
Compiler Construction
Lecture 12: garbage collection

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Lent 2024

Memory management

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Manual memory management

Manual memory management: programmer controls (de)allocation time/place:

vo id *malloc(size_t n) /* allocate n bytes , return address */
vo id free(vo id *addr) /* relinquish use of memory at addr */

The programmer has a lot of control. However, mistakes can be disastrous:

p = malloc (10);
r e tu rn OK;

free(p);
free(p);

free(p);
*p += 1;

missing free double free use after free

(Observation: deallocation is much harder than allocation)

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Automatic memory management

Many programming languages support heap allocation
but do not provide a deallocation operation

d = dict(x=3,y=4)

Python

l e t d = [("x",3); ("y",4)]

OCaml

Unless the storage is reclaimed somehow, memory might be exhausted.
General approach: automatic memory management (“garbage collection”)

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Reachability and roots

Automation is based on an approximation:
If data can be reached from a root set, then it is not “garbage”

root set

• •

• •

•

The root set might include: the stack, registers, global variables.

(Without loss of generality, assume a single root)

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Reachability and representations
Ascertaining reachability requires knowledge of representations:

What is a pointer?
(typical approach: use a tag bit to distinguish between pointers and integers)

63 bits of integer or address data

tag bit

How are objects laid out?
(typical approach: use headers that carry sizes and other metadata)

size
type

…
data data

Reference counting

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Reference counting & tracing collection

Two basic approaches (and many variations):

Keep a reference count with each object
that represents the number of pointers to it.

An object is garbage when its count is 0

Reference counting
Keep alive objects reachable from the root set
(i.e. transitive close of pointer graph)

An object is garbage when it is unreachable

Tracing garbage collection

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Reference counting: idea

The reference count tracks the number of pointers to each object.

1

•

An object’s reference count is 1 when the
object is created:

1

•

2

• •

The count is incremented when a pointer
newly references the object:

1

•

2

• •

The count is decremented when a pointer
no longer references the object:

01

•

The object is unreachable garbage when
the reference count goes to 0:

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Reference counting can’t collect cyclic garbage

A significant weakness of reference counting:

1 1• •

There are no other references to these objects in the program
but the objects will never be collected.

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Long chains of objects make reclamation expensive

A significant weakness of (naive) reference counting:

1

1

1

1

1

•

•

•

•

•

Reclaiming an object can set off an unboundedly large chain of reclamations

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Long chains of objects make reclamation expensive

A significant weakness of (naive) reference counting:

0

1

1

1

1

•

•

•

•

•

Reclaiming an object can set off an unboundedly large chain of reclamations

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Long chains of objects make reclamation expensive

A significant weakness of (naive) reference counting:

0

0

1

1

1

•

•

•

•

•

Reclaiming an object can set off an unboundedly large chain of reclamations

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Long chains of objects make reclamation expensive

A significant weakness of (naive) reference counting:

0

0

0

1

1

•

•

•

•

•

Reclaiming an object can set off an unboundedly large chain of reclamations

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Long chains of objects make reclamation expensive

A significant weakness of (naive) reference counting:

0

0

0

0

1

•

•

•

•

•

Reclaiming an object can set off an unboundedly large chain of reclamations

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Long chains of objects make reclamation expensive

A significant weakness of (naive) reference counting:

0

0

0

0

0

•

•

•

•

•

Reclaiming an object can set off an unboundedly large chain of reclamations

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Reference counting: advantages and drawbacks

Advantages of reference counting:
+ Collection costs distributed through the computation
+ Allows rapid reclamation and immediate reuse

Drawbacks of reference counting:
− size overhead of storing references
− potentially high/unbounded cost on reclamation
− taking a reference involves (potentially expensive) mutation

Mark & sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark and sweep

Mark & sweep is a two-phase algorithm:

Mark phase: Traverse object graph depth first to mark live data

Sweep phase: iterate over entire heap, reclaiming unmarked data

Key idea: identify and reclaim dead objects

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Marking

root

• •

• • • •

•• •

• •

mark(node) =

if not node.marked:

node.marked = True

for c in node.children:

mark(c)

Mark

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Marking

root

• •

• • • •

•• •

• •

mark(node) =

if not node.marked:

node.marked = True

for c in node.children:

mark(c)

Mark

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Marking

root

• •

• • • •

•• •

• •

mark(node) =

if not node.marked:

node.marked = True

for c in node.children:

mark(c)

Mark

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Marking

root

• •

• • • •

•• •

• •

mark(node) =

if not node.marked:

node.marked = True

for c in node.children:

mark(c)

Mark

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Marking

root

• •

• • • •

•• •

• •

mark(node) =

if not node.marked:

node.marked = True

for c in node.children:

mark(c)

Mark

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Marking

root

• •

• • • •

•• •

• •

mark(node) =

if not node.marked:

node.marked = True

for c in node.children:

mark(c)

