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> flow of information
» measured quantity that varies with time (or position)

» electrical signal received from a transducer
(microphone, thermometer, accelerometer, antenna, etc.)

> electrical signal that controls a process

Continuous-time signals: voltage, current, temperature, speed, ...

Discrete-time signals: daily minimum/maximum temperature,
lap intervals in races, sampled continuous signals, ...

Electronics (unlike optics) can only deal easily with time-dependent
signals. Spatial signals, such as images, are typically first converted into
a time signal with a scanning process (TV, fax, etc.).



Signal processing

Signals may have to be transformed in order to

» amplify or filter out embedded information
detect patterns
prepare the signal to survive a transmission channel
prevent interference with other signals sharing a medium
undo distortions contributed by a transmission channel

compensate for sensor deficiencies
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find information encoded in a different domain

To do so, we also need

» methods to measure, characterise, model and simulate transmission
channels

» mathematical tools that split common channels and transformations
into easily manipulated building blocks



Analog electronics

Passive networks (resistors, capacitors,
inductances, crystals, SAW filters),
non-linear elements (diodes, . ..),

(roughly) linear operational amplifiers Uin Uout

Advantages: Ui,

P passive networks are highly linear
over a very large dynamic range
and large bandwidths

0 1/VIC w(=2nf)

Ui
» analog signal-processing circuits .
require little or no power

Uy ﬂUm n

» analog circuits cause little
additional interference Uin — Usut dUout
= T

1 t
R Z/;oo U d7+C d



Digital signal processing

Analog/digital and digital/analog converter, CPU, DSP, ASIC, FPGA.

Advantages:
» noise is easy to control after initial quantization
» highly linear (within limited dynamic range)
» complex algorithms fit into a single chip
» flexibility, parameters can easily be varied in software
>

digital processing is insensitive to component tolerances, aging,
environmental conditions, electromagnetic interference

But:
> discrete-time processing artifacts (aliasing)
> can require significantly more power (battery, cooling)

» digital clock and switching cause interference



Some DSP applications

communication systems
modulation/demodulation, channel
equalization, echo cancellation
consumer electronics

perceptual coding of audio and video (DAB,
DVB, DVD), speech synthesis, speech
recognition

music

synthetic instruments, audio effects, noise
reduction

medical diagnostics

magnetic-resonance and ultrasonic imaging,
X-ray computed tomography, ECG, EEG, MEG,
AED, audiology

geophysics
seismology, oil exploration

astronomy
VLBI, speckle interferometry

transportation

radar, radio navigation

security

steganography, digital watermarking, biometric
identification, surveillance systems, signals
intelligence, electronic warfare

engineering

control systems, feature extraction for pattern
recognition, sensor-data evaluation



Objectives

By the end of the course, you should be able to

>

v
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apply basic properties of time-invariant linear systems

understand sampling, aliasing, convolution, filtering, the pitfalls of
spectral estimation

explain the above in time and frequency domain representations

use filter-design software

visualise and discuss digital filters in the z-domain

use the FFT for convolution, deconvolution, filtering

implement, apply and evaluate simple DSP applications, e.g. in Julia
apply transforms that reduce correlation between several signal sources

understand the basic principles of several widely-used modulation and
image-coding techniques.



» R.G. Lyons: Understanding digital signal processing. 3rd ed.,
Prentice-Hall, 2010. (£73)

» Thomas Holton: Digital signal processing — principles and
applications. Cambridge University Press, 2021. (£85)

» A.V. Oppenheim, RW. Schafer: Discrete-time signal processing. 3rd
ed., Prentice-Hall, 2007. (£47)

» J. Stein: Digital signal processing — a computer science perspective.
Wiley, 2000. (£133)

> S.W. Smith: Digital signal processing — a practical guide for
engineers and scientists. Newness, 2003. (£48)

» K. Steiglitz: A digital signal processing primer — with applications to
digital audio and computer music. Addison-Wesley, 1996. (£67)

8 /242



@ Sequences and systems



Sequences and systems

A discrete sequence {x,,}°2 ___ is a sequence of numbers

—00
cee 3 -2, 1,20, L1, L2,y - -

where x,, denotes the n-th number in the sequence (n € Z). A discrete
sequence maps integer numbers onto real (or complex) numbers.

We normally abbreviate {z, }5> _ . to {zn}, or to {x, }, if the running index is not obvious.

The notation is not well standardized. Some authors write x[n] instead of z,,, others x(n).

Where a discrete sequence {x,,} samples a continuous function z(t) as

zp = a(ts - n) = x(n/ f5),

we call t5 the sampling period and fs = 1/t5 the sampling frequency.

A discrete system T receives as input a sequence {x,} and transforms it
into an output sequence {y,} = T{x,}:

discrete
e, X2, 1,0, T—1y... —= systemT 9-~-792ay17y079717-~-




Some simple sequences

Unit-step sequence:

0, n<O0
Uy =
1, n>0
Impulse sequence:
5, — 1, n=0
0, n#0
= Un — Un-1

.-3-2-10 1 2 3.,

.-3-2-10 1 2 3...,
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Sinusoidial sequences

A cosine wave, amplitude A, frequency f, phase offset ¢:

x(t) = A-cos(27ft + )

phase
Sampling it at sampling rate f; results in the discrete sequence {z,}:
Tn, = A-cos(2rfn/fs + ¢) = A-cos(wn + ¢)
where w = 27tf / f5 is the normalized angular frequency in radians/sample.

Julia example:
n = 0:40; f£fs = 8000
f = 400; x = cos. (2pixf*n/fs)

sticks(n, x; shape=:circle) o

This shows 41 samples (= 1/200 s = 5 ms) h ﬂ h .d
of an f = 400 Hz sine wave, sampled at o 'l J.' 'J. l'
fs = 8 kHz.

Exercise: Try f = 0, 1000, 2000, 3000, 4000,

5000 Hz. Try negative f. Try sine instead of
cosine. Try adding phase offsets ¢ of +7t/4, 10 0 :
:|:7'[/2, and +7t. o 10 20 30 40
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Properties of se

A sequence {z,} is

periodic< 3k > 0:Vn € Z : x, = Tpig

Is a continuous function with period ¢, still periodic after sampling?

o0
absolutely summable < Z || < 00
n=—oo
o0
2 “ . "
square summable < Z |2n] < 00 < “energy signal
n=-—00
—_———
"energy”
k

1
0< Iim " T ok Z |zn|> < 00 & “power signal”

“average power”

This energy/power terminology reflects that if U is a voltage supplied to a load
resistor R, then P = UI = U?/R is the power consumed, and [ P(t) dt the energy. It
is used even if we drop physical units (e.g., volts) for simplicity in calculations.
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is used even if we drop physical units (e.g., volts) for simplicity in calculations.



A brief excursion into measuring signal intensity

Root-mean-square (RMS) signal strength
DC = direct current (constant), AC = alternating current (zero mean)
Consider a time-variable signal f(t) over time interval [ty, tp]:

t2
f(r)dr

DC component = mean voltage =
to —1t1 Jy,

AC component = f(t) — DC component

How can we state the strength of an AC signal?
The root-mean-square signal strength (voltage, etc.)

=
rms = f3(r)dr

ta—11 Jy,

is the strength of a DC signal of equal average power.
RMS of a sine wave:

A

1 27tk
i s 2dr — 2
\/an /0 [A-sin(T + ¢)]?dT 7 forallk e N;A,p e R
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Perception of signal strength

Sensation limit (SL) = lowest intensity stimulus that can still be perceived

Difference limit (DL) = smallest perceivable stimulus difference at given
intensity level

Weber's law

Difference limit A¢ is proportional to the intensity ¢ of the stimulus
(except for a small correction constant a, to describe deviation of
experimental results near SL):

Ap=c-(¢+a)

Fechner’s scale

Define a perception intensity scale 1 using the sensation limit ¢ as the
origin and the respective difference limit A¢ = c- ¢ as a unit step. The
result is a logarithmic relationship between stimulus intensity and scale
value:

¢

1/’ = logc%



Fechner's scale matches older subjective intensity scales that follow
differentiability of stimuli, e.g. the astronomical magnitude numbers for
star brightness introduced by Hipparchos (=150 BC).

Stevens’ power law

A sound that is 20 DL over SL is perceived as more than twice as loud as
one that is 10 DL over SL, i.e. Fechner's scale does not describe well
perceived intensity. A rational scale attempts to reflect subjective
relations perceived between different values of stimulus intensity ¢.
Stanley Smith Stevens observed that such rational scales 1 follow a
power law:

Y=k (¢—bo)*

Example coefficients a: brightness 0.33, loudness 0.6, heaviness 1.45,
temperature (warmth) 1.6.



Units and decibel

Communications engineers often use logarithmic units:

» Quantities often vary over many orders of magnitude — difficult to
agree on a common Sl prefix (nano, micro, milli, kilo, etc.)

» Quotient of quantities (amplification/attenuation) usually more
interesting than difference
> Signal strength usefully expressed as field quantity (voltage, current,
pressure, etc.) or power, but quadratic relationship between these
two (P = U?/R = I%R) rather inconvenient
» Perception is logarithmic (Weber/Fechner law — slide 14)
Plus: Using magic special-purpose units has its own odd attractions (— typographers, navigators)
Neper (Np) denotes the natural logarithm of the quotient of a field
quantity F' and a reference value Fy. (rarely used today)
Bel (B) denotes the base-10 logarithm of the quotient of a power P and
a reference power Py. Common prefix: 10 decibel (dB) = 1 bel.



Where P is some power and Py a 0 dB reference power, or equally where
F'is a field quantity and Fg the corresponding reference level:

P F
10 dB - log;g — = 20 dB - log;; —
g10 2 €10 Fo

Common reference values are indicated with a suffix after “dB":

0dBW =1W
0dBm =1 mW = —30 dBW
0dBuV =1 uVv

0dBu =0.775V =600 Q x 1 mW
0 dBsp. =20 uPa (sound pressure level)

0 dBs. = perception threshold (sensation limit)

0 dBFS = full scale (clipping limit of analog/digital converter)

Remember:

3dB = 2x power, 6 dB = 2x voltage/pressure/etc.
10 dB = 10x power, 20 dB = 10x voltage/pressure/etc.

W.H. Martin: Decibel — the new name for the transmission unit. Bell Syst. Tech. J., Jan. 1929.
ITU-R Recommendation V.574-4: Use of the decibel and neper in telecommunication.



Types of discrete systems

discrete
e, X2, 1,0, T—-1y... —= systemT %-“792;?/172/0’?]717“-

A causal system cannot look into the future:
Yn = f(Tny Tn-1, Tn—2,...)
A memory-less system depends only on the current input value:
Yn = f(an)
A delay system shifts a sequence in time:
Yn = Tn—d
T is a time-invariant system if for any d
{un} =T{zn} <= {yn-a} =T{wn-a}-
T is a linear system if for any pair of sequences {z,} and {z/,}
T{a -z, +b-2,}=a T{x,} +b - T{x]}.
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Example: M-point moving average system

_iMz_:lx _ Tpemi o+ T+ 2
yn—M e n—k — M

It is causal, linear, time-invariant, with memory. With M = 4:
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Example: accumulator system

n
Yn = Z Tk

k=—o00

It is causal, linear, time-invariant, with memory.

—x— X
o—y

ollollellele;




Example: backward difference system

Yn = Ty — Tp—1

It is causal, linear, time-invariant, with memory.
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Other examples

Time-invariant non-linear memory-less systems:
Yn =22, Yp =108y Tn, Yn = max{min{|256z,],255},0}

Linear but not time-invariant systems:

Zp, n>0 k-times expansion/decimation:
Yn = - = Tp " Un
07 n <0 Yn = xn/kv k ‘ n
=
Yn = T|n/4) 0, ktn
Un = T - R(e*) Yn = Tkn

Linear time-invariant non-causal systems:

1

Yn = E(xnfl + mn+1)

9 .
sin(mkw
Y = k;g Tk % -[0.5 4 0.5 - cos(mk/10)]
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Constant-coefficient difference equations

Of particular practical interest are causal linear time-invariant systems of

the form
In bo ~ Yn
&)
N
—1
yn:bO'xn_Zak'ynfkr —ay <
k=1 <+: Yn—1
-
Block diagram representation —ap
of sequence operations: G') Yn—2
/f;l Z_l
—as3
N T, T + T,
Addition: O Yn—3
Multiplication T, a ar,,
by constant: The aj, and bm are
constant coefficients.
Tn—1
Delay: 271
Y [
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or

T ,;l Tp—1 ,;l Tp—2
c_| [

M
Yn =D bm - Tn_m bo by b
m=0
W) W)
or the combination of both: _1
Tn bO ) Qg Yn
&)
—1 -1
z z
b1 A —ay
N M Tp—1 P Yn—1
Ak Yn—k = by * Ty
Z k' Yn—k Z m n—m 1 1
k=0 m=0 z b z
2 —az
q_\
Tp—2 % Yn—2
—1 -1
z z
b3 A —a3
Tn—3 U Yn—3

Implementations: DSP.jl's £ilt(b, a, x), MATLAB's filter, scipy.signal.lfilter.

o


https://docs.juliadsp.org/stable/contents/
https://docs.juliadsp.org/stable/filters/#DSP.filt
https://uk.mathworks.com/help/matlab/ref/filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html#scipy.signal.lfilter
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Convolution

Another example of a LTI systems is

%)
Yn = § Q- Tp—k

k=—o0

where {ay} is a suitably chosen sequence of coefficients.

This operation over sequences is called convolution and is defined as

abs{id = {ra} < Vn€Zim= 3 pedus

k=—00
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Convolution

Another example of a LTI systems is

%)
Yn = § Q- Tp—k

k=—o0

where {ay} is a suitably chosen sequence of coefficients.

This operation over sequences is called convolution and is defined as

abs{id = {ra} < Vn€Zim= 3 pedus

k=—00
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Convolution

Another example of a LTI systems is

%)
Yn = § Q- Tp—k

k=—o0

where {ay} is a suitably chosen sequence of coefficients.

This operation over sequences is called convolution and is defined as

o0

s {an} ={r} = VneZ:r,= Z Pk - Gn—k-

k=—00

If {yn} = {an} * {x,} is a representation of an LTI system T', with
{yn} = T{x,}, then we call the sequence {a,} the impulse response of
T, because {a, } = T{d,}, as {an} * {0} = {an}, > p ar - On_r = an.



Properties of convolution

For arbitrary sequences {p,.}, {qn}, {r»} and scalars a, b:
» Convolution is associative

({pn} #{an}) # {rn} = {pn} * ({an} * {ra})
» Convolution is commutative
{Pn} #{an} = {gn}  {pn}
» Convolution is linear
{on}s{a-gn+b-rn} =a- ({pn}*{an}) +b- ({pn} *{rn})
» The impulse sequence (slide 10) is neutral under convolution
{Pn} # {0} = {0n} * {pn} = {pn}
» Sequence shifting is equivalent to convolving with a shifted impulse

{pn—d}n = {pn} * {§n—d}n

28 / 242



Convolution

Another example of a LTI systems is

%)
Yn = § Q- Tp—k

k=—o0

where {ay} is a suitably chosen sequence of coefficients.

This operation over sequences is called convolution and is defined as

o0

s {an} ={r} = VneZ:r,= Z Pk - Gn—k-

k=—00

If {yn} = {an} * {x,} is a representation of an LTI system T', with
{yn} = T{x,}, then we call the sequence {a,} the impulse response of
T, because {a, } = T{d,}, as {an} * {0} = {an}, > p ar - On_r = an.



Convolution

Another example of a LTI systems is

%)
Yn = § Q- Tp—k

k=—o0

where {ay} is a suitably chosen sequence of coefficients.

This operation over sequences is called convolution and is defined as

abs{id = {ra} < Vn€Zim= 3 pedus

k=—00

If {yn} = {an} * {x,} is a representation of an LTI system T', with
{yn} = T{x,}, then we call the sequence {a,} the impulse response of

T, because {a, } = T{d,}, as {an} * {0} = {an}, > p ar - On_r = an.

If f and g are continuous functions, their convolution is defined similarly as the integral
oo
(70w = [~ 5@t - s,
—c

But what is the continuous equivalent of {§,,}? More on that later . ..



All LTI systems just apply convolution

Proof:

Any sequence {z,} can be decomposed into a weighted sum of shifted
impulse sequences:

o0

{zn} = Z T {On—r}

k=—o00

Let’s see what happens if we apply a linear*) time-invariant(**) system T
to such a decomposed sequence:

T{zn} =T< > {5nk}> YOS o T{8us)

k=—o0 k=—o0
(e

=) i o {Oni} ¥ T{8,} = ( i :vk-{(Sn_k}) « T{0n}

k=—oc k=—o0

={zn}*T{6n} q.e.d.
= The impulse response T{d,} fully characterizes an LTI system.
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Direct form | and Il implementations

-1
Yn Tn, Qg bO Yn
@ ©—=
-1 -1
z
—ai b1
O) (4
Yn—1 G-/ \+>
] - !
—a2 —a2 2
0 (5
Uno @ ®
—1 —1 —1
¢ b3 —as ¢ —as ¢ b3
Tn—-3 Yn—3

The block diagram representation of the constant-coefficient difference
equation on slide 25 is called the direct form | implementation.

The number of delay elements can be halved by using the commutativity
of convolution to swap the two feedback loops, leading to the direct form
Il implementation of the same LTI system.

These two forms are only equivalent with ideal arithmetic (no rounding errors and range limits).
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Convolution: optics example

If a projective lens is out of focus, the blurred image is equal to the
original image convolved with the aperture shape (e.g., a filled circle):

Point-spread function h (disk, r = §3): image plane  focal plane

1 2 2 2
1 +yP <r
h(z,y) = 2x T
(@) { 0, 22 4+ > r?

o | = =

Original image I, blurred image B = I x h, i.e.

B(z,y) = // I(z—a',y—y')-h(z',y’)-dz’dy’ s



Convolution: electronics example

AN

Ui

UOULM

t

Any passive network (resistors, capacitors, inductors) convolves its input
voltage Ui, with an impulse response function h, leading to
Uout = Uiy * h, that is

Uin C—— | Uout

D —— ]

Usse(t) = / T Unlt = 1) h(r) - dr

— 00

In the above example:

Uin — Uout dUsut L. e% t>0
_— = . = RC ’ =
R TR Q) { 0, t<0
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© Fourier transform



Adding sine waves

Adding together sine waves of equal frequency, but arbitrary amplitude
and phase, results in another sine wave of the same frequency:

Aj -sin(wt + 1) + Az - sin(wt + ¢2) = A -sin(wt + )

Why?
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Adding sine waves

Adding together sine waves of equal frequency, but arbitrary amplitude
and phase, results in another sine wave of the same frequency:

Aj -sin(wt + 1) + Az - sin(wt + ¢2) = A -sin(wt + )

Why?

