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PRACTICALITIES

• My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
• Course notes will be updated, keep an eye on the course webpage.
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INTRODUCTION



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a
program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/104



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a
program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/104



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a
program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/104



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/104



WHY SHOULD WE CARE?

• Insight: exposes the mathematical “essence” of programming language concepts.

• Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers…).

• Rigour: semantics is necessary to specify/justify formal methods (compilers, type
systems, code analysis, certification…).
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STYLES OF FORMAL SEMANTICS

• Operational

: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

• Axiomatic

: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part II Hoare Logic & Model Checking).

• Denotational

: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).
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DENOTATIONAL SEMANTICS IN A NUTSHELL

Syntax
J−K⟶ Semantics

Program 𝑃 ↦ Denotation J𝑃K
Recursive program ↦ Partial recursive function

Boolean circuit ↦ Boolean function
…

Type ↦ Domain
Program ↦ Continuous functions between domains
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PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

• mathematical object, implementation/machine independent;
• captures the abstract essence of programming language concepts;
• should relate to practical implementations, though…

Compositionality
• The denotation of a phrase is defined using the denotation of its sub-phrases.
• J𝑃K represents the contribution of 𝑃 to any program containing 𝑃 .
• Much more flexible than whole-program semantics.
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INTRODUCTION
A BASIC EXAMPLE



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …
Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/104



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …
Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶
ranges over a set 𝕃 of locations

8/104



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …

Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/104



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …

Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/104



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …
Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …
Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/104



DENOTATION FUNCTIONS – NAÏVELY

A : 𝐀𝐞𝐱𝐩 → ℤ

B : 𝐁𝐞𝐱𝐩 → 𝔹

where
ℤ = {… , −1, 0, 1, …}

𝔹 = {true, false}
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ARITHMETIC EXPRESSIONS?

A
r
𝑛
z

= 𝑛

A
q𝐴1 + 𝐴2

y = A
q𝐴1

y + A
q𝐴2

y

AJ𝐿K = ???
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DENOTATION FUNCTIONS

State = (𝕃 → ℤ)

A : 𝐀𝐞𝐱𝐩 → (State → ℤ)
B : 𝐁𝐞𝐱𝐩 → (State → 𝔹)

C : 𝐂𝐨𝐦𝐦 → (State ⇀ State)

where

⇀ denotes partial functions and

ℤ = {… , −1, 0, 1, …}
𝔹 = {true, false} .
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SEMANTICS OF ARITHMETIC EXPRESSIONS

A
r
𝑛
z

= 𝜆𝑠 ∈ State. 𝑛

A
q𝐴1 + 𝐴2

y = 𝜆𝑠 ∈ State. Aq𝐴1
y (𝑠) + A

q𝐴2
y (𝑠)

AJ𝐿K = 𝜆𝑠 ∈ State. 𝑠(𝐿)
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SEMANTICS OF BOOLEAN EXPRESSIONS

BJtrueK = 𝜆𝑠 ∈ State. true

BJfalseK = 𝜆𝑠 ∈ State. false

B
q𝐴1 = 𝐴2

y = 𝜆𝑠 ∈ State. eq (Aq𝐴1
y (𝑠),Aq𝐴2

y (𝑠))
where eq(𝑎, 𝑎′) = { true if 𝑎 = 𝑎′

false if 𝑎 ≠ 𝑎′
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SEMANTICS OF COMMANDS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

C
q
if 𝐵 then 𝐶 else 𝐶′y = 𝜆𝑠 ∈ State. if (CJ𝐵K (𝑠), CJ𝐶K (𝑠), Cq𝐶′y (𝑠))

where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true
𝑥′ if 𝑏 = false

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

C
q𝐶; 𝐶′y = C

q𝐶′y ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. Cq𝐶′y (CJ𝐶K (𝑠))
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INTRODUCTION
A SEMANTICS FOR LOOPS



SEMANTICS OF LOOPS?

This is all very nice, but…

Jwhile 𝐵 do 𝐶K = ???

Remember:

• (while 𝐵 do 𝐶, 𝑠) → (if 𝐵 then (𝐶; while 𝐵 do 𝐶) else skip, 𝑠)
• we want a compositional semantic: we should give Jwhile 𝐵 do 𝐶K in terms of J𝐶K
and J𝐵K
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LOOP AS A FIXPOINT

Jwhile 𝐵 do 𝐶K = q
if 𝐵 then (𝐶; while 𝐵 do 𝐶) else skip

y
= 𝜆𝑠 ∈ State. if(J𝐵K , Jwhile 𝐵 do 𝐶K ∘ J𝐶K (𝑠), 𝑠)

Not a direct definition for Jwhile 𝐵 do 𝐶K… But a fixed point equation!
Jwhile 𝐵 do 𝐶K = 𝐹J𝐵K,J𝐶K(while 𝐵 do 𝐶)

where 𝐹𝑏,𝑐 : (State ⇀ State) → (State ⇀ State)
𝑤 ↦ 𝜆𝑠 ∈ State. if(𝑏(𝑠), 𝑤 ∘ 𝑐(𝑠), 𝑠).
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NOW WE HAVE A GOAL

• Why/when does 𝑤 = 𝐹𝑏,𝑐(𝑤) have a solution?
• What if it has several solutions? Which one should be our Jwhile 𝐵 do 𝐶K?

Our occupation for the next few lectures…
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INTRODUCTION
A TASTE OF DOMAIN THEORY



AN EXAMPLE

q
while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)y

should be some 𝑤 such that:

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).

That is, we are looking for a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is
(State ⇀ State):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = { [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0.
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THE POSET OF PARTIAL FUNCTIONS

Partial order ⊑ on 𝐷 (= State ⇀ State):
𝑤 ⊑ 𝑤 ′ if for all 𝑠 ∈ State, if 𝑤 is defined at 𝑠

then so is 𝑤 ′ and moreover 𝑤(𝑠) = 𝑤 ′(𝑠).
if the graph of 𝑤 is included in the graph of 𝑤 ′.

Least element ⊥ ∈ 𝐷:
⊥ = totally undefined partial function

= partial function with empty graph
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APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0
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WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]
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• 𝑤∞ is a fixed point
• which moreover agrees with the operational semantics (!)
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LEAST FIXED POINTS
POSETS AND MONOTONE FUNCTIONS



PARTIALLY ORDERED SET

A partial order on a set 𝐷 is a binary relation ⊑ that is

reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″

antisymmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.

