ graph(𝑔).

23/104



DOMAIN OF PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Underlying set: partial functions 𝑓 with domain of definition dom(𝑓 ) ⊆ 𝑋 and taking
values in 𝑌 ;

Order: 𝑓 ⊑ 𝑔 if dom(𝑓 ) ⊆ dom(𝑔) and ∀𝑥 ∈ dom(𝑓 ). 𝑓 (𝑥) = 𝑔(𝑥), i.e. if
graph(𝑓 ) ⊆ graph(𝑔).

23/104



MONOTONICITY

A function 𝑓 : 𝐷 → 𝐸 between posets is monotone if

∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑) ⊑ 𝑓 (𝑑′).

MON
𝑥 ⊑ 𝑦

𝑓 (𝑥) ⊑ 𝑓 (𝑦)

24/104



MONOTONICITY

A function 𝑓 : 𝐷 → 𝐸 between posets is monotone if

∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑) ⊑ 𝑓 (𝑑′).

MON
𝑥 ⊑ 𝑦

𝑓 (𝑥) ⊑ 𝑓 (𝑦)

24/104



LEAST FIXED POINTS
LEAST ELEMENTS AND PRE-FIXED POINTS



LEAST ELEMENT

An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

If it exists, it is unique , and is written ⊥𝑆 , or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆

25/104



LEAST ELEMENT

An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

If it exists, it is unique , and is written ⊥𝑆 , or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆

25/104



LEAST ELEMENT

An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

If it exists, it is unique , and is written ⊥𝑆 , or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆

25/104



PRE-FIXED POINT

An element 𝑑 ∈ 𝐷 is a pre-fixed point of 𝑓 if it satisfies 𝑓 (𝑑) ⊑ 𝑑 .

The least pre-fixed point of 𝑓 , if it exists, will be written
fix(𝑓 )

It is thus (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

26/104



PRE-FIXED POINT

An element 𝑑 ∈ 𝐷 is a pre-fixed point of 𝑓 if it satisfies 𝑓 (𝑑) ⊑ 𝑑 .

The least pre-fixed point of 𝑓 , if it exists, will be written
fix(𝑓 )

It is thus (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

26/104



PRE-FIXED POINT

An element 𝑑 ∈ 𝐷 is a pre-fixed point of 𝑓 if it satisfies 𝑓 (𝑑) ⊑ 𝑑 .

The least pre-fixed point of 𝑓 , if it exists, will be written
fix(𝑓 )

It is thus (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

26/104



PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )

LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

The least pre-fixed point is a fixed point.

Application: least pre-fixed points of monotone functions are (least) fixed points.

ASYM

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )

LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 ))

fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))
𝑓 (fix(𝑓 )) = fix(𝑓 )

27/104



PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

To prove fix(𝑓 ) ⊑ 𝑑 , it is enough to show 𝑓 (𝑑) ⊑ 𝑑 .

Application: least pre-fixed points of monotone functions are (least) fixed points.

ASYM

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )

LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 ))

fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))
𝑓 (fix(𝑓 )) = fix(𝑓 )

27/104



PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

Application: least pre-fixed points of monotone functions are (least) fixed points.

ASYM

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )

LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 ))

fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))
𝑓 (fix(𝑓 )) = fix(𝑓 )

27/104



PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

Application: least pre-fixed points of monotone functions are (least) fixed points.

ASYM

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 ))
fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))

𝑓 (fix(𝑓 )) = fix(𝑓 )

27/104



LEAST FIXED POINTS
LEAST UPPER BOUNDS



LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chains 𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ … , written
⨆𝑛≥0 𝑑𝑛 , satisfies the two following properties:

LUB-BOUND
𝑥𝑖 ⊑ ⨆

𝑛≥0
𝑥𝑛

LUB-LEAST
∀𝑛 ≥ 0 . 𝑥𝑛 ⊑ 𝑥

⨆
𝑛≥0

𝑥𝑛 ⊑ 𝑥

28/104



PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 .

For any 𝑑 ,⨆𝑛 𝑑 = 𝑑 .

For any chain and 𝑁 ∈ ℕ,⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑁 .

29/104



PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 .

For any 𝑑 ,⨆𝑛 𝑑 = 𝑑 .

For any chain and 𝑁 ∈ ℕ,⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑁 .

29/104



PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 .

LUB-MON
∀𝑖. 𝑑𝑖 ⊑ 𝑒𝑖

⨆
𝑛

𝑑𝑛 ⊑ ⨆
𝑛

𝑒𝑛

For any 𝑑 ,⨆𝑛 𝑑 = 𝑑 .

For any chain and 𝑁 ∈ ℕ,⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑁 .

29/104



PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 .

For any 𝑑 ,⨆𝑛 𝑑 = 𝑑 .

For any chain and 𝑁 ∈ ℕ,⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑁 .

29/104



PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 .

For any 𝑑 ,⨆𝑛 𝑑 = 𝑑 .

For any chain and 𝑁 ∈ ℕ,⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑁 .

29/104



PROPERTIES OF LUBS

Lubs are unique (if they exist).

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 (if they exist).

For any 𝑑 ,⨆𝑛 𝑑 = 𝑑 (and in particular it exists).

For any chain and 𝑁 ∈ ℕ,⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑁 (if any of the two exists).

29/104



DIAGONALISATION

Assume 𝑑𝑚,𝑛 ∈ 𝐷 (𝑚, 𝑛 ≥ 0) satisfies
𝑚 ≤ 𝑚′ ∧ 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛′ .

(†)

Then, assuming they exist, the lubs form two chains

⨆
𝑛≥0

𝑑0,𝑛 ⊑ ⨆
𝑛≥0

𝑑1,𝑛 ⊑ ⨆
𝑛≥0

𝑑2,𝑛 ⊑ …

and
⨆
𝑚≥0

𝑑𝑚,0 ⊑ ⨆
𝑚≥0

𝑑𝑚,1 ⊑ ⨆
𝑚≥0

𝑑𝑚,2 ⊑ …

Moreover, again assuming they exist,

⨆
𝑚≥0

(⨆
𝑛≥0

𝑑𝑚,𝑛) = ⨆
𝑘≥0

𝑑𝑘,𝑘 = ⨆
𝑛≥0

(⨆
𝑚≥0

𝑑𝑚,𝑛) .

30/104



DIAGONALISATION

Assume 𝑑𝑚,𝑛 ∈ 𝐷 (𝑚, 𝑛 ≥ 0) satisfies
𝑚 ≤ 𝑚′ ∧ 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛′ . (†)

Then, assuming they exist, the lubs form two chains

⨆
𝑛≥0

𝑑0,𝑛 ⊑ ⨆
𝑛≥0

𝑑1,𝑛 ⊑ ⨆
𝑛≥0

𝑑2,𝑛 ⊑ …

and
⨆
𝑚≥0

𝑑𝑚,0 ⊑ ⨆
𝑚≥0

𝑑𝑚,1 ⊑ ⨆
𝑚≥0

𝑑𝑚,2 ⊑ …

Moreover, again assuming they exist,

⨆
𝑚≥0

(⨆
𝑛≥0

𝑑𝑚,𝑛) = ⨆
𝑘≥0

𝑑𝑘,𝑘 = ⨆
𝑛≥0

(⨆
𝑚≥0

𝑑𝑚,𝑛) .

30/104



DIAGONALISATION

Assume 𝑑𝑚,𝑛 ∈ 𝐷 (𝑚, 𝑛 ≥ 0) satisfies
𝑚 ≤ 𝑚′ ∧ 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛′ . (†)

Then, assuming they exist, the lubs form two chains

⨆
𝑛≥0

𝑑0,𝑛 ⊑ ⨆
𝑛≥0

𝑑1,𝑛 ⊑ ⨆
𝑛≥0

𝑑2,𝑛 ⊑ …

and
⨆
𝑚≥0

𝑑𝑚,0 ⊑ ⨆
𝑚≥0

𝑑𝑚,1 ⊑ ⨆
𝑚≥0

𝑑𝑚,2 ⊑ …

Moreover, again assuming they exist,

⨆
𝑚≥0

(⨆
𝑛≥0

𝑑𝑚,𝑛) = ⨆
𝑘≥0

𝑑𝑘,𝑘 = ⨆
𝑛≥0

(⨆
𝑚≥0

𝑑𝑚,𝑛) .

30/104



LEAST FIXED POINTS
COMPLETE PARTIAL ORDERS AND DOMAINS



CPOS AND DOMAINS

A chain complete poset/cpo is a poset (𝐷, ⊑) in which all chains have least upper
bounds.

Beware: the lub need only exist if the 𝑥𝑖 form a chain!

A domain is a cpo with a least element ⊥.

31/104



CPOS AND DOMAINS

A chain complete poset/cpo is a poset (𝐷, ⊑) in which all chains have least upper
bounds.

Beware: the lub need only exist if the 𝑥𝑖 form a chain!

A domain is a cpo with a least element ⊥.

31/104



CPOS AND DOMAINS

A chain complete poset/cpo is a poset (𝐷, ⊑) in which all chains have least upper
bounds.

Beware: the lub need only exist if the 𝑥𝑖 form a chain!

A domain is a cpo with a least element ⊥.

31/104



DOMAIN OF PARTIAL FUNCTIONS

Least element: ⊥ is the totally undefined function.

Lub of a chain: 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … has lub 𝑓 such that

𝑓 (𝑥) = {𝑓𝑛(𝑥) if 𝑥 ∈ dom(𝑓𝑛) for some 𝑛
undefined otherwise

Beware: the definition of⨆𝑛≥0 𝑓𝑛 is unambiguous only if the 𝑓𝑖 form a chain!

32/104



DOMAIN OF PARTIAL FUNCTIONS

Least element: ⊥ is the totally undefined function.

Lub of a chain: 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … has lub 𝑓 such that

𝑓 (𝑥) = {𝑓𝑛(𝑥) if 𝑥 ∈ dom(𝑓𝑛) for some 𝑛
undefined otherwise

Beware: the definition of⨆𝑛≥0 𝑓𝑛 is unambiguous only if the 𝑓𝑖 form a chain!

32/104



DOMAIN OF PARTIAL FUNCTIONS

Least element: ⊥ is the totally undefined function.

Lub of a chain: 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … has lub 𝑓 such that

𝑓 (𝑥) = {𝑓𝑛(𝑥) if 𝑥 ∈ dom(𝑓𝑛) for some 𝑛
undefined otherwise

Beware: the definition of⨆𝑛≥0 𝑓𝑛 is unambiguous only if the 𝑓𝑖 form a chain!

32/104



THE FLAT NATURAL NUMBERS ℕ⊥

0 1 2 ⋯ 𝑛 𝑛 + 1 ⋯

⊥←←←
⋯ ←← ⋯

33/104



LEAST FIXED POINTS
CONTINUOUS FUNCTIONS



CONTINUITY AND STRICTNESS

Given two cpos 𝐷 and 𝐸, a function 𝑓 : 𝐷 → 𝐸 is continuous if

• it is monotone, and
• it preserves lubs of chains, i.e. for all chains 𝑑0 ⊑ 𝑑1 ⊑ … in 𝐷, we have

𝑓 (⨆
𝑛≥0

𝑑𝑛) = ⨆
𝑛≥0

𝑓 (𝑑𝑛)

A function 𝑓 is strict if 𝑓 (⊥𝐷) = ⊥𝐸 .

34/104



CONTINUITY AND STRICTNESS

Given two cpos 𝐷 and 𝐸, a function 𝑓 : 𝐷 → 𝐸 is continuous if

• it is monotone, and
• it preserves lubs of chains, i.e. for all chains 𝑑0 ⊑ 𝑑1 ⊑ … in 𝐷, we have

𝑓 (⨆
𝑛≥0

𝑑𝑛) = ⨆
𝑛≥0

𝑓 (𝑑𝑛)

A function 𝑓 is strict if 𝑓 (⊥𝐷) = ⊥𝐸 .

