WHERE WE'RE AT

We have a denotational semantics for types $[\![\tau]\!]$ and terms $[\![t]\!]$ such that:

```
Compositionality: \llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[t'] \rrbracket.
```

Soundness: for any type τ , $t \downarrow_{\tau} v \Rightarrow [\![t]\!] = [\![v]\!]$.

Adequacy: for $\gamma = \mathsf{bool}$ or nat , if $t \in \mathrm{PCF}_\gamma$ and $[\![t]\!] = [\![v]\!]$ then $t \downarrow_\gamma \nu$.

WHERE WE'RE AT

We have a denotational semantics for types $[\![\tau]\!]$ and terms $[\![t]\!]$ such that:

Compositionality:
$$\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[t'] \rrbracket$$
.

Soundness: for any type
$$\tau$$
, $t \downarrow_{\tau} v \Rightarrow [\![t]\!] = [\![v]\!]$.

Adequacy: for
$$\gamma = \mathsf{bool}$$
 or nat , if $t \in \mathrm{PCF}_{\gamma}$ and $[\![t]\!] = [\![v]\!]$ then $t \downarrow_{\gamma} v$.

From this we can show

$$[\![t]\!] = [\![u]\!] \in [\![\tau]\!] \Rightarrow t \cong_{\operatorname{ctx}} u : \tau$$

What about the converse implication?

FULL ABSTRACTION

A denotational model is fully abstract if

$$t_1 \cong_{\mathsf{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

FULL ABSTRACTION

A denotational model is fully abstract if

$$t_1 \cong_{\mathsf{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

A form of completeness of semantic equivalence wrt. program equivalence.

FULL ABSTRACTION

A denotational model is fully abstract if

$$t_1 \cong_\mathsf{ctx} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

A form of completeness of semantic equivalence wrt. program equivalence.

The domain model of PCF is *not* fully abstract.

PARALLEL OR

The parallel or function $por : \mathbb{B}_{\perp} \times \mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$ is defined as given by the following table:

por	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

LEFT SEQUENTIAL OR

The (left) sequential or function or : $\mathbb{B}_{\perp} \times \mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$ is defined as

or
$$\stackrel{\text{def}}{=} \llbracket \text{fun } x \text{: bool. fun } y \text{: bool. if } x \text{ then true else } y \rrbracket$$

It is given by the following table:

or	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	上	\perp	\perp

PARALLEL VS SEQUENTIAL OR

por	true	false	上
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

or	true	false	\perp	
true	true	true	true	
false	true	false	\perp	
\perp	上	\perp	\perp	

PARALLEL VS SEQUENTIAL OR

por	true	false	\perp	_	or	true
true	true	true	true		true	true
false	true	false	\perp		false	true
\perp	true	\perp	丄		\perp	Т

or is sequential, but por is not.

false

true

false

true

UNDEFINABILITY OR PARALLEL OR

There is no closed PCF term

$$t: \mathsf{bool} \to \mathsf{bool} \to \mathsf{bool}$$

satisfying

$$[\![t]\!]=\mathrm{por}:\mathbb{B}_\perp\to\mathbb{B}_\perp\to\mathbb{B}_\perp$$
 .

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen T_{true} and T_{false} ,

$$\begin{split} T_{\mathsf{true}} &\cong_{\mathsf{ctx}} T_{\mathsf{false}} : (\mathsf{bool} \to \mathsf{bool} \to \mathsf{bool}) \to \mathsf{bool} \\ & \llbracket T_{\mathsf{true}} \rrbracket \neq \llbracket T_{\mathsf{false}} \rrbracket \in (\mathbb{B} \to \mathbb{B} \to \mathbb{B}) \to \mathbb{B} \end{split}$$

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen T_{true} and T_{false} ,

$$\begin{split} T_{\mathsf{true}} &\cong_{\mathsf{ctx}} T_{\mathsf{false}} : (\mathsf{bool} \to \mathsf{bool} \to \mathsf{bool}) \to \mathsf{bool} \\ & \llbracket T_{\mathsf{true}} \rrbracket \neq \llbracket T_{\mathsf{false}} \rrbracket \in (\mathbb{B} \to \mathbb{B} \to \mathbb{B}) \to \mathbb{B} \end{split}$$

Idea:

- for all $f \in PCF_{bool \rightarrow bool}$, ensure $T_b f \uparrow_{bool}$...
- but $\llbracket T_b \rrbracket$ (por) = $\llbracket b \rrbracket$.

