DENOTATIONAL SEMANTICS

Meven LENNON-BERTRAND
Lectures for Part Il CST 2023/2024

1/72

PRACTICALITIES

- My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
- Course notes will be updated, keep an eye on the course webpage.

2/72

mailto:mgapb2@cam.ac.uk

INTRODUCTION

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

3/72

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

- Programming language theory: how to design, implement and reason about
programming languages?

3/72

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

- Programming language theory: how to design, implement and reason about
programming languages?

- Programming language semantics: what is the (mathematical) meaning of a
program?

3/72

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

- Programming language theory: how to design, implement and reason about
programming languages?

- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/72

WHY SHOULD WE CARE?

- Insight: exposes the mathematical “essence” of programming language concepts.

4[72

WHY SHOULD WE CARE?

- Insight: exposes the mathematical “essence” of programming language concepts.

- Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers...).

4[72

WHY SHOULD WE CARE?

- Insight: exposes the mathematical “essence” of programming language concepts.

- Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers...).

- Rigour: semantics is necessary to specify/justify formal methods (compilers, type
systems, code analysis, certification...).

4[72

STYLES OF FORMAL SEMANTICS

- Operational
- Axiomatic

- Denotational

5/72

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic

- Denotational

5/72

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part Il Hoare Logic & Model Checking).

- Denotational

5/72

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part Il Hoare Logic & Model Checking).

- Denotational: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

5/72

DENOTATIONAL SEMANTICS IN A NUTSHELL

-1 .
Syntax —— Semantics
Program P+ Denotation [P]
Recursive program +— Partial recursive function
Boolean circuit + Boolean function

6/72

DENOTATIONAL SEMANTICS IN A NUTSHELL

-] :
Syntax —— Semantics

Program P+ Denotation [P]

Recursive program > Partial recursive function
Boolean circuit + Boolean function
Type +— Domain
Program +— Continuous functions between domains

6/72

PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;

- should relate to practical implementations, though...

7172

PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;

- should relate to practical implementations, though...

Compositionality
- The denotation of a phrase is defined using the denotation of its sub-phrases.
- [P] represents the contribution of P to any program containing P.

- Much more flexible than whole-program semantics.

7172

INTRODUCTION
A BASIC EXAMPLE

IMP SYNTAX

C € Comm ::= skip | L:= A|C;C | if B then C else C |while Bdo C

8/72

IMP SYNTAX

K ranges over a set L of locations
C € Comm ::= skip | L:= A|C;C | if B then C else C |while Bdo C

8/72

IMP SYNTAX

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C

8/72

IMP SYNTAX

ranges over integers

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C

8/72

IMP SYNTAX

| Arithmetic expressions]

AcAexp:=n|L|A+A]|..

|Boolean expressions|

B € Bexp = true | false | A= A|-B] ..

C € Comm ::=skip | L:= A|C;C | if B then C else C |while Bdo C

8/72

DENOTATION FUNCTIONS — NAIVELY

A: Aexp - 7/

where

Z = {.,-1,0,1,..}

9/72

DENOTATION FUNCTIONS — NAIVELY

A: Aexp - 7/
B: Bexp— B
where

Z = {.,-1,0,1,.1}
B = {true,false}

9/72

ARITHMETIC EXPRESSIONS?

AM] = n

AlAr+4;] = AlAL + A[4,]

10/72

ARITHMETIC EXPRESSIONS?

A[[Q]] = n
AlAy + 4z] = AfA] + A[A,]

277?

A[L]

10/72

DENOTATION FUNCTIONS

State = (L —» Z)

1/72

DENOTATION FUNCTIONS

State = (L —» Z)

A : Aexp — (State —» Z)
B : Bexp — (State — B)

where

Z=A.,-1,01,..}
B = {true, false}.

1/72

DENOTATION FUNCTIONS

State = (L —» Z)

A : Aexp — (State —» Z)
B : Bexp — (State — B)
C : Comm — (State — State)

where — denotes partial functions and

Z=A.,-1,01,..}
B = {true, false}.

1/72

SEMANTICS OF ARITHMETIC EXPRESSIONS

As € State.n

Aln]

AlA; + Ag]

As € State. A[A;] (s) + A[A5] (s)

12/72

SEMANTICS OF ARITHMETIC EXPRESSIONS

As € State.n

Aln]

AlA; + Ag]

As € State. A[A;] (s) + A[A5] (s)

A[L] As € State. s(L)

12/72

SEMANTICS OF BOOLEAN EXPRESSIONS

Bltrue]
Blfalse]

B[A; = Ay]

As € State. true
As € State. false
As € State. eq (A[A{] (s), A[A5] ()

true ifa=a’

where eq(a,a”) = { false ifa =+ a’

13/72

SEMANTICS OF COMMANDS

Clskip] = As € State.s

14/72

SEMANTICS OF COMMANDS

Clskip]

