Compiler Construction Lecture 2: Lexing

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
Lent 2024

What is lexing？

Lexing
－O O
Regexes

NFA，DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing （reprise）

Lexing converts a sequence of characters into a sequence of tokens．
characters

i f	a	$=$	3	\n	t	h	e	n	b		e	1	s	e	C
込	$\begin{aligned} & = \\ & = \\ & = \\ & \text { K } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { B } \\ & \text { O} \\ & \text { n } \end{aligned}$	$\begin{aligned} & \bar{M} \\ & = \\ & \vdots \\ & z \end{aligned}$		$\begin{aligned} & \text { 悪 } \\ & \underset{y}{\mid c} \end{aligned}$						界				$\begin{aligned} & \text { = u } \\ & = \\ & \text { H } \\ & \text { an } \end{aligned}$

What do lexers look like?

Lexing

- 0

A lexer is typically specified as a sequence mapping regexes to tokens:

NFA, DFA

RE \rightarrow NFA

```
NFA }->\mathrm{ DFA
```

Lexing (reprise)

\checkmark	if	\Rightarrow	IF
.은	then	\Rightarrow	THEN
U	else	\Rightarrow	ELSE
$\stackrel{\text { ® }}{\text { ¢ }}$	$=$	\Rightarrow	EQUAL
$\stackrel{\square}{0}$	[a-zA-Z]+ as s	\Rightarrow	IDENT s
$\frac{5}{30}$	[0-9]+ as i	\Rightarrow	INT i
\pm	[$\backslash t \backslash n]$	\Rightarrow	skip

Token data type:
type token =
INT of int
| IDENT of string
| EQUAL
| IF
| TEN
| ELSE
|

Today's Q: how can we turn this declarative specification into a program?

Regular expressions
("regexes")

Regular expression syntax

Lexing

Regular expressions e over alphabet Σ are written:

$$
e \rightarrow \emptyset|\epsilon| \mathrm{a}|e \vee e| e e \mid e * \quad(a \in \Sigma)
$$

A regular expression e denotes a language (set of strings) $L(e)$. For example,

$$
\begin{aligned}
L((a \vee b) * a b b)= & \{a b b, \\
& a a b b, \\
& b a b b, \\
& a a a b b, \\
& a b a b b, \\
& b a a b b, \\
& \text { bbabb, } \\
& \text { aaaabb, },
\end{aligned}
$$

The $L(-)$ function can be defined inductively:

Regexes

NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing (reprise)

$$
\begin{aligned}
L(e) & \subseteq \Sigma * \\
L(\emptyset) & =\{ \} \\
L(\epsilon) & =\{\epsilon\} \\
L(a) & =\{a\} \\
L\left(e_{1} \vee e_{2}\right) & =L\left(e_{1}\right) \cup L\left(e_{2}\right) \\
L\left(e_{1} e_{2}\right) & =\left\{w_{1} w_{2} \mid w_{1} \in L\left(e_{1}\right), w_{2} \in L\left(e_{2}\right)\right\} \\
L\left(e^{0}\right) & =\{\epsilon\} \\
L\left(e^{n+1}\right) & =L\left(e e^{n}\right) \\
L(e *) & =\cup_{n \geq 0} L\left(e^{n}\right)
\end{aligned}
$$

The regular language problem: is $w \in L(e)$? This is insufficient for lexing.

Finite-state automata

An NFA example

Transition notation

Lexing
Regexes
NFA, DFA
REA \rightarrow DFA

Regular expressions \longrightarrow NFAs
$N(-)$ takes a regex e to an NFA $N(e)$ accepting $L(e)$ with a single final state.
Regexes

$$
N(e)=q_{\text {start }} N(e) q_{\text {final }}
$$

MFA, DEA
$N(-)$ is defined by induction on e.
RE \rightarrow NFA

exing

Regexes

NFA, DFA

$$
\mathrm{RE} \rightarrow \mathrm{NFA}
$$

- ○○

NFA \rightarrow DFA

Lexing (reprise)

Note: an alternative to this simple construction is Glushkov's algorithm (1961), which produces an equivalent automaton without the ϵ transitions.

NFAs \longrightarrow DFAs

Lexing

Regexes

NFA, DFA

RE \rightarrow NFA

$$
\text { NFA } \rightarrow \text { DFA }
$$

- ○○

Lexing (reprise)

The powerset construction takes a NFA

$$
M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle
$$

and constructs a DFA

$$
M^{\prime}=\left\langle Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right\rangle
$$

where the components of M^{\prime} are calculated as follows:

$$
\begin{aligned}
Q^{\prime} & =\{S \mid S \subseteq Q\} \\
\delta^{\prime}(S, a) & =\epsilon \text {-closure }\left(\left\{q^{\prime} \in \delta(q, a) \mid q \in S\right\}\right) \\
q_{0}^{\prime} & =\epsilon \text {-closure }\left\{q_{0}\right\} \\
F^{\prime} & =\{S \subseteq Q \mid S \cap F \neq \emptyset\}
\end{aligned}
$$

and the ϵ-closure is:

$$
\epsilon \text {-closure }(S)=\left\{q^{\prime} \in Q \mid \exists q \in S, q \xrightarrow{\epsilon} q^{\prime}\right\}
$$