Think of A -sin(wt + ¢) as the height of
an arrow of length A, rotating 5 times per second,
with start angle ¢ (radians) at ¢ = 0.

S

A - sin(wt + @)
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Adding sine waves

Adding together sine waves of equal frequency, but arbitrary amplitude
and phase, results in another sine wave of the same frequency:

Aj -sin(wt + 1) + Az - sin(wt + ¢2) = A -sin(wt + )

Why?

Think of A -sin(wt + ¢) as the height of
an arrow of length A, rotating 5~ times per second,

with start angle ¢ (radians) at ¢ = 0. A A2
Consider two more such arrows, o2
of length A; and A,, Ay

with start angles ¢; and ¢». wt g

A; and A; stuck together are as high as A, Pl

all three rotating at the same frequency.
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Adding sine waves

Adding together sine waves of equal frequency, but arbitrary amplitude
and phase, results in another sine wave of the same frequency:

Aj -sin(wt + 1) + Az - sin(wt + ¢2) = A -sin(wt + )

Why?

Think of A -sin(wt + ¢) as the height of
an arrow of length A, rotating 5~ times per second,

with start angle ¢ (radians) at ¢ = 0. A A2
Consider two more such arrows, o2
of length A; and A,, Ay

with start angles ¢; and ¢». wt g

A; and A; stuck together are as high as A, Pl

all three rotating at the same frequency.

But adding sine waves as vectors (A1, 1) and (A3, ¢2) in polar coordinates is cumbersome:
Ajsin @1 + Az sin gz
Aj cos 1 + Az cos 2

A= \/Af + Ag + 2A1Ascos(p2 — p1), tang =



Cartesian coordinates for sine waves

Sine waves of any amplitude A and phase (start angle) ¢ can be
represented as linear combinations of sin(wt) and cos(wt):

A -sin(wt 4 ) = x - sin(wt) + y - cos(wt) cos(wt) = sin(wt + 90°)
where
A -sin(p)

x=A-cos(p), y=A-sin(p)

and

A=22+9y2 tancp:%

Base: two rotating arrows with start angles 0° [height = sin(w)] and 90° [height = cos(w)].
Adding two sine waves as vectors in Cartesian coordinates is simple:
f1(t) = x1 - sin(w) + y1 - cos(w)
fa(t) = x2 - sin(w) + yo - cos(w)
f1(t) + fa(t) = (z1 + x2) - sin(w) + (y1 + y2) - cos(w)
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Why are sine waves useful?

1) Sine-wave sequences form a family of discrete
sequences that is closed under convolution with
arbitrary sequences.

Convolution of a discrete sequence {x,,} with another sequence {h,} is
nothing but adding together scaled and delayed copies of {z,,}.
Think again of {h,} as decomposed into a sum of impulses:

{Tn}# {hn}t = {20} # D> hi - {0nitn =D hi- ({zn} * {Onr}n)
k k
= Z hy - {xnfk}n
k

If {z,,} is a sampled sine wave of frequency f, i.e.
Ty = Ay - sin(2ft + ¢y)

then {y,} = {xn} * {hn} =2 ) h - {Zn—k }n is another sampled sine
wave of frequency f, i.e. for each {h,} there exists a pair (A, ;) with

Yn = Ay -sin(27ft + ¢y)

The equivalent applies for continuous sine waves and convolution. 35 / 242



Why are sine waves useful?

2) Sine waves are orthogonal to each other

The term “orthogonal” is used here in the context of an (infinitely dimensional)
vector space, where the “vectors” are functions of the form f: R — R
(or f:R — C) and the scalar product is defined as

f9=[ 10 s0at
Over integer (half-)periods:

7T
m,n € Nm#n = / sin(nt) sin(mt)dt = 0
?T
m,n € N = / sin(nt) cos(mt)dt = 0
—7t

We can even (with some handwaving) extend this to improper integrals:
(o)
/ sin(wit + 1) - sin(wat + ¢2) dt “=" 0
—0o0

= wiFwr V op1—p2=02k+1)t/2 (keZ)

They can be used to form an orthogonal function basis for a transform.
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[TIsin(1t)-sin(2t)
sin(1t)
sin(2t)

1
1.5708

1
3.1416
t

1
4.7124

6.2832
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[ Isin(2t)-sin(3t)
sin(2t)
sin(3t)
1 1
1.5708 3.1416 4.7124

6.2832



L,

[ sin(3t)-sin(4t)
sin(3t)
sin(4t)

1.5708

L
3.1416

L
4.7124

6.2832



[ Tsin(2t)-sin(4t)
sin(2t)
sin(4t)
1 1 1
1.5708 3.1416 4.7124

6.2832



[Tsin(t)-cos(t)

sin(t)
cos(t)

1
1.5708

I I
3.1416 4.7124
t

6.2832



Why are exponential functions useful?

Adding together two exponential functions with the same base z, but
different scale factor and offset, results in another exponential function
with the same base:

Ay - 2790 Ay 2192 = Ap 2t 2 Ay 2t 2P
= (A1 29"+ Ay-29) -2t =A. 21

Likewise, if we convolve a sequence {x,} of values

-3 -2 -1 2 3
R A A B AN

x, = 2™ with an arbitrary sequence {h,}, we get {y,} = {2"} * {hn},

UYn = Z Ty Ry = Z 2R hy =2 Z z*k.hk:z"-H(z)
k=—o0 k=—o0 k=—o0
where H(z) is independent of n.

Exponential sequences are closed under convolution with
arbitrary sequences.
The same applies in the continuous case.



Why are complex numbers so useful?

1) They give us all n solutions (“roots”) of equations involving
polynomials up to degree n (the “+/—1=]" story).

2) They give us the “great unifying theory” that combines sine and
exponential functions:

1 0
cos(f) = 5 (e + &)
1, .
sin(f) = 3 (&) —e719)
or )
cos(wt + ) = = (ej(wtw) +e—j(wt+¢))
2
or
cos(@n+¢) = REEHR)) = R[(el)" . el
sin(wn+¢) = S(el@tR)) = ()" . el?]

Notation: R(a + jb) := a, S(a + jb) := b and (a + jb)* := a — jb, where j> = —1 and a, b € R.
Then R(z) = 3(z +z*) and S(z) = F;(z — =*) for all z € C.
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We can now represent sine waves as projections of a rotating complex
vector. This allows us to represent sine-wave sequences as exponential
sequences with basis eJ“.

A phase shift in such a sequence corresponds to a rotation of a complex
vector.

3) Complex multiplication allows us to modify the amplitude and phase
of a complex rotating vector using a single operation and value.

Rotation of a 2D vector in (z, y)-form is notationally slightly messy, but
fortunately j2 = —1 does exactly what is required here:

()= ) ()
Y3 Y2 22 Y1 (x3,y3)

_ T1T2 — Y1Y2 (=12, 22)
1Yz + T2y ’\

N (2,92)
zn1=x1+ Y1, 2=22+ P2 \ (z1,91)
N\ A

21 - 20 = w122 — 1Yz + J(T1y2 + 22u1)




Complex phasors

Amplitude and phase are two distinct characteristics of a sine function
that are inconvenient to keep separate notationally.

Complex functions (and discrete sequences) of the form
(A-e#) it = A elt9) = 4. [cos(wt + ) + - sin(wt + )]

(where = —1) are able to represent both amplitude A € R* and phase
@ € [0,27) in one single algebraic object A - e¥ € C.

Thanks to complex multiplication, we can also incorporate in one single
factor both a multiplicative change of amplitude and an additive change
of phase of such a function. This makes discrete sequences of the form
_ eju'.m

Tn

eigensequences with respect to an LTI system 7', because for each w,
there is a complex number (eigenvalue) H(w) such that

T{xn} = H(w) - {zn}

In the notation of slide 38, where the argument of H is the base, we would write H(ejw).



Recall: Fourier transform

We define the Fourier integral transform and its inverse as

I

2

=
I

Flo®)}(f) / Tt e2mift gy

FHGUNG = o) = /°° G(f)- e2mift df

— 00

Many equivalent forms of the Fourier transform are used in the literature. There is no strong
consensus on whether the forward transform uses e "2/t and the backwards transform e2™3/* or
vice versa. The above form uses the ordinary frequency f, whereas some authors prefer the angular
frequency w = 27t f:
oo .
F{h®)}w) = Hw) = a/ h(t) - eTit dt

—oo

FHH@W) = h(t)

B/oo H(w) Tt du

This substitution introduces factors o and 3 such that a3 = 1/(27t). Some authors set o = 1
and 3 = 1/(27), to keep the convolution theorem free of a constant prefactor; others prefer the

unitary form o« = 8 = 1/+/27, in the interest of symmetry.



Properties of the Fourier transform

If
a(t) eo X(f) —and  y(f) eo Y(f)

are pairs of functions that are mapped onto each other by the Fourier
transform, then so are the following pairs.

Linearity:
ax(t) + by(t) eo aX(f)+0Y(f)

Time scaling:

s(at) oo kilX(D

Frequency scaling:
1 t)
Za(L) e X(af)
lal (
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Time shifting:
z(t — At) oo X(f) e 2mfA
Frequency shifting:
a(t) - A .o X(f—Af)

Time reversal:

z(—t) oo X(-f)
Complex conjugate:

z(t) oo X'(=f)

z'(=t) oo X'(f)

Parseval’s theorem (total energy):

| sops = [ ixpes

— 00 — 00



Fourier transform example: rect and sinc

The Fourier transform of the “rectangular function”

1 oifft)<3 1

rect(t) =4 3 ifft|=1 .
0 otherwise Y 0 1
2 2

is the “(normalized) sinc function”

1

Flrect(t)}(f) = [ 1 e~ 2mift gy — % — sinc(f)

and vice versa
F{sinc(t)}(f) = rect(f).
Some noteworthy properties of these functions:
> [2% sinc(t)dt = 1= [°%_rect(t)dt 1
> sinc(0) = 1 = rect(0) l
> vn € Z)\ {0} :sinc(n) =0
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Convolution theorem

Convolution in the time domain is equivalent to (complex) scalar
multiplication in the frequency domain:

F{(f*9)(0)} = F{F()} - Flo(t)}

Proof: z(r) = [, z(s)y(r — s)ds <= [, 2(r)e”Irdr = IS, z(s)y(r — s)e T dsdr =
Sy x(s) [ y(r — s)e I drds = /s x(s)e” v S y(r — s)e(r=2)drds

/s z(s)eiws / y(t)e I@tdtds = /s z(s)e I¥ds - J; y(t)e ¥tdt.

ti=r—s

Convolution in the frequency domain corresponds to scalar multiplication
in the time domain:

FLf(#) - 9()} = FLF(@O)} + Flg(t)}

This second form is also called “modulation theorem”, as it describes what happens in the
frequency domain with amplitude modulation of a signal (see slide 53).

The proof is very similar to the one above.

Both equally work for the inverse Fourier transform:
FHE=G)(NY =F HF!} - FHG(WN}
FHEW) -GN = FHE)} = FHGUN)



Dirac delta function

The continuous equivalent of the impulse sequence {4, } is known as
Dirac delta function 6(z). It is a generalized function, defined such that

5a) = {0, z#0

oo, =0
oo
/ O(zx)de = 1
— 00
0 T
and can be thought of as the limit of function sequences such as
L 0, |z > 1/n
o) = n'Lmoo{ nj2, |z| <1/n

or
2.2

d(z) = lim L e

n— 00 f

The delta function is mathematically speaking not a function, but a distribution, that is an
expression that is only defined when integrated.



Some properties of the Dirac delta function:

/ Zf(mw(x—a)dx - /@)
/_o;eiz“jmdx = d(a)

oo
Z eiZﬂjima _ Z (5
|a\

1=—00 1=—00

d(ax) = i6(1)

lal

Fourier transform:

FOON) = / T sy el — @

FH1Yt) = /OO 1 -e¥miitdy

—i/a)



Linking the Dirac delta with the Fourier transform

The Fourier transform of 1 follows from the Dirac delta’s ability to
sample inside an integral:

g(t) = FH(F(9))(t)

T ([ e
_ /_O; (/_Z o-2mifs .eznjft.df) g(s) - ds
_ /_O; (/:: e~ 2mif(s—t) -df) -g(s)-ds

o(s—t)

So if § has the property
o) = [ 8s=1)-9(s) - ds

then
oo

/ e 2=t df = §(s — t)

—o0
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 2nitfy f=4() 310, cos(2mf;t) = 3(t)

* 1,..., fi0 € [0, 3] chosen uniformly at random
WA AT RN v W\ /A
' i i W A

\ ‘ I Ml ,‘“w“ ‘

S

W

——d

‘ o'\m,(

A “ “ 1 I
‘J \‘ul\ \“A‘“M\ “‘\‘ \\ \ "\"

|

\\




[T emitap = s) S cos(nfit) ~ 8(0)

fi,..., fio0 € [0,10] chosen uniformly at random

100




i eiQﬂjnt: i 6(t—n)

n=-—oo n=-—oo



\\\\\\\\\
—————————————



Sine and cosine in the frequency domain

1 1 . 1 1 .
2 27[Jfot —271] fot 2 27‘[_]f0t —27tj fot
cos(2mfot) = 5 + 5e sin(2mtfot) = % 3 e

Floos(2nfot)}(f) = 30(F — fo) + 3007 + fo)
Flsin(nfot)}(7) = ~20(7 ~ fo) + 257 + fo)

R R

1
2 2

3] /
—fo fo  f —fo /o f

As any z(t) € R can be decomposed into sine and cosine functions, the spectrum of any
real-valued signal will show the symmetry X (—f) = [X(f)]", where * denotes the complex
conjugate (i.e., negated imaginary part).

&l
2%

NI
—
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Fourier transform symmetries

We call a function z(t)

odd if x(—t) = —xz(t)

even if z(—t)

=3
—~

~
~

and -* is the complex conjugate, such that (a + jb)* = (a — jb).

Then
x(t) is real < X(-H=1XNI
x(t) is imaginary < X(-f)=-[X(N"
x(t) is even < X(f)iseven
x(t) is odd < X(f) is odd
x(t) is real and even < X(f) is real and even
x(t) is real and odd < X(f) is imaginary and odd
x(t) is imaginary and even < X(f) is imaginary and even
x(t) is imaginary and odd < X(f) is real and odd
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Example: amplitude modulation

Communication channels usually permit only the use of a given frequency
interval, such as 300-3400 Hz for the analog phone network or 590-598
MHz for TV channel 36. Modulation with a carrier frequency f. shifts
the spectrum of a signal z(¢) into the desired band.

Amplitude modulation (AM):

y(t) = A - cos(2mtfe) - x(t)

X(/) Y(f)
% =
7}I (I) ]ICI f *Ifc }c f Iflzc I 6 I f{c I f

The spectrum of the baseband signal in the interval —fi < f < fi is
shifted by the modulation to the intervals &=f. — fi < f < &f. + fi.

How can such a signal be demodulated?
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Sampling using a Dirac comb

The loss of information in the sampling process that converts a
continuous function z(¢) into a discrete sequence {x,,} defined by

zn = 2(ts - n) = z(n/ f;)
can be modelled through multiplying x(t) by a comb of Dirac impulses

s(t) =ts - i o(t —ts-n)

n=—oo

to obtain the sampled function

The function £(t) now contains exactly the same information as the
discrete sequence {x, }, but is still in a form that can be analysed using
the Fourier transform on continuous functions.
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The Fourier transform of a Dirac comb
o0
s(t) = Z o(t—ts-n) = Z e2mint/ts
n=—oo n= [o®
is another Dirac comb

S(f)_f{ts : Z 5(t_tsn)}(f)_

n=—oo

oo

/ S 6(t— tan) e il dt = Z 6<f—z>.

n=—oo n=—oo

s(t) S(f)

LTI T

T

—2t5 _ts 0 ts 2t5 t _éfs _Ifs (I) fl.s

21 f



ssssss
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Frequency-domain view of sampling

z(t) 5(t) 2(t) .
/\/ . — T\\ L T/
0 t o 1t “yfo 16t
X(f) S(f) X()
%k —
0 f —f f 10 f, f

Sampling a signal in the time domain corresponds in the frequency
domain to convolving its spectrum with a Dirac comb. The resulting
copies of the original signal spectrum in the spectrum of the sampled

signal are called “images”.
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Discrete-time Fourier transform (DTFT)

The Fourier transform of a sampled signal

Bt)=ts - Y - 0(t—ts m)
n=—oo
is
A 0 . o0 g
FRONN =X = [ 80 I =t Y a0
e n=-—oo
The inverse transform is
/2

ﬁ(t):/jo X(f) - e¥tdf or xm:/ X(f) - eXHiEmdy.

—fs/2

The DTFT is also commonly expressed using the normalized frequency
w= 27tfi (radians per sample), and the notation

X(ej“") = Zaxn e ion

is customary, to highlight both the periodicity of the DTFT and its
relationship with the z-transform of {z,,} (see slide 124).
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time-domain samples DTFT frequency (1 period)
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0.6

0.4
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time-domain samples
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DTFT frequency (1 period)




0.8
0.6
0.4
0.2
0 ®
-5 0
time-domain samples
1 ®
0.8
0.6
0.4
0.2
0 oo *—o
-5 0

time-domain samples
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DTFT frequency (1 period)
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DTFT frequency (1 period)

60



0.8

0.6

0.4

0.2

0
time-domain samples

0.5

0
time-domain samples
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N}

o

- Yam Yem Yar 0 Yam Yam Ym 0w
DTFT frequency (1 period)
- Yam Yem Yam O Yam Yam Yam w

DTFT frequency (1 period)
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0.5

0.8

0.6

0.4

0.2

0
time-domain samples

0

time-domain samples

DTFT real
DTFT imag

Yam Yemw Yam 0 Yam Yem Yam 7w
DTFT frequency (1 period)

-

Yam Yom Yam 0 Yam Yam Yam 7

DTFT frequency (1 period)
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Properties of the DTFT

The DTFT is periodic:
X(f)=X(f +kfs) or X(eI) = X(el+2™))  viez

Beyond that, the DTFT is just the Fourier transform applied to a discrete

sequence, and inherits the properties of the continuous Fourier transform,
e.g.