REFL 𝑥 ⊑ 𝑥 TRANS
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑧

𝑥 ⊑ 𝑧 ASYM
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑥

𝑥 = 𝑦
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DOMAIN OF PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Underlying set: partial functions 𝑓 with domain of definition dom(𝑓 ) ⊆ 𝑋 and taking
values in 𝑌 ;

Order: 𝑓 ⊑ 𝑔 if dom(𝑓 ) ⊆ dom(𝑔) and ∀𝑥 ∈ dom(𝑓 ). 𝑓 (𝑥) = 𝑔(𝑥), i.e. if
graph(𝑓 ) ⊆ graph(𝑔).
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DOMAIN OF PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Underlying set: partial functions 𝑓 with domain of definition dom(𝑓 ) ⊆ 𝑋 and taking
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Order: 𝑓 ⊑ 𝑔 if dom(𝑓 ) ⊆ dom(𝑔) and ∀𝑥 ∈ dom(𝑓 ). 𝑓 (𝑥) = 𝑔(𝑥), i.e. if
graph(𝑓 ) ⊆ graph(𝑔).
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MONOTONICITY

A function 𝑓 : 𝐷 → 𝐸 between posets is monotone if

∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑) ⊑ 𝑓 (𝑑′).

MON
𝑥 ⊑ 𝑦

𝑓 (𝑥) ⊑ 𝑓 (𝑦)
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MON
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LEAST FIXED POINTS
LEAST ELEMENTS AND PRE-FIXED POINTS



LEAST ELEMENT

An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

If it exists, it is unique , and is written ⊥𝑆 , or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆
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PRE-FIXED POINT

An element 𝑑 ∈ 𝐷 is a pre-fixed point of 𝑓 if it satisfies 𝑓 (𝑑) ⊑ 𝑑 .

The least pre-fixed point of 𝑓 , if it exists, will be written
fix(𝑓 )

It is thus (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑
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PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )

LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

The least pre-fixed point is a fixed point.

Application: least pre-fixed points of monotone functions are (least) fixed points.

ASYM

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )

LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 ))

fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))
𝑓 (fix(𝑓 )) = fix(𝑓 )
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LEAST FIXED POINTS
LEAST UPPER BOUNDS



LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chains 𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ … , written
⨆𝑛≥0 𝑑𝑛 , satisfies the two following properties:

LUB-BOUND
𝑥𝑖 ⊑ ⨆

𝑛≥0
𝑥𝑛

LUB-LEAST
∀𝑛 ≥ 0 . 𝑥𝑛 ⊑ 𝑥

⨆
𝑛≥0

𝑥𝑛 ⊑ 𝑥
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PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 .

For any 𝑑 ,⨆𝑛 𝑑 = 𝑑 .

For any chain and 𝑁 ∈ ℕ,⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑁 .
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PROPERTIES OF LUBS

Lubs are unique (if they exist).

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 (if they exist).

For any 𝑑 ,⨆𝑛 𝑑 = 𝑑 (and in particular it exists).

For any chain and 𝑁 ∈ ℕ,⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑁 (if any of the two exists).
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DIAGONALISATION

Assume 𝑑𝑚,𝑛 ∈ 𝐷 (𝑚, 𝑛 ≥ 0) satisfies
𝑚 ≤ 𝑚′ ∧ 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛′ .

(†)

Then, assuming they exist, the lubs form two chains

⨆
𝑛≥0

𝑑0,𝑛 ⊑ ⨆
𝑛≥0

𝑑1,𝑛 ⊑ ⨆
𝑛≥0

𝑑2,𝑛 ⊑ …

and
⨆
𝑚≥0

𝑑𝑚,0 ⊑ ⨆
𝑚≥0

𝑑𝑚,1 ⊑ ⨆
𝑚≥0

𝑑𝑚,2 ⊑ …

Moreover, again assuming they exist,

⨆
𝑚≥0

(⨆
𝑛≥0

𝑑𝑚,𝑛) = ⨆
𝑘≥0

𝑑𝑘,𝑘 = ⨆
𝑛≥0

(⨆
𝑚≥0

𝑑𝑚,𝑛) .

30/104



DIAGONALISATION

Assume 𝑑𝑚,𝑛 ∈ 𝐷 (𝑚, 𝑛 ≥ 0) satisfies
𝑚 ≤ 𝑚′ ∧ 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛′ . (†)

Then, assuming they exist, the lubs form two chains

⨆
𝑛≥0

𝑑0,𝑛 ⊑ ⨆
𝑛≥0

𝑑1,𝑛 ⊑ ⨆
𝑛≥0

𝑑2,𝑛 ⊑ …

and
⨆
𝑚≥0

𝑑𝑚,0 ⊑ ⨆
𝑚≥0

𝑑𝑚,1 ⊑ ⨆
𝑚≥0

𝑑𝑚,2 ⊑ …

Moreover, again assuming they exist,

⨆
𝑚≥0

(⨆
𝑛≥0

𝑑𝑚,𝑛) = ⨆
𝑘≥0

𝑑𝑘,𝑘 = ⨆
𝑛≥0

(⨆
𝑚≥0

𝑑𝑚,𝑛) .

30/104



DIAGONALISATION

Assume 𝑑𝑚,𝑛 ∈ 𝐷 (𝑚, 𝑛 ≥ 0) satisfies
𝑚 ≤ 𝑚′ ∧ 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛′ . (†)

Then, assuming they exist, the lubs form two chains

⨆
𝑛≥0

𝑑0,𝑛 ⊑ ⨆
𝑛≥0

𝑑1,𝑛 ⊑ ⨆
𝑛≥0

𝑑2,𝑛 ⊑ …

and
⨆
𝑚≥0

𝑑𝑚,0 ⊑ ⨆
𝑚≥0

𝑑𝑚,1 ⊑ ⨆
𝑚≥0

𝑑𝑚,2 ⊑ …

Moreover, again assuming they exist,

⨆
𝑚≥0

(⨆
𝑛≥0

𝑑𝑚,𝑛) = ⨆
𝑘≥0

𝑑𝑘,𝑘 = ⨆
𝑛≥0

(⨆
𝑚≥0

𝑑𝑚,𝑛) .

