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Leftmost vs rightmost derivations

Leftmost derivation step: Rightmost derivation step:

wAa =, wha aAw =, afw

(basis of top-down (LL) parsing) (basis of bottom-up (LR) parsing)

where
we Tx
a,fe(NUTH*
A—>BeP



Bottom-up parsers perform the derivation in reverse

Derivations

(N N N©)

uolIIeALISP ISowIySIy ——

£ 1

W

\— uoneAusp jsowlysis pasionay —

4—— uoi1oau1p Buisied




Derivations

Formalisation

Shift &

reduce

Items

Key idea

Backwards derivation ~~ stack machine execution

€

2

S ES T T«F|F
ESE+T|T F— (E)|id

stack input

View reversed derivation 3
as a stack machine

<~
p
=
p
P
p
P
p
P
P



Derivations

Formalisation

Shift &

reduce

Items

Key idea

Backwards derivation ~~ stack machine execution

€

2

S ES T T«F|F
ESE+T|T F— (E)|id

stack input
View reversed derivation s $ (X+ y)$

as a stack machine

£ 1



Derivations

Formalisation

Shift &

reduce

Items

Key idea

Backwards derivation ~~ stack machine execution

€

2

S ES T T«F|F
ESE+T|T F— (E)|id

stack input

__ View reversed derivation $ X+ $
as a stack machine — $(F ( +§§$

£ 1



Backwards derivation ~~ stack machine execution

Derivations C%
S—ES$ T—TxF|F

E-SE+T|T F id
Nl —E+T| = (B)]i

Formalisation i
stack input

(x+y)$
F +y)$
(T +y)$

View reversed derivation
_ aton __y$
as a stack machine $(
$

Shift &

reduce

Items

Key idea

£ 1




Backwards derivation ~~ stack machine execution

Derivations C%
S—ES$ T—TxF|F

E-SE+T|T F id
Nl —E+T| = (B)]i

Formalisation

View reversed derivation 3
as a stack machine

Shift &

reduce

Items

Key idea

£ 1




Backwards derivation ~~ stack machine execution

Derivations C%
S—ES$ T—TxF|F

E-SE+T|T F id
Nl —E+T| = (B)]i

Formalisation

View reversed derivation 3
as a stack machine

Shift &

reduce

Items

Key idea

£ 1




Backwards derivation ~~ stack machine execution

Derivations C%
S—ES$ T—TxF|F

E-SE+T|T F id
Nl —E+T| = (B)]i

Formalisation

View reversed derivation 3
as a stack machine

Shift &

reduce

Items

Key idea

<~
p
=
p
P
p
P
p
P
P




Backwards derivation ~~ stack machine execution

Derivations C%
S—ES$ T—TxF|F

E-SE+T|T F id
Nl —E+T| = (B)]i

Formalisation

View reversed derivation 3
as a stack machine

Shift &

reduce

Items

Key idea

<~
p
=
p
P
p
P
p
P
P




Backwards derivation ~~ stack machine execution

Derivations C%
S—ES$ T—TxF|F
E—-E+T|T F— (E)|id

Formalisation

View reversed derivation 3
as a stack machine

Shift &
reduce

mm4T

—

Items

ShH H L H P H P P

o

Key idea

<~
p
=
p
P
p
P
p
P
P




Backwards derivation ~~ stack machine execution

Derivations C%
S—ES$ T—TxF|F

E-SE+T|T F id
Nl —E+T| = (B)]i

Formalisation

View reversed derivation 3
as a stack machine

Shift &

reduce

—~

S M mmm S
+ -
-4

Items

£ 1

Key idea




Backwards derivation ~~ stack machine execution

Derivations C%
S—ES$ T—TxF|F

E-SE+T|T F id
Nl —E+T| = (B)]i

Formalisation

View reversed derivation 3
as a stack machine

Shift &

reduce

Items

<~
p
=
p
P
p
P
p
P
P

Key idea




Backwards derivation ~~ stack machine execution

Derivations C%
S—ES$ T—TxF|F

E-SE+T|T F id
Nl —E+T| = (B)]i

Formalisation

View reversed derivation 3
as a stack machine

Shift &

reduce

Items

<~
p
=
p
P
p
P
p
P
P

Key idea




Formalisation




Derivations

Formalisation

(| NONONON®)
Shift &

reduce

Items

Key idea

LR parser configurations

An LR parser configuration has the form

$a, wh

N

stack « remaining
input w

The configuration is valid when there exists a rightmost derivation of the form

S =}, aw

(NB: stacks now grow rightwards.)
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LR parser reductions

There may be lots of possible steps from each configuration.