34/104



THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1

0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥

0 0 0 0 0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 ↦ 0
Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: show the thesis… by giving a denotational semantics.

35/104



THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1

0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥

0 0 0 0 0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 ↦ 0
Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: show the thesis… by giving a denotational semantics.

35/104



THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1

0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥

0 0 0 0 0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 ↦ 0

Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: show the thesis… by giving a denotational semantics.

35/104



THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1
0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 ↦ 0

Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: show the thesis… by giving a denotational semantics.

35/104



THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1
0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥
0 0 0 0 0 0 0 0 0 … ↦ ?
0 0 0 0 0 0 ↦ 0

Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: show the thesis… by giving a denotational semantics.

35/104



THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1
0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥
0 0 0 0 0 0 0 0 0 … ↦ ?
0 0 0 0 0 0 ↦ 0

Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: show the thesis… by giving a denotational semantics.

35/104



THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1
0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥
0 0 0 0 0 0 0 0 0 … ↦ ?
0 0 0 0 0 0 ↦ 0

Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: show the thesis… by giving a denotational semantics.

35/104



LEAST FIXED POINTS
KLEENE’S FIXED POINT THEOREM



KLEENE’S FIXED POINT THEOREM

Let 𝑓 : 𝐷 → 𝐷 be a continuous function on a domain 𝐷. Then 𝑓 possesses a least
pre-fixed point, given by

fix(𝑓 ) = ⨆
𝑛≥0

𝑓 𝑛(⊥).

It is thus also the least fixed point of 𝑓 !

36/104



KLEENE’S FIXED POINT THEOREM

Let 𝑓 : 𝐷 → 𝐷 be a continuous function on a domain 𝐷. Then 𝑓 possesses a least
pre-fixed point, given by

fix(𝑓 ) = ⨆
𝑛≥0

𝑓 𝑛(⊥).

It is thus also the least fixed point of 𝑓 !

36/104



CONSTRUCTIONS ON DOMAINS



CONSTRUCTIONS ON DOMAINS
FLAT DOMAINS



FLAT DOMAIN ON 𝑋

The flat domain on a set 𝑋 is defined by:

• its underlying set 𝑋 ⨄{⊥} ;
• 𝑥 ⊑ 𝑥′ if either 𝑥 = ⊥ or 𝑥 = 𝑥′.

𝑋

⊥

37/104



FLAT DOMAIN LIFTING

Let 𝑓 : 𝑋 ⇀ 𝑌 be a partial function between two sets. Then

𝑓⊥ : 𝑋⊥ → 𝑌⊥

𝑑 ↦ {
𝑓 (𝑑) if 𝑑 ∈ 𝑋 and 𝑓 is defined at 𝑑
⊥ if 𝑑 ∈ 𝑋 and 𝑓 is not defined at 𝑑
⊥ if 𝑑 = ⊥

defines a continuous function between the corresponding flat domains.

38/104



CONSTRUCTIONS ON DOMAINS
PRODUCTS OF DOMAINS



BINARY PRODUCT

The product of two posets (𝐷1, ⊑1) and (𝐷2, ⊑2) has underlying set
𝐷1 × 𝐷2 = {(𝑑1, 𝑑2) ∣ 𝑑1 ∈ 𝐷1 ∧ 𝑑2 ∈ 𝐷2}

and partial order ⊑ defined by

(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)
def⇔ 𝑑1 ⊑1 𝑑′1 ∧ 𝑑2 ⊑2 𝑑′2

PO× 𝑑1 ⊑1 𝑑′1 𝑑2 ⊑2 𝑑′2
(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)

=========================

39/104



BINARY PRODUCT

The product of two posets (𝐷1, ⊑1) and (𝐷2, ⊑2) has underlying set
𝐷1 × 𝐷2 = {(𝑑1, 𝑑2) ∣ 𝑑1 ∈ 𝐷1 ∧ 𝑑2 ∈ 𝐷2}

and partial order ⊑ defined by

(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)
def⇔ 𝑑1 ⊑1 𝑑′1 ∧ 𝑑2 ⊑2 𝑑′2

PO× 𝑑1 ⊑1 𝑑′1 𝑑2 ⊑2 𝑑′2
(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)

=========================

39/104



COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

⨆
𝑛≥0

(𝑑1,𝑛, 𝑑2,𝑛) = (⨆
𝑖≥0

𝑑1,𝑖,⨆
𝑗≥0

𝑑2,𝑗).

If (𝐷1, ⊑1) and (𝐷2, ⊑2) have least elements, so does (𝐷1 × 𝐷2, ⊑) with
⊥𝐷1×𝐷2 = (⊥𝐷1 , ⊥𝐷2)

Products of cpos (domains) are cpos (domains).

40/104



COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

⨆
𝑛≥0

(𝑑1,𝑛, 𝑑2,𝑛) = (⨆
𝑖≥0

𝑑1,𝑖,⨆
𝑗≥0

𝑑2,𝑗).

If (𝐷1, ⊑1) and (𝐷2, ⊑2) have least elements, so does (𝐷1 × 𝐷2, ⊑) with
⊥𝐷1×𝐷2 = (⊥𝐷1 , ⊥𝐷2)

Products of cpos (domains) are cpos (domains).

40/104



COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

⨆
𝑛≥0

(𝑑1,𝑛, 𝑑2,𝑛) = (⨆
𝑖≥0

𝑑1,𝑖,⨆
𝑗≥0

𝑑2,𝑗).

If (𝐷1, ⊑1) and (𝐷2, ⊑2) have least elements, so does (𝐷1 × 𝐷2, ⊑) with
⊥𝐷1×𝐷2 = (⊥𝐷1 , ⊥𝐷2)

Products of cpos (domains) are cpos (domains).

40/104



FUNCTIONS OF TWO ARGUMENTS

A function 𝑓 : (𝐷 × 𝐸) → 𝐹 is monotone if and only if it is monotone in each argument
separately:

∀𝑑, 𝑑′ ∈ 𝐷, 𝑒 ∈ 𝐸. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑′, 𝑒)
∀𝑑 ∈ 𝐷, 𝑒, 𝑒′ ∈ 𝐸. 𝑒 ⊑ 𝑒′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑, 𝑒′).

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

𝑓 (⨆
𝑚≥0

𝑑𝑚 , 𝑒) = ⨆
𝑚≥0

𝑓 (𝑑𝑚, 𝑒)

𝑓 (𝑑 , ⨆
𝑛≥0

𝑒𝑛) = ⨆
𝑛≥0

𝑓 (𝑑, 𝑒𝑛).

41/104



FUNCTIONS OF TWO ARGUMENTS

A function 𝑓 : (𝐷 × 𝐸) → 𝐹 is monotone if and only if it is monotone in each argument
separately:

∀𝑑, 𝑑′ ∈ 𝐷, 𝑒 ∈ 𝐸. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑′, 𝑒)
∀𝑑 ∈ 𝐷, 𝑒, 𝑒′ ∈ 𝐸. 𝑒 ⊑ 𝑒′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑, 𝑒′).

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

𝑓 (⨆
𝑚≥0

𝑑𝑚 , 𝑒) = ⨆
𝑚≥0

𝑓 (𝑑𝑚, 𝑒)

𝑓 (𝑑 , ⨆
𝑛≥0

𝑒𝑛) = ⨆
𝑛≥0

𝑓 (𝑑, 𝑒𝑛).

41/104



DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

MON×
𝑓 monotone 𝑥 ⊑ 𝑥′ 𝑦 ⊑ 𝑦 ′

𝑓 (𝑥, 𝑦) ⊑ 𝑓 (𝑥′, 𝑦 ′)

𝑓 (⨆
𝑚

𝑥𝑚,⨆
𝑛

𝑦𝑛) = ⨆
𝑚

⨆
𝑛

𝑓 (𝑥𝑚, 𝑦𝑛) = ⨆
𝑘

𝑓 (𝑥𝑘 , 𝑦𝑘)

42/104



PROJECTION AND PAIRING

Let 𝐷1 and 𝐷2 be cpos. The projections

𝜋1 : 𝐷1 × 𝐷2 → 𝐷1
(𝑑1, 𝑑2) ↦ 𝑑1

𝜋2 : 𝐷1 × 𝐷2 → 𝐷2
(𝑑1, 𝑑2) ↦ 𝑑2

are continuous functions.

If 𝑓1 : 𝐷 → 𝐷1 and 𝑓2 : 𝐷 → 𝐷2 are continuous functions from a cpo 𝐷, then the
pairing function

⟨𝑓1, 𝑓2⟩ : 𝐷 → 𝐷1 × 𝐷2
𝑑 ↦ (𝑓1(𝑑), 𝑓2(𝑑))

is continuous.

43/104



PROJECTION AND PAIRING

Let 𝐷1 and 𝐷2 be cpos. The projections

𝜋1 : 𝐷1 × 𝐷2 → 𝐷1
(𝑑1, 𝑑2) ↦ 𝑑1

𝜋2 : 𝐷1 × 𝐷2 → 𝐷2
(𝑑1, 𝑑2) ↦ 𝑑2

are continuous functions.

If 𝑓1 : 𝐷 → 𝐷1 and 𝑓2 : 𝐷 → 𝐷2 are continuous functions from a cpo 𝐷, then the
pairing function

⟨𝑓1, 𝑓2⟩ : 𝐷 → 𝐷1 × 𝐷2
𝑑 ↦ (𝑓1(𝑑), 𝑓2(𝑑))

is continuous.

43/104



DOMAIN CONDITIONAL

The conditional function

if : 𝔹⊥ × (𝐷 × 𝐷) → 𝐷

(𝑥, 𝑑) ↦ {
𝜋1(𝑑) if 𝑥 = true
𝜋2(𝑑) if 𝑥 = false
⊥𝐷 if 𝑥 = ⊥

is continuous.

44/104



GENERAL PRODUCT

Given a set 𝐼 , suppose that for each 𝑖 ∈ 𝐼 we are given a set 𝑋𝑖. The (cartesian) product of
the 𝑋𝑖 is

∏
𝑖∈𝐼

𝑋𝑖

Two ways to see it:

• tuples: (… , 𝑥𝑖, … )𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑋𝑖;

• heterogeneous functions: 𝑝 defined on 𝐼 such that 𝑝(𝑖) ∈ 𝑋𝑖.
Special case: ∏𝑖∈𝔹 𝐷𝑖 corresponds to 𝐷true × 𝐷false.
Projections (for any 𝑖 ∈ 𝐼 ):

𝜋𝑖 : (∏
𝑖∈𝐼

𝑋𝑖) → 𝑋𝑖

45/104



GENERAL PRODUCT

Given a set 𝐼 , suppose that for each 𝑖 ∈ 𝐼 we are given a set 𝑋𝑖. The (cartesian) product of
the 𝑋𝑖 is

∏
𝑖∈𝐼

𝑋𝑖

Two ways to see it:

• tuples: (… , 𝑥𝑖, … )𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑋𝑖;
• heterogeneous functions: 𝑝 defined on 𝐼 such that 𝑝(𝑖) ∈ 𝑋𝑖.

Special case: ∏𝑖∈𝔹 𝐷𝑖 corresponds to 𝐷true × 𝐷false.
Projections (for any 𝑖 ∈ 𝐼 ):

𝜋𝑖 : (∏
𝑖∈𝐼

𝑋𝑖) → 𝑋𝑖

45/104



GENERAL PRODUCT

Given a set 𝐼 , suppose that for each 𝑖 ∈ 𝐼 we are given a set 𝑋𝑖. The (cartesian) product of
the 𝑋𝑖 is

∏
𝑖∈𝐼

𝑋𝑖

Two ways to see it:

• tuples: (… , 𝑥𝑖, … )𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑋𝑖;
• heterogeneous functions: 𝑝 defined on 𝐼 such that 𝑝(𝑖) ∈ 𝑋𝑖.