30/104



LEAST FIXED POINTS
COMPLETE PARTIAL ORDERS AND DOMAINS



CPOS AND DOMAINS

A chain complete poset/cpo is a poset (𝐷, ⊑) in which all chains have least upper
bounds.

Beware: the lub need only exist if the 𝑥𝑖 form a chain!

A domain is a cpo with a least element ⊥.

31/104



CPOS AND DOMAINS

A chain complete poset/cpo is a poset (𝐷, ⊑) in which all chains have least upper
bounds.

Beware: the lub need only exist if the 𝑥𝑖 form a chain!

A domain is a cpo with a least element ⊥.

31/104



CPOS AND DOMAINS

A chain complete poset/cpo is a poset (𝐷, ⊑) in which all chains have least upper
bounds.

Beware: the lub need only exist if the 𝑥𝑖 form a chain!

A domain is a cpo with a least element ⊥.

31/104



DOMAIN OF PARTIAL FUNCTIONS

Least element: ⊥ is the totally undefined function.

Lub of a chain: 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … has lub 𝑓 such that

𝑓 (𝑥) = {𝑓𝑛(𝑥) if 𝑥 ∈ dom(𝑓𝑛) for some 𝑛
undefined otherwise

Beware: the definition of⨆𝑛≥0 𝑓𝑛 is unambiguous only if the 𝑓𝑖 form a chain!
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THE FLAT NATURAL NUMBERS ℕ⊥

0 1 2 ⋯ 𝑛 𝑛 + 1 ⋯

⊥←←←
⋯ ←← ⋯
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LEAST FIXED POINTS
CONTINUOUS FUNCTIONS



CONTINUITY AND STRICTNESS

Given two cpos 𝐷 and 𝐸, a function 𝑓 : 𝐷 → 𝐸 is continuous if

• it is monotone, and
• it preserves lubs of chains, i.e. for all chains 𝑑0 ⊑ 𝑑1 ⊑ … in 𝐷, we have

𝑓 (⨆
𝑛≥0

𝑑𝑛) = ⨆
𝑛≥0

𝑓 (𝑑𝑛)

A function 𝑓 is strict if 𝑓 (⊥𝐷) = ⊥𝐸 .
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THESIS

All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1

0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥

0 0 0 0 0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 ↦ 0
Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: show the thesis… by giving a denotational semantics.
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LEAST FIXED POINTS
KLEENE’S FIXED POINT THEOREM



KLEENE’S FIXED POINT THEOREM

Let 𝑓 : 𝐷 → 𝐷 be a continuous function on a domain 𝐷. Then 𝑓 possesses a least
pre-fixed point, given by

fix(𝑓 ) = ⨆
𝑛≥0

𝑓 𝑛(⊥).

It is thus also the least fixed point of 𝑓 !
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CONSTRUCTIONS ON DOMAINS



CONSTRUCTIONS ON DOMAINS
FLAT DOMAINS



FLAT DOMAIN ON 𝑋

The flat domain on a set 𝑋 is defined by:

• its underlying set 𝑋 ⨄{⊥} ;
• 𝑥 ⊑ 𝑥′ if either 𝑥 = ⊥ or 𝑥 = 𝑥′.

𝑋

⊥
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FLAT DOMAIN LIFTING

Let 𝑓 : 𝑋 ⇀ 𝑌 be a partial function between two sets. Then

𝑓⊥ : 𝑋⊥ → 𝑌⊥

𝑑 ↦ {
𝑓 (𝑑) if 𝑑 ∈ 𝑋 and 𝑓 is defined at 𝑑
⊥ if 𝑑 ∈ 𝑋 and 𝑓 is not defined at 𝑑
⊥ if 𝑑 = ⊥

defines a continuous function between the corresponding flat domains.
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CONSTRUCTIONS ON DOMAINS
PRODUCTS OF DOMAINS



BINARY PRODUCT

The product of two posets (𝐷1, ⊑1) and (𝐷2, ⊑2) has underlying set
𝐷1 × 𝐷2 = {(𝑑1, 𝑑2) ∣ 𝑑1 ∈ 𝐷1 ∧ 𝑑2 ∈ 𝐷2}

and partial order ⊑ defined by

(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)
def⇔ 𝑑1 ⊑1 𝑑′1 ∧ 𝑑2 ⊑2 𝑑′2

PO× 𝑑1 ⊑1 𝑑′1 𝑑2 ⊑2 𝑑′2
(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)

=========================
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COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

⨆
𝑛≥0

(𝑑1,𝑛, 𝑑2,𝑛) = (⨆
𝑖≥0

𝑑1,𝑖,⨆
𝑗≥0

𝑑2,𝑗).

If (𝐷1, ⊑1) and (𝐷2, ⊑2) have least elements, so does (𝐷1 × 𝐷2, ⊑) with
⊥𝐷1×𝐷2 = (⊥𝐷1 , ⊥𝐷2)

Products of cpos (domains) are cpos (domains).
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FUNCTIONS OF TWO ARGUMENTS

A function 𝑓 : (𝐷 × 𝐸) → 𝐹 is monotone if and only if it is monotone in each argument
separately:

∀𝑑, 𝑑′ ∈ 𝐷, 𝑒 ∈ 𝐸. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑′, 𝑒)
∀𝑑 ∈ 𝐷, 𝑒, 𝑒′ ∈ 𝐸. 𝑒 ⊑ 𝑒′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑, 𝑒′).

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

𝑓 (⨆
𝑚≥0

𝑑𝑚 , 𝑒) = ⨆
𝑚≥0

𝑓 (𝑑𝑚, 𝑒)

𝑓 (𝑑 , ⨆
𝑛≥0

𝑒𝑛) = ⨆
𝑛≥0

𝑓 (𝑑, 𝑒𝑛).
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𝑛≥0

𝑒𝑛) = ⨆
𝑛≥0

𝑓 (𝑑, 𝑒𝑛).
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DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

MON×
𝑓 monotone 𝑥 ⊑ 𝑥′ 𝑦 ⊑ 𝑦 ′

𝑓 (𝑥, 𝑦) ⊑ 𝑓 (𝑥′, 𝑦 ′)

𝑓 (⨆
𝑚

𝑥𝑚,⨆
𝑛

𝑦𝑛) = ⨆
𝑚

⨆
𝑛

𝑓 (𝑥𝑚, 𝑦𝑛) = ⨆
𝑘

𝑓 (𝑥𝑘 , 𝑦𝑘)
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PROJECTION AND PAIRING

Let 𝐷1 and 𝐷2 be cpos. The projections

𝜋1 : 𝐷1 × 𝐷2 → 𝐷1
(𝑑1, 𝑑2) ↦ 𝑑1

𝜋2 : 𝐷1 × 𝐷2 → 𝐷2
(𝑑1, 𝑑2) ↦ 𝑑2

are continuous functions.

