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What is a lexer?

lexing parsing typingif a = 3
then b else c

•

•••

••

middle/back end

L1: grab 2
acc 0
push
const 3
eqint
branchifnot L3
acc 1
return 3

L2: acc 2
...front end

}

today’s lecture
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What is lexing?

Lexing converts a sequence of characters into a sequence of tokens.

i f a = 3 \n t h e n b e l s e c

characters

tokens

if

id
en

t
”a

”

eq
ua

l

in
t

”3
”

th
en

id
en

t
”b

”

el
se

id
en

t
”c

”
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What do lexers look like?

A lexer is typically specified as a sequence mapping regexes to tokens:

if ⇒ if
then ⇒ then
else ⇒ else
= ⇒ equal
[a-zA-Z]+ as s ⇒ ident s
[0-9]+ as i ⇒ int i
[ \t\n] ⇒ skipre

gu
lar

ex
pr

es
sio

ns

tokens

type token =
INT of int

| IDENT of string
| EQUAL
| IF
| THEN
| ELSE
| . . .

Token data type:

Today’s Q: how can we turn this declarative specification into a program?



Regular expressions
(“regexes”)
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Regular expression syntax

Regular expressions e over alphabet Σ are written:

e → ∅ | ϵ | a | e ∨ e | ee | e ∗ (a ∈ Σ)

A regular expression e denotes a language (set of strings) L(e). For example,

L((a ∨ b) ∗ abb) = {abb,
aabb,
babb,
aaabb,
ababb,
baabb,
bbabb,
aaaabb,
. . .}
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The regular language problem

The L(−) function can be defined inductively:

L(e) ⊆ Σ∗

L(∅) = {}
L(ϵ) = {ϵ}
L(a) = {a}

L(e1 ∨ e2) = L(e1) ∪ L(e2)

L(e1e2) = {w1w2 | w1 ∈ L(e1),w2 ∈ L(e2)}

L(e0) = {ϵ}
L(en+1) = L(een)

L(e∗) = ∪n≥0L(en)

The regular language problem: is w ∈ L(e)? This is insufficient for lexing.



Finite-state automata
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An NFA example

A nondeterministic finite-state automaton for recognising L((a ∨ b) ∗ abb):

1 2

3 4

5 6

7 8 9 10 11

b

a

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

a b b
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Review of Finite Automata (FA)

⟨Q,Σ, δ, q0,F⟩M =

states Q

alphabet Σ

start state q0 ∈ Q

final states F ⊆ Q

For DFAs:
(deterministic)
∀q ∈ Q
∀a ∈ Σ

δ(q, a) ∈ Q

For NFAs:
(nondeterministic)
∀q ∈ Q
∀a ∈ (Σ ∪ {ϵ})

δ(q, a) ⊆ Q
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Transition notation

Null transition
on empty string

Including
ϵ transitions

Transition
on non-empty string

Language of
an automaton

q ϵ−→ q

q1
aw−→ q3

if δ(q1, a) = q2 and q2
w−→ q3

L(M) = {w | ∃q ∈ F, q0
w−→ q}

q ϵ−→ q

q1
w−→ q3

if δ(q1, ϵ) ∋ q2 and q2
w−→ q3

q1
aw−→ q3

if δ(q1, a) ∋ q2 and q2
w−→ q3

L(M) = {w | ∃q ∈ F, q0
w−→ q}

DFA NFA



Regular expressions −→ NFAs
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Review of RE −→ NFA

N(−) takes a regex e to an NFA N(e) accepting L(e) with a single final state.

qstart qfinalN(e)N(e) =

N(−) is defined by induction on e.

q0 q1N(∅) =

q0 q1
ϵN(ϵ) =

q0 q1
aN(a) =
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Review of RE −→ NFA

N(e1)

N(e2)

ϵ

ϵ

ϵ

ϵ
N(e1 ∨ e2) =

N(e1) N(e2)N(e1e2) =
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Review of RE −→ NFA

N(e)ϵ ϵ

ϵ

ϵ

N(e∗) =

Note: an alternative to this simple construction is Glushkov’s algorithm (1961),
which produces an equivalent automaton without the ϵ transitions.

