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Recap: example grammars

E → E + E | E ∗ E | (E) | id E → E + T | T
T → T ∗ F | F
F → (E) | id

E → T E′

E′ → + T E′ | ϵ
T → F T′

T′ → ∗ F T′ | ϵ
F → ( E ) | id

S → E
E → E + E | E ∗ E | (E) | id

S → E $
E → E + T | T
T → T ∗ F | F
F → (E) | id

S → E $
E → T E′

E′ → + T E′ | ϵ
T → F T′

T′ → ∗ F T′ | ϵ
F → ( E ) | id

G1 G2 G3

G′
1G′
1 G′

2 G′
3

eliminate
ambiguity

eliminate
ambiguity
eliminate
ambiguity

eliminate
left recursion

eliminate
left recursion

eliminate
left recursionadd S, $add S

add S, $
add S, $

Today’s running example
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Leftmost vs rightmost derivations

Leftmost derivation step:

wAα ⇒lm wβα

(basis of top-down (LL) parsing)

Rightmost derivation step:

αAw ⇒rm αβw

(basis of bottom-up (LR) parsing)

where
w ∈ T∗
α, β ∈ (N ∪ T)∗
A → β ∈ P
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Bottom-up parsers perform the derivation in reverse

S ⇒rm E
⇒rm T
⇒rm F
⇒rm (E)
⇒rm (E + T)
⇒rm (E + F)
⇒rm (E + y)
⇒rm (T + y)
⇒rm (F + y)
⇒rm (x + y)

(x + y) ⇐
(F + y) ⇐
(T + y) ⇐
(E + y) ⇐
(E + F) ⇐
(E + T) ⇐

(E) ⇐
F ⇐
T ⇐
E ⇐ S

Rightm
ostderivation

Reversed
rightm

ostderivation

parsing
direction

flip!
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Backwards derivation ⇝ stack machine execution

(x + y) ⇐
(F + y) ⇐
(T + y) ⇐
(E + y) ⇐
(E + F) ⇐
(E + T) ⇐

(E) ⇐
F ⇐
T ⇐
E ⇐ S

stack input
$ (x + y)$
$(F +y)$
$(T +y)$
$(E +y)$
$(E + F )$
$(E + T )$
$(E) $
$F $
$T $
$E $
$S $

View reversed derivation
as a stack machine

S → E $ T → T ∗ F | F
E → E + T | T F → (E) | id
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LR parser configurations

An LR parser configuration has the form

$α,w$

stack α remaining
input w

The configuration is valid when there exists a rightmost derivation of the form

S ⇒∗
rm α w

(NB: stacks now grow rightwards.)



Derivations

Formalisation

Shift &
reduce

Items

Key idea

LR parser reductions

There may be lots of possible steps from each configuration.

Suppose:

αAw ⇒rm αβBzw

One possible step between configurations replaces βBz with A on top of the stack:

$αβBz,w$ reduce−−−−−→
A→βBz

$αA,w$

This action is called a reduction using production A → βBz.
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Reductions are not sufficient

Suppose we have the derivation:

αAw
⇒rm αβBzw (using A → βBz)
⇒rm αβγzw (using B → γ)

The reverse simulation gets stuck:

$αβγ, zw$
reduce−−−−−→
B→γ

$αβB, zw$
−−→
???

???

We have βB on top of the stack, but
we want βBz on top of the stack.
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We also need shift

A shift action shifts a terminal onto the stack.

αAw
⇒rm αβBzw (using A → βBz)
⇒rm αβγzw (using B → γ)

$αβγ, zw$
reduce−−−−−→
B→γ

$αβB, zw$
shift−−−→

z
$αβBz,w$

reduce−−−−−→
A→βBz

$αA,w$

Q: How do we know when to stop shifting?
(e.g. here we don’t want to shift w)
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Another replay

Derivation

αBwAz
⇒rm αBwyz (using A → y)
⇒rm αγwyz (using B → γ)

Our parser’s possible actions:

$αγ,wyz$
reduce−−−−→
B→γ

$αB,wyz$
shift−−→

w
$αBw, yz$

shift−−→
y

$αBwy, z$
reduce−−−−→
A→y

$αBwA, z$

Again: how do we know when to reduce and when to stop shifting?
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Key idea

Shift and reduce are sufficient

It appears that if we have a derivation

S ⇒∗
rm w

we can always “replay” it in reverse using shift/reduce actions:

$,w$ →∗ $S, $

i.e. shift and reduce are sufficient.

