DENOTATIONAL SEMANTICS

Meven LENNON-BERTRAND
Lectures for Part Il CST 2023/2024
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PRACTICALITIES

- My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
- Course notes will be updated, keep an eye on the course webpage.
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INTRODUCTION



WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.
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WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

- Programming language theory: how to design, implement and reason about
programming languages?

- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.
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WHY SHOULD WE CARE?

- Insight: exposes the mathematical “essence” of programming language concepts.
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WHY SHOULD WE CARE?

- Insight: exposes the mathematical “essence” of programming language concepts.

- Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers...).

- Rigour: semantics is necessary to specify/justify formal methods (compilers, type
systems, code analysis, certification...).
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STYLES OF FORMAL SEMANTICS

- Operational
- Axiomatic

- Denotational
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STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part Il Hoare Logic & Model Checking).

- Denotational: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).
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DENOTATIONAL SEMANTICS IN A NUTSHELL

-1 .
Syntax —— Semantics
Program P+  Denotation [P]
Recursive program +—  Partial recursive function
Boolean circuit +  Boolean function
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DENOTATIONAL SEMANTICS IN A NUTSHELL

-] :
Syntax —— Semantics

Program P+  Denotation [P]

Recursive program >  Partial recursive function
Boolean circuit +  Boolean function
Type +— Domain
Program +—  Continuous functions between domains
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PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;

- should relate to practical implementations, though...
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PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;

- should relate to practical implementations, though...

Compositionality
- The denotation of a phrase is defined using the denotation of its sub-phrases.
- [P] represents the contribution of P to any program containing P.

- Much more flexible than whole-program semantics.
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INTRODUCTION
A BASIC EXAMPLE



IMP SYNTAX

C € Comm ::= skip | L:= A|C;C | if B then C else C |while Bdo C
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IMP SYNTAX

K ranges over a set L of locations
C € Comm ::= skip | L:= A|C;C | if B then C else C |while Bdo C
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IMP SYNTAX

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C
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IMP SYNTAX

ranges over integers

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C
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IMP SYNTAX

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

|Boolean expressions|

B € Bexp = true | false | A= A|-B] ..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C
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DENOTATION FUNCTIONS — NAIVELY

A: Aexp - 7/

where

Z = {.,-1,0,1,..}
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DENOTATION FUNCTIONS — NAIVELY

A: Aexp - 7/
B: Bexp— B
where

Z = {.,-1,0,1,.1}
B = {true,false}
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ARITHMETIC EXPRESSIONS?

AM] = n

AlAr+4;] = AlAL + A[4,]
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ARITHMETIC EXPRESSIONS?

A[[Q]] = n
AlAy + 4z] = AfA] + A[A,]

277?

A[L]
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DENOTATION FUNCTIONS

State = (L —» Z)
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DENOTATION FUNCTIONS

State = (L —» Z)

A : Aexp — (State —» Z)
B : Bexp — (State — B)

where

Z=A.,-1,01,..}
B = {true, false}.
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DENOTATION FUNCTIONS

State = (L —» Z)

A : Aexp — (State —» Z)
B : Bexp — (State — B)
C : Comm — (State — State)

where — denotes partial functions and

Z=A.,-1,01,..}
B = {true, false}.
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SEMANTICS OF ARITHMETIC EXPRESSIONS

As € State.n

Aln]

AlA; + Ag]

As € State. A[A;] (s) + A[A5] (s)
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SEMANTICS OF ARITHMETIC EXPRESSIONS

As € State.n

Aln]

AlA; + Ag]

As € State. A[A;] (s) + A[A5] (s)

A[L] As € State. s(L)
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SEMANTICS OF BOOLEAN EXPRESSIONS

Bltrue]
Blfalse]

B[A; = Ay]

As € State. true
As € State. false
As € State. eq (A[A{] (s), A[A5] ()

true ifa=a’

where eq(a,a”) = { false ifa =+ a’
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SEMANTICS OF COMMANDS

Clskip] = As € State.s
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SEMANTICS OF COMMANDS

Clskip]

As € State. s

C[if B then C else C’] = As € State. if (C[B] (s),C[CI (s),c[C"] (s))
x ifb=true

where if (b, x, x") = { x’ ifb = false
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SEMANTICS OF COMMANDS

Clskip]