As € State. s

C[if B then C else C’] = As € State. if (C[B] (s),C[CI (s),c[C"] (s))
x ifb=true

where if (b, x, x") = { x’ ifb = false

14/72

SEMANTICS OF COMMANDS

Clskip]

As € State. s This is compositionality!
C[if B then C else C’] = As € State.if (C[B] (s),C[CI (s),c[C"] (s))
x ifb = true

where if (b, x, x") = { x’ ifb = false

14/72

SEMANTICS OF COMMANDS

Clskip]

C[if B then C else C’]

CIL := A]

As € State. s

As € State. if (C[B] (s),CIC] (s),c[C’] (s))

‘ , x ifb =true
where if (b, x, x”) :{ x’ ifb = false

As € State. s|L — A[A] (s)]

n ifL" =1L
where s[L = n](L’) = { S(L) otherwise

14/72

SEMANTICS OF COMMANDS

Clskip]

C[if B then C else C’]

CIL := A]

c[C;C’]

As € State. s

As € State. if (C[B] (s),CIC] (s),c[C’] (s))

‘ , x ifb =true
where if (b, x, x”) :{ x’ ifb = false

As € State. s|L — A[A] (s)]

n ifL" =1L
where s[L = n](L’) = { S(L) otherwise

c[c’] - clC]
As € State. C[C’] (C[C] (s))

14/72

INTRODUCTION
A SEMANTICS FOR LOOPS

SEMANTICS OF LOOPS?

This is all very nice, but...

[while B do C] = ???

15/72

SEMANTICS OF LOOPS?

This is all very nice, but...

[while B do C] = ???

Remember:

- (while Bdo C,s) — (if B then (C;while Bdo C) else skip,s)

- we want a compositional semantic: we should give [while B do C] in terms of [C]
and [B]

15/72

LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if([B] , [while B do C] ~ [C] (s), s)

16/72

LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if([B] , [while B do C] ~ [C] (s), s)

Not a direct definition for [while B do CJ... But a fixed point equation!

[while B do C] = Fypj jcj(while B do C)

where F,.: (State — State) — (State — State)
w > As € State. if (b, w o ¢(s),).

16/72

NOwW WE HAVE A GOAL

- Why/when does w = Fj, .(w) have a solution?
- What if it has several solutions? Which one should be our [while B do CJ?

17172

NOwW WE HAVE A GOAL

- Why/when does w = Fj, .(w) have a solution?
- What if it has several solutions? Which one should be our [while B do CJ?

Our occupation for the next few lectures...

17172

INTRODUCTION
A TASTE OF DOMAIN THEORY

AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]

18/72

AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]

should be some w such that:

w = Fixsopv:=x+v:x:=x-1](W).

18/72

AN EXAMPLE

[while X >0do (Y := X *Y; X := X — 1)]

should be some w such that:

w = Fixsopv:=x+v:x:=x-1](W).

That is, we are looking for a fixed point of the following F : D — D, where D is
(State — State):

[X - x,Y — y] ifx <0

F(w)([XHx,Y'—’J/]):{ w(X+ x—1LY - x-y]) ifx>0.

18/72

THE POSET OF PARTIAL FUNCTIONS

Partial order C on D (= State — State):

wEw’ if forall s € State, if wis defined at s
then so is w” and moreover w(s) = w’(s).
if the graph of wis included in the graph of w’.

19/72

THE POSET OF PARTIAL FUNCTIONS

Partial order C on D (= State — State):

wEw’ if forall s € State, if wis defined at s
then so is w” and moreover w(s) = w’(s).
if the graph of wis included in the graph of w’.

Least element L € D:
1

totally undefined partial function
partial function with empty graph

19/72

APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is { .
! Wn+1 = F(Wn)

20/72

APPROXIMATING THE FIXED POINT

wo = L

Define w,, = F*(w), that is { .
Wor1 = F(wy)

[X > x,Y—>y] ifx<0

W1[X'_’X’Y'_>Y]:F(J-)[X'_’x’y'_)y]:gundeﬁned ifx > 1

20/72

APPROXIMATING THE FIXED POINT

=1
Define w,, = F*(w), that is {WO .
Wor1 = F(wy)
[X—>x,Y>y] ifx<0
WX > x,Y >yl = Fw)[X —» x,Y > y] =4[X—» 0,Y > y] ifx=1
undefined ifx>2

20/72

APPROXIMATING THE FIXED POINT

wo = AL

Define w, = F*(w), that is { .
Wor1 = F(wy)

[X > x,Y—>y] ifx<0
[X—>0,Y»y] ifx=1
[X > 0,Y —» 2y] ifx=2
undefined ifx>3

ws[X > x,Y > y] = Fwp)[X > x,Y > y] =

20/72

APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n

20/72

APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n

20/72

APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n

20/72

APPROXIMATING THE FIXED POINT

Wo = L

Define w, = F*(w), that is .
! Wnt1 = F(Wn)