» Linearity
» Symmetries

» Convolution and modulation theorem:
{za}x {yn} = {20} = X() Y (™) = Z(e)

and

Ty Yn = 2n X)) Y (e de = Z(el)

—T
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Nyquist limit and anti-aliasing filters

If the (double-sided) bandwidth of a signal to be sampled is larger than
the sampling frequency fs, the images of the signal that emerge during
sampling may overlap with the original spectrum.

Such an overlap will hinder reconstruction of the original continuous
signal by removing the aliasing frequencies with a reconstruction filter.
Therefore, it is advisable to limit the bandwidth of the input signal to the
sampling frequency fs before sampling, using an anti-aliasing filter.

In the common case of a real-valued base-band signal (with frequency

content down to 0 Hz), all frequencies f that occur in the signal with
non-zero power should be limited to the interval —f,/2 < f < f5/2.

The upper limit f;/2 for the single-sided bandwidth of a baseband signal
is known as the “Nyquist limit".



Nyquist limit and anti-aliasing filters

Without anti-aliasing filter With anti-aliasing filter
X(f)/) Dasdda X(ON 2%
— anti-aliasing filter | =
| N
1 "
|‘ '
| |
1 1
T T : : T T
0 f -5 0k f
double-sided bandwidth
> > filter
X(f) X(f) reccnstructlcn
N 'y \
I ! I !
I | | I
|
* — : :

“2f, —f. O fo 2f f —2f —~f O f  2f

Anti-aliasing and reconstruction filters both suppress frequencies outside | f| < fs/2.
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Reconstruction of a continuous band-limited waveform

The ideal anti-aliasing filter for eliminating any frequency content above
fs/2 before sampling with a frequency of f; has the Fourier transform

1 if|f|< &

i = rect(tsf).
0 if|f] > %

H(f)={

This leads, after an inverse Fourier transform, to the impulse response

h(t) = fs- sin it fs = 1 - sinc (t> .

ntfs s ts

The original band-limited signal can be reconstructed by convolving this
with the sampled signal #(t), which eliminates the periodicity of the
frequency domain introduced by the sampling process:

z(t) = h(t) x &(t)
Note that sampling h(t) gives the impulse function: h(t) - s(t) = §(t).
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Impulse response of ideal low-pass filter with cut-off frequency fs/2:

-3 -25 -2 -15 -1 -0.5 tof 05 1 15 2 25 3



Reconstruction filter example

—@® sampled signal
interpolation result
scaled/shifted sin(x)/x pulses




If before being sampled with z,, = z(t/ f) the signal x(t) satisfied the
Nyquist limit

Fx(t)}(f) = /_oo a(t) e 2 tdt =0 forall |f| > £

then it can be reconstructed by interpolation with h(t) = ismc (f)

x(t) = / h(s)-Z(t —s)-ds

oo

1 s
:/_Oots&nc(ts)-ts Z Ty O0(t—s—1ts-n)-ds

n=—oo

/ sinc<:>-5(t—s—ts'n)-ds

= . t—ts-n = .
= Z Ty, - sinc (ts) = Z Xy - sinc(t/ts — n)

s n=—oo

[ee]

I
(]

B sint(t/ts — n)
=D n(t/ts — n)
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Reconstruction filters

The mathematically ideal form of a reconstruction filter for suppressing
aliasing frequencies interpolates the sampled signal z,, = (¢ - n) back
into the continuous waveform

o0

B sin7t(t/ts — n)
()= D e Sy

n=—oo

Choice of sampling frequency

Due to causality and economic constraints, practical analog filters can only
approximate such an ideal low-pass filter. Instead of a sharp transition between the
“pass band” (< fs/2) and the “stop band” (> fs/2), they feature a “transition band”
in which their signal attenuation gradually increases.

The sampling frequency is therefore usually chosen somewhat higher than twice the
highest frequency of interest in the continuous signal (e.g., 4x). On the other hand,
the higher the sampling frequency, the higher are CPU, power and memory
requirements. Therefore, the choice of sampling frequency is a tradeoff between signal
quality, analog filter cost and digital subsystem expenses.

~
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Interpolation through convolution
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Band-pass signal sampling

Sampled signals can also be reconstructed if their spectral components
remain entirely within the interval n- /2 < |f| < (n+1) - fs/2 for some
n € N. (The baseband case discussed so far is just n=20.)

/\

X(f) anti- allasmg filter reconstructlon filter

N o T \
! | \ | [ : \ :
! | \ | ! ‘ ! :
[ : [ :

! !
!

7%f5 0 %fs - s _fs ?5 s

n=2

In this case, the aliasing copies of the positive and the negative
frequencies will interleave instead of overlap, and can therefore be
removed again later by a reconstruction filter.

The ideal reconstruction filter for this sampling technique will only allow frequencies in the interval
[n- fs/2,(n+1)- fs/2] to pass through. The impulse response of such a band-pass filter can be
obtained by amplitude modulating a low-pass filter, or by subtracting two low-pass filters:

sin 7tt fs /2 2n +1 sintt(n + 1) fs sin 7ttn fs

ht) = f—o - eos (szs )Z("“’fs PR YA ey




@ Discrete Fourier transform
FFT
FFT-based convolution



Spectrum of a periodic signal

A signal z(t) that is periodic with frequency f, can be factored into a
single period Z(t) convolved with an impulse comb p(t). This
corresponds in the frequency domain to the multiplication of the
spectrum of the single period with a comb of impulses spaced f, apart.

(t) i(t) p(t)
SUf0 1St t S0 1St
X(f) X(f) P(f)

Silii.

—F0 fo f 10 fo f
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Spectrum of a sampled signal

A signal x(t) that is sampled with frequency f; has a spectrum that is
periodic with a period of f;.

x(t) s(t) 2(t) ,
/\ ny T\\ 5 T/
1L 0 1t 1L 0 1t
X(f) S(f) X(f)
O f ho f f
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Continuous vs discrete Fourier transform

» Sampling a continuous signal makes its spectrum periodic
» A periodic signal has a sampled spectrum

We sample a signal z(t) with f, getting 2(t). We take n consecutive
samples of Z(t) and repeat these periodically, getting a new signal Z(¢)
with period n/fs. Its spectrum X (f) is sampled (i.e., has non-zero
value) at frequency intervals fs/n and repeats itself with a period f;.

Now both i(t) and its spectrum X (f) are finite vectors of length n.

T . T Tm?

—n/fs VPO n/f t —f P —fs/n 0 fo/n " i f
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o0

B(t) = a(t)s(t) =ts- > wid(t—ted) =t » le t—ts-(i+nl))
l=—o0 =0

i=—00

If 2(¢) has period t, = n - t,, then after sampling it at rate ¢; we have

and the Fourier transform of that is
FEONN =X = [ i) el
oo n—1 o [e%s) ; n—1 L
={ - Z in_e—%'uﬁ.(z-knl) — ¢ - Z o 2mifnl in.e_%ﬂﬁ,l

l=—o00 =0
o (=L )
Recall that >59° et2mitza — =4 >® dz—i/a)andmapz=f, a= Foandi=1l
f— o f _ k —
After substituting k := L= Enie =4 and f=kf,
. ki
X(kfp) == Z 3(kfo = Lfp) sz 2w
l=—o00
Xk
)0 ifkez
{o ifk¢z
76

Show that X}, = X4, forall k € Z.
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Discrete Fourier Transform (DFT)

n—1 1 n—1
— iik jik
szg €X; - e 27”71, xszg Xi.ezﬂjn
n
i=0 =0

The n-point DFT multiplies a vector with an n x n matrix

1
1
1
Fy = 1

Fy -

1
i1
e—2n];
+2
e—27‘[];

-3
e—27t];

—27j
Zo

x1
x2

Tn—1

n—1
n

e

1 1
.2 .3
e—27‘[]; e—27rj;
.4 .6
e—ZT[J; e—27r1;
-6 9
e—271]; e—27rj;
.2(n—1) .3(n—1)
T et
Xo XO
X1 Xl
Xo 1 * Xo
, ~.Fr.
. n .
anl anl

1
sn—1
e—27rJ -

o 2(n—1)
e 2mj=—

n

.3(n—1)
e—27117n

Tn—1

m

N
i
o



Discrete Fourier Transform visualized

D PDPPPDP B[ Xo
PP DDD DD P~ X
DO DDP DD D X
SedRCPRS PSSP P P I BT O
DD PDPD PO X
SO DL PD DO s
DD DP DD D] s
PO DD DG \= X

The n-point DFT of a signal {x;} sampled at frequency fs contains in
the elements X to X, /5 of the resulting frequency-domain vector the
frequency components 0, fs/n, 2fs/n, 3fs/n, ..., fs/2, and contains in
Xy—1 downto X, /> the corresponding negative frequencies. Note that
for a real-valued input vector, both Xy and Xn/Q will be real, too.

Why is there no phase information recovered at fs/2?
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Fast Fourier Transform (FFT)

_ognitk
(fn{xl ) E xi-e T
-1 71

—2omj-ik —2njk —2omj ik
= E To; - € 152 + e In E Toigl - € ey
=0 =0

n_q _ sk n_q
(}-%{x% o )k + e n . (]'-g{962i+1}i2:o )k, k<

INIE

(]'-% {9321'}1%:51) + e2min (]:g {$2i+1}i%:51) , k>

k-3

[SIE

k-3

The DFT over n-element vectors can be reduced to two DFTs over
n/2-element vectors plus n multiplications and n additions, leading to
log, n rounds and n log, n additions and multiplications overall,
compared to n? for the equivalent matrix multiplication.

A high-performance FFT implementation in C with many processor-specific optimizations and
support for non-power-of-2 sizes is available at https://www.fftw.org/. Julia wrapper: FFTW. jl

Some CPU vendors offer even faster ones, such as the Intel Math Kernel Library (MKL) or
Arm Performance Libraries. Hardware implementations: https://www.spiral.net/.

80

N
i
o


https://www.fftw.org/
https://github.com/JuliaMath/FFTW.jl
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://developer.arm.com/documentation/101004/2310/Fast-Fourier-Transforms-FFTs/Fast-Fourier-Transforms-FFTs-Introduction
https://www.spiral.net/

Effici eal-valued FFT

The symmetry properties of the Fourier transform applied to the discrete
Fourier transform {X;}/" ' = Fn{z:}77" have the form

Viixz, = Rz) <= Vi:X,,= X;
Viixz, =] -S(z) = Vi:X,_,=-X;

These two symmetries, combined with the linearity of the DFT, allows us to
calculate two real-valued n-point DFTs

{X}zoff{x nl {Xﬁzof‘r{xn
simultaneously in a single complex-valued n-point DFT, by composing its input
as
xi = ai+j-af

and decomposing its output as
/ 1 * " 1 *
Xi= E(Xz‘ + Xnoi) Xi = T(Xi - Xn4)
J

where X,, = Xo.

To optimize the calculation of a single real-valued FFT, use this trick to calculate the two half-size
real-value FFTs that occur in the first round.
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Fast complex multiplication

Calculating the product of two complex numbers as
(a4 jb) - (¢ + jd) = (ac — bd) + j(ad + be)

involves four (real-valued) multiplications and two additions.

The alternative calculation

a = alc+d)
(a+jb)-(c+ijd) =(a=PB)+jla+y) with 5 = d(a+b)
7 = db-a)

provides the same result with three multiplications and five additions.

The latter may perform faster on CPUs where multiplications take three

or more times longer than additions.

This “Karatsuba multiplication” is most helpful on simpler microcontrollers. Specialized
signal-processing CPUs (DSPs) feature 1-clock-cycle multipliers. High-end desktop processors use
pipelined multipliers that stall where operations depend on each other.



Recap: Fourier transforms

o0
Fourier transform: X(w) = / z(t) - e ¥t dt
» time domain: continuous
» freq. domain: continuous

Discrete-time Fourier transform (DTFT): X (e¥) Z T, - e vn

» time domain: discrete sequence
» freq. domain: continuous

Discrete Fourier transform (DFT): Xp = ZT‘" e 2minE

> time domain: periodic discrete-sequence (degree-I vector)
> freq. domain: periodic discrete-sequence (degree-l vector)

» also: the result of sampling the DTFT of an I-sample finite—support
sequence {x,,}\}) at frequencies & = 27% for k € {0,...,1 — 1}

Fast Fourier transform (FFT):
> a fast algorithm for calculating the DFT (in nlogn steps)
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FFT-based convolution

Calculating the convolution of two finite sequences {z;}" " and {y;}7-

of lengths m and n via

min{m—1,i}
z = Z i Yiej, 0<i<m+n-—1
j=max{0,i—(n—1)}
takes mn multiplications.

Can we apply the FFT and the convolution theorem to calculate the
convolution faster, in just O(m logm + nlogn) multiplications?

() = F 7 (Flas} - Flu)

There is obviously no problem if this condition is fulfilled:
{z;} and {y;} are periodic, with equal period lengths

In this case, the fact that the DFT interprets its input as a single period
of a periodic signal will do exactly what is needed, and the FFT and
inverse FFT can be applied directly as above.
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In the general case, measures have to be taken to prevent a wrap-over:

A B F'IF(A)F(B)]

I

A B’ F [F(A")-F(B)]

U

Both sequences are padded with zero values to a length of at least m +n — 1.
This ensures that the start and end of the resulting sequence do not overlap.



Zero padding is usually applied to extend both sequence lengths to the
next higher power of two (2/1°82(m+2=1)1) "which facilitates the FFT.

With a causal sequence, simply append the padding zeros at the end.

With a non-causal sequence, values with a negative index number are
wrapped around the DFT block boundaries and appear at the right end.
In this case, zero-padding is applied in the center of the block, between
the last and first element of the sequence.

Thanks to the periodic nature of the DFT, zero padding at both ends has
the same effect as padding only at one end.

If both sequences can be loaded entirely into RAM, the FFT can be
applied to them in one step. However, one of the sequences might be too
large for that. It could also be a realtime waveform (e.g., a telephone
signal) that cannot be delayed until the end of the transmission.

In such cases, the sequence has to be split into shorter blocks that are
separately convolved and then added together with a suitable overlap.



Each block is zero-padded at both ends and then convolved as before:
| |

¢

’
’

N
A
The regions originally added as zero padding are, after convolution, aligned to
overlap with the unpadded ends of their respective neighbour blocks. The
overlapping parts of the blocks are then added together.



@ Deconvolution



Deconvolution

A signal u(t) was distorted by convolution with a known impulse
response h(t) (e.g., through a transmission channel or a sensor problem).
The “smeared” result s(t) was recorded.

Can we undo the damage and restore (or at least estimate) u(t)?




The convolution theorem turns the problem into one of multiplication:

s(t) / u(t —7) - h(7) - dr
s = wuxh
Flst = F{u} F{h}
Flup = F{s}/F{h}
u = FYF{s}/F{n}}

In practice, we also record some noise n(t) (quantization, etc.):

o(t) = s(t) + n(t) = / u(t — 7) - h(r) - dr + n(t)

Problem — At frequencies f where F{h}(f) approaches zero, the noise
will be amplified (potentially enormously) during deconvolution:

i =F HF{c}/F{h}} = u+ FH{F{n}/F{h}}



Typical workarounds:

» Modify the Fourier transform of the impulse response, such that
|F{h}(f)| > € for some experimentally chosen threshold e.

> |f estimates of the signal spectrum |F{s}(f)| and the noise
spectrum |F{n}(f)| can be obtained, then we can apply the
“Wiener filter” (“optimal filter”)

_ [F{s}(f)1?
[FLsH(DIP + [F{n}(F)P

W(f)

before deconvolution:

o =F YW Flc}/F{h}}
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@ Spectral estimation
Window functions
Padding



frequency [Hz]

Vowel “A" sung at varying pitch sing.wav

8000
—40
6000 _so
-60
4000
-70
-80
2000
-90
-100

time [s]

(w, fs, bits) = wavread("sing.wav")

s = spectrogram(w[:,1], 2048; fs, window=hamming)

ps = 10%*logl0. (power(s)); mx = maximum(ps)

heatmap(time(s), freq(s), ps; xlabel="time [s]", ylabel="frequency [Hz]",
x1im=(0, 4.5), ylim=(0, 8000.0), clim=(mx-70, mx))
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sing.wav

frequency [Hz]

8000

6000

EN
o
o
o

2000

Different vowels at constant pitch

time [s]

aeiou.wav

-40

=50

-60

=70

-80

-90

-100


aeiou.wav

1. R T R e e e Y P T Y )

Frequency (MHz)
o

20 40 60 80 100 120

Time (ms)

f = fopen('igq-fm-97M-3.6M.dat', 'r', 'ieee-le');

c = fread(f, [2,inf], '*float32');

fclose(f);

z = complex(c(1,:), c(2,:));

fs = 3.6e6; % IQ sampling frequency

fciq = 97e6; % center frequency of IQ downconverter
spectrogram(z(1:5e5), 1024, 512, 1024, fs, 'centered', 'yaxis');
colormap(gray)

—-105
1-110
1-115
1-120

1-125

-130
-135
-140
-145

-150

-165

Power/frequency (dB/Hz)



Spectral estimation

0.5

-0.5

0.5

cos(2 w*[0:15]/16*4)

5 10 15
time-domain samples
cos(2 7*[0:15]/16*4.2)
[ ]
: i
5 10 15

time-domain samples

12

10

2

0

-7

Yam Yo Yam O Yam Yam Yamw

DTFT frequency (1 period)

kg

-7

Yam Yem Yam O Yam Yam Yam
DTFT frequency (1 period)

T
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We introduced the DFT as a special case of the continuous Fourier
transform, where the input is sampled and periodic.

If the input is sampled, but not periodic, the DFT can still be used to
calculate an approximation of the Fourier transform of the original
continuous signal. However, there are two effects to consider. They are
particularly visible when analysing pure sine waves.

Sine waves whose frequency is a multiple of the base frequency (fs/n) of
the DFT are identical to their periodic extension beyond the size of the
DFT. They are, therefore, represented exactly by a single sharp peak in
the DFT. All their energy falls into one single frequency “bin" in the
DFT result.

Sine waves with other frequencies, which do not match exactly one of the
output frequency bins of the DFT, are still represented by a peak at the
output bin that represents the nearest integer multiple of the DFT's base
frequency. However, such a peak is distorted in two ways:

> Its amplitude is lower (down to 63.7%).

» Much signal energy has “leaked” to other frequencies.



input freq.

DFT index

The leakage of energy to other frequency bins not only blurs the estimated spectrum.
The peak amplitude also changes significantly as the frequency of a tone changes from
that associated with one output bin to the next, a phenomenon known as scalloping.
In the above graphic, an input sine wave gradually changes from the frequency of bin
15 to that of bin 16 (only positive frequencies shown).