As € State. s This is compositionality!
C[if B then C else C’] = As € State.if (C[B] (s),C[CI (s),c[C"] (s))
x ifb = true

where if (b, x, x") = { x’ ifb = false
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SEMANTICS OF COMMANDS

Clskip]

C[if B then C else C’]

CIL := A]

As € State. s

As € State. if (C[B] (s),CIC] (s),c[C’] (s))

‘ , x ifb =true
where if (b, x, x”) :{ x’ ifb = false

As € State. s|L — A[A] (s)]

n ifL" =1L
where s[L = n](L’) = { S(L) otherwise
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SEMANTICS OF COMMANDS

Clskip]

C[if B then C else C’]

CIL := A]

c[C;C’]

As € State. s

As € State. if (C[B] (s),CIC] (s),c[C’] (s))

‘ , x ifb =true
where if (b, x, x”) :{ x’ ifb = false

As € State. s|L — A[A] (s)]

n ifL" =1L
where s[L = n](L’) = { S(L) otherwise

c[c’] - clC]
As € State. C[C’] (C[C] (s))
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INTRODUCTION
A SEMANTICS FOR LOOPS



SEMANTICS OF LOOPS?

This is all very nice, but...

[while B do C] = ???
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SEMANTICS OF LOOPS?

This is all very nice, but...

[while B do C] = ???

Remember:

- (while Bdo C,s) — (if B then (C;while Bdo C) else skip,s)

- we want a compositional semantic: we should give [while B do C] in terms of [C]
and [B]
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LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if([B] , [while B do C] ~ [C] (s), s)
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LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if([B] , [while B do C] ~ [C] (s), s)

Not a direct definition for [while B do CJ... But a fixed point equation!

[while B do C] = Fypj jcj(while B do C)

where F,.: (State — State) — (State — State)
w > As € State. if (b, w o ¢(s), ).
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NOwW WE HAVE A GOAL

- Why/when does w = Fj, .(w) have a solution?
- What if it has several solutions? Which one should be our [while B do CJ?
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NOwW WE HAVE A GOAL

- Why/when does w = Fj, .(w) have a solution?
- What if it has several solutions? Which one should be our [while B do CJ?

Our occupation for the next few lectures...
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INTRODUCTION
A TASTE OF DOMAIN THEORY



AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]
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AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]

should be some w such that:

w = Fixsopv:=x+v:x:=x-1](W).
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AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]

should be some w such that:

w = Fixsopv:=x+v:x:=x-1](W).

That is, we are looking for a fixed point of the following F : D — D, where D is
(State — State):

[X - x,Y — y] ifx <0

F(w)([XHx,Y'—’J/]):{ w( X+ x—1LY - x-y]) ifx>0.
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THE POSET OF PARTIAL FUNCTIONS

Partial order C on D (= State — State):

wEw’ if forall s € State, if wis defined at s
then so is w” and moreover w(s) = w’(s).
if the graph of wis included in the graph of w’.
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THE POSET OF PARTIAL FUNCTIONS

Partial order C on D (= State — State):

wEw’ if forall s € State, if wis defined at s
then so is w” and moreover w(s) = w’(s).
if the graph of wis included in the graph of w’.

Least element L € D:
1

totally undefined partial function
partial function with empty graph
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APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is { .
! Wn+1 = F(Wn)
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APPROXIMATING THE FIXED POINT

wo = L

Define w,, = F*(w), that is { .
Wor1 = F(wy)

[X > x,Y—>y] ifx<0

W1[X'_’X’Y'_>Y]:F(J-)[X'_’x’y'_)y]:gundeﬁned ifx > 1
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APPROXIMATING THE FIXED POINT

=1
Define w,, = F*(w), that is {WO .
Wor1 = F(wy)
[X—>x,Y>y] ifx<0
WX > x,Y >yl = Fw)[X —» x,Y > y] =4[X—» 0,Y > y] ifx=1
undefined ifx>2
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APPROXIMATING THE FIXED POINT

wo = AL

Define w, = F*(w), that is { .
Wor1 = F(wy)

[X > x,Y—>y] ifx<0
[X—>0,Y»y] ifx=1
[X > 0,Y —» 2y] ifx=2
undefined ifx>3

ws[X > x,Y > y] = Fwp)[X > x,Y > y] =
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APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n
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APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n