DFA(N((a२b)*abb))

The lexing problem

The regular language problem (i.e. "is $w \in L(e)$?") is insufficient for lexing.
We need to tokenize a string using a lexer specification

taking into account that
We should skip whitespace
(because whitespace is irrelevant to the parser)
We should find the longest match accepted by the lexer (treat ifif as a variable, not two keywords)

We should pick the first rule that matches the longest matched substring (treat if as a keyword because the IF rule comes before the IDENT rule)

Define tokens with regexes (automata)

Lexing			$\Rightarrow \mathrm{IF}$
	if	(1) $\mathrm{i}_{\mathrm{i}}^{\longrightarrow}$ (2)	
Regexes			
NFA, DFA	then		\Rightarrow THEN
$\mathrm{RE} \rightarrow \mathrm{NFA}$			
NFA \rightarrow DFA		(1) $\underset{[a-z A-Z]}{ }$ (a-zA-ZO-9]	\Rightarrow IDENT s
$\begin{aligned} & \text { Lexing } \\ & \text { (reprise) } \end{aligned}$	[0-9][0-9]*	(1) $\underset{[0-9]}{\longrightarrow}$ (0-9]	\Rightarrow INT n
∂	[$\backslash t \backslash n]$	$\text { (1) } \underset{[\backslash t \backslash n]}{ } \text { (2) }$	$\Rightarrow{\underset{\text { (not really a token) }}{s k i p}}^{\text {sot }}$

Constructing a Lexer

Start from ordered lexer rules $e_{1} \Rightarrow t_{1}, e_{2} \Rightarrow t_{2}, \ldots, e_{k} \Rightarrow t_{k}$.
Construct tagged NFA for $e_{1} \vee e_{2} \vee \ldots \vee e_{k}$.
Regexes Convert to tagged DFA: each accepting state is tagged for highest priority e_{i}.

NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing (reprise)

if		
\ldots	IF	
\ldots		
$[\mathrm{a}-\mathrm{zA}-\mathrm{Z}]+$ as s	\Rightarrow	IDENT s
$[0-9]+$ as i	\Rightarrow	INT i
$[\backslash \mathrm{n}]$	\Rightarrow	skip

State 3 could be either an ident or the keyword IF.
Priority eliminates the ambiguity, associating state 3 with the keyword.

What about longest match?

What about longest match?

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

What about longest match?

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

What about longest match?

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

What about longest match?

Lexing with derivatives

Matching with derivatives

Lexing

Brzozowski (1964)'s formulation of regex matching, based on derivatives.
Derivative of regex r w.r.t. character c is another regex $\partial_{c} r$ that matches s iff r matches $c s$.
E.g.: consider $(b \vee c)+$. After matching c, can accept either ϵ or more b / c, so:

$$
\partial_{c}(b \vee c)+=\epsilon \vee(b \vee c)+=(b \vee c) *
$$

Construct DFA for r, taking regexes r as states, adding transition $r_{i} \xrightarrow{c} r_{j}$ whenever $\partial_{c} r_{i}=r_{j}$. For example, for $(b \vee c)+$:

NB: $\partial_{c}(b \vee c) *=(b \vee c) *$. (Can you see why?) Also: ϵ-matching states are accepting.

Defining ∂_{c}

∂_{c} is defined inductively over regexes.
Regexes Can you see the similarities with derivatives of numerical functions? (Hint: read $r_{1} r_{2}$ as $r_{1} \times r_{2}$ and $r_{1} \vee r_{2}$ as $r_{1}+r_{2}$.)

NFA, DFA

$$
\mathrm{RE} \rightarrow \mathrm{NFA}
$$

$$
\text { NFA } \rightarrow \text { DFA }
$$

Lexing
(reprise)

$$
\begin{array}{rlrl}
\partial_{c} \emptyset & =\emptyset & \\
\partial_{c} \epsilon & =\emptyset \\
\partial_{c} b & =\emptyset & & \\
\partial_{c} c & =\epsilon & & \\
\partial_{c}(r s) & =\left(\partial_{c} r\right) s \mid \nu(r)\left(\partial_{c} s\right) & \nu(r) & =\epsilon \text { if } \epsilon \in L(r) \\
\partial_{c}(r \vee s) & =\partial_{c} r \vee \partial_{c} s & & =\emptyset \text { if } \epsilon \notin L(r)
\end{array}
$$

$$
\partial_{c} r *=\left(\partial_{c} r\right) r *
$$

More information: Regular-expression derivatives re-examined (Owens et al, 2009).

Lexing with derivatives

Lexers match input string against multiple regexes in parallel.
Automaton for matching a token; states are vectors of regexes, one per lexer rule. ∂_{c} acts pointwise on the regex vector.

NFA, DFA

RE \rightarrow NFA

NFA \rightarrow DFA

Lexing (reprise)

Next time: context-free grammars

