Compiler Construction Lecture 2: Lexing

Jeremy Yallop jeremy.yallop@cl.cam.ac.uk Lent 2024

What is a lexer?

What is lexing?

What do lexers look like?

 ∂

Today's Q: how can we turn this declarative specification into a program?

Regular expressions ("regexes")

Regular expression syntax

The regular language problem

 $L(e_2)$

Lexing	The $L(-)$ function can be defined inductively:		
Regexes	$L(e) \subseteq \Sigma st$		
●● NFA, DFA	$L(\emptyset) = \{\}$ $L(\epsilon) = \{\epsilon\}$ $L(a) = \{a\}$		
RE o NFA			
$\mathbf{NFA} ightarrow \mathbf{DFA}$	$L(e_1e_2) = \{w_1w_2 \mid w_1 \in L(e_1e_2)\}$	$\pmb{e}_1), \pmb{w}_2 \in$	
Lexing (reprise)	$L(e^0) = \{\epsilon\}$ $L(e^{n+1}) = L(ee^n)$ $L(e^*) = \cup_{n \ge 0} L(e^n)$		
∂	\mathbf{T}	.	

The regular language problem: is $w \in L(e)$? This is insufficient for lexing.

Finite-state automata

An NFA example

Review of Finite Automata (FA)

Transition notation

Regular expressions \longrightarrow NFAs

Review of RE \longrightarrow NFA

Regexes NFA, DFA RE → NFA

> Lexing (reprise)

 $\underbrace{\bullet \circ \circ}_{\mathsf{NFA} \to \mathsf{DFA}}$

N(-) takes a regex e to an NFA N(e) accepting L(e) with a single final state.

$$N(e) = (q_{start}) N(e) (q_{final})$$

N(-) is defined by induction on *e*.

Review of RE \longrightarrow NFA

Review of RE \longrightarrow NFA

Note: an **alternative** to this simple construction is **Glushkov's algorithm** (1961), which produces an equivalent automaton without the ϵ transitions.

$\mathsf{NFAs} \longrightarrow \mathsf{DFAs}$

Review of NFA \longrightarrow DFA

Lexing	The powerset construction takes a NFA	
Regexes	$\textit{\textit{M}}=\langle\textit{\textit{Q}}, \Sigma, \delta, \textit{\textit{q}}_0, \textit{\textit{F}} angle$	
	and constructs a DFA	
NFA, DFA	$\mathit{M}'=\langle \mathit{Q}', \Sigma', \delta', \mathit{q}_0', \mathit{F}' angle$	
	where the components of ${\cal M}'$ are calculated as follows:	
RE o NFA	$Q' = \{S \mid S \subseteq Q\}$	
	$\delta'(S, a) = \epsilon$ -closure $(\{q' \in \delta(q, a) \mid q \in S\})$	
$ \begin{array}{c} NFA \to DFA \\ \bullet \bigcirc \bigcirc \end{array} $	$q'_0 = \epsilon$ -closure $\{q_0\}$	
Lexing (reprise)	$F' = \{S \subseteq Q \mid S \cap F \neq \emptyset\}$	
	and the ϵ - <i>closure</i> is:	
∂	ϵ -closure(S) = { $q' \in Q \mid \exists q \in S, q \xrightarrow{\epsilon} q'$ }	

$\mathsf{DFA}(\mathsf{N}((a \lor b) * abb))$

The lexing problem

The lexing problem

 \Rightarrow IF

 \Rightarrow skip

 \Rightarrow IDENT S

INT i \Rightarrow

Define tokens with regexes (automata)

Constructing a Lexer

Lexing

Start from ordered lexer rules $e_1 \Rightarrow t_1, e_2 \Rightarrow t_2, \dots, e_k \Rightarrow t_k$. Construct *tagged NFA* for $e_1 \lor e_2 \lor \dots \lor e_k$. Convert to *tagged DFA*: each accepting state is tagged for highest priority e_i .