If 𝑓1 : 𝐷 → 𝐷1 and 𝑓2 : 𝐷 → 𝐷2 are continuous functions from a cpo 𝐷, then the
pairing function

⟨𝑓1, 𝑓2⟩ : 𝐷 → 𝐷1 × 𝐷2
𝑑 ↦ (𝑓1(𝑑), 𝑓2(𝑑))

is continuous.
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DOMAIN CONDITIONAL

The conditional function

if : 𝔹⊥ × (𝐷 × 𝐷) → 𝐷

(𝑥, 𝑑) ↦ {
𝜋1(𝑑) if 𝑥 = true
𝜋2(𝑑) if 𝑥 = false
⊥𝐷 if 𝑥 = ⊥

is continuous.
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GENERAL PRODUCT

Given a set 𝐼 , suppose that for each 𝑖 ∈ 𝐼 we are given a set 𝑋𝑖. The (cartesian) product of
the 𝑋𝑖 is

∏
𝑖∈𝐼

𝑋𝑖

Two ways to see it:

• tuples: (… , 𝑥𝑖, … )𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑋𝑖;

• heterogeneous functions: 𝑝 defined on 𝐼 such that 𝑝(𝑖) ∈ 𝑋𝑖.
Special case: ∏𝑖∈𝔹 𝐷𝑖 corresponds to 𝐷true × 𝐷false.
Projections (for any 𝑖 ∈ 𝐼 ):

𝜋𝑖 : (∏
𝑖∈𝐼

𝑋𝑖) → 𝑋𝑖
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GENERAL PRODUCT OF DOMAINS

Given a set 𝐼 , suppose that for each 𝑖 ∈ 𝐼 we are given a cpo (𝐷𝑖, ⊑𝑖). The product of this
whole family of cpos has

• underlying set equal to∏𝑖∈𝐼 𝐷𝑖;

• componentwise order

𝑝 ⊑ 𝑝′ def⇔ ∀𝑖 ∈ 𝐼 . 𝑝𝑖 ⊑𝑖 𝑝′𝑖 .

𝐼 -indexed products of cpos (domains) are cpos (domains), and projections are
continuous.
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CONSTRUCTIONS ON DOMAINS
FUNCTION DOMAINS



CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (𝐷, ⊑𝐷) and (𝐸, ⊑𝐸), the function cpo (𝐷 → 𝐸, ⊑) has underlying set
{𝑓 : 𝐷 → 𝐸 ∣ is a continuous function}

equipped with the pointwise order:

𝑓 ⊑ 𝑓 ′ def⇔ ∀𝑑 ∈ 𝐷. 𝑓 (𝑑) ⊑𝐸 𝑓 ′(𝑑).

Argumentwise least elements and lubs:

⊥𝐷→𝐸(𝑑) = ⊥𝐸 (⨆
𝑛≥0

𝑓𝑛) (𝑑) = ⨆
𝑛≥0

𝑓𝑛(𝑑)
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FUNCTION OPERATIONS ARE CONTINUOUS

Evaluation, currying (𝑓 : (𝐷′ × 𝐷) → 𝐸) and composition
eval : (𝐷 → 𝐸) × 𝐷 → 𝐸

(𝑓 , 𝑑) ↦ 𝑓 (𝑑)
cur(𝑓 ) : 𝐷′ → (𝐷 → 𝐸)

𝑑′ ↦ 𝜆𝑑 ∈ 𝐷. 𝑓 (𝑑′, 𝑑)
∘ : ((𝐸 → 𝐹) × (𝐷 → 𝐸)) ⟶ (𝐷 → 𝐹)

(𝑓 , 𝑔) ↦ 𝜆𝑑 ∈ 𝐷. 𝑔(𝑓 (𝑑))
are all well-defined and continuous.
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CONTINUITY OF THE FIXED POINT OPERATOR

fix: (𝐷 → 𝐷) → 𝐷
is continuous.
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CONSTRUCTIONS ON DOMAINS
BACK TO THE INTRODUCTION



THE SEMANTICS OF A WHILE LOOP

q
while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)y

is a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is (State ⇀ State):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = { [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0.

𝐹(⊥) = ⊥

State⊥ → State⊥ is a domain!
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KLEENE’S FIXED POINT THEOREM

Kleene’s fixed point theorem:
𝑤∞ = ⨆

𝑖∈ℕ
𝐹 𝑛(⊥)

is the least fixed point of 𝐹 , and in particular a fixed point.

We can compute explicitly

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

And check this agrees with the operational semantics.
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SCOTT INDUCTION



REASONING ON FIXED POINTS: SCOTT INDUCTION

Let 𝐷 be a domain, 𝑓 : 𝐷 → 𝐷 be a continuous function and 𝑆 ⊆ 𝐷 be a subset of 𝐷. If
the set 𝑆
(i) contains ⊥,
(ii) is stable under 𝑓 , i.e. 𝑓 (𝑆) ⊆ 𝑆 ,
(iii) is chain-closed, i.e. the lub of any chain of elements of 𝑆 is also in 𝑆 ,
then fix(𝑓 ) ∈ 𝑆 .

SCOTTIND

Φ(⊥) Φ(𝑥) ⇒ Φ(𝑓 (𝑥)) (∀𝑖 ∈ ℕ. Φ(𝑥𝑖)) ⇒ Φ(⨆
𝑖∈ℕ

𝑥𝑖)

Φ(fix(𝑓 ))
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BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

{(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 ⊑ 𝑦} , 𝑑 ↓def= {𝑥 ∈ 𝐷 ∣ 𝑥 ⊑ 𝑑} and {(𝑥, 𝑦) ∈ 𝐷×𝐷 ∣ 𝑥 = 𝑦}

𝑓 −1𝑆 = {𝑥 ∈ 𝐷 ∣ 𝑓 (𝑥) ∈ 𝑆} if 𝑆 ⊆ 𝐸 is chain-closed, and 𝑓 : 𝐷 → 𝐸 is continuous

𝑆 ∪ 𝑇 and ⋂
𝑖∈𝐼

𝑆𝑖 if 𝑆 , 𝑇 and 𝑆𝑖 are

∀𝑆 def= {𝑦 ∈ 𝐸 ∣ ∀𝑥 ∈ 𝐷. (𝑥, 𝑦) ∈ 𝑆} ⊆ 𝐸 if 𝑆 ⊆ 𝐷 × 𝐸 is
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EXAMPLE: DOWNSET

Assume 𝑓 (𝑑) ⊑ 𝑑 , i.e. 𝑑 is a pre-fixed point of the continuous 𝑓 : 𝐷 → 𝐷. By Scott
induction on 𝑑 ↓, fix(𝑓 ) ⊑ 𝑑 .