https://en.wikipedia.org/wiki/Glushkov%27s_construction_algorithm
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Review of NFA −→ DFA
The powerset construction takes a NFA

M = ⟨Q,Σ, δ, q0,F⟩

and constructs a DFA
M′ = ⟨Q′,Σ′, δ′, q′0,F′⟩

where the components of M′ are calculated as follows:

Q′ = {S | S ⊆ Q}
δ′(S, a) = ϵ-closure({q′ ∈ δ(q, a) | q ∈ S})

q′0 = ϵ-closure{q0}
F′ = {S ⊆ Q | S ∩ F ̸= ∅}

and the ϵ-closure is:

ϵ-closure(S) = {q′ ∈ Q | ∃q ∈ S, q ϵ−→ q′}
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How do we compute ϵ-closure(S)?

1 2

3 4

5 6

7 8 9 10 11
b

a

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

a b b

push elements of S onto stack
result := S
while stack not empty

pop q off stack
for each u ∈ δ(q, ϵ)

if u /∈ result
then result := {u}∪ result

push u on stack
return result

ϵ-closure

stack
result

(NB: just an instance of transitive closure)
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How do we compute ϵ-closure(S)?

1 2

3 4

5 6

7 8 9 10 11
b

a

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

a b b

push elements of S onto stack
result := S
while stack not empty

pop q off stack
for each u ∈ δ(q, ϵ)

if u /∈ result
then result := {u}∪ result

push u on stack
return result

ϵ-closure

stack 1
result 1

(NB: just an instance of transitive closure)
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How do we compute ϵ-closure(S)?

1 2

3 4

5 6

7 8 9 10 11
b

a

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

a b b

push elements of S onto stack
result := S
while stack not empty

pop q off stack
for each u ∈ δ(q, ϵ)

if u /∈ result
then result := {u}∪ result

push u on stack
return result

ϵ-closure

stack
result 1 2 8

(NB: just an instance of transitive closure)
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How do we compute ϵ-closure(S)?

1 2

3 4

5 6

7 8 9 10 11
b

a

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

a b b

push elements of S onto stack
result := S
while stack not empty

pop q off stack
for each u ∈ δ(q, ϵ)

if u /∈ result
then result := {u}∪ result

push u on stack
return result

ϵ-closure

stack 2 8
result 1 2 8

(NB: just an instance of transitive closure)
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How do we compute ϵ-closure(S)?

1 2

3 4

5 6

7 8 9 10 11
b

a

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

a b b

push elements of S onto stack
result := S
while stack not empty

pop q off stack
for each u ∈ δ(q, ϵ)

if u /∈ result
then result := {u}∪ result

push u on stack
return result

ϵ-closure

stack 8
result 1 2 8 3 5

(NB: just an instance of transitive closure)
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How do we compute ϵ-closure(S)?

1 2

3 4

5 6

7 8 9 10 11
b

a

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

a b b

push elements of S onto stack
result := S
while stack not empty

pop q off stack
for each u ∈ δ(q, ϵ)

if u /∈ result
then result := {u}∪ result

push u on stack
return result

ϵ-closure

stack 3 5 8
result 1 2 8 3 5

(NB: just an instance of transitive closure)
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How do we compute ϵ-closure(S)?

1 2

3 4

5 6

7 8 9 10 11
b

a

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

a b b

push elements of S onto stack
result := S
while stack not empty

pop q off stack
for each u ∈ δ(q, ϵ)

if u /∈ result
then result := {u}∪ result

push u on stack
return result

ϵ-closure

stack 5 8
result 1 2 8 3 5

(NB: just an instance of transitive closure)
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How do we compute ϵ-closure(S)?

1 2

3 4

5 6

7 8 9 10 11
b

a

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

a b b

push elements of S onto stack
result := S
while stack not empty

pop q off stack
for each u ∈ δ(q, ϵ)

if u /∈ result
then result := {u}∪ result

push u on stack
return result

ϵ-closure

stack 8
result 1 2 8 3 5

(NB: just an instance of transitive closure)
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How do we compute ϵ-closure(S)?