Special case: ∏𝑖∈𝔹 𝐷𝑖 corresponds to 𝐷true × 𝐷false.

Projections (for any 𝑖 ∈ 𝐼 ):
𝜋𝑖 : (∏

𝑖∈𝐼
𝑋𝑖) → 𝑋𝑖

45/104



GENERAL PRODUCT

Given a set 𝐼 , suppose that for each 𝑖 ∈ 𝐼 we are given a set 𝑋𝑖. The (cartesian) product of
the 𝑋𝑖 is

∏
𝑖∈𝐼

𝑋𝑖

Two ways to see it:

• tuples: (… , 𝑥𝑖, … )𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑋𝑖;
• heterogeneous functions: 𝑝 defined on 𝐼 such that 𝑝(𝑖) ∈ 𝑋𝑖.

Special case: ∏𝑖∈𝔹 𝐷𝑖 corresponds to 𝐷true × 𝐷false.
Projections (for any 𝑖 ∈ 𝐼 ):

𝜋𝑖 : (∏
𝑖∈𝐼

𝑋𝑖) → 𝑋𝑖

45/104



GENERAL PRODUCT OF DOMAINS

Given a set 𝐼 , suppose that for each 𝑖 ∈ 𝐼 we are given a cpo (𝐷𝑖, ⊑𝑖). The product of this
whole family of cpos has

• underlying set equal to∏𝑖∈𝐼 𝐷𝑖;

• componentwise order

𝑝 ⊑ 𝑝′ def⇔ ∀𝑖 ∈ 𝐼 . 𝑝𝑖 ⊑𝑖 𝑝′𝑖 .

𝐼 -indexed products of cpos (domains) are cpos (domains), and projections are
continuous.

46/104



GENERAL PRODUCT OF DOMAINS

Given a set 𝐼 , suppose that for each 𝑖 ∈ 𝐼 we are given a cpo (𝐷𝑖, ⊑𝑖). The product of this
whole family of cpos has

• underlying set equal to∏𝑖∈𝐼 𝐷𝑖;
• componentwise order

𝑝 ⊑ 𝑝′ def⇔ ∀𝑖 ∈ 𝐼 . 𝑝𝑖 ⊑𝑖 𝑝′𝑖 .

𝐼 -indexed products of cpos (domains) are cpos (domains), and projections are
continuous.

46/104



GENERAL PRODUCT OF DOMAINS

Given a set 𝐼 , suppose that for each 𝑖 ∈ 𝐼 we are given a cpo (𝐷𝑖, ⊑𝑖). The product of this
whole family of cpos has

• underlying set equal to∏𝑖∈𝐼 𝐷𝑖;
• componentwise order

𝑝 ⊑ 𝑝′ def⇔ ∀𝑖 ∈ 𝐼 . 𝑝𝑖 ⊑𝑖 𝑝′𝑖 .

𝐼 -indexed products of cpos (domains) are cpos (domains), and projections are
continuous.

46/104



CONSTRUCTIONS ON DOMAINS
FUNCTION DOMAINS



CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (𝐷, ⊑𝐷) and (𝐸, ⊑𝐸), the function cpo (𝐷 → 𝐸, ⊑) has underlying set
{𝑓 : 𝐷 → 𝐸 ∣ is a continuous function}

equipped with the pointwise order:

𝑓 ⊑ 𝑓 ′ def⇔ ∀𝑑 ∈ 𝐷. 𝑓 (𝑑) ⊑𝐸 𝑓 ′(𝑑).

Argumentwise least elements and lubs:

⊥𝐷→𝐸(𝑑) = ⊥𝐸 (⨆
𝑛≥0

𝑓𝑛) (𝑑) = ⨆
𝑛≥0

𝑓𝑛(𝑑)

47/104



CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (𝐷, ⊑𝐷) and (𝐸, ⊑𝐸), the function cpo (𝐷 → 𝐸, ⊑) has underlying set
{𝑓 : 𝐷 → 𝐸 ∣ is a continuous function}

equipped with the pointwise order:

𝑓 ⊑ 𝑓 ′ def⇔ ∀𝑑 ∈ 𝐷. 𝑓 (𝑑) ⊑𝐸 𝑓 ′(𝑑).

𝑓 ⊑𝐷→𝐸 𝑔 𝑥 ⊑𝐷 𝑦
𝑓 (𝑥) ⊑𝐸 𝑔(𝑦)

Argumentwise least elements and lubs:

⊥𝐷→𝐸(𝑑) = ⊥𝐸 (⨆
𝑛≥0

𝑓𝑛) (𝑑) = ⨆
𝑛≥0

𝑓𝑛(𝑑)

47/104



CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (𝐷, ⊑𝐷) and (𝐸, ⊑𝐸), the function cpo (𝐷 → 𝐸, ⊑) has underlying set
{𝑓 : 𝐷 → 𝐸 ∣ is a continuous function}

equipped with the pointwise order:

𝑓 ⊑ 𝑓 ′ def⇔ ∀𝑑 ∈ 𝐷. 𝑓 (𝑑) ⊑𝐸 𝑓 ′(𝑑).

Argumentwise least elements and lubs:

⊥𝐷→𝐸(𝑑) = ⊥𝐸 (⨆
𝑛≥0

𝑓𝑛) (𝑑) = ⨆
𝑛≥0

𝑓𝑛(𝑑)

47/104



FUNCTION OPERATIONS ARE CONTINUOUS

Evaluation, currying (𝑓 : (𝐷′ × 𝐷) → 𝐸) and composition
eval : (𝐷 → 𝐸) × 𝐷 → 𝐸

(𝑓 , 𝑑) ↦ 𝑓 (𝑑)
cur(𝑓 ) : 𝐷′ → (𝐷 → 𝐸)

𝑑′ ↦ 𝜆𝑑 ∈ 𝐷. 𝑓 (𝑑′, 𝑑)
∘ : ((𝐸 → 𝐹) × (𝐷 → 𝐸)) ⟶ (𝐷 → 𝐹)

(𝑓 , 𝑔) ↦ 𝜆𝑑 ∈ 𝐷. 𝑔(𝑓 (𝑑))
are all well-defined and continuous.

48/104



CONTINUITY OF THE FIXED POINT OPERATOR

fix: (𝐷 → 𝐷) → 𝐷
is continuous.

49/104



CONSTRUCTIONS ON DOMAINS
BACK TO THE INTRODUCTION



THE SEMANTICS OF A WHILE LOOP

q
while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)y

is a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is (State ⇀ State):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = { [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0.

𝐹(⊥) = ⊥

State⊥ → State⊥ is a domain!

50/104



THE SEMANTICS OF A WHILE LOOP

q
while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)y

is a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is (State⊥ → State⊥):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = { [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0.

𝐹(⊥) = ⊥

State⊥ → State⊥ is a domain!

50/104



KLEENE’S FIXED POINT THEOREM

Kleene’s fixed point theorem:
𝑤∞ = ⨆

𝑖∈ℕ
𝐹 𝑛(⊥)

is the least fixed point of 𝐹 , and in particular a fixed point.

We can compute explicitly

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

And check this agrees with the operational semantics.

51/104



KLEENE’S FIXED POINT THEOREM

Kleene’s fixed point theorem:
𝑤∞ = ⨆

𝑖∈ℕ
𝐹 𝑛(⊥)

is the least fixed point of 𝐹 , and in particular a fixed point.

We can compute explicitly

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

And check this agrees with the operational semantics.

51/104



SCOTT INDUCTION



REASONING ON FIXED POINTS: SCOTT INDUCTION

Let 𝐷 be a domain, 𝑓 : 𝐷 → 𝐷 be a continuous function and 𝑆 ⊆ 𝐷 be a subset of 𝐷. If
the set 𝑆
(i) contains ⊥,
(ii) is stable under 𝑓 , i.e. 𝑓 (𝑆) ⊆ 𝑆 ,
(iii) is chain-closed, i.e. the lub of any chain of elements of 𝑆 is also in 𝑆 ,
then fix(𝑓 ) ∈ 𝑆 .

SCOTTIND

Φ(⊥) Φ(𝑥) ⇒ Φ(𝑓 (𝑥)) (∀𝑖 ∈ ℕ. Φ(𝑥𝑖)) ⇒ Φ(⨆
𝑖∈ℕ

𝑥𝑖)

Φ(fix(𝑓 ))

52/104



REASONING ON FIXED POINTS: SCOTT INDUCTION

Let 𝐷 be a domain, 𝑓 : 𝐷 → 𝐷 be a continuous function and 𝑆 ⊆ 𝐷 be a subset of 𝐷. If
the set 𝑆
(i) contains ⊥,
(ii) is stable under 𝑓 , i.e. 𝑓 (𝑆) ⊆ 𝑆 ,
(iii) is chain-closed, i.e. the lub of any chain of elements of 𝑆 is also in 𝑆 ,
then fix(𝑓 ) ∈ 𝑆 .

SCOTTIND

Φ(⊥) Φ(𝑥) ⇒ Φ(𝑓 (𝑥)) (∀𝑖 ∈ ℕ. Φ(𝑥𝑖)) ⇒ Φ(⨆
𝑖∈ℕ

𝑥𝑖)

Φ(fix(𝑓 ))

52/104



BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

{(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 ⊑ 𝑦} , 𝑑 ↓def= {𝑥 ∈ 𝐷 ∣ 𝑥 ⊑ 𝑑} and {(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 = 𝑦}

𝑓 −1𝑆 = {𝑥 ∈ 𝐷 ∣ 𝑓 (𝑥) ∈ 𝑆} if 𝑆 ⊆ 𝐸 is chain-closed, and 𝑓 : 𝐷 → 𝐸 is continuous

𝑆 ∪ 𝑇 and ⋂
𝑖∈𝐼

𝑆𝑖 if 𝑆 , 𝑇 and 𝑆𝑖 are

∀𝑆 def= {𝑦 ∈ 𝐸 ∣ ∀𝑥 ∈ 𝐷. (𝑥, 𝑦) ∈ 𝑆} ⊆ 𝐸 if 𝑆 ⊆ 𝐷 × 𝐸 is

53/104



BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

{(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 ⊑ 𝑦} , 𝑑 ↓def= {𝑥 ∈ 𝐷 ∣ 𝑥 ⊑ 𝑑} and {(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 = 𝑦}

𝑓 −1𝑆 = {𝑥 ∈ 𝐷 ∣ 𝑓 (𝑥) ∈ 𝑆} if 𝑆 ⊆ 𝐸 is chain-closed, and 𝑓 : 𝐷 → 𝐸 is continuous

𝑆 ∪ 𝑇 and ⋂
𝑖∈𝐼

𝑆𝑖 if 𝑆 , 𝑇 and 𝑆𝑖 are

∀𝑆 def= {𝑦 ∈ 𝐸 ∣ ∀𝑥 ∈ 𝐷. (𝑥, 𝑦) ∈ 𝑆} ⊆ 𝐸 if 𝑆 ⊆ 𝐷 × 𝐸 is

53/104



BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

{(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 ⊑ 𝑦} , 𝑑 ↓def= {𝑥 ∈ 𝐷 ∣ 𝑥 ⊑ 𝑑} and {(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 = 𝑦}

𝑓 −1𝑆 = {𝑥 ∈ 𝐷 ∣ 𝑓 (𝑥) ∈ 𝑆} if 𝑆 ⊆ 𝐸 is chain-closed, and 𝑓 : 𝐷 → 𝐸 is continuous