Proof!
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EXAMPLE: PARTIAL CORRECTNESS

Let 𝑤∞: State⊥ → State⊥ be the denotation of

while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 : = 𝑋 − 1)
Recall that 𝑤∞ = fix(𝐹) where

𝐹(𝑤)(𝑥, 𝑦) = { (𝑥, 𝑦) if 𝑥 ≤ 0
𝑤(𝑥 − 1, 𝑥 ⋅ 𝑦) if 𝑥 > 0

𝐹(𝑤)(⊥) = ⊥

Claim:
∀𝑥. ∀𝑦 ≥ 0. 𝑤∞(𝑥, 𝑦) ⇓ ⟹ 𝜋𝑌 (𝑤∞(𝑥, 𝑦)) ≥ 0

Proof: by Scott induction!
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EXAMPLE: PARTIAL CORRECTNESS
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PCF
TERMS AND TYPES



SYNTAX OF PCF

Types: 𝜏 ::= nat ∣ bool ∣ 𝜏 -> 𝜏

Terms: 𝑡 ::= 0 ∣ succ(𝑡) ∣ pred(𝑡) ∣
true ∣ false ∣ zero?(𝑡) ∣ if 𝑡 then 𝑡 else 𝑡
𝑥 ∣ fun 𝑥: 𝜏 . 𝑡 ∣ 𝑡 𝑡 ∣ fix(𝑡)
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TYPING FOR PCF (I)

Γ ⊢ 𝑡 : 𝜏 The term 𝑡 has type 𝜏 in context Γ

ZERO Γ ⊢ 0 : nat SUCC
Γ ⊢ 𝑡 : nat

Γ ⊢ succ(𝑡) : nat PRED
Γ ⊢ 𝑡 : nat

Γ ⊢ pred(𝑡) : nat

TRUE Γ ⊢ true : bool FALSE Γ ⊢ false : bool ISZ
Γ ⊢ 𝑡 : nat

Γ ⊢ zero?(𝑡) : bool

IF

Γ ⊢ 𝑏 : bool
Γ ⊢ 𝑡 : 𝜏 Γ ⊢ 𝑡′ : 𝜏

Γ ⊢ if 𝑏 then 𝑡 else 𝑡′ : 𝜏
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TYPING FOR PCF (II)

VAR
Γ(𝑥) = 𝜏
Γ ⊢ 𝑥 : 𝜏 FUN

Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏
Γ ⊢ fun 𝑥: 𝜎 . 𝑡 : 𝜎 -> 𝜏 APP

Γ ⊢ 𝑓 : 𝜎 -> 𝜏 Γ ⊢ 𝑢 : 𝜎
Γ ⊢ 𝑓 𝑢 : 𝜏

FIX
Γ ⊢ 𝑓 : 𝜏 -> 𝜏
Γ ⊢ fix(𝑓 ) : 𝜏

PCFΓ,𝜏 def= {𝑡 ∣ Γ ⊢ 𝑡 : 𝜏 } PCF𝜏 def= PCF⋅,𝜏
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PCF
OPERATIONAL SEMANTICS



PCF EVALUATION

Values: 𝑣 ::= 0 ∣ succ(𝑣)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

∣ true ∣ false ∣ fun 𝑥: 𝜏 . 𝑡

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣 SUCC

𝑡 ⇓nat 𝑣
succ(𝑡) ⇓nat succ(𝑣)

PRED
𝑡 ⇓nat succ(𝑣)
pred(𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero?(𝑡) ⇓bool true
… IFT

𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 …

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

Alternatively: small-step 𝑡 ⇝𝜏 𝑢, we have 𝑡 ⇓𝜏 𝑣 iff 𝑡 ⇝⋆𝜏 𝑢.
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EXAMPLES

plus def= fun 𝑥: nat. fix(fun(𝑝: nat -> nat)(𝑦: nat).
if zero?(𝑦) then 𝑥 else succ(𝑝 pred(𝑦)))

plus 3 1 ⇓nat 4

Ω𝜏
def= fix(fun 𝑥: 𝜏 . 𝑥)

Ω𝜏 ⇑𝜏 (diverges)

Try it out!
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TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function 𝜙, there is a PCF term 𝜙 such
that for all 𝑛 ∈ ℕ, if 𝜙(𝑛) is defined then 𝜙 𝑛 ⇓nat 𝜙(𝑛).

(Later on: 𝜙 =
s
𝜙
{
).

61/104



TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function 𝜙, there is a PCF term 𝜙 such
that for all 𝑛 ∈ ℕ, if 𝜙(𝑛) is defined then 𝜙 𝑛 ⇓nat 𝜙(𝑛).

(Later on: 𝜙 =
s
𝜙
{
).

61/104



DETERMINISM

Evaluation in PCF is deterministic: if both 𝑡 ⇓𝜏 𝑣 and 𝑡 ⇓𝜏 𝑣 ′ hold, then 𝑣 = 𝑣 ′.

By (rule) induction on evaluation ⇓:
{(𝑡, 𝜏 , 𝑣) ∣ 𝑡 ⇓𝜏 𝑣 ∧ ∀𝑣 ′.(𝑡 ⇓𝜏 𝑣 ′ ⇒ 𝑣 = 𝑣 ′)}

Intuition: there is always exactly one rule which applies.
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PCF
CONTEXTUAL EQUIVALENCE



CONTEXTUAL EQUIVALENCE – INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

The intuitive notion of program equivalence for programmers.
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EVALUATION CONTEXTS

C ::= − ∣ succ(C) ∣ pred(C) ∣ zero?(C) ∣
if C then 𝑡 else 𝑡 ∣ if 𝑡 then C else 𝑡 ∣ if 𝑡 then 𝑡 else C ∣
fun 𝑥: 𝜏 . C ∣ C 𝑡 ∣ 𝑡 C ∣ fix(C)

Typing extended to evaluation contexts: Γ ⊢Δ,𝜎 C : 𝜏 .