N

o



Sine wave Discrete Fourier Transform
1 300
200
0
‘ 100
1 \ \ 0
0 200 400 0 200 400

Sine wave multiplied with window function Discrete Fourier Transform

1 100
0 50 n ﬂ
-1 0
0 200 00

0 200 400

4
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The reason for the leakage and scalloping losses is easy to visualize with the
help of the convolution theorem:

The operation of cutting a sequence of the size of the DFT input vector out of
a longer original signal (the one whose continuous Fourier spectrum we try to
estimate) is equivalent to multiplying this signal with a rectangular function.
This destroys all information and continuity outside the “window” that is fed
into the DFT.

Multiplication with a rectangular window of length 7" in the time domain is
equivalent to convolution with sin(7 fT)/(7 fT) in the frequency domain.

The subsequent interpretation of this window as a periodic sequence by the
DFT leads to sampling of this convolution result (sampling meaning
multiplication with a Dirac comb whose impulses are spaced fs/n apart).

Where the window length was an exact multiple of the original signal period,
sampling of the sin(wfT)/(7 fT) curve leads to a single Dirac pulse, and the
windowing causes no distortion. In all other cases, the effects of the convolution
become visible in the frequency domain as leakage and scalloping losses.

o



Some better window functions

1 - .
0.8 _
0.6 _
0.4r ]
0.2r ]

Rectangular window
0l — Triangular window L
— Hann window
—— Hamming window

0 0.2 0.4 0.6 0.8 1

All these functions are 0 outside the interval [0,1].
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cos(2 7*[0:15)/16*4.2)

0.5

0.5

o

time-domain samples

0 5 10 15
time-domain samples
cos(2 7*[0:15]/16*4.2).*hann(16)
.o I !
e | +°
5 10 15

[N}

0

-m Yam Yem Yam 0 Yam Yem Yam w

DTFT frequency (1 period)
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DTFT frequency (1 period)
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Magnitude (dB)

Magnitude (dB)

Rectangular window (64—point)

20
0
-20
-40
-60
0 0.5 1
Normalized Frequency (xr rad/sample)
Hann window
20
0
-20
-40
60 M
0 0.5 1

Normalized Frequency (xr rad/sample)

Magnitude (dB)

Magnitude (dB)

Triangular window

LTIV

Normalized Frequency (xm rad/sample)
Hamming window

20

-60
0 0.5 1
Normalized Frequency (xm rad/sample)
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Numerous alternatives to the rectangular window have been proposed
that reduce leakage and scalloping in spectral estimation. These are
vectors multiplied element-wise with the input vector before applying the
DFT to it. They all force the signal amplitude smoothly down to zero at
the edge of the window, thereby avoiding the introduction of sharp jumps
in the signal when it is extended periodically by the DFT.
Three examples of such window vectors {w;}7_ are:
Triangular window (Bartlett window):
i
w; =1—|1——
' ‘ n/ 2‘

Hann window (raised-cosine window, Hanning window):

w; = 0.5 —0.5 X cos <27rn Z_ 1>

Hamming window:

w; = 0.54 — 0.46 X cos <27r ! >
n—1



Does zero padding increase DFT resolution?

The two figures below show two spectra of the 16-element sequence
s; = cos(27 - 3i/16) + cos(27 - 4i/16), 1 €{0,...,15}.
The left plot shows the DFT of the windowed sequence
Ti = 8; - Wi, 1€0,...,15}
and the right plot shows the DFT of the zero-padded windowed sequence

= Si Wi, i€{0,...,15}
= o, ie{16,...,63)

where w; = 0.54 — 0.46 x cos (27¢/15) is the Hamming window.

DFT without zero padding DFT with 48 zeros appended to window
4
0] Q T T IAVaVaWaVA) T T

0 5 10 15
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cas, 2 7¥[0:15)/16*3.3) + cos(2  x*{0:15]/16%4)
1
]
K l TI"'i*
-1
-2
0 5 10 15
time-domain samples
2 zero-padded to 64 samples
1
0
-1
-2
0 20 40 60

time-domain samples

—o

DTFT mag
DFT mag

b
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Yam Yemw Yam 0 Yam Yem Yam 7w
DTFT frequency (1 period)

i

—o

DTFT mag
DFT mag

-

Yam Yom Yam 0 Yam Yam Yam 7

DTFT frequency (1 period)
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05(2 (0:15)116'3.3) + cos(2__ w*{0:15)16*4)

time-domain samples

? TT. . |
l Ik
ALK

? i ﬁi 7 ﬂ

DTFT mag
—— DFT mag

b

Yam Yemw Yam 0 Yam Yem Yam 7w
DTFT frequency (1 period)

35

30

DTFT mag
—= DFT mag
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DTFT frequency (1 period)
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Applying the discrete Fourier transform (DFT) to an n-element long
real-valued sequence samples the DTFT of that sequence at n/2 + 1
discrete frequencies.

The DTFT spectrum has already been distorted by multiplying the
(hypothetically longer) signal with a windowing function that limits its
length to n non-zero values and forces the waveform down to zero
outside the window. Therefore, appending further zeros outside the
window will not affect the DTFT.

The frequency resolution of the DFT is the sampling frequency divided by
the block size of the DFT. Zero padding can therefore be used to increase
the frequency resolution of the DFT, to sample the DTFT at more
places. But that does not change the limit imposed on the frequency
resolution (i.e., blurriness) of the DTFT by the length of the window.

Note that zero padding does not add any additional information to the
signal. The DTFT has already been “low-pass filtered” by being
convolved with the spectrum of the windowing function. Zero padding in
the time domain merely causes the DFT to sample the same underlying
DTFT spectrum at a higher resolution, thereby making it easier to
visually distinguish spectral lines and to locate their peak more precisely.



@ Digital filters
FIR filters



Digital filters

Filter: suppresses (removes, attenuates) unwanted signal components.

» low-pass filter — suppress all frequencies above a cut-off frequency

» high-pass filter — suppress all frequencies below a cut-off frequency,
including DC (direct current = 0 Hz)

» band-pass filter — suppress signals outside a frequency interval
(= passband)

» band-stop filter (aka: band-reject filter) — suppress signals inside a single
frequency interval (= stopband)

» notch filter — narrow band-stop filter, ideally suppressing only a single
frequency

The term “filter” is sometimes extended to other LTI systems, e.g.

» all-pass filter — maintains amplitude for all frequencies, but modifies phase
» comb filter — adds an echo to create frequency-dependent interference

For digital filters, we also distinguish

> finite impulse response (FIR) filters
» infinite impulse response (IIR) filters

depending on how far their memory reaches back in time.
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Window-based design of FIR filters

Recall that the ideal continuous low-pass filter with cut-off frequency f.
has the frequency characteristic

1A < S /
H(f)‘{o i [f] > fe 'e“<2fc>

and the impulse response

sin 27t f
27t f.
Sampling this impulse response with the sampling frequency fs of the

signal to be processed will lead to a periodic frequency characteristic,
that matches the periodic spectrum of the sampled signal.

h(t) = 2fe——F— = 2fc - sinc(2fc - t).

There are two problems though:
> the impulse response is infinitely long
> this filter is not causal, that is h(t) # 0 for ¢t <0
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Solutions:

» Make the impulse response finite by multiplying the sampled h(t)
with a windowing function

» Make the impulse response causal by adding a delay of half the
window size

The impulse response of an n-th order low-pass filter is then chosen as

sin[2ri(i — n/2) fc/fs] ws
on(i —n/Q)fe/fe

where {w;} is a windowing sequence, such as the Hamming window

hi = 2fc/fs .

w; = 0.54 — 0.46 X cos (27i/n)

with w; = 0 for i < 0 and i > n.

Note that for f. = fs/4, we have h; = 0 for all even values of i. Therefore, this special case
requires only half the number of multiplications during the convolution. Such “half-band” FIR
filters are used, for example, as anti-aliasing filters wherever a sampling rate needs to be halved.
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FIR low-pass filter design examples

order n = 10

0.3

0.2

0.15

0.1

0.05

-0.05

ot
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2 4 6
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FIR low-pass filter design examples

order n = 30

0.3 1.2
0.25 ® 1 1

0.2
0.8

0.15
0.6

0.1
0.4

0.05
06000®®® o o 0%%, 02

° u&
-0.05 0
0 10 20 30 - Yam Yem Yam 0 Yam Yem Yam 0w
time-domain samples DTFT frequency (1 period)
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FIR low-pass filter design examples

order n = 60

0.3 1.2

1

0.8

0.6

0.4

0.2

0

0 20 40 60 - Yam Yem Yam 0 Yam Yem Yam 0w

time-domain samples DTFT frequency (1 period)



FIR low-pass filter design example (DSP.jl)

order: n = 30, cutoff frequency (—6 dB): fc = 0.25 X f;/2, window: Hamming

using DSP; b = digitalfilter(Lowpass(0.25), FIRWindow(hamming(30)))
f = convert(ZeroPoleGain, PolynomialRatio(b, [1])); H, w = freqresp(f)
° 025
10 F
020 |
05 °
0.15
<
£ 0.0 o 010
Zos | ° 0.05
000 fesee®?e, T T AL TPPTYS
S0 b lil lll
. -] . . . . .
-1 0 1 2 0 10 20 30
Re(x)
ot T
0.7 |
. -10 | w2 b
o
A w4 b
o -20 [ 9
$ ol
=S a
Q -30 —w/4 F
S
o —2 b
_a0 |
—0.757 |
_so Lt . . . . I . . ) .
0 /4 /2 0.75m m 0 /4 /2 0.75m s
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Filter performance

An ideal filter has a gain of 1 in the pass-band and a gain of 0 in the stop
band, and nothing in between.

A practical filter will have
» frequency-dependent gain near 1 in the passband
» frequency-dependent gain below a threshold in the stopband
» a transition band between the pass and stop bands

We truncate the ideal, infinitely-long impulse response by multiplication
with a window sequence.

In the frequency domain, this will convolve the rectangular frequency
response of the ideal low-pass filter with the frequency characteristic of
the window.

The width of the main lobe determines the width of the transition band,
and the side lobes cause ripples in the passband and stopband.
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Low-pass to band-pass filter conversion (modulation)

To obtain a band-pass filter that attenuates all frequencies f outside the
range fi < f < fn, we first design a low-pass filter with a cut-off
frequency (fi — f1)/2. We then multiply its impulse response with a sine
wave of frequency (fi + f1)/2, effectively amplitude modulating it, to
shift its centre frequency. Finally, we apply a window function:

sin[Tt(' n/2)(fo — fi)/ fs)
—n/2)(fo — fi)/ fs

Aln- 0

T
—fh —fl 0 f| fh _@ 0 fh;rﬁ ¥

hi = (fo = )/ fs- ~cos[mi( fo + fi)/ fs] - wi
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Band-pass filter example (modulation)
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Low-pass to high-pass filter conversion (freq. inversion)

In order to turn the spectrum X (f) of a real-valued signal x; sampled at
fs into an inverted spectrum X'(f) = [X(fs/2 — f)]* = X(f £ fs/2), we
merely have to shift the periodic spectrum by f;/2:

—f 0 = f —fs 0 L f -L oo L f

This can be accomplished by multiplying the sampled sequence x; with
y; = cosTifst = cos i = ei™, which is nothing but multiplication with
the sequence

1L -1,1,-1,1,-1,1, -1, .

So in order to design a discrete high-pass filter that attenuates all
frequencies f outside the range f. < |f| < fs/2, we merely have to
design a low-pass filter that attenuates all frequencies outside the range
—fc < f < fe, and then multiply every second value of its impulse
response with —1.
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High-pass filter example (freq. inversion)

0.3 1.2
0.25 1

0.2
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High-pass filter example (subtract from impulse seq.)
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Linear phase filters

A filter where the Fourier transform H(f) of its impulse response h(t) is
real-valued will not affect the phase of the filtered signal at any
frequency. Only the amplitudes will be affected.

VfeR:H(f)eR <= VteR:h(t)=I[h(-1)]"

A phase-neutral filter with a real-valued frequency response will have an
even impulse response, and will therefore usually be non-causal.

To make such a filter causal, we have to add a delay At (half the length
of the impulse response). This corresponds to multiplication with
e 2™ifAt in the frequency domain:

h(t — At) e—o H(f) e 2mifAt

Filters that delay the phase of a signal at each frequency by the time At
therefore add to the phase angle a value —27jfAt, which increases
linearly with f. They are therefore called /inear-phase filters.

This is the closest one can get to phase-neutrality with causality.
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O IIR filters
z-transform
Filter design



Finite impulse response (FIR) filter

T
n -1

[
bo

(see slide 25)
Transposed implementation:
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Infinite impulse response (lIR) filter
N M
Zak “Yn—k = Z b Tnom
k=0 m=0
M
Yn = (Z b Tpn—m —
m=0

Usually normalize: ag =1

N
> ay- ynk> Jao
k=1

] ) . max{M,N} =
Direct form | implementation: “filter order”
—1
Tn bO q_\ Qg Yn
N
—1 -1
z z
b ) o
Tn—1 g Yn—1
1 -1
= =
bo e
Tp_2 &) Yn—2
—1 -1
z z
b3 /+\ —as
Tn—3 N Yn—3
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Infinite impulse response (IIR) filter — direct form |l

M N
Yn = (Z bm *Tn—m — Zak . ynk> /ao
m=0 k=1

Direct form Il:

Tn

aa 1 bo

Transposed direct form II:

Tn, bo ag Yn
bl —ai
b2 —ay
b3 —as
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Polynomial representation of sequences

We can represent sequences {z,} as polynomials:

X(v) = Z "

n=—oo

Example of polynomial multiplication:

(1 + 2v + 3v¥) - (2+1)
2 4+ 4v + 602
+ v + 202 + 38
=2 4+ 5v + 8?2 + 33

Compare this with the convolution of two sequences (in Julia):
conv([1l 2 3],

[2 1]) == [2 5 8 3]
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Convolution of sequences is equivalent to polynomial multiplication:

{hn} x{zn} = H{yn} = wyn= Z hi - Tn_p

k=—o0
Lol
H@w) -X(w) = (Z hnv"> (Z T )

Z Z hk'In_k~Un

n=—o0 k=—o0

Note how the Fourier transform of a sequence can be accessed easily
from its polynomial form:

—JW E Tpe —an

n=-—oo



Example of polynomial division:

1 oo
=l4av+a*’>+d+-- = a"v"
1—av T;)
1 + av + da®® +
l—av |1
1 — av
T UYn av
® av — a*v?
W)
a“v
v
Yn—1

Rational functions (quotients of two polynomials) can provide a
convenient closed-form representations for infinitely-long exponential
sequences, in particular the impulse responses of IIR filters.

o



transform

The z-transform of a sequence {x,,} is defined as:

X(2) = Z Tz "

n=—oo

Note that this differs only in the sign of the exponent from the polynomial representation discussed
on the preceding slides.

Recall that the above X(z) is exactly the factor with which an
exponential sequence {z"} is multiplied, if it is convolved with {x,, }:

(="} {wn} = {un}

i 2R = 2" Z 27k =2 X(2)

k=—o00 k=—00
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The z-transform defines for each sequence a continuous complex-valued
surface over the complex plane C.

For finite sequences, its value is defined across the entire complex plane
(except possibly at z =0 or |z| = o0).

For infinite sequences, it can be shown that the z-transform converges
only for the region

Tn+1
Tn

Tn+1
Tn

lim

n—oo

< |7| < I|m

— 00

The z-transform identifies a sequence unambiguously only in conjunction with a given region of
convergence. In other words, there exist different sequences, that have the same expression as their
z-transform, but that converge for different amplitudes of z.

The z-transform is a generalization of the discrete-time Fourier
transform, which it contains on the complex unit circle (]z] = 1):

1 FRON) = X () Z

where w = 271%



Properties of the z-transform

If X(z) is the z-transform of {z,}, we write here {z,} &0 X (z).

If {x,} &0 X(z) and {y,} e Y (z), then:

Linearity:

{ax, + by, } oo aX(z) + bY (2)
Convolution:

{zn} * {yn} o0 X(2) - Y (2)
Time shift:

{Tpir} oo sz(z)

Remember in particular: delaying by one sample is multiplication with z 1.
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Time reversal:
{z_n} oo X(z7)
Multiplication with exponential:
{a "z, } &0 X(az)
Complex conjugate:
{2} oo X7(2")

Real/imaginary value:

Rz} oo S(X(2) +X°(2))
(S} oo 3:(X(2) - X°(=")

Initial value:

zo= lim X(2) ifx,=0foralln<0

zZ—00



Some example sequences and their z-transforms:

Ty, X(2)
On 1
z 1
Uy, =
z—1 1—271
A z 1
" z2—a 1—az1
z
nu,
(2 —1)?
2 2(z+1)
n%uy, 7@ —7):
an z
ey,
z — e’
n—1 1
a(n—k) -
<k: - 1)e R I PRk

sin(wn + ©)uy,

22 sin() + zsin(w — ¢)
22 —2zcos(w) +1




Example:

What is the z-transform of the impulse response {h,,}
of the discrete system y,, = ©,, + ayn_1?

Yn = Tn + AYn—1
Y (2) = X(2) + az7'Y (2)
Y(2) —az7'Y(2) = X(2)
Y(2)(1—az7t) = X(2)
Y(z 1 z

) _
X(z) 1l—az! z-a

Since {yn} = {hn} * {x,}, we have Y(z) = H(z) - X(z) and therefore

:Y(Z): z :1—’—@2714—0‘2272_’_...
X(z) z-—a

H(z)

where polynomial long division returns the causal impulse response
ho=1,h1 =a,hp =a® ..., h, =a" foralln>0

We have applied here the linearity of the z-transform, and its time-shift and convolution properties.
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z-transform of recursive filter structures

. -1
Consider the discrete system defined by *» bo % Yn

k

m
Zal Yn—1 = bl *Tp—1 Tp_1 é9<+> 6) - > Yn—1
=0

=0

or equivalently P O=—— ..
k m P b, a 21
aoYn + Z ap - Yn—1 = Z bl cTp—1 Tn—m Yn—k
=1 1=0

m k
Yn = aal . (Zbl c Xy — Zal ‘ynl>
=0 =1

What is the z-transform H(z) of its impulse response {h,}, where

{yn} = {hn} * {CEn}?
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Using the linearity and time-shift property of the z-transform:

k m
E ar - Yn—1 = E by - Tp—y
=0 =0

k m
Z az - Y(2) = Z bzt X(2)
1=0 1=0

k m
Y (2) Z a2t = X(2) Z bzt
1=0 =0

Y(Z) _ ZZW;O blzil
X(2) Zf:o ayz!