1 2

3 4

5 6

7 8 9 10 11
b

a

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

a b b

push elements of S onto stack
result := S
while stack not empty

pop q off stack
for each u ∈ δ(q, ϵ)

if u /∈ result
then result := {u}∪ result

push u on stack
return result

ϵ-closure

stack
result 1 2 8 3 5

(NB: just an instance of transitive closure)



Lexing

Regexes

NFA, DFA

RE → NFA

NFA → DFA

Lexing
(reprise)

∂

DFA(N((a ∨ b) ∗ abb))

1 2

3 4

5 6

7 8 9 10 11

b

a

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

a b b

1,2,3,
5,8

2,3,4,5,
7,8,9

2,3,5,6,
7,8

2,3,5,6,
7,8,10

2,3,5,6,
7,8,11

a

b

a

a
b

b

a

b

a

b
powerset construction



The lexing problem
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The lexing problem

The regular language problem (i.e. “is w ∈ L(e)?”) is insufficient for lexing.
We need to tokenize a string using a lexer specification

i f a = 3 \n t h e n b e l s e c

if

id
en

t
”a

”

eq
ua

l

in
t

”3
”

th
en

id
en

t
”b

”

el
se

id
en

t
”c

”

if ⇒ if
. . .
[a-zA-Z]+ as s ⇒ ident s
[0-9]+ as i ⇒ int i
[ \t\n] ⇒ skip

taking into account that
We should skip whitespace

(because whitespace is irrelevant to the parser)

We should find the longest match accepted by the lexer
(treat ifif as a variable, not two keywords)

We should pick the first rule that matches the longest matched substring
(treat if as a keyword because the IF rule comes before the ident rule)
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Define tokens with regexes (automata)

1 2 3
i f

1 2 3

45

t h

e

n

1 2
[a-zA-Z]

[a-zA-Z0-9]

1 2
[0-9]

[0-9]

1 2
[ \t\n]

if

then

[a-zA-Z][a-zA-Z0-9]*

[0-9][0-9]*

[ \t\n]

⇒ if

⇒ then

⇒ ident s

⇒ int n

⇒ skip
(not really a token)
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Constructing a Lexer
Start from ordered lexer rules e1⇒t1, e2⇒t2, . . . , ek⇒tk.
Construct tagged NFA for e1 ∨ e2 ∨ . . . ∨ ek.
Convert to tagged DFA: each accepting state is tagged for highest priority ei.

1start

2:ident 3:if

4:skip

5:ident

i

[ \n]

[a-hj-z]

f

[a-eg-z]
[a-z]

[a-z]

if ⇒ if
. . .
[a-zA-Z]+ as s ⇒ ident s
[0-9]+ as i ⇒ int i
[ \n] ⇒ skip

lexer rules tagged DFA

State 3 could be either an ident or the keyword if.
Priority eliminates the ambiguity, associating state 3 with the keyword.
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What about longest match?

1start

2:ident 3:if

4:skip

5:ident

i

[ \n]

[a-hj-z]

f

[a-eg-z]
[a-z]

[a-z]

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state
2. Reset state to start state

Reset position to last accepting position

lexing algorithm

i f i f x tokens:

Note: the machine is deterministic, but the algorithm can backtrack.
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What about longest match?

1start

2:ident 3:if

4:skip

5:ident

i

[ \n]

[a-hj-z]

f

[a-eg-z]
[a-z]

[a-z]

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state
2. Reset state to start state

Reset position to last accepting position

lexing algorithm

i f i f x tokens:

ident

Note: the machine is deterministic, but the algorithm can backtrack.
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What about longest match?

1start

2:ident 3:if

4:skip

5:ident

i

[ \n]

[a-hj-z]

f

[a-eg-z]
[a-z]

[a-z]

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state
2. Reset state to start state

Reset position to last accepting position

lexing algorithm

i f i f x tokens:

if

Note: the machine is deterministic, but the algorithm can backtrack.
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What about longest match?

1start

2:ident 3:if

4:skip

5:ident

i

[ \n]

[a-hj-z]

f

[a-eg-z]
[a-z]

[a-z]

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state
2. Reset state to start state

Reset position to last accepting position

lexing algorithm

i f i f x tokens:

if

if

Note: the machine is deterministic, but the algorithm can backtrack.
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What about longest match?