However, we have used the desired derivation to guide the “replay”.
When parsing there is no derivation available in advance.
So our parser is non-deterministic: it must guess what the future holds.
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Replay parsing of (x + y) using shift/reduce actions

stack input action[X, a]

$ (x + y)$ shift (
$( x + y)$ shift x
$(x +y)$ reduce F → id
$(F +y)$ reduce T → F
$(T +y)$ reduce E → T
$(E +y)$ shift +
$(E+ y)$ shift y
$(E + y )$ reduce F → id

stack input action[X, a]

$(E + F )$ reduce T → F
$(E + T )$ reduce E → E + T
$(E )$ shift )
$(E) $ reduce F → (E)
$F $ reduce T → F
$T $ reduce E → T
$E $ reduce S → E
$S $ accept!

top of stack X next input token a

S → E $
E → E + T | T
T → T ∗ F | F
F → (E) | id
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$F $ reduce T → F
$T $ reduce E → T
$E $ reduce S → E
$S $ accept!

top of stack X next input token a

S → E $
E → E + T | T
T → T ∗ F | F
F → (E) | id
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Replay parsing of (x + y) using shift/reduce actions

stack input action[X, a]

$ (x + y)$ shift (
$( x + y)$ shift x
$(x +y)$ reduce F → id
$(F +y)$ reduce T → F
$(T +y)$ reduce E → T
$(E +y)$ shift +
$(E+ y)$ shift y
$(E + y )$ reduce F → id

stack input action[X, a]

$(E + F )$ reduce T → F
$(E + T )$ reduce E → E + T
$(E )$ shift )
$(E) $ reduce F → (E)
$F $ reduce T → F
$T $ reduce E → T
$E $ reduce S → E
$S $ accept!

top of stack X next input token a

S → E $
E → E + T | T
T → T ∗ F | F
F → (E) | id
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Aside: shift and reduce construct trees
S

E

T

F
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T

F
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x(

S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id
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Aside: shift and reduce construct trees
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E
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shift ( S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id
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Aside: shift and reduce construct trees
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shift (

shift x
S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id
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shift x
reduce F → id

S → E $
E → E + T
E → T
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T → F
F → (E)
F → id
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T → T ∗ F
T → F
F → (E)
F → id



Derivations

Formalisation

Shift &
reduce

Items

Key idea

Aside: shift and reduce construct trees
S

E

T

F

)

E

T

F

y+

E

T

F

x(

shift (

shift x
reduce F → id
reduce T → F
reduce E → T
shift +

shift y

S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id



Derivations

Formalisation

Shift &
reduce

Items

Key idea

Aside: shift and reduce construct trees
S

E

T

F

)

E

T

F

y+

E

T

F

x(

shift (

shift x
reduce F → id
reduce T → F
reduce E → T
shift +

shift y
reduce F → id

S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id



Derivations

Formalisation

Shift &
reduce

Items

Key idea

Aside: shift and reduce construct trees
S

E

T

F

)

E

T

F

y+

E

T

F

x(

shift (

shift x
reduce F → id
reduce T → F
reduce E → T
shift +

shift y
reduce F → id
reduce T → F

S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id



Derivations

Formalisation

Shift &
reduce

Items

Key idea

Aside: shift and reduce construct trees
S

E

T

F

)

E

T

F

y+

E

T

F

x(

shift (

shift x
reduce F → id
reduce T → F
reduce E → T
shift +

shift y
reduce F → id
reduce T → F
reduce E → E + T

S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id



Derivations

Formalisation

Shift &
reduce

Items

Key idea

Aside: shift and reduce construct trees
S

E

T

F

)

E

T

F

y+

E

T

F

x(

shift (

shift x
reduce F → id
reduce T → F
reduce E → T
shift +

shift y
reduce F → id
reduce T → F
reduce E → E + T
shift )

S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id



Derivations

Formalisation

Shift &
reduce

Items

Key idea

Aside: shift and reduce construct trees
S

E

T

F

)

E

T

F

y+

E

T

F

x(

shift (

shift x
reduce F → id
reduce T → F
reduce E → T
shift +

shift y
reduce F → id
reduce T → F
reduce E → E + T
shift )

reduce F → (E)

S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id



Derivations

Formalisation

Shift &
reduce

Items

Key idea

Aside: shift and reduce construct trees
S

E

T

F

)

E

T

F

y+

E

T

F

x(

shift (

shift x
reduce F → id
reduce T → F
reduce E → T
shift +

shift y
reduce F → id
reduce T → F
reduce E → E + T
shift )

reduce F → (E)
reduce T → F

S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id



Derivations

Formalisation

Shift &
reduce

Items

Key idea

Aside: shift and reduce construct trees
S

E

T

F

)