Γ ⊢Γ,𝜏 − : 𝜏
Γ ⊢Δ,𝜎 C : 𝜏1 -> 𝜏2 Γ ⊢ 𝑢 : 𝜏1

Γ ⊢Δ,𝜎 C 𝑢 : 𝜏2 …
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CONTEXTUAL EQUIVALENCE

Given a type 𝜏 , a typing context Γ and terms 𝑡 , 𝑡′ ∈ PCFΓ,𝜏 , contextual equivalence,
written Γ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 is defined to hold if for all evaluation contexts C such that
⋅ ⊢Γ,𝜏 C : 𝛾 , where 𝛾 is nat or bool, and for all values 𝑣 ∈ PCF𝛾 ,

C[𝑡] ⇓𝛾 𝑣 ⇔ C[𝑡′] ⇓𝛾 𝑣 .

When Γ is the empty context, we simply write 𝑡 ≅ctx 𝑡′ : 𝜏 for ⋅ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 .
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PCF
INTRODUCING DENOTATIONAL SEMANTICS



THE AIMS OF DENOTATIONAL SEMANTICS

• a mapping of PCF types 𝜏 to domains J𝜏 K;
• a mapping of closed, well-typed PCF terms ⋅ ⊢ 𝑡 : 𝜏 to elements J𝑡K ∈ J𝜏 K;
• denotation of open terms will be continuous functions.

Compositionality: J𝑡K = q𝑡′y ⇒ q
C[𝑡]y = q

C[𝑡′]y.
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .
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THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
𝑡1 ≅ctx 𝑡2 : 𝜏

it suffices to establish q𝑡1y = q𝑡2y ∈ J𝜏 K

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.
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DENOTATIONAL SEMANTICS FOR PCF



DENOTATIONAL SEMANTICS FOR PCF
TYPES AND CONTEXTS



SEMANTICS OF TYPES

JnatK def= ℕ⊥ (flat domain)

JboolK def= 𝔹⊥ (flat domain)q𝜏 -> 𝜏 ′y def= J𝜏 K → q𝜏 ′y (function domain)
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SEMANTICS OF CONTEXTS

JΓK def= ∏𝑥∈dom(Γ)
qΓ(𝑥)y (Γ-environments)

• J⋅K = 𝟙 (one element set)
• J𝑥: 𝜏 K = ({𝑥} → J𝜏 K) ≅ J𝜏 K
•

q𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛
y = q𝜏1y × ⋯ × q𝜏𝑛y
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DENOTATIONAL SEMANTICS FOR PCF
TERMS



DENOTATIONAL SEMANTICS OF PCF

To every typing judgement
Γ ⊢ 𝑡 : 𝜏

we associate a continuous function

JΓ ⊢ 𝑡 : 𝜏 K : JΓK → J𝜏 K
between domains. In other words,

J−K : PCFΓ,𝜏 → JΓK → J𝜏 K
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DENOTATION OF OPERATIONS ON 𝔹 AND ℕ

succ : ℕ → ℕ
𝑛 ↦ 𝑛 + 1

pred : ℕ → ℕ
0 ↦ undefined

𝑛 + 1 ↦ 𝑛
zero? : ℕ → 𝔹

0 ↦ true
𝑛 + 1 ↦ false

J0K (𝜌) def= 0 ∈ ℕ⊥JtrueK (𝜌) def= true ∈ 𝔹⊥JfalseK (𝜌) def= false ∈ 𝔹⊥

q
succ(𝑡)y (𝜌) def= succ⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
pred(𝑡)y (𝜌) def= pred⊥(J𝑡K (𝜌)) ∈ ℕ⊥q
zero?(𝑡)y (𝜌) def= zero?⊥(J𝑡K (𝜌)) ∈ 𝔹⊥

q
if 𝑏 then 𝑡 else 𝑡′y def= if(J𝑏K (𝜌), J𝑡K (𝜌), q𝑡′y (𝜌)) ∈ J𝜏 K
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if 𝑏 then 𝑡 else 𝑡′y def= if(J𝑏K (𝜌), J𝑡K (𝜌), q𝑡′y (𝜌)) ∈ J𝜏 Kq

if 𝑏 then 𝑡 else 𝑡′y = if ∘⟨J𝑏K , ⟨J𝑡K , q𝑡′y⟩⟩
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DENOTATION OF THE λ-CALCULUS OPERATIONS

J𝑥K (𝜌) def= 𝜌(𝑥) ∈ qΓ(𝑥)y

q𝑡1 𝑡2
y (𝜌) def= (q𝑡1y (𝜌)) (q𝑡2y (𝜌))Jfun 𝑥: 𝜏 . 𝑡K (𝜌) def= 𝜆𝑑 ∈ J𝜏 K . J𝑡K (𝜌, 𝑑)

J𝑥K (𝜌) = 𝜋𝑥(𝜌)

72/104



DENOTATION OF THE λ-CALCULUS OPERATIONS

J𝑥K (𝜌) def= 𝜌(𝑥) ∈ qΓ(𝑥)yq𝑡1 𝑡2
y (𝜌) def= (q𝑡1y (𝜌)) (q𝑡2y (𝜌))

Jfun 𝑥: 𝜏 . 𝑡K (𝜌) def= 𝜆𝑑 ∈ J𝜏 K . J𝑡K (𝜌, 𝑑)

q𝑡1 𝑡2
y = eval ∘⟨q𝑡1y , q𝑡2y⟩
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DENOTATION OF THE λ-CALCULUS OPERATIONS

J𝑥K (𝜌) def= 𝜌(𝑥) ∈ qΓ(𝑥)yq𝑡1 𝑡2
y (𝜌) def= (q𝑡1y (𝜌)) (q𝑡2y (𝜌))Jfun 𝑥: 𝜏 . 𝑡K (𝜌) def= 𝜆𝑑 ∈ J𝜏 K . J𝑡K (𝜌, 𝑑)

Jfun 𝑥: 𝜏 . 𝑡K = cur(J𝑡K)
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DENOTATION OF FIXED POINTS

q
fix 𝑓 y (𝜌) def= fix(q𝑓 y (𝜌))
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DENOTATION OF PCF TERMS

For any PCF term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 , the object J𝑡K
is well-defined and a continuous function J𝑡K : JΓK → 𝜏 .