1start

2:ident 3:if

4:skip

5:ident

i

[ \n]

[a-hj-z]

f

[a-eg-z]
[a-z]

[a-z]

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state
2. Reset state to start state

Reset position to last accepting position

lexing algorithm

i f i f x tokens: if

Note: the machine is deterministic, but the algorithm can backtrack.
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What about longest match?

1start

2:ident 3:if

4:skip

5:ident

i

[ \n]

[a-hj-z]

f

[a-eg-z]
[a-z]

[a-z]

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state
2. Reset state to start state

Reset position to last accepting position

lexing algorithm

i f i f x tokens: if

Note: the machine is deterministic, but the algorithm can backtrack.
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What about longest match?

1start

2:ident 3:if

4:skip

5:ident

i

[ \n]

[a-hj-z]

f

[a-eg-z]
[a-z]

[a-z]

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state
2. Reset state to start state

Reset position to last accepting position

lexing algorithm

i f i f x tokens:

ident

if

Note: the machine is deterministic, but the algorithm can backtrack.
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What about longest match?

1start

2:ident 3:if

4:skip

5:ident

i

[ \n]

[a-hj-z]

f

[a-eg-z]
[a-z]

[a-z]

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state
2. Reset state to start state

Reset position to last accepting position

lexing algorithm

i f i f x tokens:

if

if

Note: the machine is deterministic, but the algorithm can backtrack.
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What about longest match?

1start

2:ident 3:if

4:skip

5:ident

i

[ \n]

[a-hj-z]

f

[a-eg-z]
[a-z]

[a-z]

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state
2. Reset state to start state

Reset position to last accepting position

lexing algorithm

i f i f x tokens:

ident

if

Note: the machine is deterministic, but the algorithm can backtrack.
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What about longest match?

1start

2:ident 3:if

4:skip

5:ident

i

[ \n]

[a-hj-z]

f

[a-eg-z]
[a-z]

[a-z]

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state
2. Reset state to start state

Reset position to last accepting position

lexing algorithm

i f i f x tokens: if ident ifx

Note: the machine is deterministic, but the algorithm can backtrack.



Lexing with derivatives
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Matching with derivatives

Brzozowski (1964)’s formulation of regex matching, based on derivatives.

Derivative of regex r w.r.t. character c is
another regex ∂c r that matches s iff r matches cs.

E.g.: consider (b ∨ c)+. After matching c, can accept either ϵ or more b/c, so:

∂c (b ∨ c)+ = ϵ ∨ (b ∨ c)+ = (b ∨ c)∗

Construct DFA for r, taking regexes r as states, adding transition ri
c−→ rj

whenever ∂c ri = rj. For example, for (b ∨ c)+:

(b ∨ c)+start (b ∨ c)∗b
c

b
c

NB: ∂c (b ∨ c)∗ = (b ∨ c)∗. (Can you see why?) Also: ϵ-matching states are accepting.
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Defining ∂c

∂c is defined inductively over regexes.
Can you see the similarities with derivatives of numerical functions?
(Hint: read r1r2 as r1 × r2 and r1 ∨ r2 as r1 + r2.)

∂c ∅ = ∅
∂c ϵ = ∅
∂c b = ∅
∂c c = ϵ

∂c (rs) = (∂c r)s | ν(r)(∂c s) ν(r) = ϵ if ϵ ∈ L(r)
∂c (r ∨ s) = ∂c r ∨ ∂c s = ∅ if ϵ /∈ L(r)

∂c r∗ = (∂c r)r∗

More information: Regular-expression derivatives re-examined (Owens et al, 2009).

https://doi.org/10.1017/S0956796808007090
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Lexing with derivatives

Lexers match input string against multiple regexes in parallel.
Automaton for matching a token; states are vectors of regexes, one per lexer rule.
∂c acts pointwise on the regex vector.

if
[a-z]+
[ \n]

start

f
[a-z]*

∅

ϵ
[a-z]*

∅

∅
[a-z]*

∅
∅
∅
ϵ

id
en

t

if
id

en
t

sk
ip

i

[a-hj-z]
[ \n]

f

[a-eg-z]
[a-z]

[a-z]



Next time: context-free grammars
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