
Advanced Operating Systems:
Lab 2 - IPC

Lecturelet 2
Prof. Robert Watson

2023-2024

Lab 2 objectives

• Use, and extend, the skills developed in Lab 1
• Trace user-kernel interactions via syscalls and traps
• Explore the performance of pipe and shared memory

IPC.
• Use DTrace and hardware performance counters

(HWPMC) to analyse these properties

• Overall: Now have learned a bit about the available
tools, let’s do some root-cause analysis of OS
behaviour …

Advanced Operating Systems - Lab 2 - IPC

New documents
• Advanced Operating System: Hardware Performance

Counters (HWPMC)
• Introduction to performance counters in this lab
• You may wish to refer to the ARMv8-A and A72 manuals (or not)

• 3x lab documents:
• Advanced Operating Systems: Lab 2 – IPC – General information
• Advanced Operating Systems: Lab 2 – IPC – Part II assignment
• Advanced Operating Systems: Lab 2 – IPC – L341 assignment

• Important: The Part II and Part III/ACS assignments are
different – please do the right one!
• However, L341 students might find the Part II assignment

useful to think about potential invstigation strategies

Advanced Operating Systems - Lab 2 - IPC

Rough framing
• Inter-Process Communication (IPC) is an essential

component to using the Process Model
• Isolated boxes that can’t talk to anything aren’t very useful

• IPC design considers both semantics and performance:
• Message passing vs shared memory?
• Stream vs datagram?
• Synchronous vs. asynchronous?
• Portability to other OSes, communication semantics?

• Many years of research into two intertwined question:
• What is the best IPC API?
• How can we make it perform well?

• Once there is a defined API .. OS designers try to find the
most efficient implementation
• Use DTrace and performance counters to compare the

behaviour of implicit shared memory use in pipe IPC vs.
explicit shared memory use by the application

Advanced Operating Systems - Lab 2 - IPC

Explicit vs. implicit virtual-memory IPC

• Pipe API specifies copy semantics
• Once a write(2) call returns, changes to memory in the sender do not

affect data received in the recipient via read(2)
• Practical implementation – copy two times

1. From userspace sender buffer to kernel buffer (copyin(9))
2. From kernel buffer to userspace recipient buffer (copyout(9))

• But memory copying is known to be expensive with both historic and
contemporary microarchitectures

• In 1996, John Dyson implemented VM optimisations for bulk
pipe data transfer for FreeBSD

• Remove sender copy by “borrowing” pages for “large” sends
• Later also adopted in macOS; similar optimisations elsewhere

• Our lab will compare pipes, with implicit virtual memory use, to
explicit shared memory

• NB: Pipes uses copy semantics when using shared memory; explicit
shared memory IPC requires software to perform copies if needs them

Advanced Operating Systems - Lab 2 - IPC

Hardware performance counters (1/2)

• Seems simple enough:
• Source code compiles to instructions
• Instructions are executed by the processor
• Fewer instructions → better performance?

• But some instructions take longer than others:
• Register-register operations generally single-cycle (or less)
• Multiply and divide may depend on the specific numeric

values
• Floating point may take quite a while
• Loads/stores cost different amounts depending on

TLB/cache use
• Instruction count is not a good way to understand

computational expense

Advanced Operating Systems - Lab 2 - IPC

• Architectural refers to an ISA-level view of execution
• Micro-architectural refers to behaviours below the ISA

• The performance of software depends on interactions
throughout the hardware design, not just the pipeline.
• Yet architectural events are very important: They tell us what

the software actually asked for.

Sketch of ARM Cortex A-8 memory hierarchy
(This is not the CPU you are using, just an illustration!)

Advanced Operating Systems - Lab 2 - IPC

* This is a very, very rough sketch indeed!