E

T

F

y+

E

T

F

x(

shift (

shift x
reduce F → id
reduce T → F
reduce E → T
shift +

shift y
reduce F → id
reduce T → F
reduce E → E + T
shift )

reduce F → (E)
reduce T → F
reduce E → T

S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id



Derivations

Formalisation

Shift &
reduce

Items

Key idea

Aside: shift and reduce construct trees
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shift (

shift x
reduce F → id
reduce T → F
reduce E → T
shift +

shift y
reduce F → id
reduce T → F
reduce E → E + T
shift )

reduce F → (E)
reduce T → F
reduce E → T
reduce S → E

S → E $
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
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Key idea

How do we decide when to shift or reduce?

Suppose A → βγ is a production. In the configuration

$αβγ, x$

we might want to reduce with A → βγ.

However, if we have

$αβ, x$

we might want to continue parsing,
hoping to eventually have βγ on top of the stack,
so that we can then reduce to A.



Items
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LR(0) items

LR(0) items record how much of a production’s RHS is already parsed.
For every grammar production

A → βγ (β, γ ∈ (N ∪ T)∗)

there is an LR(0) item

A → β•γ

A → β•γ means: we’ve parsed input x derivable from β
we might next see input derivable from γ
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LR(0) items for G′
2

S → •E
S → E•

E → •E + T
E → E •+ T
E → E +•T
E → E + T•

E → •T
E → T•

T → •T ∗ F
T → T•∗ F
T → T ∗•F
T → T ∗ F•

T → •F
T → F •

F → •( E )
F → ( •E )
F → ( E•)
F → ( E )•

F → • id
F → id•
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Valid LR(0) items

Definition: item A → β•γ is valid for ϕβ if there exists a derivation

S
⇒∗

rm ϕAw
⇒rm ϕβγw

If

A → β•γ is valid for ϕβ

then

parser can use A → β•γ as a guide in configuration $ϕβ,w$
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Using items as parsing guides

Suppose parser is in config $ϕβ, cz$ and A → β•cγ is valid for ϕβ.
Then we might shift c onto the stack:

$ϕβ, cz$ shift c−−−−−→ $ϕβc, z$

Suppose parser is in config $ϕβ, z$ and A → β• is valid for ϕβ.
Then we might perform a reduction

$ϕβ, z$ reduce−−−−→
A→β

$ϕA, z$
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Using items as parsing guides (continued)

Suppose parser is in valid config $ϕβ,w$ (so S ⇒∗
rm ϕβw).

Suppose A → β•γ is valid for ϕβ.
Then γ might capture the future of our parse (the past of the derivation).

That is, it might be that

S
⇒∗

rm ϕAx
⇒rm ϕβγx
⇒∗

rm ϕβyx = ϕβw

If so, our parser might proceed like so:

$ϕβ, yx$ = $ϕβ,w$
→∗ $ϕβγ, x$

reduce−−−−→ $ϕA, x$

i.e. our parser could guess that γ will
derive a prefix of the remaining input w.



Key idea
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Key idea

The key idea in LR parsing

Idea: Augment shift/reduce parser so that in every configuration $α,w$ it can
derive the set of items valid for α.

At each step parser can (non-deterministically) select an item to use as a guide.
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NFA with LR(0) items as states

A → β•cγ A → βc•γ

A → β•Bγ A → βB•γ

A → β•Bγ B → •αi

c

B

ϵ

Initial state is item constructed from unique starting production, e.g.:

q0 = S → •E

Let δG be the transition function of this NFA (and every state be accepting).
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Main LR parsing theorem

Theorem:

A → β•γ ∈ δG(q0, ϕβ)
if and only if

A → β•γ is valid for ϕβ.

(NB: The set of words ϕβ is a regular language!)
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A few NFA transitions for grammar G2

E → E•+ T

F → •(E)

F → (•E)

E → E + •T

T → •F

F → •id

+

ϵ
ϵ

( ϵ
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A non-deterministic LR parsing algorithm

c := NextToken()
while true:

α := the stack
if A → β•cγ ∈ δG(q0, α)

then shift c; c := NextToken()
if A → β• ∈ δG(q0, α)

then reduce via A → β

if S → β• ∈ δG(q0, α)
then accept (if no more input)

if none of the above
then error

} non-deterministic since
& multiple “if” conditions can be true
& multiple items can match any condition



Next time: SLR(1) & LR(1)
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