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Manual memory management

Manual memory management: programmer controls (de)allocation time/place:

vo id *malloc(size_t n) /* allocate n bytes , return address */
vo id free( vo id *addr) /* relinquish use of memory at addr */

The programmer has a lot of control. However, mistakes can be disastrous:

p = malloc (10);
r e tu rn OK;

free(p);
free(p);

free(p);
*p += 1;

missing free double free use after free

(Observation: deallocation is much harder than allocation)
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Automatic memory management

Many programming languages support heap allocation
but do not provide a deallocation operation

d = dict(x=3,y=4)

Python

l e t d = [("x",3); ("y",4)]

OCaml

Unless the storage is reclaimed somehow, memory might be exhausted.
General approach: automatic memory management (“garbage collection”)
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Reachability and roots

Automation is based on an approximation:
If data can be reached from a root set, then it is not “garbage”

root set

• •

• •

•

The root set might include: the stack, registers, global variables.

(Without loss of generality, assume a single root)
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Reachability and representations
Ascertaining reachability requires knowledge of representations:

What is a pointer?
(typical approach: use a tag bit to distinguish between pointers and integers)

63 bits of integer or address data

tag bit

How are objects laid out?
(typical approach: use headers that carry sizes and other metadata)

size
type

…
data data



Reference counting
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Reference counting & tracing collection

Two basic approaches (and many variations):

Keep a reference count with each object
that represents the number of pointers to it.

An object is garbage when its count is 0

Reference counting
Keep alive objects reachable from the root set
(i.e. transitive close of pointer graph)

An object is garbage when it is unreachable

Tracing garbage collection
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Reference counting: idea

The reference count tracks the number of pointers to each object.

1

•

An object’s reference count is 1 when the
object is created:

1

•

2

• •

The count is incremented when a pointer
newly references the object:

1

•

2

• •

The count is decremented when a pointer
no longer references the object:

01

•

The object is unreachable garbage when
the reference count goes to 0:
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Reference counting can’t collect cyclic garbage

A significant weakness of reference counting:

1 1• •

There are no other references to these objects in the program
but the objects will never be collected.
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Long chains of objects make reclamation expensive

A significant weakness of (naive) reference counting:

1

1

1

1

1

•

•

•

•

•

Reclaiming an object can set off an unboundedly large chain of reclamations
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Reference counting: advantages and drawbacks

Advantages of reference counting:
+ Collection costs distributed through the computation
+ Allows rapid reclamation and immediate reuse

Drawbacks of reference counting:
− size overhead of storing references
− potentially high/unbounded cost on reclamation
− taking a reference involves (potentially expensive) mutation



Mark & sweep
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Mark and sweep

Mark & sweep is a two-phase algorithm:

Mark phase: Traverse object graph depth first to mark live data

Sweep phase: iterate over entire heap, reclaiming unmarked data

Key idea: identify and reclaim dead objects
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Marking

root

• •

• • • •

•• •

• •

mark(node) =

if not node.marked:

node.marked = True

for c in node.children:

mark(c)

Mark
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Sweeping

root

• •

• • • •

•• •

• •

linearly scan through the heap
collect unmarked blocks
unmark marked blocks

Sweep
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Mark & sweep: cycles

Mark & sweep is able to collect cyclic garbage:

root

• •

• •

•
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Mark & sweep: advantages and drawbacks

Advantages of mark & sweep:
+ Reasonably simple
+ Collects cycles
+ Low space overhead

Drawbacks of mark & sweep
− Scans entire heap during sweeping
− Long (multi-second) pauses, inappropriate for interactive applications



Copying collection
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Copying collection: overview
Split heap in two: from-space (active), to-space (unused)

•

••

During garbage collection: copy from from-space into to-space

•

••

• •

After garbage collection: abandon dead objects, switch heap roles

• •

Key idea: identify and move live objects
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Copying collection: example

•

••

from-space to-space

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

Collect
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Copying collection: example

to-space from-space

• • •

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

Collect



Memory

Reference
counting

Mark &
sweep

Copying

Generations

Copying collection: advantages and drawbacks

Advantages of copying garbage collection:
+ Reasonably simple
+ Collects cycles
+ Has running time propotional to the number of live objects
+ Automatically compacts memory, eliminating fragmentation
+ Very low allocation costs (pointer bump)

Drawbacks of copying garbage collection
− Uses twice as much memory as the program requires



Generational garbage collection
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Generational GC: motivation

Observation: scanning all live objects takes a long time
Observation: programs often allocate a lot (hundreds of MB per second)
Observation: object lifetimes are mostly very short or relatively long

Example evidence (much more is available):

> 98% of collected garbage had
been allocated and discarded
since previous collection

(Foderaro and Fateman, 1981)

80− 98% of
objects die
before 1MB old

(Wilson, 1994)

50− 90% of Common
Lisp objects die before
10KB old

(Zorn, 1989)
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Generational GC: idea

Key idea: focus on young objects

Mechanism:
divide heap into 2+ generations
frequently collect young generations (fast)
promote surviving objects to old generations
occasionally collect old generations (slow)

Many variations (e.g. generations can use different collection schemes)
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Generational GC: example

Copying collector for minor heap / mark-and-sweep for major heap

•

• •

minor heap

major heap

root

• •

• • • •

•• •

• •
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Generational GC: advantages & complexities

Advantages of generational garbage collection:
+ reduce pauses (to 100µs or less; suitable for interactive programs)
+ avoid wasted time scanning long-lived objects

Complexities of generational garbage collection:
• must distinguish between old & young pointers
• hard to find generation roots (consider pointers from old to young objects)
• can use > 2 generations, all with different policies



Next time: exceptions
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