EXAMPLE OF FULL ABSTRACTION FAILURE

```
\begin{split} T_b &\stackrel{\mathrm{def}}{=} & \mathsf{fun}\, f {:}\, \mathsf{bool} \to (\mathsf{bool} \to \mathsf{bool}). \\ & \mathsf{if}(f\, \mathsf{true}\, \Omega_{\mathsf{bool}}) \, \mathsf{then} \\ & \mathsf{if}\, (f\, \Omega_{\mathsf{bool}} \, \mathsf{true}) \, \mathsf{then} \\ & \mathsf{if}\, (f\, \mathsf{false}\, \mathsf{false}) \, \mathsf{then}\, \Omega_{\mathsf{bool}} \, \mathsf{else}\, b \\ & \mathsf{else}\, \Omega_{\mathsf{bool}} \\ & \mathsf{else}\, \Omega_{\mathsf{bool}} \end{split}
```

for all for PCF box s book - Book 1) Tbf 1 book of the Rhool of the false (1) To I V mod V iff Tf](frue, LB) = true Tf](LB, true) = true (2) Tf](false, false) = false i) I satisfies 41

Pala L TS" |true (e) => [] [= from the the the Jake Hrue tue Palse amot exist for every JERETool-bool-bool To thool

INTERPRETING FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- The model does not adequately capture PCF?
- · Contexts are too weak: they do not distinguish enough programs?

PCF+por

Full abstraction for PCF+por

If we extend the semantics of PCF to PCF+por with

$$[\![\mathtt{por}]\!] = \mathrm{por}$$

the resulting denotational semantics is fully abstract.

Full abstraction for PCF+por

If we extend the semantics of PCF to PCF+por with

$$[\![\mathtt{por}]\!] = \mathrm{por}$$

the resulting denotational semantics is fully abstract...

but is PCF+por still a reasonable model of programming language?

FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dI-domains & stable functions → no por any more, but still not fully abstract...
- \cdot only proper answers in the late 90s (!): logical relations and game semantics

FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dI-domains & stable functions → no por any more, but still not fully abstract...
- only proper answers in the late 90s (!): logical relations and game semantics

Real languages have effects

- If you add effects (references, control flow...) to a language, contexts become *much more* expressive.
- Full abstraction becomes different: somewhat easier... but is contextual equivalence still a reasonable idea?

TOWARDS FULL ABSTRACTION

Source of a very rich literature:

- linear logic
- · logical relations
- game semantics
- bisimulations techniques
- ...

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

Interpret:

- \cdot a type au as an object in a category;
- $\cdot \text{ a term } \Gamma \vdash t : \tau \text{ as a morphism/arrow } \llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket.$

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

Interpret:

- \cdot a type au as an object in a category;
- $\cdot \text{ a term } \Gamma \vdash t : \tau \text{ as a morphism/arrow } \llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket.$

Example: λ -calculus \rightarrow cartesian closed categories

DOMAIN THEORY FOR ABSTRACT DATATYPES

```
OCaml's ADT:
type 'a tree =
    | Leaf
    | Node of 'a * 'a tree * 'a tree
```

It is a fixed point equation! We can use domain theory to solve it.

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages!

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages!

Modelled as a monad T (example: $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages!

Modelled as a monad
$$T$$
 (example: $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

Denotation of a computation: $\llbracket \Gamma \rrbracket \to T(\llbracket \tau \rrbracket)$

The state of T is the state of T in T i

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the **interaction** between different approaches.