H(z) =

_ bo + blz_1 + b22_2 + by

z) =
(2) ap+arzl+apz=2+ - +agzF



The z-transform of the impulse re- z, bo agt oy

sponse {h,} of the causal LTI system ©=O
defined by 2y 2
1 —ap
Tp—1 @ @ Yn—1
k m
D Y1 =3 b Ty 1 B
1=0 1=0 ® &
with {y,} = {h,} * {2, } is the -, T
rational function T = - Yn—k

bo+b1z7 F bz 24 by ™
H(z)=
ag+ a1zt +apz 24 +apz"k
(bm # 0, ag, # 0) which can also be written as

2B bz 4 b1z 4 bz by,

k m m—l1
H(Z) _ i Zl:O blZ —
PO DT A s ST P A SRR

H(z) has m zeros and k poles at non-zero locations in the z plane, plus
k —m zeros (if K > m) or m — k poles (if m > k) at z = 0.



This function can be converted into the form

H(lfcl 271 H(zfcl)

H(z):bi.l:l—:@.zk—m.l:li
agp k ap k
[[a—d-= [1G-da)
1=1 I=1

where the ¢; are the non-zero positions of zeros (H(c¢;) = 0) and the d;
are the non-zero positions of the poles (i.e., z — d; = |H(z)| — o0) of
H(z). Except for a constant factor, H(z) is entirely characterized by the
position of these zeros and poles.

On the unit circle z = ¥, H(e!¥) is the discrete-time Fourier transform
of {hp} (w= ﬂf/%). The DTFT amplitude can also be expressed in
terms of the relative position of e/ to the zeros and poles:

. I12,]e* —«al

[1},lei — dy

bo

Qo

|[H ()] =




Example: a single-pole filter

Consider this IR filter: Its z-transform
0.8 0.8z

z, 0.8 Y - —
- o i H() =105 7= 7 02

has one pole at z = di = 0.2 and one
zero at z = 0.

Wmplitude |H(2)|:

ap =1, a; = 0.2,
bo =0.8

xn:(snéyn:

Impulse Response

0.
0.6
o
]
2
5 04
£
<<
0.2
L. .,
0 2 4

n (samples)

N
i
o




Magnitude Response

0 0.2 0.4 0.6 0.8
Normalized Frequency (xr rad/sample)

Run this LTI filter at sampling frequency fs and test it with sinusoidial
input (frequency f, amplitude 1):  x,, = cos(2rtfn/fs)

Output:  y, = A(f) - cos(2rtfn/fs + 0(f))

What are the gain A(f) and phase delay 0(f) at frequency f7?

Answer: _
A(f) = [H(ePM /5]

SEH (1275 /5 o
_ s/ ) — pan—t SUL (/7)) atan
O(f) = 2H(7H17) = tan - ey, TH

Example: fs = 8kHz, f = 2kHz (normalized frequency fl% =0 5) = Gain A(2 kHz) =

(/)] = |HO) = | 23| = | 232y | = | S| = /203 = 0.784...
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Visual verification in Julia:

n
f
X
b

yi =

z =
H =
A

0:15; £fs = 8000
1500

cos. (2pi*f*n/fs)
[0.8]; a=[1, -0.2]
filt(b, a, x)

exp (1im*2pixf/fs)
0.8 x z/ (z-0.2)

abs (H)

theta = atan(imag(H), real(H))

y2 =

A x cos.(2pixf*n/fs.+theta)

plot(n, [x y1 y21;
color=[:blue :green :red],
shape=[:+ :diamond :x],
msize=6, mswidth = 4,
label=["x" "y (time domain)";;

"y (z-transform)"],

ylim=(-1.1, 1.5),
size=(250, 400))

1.5

——X
-y (time domain)
—<y (z-transform)
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Imaginary Part

Imaginary Part

1

z—0.7 1-0.7-2—1
z Plane
O X
-1 0
Real Part
z . 1
z—0.9 = 1-0.9-z—1
z Plane
O
-1 0
Real Part

How do poles affect time domain?

Amplitude

Amplitude

Impulse Response

1
0.5
0

0 10 20 30
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Impulse Response

1
0.5
0

0 10 20 30

n (samples)



Imaginary Part

Imaginary Part

z Plane

-1

0
Real Part

z Plane

-1

0
Real Part

Amplitude

Amplitude

Impulse Response

1
0.5
0
0 10 20 30
n (samples)
Impulse Response
20
10
0
0 10 20 30

n (samples)



— 22 _ 1
H(Z) T (2—0.9-€i7/6).(2—0.9-e=i7/6) T 1—1.8cos(m/6)z~1+0.92.272

z Plane Impulse Response
1 2
3
S 0 & =
2 X g o
E 3
-1 e 1
-1 0 1 0 10 20 30
Real Part n (samples)
2 1
H(Z) = (Zfejﬂ/ﬁ):z(zfefj‘ff/ﬁ) = 1—2cos(m/6)z—1+2—2
z Plane Impulse Response
1 5
3 .
o X g
> R
5 o o3 =
S . IS
g X < *
E
_1 _5
-1 0 1 0 10 20 30

Real Part n (samples)



Imaginary Part

Imaginary Part

ZZ

= (2=0.9:e77/2).(2—0.9-e 17/2)

z Plane
1 EEVE
0 $
-1 X :
-1 0 1
Real Part
-z - _1
T oz+41 T 14271
z Plane
1
0} X 0]
_1 .
-1 0 1
Real Part

Amplitude

Amplitude

_ 1 _ 1
T 1-1.8cos(m/2)z=1+0.92-2=2 T 1+0.92-2—2

Impulse Response

0 10 20 30
n (samples)

Impulse Response

0 10 20 30
n (samples)



lIR filter design goals

The design of a filter starts with specifying the desired parameters:

» The passband is the frequency range where we want to approximate
a gain of one.

» The stopband is the frequency range where we want to approximate
a gain of zero.

» The order of a filter is the maximum of the number of zeros or poles
it has in the z-domain, which is the maximum delay (in samples)
needed to implement it.

» Both passband and stopband will in practice not have gains of
exactly one and zero, respectively, but may show several deviations
from these ideal values, and these ripples may have a specified
maximum quotient between the highest and lowest gain.

» There will in practice not be an abrupt change of gain between
passband and stopband, but a transition band where the frequency
response will gradually change from its passband to its stopband
value.



lIR filter design techniques

The designer can then trade off conflicting goals such as: small transition
band, low order, low ripple amplitude or absence of ripples.

Design techniques for making these tradeoffs for analog filters (involving
capacitors, resistors, coils) can also be used to design digital IIR filters:

Butterworth filters: Have no ripples, gain falls monotonically across the pass
and transition band. Within the passband, the gain drops slowly down to
1—4/1/2 (=3 dB). Outside the passband, it drops asymptotically by a factor
2™ per octave (IV - 20 dB/decade).

Chebyshev type | filters: Distribute the gain error uniformly throughout the
passband (equiripples) and drop off monotonically outside.

Chebyshev type Il filters: Distribute the gain error uniformly throughout the
stopband (equiripples) and drop off monotonically in the passband.

Elliptic filters (Cauer filters): Distribute the gain error as equiripples both in
the passband and stopband. This type of filter is optimal in terms of the
combination of the passband-gain tolerance, stopband-gain tolerance, and
transition-band width that can be achieved at a given filter order.



lIR filter design in MATLAB

The aforementioned filter-design techniques are implemented in the
MATLAB Signal Processing Toolbox in the functions butter, chebyl,
cheby2, and ellip. They output the coefficients a,, and b,, of the
difference equation that describes the filter.

These can be applied with == = i YT
Fle Edt Analsis Targets View Window Help
filter to a sequence, or DEE&R[a~id D\@\‘Eﬁﬁ%mrﬂébleﬁ [
. . . Current Filter Information ——— —Filter Specifications
can be visualized with
zplane as poles/zeros in e |
the z-domain, with impz e ™ T
as an impulse response,
and with freqz as an i s — R
amplitude and phase —— = =
Eea—| PR | v 9 || vis: @ g
spectrum. ] [ —
p - , e
Call filterDesigner for | =/ ] I = P —
. .
an interactive GUI. =
=il
B
[Ready

MATLAB Filter Designer



Cascade of filter sections

Higher-order IIR filters can be numerically unstable (quantization noise).

A commonly used trick is to split a higher-order IIR filter design into a
cascade of [ second-order (biquad) filter sections of the form:

In bO Yn
¥ ¥
b1 H( ) bo + b1Z_1 + b22_2
Z)=
x x 14+ a1271 +arz2
bo

Filter sections H1, H», ..., H; are then applied sequentially to the input
sequence, resulting in a filter

l l
br.o + bk 12’71 + b 22’72
H — H — ) ) )
(2) kli[l k(2) kUI 14 ag127 1 + ag 272

Each section implements one pair of poles and one pair of zeros. Jackson’s algorithm for pairing
poles and zeros into sections: pick the pole pair closest to the unit circle, and place it into a
section along with the nearest pair of zeros; repeat until no poles are left.

N
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Butter h filter design example

z Plane Impulse Response
1 1
& 05 g
> 2 05
© 0 0 X 3
= g o
()]
S _05 <
E 0
1 e
-1 0 1 0 10 20
Real Part n (samples)
0 0
g g
o 20 05,’
3 T 50
'c [0}
% -40 %
= T
-60 -100
0 0.5 1 0 0.5 1
Normalized Frequency (xn rad/sample) Normalized Frequency (xn rad/sample)

order: 1, cutoff frequency (—3 dB): 0.25 x fs/2

145 / 242



Butter h filter design example

z Plane Impulse Response
1 1
S 05 : ><X g
> 2 05
@ 0O X a
> ‘ X g
E -0.5 X
9 ) Lo
-1 0 1 0 10 20
Real Part n (samples)
0 0
g g
o —20 05,’ -200
3 k)
& -40 8 -400
= T
-60 -600
0 0.5 1 0 0.5 1
Normalized Frequency (xn rad/sample) Normalized Frequency (xn rad/sample)

order: 5, cutoff frequency (—3 dB): 0.25 x fs/2
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Chebyshev type | filter design example

z Plane Impulse Response
1 - 1
= X
& 05 : g
> 2 05
@ 0t - © X a
=) €
S _05 <
g - N
-1 X
-1 0 1 0 10 20
Real Part n (samples)
0 0
g g
o —20 :‘,’ -200
3 k)
& -40 8 -400
= T
-60 -600
0 0.5 1 0 0.5 1
Normalized Frequency (xn rad/sample) Normalized Frequency (xn rad/sample)

order: 5, cutoff frequency: 0.5 X fs/2, pass-band ripple: —3 dB
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Chebyshev type Il filter design example

z Plane Impulse Response
- 1
$ 05 ; X g
> 2 05
) o - O X 5
g -0.5 x <
£ . 0
X
1 © .0
-1 0 1 0 10 20
Real Part n (samples)
0 100
o 2
0
= 20 g
3 S -100
S -40 3
(o]
© o _
g £ 200
-60 -300
0 0.5 1 0 0.5 1
Normalized Frequency (xn rad/sample) Normalized Frequency (xn rad/sample)

order: 5, cutoff frequency: 0.5 X fs/2, stop-band ripple: —20 dB
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Elliptic filter design example

z Plane Impulse Response
1 Iq - 1
& 05 g
> 2 05
) o - O X 5
S €
()]
€ 05 v < ¢
£ - 0
-1 ag -
-1 0 1 0 10 20
Real Part n (samples)
0 0
P~ m
g 8 100
o 20 5
3 3 -200
S -40 3
(o]
© o _
g £ 300
-60 -400
0 0.5 1 0 0.5 1
Normalized Frequency (xn rad/sample) Normalized Frequency (xn rad/sample)

order: 5, cutoff frequency: 0.5 X fs/2, pass-band ripple: —3 dB, stop-band ripple: —20 dB
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\ filter design example

z Plane Impulse Response
1 R K3

g o5 2 g

> 2 05

£ 0 2

2 &

g -0.5 )

E © 0

1 S
-1 0 1 0 10 20
Real Part n (samples)
0 0

P~ m
g 8 100
o 20 5
3 3 -200
S -40 3
(o]
© o _
g £ 300

-60 -400

0 0.5 1 0 0.5 1
Normalized Frequency (xn rad/sample) Normalized Frequency (xn rad/sample)

order: 2, cutoff frequency: 0.25 X fs/2, —3 dB bandwidth: 0.05 x f;/2
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ak filter design example

z Plane Impulse Response
1 1
T i x .
& os5| - . 9
> 2 05
g 0 O €] S
g 0.5 ’ E
E ' % 0
1 e
-1 0 1 0 10 20
Real Part n (samples)
0 100
P~ m
g 8 50
o 20 5
(0]
2 s o0
S -40 3
(o]
© o _
g £ 50
-60 -100
0 0.5 1 0 0.5 1
Normalized Frequency (xn rad/sample) Normalized Frequency (xn rad/sample)

order: 2, cutoff frequency: 0.25 X fs/2, —3 dB bandwidth: 0.05 x f;/2
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Summary: FIR vs IIR filters

FIR filters:
+ easy to construct linear-phase filters (symmetric impulse response)
-+ numerically stable

No poles means: none can get dangerously close to the unit circle.

— higher order, i.e. computationally expensive

IIR filters:

+ can achieve given transition bands with lower order, i.e.
computationally less expensive, as a few multiplications and delays
can achieve long impulse responses (slowly decaying oscillations)

— can become numerically unstable
(i-e., impulse response not absolutely summable)

— generally not linear phase, and less control over phase behaviour
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Zero-phase IIR filtering (filtfilt)

In non-realtime applications, where the entire input sequence is available
in advance, a simple trick can be used to apply an IIR filter H without
causing any phase change in the filtered signal.

@ apply the (causal) filter H normally in forward direction
@ time-reverse the resulting sequence

©® apply the filter H again (i.e., in backwards direction)
O time-reverse the resulting sequence again

This is equivalent of applying the filter twice, once normally and once
with a time-reversed impulse response.

Reversing a real-valued sequence in the time domain corresponds to taking the complex conjugate
in the frequency domain.

Resulting filter G (for h,, € R):

{gn} = {hn} * {h—n}
G(ej‘b) = H(ej"") . H(e‘ja) = H(ej“") . H*(ejd’) = |H(ej“")|2

Basic idea in Julia (omitting any optimization, padding, initialization):
filtfilt(b, a, x) = reverse(filt(b, a, reverse(filt(b, a, x))))
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@ Random signals



Random variables, vectors, and processes

Let S be the set of all possible outcomes (results) of some experiment.
We call S the sample space of that experiment.

A random variable X is a function
X:S—F

that assigns to each outcome ¢ € S a value X(¢) € E, where usually
ECRor ECC.

A random vector X(¢) = (x1(¢), x2(C), - . ., x,(¢))T is a vector of n
random variables, or equivalently a random variable that outputs vectors,
e.g. X(¢) e R".

A continuous-time random process X : S — ER is a function that maps
each experimental outcome ¢ € S onto a continuous-time function x(¢),
and a discrete-time random process X : S — E” maps each outcome (
onto a discrete sequence {Z¢ p}n.

The ensemble of a random process is the set of all functions (or
sequences) from which it picks its output.

In the following, we will usually omit outcome parameter ¢ from random variables, etc., for
notational convenience, and use boldface roman to distinguish random variables from samples.
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Random sequences

A discrete-time random process or random sequence {x,} can also be
thought of as a discrete sequence of random variables

ceey X2,X1,X0,X1,X2, ...

Each time we repeat an experiment, we observe one realization or sample
sequence
cees L2, _1,%0,T1,L2, ...

of that random process. (We cannot observe the outcome ( directly.)

Each individual random variable x,, in a random sequence is
characterized by its probability distribution function

Py, (a) = Prob(x, < a)

and the entire random process is characterized completely by all joint
probability distribution functions

me,--~7xnk (a1,...,ar) = Prob(xy,, <ai1 A...Axp, <ag)

for all possible sets {x,,,...,%p, } and all k > 0.
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Two random variables x,, and x,,, are called independent if

Pxn7x7n (a’7 b) Pxn (a’) Xm (b)

The derivative py, (a) = Py, (a) is called the probability density function.

This helps us to define quantities such as the
> expected value E(x,) = [ apx, (a)da
> mean-square value (average power) E(|x,,[?) = [|a|?px, (a)da
» variance Var(x,) = E[|x, — E(x,)[?] = E(|x,]?) — |E(x,)/?
» correlation Cor(X,, Xm) = E(x,, - X))
>

covariance Cov(x,,Xn,) = E[(x, — E(xp)) - (xm — E(x))"] =
E(xnx;,) — E(xn)E(xm)”
The expected value E(+) is a linear operator: E(ax) = aE(x) and
E(x+y) =E(x)+ E(y).
Variance is not linear, but Var(ax) = a?Var(x) and, if x and y are
independent, Var(x +y) = Var(x) + Var(y).



Stationary processes

A random sequence is called strict-sense stationary if

Pxn1+la"'7xn,k+l(a17 s vak) = Pxnl,m,xnk (alﬂ ) ak)

for any shift [ and any number k, that is if all joint probability
distributions are time invariant.

If the above condition holds at least for £k = 1, then the mean
E(x,) = m.,

and variance
E(lxn — mw|2) = U:%

are constant over all n. (o, is also called standard deviation).

If the above condition holds in addition also for k = 2, we call the
random sequence wide-sense stationary (WSS).

If a sequence is strict-sense stationary, it is always also wide-sense stationary, but not vice versa.
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A wide-sense stationary random process {x,} can not only be
characterized by its mean m, = E(x,,) and variance 02 = E(|x,, — m|?)
over all sample positions n.

It can, in addition, also be characterized by its autocorrelation sequence
Gua(k) = E(Xnk - X,,)

The autocorrelation sequence of a zero-mean version of a sequence is
called the autocovariance sequence

Yoo (k) = E[(Xnir — Mma) - (Xn — ma2)’] = dua(k) — |mT\2

where v, (0) = o2.

A pair of stationary random processes {x, } and {y,} can, in addition,
be jointly wide-sense stationary and therefore be characterized by their
crosscorrelation sequence

Gay(k) = E(Xn+k - ¥5)
Their crosscovariance sequence is then

’}/Iy(k) = E[(Xn+k - m.L) : (yn - my)] = ¢Iy(k) - mﬂﬁmy

The complex conjugates ™ are only needed with complex-valued sequences.