If 𝑡 ∈ PCF𝜏 : J𝑡K ∈ J⋅K → J𝜏 K = 𝟙 → J𝜏 K ≅ J𝜏 K
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DENOTATIONAL SEMANTICS FOR PCF
COMPOSITIONALITY



COMPOSITIONALITY

Suppose 𝑡 , 𝑢 ∈ PCFΓ,𝜏 , such that
J𝑡K = J𝑢K : JΓK → J𝜏 K

Suppose moreover that C[−] is a PCF context such that Γ′ ⊢Γ,𝜏 C : 𝜏 ′. Thenq
C[𝑡]y = q

C[𝑢]y : qΓ′y → q𝜏 ′y .
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A DENOTATION FOR EVALUATION CONTEXTS

If Γ ⊢Δ,𝜎 C : 𝜏 , then define JCK such that
JCK : (JΔK → J𝜎 K) → JΓK → J𝜏 K

J−K (𝑑) = 𝑑JC 𝑡K (𝑑)(𝜌) = (JCK (𝑑)(𝜌))(J𝑡K (𝜌))
⋮

If Γ ⊢Δ,𝜎 C : 𝜏 and Δ ⊢ 𝑡 : 𝜎 , then q
C[𝑡]y = JCK (J𝑡K)
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SUBSTITUTION PROPERTY OF THE SEMANTIC FUNCTION

Assume

Γ ⊢ 𝑢 : 𝜎
Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏

Then for all 𝜌 ∈ JΓK q𝑡[𝑢/𝑥]y (𝜌) = J𝑡K (𝜌[𝑥 ↦ J𝑢K (𝜌)]).
In particular when Γ = ⋅, J𝑡K : J𝜎 K → J𝜏 K andq𝑡[𝑢/𝑥]y = J𝑡K (J𝑢K)

77/104



DENOTATIONAL SEMANTICS FOR PCF
SOUNDNESS



SOUNDNESS

For all PCF types 𝜏 and all closed terms 𝑡 , 𝑣 ∈ PCF𝜏 with 𝑣 a value, if 𝑡 ⇓𝜏 𝑣 is derivable,
then J𝑡K = J𝑣K ∈ J𝜏 K
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RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS



REMINDER: ADEQUACY

For any closed PCF term 𝑡 and value 𝑣 of ground type 𝛾 ∈ {nat, bool}
J𝑡K = J𝑣K ∈ q𝛾y ⇒ 𝑡 ⇓𝛾 𝑣

Adequacy does not hold at function types or for open termsq
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥y = Jfun 𝑥: 𝜏 . 𝑥K : J𝜏 K → J𝜏 K

but
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥/⇓𝜏->𝜏 fun 𝑥: 𝜏 . 𝑥
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RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS
FORMAL APPROXIMATION RELATION



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡);

Assume 𝑡 , 𝑣 ∈ PCFnat, J𝑡K = J𝑣K, and 𝑣 is a value.
Thus 𝑣 = 𝑛 for some 𝑛 ∈ ℕ, and J𝑣K = 𝑛.

J𝑡K = r
𝑛
z
= 𝑛

⇒ 𝑅(𝑛, 𝑡)
⇒ 𝑡 ⇓ 𝑛 = 𝑣
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But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

⊲𝜏⊆ J𝜏 K × PCF𝜏
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FORMAL APPROXIMATION AT BASE TYPES

𝑑 ⊲nat 𝑡 def⇔ (𝑑 ∈ ℕ ⇒ 𝑡 ⇓nat 𝑑)

𝑑 ⊲bool 𝑡 def⇔ (𝑑 = true ⇒ 𝑡 ⇓bool true)
∧(𝑑 = false ⇒ 𝑡 ⇓bool false)

Exactly what we need to get 1.

Note though that ⊥ ⊲nat 𝑡 for any 𝑡 ∈ PCFnat.
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FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
2. for any well-typed term 𝑡 , 𝑅(J𝑡K , 𝑡).

2.1 By induction on (the typing derivation of) 𝑡 ;
2.2 we need to interpret each typing rule.

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏

⊢ 𝑡 𝑢 : 𝜏 ′

Assume J𝑢K ⊲𝜏 𝑢 and J𝑡K ⊲𝜏->𝜏 ′ 𝑡 , how do we get J𝑡 𝑢K = J𝑡K (J𝑢K) ⊲𝜏 𝑡 𝑢?
Define

𝑑 ⊲𝜏->𝜏 ′ 𝑡
def⇔ ∀𝑒 ∈ J𝜏 K , 𝑢 ∈ PCF𝜏 .(𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢)
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FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′

Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove Item 2, we need to talk about open terms.

J𝑡K (J𝑢K) = q(𝑡[𝑢/𝑥])y Semantic application ≈ syntactic substitution

Fundamental property of formal approximation
Given a term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 for some Γ and 𝜏 , for any environment 𝜌 and
substitution 𝜎 such that 𝜌 ⊲Γ 𝜎 , we have J𝑡K (𝜌) ⊲𝜏 𝑡[𝜎].

Parallel substitution: maps each 𝑥 ∈ dom(Γ) to 𝜎(𝑥) ∈ PCFΓ(𝑥).
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RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS
PROOF OF THE FUNDAMENTAL PROPERTY OF FORMAL APPROXIMATION



PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any 𝜏 and 𝑡 ∈ PCF𝜏 , ⊥J𝜏 K ⊲𝜏 𝑡 ;

2. the set {𝑑 ∈ J𝜏 K ∣ 𝑑 ⊲𝜏 𝑡} is chain-closed;

3. if ∀𝑣. 𝑡 ⇓𝜏 𝑣 ⇒ 𝑡′ ⇓𝜏 𝑣 , and 𝑑 ⊲𝜏 𝑡 , then 𝑑 ⊲𝜏 𝑡′.
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PROOF OF THE FUNDAMENTAL PROPERTY
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RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS
EXTENSIONALITY



CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏
if for all C such that ⋅ ⊢Γ,𝜏 C : 𝛾 and for all values 𝑣 ,

C[𝑡] ⇓𝛾 𝑣 ⇒ C[𝑡′] ⇓𝛾 𝑣 .