WwoEw E..Ew,E L Ewy
[X — x,Y > y] if x <0

OOX sY = i — .
Weol X 12>, Y 12y |—|Wl [ X~ 0,Y~ (x!)-y] ifx>0

ieN
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WE HAVE OUR SEMANTICS

F(weo)[X = x,Y > y]
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WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[ X = x,Y > y] = {
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WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[ X = x,Y > y] = {

X Y ifx<0
:g[ = %Yoyl ' (by definition of W)

[X—>0,Y» (x—1)!-x-y] ifx>0
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WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[ X = x,Y > y] = {

X Y ifx<0
:g[ = %Yoyl ' (by definition of W)

[X—>0,Y» (x—1)!-x-y] ifx>0
= Weo| X P x,Y 5 y]
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WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx <0

) (by definition of F)
WolX > x—1,Y > x-y] ifx>0

H%MXH&YHﬂZE

% Y ifx <0
B {[ = xY > y] I (by definition of w,,)

[X=0Y> (x—1D-x-y] ifx>0
= Weo| X P x,Y 5 y]

* Wy IS a fixed point

- which moreover agrees with the operational semantics (!)
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LEAST FIXED POINTS



LEAST FIXED POINTS
POSETS AND MONOTONE FUNCTIONS



PARTIALLY ORDERED SET

A partial order on a set D is a binary relation C that is

reflexive: Vd € D. d C d
transitive: Vd,d’,d” €e D.dCd’ Cd” =dCd”
anti-symmetric: Vd,d’ € D.dCd'Cd=d=4d".
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PARTIALLY ORDERED SET

A partial order on a set D is a binary relation C that is
reflexive: Vvd € D.d C d

transitive: Vd,d’,d” €e D.dCd’' Cd”’ =dCd”
anti-symmetric: Vd,d’ € D.dCd'Cd=d=4d".

REFL
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DOMAIN OF PARTIAL FUNCTIONS X — Y

Underlying set: partial functions f with domain of definition dom( f) € X and taking
valuesinY;
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DOMAIN OF PARTIAL FUNCTIONS X — Y

Underlying set: partial functions f with domain of definition dom( f) € X and taking
valuesinY;

Order: f C gif dom(f) C dom(g) and Vx € dom(f). f(x) = g(x), i.e. if
graph(f) < graph(g).
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MONOTONICITY

A function f: D — E between posets is monotone if

vd,d’ € D.dC d’ = f(d)C f(d).
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MONOTONICITY

A function f: D — E between posets is monotone if

vd,d’ € D.dC d’ = f(d)C f(d).

xLy

MON ————
fGE f»)
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LEAST FIXED POINTS
LEAST ELEMENTS AND PRE-FIXED POINTS



LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.
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LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

If it exists, it is unique , and is written Lg, or simply L.

X€S

LEAST
J_SEx
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LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

If it exists, it is unique , and is written Lg, or simply L.

1lseS 1lg€S
LEAST ———— LEAST ————
1gE 1g 15C 1g
x€S ASYM
LEAST lg =13
J—S E X
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PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.
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PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

The least pre-fixed point of f if it exists, will be written

fix(f)
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PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

The least pre-fixed point of f if it exists, will be written

fix(f)

It is thus (uniquely) specified by the two properties:

fdcd
LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d
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PROOFS WITH LEAST FIXED POINTS

LFP-FIX

f(fix(f)) C fix(f)

The least pre-fixed point is a fixed point.
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PROOFS WITH LEAST FIXED POINTS

f(d)cd

LFP-FIX LFP-LEAST

() € i) fix(f) C d
To prove fix(f) C d, it is enough to show f(d) C d.
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PROOFS WITH LEAST FIXED POINTS

fd)cd

LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d

Application: least pre-fixed points of monotone functions are (least) fixed points.

LFP-FI

" FEx() € fix(f) fix(f) C f(fix(f))
F(Eix(f)) = fix(f)

ASYmM
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PROOFS WITH LEAST FIXED POINTS

f(dcd
LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d

Application: least pre-fixed points of monotone functions are (least) fixed points.

LFP-FIX

R )
FUE(N) T fEix()
CfEx(CER) 0 fix(f) T fEx()
() = fix(f)

LFP-FI

ASYmM
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