Mark

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Marking

root

• •

• • • •

•• •

• •

mark(node) =

if not node.marked:

node.marked = True

for c in node.children:

mark(c)

Mark

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Marking

root

• •

• • • •

•• •

• •

mark(node) =

if not node.marked:

node.marked = True

for c in node.children:

mark(c)

Mark

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Marking

root

• •

• • • •

•• •

• •

mark(node) =

if not node.marked:

node.marked = True

for c in node.children:

mark(c)

Mark

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark & sweep: cycles

Mark & sweep is able to collect cyclic garbage:

root

• •

• •

•

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark & sweep: cycles

Mark & sweep is able to collect cyclic garbage:

root

• •

• •

•

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark & sweep: cycles

Mark & sweep is able to collect cyclic garbage:

root

• •

• •

•

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark & sweep: cycles

Mark & sweep is able to collect cyclic garbage:

root

• •

• •

•

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark & sweep: cycles

Mark & sweep is able to collect cyclic garbage:

root

• •

• •

•

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark & sweep: cycles

Mark & sweep is able to collect cyclic garbage:

root

• •

• •

•

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark & sweep: cycles

Mark & sweep is able to collect cyclic garbage:

root

• •

• •

•

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark & sweep: cycles

Mark & sweep is able to collect cyclic garbage:

root

• •

• •

•

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark & sweep: cycles

Mark & sweep is able to collect cyclic garbage:

root

• •

• •

•

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark & sweep: cycles

Mark & sweep is able to collect cyclic garbage:

root

• •

• •

•

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Mark & sweep: advantages and drawbacks

Advantages of mark & sweep:
+ Reasonably simple
+ Collects cycles
+ Low space overhead

Drawbacks of mark & sweep
− Scans entire heap during sweeping
− Long (multi-second) pauses, inappropriate for interactive applications

Copying collection

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Copying collection: overview
Split heap in two: from-space (active), to-space (unused)

•

••

During garbage collection: copy from from-space into to-space

•

••

• •

After garbage collection: abandon dead objects, switch heap roles

• •

Key idea: identify and move live objects

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Copying collection: example

•

••

from-space to-space

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

Collect

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Copying collection: example

•

••

from-space to-space

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

Collect

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Copying collection: example

•

••

from-space to-space

•

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

Collect

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Copying collection: example

•

••

from-space to-space

• •

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

Collect

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Copying collection: example

•

••

from-space to-space

• •

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

Collect

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Copying collection: example

•

••

from-space to-space

• • •

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

Collect

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Copying collection: example

to-space from-space

• • •

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

Collect

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Copying collection: advantages and drawbacks

Advantages of copying garbage collection:
+ Reasonably simple
+ Collects cycles
+ Has running time propotional to the number of live objects
+ Automatically compacts memory, eliminating fragmentation
+ Very low allocation costs (pointer bump)

Drawbacks of copying garbage collection
− Uses twice as much memory as the program requires

Generational garbage collection

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: motivation

Observation: scanning all live objects takes a long time
Observation: programs often allocate a lot (hundreds of MB per second)
Observation: object lifetimes are mostly very short or relatively long

Example evidence (much more is available):

> 98% of collected garbage had
been allocated and discarded
since previous collection

(Foderaro and Fateman, 1981)

80− 98% of
objects die
before 1MB old

(Wilson, 1994)

50− 90% of Common
Lisp objects die before
10KB old

(Zorn, 1989)

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: idea

Key idea: focus on young objects

Mechanism:
divide heap into 2+ generations
frequently collect young generations (fast)
promote surviving objects to old generations
occasionally collect old generations (slow)

Many variations (e.g. generations can use different collection schemes)

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

•

• •

minor heap

major heap

root

• •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

•

• •

minor heap

major heap

root

• •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

•

• •

minor heap

major heap

root

• • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

•

• •

minor heap

major heap

root

• • • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

•

• •

minor heap

major heap

root

• • • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

•

• •

minor heap

major heap

root

• • • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

minor heap

major heap

root

• • • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

minor heap

major heap

root

• • • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

minor heap

major heap

root

• • • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

minor heap

major heap

root

• • • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

minor heap

major heap

root

• • • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

minor heap

major heap

root

• • • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

minor heap

major heap

root

• • • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

minor heap

major heap

root

• • • •

• • • •

•• •

• •

Memory

Reference
counting

Mark &
sweep

Copying

Generations

Generational GC: advantages & complexities

Advantages of generational garbage collection:
+ reduce pauses (to 100µs or less; suitable for interactive programs)
+ avoid wasted time scanning long-lived objects

Complexities of generational garbage collection:
• must distinguish between old & young pointers
• hard to find generation roots (consider pointers from old to young objects)
• can use > 2 generations, all with different policies

Next time: exceptions

	Memory
	Reference counting
	Mark & sweep
	Copying
	Generations