Γ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 ⇔ (Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏 ∧ Γ ⊢ 𝑡′ ≤ctx 𝑡 : 𝜏 )

It corresponds to formal approximation: for all PCF types 𝜏 and closed terms
𝑡1, 𝑡2 ∈ PCF𝜏

𝑡1 ≤ctx 𝑡2 : 𝜏 ⇔ q𝑡1y ⊲𝜏 𝑡2.
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LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.

Let 𝑡1, 𝑡2 be closed terms of type 𝜏 . Then 𝑡1 ≤ctx 𝑡2 : 𝜏 if and only if, for every term
𝑓 : 𝜏 → bool,

𝑓 𝑡1 ⇓bool true ⇒ 𝑓 𝑡2 ⇓bool true.

87/104



LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.

Let 𝑡1, 𝑡2 be closed terms of type 𝜏 . Then 𝑡1 ≤ctx 𝑡2 : 𝜏 if and only if, for every term
𝑓 : 𝜏 → bool,

𝑓 𝑡1 ⇓bool true ⇒ 𝑓 𝑡2 ⇓bool true.

87/104



EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

For 𝛾 = bool or nat, 𝑡1 ≤ctx 𝑡2 : 𝜏 holds if and only if
∀𝑣. (𝑡1 ⇓𝛾 𝑣 ⇒ 𝑡2 ⇓𝛾 𝑣).

At a function type 𝜏 -> 𝜏 ′, 𝑡1 ≤ctx 𝑡2 : 𝜏 -> 𝜏 ′ holds if and only if
∀𝑡 ∈ PCF𝜏 . (𝑡1 𝑡 ≤ctx 𝑡2 𝑡 : 𝜏 ′).
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FULL ABSTRACTION



FULL ABSTRACTION
FAILURE OF FULL ABSTRACTION



FULL ABSTRACTION

A denotational model is fully abstract if

𝑡1 ≅ctx 𝑡2 : 𝜏 ⇒ q𝑡1y = q𝑡2y ∈ J𝜏 K

A form of completeness of semantic equivalence wrt. program equivalence.

The domain model of PCF is not fully abstract.
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PARALLEL OR

The parallel or function por : 𝔹⊥ ×𝔹⊥ → 𝔹⊥ is defined as given by the following table:

por true false ⊥
true true true true
false true false ⊥
⊥ true ⊥ ⊥
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LEFT SEQUENTIAL OR

The (left) sequential or function or : 𝔹⊥ × 𝔹⊥ → 𝔹⊥ is defined as

or def= q
fun 𝑥: bool. fun 𝑦: bool. if 𝑥 then true else 𝑦y

It is given by the following table:

or true false ⊥
true true true true
false true false ⊥
⊥ ⊥ ⊥ ⊥
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PARALLEL VS SEQUENTIAL OR

por true false ⊥
true true true true
false true false ⊥
⊥ true ⊥ ⊥

or true false ⊥
true true true true
false true false ⊥
⊥ ⊥ ⊥ ⊥

or is sequential, but por is not.
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UNDEFINABILITY OR PARALLEL OR

There is no closed PCF term

𝑡 : bool -> bool -> bool

satisfying J𝑡K = por : 𝔹⊥ → 𝔹⊥ → 𝔹⊥ .
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FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen 𝑇true and 𝑇false,

𝑇true ≅ctx 𝑇false : (bool -> bool -> bool) -> boolq𝑇truey ≠ q𝑇falsey ∈ (𝔹 → 𝔹 → 𝔹) → 𝔹

Idea:

• for all 𝑓 ∈ 𝑃𝐶𝐹bool->bool->bool, ensure 𝑇𝑏 𝑓 ⇑bool…
• but

q𝑇𝑏y (por) = J𝑏K.
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EXAMPLE OF FULL ABSTRACTION FAILURE

𝑇𝑏 def= fun 𝑓 : bool -> (bool -> bool).
if(𝑓 true Ωbool) then
if (𝑓 Ωbool true) then
if (𝑓 false false) then Ωbool else 𝑏

else Ωbool
else Ωbool
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FULL ABSTRACTION
BEYOND FULL ABSTRACTION FAILURE



INTERPRETING FULL ABSTRACTION FAILURE

• PCF is not expressive enough to present the model?
• The model does not adequately capture PCF?
• Contexts are too weak: they do not distinguish enough programs?
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PCF+por

Γ ⊢ 𝑡 : 𝜏

… POR
Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : 𝜏

Γ ⊢ por(𝑡1, 𝑡2) : 𝜏
𝑡 ⇓𝜏 𝑣

PORL
𝑡1 ⇓bool true

por(𝑡1, 𝑡2) ⇓bool true
PORR

𝑡2 ⇓bool true
por(𝑡1, 𝑡2) ⇓bool true

PORF
𝑡1 ⇓bool false 𝑡2 ⇓bool false

por(𝑡1, 𝑡2) ⇓bool false
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FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with

JporK = por
the resulting denotational semantics is fully abstract.

but is PCF+por still a reasonable model of programming language?
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FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF
• first step: dI-domains & stable functions→ no por any more, but still not fully
abstract…

• only proper answers in the late 90s (!): logical relations and game semantics

Real languages have effects

• If you add effects (references, control flow…) to a language, contexts become much
more expressive.

• Full abstraction becomes different: somewhat easier… but is contextual equivalence
still a reasonable idea?
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WHERE TO GO FROM HERE?



TOWARDS FULL ABSTRACTION

Source of a very rich literature:

• linear logic
• logical relations
• game semantics
• bisimulations techniques
• …
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CATEGORICAL SEMANTICS

Separate

• the structure needed to interpret a language (generic)
• how to construct this structure in particular examples (specific)

Interpret:

• a type 𝜏 as an object in a category;
• a term Γ ⊢ 𝑡 : 𝜏 as a morphism/arrow J𝑡K : JΓK → J𝜏 K.

Example: λ-calculus→ cartesian closed categories
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DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml’s ADT:

It is a fixed point equation! We can use domain theory to solve it.
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BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output…
An important aspect of programming languages!

Modelled as a monad 𝑇 (example: 𝑇 (𝐴) def= (𝐴 × State)State)

Denotation of a computation: JΓK → 𝑇(J𝜏 K)
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MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.
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