Suppose:

aAw =, afBzw

One possible step between configurations replaces 5Bz with A on top of the stack:

$O¢ﬁBZW$ reduce $ov AW$

This action is called a reduction using production A — 5Bz
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Suppose we have the derivation:

aAw

afBzw (using A — [Bz)

afyzw (using B — 7)

Reductions are not sufficient

The reverse simulation gets stuck:

$a By, zwh
_reduce $a 8B, zw$

B—y
777
77

We have 5B on top of the stack, but
we want 5Bz on top of the stack.
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We also need shift

A shift action shifts a terminal onto the stack.

aAw
=m afBzw

= rm Oéﬂ’YZW

$aBy, zwh
reduce $OéﬁB, ZW$

(using A — (Bz) ft?fz S 8Bz, W
$aA, wh

z

(using B — 7) reduce
A— 3Bz

Q: How do we know when to stop shifting?
(e.g. here we don't want to shift w)
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Another replay

Derivation Our parser’s possible actions:

$ary, wyz$
aBwAz

B
=m «aBwyz (using A—y) $aB, wyz$

=m aywyz (using B— 7) ! $aBw, yz$

$aBwy, z$
$aBwA, Z$

A—y

Again: how do we know when to reduce and when to stop shifting?
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Shift and reduce are sufficient

It appears that if we have a derivation
*
S =i, w
we can always “replay” it in reverse using shift/reduce actions:

$,ws —* 8§58

i.e. shift and reduce are sufficient.

However, we have used the desired derivation to guide the “replay”.
When parsing there is no derivation available in advance.

So our parser is non-deterministic: it must guess what the future holds.



Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input ‘ action[X;

Shift &
reduce

0000




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input ‘ action[X;

+ y)$ | shift
Shift & Oet )8 | shift (

reduce

0000




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input ‘ action[X;

(x+ y)$ | shift (

Shift &
reduce

$
x+y)$ | shift x

0000




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input ‘ action[X;

(x+y)$ | shift (
x+y)$ | shift x
+y)$ | reduce F — id

Shift &
reduce

0000




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input

action[X;

(x+y)$

x+y)$
+)
+y)$

Shift &
reduce

0000

shift (
shift x
reduce F — id

reduce T — F




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input

action[X;

(x+y)$

x+y)$
y)
y)
y)$

Shift &
reduce

0000

shift (
shift x
reduce F — id
reduce T — F

reduce E— T




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input | action[X, 4

x+y)$ | shift
Shift & ( ) i (
reduce x+y)$ | shift x
y)$ | reduce F— id
[ N NONO)
y)$ | reduce T — F
y)$ | reduce E— T

y)$ | shift +




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input | action[X, 4

(x+y)$ | shift (
x+y)$ | shift x
y)$ | reduce F— id

Shift &
reduce

[ N NONO)
y)$ | reduce T — F

)$ | reduce E— T
y)$ | shift +
y)$ | shift y




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input | action[X, 4

(x+y)$ | shift (
x+y)$ | shift x
y)$ | reduce F— id

Shift &
reduce

[ N NONO)
y)$ | reduce T — F

)$ | reduce E— T
y)$ | shift +
)8 | shift y

)$ | reduce F— id




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input | action[X, 4 stack input ‘ action[X;

(x+ y)$ | shift ( $(E+ F )$ | reduce T — F
x+y)$ | shift x
y)$ | reduce F— id

Shift &
reduce

[ N NONO)
y)$ | reduce T — F

)$ | reduce E— T
y)$ | shift +
)8 | shift y

)$ | reduce F— id




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input | action[X, 4 stack input ‘ action[X;

(x+ y)$ | shift ( $(E+ F )$ | reduce T — F

Shift &
reduce

$
x+y)$ | shift x $(E+ T )$ | reduce E— E+ T
y)$ | reduce F— id

[ N NONO)
y)$ | reduce T — F

)$ | reduce E— T
y)$ | shift +
)8 | shift y

)$ | reduce F— id




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input | action[X, 4 stack input ‘ action[X;