𝑆 ∪ 𝑇 and ⋂
𝑖∈𝐼

𝑆𝑖 if 𝑆 , 𝑇 and 𝑆𝑖 are

∀𝑆 def= {𝑦 ∈ 𝐸 ∣ ∀𝑥 ∈ 𝐷. (𝑥, 𝑦) ∈ 𝑆} ⊆ 𝐸 if 𝑆 ⊆ 𝐷 × 𝐸 is

53/104



BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

{(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 ⊑ 𝑦} , 𝑑 ↓def= {𝑥 ∈ 𝐷 ∣ 𝑥 ⊑ 𝑑} and {(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 = 𝑦}

𝑓 −1𝑆 = {𝑥 ∈ 𝐷 ∣ 𝑓 (𝑥) ∈ 𝑆} if 𝑆 ⊆ 𝐸 is chain-closed, and 𝑓 : 𝐷 → 𝐸 is continuous

𝑆 ∪ 𝑇 and ⋂
𝑖∈𝐼

𝑆𝑖 if 𝑆 , 𝑇 and 𝑆𝑖 are

∀𝑆 def= {𝑦 ∈ 𝐸 ∣ ∀𝑥 ∈ 𝐷. (𝑥, 𝑦) ∈ 𝑆} ⊆ 𝐸 if 𝑆 ⊆ 𝐷 × 𝐸 is

53/104



BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

{(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 ⊑ 𝑦} , 𝑑 ↓def= {𝑥 ∈ 𝐷 ∣ 𝑥 ⊑ 𝑑} and {(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 = 𝑦}

𝑓 −1𝑆 = {𝑥 ∈ 𝐷 ∣ 𝑓 (𝑥) ∈ 𝑆} if 𝑆 ⊆ 𝐸 is chain-closed, and 𝑓 : 𝐷 → 𝐸 is continuous

𝑆 ∪ 𝑇 and ⋂
𝑖∈𝐼

𝑆𝑖 if 𝑆 , 𝑇 and 𝑆𝑖 are

∀𝑆 def= {𝑦 ∈ 𝐸 ∣ ∀𝑥 ∈ 𝐷. (𝑥, 𝑦) ∈ 𝑆} ⊆ 𝐸 if 𝑆 ⊆ 𝐷 × 𝐸 is

53/104



EXAMPLE: DOWNSET

Assume 𝑓 (𝑑) ⊑ 𝑑 , i.e. 𝑑 is a pre-fixed point of the continuous 𝑓 : 𝐷 → 𝐷. By Scott
induction on 𝑑 ↓, fix(𝑓 ) ⊑ 𝑑 .

Proof!

54/104



EXAMPLE: DOWNSET

Assume 𝑓 (𝑑) ⊑ 𝑑 , i.e. 𝑑 is a pre-fixed point of the continuous 𝑓 : 𝐷 → 𝐷. By Scott
induction on 𝑑 ↓, fix(𝑓 ) ⊑ 𝑑 .

Proof!

54/104



EXAMPLE: PARTIAL CORRECTNESS

Let 𝑤∞: State⊥ → State⊥ be the denotation of

while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 : = 𝑋 − 1)
Recall that 𝑤∞ = fix(𝐹) where

𝐹(𝑤)(𝑥, 𝑦) = { (𝑥, 𝑦) if 𝑥 ≤ 0
𝑤(𝑥 − 1, 𝑥 ⋅ 𝑦) if 𝑥 > 0

𝐹(𝑤)(⊥) = ⊥

Claim:
∀𝑥. ∀𝑦 ≥ 0. 𝑤∞(𝑥, 𝑦) ⇓ ⟹ 𝜋𝑌 (𝑤∞(𝑥, 𝑦)) ≥ 0

Proof: by Scott induction!

55/104



EXAMPLE: PARTIAL CORRECTNESS

Let 𝑤∞: State⊥ → State⊥ be the denotation of

while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 : = 𝑋 − 1)
Recall that 𝑤∞ = fix(𝐹) where

𝐹(𝑤)(𝑥, 𝑦) = { (𝑥, 𝑦) if 𝑥 ≤ 0
𝑤(𝑥 − 1, 𝑥 ⋅ 𝑦) if 𝑥 > 0

𝐹(𝑤)(⊥) = ⊥

Claim:
∀𝑥. ∀𝑦 ≥ 0. 𝑤∞(𝑥, 𝑦) ⇓ ⟹ 𝜋𝑌 (𝑤∞(𝑥, 𝑦)) ≥ 0

Proof: by Scott induction!

55/104



EXAMPLE: PARTIAL CORRECTNESS

Let 𝑤∞: State⊥ → State⊥ be the denotation of

while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 : = 𝑋 − 1)
Recall that 𝑤∞ = fix(𝐹) where

𝐹(𝑤)(𝑥, 𝑦) = { (𝑥, 𝑦) if 𝑥 ≤ 0
𝑤(𝑥 − 1, 𝑥 ⋅ 𝑦) if 𝑥 > 0

𝐹(𝑤)(⊥) = ⊥

Claim:
∀𝑥. ∀𝑦 ≥ 0. 𝑤∞(𝑥, 𝑦) ⇓ ⟹ 𝜋𝑌 (𝑤∞(𝑥, 𝑦)) ≥ 0

Proof: by Scott induction!

55/104



PCF



PCF
TERMS AND TYPES



SYNTAX OF PCF

Types: 𝜏 ::= nat ∣ bool ∣ 𝜏 -> 𝜏

Terms: 𝑡 ::= 0 ∣ succ(𝑡) ∣ pred(𝑡) ∣
true ∣ false ∣ zero?(𝑡) ∣ if 𝑡 then 𝑡 else 𝑡
𝑥 ∣ fun 𝑥: 𝜏 . 𝑡 ∣ 𝑡 𝑡 ∣ fix(𝑡)

56/104



SYNTAX OF PCF

Types: 𝜏 ::= nat ∣ bool ∣ 𝜏 -> 𝜏

Terms: 𝑡 ::= 0 ∣ succ(𝑡) ∣ pred(𝑡) ∣
true ∣ false ∣ zero?(𝑡) ∣ if 𝑡 then 𝑡 else 𝑡
𝑥 ∣ fun 𝑥: 𝜏 . 𝑡 ∣ 𝑡 𝑡 ∣ fix(𝑡)

56/104



TYPING FOR PCF (I)

Γ ⊢ 𝑡 : 𝜏 The term 𝑡 has type 𝜏 in context Γ

ZERO Γ ⊢ 0 : nat SUCC
Γ ⊢ 𝑡 : nat

Γ ⊢ succ(𝑡) : nat PRED
Γ ⊢ 𝑡 : nat

Γ ⊢ pred(𝑡) : nat

TRUE Γ ⊢ true : bool FALSE Γ ⊢ false : bool ISZ
Γ ⊢ 𝑡 : nat

Γ ⊢ zero?(𝑡) : bool

IF

Γ ⊢ 𝑏 : bool
Γ ⊢ 𝑡 : 𝜏 Γ ⊢ 𝑡′ : 𝜏

Γ ⊢ if 𝑏 then 𝑡 else 𝑡′ : 𝜏

57/104



TYPING FOR PCF (I)

Γ ⊢ 𝑡 : 𝜏 The term 𝑡 has type 𝜏 in context Γ

ZERO Γ ⊢ 0 : nat SUCC
Γ ⊢ 𝑡 : nat

Γ ⊢ succ(𝑡) : nat PRED
Γ ⊢ 𝑡 : nat

Γ ⊢ pred(𝑡) : nat

TRUE Γ ⊢ true : bool FALSE Γ ⊢ false : bool ISZ
Γ ⊢ 𝑡 : nat

Γ ⊢ zero?(𝑡) : bool

IF

Γ ⊢ 𝑏 : bool
Γ ⊢ 𝑡 : 𝜏 Γ ⊢ 𝑡′ : 𝜏

Γ ⊢ if 𝑏 then 𝑡 else 𝑡′ : 𝜏

57/104



TYPING FOR PCF (II)

VAR
Γ(𝑥) = 𝜏
Γ ⊢ 𝑥 : 𝜏 FUN

Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏
Γ ⊢ fun 𝑥: 𝜎 . 𝑡 : 𝜎 -> 𝜏 APP

Γ ⊢ 𝑓 : 𝜎 -> 𝜏 Γ ⊢ 𝑢 : 𝜎
Γ ⊢ 𝑓 𝑢 : 𝜏

FIX
Γ ⊢ 𝑓 : 𝜏 -> 𝜏
Γ ⊢ fix(𝑓 ) : 𝜏

PCFΓ,𝜏 def= {𝑡 ∣ Γ ⊢ 𝑡 : 𝜏 } PCF𝜏 def= PCF⋅,𝜏

58/104



TYPING FOR PCF (II)

VAR
Γ(𝑥) = 𝜏
Γ ⊢ 𝑥 : 𝜏 FUN

Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏
Γ ⊢ fun 𝑥: 𝜎 . 𝑡 : 𝜎 -> 𝜏 APP

Γ ⊢ 𝑓 : 𝜎 -> 𝜏 Γ ⊢ 𝑢 : 𝜎
Γ ⊢ 𝑓 𝑢 : 𝜏

FIX
Γ ⊢ 𝑓 : 𝜏 -> 𝜏
Γ ⊢ fix(𝑓 ) : 𝜏

PCFΓ,𝜏 def= {𝑡 ∣ Γ ⊢ 𝑡 : 𝜏 } PCF𝜏 def= PCF⋅,𝜏

58/104



PCF
OPERATIONAL SEMANTICS



PCF EVALUATION

Values: 𝑣 ::= 0 ∣ succ(𝑣)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

∣ true ∣ false ∣ fun 𝑥: 𝜏 . 𝑡

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣 SUCC

𝑡 ⇓nat 𝑣
succ(𝑡) ⇓nat succ(𝑣)

PRED
𝑡 ⇓nat succ(𝑣)
pred(𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero?(𝑡) ⇓bool true
… IFT

𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 …

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

Alternatively: small-step 𝑡 ⇝𝜏 𝑢, we have 𝑡 ⇓𝜏 𝑣 iff 𝑡 ⇝⋆𝜏 𝑢.

59/104



PCF EVALUATION

Values: 𝑣 ::= 0 ∣ succ(𝑣)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

∣ true ∣ false ∣ fun 𝑥: 𝜏 . 𝑡

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣

SUCC
𝑡 ⇓nat 𝑣

succ(𝑡) ⇓nat succ(𝑣)
PRED

𝑡 ⇓nat succ(𝑣)
pred(𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero?(𝑡) ⇓bool true
… IFT

𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 …

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

Alternatively: small-step 𝑡 ⇝𝜏 𝑢, we have 𝑡 ⇓𝜏 𝑣 iff 𝑡 ⇝⋆𝜏 𝑢.

59/104



PCF EVALUATION

Values: 𝑣 ::= 0 ∣ succ(𝑣)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

∣ true ∣ false ∣ fun 𝑥: 𝜏 . 𝑡

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣 SUCC

𝑡 ⇓nat 𝑣
succ(𝑡) ⇓nat succ(𝑣)

PRED
𝑡 ⇓nat succ(𝑣)
pred(𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero?(𝑡) ⇓bool true
… IFT

𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 …

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

Alternatively: small-step 𝑡 ⇝𝜏 𝑢, we have 𝑡 ⇓𝜏 𝑣 iff 𝑡 ⇝⋆𝜏 𝑢.

59/104



PCF EVALUATION

Values: 𝑣 ::= 0 ∣ succ(𝑣)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

∣ true ∣ false ∣ fun 𝑥: 𝜏 . 𝑡

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣 SUCC

𝑡 ⇓nat 𝑣
succ(𝑡) ⇓nat succ(𝑣)

PRED
𝑡 ⇓nat succ(𝑣)
pred(𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero?(𝑡) ⇓bool true
… IFT

𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 …

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

Alternatively: small-step 𝑡 ⇝𝜏 𝑢, we have 𝑡 ⇓𝜏 𝑣 iff 𝑡 ⇝⋆𝜏 𝑢.