Hardware performance counters (2/2)

• Optimisation must take into account both architectural
(algorithmic) behavior and microarchitectural behaviour
• Count the actual numbers of instructions, branches taken, and so

on to analyse software behaviour
• Directly measure effects such as cache misses, branch-predictor

misses, slower memory accesses, etc.
• TLB/cache effects are hard to predict as they vary with memory

footprint, memory subsystem, and also heuristics such as
prefetching

• Hardware performance counters let us directly investigate
architectural and micro-architectural events
• Architectural events: #instructions, #load instructions, #store

instructions, #branch returns, etc.
• Microarchitectural: #bus accesses, #cache misses, #DRAM traffic,

#branch mispredicts...

Advanced Operating Systems - Lab 2 - IPC

Reminder: High-density Cortex A-72 slide
(Some of this information will be useful only for later labs)

Per-Core:
L1 D-Cache: 32K

Per-Core:
L1 I-Cache: 48K

Per-Core:
MMU

I-TLB: 48, D-TLB: 32,
L2-TLB: 1024

Shared:
L2 Cache: 1M

* Our benchmarks use only the first core to simplify analysis
Advanced Operating Systems - Lab 2 - IPC

Using performance counters
• Recall:

• Architectural counters: What software asks the hardware to do
• Microarchitectural counters: How the hardware implements it

• Optimising software using performance counters is subtle
• Often counter use leads to important micro-optimisations

(e.g., “Cache lines are thrashing → lay out memory better”)
• But must consider whether algorithmic optimisation is preferable

to microarchitecture-centric tuning
• A few considerations when analysing “work”:

• It may be preferable to ask the hardware to do less work,
“inefficiently”, than to do more work, “efficiently”

• It is hard to know whether a change is important (e.g., doubling
TLB misses might be critical .. Or irrelevant .. Context is required)

• Microarchitecturally-aware optimisations may tune well for one
specific microarchitecture, yet perform badly on another

• Microarchitecturally motivated optimisations must be
carefully evaluated, ideally across >1 microarchitectures

Advanced Operating Systems - Lab 2 - IPC

The benchmark

• Simple, bespoke IPC benchmark: pipes and sockets
• Adjust user and kernel buffer sizes

Advanced Operating Systems - Lab 2 - IPC

root@rpi4-000:/data # ipc/ipc-benchmark
ipc-benchmark [-Bgjqsv] [-b buffersize] [-i pipe|local|tcp|shmem]
 [-n iterations] [-p tcp_port] [-P arch|dcache|instr|tlbmem]
 [-t totalsize] mode

Modes (pick one - default 2thread):
 2thread IPC between two threads in one process
 2proc IPC between two threads in two different processes
 describe Describe the hardware, OS, and benchmark configurations

Optional flags:
 -B Run in bare mode: no preparatory activities
 -g Enable getrusage(2) collection
 -i pipe|local|tcp|shmem Select pipe, local sockets, TCP, or shared memory
 (default: pipe)
 -j Output as JSON
 -p tcp_port Set TCP port number (default: 10141)
 -P arch|dcache|instr|tlbmem Enable hardware performance counters
 -q Just run the benchmark, don't print stuff out
 -s Set send/receive socket-buffer sizes to buffersize
 -v Provide a verbose benchmark description
 -b buffersize Specify the buffer size (default: 131072)
 -n iterations Specify the number of times to run (default: 1)
 -t totalsize Specify the total I/O size (default: 16777216)

The benchmark (2)

• Use only one of its operational modes:
2proc IPC between two processes

• Adjust IPC parameters:
-b buffersize Set user IPC buffer size
-i pipe or shmem Use pipe or shared memory
-P mode Configure HWPMC

• Output flags:
-g Display getrusage(1) statistics
-j Output as JSON
-v Verbose output (more configuration detail)

Advanced Operating Systems - Lab 2 - IPC

Performance counter modes
• Normally we run an external tool to use counters, such as

FreeBSD’s pmcstat(8) or Linux’s perf tool
• We have adapted the benchmark to use libpmc
• We use only counting mode, not sampling mode

• The A-72 has six counter registers that can be used at once
• We always enable instruction counting and cycle counting
• The other 4 are used for specific groups of counters:

• We recommend using the arch and tlbmem counter sets
• The probe effect affects hardware counters, too!