(x+ y)$ | shift ( $(E+ F )$ | reduce T— F
x+y)$ | shift x $(E+ T )$ | reduce E— E+ T
y)$ | reduce F — id $(E )$ | shift )
y)$ | reduce T — F
)$ | reduce E— T
y)$ | shift +
)8 | shift y
)$ | reduce F— id

Shift &
reduce

0000




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input | action[X, 4 stack input | action[X, 4

(x+ y)$ | shift ( $(E+ F )$ | reduce T— F

(
Shift &
: x+y)$ | shift x $S(E+T )$ | reduce E— E+ T
(
(

reduce
y)$ | reduce F — id $(E )$ | shift )

E) $ | reduce F— (E)

[ N NONO)
y)$ | reduce T— F $

)$ | reduce E— T
y)$ | shift +

y)$ | shift y
)$ | reduce F— id




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input | action[X, 4 stack input | action[X, 4

(x+ y)$ | shift ( $(E+ F )$ | reduce T— F
x+y)$ | shift x $(E+ T )$ | reduce E— E+ T
y)$ | reduce F— id (E )$ | shift )
(E) $ | reduce F— (E)
)$ | reduce E— T $F $
y)$ | shift +
)8 | shift y
)$ | reduce F— id

Shift &
reduce

[ N NONO)
y)$ | reduce T — F

reduce T — F




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input | action[X, 4 stack input | action[X, 4

(x+ y)$ | shift ( $(E+ F )$ | reduce T— F
Shift &

reduce
y)$ | reduce F— id

E )$ | shift )

0000

(

x+y)$ | shift x $(E+ T )$ | reduce E— E+ T
(
(

y)$ | reduce T — F E) $ | reduce F— (E)
)$ | reduce E— T $F $ | reduce T— F
y)$ | shift + $T $
)8 | shift y
)$ | reduce F— id

reduce E— T




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input | action[X, 4 stack input | action[X, 4

(x+ y)$ | shift ( $(E+ F )$ | reduce T— F

(
Shift &
: x+y)$ | shift x $S(E+T )$ | reduce E— E+ T
(
(

reduce
y)$ | reduce F— id E )$ | shift )
E) reduce F — (E)
)$ | reduce E— T F reduce T — F
y)$ | shift + T reduce E— T
y)$ | shift y $ reduce S — E

)$ | reduce F— id

[ N NONO)
y)$ | reduce T — F




Replay parsing of (x+ y) using shift/reduce actions

top of stack X \/ next input token a

input | action[X, 4 stack input | action[X, 4

(x+ y)$ | shift ( $(E+ F reduce T — F
x+y)$ | shift x $(E+ T reduce E— E+ T
y)$ | reduce F— id (E shift )
y)$ | reduce T — F (E) reduce F — (E)
)$ | reduce E— T F reduce T — F
y)$ | shift + reduce E— T

Shift &
reduce

0000

)8 | shift y reduce S — E

)$ | reduce F— id accept!




Aside: shift and reduce construct trees

Shift &
reduce

0000




Aside: shift and reduce construct trees

Shift &
reduce

0000




shift (
shift x

Shift &
reduce

0000

Aside: shift and reduce construct trees




shift (
shift x
reduce F — id

Shift &
reduce

0000

Aside: shift and reduce construct trees




Shift &
reduce

0000

shift (
shift x
reduce F — id
reduce T — F

shift and reduce construct trees




Aside: shift and reduce construct trees

shift (
shift x
reduce F — id
reduce T — F
reduce E— T

Shift &
reduce

0000




Aside: shift and reduce construct trees

shift (
shift x
reduce F — id
reduce T — F
reduce E— T
shift +

Shift &

reduce

0000




Aside: shift and reduce construct trees

shift (
shift x
reduce F — id
reduce T — F
reduce E— T
shift +
shift y

Shift &
reduce

0000




Shift &
reduce

0000

shift (
shift x
reduce F — id
reduce T — F
reduce E— T
shift +
shift y
reduce F — id

Aside: shift and reduce construct trees




Shift &

reduce

0000

shift (
shift x
reduce F — id
reduce T — F
reduce E— T
shift +
shift y
reduce F — id
reduce T — F