IF

 \Rightarrow IDENT S

lexer rules

[0-9] + as i \Rightarrow INT i

Regexes

NFA, DFA

if

. . .

[\n]

[a-zA-Z] + as s

 $\mathsf{RE} \to \mathsf{NFA}$

 $\mathsf{NFA} o \mathsf{DFA}$

⇒ skip start ·

State 3 could be either an IDENT or the keyword IF. Priority eliminates the ambiguity, associating state 3 with the keyword.

lexing algorithm

Start in initial state, and repeatedly:

- 1. Read input until failure (no transition) Emit tag for last accepting state
- 2. Reset state to start state

Reset position to last accepting position

lexing algorithm

Start in initial state, and repeatedly:

- 1. Read input until failure (no transition) Emit tag for last accepting state
- 2. Reset state to start state

Reset position to last accepting position

lexing algorithm

Start in initial state, and repeatedly:

- 1. Read input until failure (no transition) Emit tag for last accepting state
- 2. Reset state to start state

Reset position to last accepting position

lexing algorithm

Start in initial state, and repeatedly:

- 1. Read input until failure (no transition) Emit tag for last accepting state
- 2. Reset state to start state

Reset position to last accepting position

lexing algorithm

Start in initial state, and repeatedly:

- 1. Read input until failure (no transition) Emit tag for last accepting state
- 2. Reset state to start state

Reset position to last accepting position

lexing algorithm

Start in initial state, and repeatedly:

- 1. Read input until failure (no transition) Emit tag for last accepting state
- 2. Reset state to start state

Reset position to last accepting position

tokens: IF

lexing algorithm

Start in initial state, and repeatedly:

- 1. Read input until failure (no transition) Emit tag for last accepting state
- 2. Reset state to start state

Reset position to last accepting position

lexing algorithm

Start in initial state, and repeatedly:

- 1. Read input until failure (no transition) Emit tag for last accepting state
- 2. Reset state to start state

Reset position to last accepting position

lexing algorithm

Start in initial state, and repeatedly:

- 1. Read input until failure (no transition) Emit tag for last accepting state
- 2. Reset state to start state

Reset position to last accepting position

lexing algorithm

Start in initial state, and repeatedly:

- 1. Read input until failure (no transition) Emit tag for last accepting state
- Reset state to start state Reset position to last accepting position

tokens: IF IDENT ifx

Lexing with derivatives

Matching with derivatives

Lexing

Regexes

NFA, DFA

 ${
m RE}
ightarrow {
m NFA}$

 $\mathbf{NFA} \to \mathbf{DFA}$

Lexing (reprise)

 ∂ $\bullet \circ \circ$

Brzozowski (1964)'s formulation of regex matching, based on derivatives.

Derivative of regex r w.r.t. character c is another regex $\partial_c r$ that matches s iff r matches cs.

E.g.: consider $(b \lor c)+$. After matching *c*, can accept either ϵ or more b/c, so:

 $\partial_c (b \lor c) + = \epsilon \lor (b \lor c) + = (b \lor c) *$

Construct DFA for *r*, taking regexes *r* as states, adding transition $r_i \xrightarrow{c} r_j$ whenever $\partial_c r_i = r_j$. For example, for $(b \lor c)$ +:

start
$$\rightarrow \underbrace{(b \lor c)}_{c} + \underbrace{b}_{c} \underbrace{(b \lor c)}_{c} + \underbrace{b}_{c}$$

NB: $\partial_c (b \lor c) * = (b \lor c) *$. (Can you see why?) Also: ϵ -matching states are accepting.

More information: Regular-expression derivatives re-examined (Owens et al, 2009).

Lexing with derivatives

Lexing

Regexes

NFA, DFA

 ${f RE}
ightarrow {f NFA}$

 $\mathbf{NFA}
ightarrow \mathbf{DFA}$

Lexing (reprise)

 ∂

Lexers match input string against multiple regexes in parallel. Automaton for matching a token; states are vectors of regexes, one per lexer rule. ∂_c acts pointwise on the regex vector.

Next time: context-free grammars