59/104



PCF EVALUATION

Values: 𝑣 ::= 0 ∣ succ(𝑣)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

∣ true ∣ false ∣ fun 𝑥: 𝜏 . 𝑡

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣 SUCC

𝑡 ⇓nat 𝑣
succ(𝑡) ⇓nat succ(𝑣)

PRED
𝑡 ⇓nat succ(𝑣)
pred(𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero?(𝑡) ⇓bool true
… IFT

𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 …

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

Alternatively: small-step 𝑡 ⇝𝜏 𝑢, we have 𝑡 ⇓𝜏 𝑣 iff 𝑡 ⇝⋆𝜏 𝑢.

59/104



PCF EVALUATION

Values: 𝑣 ::= 0 ∣ succ(𝑣)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

∣ true ∣ false ∣ fun 𝑥: 𝜏 . 𝑡

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣 SUCC

𝑡 ⇓nat 𝑣
succ(𝑡) ⇓nat succ(𝑣)

PRED
𝑡 ⇓nat succ(𝑣)
pred(𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero?(𝑡) ⇓bool true
… IFT

𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 …

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

Alternatively: small-step 𝑡 ⇝𝜏 𝑢, we have 𝑡 ⇓𝜏 𝑣 iff 𝑡 ⇝⋆𝜏 𝑢. 59/104



EXAMPLES

plus def= fun 𝑥: nat. fix(fun(𝑝: nat -> nat)(𝑦: nat).
if zero?(𝑦) then 𝑥 else succ(𝑝 pred(𝑦)))

plus 3 1 ⇓nat 4

Ω𝜏
def= fix(fun 𝑥: 𝜏 . 𝑥)

Ω𝜏 ⇑𝜏 (diverges)

Try it out!

60/104



EXAMPLES

plus def= fun 𝑥: nat. fix(fun(𝑝: nat -> nat)(𝑦: nat).
if zero?(𝑦) then 𝑥 else succ(𝑝 pred(𝑦)))

plus 3 1 ⇓nat 4

Ω𝜏
def= fix(fun 𝑥: 𝜏 . 𝑥)

Ω𝜏 ⇑𝜏 (diverges)

Try it out!

60/104



EXAMPLES

plus def= fun 𝑥: nat. fix(fun(𝑝: nat -> nat)(𝑦: nat).
if zero?(𝑦) then 𝑥 else succ(𝑝 pred(𝑦)))

plus 3 1 ⇓nat 4

Ω𝜏
def= fix(fun 𝑥: 𝜏 . 𝑥)

Ω𝜏 ⇑𝜏 (diverges)

Try it out!

60/104



TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function 𝜙, there is a PCF term 𝜙 such
that for all 𝑛 ∈ ℕ, if 𝜙(𝑛) is defined then 𝜙 𝑛 ⇓nat 𝜙(𝑛).

(Later on: 𝜙 =
s
𝜙
{
).

61/104



TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function 𝜙, there is a PCF term 𝜙 such
that for all 𝑛 ∈ ℕ, if 𝜙(𝑛) is defined then 𝜙 𝑛 ⇓nat 𝜙(𝑛).

(Later on: 𝜙 =
s
𝜙
{
).

61/104



DETERMINISM

Evaluation in PCF is deterministic: if both 𝑡 ⇓𝜏 𝑣 and 𝑡 ⇓𝜏 𝑣 ′ hold, then 𝑣 = 𝑣 ′.

By (rule) induction on evaluation ⇓:
{(𝑡, 𝜏 , 𝑣) ∣ 𝑡 ⇓𝜏 𝑣 ∧ ∀𝑣 ′.(𝑡 ⇓𝜏 𝑣 ′ ⇒ 𝑣 = 𝑣 ′)}

Intuition: there is always exactly one rule which applies.

62/104



DETERMINISM

Evaluation in PCF is deterministic: if both 𝑡 ⇓𝜏 𝑣 and 𝑡 ⇓𝜏 𝑣 ′ hold, then 𝑣 = 𝑣 ′.

By (rule) induction on evaluation ⇓:
{(𝑡, 𝜏 , 𝑣) ∣ 𝑡 ⇓𝜏 𝑣 ∧ ∀𝑣 ′.(𝑡 ⇓𝜏 𝑣 ′ ⇒ 𝑣 = 𝑣 ′)}

Intuition: there is always exactly one rule which applies.

62/104



PCF
CONTEXTUAL EQUIVALENCE



CONTEXTUAL EQUIVALENCE – INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

The intuitive notion of program equivalence for programmers.

63/104



CONTEXTUAL EQUIVALENCE – INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

The intuitive notion of program equivalence for programmers.

63/104



EVALUATION CONTEXTS

C ::= − ∣ succ(C) ∣ pred(C) ∣ zero?(C) ∣
if C then 𝑡 else 𝑡 ∣ if 𝑡 then C else 𝑡 ∣ if 𝑡 then 𝑡 else C ∣
fun 𝑥: 𝜏 . C ∣ C 𝑡 ∣ 𝑡 C ∣ fix(C)

Typing extended to evaluation contexts: Γ ⊢Δ,𝜎 C : 𝜏 .

Γ ⊢Γ,𝜏 − : 𝜏
Γ ⊢Δ,𝜎 C : 𝜏1 -> 𝜏2 Γ ⊢ 𝑢 : 𝜏1

Γ ⊢Δ,𝜎 C 𝑢 : 𝜏2 …

64/104



EVALUATION CONTEXTS

C ::= − ∣ succ(C) ∣ pred(C) ∣ zero?(C) ∣
if C then 𝑡 else 𝑡 ∣ if 𝑡 then C else 𝑡 ∣ if 𝑡 then 𝑡 else C ∣
fun 𝑥: 𝜏 . C ∣ C 𝑡 ∣ 𝑡 C ∣ fix(C)

Typing extended to evaluation contexts: Γ ⊢Δ,𝜎 C : 𝜏 .

Γ ⊢Γ,𝜏 − : 𝜏
Γ ⊢Δ,𝜎 C : 𝜏1 -> 𝜏2 Γ ⊢ 𝑢 : 𝜏1

Γ ⊢Δ,𝜎 C 𝑢 : 𝜏2 …

64/104



EVALUATION CONTEXTS

C ::= − ∣ succ(C) ∣ pred(C) ∣ zero?(C) ∣
if C then 𝑡 else 𝑡 ∣ if 𝑡 then C else 𝑡 ∣ if 𝑡 then 𝑡 else C ∣
fun 𝑥: 𝜏 . C ∣ C 𝑡 ∣ 𝑡 C ∣ fix(C)

Typing extended to evaluation contexts: Γ ⊢Δ,𝜎 C : 𝜏 .

Γ ⊢Γ,𝜏 − : 𝜏
Γ ⊢Δ,𝜎 C : 𝜏1 -> 𝜏2 Γ ⊢ 𝑢 : 𝜏1

Γ ⊢Δ,𝜎 C 𝑢 : 𝜏2 …

64/104



CONTEXTUAL EQUIVALENCE

Given a type 𝜏 , a typing context Γ and terms 𝑡 , 𝑡′ ∈ PCFΓ,𝜏 , contextual equivalence,
written Γ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 is defined to hold if for all evaluation contexts C such that
⋅ ⊢Γ,𝜏 C : 𝛾 , where 𝛾 is nat or bool, and for all values 𝑣 ∈ PCF𝛾 ,

C[𝑡] ⇓𝛾 𝑣 ⇔ C[𝑡′] ⇓𝛾 𝑣 .

When Γ is the empty context, we simply write 𝑡 ≅ctx 𝑡′ : 𝜏 for ⋅ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 .

65/104



PCF
INTRODUCING DENOTATIONAL SEMANTICS



THE AIMS OF DENOTATIONAL SEMANTICS

• a mapping of PCF types 𝜏 to domains J𝜏 K;
• a mapping of closed, well-typed PCF terms ⋅ ⊢ 𝑡 : 𝜏 to elements J𝑡K ∈ J𝜏 K;
• denotation of open terms will be continuous functions.

Compositionality: J𝑡K = q𝑡′y ⇒ q
C[𝑡]y = q

C[𝑡′]y.
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .

66/104



THE AIMS OF DENOTATIONAL SEMANTICS

• a mapping of PCF types 𝜏 to domains J𝜏 K;
• a mapping of closed, well-typed PCF terms ⋅ ⊢ 𝑡 : 𝜏 to elements J𝑡K ∈ J𝜏 K;
• denotation of open terms will be continuous functions.

Compositionality: J𝑡K = q𝑡′y ⇒ q
C[𝑡]y = q

C[𝑡′]y.
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .

66/104



THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
𝑡1 ≅ctx 𝑡2 : 𝜏

it suffices to establish q𝑡1y = q𝑡2y ∈ J𝜏 K

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

67/104



THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
𝑡1 ≅ctx 𝑡2 : 𝜏

it suffices to establish q𝑡1y = q𝑡2y ∈ J𝜏 K
C[𝑡1] ⇓nat 𝑣 ⇒ q

C[𝑡1]
y = J𝑣K (soundness)

⇒ q
C[𝑡2]

y = J𝑣K (compositionality on
q𝑡1y = q𝑡2y)

⇒ C[𝑡2] ⇓nat 𝑣 (adequacy)

and symmetrically for C[𝑡2] ⇓nat 𝑣 ⇒ C[𝑡1] ⇓nat 𝑣 , and similarly for bool.
Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

67/104



THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
𝑡1 ≅ctx 𝑡2 : 𝜏

it suffices to establish q𝑡1y = q𝑡2y ∈ J𝜏 K
C[𝑡1] ⇓nat 𝑣 ⇒ q

C[𝑡1]
y = J𝑣K (soundness)

⇒ q
C[𝑡2]

y = J𝑣K (compositionality on
q𝑡1y = q𝑡2y)

⇒ C[𝑡2] ⇓nat 𝑣 (adequacy)

and symmetrically for C[𝑡2] ⇓nat 𝑣 ⇒ C[𝑡1] ⇓nat 𝑣 , and similarly for bool.