Ergodic processes

If ..., x_2,X_1,Xq,X1,X2,...is a WSS random sequence, then we can
estimate the mean value and auto-correlation sequence from these
random variables from any location n as

m, = E(x,)
¢ww(k) E(Xn+kxn)

What if we have just one sample sequence ...,x_»,z_1,%g,T1,Z2,...7
If we still can estimate mean and auto-correlation from that as

1 L X
My = LIme CTANE] 2. Ty = N E Ty for large N
1§ o1 .
Goo(k) = im 2777 HZ:_L%%% N Z: Lotk

then we call the process mean ergodic and correlation ergodic, resp.
Ergodicity means that single-sample-sequence time averages are identical to averages over the
entire ensemble for a random process, or, in other words, variation along the time axis looks similar

to variation across the ensemble.
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Deterministic crosscorrelation sequence

For deterministic finite-energy sequences {x,} and {y,}, we can define
their crosscorrelation sequence as

o0 o0
Coy(R) = D @igh-y; = Y, Ti- iy

1=—00 1=—00

If {y} is similar to {yn }, but lags | elements behind (z,, = yn—_1), then cgy (1) will be a peak in
the crosscorrelation sequence. It can therefore be used to locate shifted versions of a known
sequence in another one.

Swapping the input sequences mirrors the output sequence: cuy(k) = ¢, . (k).

This crosscorrelation sequence is essentially just convolution, with the
second input sequence mirrored:

{cay(n)} ={an} = {y_,}
It can therefore be calculated equally easily via the DTFT:
Cuy(e?) = X(e/) - V()

DSP.jl's xcorr function calculates the crosscorrelation sequence for two finite sequences (vectors),
equivalent to xcorr(x,y) = conv(x,reverse(conj(y)))
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Using xcorr to estimate the crosscorrelation

Given two m-samples long finite sequences {z,,}7" ; and {y,}m
sampled from two jointly correlation-ergodic WSS processes {x,,} and
{yn} we can estimate their crosscorrelation sequence

Py (k) = E(Xntx - ¥,)
for lags —m < k < m using the estimator

min{m,m—k}

~ 1 ;
Pay(k) = p | Z (Tntk  Yn)

n=max{1,1—k}

In other words, we calculate the deterministic cross-correlation sequence
of both sample sequences, and then divide the result for each lag k by
the length of the overlap, m — |k, e.g. as in
xcorr(x,y) ./ xcorr(ones(length(x)), ones(length(y))) ==
xcorr(x,y) ./ [1:m; m-1:-1:1]
But as k approaches +m the overlap drops and the variance of the
estimate raises! For a fixed variance, keep the overlap fixed.
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Example: estimating the auto-correlation/covariance of a periodic signal with xcorr

0.30

0.25

0.20

0.15

——xcorr(x, x)/o

0 100 500 600

200

300

400

400

0 100 200 300 400 500 600

x1 = rand(60); x = repeat(xl, 5); m = length(x)
mu = mean(x); o = [1:m; m-1:-1:1]

100 200 300

plot(plot. ([xcorr(x, x), xcorr(x, x)./o, xcorr(x, x.-mu), xcorr(x, x1)1)...;
label=["xcorr(x,x)" "xcorr(x, x)/o" "xcorr(x, x\u2212\uB5)" "xcorr(x, x1)"],

layout=(2,2))
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Demonstration of covert spread-spectrum communication:

n = randn(10000); a = 0.3; 1 = 1000

pattern = rand((-a, a), 1)

b0 = [zeros(2000); pattern; zeros(7000)]

bl = [zeros(4000); -pattern; zeros(5000)]

r=mn .+ b0 .+ bl

f1 = plot([n b0 bl r] .- [0 -3 -4 -7]; label = ["n" "bO" "b1" "r"], yticks= [])

x = conv(r,reverse(pattern))
# or: x = xcorr(r,pattern)
f2 = plot(x; label="xcorr")

xlims! (f1, 1, length(n)+1)
xlims!(£2, 1, length(n)+1)
plot(f1l, £2; layout=(2,1))

2000 4000 6000 8000 10000

-100

2000 4000 6000 8000 10000
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Deterministic autocorrelation sequence

Equivalently, we define the deterministic autocorrelation sequence in the
time domain as

czz(k § xz+kx
i=—00

This is just the sequence convolved with a time-reversed version of itself:
{eoa(k)} = {wi} = {z 3}
This corresponds in the frequency domain to
Cuu(e¥) = X (1) - X*(e2) = [X(e})%

In other words, the DTFT C,,(e¥) of the autocorrelation sequence
{czz(n)} of a sequence {x,} is identical to the squared amplitudes of
the DTFT, or power spectrum, of {z,}.

This suggests, that the DTFT of the autocorrelation sequence of a
random process might be a suitable way for defining the power spectrum
of that random process.

What can we say about the phase in the Fourier spectrum of a time-invariant random process?
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Power spectrum of a random sequence

For a zero-mean wide-sense stationary random sequence {x,} with
absolutely summable autocorrelation sequence

¢ww(k) = E(xn+k ' X:l)
we call the DTFT
er Z ¢zz(n e —jwn

of its autocorrelation sequence the power density spectrum (PDS) or
power spectrum of {x,}.

The power spectrum is real, even', non-negative and periodic.

" for real-valued sequences

165 / 242



The autocorrelation of a sequence {x,} with power spectrum &, (e¥) is

Gun(k) = ~ / & (€5)e dis

:% .

Since the variance of {x,} is

Var(x,) = ¢(0) = L / ! b (e)d

2 J_

we can interpret

as the variance of the output of an ideal band-pass filter applied to {x,}
with cut-off frequencies 0 < f| < fi.
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Filtered random sequences

Let {x,} be a random sequence from a WSS random process. The output

yYn = E hk~Xn_k: Z hn_k-xk

k=—o0 k=—o0

of an LTI applied to it will then be another random sequence, characterized by

my = E(yn) _E<Z i - X k): > hkE(xng)=ma Y hi

k=—o0 k=—o0 k=—o0

and

baa (k) E(xnik - Xy)
dyy(k) = Z_Zoo@m(k—z chn(i), where o) = S heehs.
In other words:
{8yu(n)} = {can(n)} = {daa(n)}
k= e = b} (&) = |H(E)P - buu(e)
Similarly:
{#ye(n)} = {hn} *{dux(n)}

N w (x - . .
{yn} = {hn}t*{xn} by (ef¥) = H(e): duu(e)
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Summary:

* x{h 7n}
v} = {ha} * () = ()} 3 (00} TS (B ()}
Proofs:
¢yz(l) - E( Yn+l < Z hk Xn4l— k) =
k=—o0
= Z hie - E(%, - Xntiok) = Z hi - ¢oa(l — k)
k=—o0 k=—o0
¢yy(l) - E(yn Yn+l = E< Z hk Xn k Z R 'Xn+l—m> =
k=—o0 m=—oo
= ih;c i hm Xnkxn+l m)WSS
k=—o0 m=—oo
= i hi - i N (R
k=—o0 m=—o0

k=—o0 i=—o00 i=—00 szoo
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A random sequence {x,,} is a white noise signal, if m, = 0 and
G2 (k) = 020k

The power spectrum of a white noise signal is flat:
b, (e) = o2,

A commonly used form of white noise is white Gaussian noise (WGN),
where each random variable x,, is independent and identically distributed
(i.i.d.) according to the normal-distribution probability density function

1 _<w—n;z)2

x, (L) = —F—=e %
Px, () ori?

x

Application example:

Where an LTI {y,} = {hn} * {x,} can be observed to operate on white
noise {x, } with ¢,.(k) = 020y, the crosscorrelation between input and
output will reveal the impulse response of the system:

¢ym(k) = Ui . hk
where ¢y, (k) = b5y (=k) = E(Yntr - Xp).
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Demonstration of covert spread-spectrum radar:

y retum
TPRITA Y

o 2500 5000 7500 10000

4000

3000

2000

1000

0 ©°200°00°0000000e°%°0°%°9° 0o ' 00 ' 90°90e0y30000°

-20 -10 0 10 20

x = randn(10000) # outgoing radar beam

h = [0, O, 0.4, 0, O, 0.3, 0, O, 0.2, 0, O] # target impulse response
y = conv(x, h) # return signal

f1 = plot(1:length(x), x; label = "x beam")

plot!(f1, 1:length(y), y .- 5, label = "y return", yticks=[])

¢ = conv(reverse(x),y) # detected target echos

lags = -20:20

£2 = sticks(lags, c[(length(c)-length(h))+2 .+ lags .+ 1];
markershape=:circle, legend=false)

plot(f1l, £2; layout=(2,1))
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Dot product on complex vectors and sequences

Given vectors z,y € R™, the dot product (or scalar product)
n
zoy=aly=>Y zy
i=1

leads to the Euclidean norm /z -z = VaTz = ||z|| > 0 with:

z-x=x'z=0 = x=(0...0)".

But if z,y € C™, this ( “positive definiteness”) no longer works. Example:

(1j)(}):1—1:0

Solution: define dot product over complex vectors as
n
T H
coy=a'y =yle=> zy
i=1

such that ||z|? = 2 -2 = 2M2 = Y z2f = 3|22

Similarly for cross-correlation of random variables and sequences.
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Spectral estimation: periodogram

Estimate amplitude spectrum of the noisy discrete sequence

zi, = sin(27jk x 8/64) + sin(2mtjk x 14.32/64) + n; with ¢ (i) = 46;

6 # block length

1000 # blocks averaged

1: (n*m)

randn (n¥m) +

sin. (2xpixk * 8.00 ./ n) +
sin. (2xpixk * 14.32 ./ n)

n
m
k
x

s1 = abs.(fft(x[1:n])/n)
s2 = abs.(fft(x[1:8n])/8n)

sl Absolute values of a single 64-element DFT of {z,}%%,; (rect. window).

The flat spectrum of white noise is only an expected value. In a single
discrete Fourier transform of such a sequence, the significant variance of
the noise spectrum becomes visible. It almost drowns the two peaks from
the sine waves.

s2 Absolute values of a single 512-element DFT of {z,,}3;, (rect. window).
With an 8x larger window, the bandwidth of each frequency bin is now
reduced 8x, so the sine functions stand out better from the noise.
However, the variance in each frequency bin relative to the expected value

remains the same.



Spectral estimation: averaging

Estimate amplitude spectrum of the noisy discrete sequence

zi, = sin(27jk x 8/64) + sin(2mtjk x 14.32/64) + n; with ¢ (i) = 46;

64 # block length

1000 # blocks averaged

1: (n*m)

randn (n¥m) +

sin. (2xpixk * 8.00 ./ n) +
sin. (2xpixk * 14.32 ./ n)
xx = reshape(x, n, m)

©
©
MowaE B

s3

s4

T Y P—
s3 = mean(abs. (fft(xx, 1)/n),dims=2)
s3 s4 s4 = abs. (mean(fft(xx, 1)/n,dins=2))
{2,359 cut into 1000 consecutive 64-sample windows, showing the
average of the absolute values of the DFT of each window.
Non-coherent averaging: discard phase information first.
This better approximates the shape of the power spectrum: with a flat noise floor.

Same 1000 windows, but this time the complex values of the DFTs
averaged before the absolute value was taken = coherent averaging.
Because DFT is linear, this is identical to first averaging all 1000 windows and then applying
a single DFT and taking its absolute value.

The windows start 64 samples apart. Only periodic waveforms with a period length that
divides 64 are not averaged away. This periodic averaging step suppresses both the noise
and the second sine wave.



Welch's method for estimating PSD

“Periodogram”: Single-rectangular-window DTFT power spectrum of a
random sequence {x,}: | X (w)|? with X (&) = Zivfol X, - e 27inw

Problem: % does not drop with increasing window length V.

“Welch’s method” for estimating the PSD makes three improvements:

» Reduce leakage using a non-rectangular window sequence {w;}
(“modified periodogram”)

» To reduce the variance, average K periodograms of length V.
» Triangular, Hamming, Hanning, etc. windows can be used with 50%
overlap (L = N/2), such that all samples contribute with equal

weight.

0<k<K
LTk = Tk-L4n * Wn, 0<n<N

Xp(@) = D wpn -2

K-1

Plw) =4 Z|Xk
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Periodic averaging

If a signal z(t) has a periodic component with period length ¢, then we
can isolate this periodic component from discrete sequence x,, = x(n/ fs)
by periodic averaging

L

N
_ . 1 1
T = LI|_>mOO L1 iZanﬂﬂ ~ N;xnﬂm ne{0,...,p—1}

but only if the period length in samples p = t, - fs is an integer.

Otherwise {z,, } may need to be interpolated and resampled at an integer multiple of t;l first.

Periodic averaging of z(t) corresponds in the time domain to convolution
with a windowed Dirac comb a(t) = w(t) - >, 0(t — tpi):

() = / 2(t — 5) - a(s)ds

In the frequency domain, this means multiplication with an tp_l spaced
Dirac comb that has been convolved with W (f).
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Parametric models of the power spectrum

If we understand the physical process that generates a random sequence,
we may be able to model and estimate its power spectrum more
accurately, with fewer parameters.
If {x,} can be modeled as white noise filtered by an LTI system H(el),
then N N

& (1) = of |H(e")2.
Often such an LTI can be modeled as an IIR filter with

bo+b1z7t + bz 2+ by ™
ag+ a1zt +apz 2+ +agz k"

H(e*) =

The auto-regressive moving-average model ARMA(k, m) is

m k
Xp = E by - Wy — E ai - Xp—q
=1

=0

where {w,,} is stationary white noise with variance o2 .

There is also the simpler AR(k) model x,, = w,, — Ele a; - Xp_jq.



® Digital communication
IQ sampling
AM/FM demodulation
Modems



Consider signal z(t) € R in which only frequencies f; < |f| < fi are of
interest. This band has a centre frequency of fc = (fi + fi)/2 and a
bandwidth B = fi, — fi. It can be sampled efficiently (at the lowest
possible sampling frequency) by downconversion:

> Shift its spectrum by — f.:
y(t) = (1) - =27
» Low-pass filter it with a cut-off frequency of B/2:

z(t) = B/_Z(T) -sinc((t — 7)B) -d7 eo Z(f)=Y(f) - rect(f/B)

» Sample the result at sampling frequency fs > B:

Zn = 2(n/ [5)

|Q sampling / downconversion / complex baseband signal
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X(/) 6(f + fo)

E S
_.}c 6 lec f _‘fc 6 ]}c f
Y(f) anti-aliasing filter Z(f) Z(f)
1/ /
! sample
/1 -
_2tfc _}c % 6 é .]éc ‘ f _2}1c _}c 6 B ]}c ‘ f

Shifting the center frequency f. of the interval of interest to 0 Hz (DC)
makes the spectrum asymmetric. This leads to a complex-valued
time-domain representation

@f: 2(f) #[2(=))]" = Tt : 2(t) e C\R).



|Q upconversion / interpolation

Given a discrete sequence of downconverted samples z,, € C recorded
with sampling frequency fs at centre frequency fc (as on slide 177), how
can we reconstruct a continuous waveform Z(t) € R that matches the
original signal z(¢) within the frequency interval fi to f,?

Reconstruction steps:
» Interpolation of complex baseband signal (remove aliases):

Z(t) = Z 2z - sinc(t - fs —n)
n=-—oo

» Upconvert by modulating a complex phasor at carrier frequency f..
Then discard the imaginary part (to reconstruct the negative
frequency components of the original real-valued signal):

#(t) = 20 (2(1) - )

= 2%((%(2@)) +I8(2(1)) - (cos2mfet + jsin27tfct))
=2R(3(t)) - cos 2mfct — 23 (£(t)) - sin 27 fct

Recall that 2R(c) = ¢+ ¢* for all ¢ € C.
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Example: 1Q downconversion of a sine wave

What happens if we downconvert the input signal
A _— A L
z(t) = A-cos(2mft + ¢) = 5 - 2mif IS 4 5 e 2THfi=io

using centre frequency f. and bandwidth B < 2f, with |f — f.| < B/2?

After frequency shift:
- A . . A . .
y(t) = a(t) - e 2mifet = > e2mi(f—fo)t+ie 4 > e 2mi(f+f)t—ie
After low-pass filter with cut-off frequency B/2 < f. < f + fc
A L .
1) = = . e2mi(f—f)t+ie
2(t) 5 e

After sampling:

2 = é . e271j(f_fc)n/fs+j¢
"2
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Software-defined radio (SDR) front end

IQ downconversion in SDR receiver:

) >|| == Hsample}%(}

2(t) — —90° | y(t) 2(t) Zn

)

>|| == sample}% |

cos(2mtfct)

The real part R(z(t)) is also known as “in-phase” signal (1) and
the imaginary part S(z(t)) as “quadrature” signal (Q).

IQ upconversion in SDR transmitter:

& S o B

#(t) < +90° | 2(¢) 2(t) n

L ®

=k

cos(27tf.t)

In SDR, z(t) is the antenna voltage and z,, appears on the
digital interface with the microprocessor.
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SDR front-end hardware examples

Low-cost USB-dongle receivers: ~£20
Realtek RTL2832U/R820T (RTL-SDR)

USB2, fs < 2.5 MHz, f. = 24-1776 MHz, 8-bit IQ samples

https://osmocom.org/projects/rtl-sdr/wiki

Mid range transceivers: £250-£2k
HackRF One, Ettus USRP B200/N200, etc.
USB3 or 1-Gbit Ethernet, fs = 10-50 MHz,
fc = 0-6 GHz, 16-bit 1Q samples

SDR front ends are also
commonly used today in
military radios, spectrum
surveillance, amateur-radio
stations, mobile-phone base
stations, MRI machines,
radars, etc.

High-end measurement kit: £3k—£40k

National Instruments (NI), Rohde&Schwarz, etc.