Aside: shift and reduce construct trees




Aside: shift and reduce construct trees

shift (
shift x
reduce F — id
reduce T — F
reduce E— T
shift +
shift y
Shift & reduce F — id
reduce reduce T — F
reduce E— E+ T

0000




Aside: shift and reduce construct trees

shift (
shift x
reduce F — id
reduce T — F
reduce E— T
shift +
shift y
Shift & reduce F — id
reduce reduce T — F
reduce E— E+ T
0000 shift )




Shift &

reduce

0000

shift (

shift x

reduce F — id
reduce T — F
reduce E— T
shift +

shift y

reduce F — id
reduce T — F
reduce E— E+ T
shift )

reduce F — (E)

shift and reduce construct trees




Shift &

reduce

0000

shift (

shift x

reduce F — id
reduce T — F
reduce E— T
shift +

shift y

reduce F — id
reduce T — F
reduce E— E+ T
shift )

reduce F — (E)
reduce T — F

shift and reduce construct trees




Shift &
reduce

0000

shift (

shift x

reduce F — id
reduce T — F
reduce E— T
shift +

shift y

reduce F — id
reduce T — F
reduce E— E+ T
shift )

reduce F — (E)
reduce T — F
reduce E— T

shift and reduce construct trees
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How do we decide when to shift or reduce?

Suppose A — (37 is a production. In the configuration

$a By, x8

we might want to reduce with A — (.

However, if we have

$a s, x$

we might want to continue parsing,
hoping to eventually have 5~ on top of the stack,
so that we can then reduce to A.
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Key idea

LR(0) items

LR(0) items record how much of a production’'s RHS is already parsed.

For every grammar production

A= By (Bye(NUT))
there is an LR(0) item

A — [evy

we've parsed input x derivable from (8

A— i ) i [
ey means we might next see input derivable from ~
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LR(0) items for G,
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Valid LR(0) items

Definition: item A — [e~ is valid for ¢ if there exists a derivation

S
=rm  PAW
=m QLBYW

A — [e~ is valid for ¢f

parser can use A — ey as a guide in configuration $¢3, w$
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Using items as parsing guides

Suppose parser is in config $¢3, cz$ and A — [ecy is valid for ¢.
Then we might shift ¢ onto the stack:

shift ¢

$08,cz8 ———— $p8c, 28

Suppose parser is in config $¢3, zZ$ and A — [e is valid for ¢f3.
Then we might perform a reduction

$¢B; reduce $¢A Z$
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Using items as parsing guides (continued)

Suppose parser is in valid config $¢5, w8 (so S =3, ¢Sw).

Suppose A — (e~ is valid for ¢p.
Then ~ might capture the future of our parse (the past of the derivation).

That is, it might be that If so, our parser might proceed like so:
S
=% PAx $¢B,yxb = $¢p, wh
=m PBYX =" 3By, X8
=tm 0yx = ¢Bw Leduee, §pA, X8

i.e. our parser could guess that ~ will
derive a prefix of the remaining input w.
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The key idea in LR parsing

Idea: Augment shift/reduce parser so that in every configuration $a, w$ it can
derive the set of items valid for «.

At each step parser can (non-deterministically) select an item to use as a guide.



with LR(0) items as states
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A — [ecy S A — [Bcey
A — [feBy 5 A — SBevy
(A= Bebr]
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Items Initial state is item constructed from unique starting production, e.g.:

S — oF

g G Let d¢ be the transition function of this NFA (and every state be accepting).

( X _NONONG)



Derivations

Formalisation

Shift &

reduce

Items

Key idea

00000

Theorem:

Main LR parsing theorem

A— 6.7 € 6@((]0, ¢6)
if and only if

A — Be is valid for ¢0.

(NB: The set of words ¢/3 is a regular language!)



A few NFA transitions for grammar G,
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A non-deterministic LR parsing algorithm

Derivations

¢ := NextToken()

while true:
Formalisation
« := the stack

if A— Becy € dg(qo, @)
Shift & then SHIFT ¢; ¢ := NextToken()

reduce if A— Be € dg(qo, )

! non-deterministic since
then REDUCE via A — 8

multiple “if" conditions can be true
if S— fe € dg(qo, ) & multiple items can match any condition

[ i [
tems then ACCEPT (|f no more mput)

if none of the above
then ERROR

Key idea




Next time: SLR(1) & LR(1)
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