[X - x,Y > y] ifx <0
WX > x,Y > y]=4[X—0,Y > (x!)-y] f0<x<n
undefined ifx>n

WwoEw E..Ew,E L Ewy
[X — x,Y > y] if x <0

OOX sY = i — .
Weol X 12>, Y 12y |—|Wl [X~ 0,Y~ (x!)-y] ifx>0

ieN

20/72

WE HAVE OUR SEMANTICS

F(weo)[X = x,Y > y]

21/72

WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[X = x,Y > y] = {

21/72

WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[X = x,Y > y] = {

X Y ifx<0
:g[= %Yoyl ' (by definition of W)

[X—>0,Y» (x—1)!-x-y] ifx>0

21/72

WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx<0

, (by definition of F)
Wool X P x—1,Y—>x-y] ifx>0

Fweo)[X = x,Y > y] = {

X Y ifx<0
:g[= %Yoyl ' (by definition of W)

[X—>0,Y» (x—1)!-x-y] ifx>0
= Weo| X P x,Y 5 y]

21/72

WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx <0

) (by definition of F)
WolX > x—1,Y > x-y] ifx>0

H%MXH&YHﬂZE

% Y ifx <0
B {[= xY > y] I (by definition of w,,)

[X=0Y> (x—1D-x-y] ifx>0
= Weo| X P x,Y 5 y]

* Wy IS a fixed point

- which moreover agrees with the operational semantics (!)

21/72

LEAST FIXED POINTS

LEAST FIXED POINTS
POSETS AND MONOTONE FUNCTIONS

PARTIALLY ORDERED SET

A partial order on a set D is a binary relation C that is

reflexive: Vd € D. d C d
transitive: Vd,d’,d” €e D.dCd’ Cd” =dCd”
anti-symmetric: Vd,d’ € D.dCd'Cd=d=4d".

22/72

PARTIALLY ORDERED SET

A partial order on a set D is a binary relation C that is
reflexive: Vvd € D.d C d

transitive: Vd,d’,d” €e D.dCd’' Cd”’ =dCd”
anti-symmetric: Vd,d’ € D.dCd'Cd=d=4d".

REFL

22/72

DOMAIN OF PARTIAL FUNCTIONS X — Y

Underlying set: partial functions f with domain of definition dom(f) € X and taking
valuesinY;

23/72

DOMAIN OF PARTIAL FUNCTIONS X — Y

Underlying set: partial functions f with domain of definition dom(f) € X and taking
valuesinY;

Order: f C gif dom(f) C dom(g) and Vx € dom(f). f(x) = g(x), i.e. if
graph(f) < graph(g).

23/72

MONOTONICITY

A function f: D — E between posets is monotone if

vd,d’ € D.dC d’ = f(d)C f(d).

2472

MONOTONICITY

A function f: D — E between posets is monotone if

vd,d’ € D.dC d’ = f(d)C f(d).

xLy

MON ————
fGE f»)

2472

LEAST FIXED POINTS
LEAST ELEMENTS AND PRE-FIXED POINTS

LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

25/72

LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

If it exists, it is unique , and is written Lg, or simply L.

X€S

LEAST
J_SEx

25/72

LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

If it exists, it is unique , and is written Lg, or simply L.

1lseS 1lg€S
LEAST ———— LEAST ————
1gE 1g 15C 1g
x€S ASYM
LEAST lg =13
J—S E X

25/72

PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

26/72

PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

The least pre-fixed point of f if it exists, will be written

fix(f)

26/72

PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

The least pre-fixed point of f if it exists, will be written

fix(f)

It is thus (uniquely) specified by the two properties:

fdcd
LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d

26/72

PROOFS WITH LEAST FIXED POINTS

LFP-FIX

f(fix(f)) C fix(f)

The least pre-fixed point is a fixed point.

27172

PROOFS WITH LEAST FIXED POINTS

f(d)cd

LFP-FIX LFP-LEAST

() € i) fix(f) C d
To prove fix(f) C d, it is enough to show f(d) C d.

27172

PROOFS WITH LEAST FIXED POINTS

fd)cd

LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d

Application: least pre-fixed points of monotone functions are (least) fixed points.

LFP-FI

" FEx() € fix(f) fix(f) C f(fix(f))
F(Eix(f)) = fix(f)

ASYmM

27]72

PROOFS WITH LEAST FIXED POINTS

f(dcd
LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d

Application: least pre-fixed points of monotone functions are (least) fixed points.

LFP-FIX

R)
FUE(N) T fEix()
CfEx(CER) 0 fix(f) T fEx()
() = fix(f)

LFP-FI

ASYmM

27]72

