WHERE WE'RE AT

We have a denotational semantics for types [7] and terms [¢t] such that:

Compositionality: [t] = [¢'] = [c[t]] = [clt’]]. v
Soundness: forany type,t |, v = [t] = [v]. ‘/

Adequacy: fory = bool or nat, ift € PCFY and [t] = [v] thent U}, V. ‘/

11

WHERE WE'RE AT

We have a denotational semantics for types [7] and terms [¢t] such that:
Compositionality: [t] = [¢'] = [c[t]] = [clt’]]. v
Soundness: forany type,t |, v = [t] = [v]. ‘/

Adequacy: fory = bool or nat, ift € PCFY and [t] = [v] thent U}, V. ‘/

From this we can show
[l =[ul €le] =t =y u: 7

What about the converse implication?

11

FULL ABSTRACTION

FULL ABSTRACTION
FAILURE OF FULL ABSTRACTION

FULL ABSTRACTION

A denotational model is fully abstract if

h ZEx o T = [[tl]] = [tZH € [7]

89/104

FULL ABSTRACTION

A denotational model is fully abstract if

h ZEx o T = [[tl]] = [tZH € [7]

A form of completeness of semantic equivalence wrt. program equivalence.

89/104

FULL ABSTRACTION

A denotational model is fully abstract if

h ZEx o T = [[tl]] = [tZH € [7]

A form of completeness of semantic equivalence wrt. program equivalence.

The domain model of PCF is not fully abstract.

89/104

PARALLEL OR

The parallel or function por : B} x B, — B, is defined as given by the following table:

por |true false L

true | true true frue
false | true false L

1 true 1 1

90/104

LEFT SEQUENTIAL OR

The (left) sequential or function or : B} x B, — B, is defined as

def
or = [funx:bool. funy:bool.if x then true else y]

It is given by the following table:

or |true false L

true | true true ftrue
false | true false L

1 1 1 1

91/104

PARALLEL VS SEQUENTIAL OR

por |true false L
true | true true true
false | true false L

1 true 1 1

or |true false L

true | true true ftrue
false | true false L

1 4 1 1

92/104

PARALLEL VS SEQUENTIAL OR

por |true false L
true | true true true
false | true false L

1 true 1 1

or is sequential, but por is not.

or |true false L

true | true true ftrue
false | true false L

1 4 1 1

92/104

UNDEFINABILITY OR PARALLEL OR

There is no closed PCF term
t:bool = bool — bool

satisfying
[t] =por:B;, - B, - B, .

93/104

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

94/104

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen Ty pye and Tra1se.

Tirue Zctx Tralse : (bool — bool — bool) — bool

[[Ttrueﬂ * [[Tfalse]] e(B-B—-B)—B

94/104

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen Ty pye and Tra1se.

Tirue Zctx Tralse : (bool — bool — bool) — bool

[[Ttrueﬂ * [[Tfalse]] e(B-B—-B)—B

ldea:

- forall f € PCFy001-sbool-sbool. €nsure Ty f fpoo1 .-
- but [T] (por) = [b].

94/104

EXAMPLE OF FULL ABSTRACTION FAILURE

T, ' fun f:bool — (bool — bool).

if(f true Qpyo1) then
if (f Qpoor true) then
if (f false false) then Q.1 else b
else Qpoot
else Qpoo1

95/104

d,rtr
mﬁgb%{ fs«uj&(

e N N/,
tue QL,@@ U tue
Pl LR
§ fube &uﬁ:\}/@?
e
zn ‘L\)
5 AJ %’A “(dw\'l’?]]éb\% ,(5>):\»M (2
4 TLT (e, fobe)= ol

TA? [fwe | fota |
d@tw&/ MH& <2 qi-
Jalp] T ~foe
e | L | L ot (ol
A

k\ sk wlr
A T g bl ot W g

) ™ T Ype) b Y

FULL ABSTRACTION
BEYOND FULL ABSTRACTION FAILURE

INTERPRETING FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- The model does not adequately capture PCF?

- Contexts are too weak: they do not distinguish enough programs?

96/104

PCF+por

b el

r F‘ﬁ_ll’ r F‘Q 3

POR
I+ por(ty,ty) :J/‘mr&/q
t; Upoor true ty Upoor true
PORL PORR
por(t;,ty) Upoor true por(t;,ty) Upoor true

t; Upoor false ty lpoor false

PORF
por(ty,ty) Upoor false

97/104

FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with
[por] = por

the resulting denotational semantics is fully abstract.

98/104

FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with
[por] = por

the resulting denotational semantics is fully abstract...

but is PCF+por still a reasonable model of programming language?

98/104

FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dl-domains & stable functions — no por any more, but still not fully
abstract...

- only proper answers in the late 90s (!): logical relations and game semantics

99/104

FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dl-domains & stable functions — no por any more, but still not fully
abstract...

- only proper answers in the late 90s (!): logical relations and game semantics

Real languages have effects

- If you add effects (references, control flow...) to a language, contexts become much
more expressive.

- Full abstraction becomes different: somewhat easier... but is contextual equivalence
still a reasonable idea?

99/104

WHERE TO GO FROM HERE?

TOWARDS FULL ABSTRACTION

Source of a very rich literature:

- linear logic
- logical relations
- game semantics

- bisimulations techniques

100/104

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)

- how to construct this structure in particular examples (specific)

101/104

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)

- how to construct this structure in particular examples (specific)

Interpret:

- atype T as an object in a category;

atermI' =t : 7 as a morphism/arrow [t] : [T — [z].

101/104

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)

- how to construct this structure in particular examples (specific)

Interpret:

- atype T as an object in a category;

atermI' =t : 7 as a morphism/arrow [t] : [T — [z].

Example: A-calculus — cartesian closed categories

101/104

DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml's ADT:

type 'a tree =
| Leaf
| Node of 'a * 'a tree * 'a tree

It is a fixed point equation! We can use domain theory to solve it.

102/104

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output...
An important aspect of programming languages!

103/104

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output...
An important aspect of programming languages!

def
Modelled as a monad T (example: T(A) = (A x State)St2te)

103/104

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output...
An important aspect of programming languages!

Modelled as a monad T (example: T(A) & (A x State)State) Sf ‘E
O: ‘Y_D _’<E-T1X g‘td'c,)j %

Denotation of a computation: [I'] — T([z]) 15

BV (ra) [T - To) <Sede.

103/104

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

104/104

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.

104/104