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

67/104



THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
𝑡1 ≅ctx 𝑡2 : 𝜏

it suffices to establish q𝑡1y = q𝑡2y ∈ J𝜏 K

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

67/104



THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
𝑡1 ≅ctx 𝑡2 : 𝜏

it suffices to establish q𝑡1y = q𝑡2y ∈ J𝜏 K

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

67/104



DENOTATIONAL SEMANTICS FOR PCF



DENOTATIONAL SEMANTICS FOR PCF
TYPES AND CONTEXTS



SEMANTICS OF TYPES

JnatK def= ℕ⊥ (flat domain)

JboolK def= 𝔹⊥ (flat domain)q𝜏 -> 𝜏 ′y def= J𝜏 K → q𝜏 ′y (function domain)

68/104



SEMANTICS OF CONTEXTS

JΓK def= ∏𝑥∈dom(Γ)
qΓ(𝑥)y (Γ-environments)

• J⋅K = 𝟙 (one element set)
• J𝑥: 𝜏 K = ({𝑥} → J𝜏 K) ≅ J𝜏 K
•

q𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛
y = q𝜏1y × ⋯ × q𝜏𝑛y

69/104



SEMANTICS OF CONTEXTS

JΓK def= ∏𝑥∈dom(Γ)
qΓ(𝑥)y (Γ-environments)

• J⋅K = 𝟙 (one element set)
• J𝑥: 𝜏 K = ({𝑥} → J𝜏 K) ≅ J𝜏 K
•

q𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛
y = q𝜏1y × ⋯ × q𝜏𝑛y

69/104



DENOTATIONAL SEMANTICS FOR PCF
TERMS



DENOTATIONAL SEMANTICS OF PCF

To every typing judgement
Γ ⊢ 𝑡 : 𝜏

we associate a continuous function

JΓ ⊢ 𝑡 : 𝜏 K : JΓK → J𝜏 K
between domains. In other words,

J−K : PCFΓ,𝜏 → JΓK → J𝜏 K

70/104



DENOTATION OF OPERATIONS ON 𝔹 AND ℕ

succ : ℕ → ℕ
𝑛 ↦ 𝑛 + 1

pred : ℕ → ℕ
0 ↦ undefined

𝑛 + 1 ↦ 𝑛
zero? : ℕ → 𝔹

0 ↦ true
𝑛 + 1 ↦ false

J0K (𝜌) def= 0 ∈ ℕ⊥JtrueK (𝜌) def= true ∈ 𝔹⊥JfalseK (𝜌) def= false ∈ 𝔹⊥

q
succ(𝑡)y (𝜌) def= succ⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
pred(𝑡)y (𝜌) def= pred⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
zero?(𝑡)y (𝜌) def= zero?⊥(J𝑡K (𝜌)) ∈ 𝔹⊥

q
if 𝑏 then 𝑡 else 𝑡′y def= if(J𝑏K (𝜌), J𝑡K (𝜌), q𝑡′y (𝜌)) ∈ J𝜏 K

71/104



DENOTATION OF OPERATIONS ON 𝔹 AND ℕ

succ⊥ : ℕ⊥ → ℕ⊥
𝑛 ↦ 𝑛 + 1
⊥ ↦ ⊥

pred⊥ : ℕ⊥ → ℕ⊥
0 ↦ ⊥

𝑛 + 1 ↦ 𝑛
⊥ ↦ ⊥

zero?⊥ : ℕ⊥ → 𝔹⊥
0 ↦ true

𝑛 + 1 ↦ false
⊥ ↦ ⊥

J0K (𝜌) def= 0 ∈ ℕ⊥JtrueK (𝜌) def= true ∈ 𝔹⊥JfalseK (𝜌) def= false ∈ 𝔹⊥

q
succ(𝑡)y (𝜌) def= succ⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
pred(𝑡)y (𝜌) def= pred⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
zero?(𝑡)y (𝜌) def= zero?⊥(J𝑡K (𝜌)) ∈ 𝔹⊥

q
if 𝑏 then 𝑡 else 𝑡′y def= if(J𝑏K (𝜌), J𝑡K (𝜌), q𝑡′y (𝜌)) ∈ J𝜏 K

71/104



DENOTATION OF OPERATIONS ON 𝔹 AND ℕ

J0K (𝜌) def= 0 ∈ ℕ⊥JtrueK (𝜌) def= true ∈ 𝔹⊥JfalseK (𝜌) def= false ∈ 𝔹⊥

q
succ(𝑡)y (𝜌) def= succ⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
pred(𝑡)y (𝜌) def= pred⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
zero?(𝑡)y (𝜌) def= zero?⊥(J𝑡K (𝜌)) ∈ 𝔹⊥

q
if 𝑏 then 𝑡 else 𝑡′y def= if(J𝑏K (𝜌), J𝑡K (𝜌), q𝑡′y (𝜌)) ∈ J𝜏 K

71/104



DENOTATION OF OPERATIONS ON 𝔹 AND ℕ

J0K (𝜌) def= 0 ∈ ℕ⊥JtrueK (𝜌) def= true ∈ 𝔹⊥JfalseK (𝜌) def= false ∈ 𝔹⊥

q
succ(𝑡)y (𝜌) def= succ⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
pred(𝑡)y (𝜌) def= pred⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
zero?(𝑡)y (𝜌) def= zero?⊥(J𝑡K (𝜌)) ∈ 𝔹⊥

q
if 𝑏 then 𝑡 else 𝑡′y def= if(J𝑏K (𝜌), J𝑡K (𝜌), q𝑡′y (𝜌)) ∈ J𝜏 K

q
succ(𝑡)y = succ⊥ ∘ J𝑡K

71/104



DENOTATION OF OPERATIONS ON 𝔹 AND ℕ

J0K (𝜌) def= 0 ∈ ℕ⊥JtrueK (𝜌) def= true ∈ 𝔹⊥JfalseK (𝜌) def= false ∈ 𝔹⊥

q
succ(𝑡)y (𝜌) def= succ⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
pred(𝑡)y (𝜌) def= pred⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
zero?(𝑡)y (𝜌) def= zero?⊥(J𝑡K (𝜌)) ∈ 𝔹⊥

q
if 𝑏 then 𝑡 else 𝑡′y def= if(J𝑏K (𝜌), J𝑡K (𝜌), q𝑡′y (𝜌)) ∈ J𝜏 Kq

if 𝑏 then 𝑡 else 𝑡′y = if ∘⟨J𝑏K , ⟨J𝑡K , q𝑡′y⟩⟩
71/104



DENOTATION OF THE λ-CALCULUS OPERATIONS

J𝑥K (𝜌) def= 𝜌(𝑥) ∈ qΓ(𝑥)y

q𝑡1 𝑡2
y (𝜌) def= (q𝑡1y (𝜌)) (q𝑡2y (𝜌))Jfun 𝑥: 𝜏 . 𝑡K (𝜌) def= 𝜆𝑑 ∈ J𝜏 K . J𝑡K (𝜌, 𝑑)

J𝑥K (𝜌) = 𝜋𝑥(𝜌)

72/104



DENOTATION OF THE λ-CALCULUS OPERATIONS

J𝑥K (𝜌) def= 𝜌(𝑥) ∈ qΓ(𝑥)yq𝑡1 𝑡2
y (𝜌) def= (q𝑡1y (𝜌)) (q𝑡2y (𝜌))

Jfun 𝑥: 𝜏 . 𝑡K (𝜌) def= 𝜆𝑑 ∈ J𝜏 K . J𝑡K (𝜌, 𝑑)

q𝑡1 𝑡2
y = eval ∘⟨q𝑡1y , q𝑡2y⟩

72/104



DENOTATION OF THE λ-CALCULUS OPERATIONS

J𝑥K (𝜌) def= 𝜌(𝑥) ∈ qΓ(𝑥)yq𝑡1 𝑡2
y (𝜌) def= (q𝑡1y (𝜌)) (q𝑡2y (𝜌))Jfun 𝑥: 𝜏 . 𝑡K (𝜌) def= 𝜆𝑑 ∈ J𝜏 K . J𝑡K (𝜌, 𝑑)

Jfun 𝑥: 𝜏 . 𝑡K = cur(J𝑡K)

72/104



DENOTATION OF FIXED POINTS

q
fix 𝑓 y (𝜌) def= fix(q𝑓 y (𝜌))

73/104



DENOTATION OF PCF TERMS

For any PCF term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 , the object J𝑡K
is well-defined and a continuous function J𝑡K : JΓK → 𝜏 .

If 𝑡 ∈ PCF𝜏 : J𝑡K ∈ J⋅K → J𝜏 K = 𝟙 → J𝜏 K ≅ J𝜏 K

74/104



DENOTATION OF PCF TERMS

For any PCF term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 , the object J𝑡K
is well-defined and a continuous function J𝑡K : JΓK → 𝜏 .

If 𝑡 ∈ PCF𝜏 : J𝑡K ∈ J⋅K → J𝜏 K = 𝟙 → J𝜏 K ≅ J𝜏 K

74/104



DENOTATIONAL SEMANTICS FOR PCF
COMPOSITIONALITY



COMPOSITIONALITY

Suppose 𝑡 , 𝑢 ∈ PCFΓ,𝜏 , such that
J𝑡K = J𝑢K : JΓK → J𝜏 K

Suppose moreover that C[−] is a PCF context such that Γ′ ⊢Γ,𝜏 C : 𝜏 ′. Thenq
C[𝑡]y = q

C[𝑢]y : qΓ′y → q𝜏 ′y .

75/104



A DENOTATION FOR EVALUATION CONTEXTS

If Γ ⊢Δ,𝜎 C : 𝜏 , then define JCK such that
JCK : (JΔK → J𝜎 K) → JΓK → J𝜏 K

J−K (𝑑) = 𝑑JC 𝑡K (𝑑)(𝜌) = (JCK (𝑑)(𝜌))(J𝑡K (𝜌))
⋮

If Γ ⊢Δ,𝜎 C : 𝜏 and Δ ⊢ 𝑡 : 𝜎 , then q
C[𝑡]y = JCK (J𝑡K)

76/104



A DENOTATION FOR EVALUATION CONTEXTS

If Γ ⊢Δ,𝜎 C : 𝜏 , then define JCK such that
JCK : (JΔK → J𝜎 K) → JΓK → J𝜏 K

J−K (𝑑) = 𝑑JC 𝑡K (𝑑)(𝜌) = (JCK (𝑑)(𝜌))(J𝑡K (𝜌))
⋮

If Γ ⊢Δ,𝜎 C : 𝜏 and Δ ⊢ 𝑡 : 𝜎 , then q
C[𝑡]y = JCK (J𝑡K)

76/104



A DENOTATION FOR EVALUATION CONTEXTS

If Γ ⊢Δ,𝜎 C : 𝜏 , then define JCK such that
JCK : (JΔK → J𝜎 K) → JΓK → J𝜏 K

J−K (𝑑) = 𝑑JC 𝑡K (𝑑)(𝜌) = (JCK (𝑑)(𝜌))(J𝑡K (𝜌))
⋮

If Γ ⊢Δ,𝜎 C : 𝜏 and Δ ⊢ 𝑡 : 𝜎 , then q
C[𝑡]y = JCK (J𝑡K)

76/104



SUBSTITUTION PROPERTY OF THE SEMANTIC FUNCTION

Assume

Γ ⊢ 𝑢 : 𝜎
Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏

Then for all 𝜌 ∈ JΓK q𝑡[𝑢/𝑥]y (𝜌) = J𝑡K (𝜌[𝑥 ↦ J𝑢K (𝜌)]).
In particular when Γ = ⋅, J𝑡K : J𝜎 K → J𝜏 K andq𝑡[𝑢/𝑥]y = J𝑡K (J𝑢K)

77/104



DENOTATIONAL SEMANTICS FOR PCF
SOUNDNESS



SOUNDNESS

For all PCF types 𝜏 and all closed terms 𝑡 , 𝑣 ∈ PCF𝜏 with 𝑣 a value, if 𝑡 ⇓𝜏 𝑣 is derivable,
then J𝑡K = J𝑣K ∈ J𝜏 K

78/104



RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS



REMINDER: ADEQUACY

For any closed PCF term 𝑡 and value 𝑣 of ground type 𝛾 ∈ {nat, bool}
J𝑡K = J𝑣K ∈ q𝛾y ⇒ 𝑡 ⇓𝛾 𝑣

Adequacy does not hold at function types or for open termsq
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥y = Jfun 𝑥: 𝜏 . 𝑥K : J𝜏 K → J𝜏 K

but
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥/⇓𝜏->𝜏 fun 𝑥: 𝜏 . 𝑥

79/104



REMINDER: ADEQUACY

For any closed PCF term 𝑡 and value 𝑣 of ground type 𝛾 ∈ {nat, bool}
J𝑡K = J𝑣K ∈ q𝛾y ⇒ 𝑡 ⇓𝛾 𝑣

Adequacy does not hold at function types or for open terms

q
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥y = Jfun 𝑥: 𝜏 . 𝑥K : J𝜏 K → J𝜏 K

but
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥/⇓𝜏->𝜏 fun 𝑥: 𝜏 . 𝑥

79/104



REMINDER: ADEQUACY

For any closed PCF term 𝑡 and value 𝑣 of ground type 𝛾 ∈ {nat, bool}
J𝑡K = J𝑣K ∈ q𝛾y ⇒ 𝑡 ⇓𝛾 𝑣

Adequacy does not hold at function types or for open termsq
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥y = Jfun 𝑥: 𝜏 . 𝑥K : J𝜏 K → J𝜏 K

but
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥/⇓𝜏->𝜏 fun 𝑥: 𝜏 . 𝑥

79/104



RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS
FORMAL APPROXIMATION RELATION



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡);

Assume 𝑡 , 𝑣 ∈ PCFnat, J𝑡K = J𝑣K, and 𝑣 is a value.
Thus 𝑣 = 𝑛 for some 𝑛 ∈ ℕ, and J𝑣K = 𝑛.