10 Gbit/PCle, FPGA, B, f; = 60-1000 MHz,
fo = 0-14 GHz, float32 IQ samples in volts



https://osmocom.org/projects/rtl-sdr/wiki

Visualization of IQ representation of sine waves

(t) — —90° | y(t) 2(t)

cos(27tf.t) I

Recall these products of sine and cosine functions:

> cos(z) - cos(y) = 3 cos(z — y) + 1 cos(z + )

> sin(z) - sin(y) = 3 cos(z — y) — 3 cos(z + )

> sin(z) - cos(y) = 3 sin(z — y) + 3 sin(z + y)
Consider: (with z = 27tfct)

> sin(z) = cos(z — 37)

cos(x) - cos(z) = § + 3 cos2z

sin(z) - sin(z) = 1 — 1 cos2z

cos(x) - cos(z — ) = 1 cos(y) + & cos(2z — )

1 1

| 4
>
» sin(z) - cos(z) = 0+ 3 sin2z
>
» sin(xz) - cos(z — @) = 5 sin(p) + 5 sin(2z — )
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|Q representation of amplitude-modulated signals

Assume voice signal s(t) contains only frequencies below B/2.
Antenna signal amplitude-modulated with carrier frequency fc:
x(t) = s(t) - A - cos(2mft + )

After 1Q downconversion with centre frequency f! = f¢:

2(t) = g - s(t) - 2l e S0
With perfect receiver tuning f! = f: /\
2(t) = 4 s(t) - e¥®
2 \J RE=(0)
Reception techniques:
» Non-coherent demodulation (requires s(t) > 0):

s(t) = Zl=(t)]
» Coherent demodulation (requires knowing ¢ and f! = f.):
s(t) = ZR[=(t) - e
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|Q representation of frequency-modulated signals

In frequency modulation, the voice signal s(t) changes the
carrier frequency fo: fo(t) = fo+ k- s(¢)

Compared to a constant-frequency carrier signal cos(27tf.t + ), to allow variable frequency, we
need to replace the phase-accumulating term 27t f.t with an integral 27t [ fc(t)dt.

Frequency-modulated antenna signal:
t
x(t) = A- cos {271- / [fe+ k- s(m)]dr + 90]
0
t
= A-cos |:27'[fct + 271tk - / s(r)dr + go]
0

After 1Q downconversion from centre frequency fe:

2(t) = é . e2mik J§ s(r)dr+ie

Therefore, s(t) is proportional to the rotational rate of z(t).
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Frequency demodulating I1Q samples

Determine s(¢) from downconverted signal z(t) = 4 - 7k J s(T)dm+i¢

First idea: measure the angle Zz(t), where the angle operator / is
defined such that Zael® = ¢ (a,¢ € R,a > 0). Then take its derivative:

Problem: angle ambiguity, £ works only for —mt < ¢ < 7.

Ugly hack: MATLAB function unwrap removes 27t jumps from sample sequences

Better idea: first take the complex derivative

dz(t) _ é omjk - s(t) - Q27ik I s(r)dr+ije

e 2 SL=(0)

then divide by 2(t): 28 /2(t) = 2mjk - s(t)
Other practical approaches.

R[=(1)]

> 5(t) xS [dz(t) (1) /1202

> s(t) ox Lo

/At

(= At)
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Digital modulation schemes

Pick z, € C from a constellation of 2" symbols to encode n bits:

ASK

BPSK

QPSK

FS
o |0
e | o o
e | o o
e |0

.
b
2
N

-
4
-
|/
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Basic model of a modem

bits symbols N impulses transmit filter IQ
b; €{0,1} a; €5 S aid(t — its) xhe(t) upconversion
noise LTI channel
+n(t) xhe(t)
: data . receive filter IQ
bits slicer sampling *he(t) downconv.

IQ up/down conversion: only required for pass-band channels (e.g., radio)
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Pulse Amplitude Modulation (PAM)

Baseband transmission (e.g., for wires), no IQ up/down conversion

» binary PAM: a; € S ={-A4,A} CR

1 bit/symbol = bit rate (bit/s) = symbol rate (baud)

> m-ary PAM: a; € S ={A4,..., A} CR

k = log, m bit/symbol = bit rate (bit/s) > symbol rate (baud)
» bit sequence {b;} — symbol sequence {a;},
ai = f(bris- - brive—1)

Pulse generator (symbol rate fs = t;1):
2(t) = Z a; - O(t — its)
Transmit filter: = = & * hy, X(f) = X(f) - Hi(f)
= Zai . ht(t —
i

Channel: -
A(t) = /0 he(s)(t — s)ds + n(#)
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PAM reception

Receive filter applied to channel output z(t):

(oo}
y(t) = / h(5)2(t — s)ds
0
Initial symbol pulses #(t) have now passed through three LTls:
y=hxZ2

h = h*he*h,
H(f) = H(f) - Hc(f) - He(f)

Sample y(t) at times t,, = nts + tq with delay ¢4 where pulse magnitude
is largest:

yn = y(nts + tq) Zaz (n —4)ts +tq) + vn

where v,, = v(nts + tq) is the sampled noise v = n * h,.
Data slicer: compare y,, against thresholds and convert detected nearest
symbol a;, € S back into bits b}, ..., b, . 1-
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Synchronization

The receiver needs to know the times ¢,, when to sample y(t).
» Local clock generators have temperature-dependent frequency drift.

» In some transmission systems, the transmitter provides the sample
clock on a separate wire (or wire pair).
For example: DVI and HDMI video cables contain four wire pairs: three transmitting
red/green/blue pixel bytes (using an 8b/10b line encoding), and one providing a pixel clock
signal, which the receiver multiplies 10X to get a bit clock.

» More commonly, the receiver has to extract the sample clock from
the received signal, for example by tracking the phase of transitions
(phase locked loop, PLL).

This works reliably only if there are regular transitions.

® Some systems use a line encoding (e.g., Manchester code, 8b/10b
encoding) to ensure regular transitions.

Some line encodings add a spectral line at the symbol rate, which the receiver can
extract with a band-pass filter, others first require a non-linear step, e.g. squaring.

® Others use a scrambler: the data bits b; are XORed with the output
of synchronized deterministic random-bit generators (e.g., a
maximum-length linear feedback shift register), in both the sender
and recipient, to make long runs of the same symbol unlikely.
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Intersymbol interference

For notational convenience: set t4 = 0 and allow A(t) to be non-causal.

Yn = anh(0) + Y ash((n — i)ts) + v,
i#n

. 1, ¢=0

otherwise y,, will depend on other (mainly previous) symbols, not just on
a, = intersymbol interference. (See also: interpolation function)

Ideally, we want

Nyquist ISI criterion
Un =an+vn & h(t)- YOt —its) = (1)

& H(f)*fsz5(f—ifs):1
< ZH(f*ifs):ts
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Some possible pulse-shape choices

> h(t) = rect(t/ts) o H([) = tssinc(f/ f)
Rectangular pulses may be practical on fibre optics and short cables, where there are no
bandwidth restriction. Not suitable for radio: bandwidth high compared to symbol rate.

> h(t) =sinc(t/ts) oo H(f) = tsrect(f/fs)
Most bandwidth efficient pulse shape, but very long symbol waveform, very sensitive to
clock synchronization errors.

» Raised-cosine filter: rectangle with half-period cosine transitions

tsv |f|§t5/2_ﬁ

H(f) = {tscos® FZ(Ifl —ts/2+B), ts/2-B<|fl|<ts/2+P
0, lfl>ts/2+ 8

h(t) = sinc(t/ts)1°i‘°‘(247;5§2

Transition width (roll-off) 3 with 0 < 3 < t5/2; for B = 0 this is H(f) = tsrect(f/fs).
> Gaussian filter: both h(t) and H(f) are Gaussians (self-Fourier)

Fastest transition without overshot in either time or frequency domain, but does not satisfy
Nyquist IS criterion.
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Optimal transmit and receive filtering

Nyquist ISI criterion dictates H(f) = Hi(f) - H(f) - He(f).
Bandwidth limits guide choice of Hi(f), and channel dictates H.(f) and

N(f).

How should we then choose H(f) H.(f)?

Select a received pulse spectrum P,(f), e.g. raised cosine. Then for some
arbitrary gain factor & > O:

H(f) = H(f) - He(f) - H(f) = k- P(f)

Optimal filters

Minimize noise variance Var(v,) = [ N(f) f)I?df at slicer relative to
symbol distance.

1
2

‘\/N(f)Hc(f)

E(f)VN()
He(f)

If N(f) and H.(f) are flat: |H.(f)| = |H:(f)|/K', e.g. root raised cosine.

1
2

[H ()| = &
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® Audiovisual data compression
Entropy coding
Transform coding

NarcrAarrala+iAn



Audiovisual data compression

Structure of modern audiovisual communication systems:

77777777777777777777777777

|
|
. sensor + perceptual entropy channel :
signal b . - . —» . |
sampling coding i coding coding i
| |
| |
| |
| |
| |
| |
| |
! noise —>  channel !
| |
| |
| |
| |
| |
tual | entropy channel |
human ) ; . percep . )
senses display decoding decoding decoding :
|
|
|

195 / 242



Audio-visual lossy coding today typically consists of these steps:

>
>

A transducer converts the original stimulus into a voltage.

This analog signal is then sampled and quantized.

The digitization parameters (sampling frequency, quantization levels) are preferably chosen
generously beyond the ability of human senses or output devices.

The digitized sensor-domain signal is then transformed into a

perceptual domain.

This step often mimics some of the first neural processing steps in humans.

This signal is quantized again, based on a perceptual model of what level
of quantization-noise humans can still sense.

The resulting quantized levels may still be highly statistically dependent.
A prediction or decorrelation transform exploits this and produces a less
dependent symbol sequence of lower entropy.

An entropy coder turns that into an apparently-random bit string, whose
length approximates the remaining entropy.

The first neural processing steps in humans are in effect often a kind of decorrelation transform;
our eyes and ears were optimized like any other AV communications system. This allows us to use
the same transform for decorrelating and transforming into a perceptually relevant domain.
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Outline of the remaining lectures

» Quick review of entropy coding

» Transform coding: techniques for converting sequences of
highly-dependent symbols into less-dependent lower-entropy
sequences.

® run-length coding
® decorrelation, Karhunen-Loéve transform (PCA)
® Discrete cosine transform
» Introduction to some characteristics and limits of human senses
® perceptual scales and sensitivity limits
® colour vision

» Quantization techniques to remove information that is irrelevant to
human senses
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Entropy coding review — Huffman

1
1.00 Entropy: H = Z p(a) - log, )
«
0 1 =y p
= 2.3016 bit
0.40 0.60
0 1 0 1
v w
0.20 0.20 P 0.2
0.35 0 1
Mean codeword length: 2.35 bit x .10
0.15 :
Huffman’s algorithm constructs an optimal code-word tree for a set of 0 1
symbols with known probability distribution. It iteratively picks the two
elements of the set with the smallest probability and combines them into y z
a tree by adding a common root. The resulting tree goes back into the 0.05 0.05

set, labeled with the sum of the probabilities of the elements it combines.
The algorithm terminates when less than two elements are left.
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Partition [0,1] according

to symbol probabilities:

Encode text wuvw ... as numeric value

1.0

0.0

=Tl

0.75

0.0 035 0.55 075  0.90.951.0
[ I I I I T 1
u v w x 'y z
(0.58...) in nested intervals:
~ 0.62)— 0.5885, 0.5850, —
z z z z
L LY L L
X X X X
w w w w
v v v vV
u u u u
- 088 L 0.57450 0.5822\L-

Entropy coding review — arithmetic coding
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Arithmetic coding

Several advantages:
» Length of output bitstring can approximate the theoretical
information content of the input to within 1 bit.
» Performs well with probabilities > 0.5, where the information per
symbol is less than one bit.
» Interval arithmetic makes it easy to change symbol probabilities (no
need to modify code-word tree) = convenient for adaptive coding

Can be implemented efficiently with fixed-length arithmetic by rounding
probabilities and shifting out leading digits as soon as leading zeros
appear in interval size. Usually combined with adaptive probability
estimation.

Huffman coding remains popular because of its simplicity and lack of patent-licence issues.
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Coding of sources with memory and correlated symbols

Run-length coding:

HEEEE = BEEEEEEEEEEEE BEEN
1
B E:8
Predictive coding:
encoder decoder
f(t) % a®) ai) % f(t)
predictor predictor
P(f(t=1), f(t=2), ...) P(f(t=1), f(t=2), ...)
Delta coding (DPCM): P(z) = =

n
Linear predictive coding:  P(x1,...,2,) = Zaixi
=1
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Old (Group 3 MH) fax code

pixels | white code black code
P Run-length encoding plus modified Huffman 0 00110101 0000110111
code 1 | 000111 010
» Fixed code table (from eight sample pages) 2 | 0111 11
. 3 | 1000 10
P separate codes for runs of white and black 2 | 1011 011
pixels 5 | 1100 0011
P termination code in the range 0-63 switches 6 1110 0010
between black and white code 7 1111 00011
» makeup code can extend length of a run by a 8 | 10011 000101
multiple of 64 9 | 10100 000100
L 10 | 00111 0000100
P termination run length 0 needed where run 11 | 01000 0000101
length is a multiple of 64 12 | 001000 0000111
P single white column added on left side before 13 | 000011 00000100
transmission 14 | 110100 00000111
» makeup codes above 1728 equal for black and 15 110101 000011000
white 16 | 101010 0000010111
P 12-bit end-of-line marker: 000000000001 (can 63 6.0.110100 666001100111
be prefixed by up to seven zero-bits to reach 64 11011 0000001111
next byte boundary) 128 | 10010 000011001000
Example: line with 2 w, 4 b, 200 w, 3 b, EOL — 192 010111 000011001001
1000|011|010111]10011|10|000000000001 . e .
1728 | 010011011 | 0000001100101
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Newer (JBIG) fax code

Performs context-sensitive arithmetic coding of binary pixels. Both encoder and
decoder maintain statistics on how the black/white probability of each pixel
depends on these 10 previously transmitted neighbours:

Based on the counted numbers npjack and nwhite of how often each pixel value
has been encountered so far in each of the 1024 contexts, the probability for
the next pixel being black is estimated as

Nblack 1 1

Dblack = ——————————=
Nwhite + Mblack + 2

The encoder updates its estimate only after the newly counted pixel has been
encoded, such that the decoder knows the exact same statistics.

Joint Bi-level Expert Group: International Standard ISO 11544, 1993.
Example implementation: https://www.cl.cam.ac.uk/~mgk25/jbigkit/
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Statistical dependence

Random variables X, Y are dependent iff dx, y:
PX=zANY=y)#PX=2z) P(Y =y).
If X,Y are dependent, then

= dz,y: P(X —x|Y—y)5£P(X—3:)\/
P(Y =y[X =u1)# P(Y =y)
= H(X|Y)<H(X) v HY|X) < H(Y)

Application

Where x is the value of the next symbol to be transmitted and y is the
vector of all symbols transmitted so far, accurate knowledge of the
conditional probability P(X =z | Y = y) will allow a transmitter to
remove all redundancy.

An application example of this approach is JBIG, but there y is limited to
10 past single-bit pixels and P(X = 2 |Y = y) is only an estimate.
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Practical limits of measuring conditional probabilities

The practical estimation of conditional probabilities, in their most general
form, based on statistical measurements of example signals, quickly
reaches practical limits. JBIG needs an array of only 2! = 2048 counting
registers to maintain estimator statistics for its 10-bit context.

If we wanted to encode each 24-bit pixel of a colour image based on its
statistical dependence of the full colour information from just ten
previous neighbour pixels, the required number of

(224)11 ~ 3 x 1080

registers for storing each probability will exceed the estimated number of
particles in this universe. (Neither will we encounter enough pixels to
record statistically significant occurrences in all (224)1° contexts.)

This example is far from excessive. It is easy to show that in colour
images, pixel values show statistical significant dependence across colour
channels, and across locations more than eight pixels apart.

A simpler approximation of dependence is needed: correlation.
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Correlation

Two random variables X € R and Y € R are correlated iff

E{X - EX)]-[Y -E(Y)]} #0

where E(---) denotes the expected value of a random-variable term.
Dependent but not correlated:

Correlation implies dependence, but
dependence does not always lead to
correlation (see example to the right).

However, most dependency in audio-
visual data is a consequence of corre-
lation, which is algorithmically much
easier to exploit.

1

-1

X
x X
X

%

X
X
X

1

Positive correlation: higher X < higher Y, lower X < lower Y
Negative correlation: lower X < higher Y, higher X & lower Y
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Correlation of neighbour pixels

Values of neighbour pixels at distance 1

256

192

128

64

X XX X

.
oy

0
0 64 128 192 256
Values of neighbour pixels at distance 4
256
X RXX
x
x X
X
x
x
192 256

256

256

Values of neighbour pixels at distance 2

64 128 192 256
Values of neighbour pixels at distance 8




Covariance and correlation

We define the covariance of two random variables X and Y as
Cov(X, Y) = E{[X — E(X)] - [Y — E(Y)]} = E(X - Y) — E(X) - E(Y)
and the variance as Var(X) = Cov(X, X) = E{[X — E(X)]?}.

The Pearson correlation coefficient

Cov(X,Y)
Var(X) - Var(Y)

PXY =

is a normalized form of the covariance. It is limited to the range [—1,1].

If the correlation coefficient has one of the values px v = £1, this
implies that X and Y are exactly linearly dependent, i.e. Y = aX + b,
with a = Cov(X,Y)/Var(X) and b = E(Y) — E(X).
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Covariance Matrix

For a random vector X = (X1,Xo,...,X,) € R™ we define the
covariance matrix

Cov(X) = E (X - E(X)) - (X ~ E(X))T) = (Cov(X:, X)), ; =

COV(Xl, Xl) COV(Xl, 2) COV()(l7 X3) s COV(Xl, Xn)
COV(Xz, Xl) COV()(z7 2) COV()(z7 X3) s COV(Xz, Xn)
COV(X3, Xl) COV(X3, X2) COV(Xg, X3) cee COV(X3, Xn)
Cov(X,,, X1) Cov(Xm X,) Cov(X,,X3) -+ Cov(X,,X,)

The elements of a random vector X are uncorrelated if and only if
Cov(X) is a diagonal matrix.

Cov(X,Y) = Cov(Y,X), so all covariance matrices are symmetric:
Cov(X) = Cov' (X).
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Decorrelation by coordinate transform

256

192

128

64

Neighbour-pixel value pairs

64 128 192
Probability distribution and entropy

256

correlated value pair (H = 13.90 bit)
decorrelated value 1 (H = 7.12 bit)
decorrelated value 2 (H = 4.75 bit)

Decorrelated neighbour—pixel value pairs
320

256

192

128

64

64
264 0 64 128 192 256 320

Idea: Take the values of a group of cor-
related symbols (e.g., neighbour pixels) as
a random vector. Find a coordinate trans-
form (multiplication with an orthonormal
matrix) that leads to a new random vector
whose covariance matrix is diagonal. The
vector components in this transformed co-
ordinate system will no longer be corre-
lated. This will hopefully reduce the en-
tropy of some of these components.
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Theorem: Let )ée R™ and Y € R" be random vectors that are linearly
dependent with Y = AX + b, where A € R"*"™ and b € R™ are
constants. Then
EY) = A- E(*)+b
Cov(Y) = A-Cov(X) AT
Proof: The first equation follows from the linearity of the expected-value
operator E(+), as does E(A- X - B) = A - E(X) - B for matrices A, B.