J𝑡K = r
𝑛
z
= 𝑛

⇒ 𝑅(𝑛, 𝑡)
⇒ 𝑡 ⇓ 𝑛 = 𝑣

80/104



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡);

Assume 𝑡 , 𝑣 ∈ PCFnat, J𝑡K = J𝑣K, and 𝑣 is a value.

Thus 𝑣 = 𝑛 for some 𝑛 ∈ ℕ, and J𝑣K = 𝑛.
J𝑡K = r

𝑛
z
= 𝑛

⇒ 𝑅(𝑛, 𝑡)
⇒ 𝑡 ⇓ 𝑛 = 𝑣

80/104



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡);

Assume 𝑡 , 𝑣 ∈ PCFnat, J𝑡K = J𝑣K, and 𝑣 is a value.
Thus 𝑣 = 𝑛 for some 𝑛 ∈ ℕ, and J𝑣K = 𝑛.

J𝑡K = r
𝑛
z
= 𝑛

⇒ 𝑅(𝑛, 𝑡)
⇒ 𝑡 ⇓ 𝑛 = 𝑣

80/104



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡);

Assume 𝑡 , 𝑣 ∈ PCFnat, J𝑡K = J𝑣K, and 𝑣 is a value.
Thus 𝑣 = 𝑛 for some 𝑛 ∈ ℕ, and J𝑣K = 𝑛.

J𝑡K = r
𝑛
z
= 𝑛

⇒ 𝑅(𝑛, 𝑡)
⇒ 𝑡 ⇓ 𝑛 = 𝑣

80/104



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡);

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

⊲𝜏⊆ J𝜏 K × PCF𝜏

80/104



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡);

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

⊲𝜏⊆ J𝜏 K × PCF𝜏

80/104



FORMAL APPROXIMATION AT BASE TYPES

𝑑 ⊲nat 𝑡 def⇔ (𝑑 ∈ ℕ ⇒ 𝑡 ⇓nat 𝑑)

𝑑 ⊲bool 𝑡 def⇔ (𝑑 = true ⇒ 𝑡 ⇓bool true)
∧(𝑑 = false ⇒ 𝑡 ⇓bool false)

Exactly what we need to get 1.

Note though that ⊥ ⊲nat 𝑡 for any 𝑡 ∈ PCFnat.

81/104



FORMAL APPROXIMATION AT BASE TYPES

𝑑 ⊲nat 𝑡 def⇔ (𝑑 ∈ ℕ ⇒ 𝑡 ⇓nat 𝑑)

𝑑 ⊲bool 𝑡 def⇔ (𝑑 = true ⇒ 𝑡 ⇓bool true)
∧(𝑑 = false ⇒ 𝑡 ⇓bool false)

Exactly what we need to get 1.

Note though that ⊥ ⊲nat 𝑡 for any 𝑡 ∈ PCFnat.

81/104



FORMAL APPROXIMATION AT BASE TYPES

𝑑 ⊲nat 𝑡 def⇔ (𝑑 ∈ ℕ ⇒ 𝑡 ⇓nat 𝑑)

𝑑 ⊲bool 𝑡 def⇔ (𝑑 = true ⇒ 𝑡 ⇓bool true)
∧(𝑑 = false ⇒ 𝑡 ⇓bool false)

Exactly what we need to get 1.

Note though that ⊥ ⊲nat 𝑡 for any 𝑡 ∈ PCFnat.

81/104



FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡).

2.1 By induction on (the typing derivation of) 𝑡 ;
2.2 we need to interpret each typing rule.

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏

⊢ 𝑡 𝑢 : 𝜏 ′

Assume J𝑢K ⊲𝜏 𝑢 and J𝑡K ⊲𝜏->𝜏 ′ 𝑡 , how do we get J𝑡 𝑢K = J𝑡K (J𝑢K) ⊲𝜏 𝑡 𝑢?
Define

𝑑 ⊲𝜏->𝜏 ′ 𝑡
def⇔ ∀𝑒 ∈ J𝜏 K , 𝑢 ∈ PCF𝜏 .(𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢)

82/104



FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡).

2.1 By induction on (the typing derivation of) 𝑡 ;
2.2 we need to interpret each typing rule.

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏

⊢ 𝑡 𝑢 : 𝜏 ′

Assume J𝑢K ⊲𝜏 𝑢 and J𝑡K ⊲𝜏->𝜏 ′ 𝑡 , how do we get J𝑡 𝑢K = J𝑡K (J𝑢K) ⊲𝜏 𝑡 𝑢?
Define

𝑑 ⊲𝜏->𝜏 ′ 𝑡
def⇔ ∀𝑒 ∈ J𝜏 K , 𝑢 ∈ PCF𝜏 .(𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢)

82/104



FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡).

2.1 By induction on (the typing derivation of) 𝑡 ;
2.2 we need to interpret each typing rule.

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏

⊢ 𝑡 𝑢 : 𝜏 ′

Assume J𝑢K ⊲𝜏 𝑢 and J𝑡K ⊲𝜏->𝜏 ′ 𝑡 , how do we get J𝑡 𝑢K = J𝑡K (J𝑢K) ⊲𝜏 𝑡 𝑢?
Define

𝑑 ⊲𝜏->𝜏 ′ 𝑡
def⇔ ∀𝑒 ∈ J𝜏 K , 𝑢 ∈ PCF𝜏 .(𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢)

82/104



FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡).

2.1 By induction on (the typing derivation of) 𝑡 ;
2.2 we need to interpret each typing rule.

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏

⊢ 𝑡 𝑢 : 𝜏 ′

Assume J𝑢K ⊲𝜏 𝑢 and J𝑡K ⊲𝜏->𝜏 ′ 𝑡 , how do we get J𝑡 𝑢K = J𝑡K (J𝑢K) ⊲𝜏 𝑡 𝑢?

Define
𝑑 ⊲𝜏->𝜏 ′ 𝑡

def⇔ ∀𝑒 ∈ J𝜏 K , 𝑢 ∈ PCF𝜏 .(𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢)

82/104



FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡).

2.1 By induction on (the typing derivation of) 𝑡 ;
2.2 we need to interpret each typing rule.

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏

⊢ 𝑡 𝑢 : 𝜏 ′

Assume J𝑢K ⊲𝜏 𝑢 and J𝑡K ⊲𝜏->𝜏 ′ 𝑡 , how do we get J𝑡 𝑢K = J𝑡K (J𝑢K) ⊲𝜏 𝑡 𝑢?
Define

𝑑 ⊲𝜏->𝜏 ′ 𝑡
def⇔ ∀𝑒 ∈ J𝜏 K , 𝑢 ∈ PCF𝜏 .(𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢)

82/104



FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′

Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove Item 2, we need to talk about open terms.

J𝑡K (J𝑢K) = q(𝑡[𝑢/𝑥])y Semantic application ≈ syntactic substitution

Fundamental property of formal approximation
Given a term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 for some Γ and 𝜏 , for any environment 𝜌 and
substitution 𝜎 such that 𝜌 ⊲Γ 𝜎 , we have J𝑡K (𝜌) ⊲𝜏 𝑡[𝜎].

Parallel substitution: maps each 𝑥 ∈ dom(Γ) to 𝜎(𝑥) ∈ PCFΓ(𝑥).

83/104



FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′

Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove Item 2, we need to talk about open terms.

J𝑡K (J𝑢K) = q(𝑡[𝑢/𝑥])y Semantic application ≈ syntactic substitution

Fundamental property of formal approximation
Given a term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 for some Γ and 𝜏 , for any environment 𝜌 and
substitution 𝜎 such that 𝜌 ⊲Γ 𝜎 , we have J𝑡K (𝜌) ⊲𝜏 𝑡[𝜎].

Parallel substitution: maps each 𝑥 ∈ dom(Γ) to 𝜎(𝑥) ∈ PCFΓ(𝑥).

83/104



FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′

Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove Item 2, we need to talk about open terms.

J𝑡K (J𝑢K) = q(𝑡[𝑢/𝑥])y Semantic application ≈ syntactic substitution

Fundamental property of formal approximation
Given a term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 for some Γ and 𝜏 , for any environment 𝜌 and
substitution 𝜎 such that 𝜌 ⊲Γ 𝜎 , we have J𝑡K (𝜌) ⊲𝜏 𝑡[𝜎].

Parallel substitution: maps each 𝑥 ∈ dom(Γ) to 𝜎(𝑥) ∈ PCFΓ(𝑥).

83/104



FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′

Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove Item 2, we need to talk about open terms.

J𝑡K (J𝑢K) = q(𝑡[𝑢/𝑥])y Semantic application ≈ syntactic substitution

Fundamental property of formal approximation
Given a term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 for some Γ and 𝜏 , for any environment 𝜌 and
substitution 𝜎 such that 𝜌 ⊲Γ 𝜎 , we have J𝑡K (𝜌) ⊲𝜏 𝑡[𝜎].
Parallel substitution: maps each 𝑥 ∈ dom(Γ) to 𝜎(𝑥) ∈ PCFΓ(𝑥).

83/104



RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS
PROOF OF THE FUNDAMENTAL PROPERTY OF FORMAL APPROXIMATION



PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any 𝜏 and 𝑡 ∈ PCF𝜏 , ⊥J𝜏 K ⊲𝜏 𝑡 ;

2. the set {𝑑 ∈ J𝜏 K ∣ 𝑑 ⊲𝜏 𝑡} is chain-closed;

3. if ∀𝑣. 𝑡 ⇓𝜏 𝑣 ⇒ 𝑡′ ⇓𝜏 𝑣 , and 𝑑 ⊲𝜏 𝑡 , then 𝑑 ⊲𝜏 𝑡′.

84/104



PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any 𝜏 and 𝑡 ∈ PCF𝜏 , ⊥J𝜏 K ⊲𝜏 𝑡 ;

2. the set {𝑑 ∈ J𝜏 K ∣ 𝑑 ⊲𝜏 𝑡} is chain-closed;

3. if ∀𝑣. 𝑡 ⇓𝜏 𝑣 ⇒ 𝑡′ ⇓𝜏 𝑣 , and 𝑑 ⊲𝜏 𝑡 , then 𝑑 ⊲𝜏 𝑡′.

84/104



PROOF OF THE FUNDAMENTAL PROPERTY

85/104



RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS
EXTENSIONALITY



CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏
if for all C such that ⋅ ⊢Γ,𝜏 C : 𝛾 and for all values 𝑣 ,

C[𝑡] ⇓𝛾 𝑣 ⇒ C[𝑡′] ⇓𝛾 𝑣 .

Γ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 ⇔ (Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏 ∧ Γ ⊢ 𝑡′ ≤ctx 𝑡 : 𝜏 )

It corresponds to formal approximation: for all PCF types 𝜏 and closed terms
𝑡1, 𝑡2 ∈ PCF𝜏

𝑡1 ≤ctx 𝑡2 : 𝜏 ⇔ q𝑡1y ⊲𝜏 𝑡2.

86/104



CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏
if for all C such that ⋅ ⊢Γ,𝜏 C : 𝛾 and for all values 𝑣 ,

C[𝑡] ⇓𝛾 𝑣 ⇒ C[𝑡′] ⇓𝛾 𝑣 .