With that, we can transform

Cov(¥) = E((Y-E(¥)- (Y -ET))

E ((AX — AE(X)) - (AX — AEX))T )
- E (A(X “EX)- (X - E(X))TAT)

- A-E ((X “EX)- (X - E(i))T) AT
= A-Cov(X)-AT
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Quick review: eigenvectors and eigenvalues

We are given a square matrix A € R"*"™. The vector z € R" is an
eigenvector of A if there exists a scalar value A € R such that

Az = \z.

The corresponding A is the eigenvalue of A associated with x.

The length of an eigenvector is irrelevant, as any multiple of it is also an
eigenvector. Eigenvectors are in practice normalized to length 1.

Spectral decomposition

Any real, symmetric matrix A = AT € R"*" can be diagonalized into the
form
A=UNUT,

where A = diag(A1, A2, ..., A,) is the diagonal matrix of the ordered
eigenvalues of A (with A\; > X\, > --- > \,)), and the columns of U are
the n corresponding orthonormal eigenvectors of A.
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Karhunen-Loeve transform (KLT)

We are given a random vector variable X € R". The correlation of the
elements of X is described by the covariance matrix COV(X).

How can we find a transform matrix A that decorrelates X, i.e. that
turns Cov(AX) = A - Cov(X) - AT into a diagonal matrix? A would
provide us the transformed representation Y = AX of our random
vector, in which all elements are mutually uncorrelated.

Note that Cov(X) is symmetric. It therefore has n real eigenvalues
A1 > A > - > )\, and a set of associated mutually orthogonal
eigenvectors by, by, ..., b, of length 1 with

Cov(X)b; = Aib.

We convert this set of equations into matrix notation using the matrix
B = (by,by,...,by,) that has these eigenvectors as columns and the
diagonal matrix D = diag(A1, A2, ..., A,) that consists of the
corresponding eigenvalues:

Cov(X)B = BD
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B is orthonormal, that is BBT = I.

Multiplying the above from the right with BT leads to the spectral
decomposition .

Cov(X) = BDB'
of the covariance matrix. Similarly multiplying instead from the left with

BT leads to
BTCov(X)B = D

and therefore shows with
Cov(B™X)=D

that the eigenvector matrix BT is the wanted transform.

The Karhunen-Loéve transform (also known as Hotelling transform or
Principal Component Analysis) is the multiplication of a correlated
random vector X with the orthonormal eigenvector matrix BT from the
spectral decomposition Cov(X) = BDBT of its covariance matrix. This
leads to a decorrelated random vector BTX whose covariance matrix is
diagonal.



colour image red channel
The colour image (left) has m = r? pixels, each
of which is an n = 3-dimensional RGB vector

T
Ipy = (T'ac,yy 9z,y, bz,y)

The three rightmost images show each of these
colour planes separately as a black/white
image.

We want to apply the KLT on a set of such R™
colour vectors. Therefore, we reformat the
image I into an n X m matrix of the form

TI1T12 T13 0 T
S=1|911912913 " grr
bi1 b12 b1z -0 by

Karhunen-Loeve transform example |

green channel blue channel

We can now define the mean colour vector

B 1 m B 0.4839
Se==1"Sc: §=|04456
mia 0.3411

and the covariance matrix

1 Ui _ _
— > (Sei = 8e)(Sui = Sa)
i=1

Cea =
m

0.0256 0.0216 0.0140

0.0328 0.0256 0.0160
C =
0.0160 0.0140 0.0109

“m — 1" because S. only estimates the mean]
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Karhunen-Loéve transform example |

The resulting covariance matrix C' has three eigenvalues 0.0622, 0.0025, and 0.0006:

0.0328 0.0256 0.0160 0.7167 0.7167
0.0256 0.0216 0.0140 0.5833 0.0622 0.5833

0.0160 0.0140 0.0109 0.3822 0.3822

0.0328 0.0256 0.0160 —0.5509 —0.5509
0.0256 0.0216 0.0140 0.1373 | = 0.0025 0.1373

0.0160 0.0140 0.0109 0.8232 0.8232
0.0328 0.0256 0.0160 —0.4277 —0.4277
0.0256 0.0216 0.0140 0.8005 | = 0.0006 0.8005
0.0160 0.0140 0.0109 —0.4198 —0.4198

It can thus be diagonalized as

0.0328 0.0256 0.0160
0.0256 0.0216 0.0140 | =C =U-D-U' =
0.0160 0.0140 0.0109

0.7167 —0.5509 —0.4277 0.0622 0 0 0.7167 0.5833 0.3822
0.5833 0.1373 0.8005 0 0.0025 0 —0.5509 0.1373 0.8232
0.3822 0.8232 —0.4198 0 0 0.0006 —0.4277 0.8005 —0.4198

(e.g. using MATLAB's singular-value decomposition function svd).
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Karhunen-Loeve transform example |

Before KLT:

Photo courtesy of Robert E. Barber

We finally apply the orthogonal 3 x 3 transform
matrix U, which we just used to diagonalize the
covariance matrix, to the entire image:

518 -5
T=U"-|S—|55 5
S3 85 - 5

Si 8- 5

+ | S2 8- S

S3 S3--- S3

The resulting transformed image

U1,1 U12 UL3 Ccc Upp
T=| vi1 vi2 V13 -+ VUrr
Wi,1 W12 Wi,3 c W

consists of three new “colour” planes whose
pixel values have no longer any correlation to
the pixels at the same coordinates in another
plane. [The bear disappeared from the last of
these (w), which represents mostly some of the
green grass in the background.]

217

/ 242



Spatial correlation

The previous example used the Karhunen-Loéve transform in order to
eliminate correlation between colour planes. While this is of some
relevance for image compression, far more correlation can be found
between neighbour pixels within each colour plane.

In order to exploit such correlation using the KLT, the sample set has to
be extended from individual pixels to entire images. The underlying
calculation is the same as in the preceding example, but this time the
columns of S are entire (monochrome) images. The rows are the
different images found in the set of test images that we use to examine
typical correlations between neighbour pixels.

In other words, we use the same formulas as in the previous example, but this time n is the
number of pixels per image and m is the number of sample images. The Karhunen-Loéve
transform is here no longer a rotation in a 3-dimensional colour space, but it operates now in a
much larger vector space that has as many dimensions as an image has pixels.

To keep things simple, we look in the next experiment only at m = 9000 1-dimensional “images”
with n = 32 pixels each. As a further simplification, we use not real images, but random noise
that was filtered such that its amplitude spectrum is proportional to 1/ f, where f is the frequency.
The result would be similar in a sufficiently large collection of real test images.
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Karhunen-Loéve transform example Il

Matrix columns of .S filled with samples of 1/f filtered noise

Covariance matrix C Matrix U with eigenvector columns
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Matrix U’ with normalised KLT Matrix with Discrete Cosine
eigenvector columns Transform base vector columns

Breakthrough: Ahmed/Natarajan/Rao discovered the DCT as an
excellent approximation of the KLT for typical photographic images, but
far more efficient to calculate.

Ahmed, Natarajan, Rao: Discrete Cosine Transform. |IEEE Transactions on Computers, Vol. 23,
January 1974, pp. 90-93.
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Discrete cosine transform (DCT)

The forward and inverse discrete cosine transform

5. — Z (2z —|— 1)u7r

Cy (2z 4+ 1)ur
cos ~—F——
N/2 2N

with

is an orthonormal transform:

Nz_:l Cy cos (2z 4+ ur  Cy cos Qe+t [ 1 u=d
2N N/2 2N
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DCT base vectors for N = 8:
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Discrete cosine transform — 2D

The 2-dimensional variant of the DCT applies the 1-D transform on both
rows and columns of an image:

g Cy Cy
“t /N2 \/NJ2
i\ . 2z +ur  (2y+1)or
2,y €O~ COS T

=0 y=0

Spy =
]Vzél sz Cy Cy S cos (2 4+ 1)un cos (2y + L)vm
— = /N2 /N2 " 2N 2N

A range of fast algorithms have been found for calculating 1-D and 2-D
DCTs (e.g., Ligtenberg/Vetterli).
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Whole-image DCT

2D Discrete Cosine Transform (log10) Original image

500

100 200 300 400 100 200 300 400 500

Photo courtesy of SIPI,

University of Southern
California

224 / 242



Whole-image DCT, 80% coefficient cutoff

80% truncated 2D DCT (log10) 80% truncated DCT: reconstructed image

100 200 300 400 500 100 200 300 400 500
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Whole-image DCT, 90% coefficient cutoff

90% truncated 2D DCT (log10) 90% truncated DCT: reconstructed image

100 200 300 400 500

N
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=
N
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Whole-image DCT, 95% coefficient cutoff

95% truncated 2D DCT (log10) 95% truncated DCT: reconstructed image
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Whole-image DCT, 99% coefficient cutoff

99% truncated 2D DCT (log10)

100 200 300 400 500
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RGB video colour coordinates

Hardware interface (VGA): red, green, blue signals with 0-0.7 V

Electron-beam current and photon count of cathode-ray displays are
roughly proportional to (v — vg)”, where v is the video-interface or
control-grid voltage and -y is a device parameter that is typically in the
range 1.5-3.0. In broadcast TV, this CRT non-linearity is compensated in
cameras (gamma compression, (...)/7). A welcome side effect is that it
approximates Stevens' scale and therefore helps to reduce perceived noise.

Software interfaces map RGB voltage linearly to {0,1,...,255} or 0-1.

How numeric RGB values map to colour and luminosity can depend on
the hardware, operating system or device driver.

The “sRGB" standard aims to standardize the meaning of an RGB value
with the parameter v = 2.2 and with standard colour coordinates of the

three primary colours.
https://www.w3.org/Graphics/Color/sRGB, IEC 61966-2-1 at https://bsol.bsigroup.com/
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YUV video colour coordinates

1,000
Plane for U=0
500
Luminance
200 Red-Green Plane for Y=0.3
100 |
£ Bt
250 lue-Yellow
g2l ™ Plane for V=0
Swf \
\ )
5 \ \ H
\ \ =G
W \ R
2 \ \
1 1 1 3 )
Y e R T Images: Pennebaker
Spatial frequency (cycles/degree) B

Mitchell (1992)
The human eye processes colour and luminosity at different resolutions.
To exploit this phenomenon, many image transmission systems use a
colour space with a “luminance” coordinate
Y =03R+0.6G+0.1B

If based on gamma-compressed R’, G’, B’ then Y’ = 0.3R’ + 0.6G’ + 0.1B’ is called “luma”.
The remaining “chrominance” colour information can be encoded as
“chroma” coordinates U and V:

V = R-Y 0.7R - 0.6G' —0.1B’

U = B -Y' =-03R -06G +09B
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YUV transform example

original Y channel U and V channels

The centre image shows only the luminance channel as a black/white
image. In the right image, the luminance channel (Y) was replaced with
a constant, such that only the chrominance information remains.

This example and the next make only sense when viewed in colour. On a black/white printout of
this slide, only the Y channel information will be present.
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Y versus UV sensitivity example

original blurred U and V blurred Y channel

In the centre image, the chrominance channels have been severely

low-pass filtered (Gaussian impulse response #§ ). But the human eye
perceives this distortion as far less severe than if the exact same filtering
is applied to the luminance channel (right image). Photo courtesy of
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Y'CrCb video colour coordinates

Since —0.7 <V < 0.7 and —0.9 < U < 0.9, a more convenient
normalized encoding of chrominance is:

Y=01 ¥=03 Y¥=05

1

08|

06|

U Go.o
b= —
C 20—|—05
|4
Cr=-—+405
r 16+ 606

0.4]
02|

o
(] 05 05 05
Cb Co Cb

Many image-compression methods operate on Y/, Cr, Cb channels
separately, using half the resolution of Y’ for storing Cr, Cb.

Some digital-television engineering terminology:

If each pixel is represented by its own Y’, Cr and Cb byte, this is called a “4:4:4” format. In the
compacter “4:2:2" format, a Cr and Cb value is transmitted only for every second pixel, reducing
the horizontal chrominance resolution by a factor two. The “4:2:0" format transmits in alternating
lines either C'r or C'b for every second pixel, thus halving the chrominance resolution both
horizontally and vertically. The “4:1:1" format reduces the chrominance resolution horizontally by
a quarter and “4:1:0” does so in both directions. [ITU-R BT.601]



Uniform/linear quantization: Non-uniform quantization:
6 T 6
51 5r
4 4
3r 3r
2 2r
1r 1r
0r 0r
al M
2l 2l
A H
-4 -4
M Bl
6 5 -4 3 2 1 0 1 2 3 4 5 6 -6 5 4 -3 -2 1 0 1 2 3 4 5 6

Quantization is the mapping from a continuous or large set of values
(e.g., analog voltage, floating-point number) to a smaller set of (typically
28, 210 212 914 1916 "o 224) values.

This introduces two types of error:

» the amplitude of quantization noise reaches up to half the maximum
difference between neighbouring quantization levels

» clipping occurs where the input amplitude exceeds the value of the
highest (or lowest) quantization level
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Example of a linear quantizer (resolution R, peak value V):

= v v |53}

Adding a noise signal that is uniformly distributed on [0, 1] instead of adding % helps to spread the
frequency spectrum of the quantization noise more evenly. This is known as dithering.

Variant with even number of output values (no zero):

. max{—V,min{VvR<LZJ *D}}

Improving the resolution by a factor of two (i.e., adding 1 bit) reduces
the quantization noise by 6 dB.

Linearly quantized signals are easiest to process, but analog input levels
need to be adjusted carefully to achieve a good tradeoff between the
signal-to-quantization-noise ratio and the risk of clipping. Non-uniform
quantization can reduce quantization noise where input values are not
uniformly distributed and can approximate human perception limits.



Logarithmic quantization

Rounding the logarithm of the signal amplitude makes the quantization
error scale-invariant and is used where the signal level is not very
predictable. Two alternative schemes are widely used to make the
logarithm function odd and linearize it across zero before quantization:

p-law:
Vlog(1 \%4
Y= og(1 + pfx|/V) sgn(z) for -V <a<V
log(1 + 1)
A-law:
Alzl - sgn(a) for0 < |z| < X%
Y= 1+|og1144‘z‘g e e |
\/(11%;47) sgn(z) for ¥ <|z| <V

European digital telephone networks use A-law quantization (A = 87.6), North American ones use
p-law (1=255), both with 8-bit resolution and 8 kHz sampling frequency (64 kbit/s). [ITU-T
G.711]
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signal voltage

p-law (US)

A-law (Europe)

-64 -32

0
byte value

32

64

96

128
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Joint Photographic Experts Group — JP

Working group “ISO/TC97/SC2/WG8 (Coded representation of picture and audio information)”
was set up in 1982 by the International Organization for Standardization.
Goals:
» continuous tone gray-scale and colour images
recognizable images at 0.083 bit/pixel
useful images at 0.25 bit/pixel
excellent image quality at 0.75 bit/pixel
indistinguishable images at 2.25 bit/pixel

feasibility of 64 kbit/s (ISDN fax) compression with late 1980s
hardware (16 MHz Intel 80386).

» workload equal for compression and decompression
The JPEG standard (ISO 10918) was finally published in 1994.

William B. Pennebaker, Joan L. Mitchell: JPEG still image compression standard. Van Nostrad
Reinhold, New York, ISBN 0442012721, 1993.

Gregory K. Wallace: The JPEG Still Picture Compression Standard. Communications of the ACM
34(4)30-44, April 1991, https://dl.acm.org/doi/10.1145/103085.103089

vvyYVvyvyy
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Summary of the baseline JPEG algorithm

The most widely used lossy method from the JPEG standard:
» Colour component transform: 8-bit RGB — 8-bit Y’CrCb
Reduce resolution of Cr and Cb by a factor 2

v

» For the rest of the algorithm, process Y’, Cr and Cb components
independently (like separate gray-scale images)

The above steps are obviously skipped where the input is a gray-scale image.

» Split each image component into 8 x 8 pixel blocks

Partial blocks at the right/bottom margin may have to be padded by repeating the last
column/row until a multiple of eight is reached. The decoder will remove these padding
pixels.

» Apply the 8 x 8 forward DCT on each block

On unsigned 8-bit input, the resulting DCT coefficients will be signed 11-bit integers.



>

vvyyvyy

>

Quantization: divide each DCT coefficient with the corresponding
value from an 8 x 8 table, then round to the nearest integer:

The two standard quantization-matrix examples for luminance and chrominance are:

16 11 10 16 24 40 51 61 17 18 24 47 99 99 99 99
12 12 14 19 26 58 60 55 18 21 26 66 99 99 99 99
14 13 16 24 40 57 69 56 24 26 56 99 99 99 99 99
14 17 22 29 51 87 80 62 47 66 99 99 99 99 99 99
18 22 37 56 68 109 103 77 99 99 99 99 99 99 99 99
24 35 55 64 81 104 113 92 99 99 99 99 99 99 99 99
49 64 78 87 103 121 120 101 99 99 99 99 99 99 99 99
72 92 95 98 112 100 103 99 99 99 99 99 99 99 99 99

apply DPCM coding to quantized DC coefficients from DCT
read remaining quantized values from DCT in zigzag pattern
locate sequences of zero coefficients (run-length coding)

apply Huffman coding on zero run-lengths and magnitude of AC
values

add standard header with compression parameters

https://jpeg.org/
Example implementation: https://www.ijg.org/


https://jpeg.org/
https://www.ijg.org/

Further topics that we have not covered in this brief introductory tour
through DSP, but for the understanding of which you should now have a
good theoretical foundation:

» multirate systems

» effects of rounding errors

» adaptive filters

» DSP hardware architectures

» sound effects

If you find any typo or mistake in these lecture notes, please email Markus.Kuhn@cl.cam.ac.uk.
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Some final thoughts about redundancy ...

Aoccdrnig to rsceearh at Cmabrigde Uinervtisy, it deosn’t
mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is taht the frist and lsat ltteer be at
the rghit pclae. The rset can be a total mses and you can
sitll raed it wouthit porbelm. Tihs is bcuseae the huamn
mnid deos not raed ervey lteter by istlef, but the wrod as
a wlohe.

and perception

Count how many Fs there are in this text:

FINISHED FILES ARE THE RE-
SULT OF YEARS OF SCIENTIF-
IC STUDY COMBINED WITH THE
EXPERIENCE OF YEARS
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