Γ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 ⇔ (Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏 ∧ Γ ⊢ 𝑡′ ≤ctx 𝑡 : 𝜏 )

It corresponds to formal approximation: for all PCF types 𝜏 and closed terms
𝑡1, 𝑡2 ∈ PCF𝜏

𝑡1 ≤ctx 𝑡2 : 𝜏 ⇔ q𝑡1y ⊲𝜏 𝑡2.

86/104



CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏
if for all C such that ⋅ ⊢Γ,𝜏 C : 𝛾 and for all values 𝑣 ,

C[𝑡] ⇓𝛾 𝑣 ⇒ C[𝑡′] ⇓𝛾 𝑣 .

Γ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 ⇔ (Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏 ∧ Γ ⊢ 𝑡′ ≤ctx 𝑡 : 𝜏 )

It corresponds to formal approximation: for all PCF types 𝜏 and closed terms
𝑡1, 𝑡2 ∈ PCF𝜏

𝑡1 ≤ctx 𝑡2 : 𝜏 ⇔ q𝑡1y ⊲𝜏 𝑡2.

86/104



LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.

Let 𝑡1, 𝑡2 be closed terms of type 𝜏 . Then 𝑡1 ≤ctx 𝑡2 : 𝜏 if and only if, for every term
𝑓 : 𝜏 → bool,

𝑓 𝑡1 ⇓bool true ⇒ 𝑓 𝑡2 ⇓bool true.

87/104



LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.

Let 𝑡1, 𝑡2 be closed terms of type 𝜏 . Then 𝑡1 ≤ctx 𝑡2 : 𝜏 if and only if, for every term
𝑓 : 𝜏 → bool,

𝑓 𝑡1 ⇓bool true ⇒ 𝑓 𝑡2 ⇓bool true.

87/104



EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

For 𝛾 = bool or nat, 𝑡1 ≤ctx 𝑡2 : 𝜏 holds if and only if
∀𝑣. (𝑡1 ⇓𝛾 𝑣 ⇒ 𝑡2 ⇓𝛾 𝑣).

At a function type 𝜏 -> 𝜏 ′, 𝑡1 ≤ctx 𝑡2 : 𝜏 -> 𝜏 ′ holds if and only if
∀𝑡 ∈ PCF𝜏 . (𝑡1 𝑡 ≤ctx 𝑡2 𝑡 : 𝜏 ′).

88/104



EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

For 𝛾 = bool or nat, 𝑡1 ≤ctx 𝑡2 : 𝜏 holds if and only if
∀𝑣. (𝑡1 ⇓𝛾 𝑣 ⇒ 𝑡2 ⇓𝛾 𝑣).

At a function type 𝜏 -> 𝜏 ′, 𝑡1 ≤ctx 𝑡2 : 𝜏 -> 𝜏 ′ holds if and only if
∀𝑡 ∈ PCF𝜏 . (𝑡1 𝑡 ≤ctx 𝑡2 𝑡 : 𝜏 ′).

88/104



FULL ABSTRACTION



FULL ABSTRACTION
FAILURE OF FULL ABSTRACTION



FULL ABSTRACTION

A denotational model is fully abstract if

𝑡1 ≅ctx 𝑡2 : 𝜏 ⇒ q𝑡1y = q𝑡2y ∈ J𝜏 K

A form of completeness of semantic equivalence wrt. program equivalence.

The domain model of PCF is not fully abstract.

89/104



FULL ABSTRACTION

A denotational model is fully abstract if

𝑡1 ≅ctx 𝑡2 : 𝜏 ⇒ q𝑡1y = q𝑡2y ∈ J𝜏 K

A form of completeness of semantic equivalence wrt. program equivalence.

The domain model of PCF is not fully abstract.

89/104



FULL ABSTRACTION

A denotational model is fully abstract if

𝑡1 ≅ctx 𝑡2 : 𝜏 ⇒ q𝑡1y = q𝑡2y ∈ J𝜏 K

A form of completeness of semantic equivalence wrt. program equivalence.

The domain model of PCF is not fully abstract.

89/104



PARALLEL OR

The parallel or function por : 𝔹⊥ ×𝔹⊥ → 𝔹⊥ is defined as given by the following table:

por true false ⊥
true true true true
false true false ⊥
⊥ true ⊥ ⊥

90/104



LEFT SEQUENTIAL OR

The (left) sequential or function or : 𝔹⊥ × 𝔹⊥ → 𝔹⊥ is defined as

or def= q
fun 𝑥: bool. fun 𝑦: bool. if 𝑥 then true else 𝑦y

It is given by the following table:

or true false ⊥
true true true true
false true false ⊥
⊥ ⊥ ⊥ ⊥

91/104



PARALLEL VS SEQUENTIAL OR

por true false ⊥
true true true true
false true false ⊥
⊥ true ⊥ ⊥

or true false ⊥
true true true true
false true false ⊥
⊥ ⊥ ⊥ ⊥

or is sequential, but por is not.

92/104



PARALLEL VS SEQUENTIAL OR

por true false ⊥
true true true true
false true false ⊥
⊥ true ⊥ ⊥

or true false ⊥
true true true true
false true false ⊥
⊥ ⊥ ⊥ ⊥

or is sequential, but por is not.

92/104



UNDEFINABILITY OR PARALLEL OR

There is no closed PCF term

𝑡 : bool -> bool -> bool

satisfying J𝑡K = por : 𝔹⊥ → 𝔹⊥ → 𝔹⊥ .

93/104



FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen 𝑇true and 𝑇false,

𝑇true ≅ctx 𝑇false : (bool -> bool -> bool) -> boolq𝑇truey ≠ q𝑇falsey ∈ (𝔹 → 𝔹 → 𝔹) → 𝔹

Idea:

• for all 𝑓 ∈ 𝑃𝐶𝐹bool->bool->bool, ensure 𝑇𝑏 𝑓 ⇑bool…
• but

q𝑇𝑏y (por) = J𝑏K.

94/104



FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen 𝑇true and 𝑇false,

𝑇true ≅ctx 𝑇false : (bool -> bool -> bool) -> boolq𝑇truey ≠ q𝑇falsey ∈ (𝔹 → 𝔹 → 𝔹) → 𝔹

Idea:

• for all 𝑓 ∈ 𝑃𝐶𝐹bool->bool->bool, ensure 𝑇𝑏 𝑓 ⇑bool…
• but

q𝑇𝑏y (por) = J𝑏K.

94/104



FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen 𝑇true and 𝑇false,

𝑇true ≅ctx 𝑇false : (bool -> bool -> bool) -> boolq𝑇truey ≠ q𝑇falsey ∈ (𝔹 → 𝔹 → 𝔹) → 𝔹

Idea:

• for all 𝑓 ∈ 𝑃𝐶𝐹bool->bool->bool, ensure 𝑇𝑏 𝑓 ⇑bool…
• but

q𝑇𝑏y (por) = J𝑏K.
94/104



EXAMPLE OF FULL ABSTRACTION FAILURE

𝑇𝑏 def= fun 𝑓 : bool -> (bool -> bool).
if(𝑓 true Ωbool) then
if (𝑓 Ωbool true) then
if (𝑓 false false) then Ωbool else 𝑏

else Ωbool
else Ωbool

95/104



FULL ABSTRACTION
BEYOND FULL ABSTRACTION FAILURE



INTERPRETING FULL ABSTRACTION FAILURE

• PCF is not expressive enough to present the model?
• The model does not adequately capture PCF?
• Contexts are too weak: they do not distinguish enough programs?

96/104



PCF+por

Γ ⊢ 𝑡 : 𝜏

… POR
Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : 𝜏

Γ ⊢ por(𝑡1, 𝑡2) : 𝜏
𝑡 ⇓𝜏 𝑣

PORL
𝑡1 ⇓bool true

por(𝑡1, 𝑡2) ⇓bool true
PORR

𝑡2 ⇓bool true
por(𝑡1, 𝑡2) ⇓bool true

PORF
𝑡1 ⇓bool false 𝑡2 ⇓bool false

por(𝑡1, 𝑡2) ⇓bool false
97/104



FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with

JporK = por
the resulting denotational semantics is fully abstract.

but is PCF+por still a reasonable model of programming language?

98/104



FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with

JporK = por
the resulting denotational semantics is fully abstract…

but is PCF+por still a reasonable model of programming language?

98/104



FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF
• first step: dI-domains & stable functions→ no por any more, but still not fully
abstract…

• only proper answers in the late 90s (!): logical relations and game semantics

Real languages have effects

• If you add effects (references, control flow…) to a language, contexts become much
more expressive.

• Full abstraction becomes different: somewhat easier… but is contextual equivalence
still a reasonable idea?

99/104



FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF
• first step: dI-domains & stable functions→ no por any more, but still not fully
abstract…

• only proper answers in the late 90s (!): logical relations and game semantics

Real languages have effects

• If you add effects (references, control flow…) to a language, contexts become much
more expressive.

• Full abstraction becomes different: somewhat easier… but is contextual equivalence
still a reasonable idea?

99/104



WHERE TO GO FROM HERE?



TOWARDS FULL ABSTRACTION

Source of a very rich literature:

• linear logic
• logical relations
• game semantics
• bisimulations techniques
• …

100/104



CATEGORICAL SEMANTICS

Separate

• the structure needed to interpret a language (generic)
• how to construct this structure in particular examples (specific)

Interpret:

• a type 𝜏 as an object in a category;
• a term Γ ⊢ 𝑡 : 𝜏 as a morphism/arrow J𝑡K : JΓK → J𝜏 K.

Example: λ-calculus→ cartesian closed categories

101/104



CATEGORICAL SEMANTICS

Separate

• the structure needed to interpret a language (generic)
• how to construct this structure in particular examples (specific)

Interpret:

• a type 𝜏 as an object in a category;
• a term Γ ⊢ 𝑡 : 𝜏 as a morphism/arrow J𝑡K : JΓK → J𝜏 K.

Example: λ-calculus→ cartesian closed categories

101/104



CATEGORICAL SEMANTICS

Separate

• the structure needed to interpret a language (generic)
• how to construct this structure in particular examples (specific)

Interpret:

• a type 𝜏 as an object in a category;
• a term Γ ⊢ 𝑡 : 𝜏 as a morphism/arrow J𝑡K : JΓK → J𝜏 K.

Example: λ-calculus→ cartesian closed categories

101/104



DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml’s ADT:

It is a fixed point equation! We can use domain theory to solve it.

102/104



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output…
An important aspect of programming languages!

Modelled as a monad 𝑇 (example: 𝑇 (𝐴) def= (𝐴 × State)State)

Denotation of a computation: JΓK → 𝑇(J𝜏 K)

103/104



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output…
An important aspect of programming languages!

Modelled as a monad 𝑇 (example: 𝑇 (𝐴) def= (𝐴 × State)State)

Denotation of a computation: JΓK → 𝑇(J𝜏 K)

103/104



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output…
An important aspect of programming languages!

Modelled as a monad 𝑇 (example: 𝑇 (𝐴) def= (𝐴 × State)State)

Denotation of a computation: JΓK → 𝑇(J𝜏 K)

103/104



MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.

104/104



MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.

104/104


	Introduction
	A basic example
	A semantics for loops
	A taste of domain theory

	Least Fixed Points
	Posets and monotone functions
	Least elements and pre-fixed points
	Least upper bounds
	Complete partial orders and domains
	Continuous functions
	Kleene's fixed point theorem

	Constructions on Domains
	Flat domains
	Products of domains
	Function domains
	Back to the introduction

	Scott Induction
	PCF
	Terms and types
	Operational Semantics
	Contextual equivalence
	Introducing denotational semantics

	Denotational Semantics for PCF
	Types and contexts
	Terms
	Compositionality
	Soundness

	Relating Denotational and Operational Semantics
	Formal approximation relation
	Proof of the fundamental property of formal approximation
	Extensionality

	Full abstraction
	Failure of full abstraction
	Beyond full abstraction failure

	Where to go from here?