Advanced Operating Systems - Lab 2 - IPC

-P mode Category

arch Architectural (ISA-level) statistics (some speculative*)

dcache L1-D and L2 cache statistics

instr L1-I and branch-prediction statistics

tlbmem D-TLB / I-TLB and memory access/bus access statistics

*Non-speculative counters can be quite expensive in the microarchitecture for superscalar
processors, so Arm has chosen not to provide architectural counters

Advanced Operating Systems - Lab 2 - IPC

root@rpi4-046:/data # ipc/ipc-benchmark -g -i pipe -j -P arch -v 2proc
{"hardware_configuration": {
 "hw.machine": "arm64",
 "hw.model": "ARM Cortex-A72 r0p3",
 "hw.ncpu": 4,
 "hw.physmem": 8419033088,

"hw.pagesizes": [{"pagesize": 4096},
{"pagesize": 2097152}, {"pagesize": 1073741824}],

 "hw.cpufreq.arm_freq": 600000000
 }, "os_configuration": {
 "kern.ostype": "FreeBSD",
 "kern.osrelease": "13.0-STABLE",
 "kern.ident": "ADVOPSYS",
 "kern.hostname": "rpi4-000"
 }, "network_ipc_configuration": {
 "kern.ipc.pipe_mindirect": 8192,
 "kern.ipc.maxsockbuf": 33554432,
 "ifnet.name": "lo0",
 "ifnet.mtu": 16384,
 "net.inet.tcp.cc.algorithm": "newreno",
 "net.isr.bindthreads": 1,
 "net.isr.defaultqlimit": 256
 },

Hardware configuration

OS configuration

Network/IPC configuration

Advanced Operating Systems - Lab 2 - IPC

 "benchmark_configuration": {
 "buffersize": 131072,
 "totalsize": 16777216,
 "msgcount": 128,
 "mode": "2proc",
 "ipctype": "pipe",
 "pmctype": "arch",
 "iterations": 1
 },

Benchmark configuration

Advanced Operating Systems - Lab 2 - IPC

 "benchmark_samples": [
 {
 "bandwidth": 609733.59,
 "time": "0.026870752",
 "stime": "0.023513",
 "utime": "0.000165",
 "msgsnd": 128,
 "msgrcv": 256,
 "nvcsw": 523,
 "nivcsw": 0,
 "INST_RETIRED": 7807526,
 "CPU_CYCLES": 10659620,
 "LD_SPEC": 2776279,
 "ST_SPEC": 1675676,
 "EXC_RETURN": 458,
 "BR_RETURN_SPEC": 135871,
 "CYCLES_PER_INSTRUCTION": 1.365301
 }
]

}

Hardware performance counters
(and derived metrics)

Performance / wallclock time

Sampled execution time in userlevel/kernel

Getrusage(2) statistics

Plotting, exploring, and explaining graphs (1/2)
• Plots are an essential part of your lab submissions
• Plots make patterns in data accessible visually

• They represent hypotheses in data exploration
• They make arguments in data presentation and explanation

• When explaining graphs, focus on trends, inflection
points, and surprising artifacts
• Partition graph into regions of similar behaviour
• Label and annotate inflection points
• Explain why different partitions behave the way they do

• Quality of presentation is critical
• Ensure that they are clearly labeled – axes, legend, etc.
• Think carefully about what axes and scales to use
• Visual comparison is key – present data on the same plot, or in

stacked plots, if you want to invite comparison
• E.g., ensure that the reader can see the relationship in your plots

17

Plotting, exploring, and explaining graphs (2/2)

18

Ba
nd

w
id

th
 (K

iB
/s

)
(li

ne
ar

 sc
al

e)

IPC buffer size (log scale)

(1) (2) (3)

0
0

100

50 200

(C) Shift in OS
optimization
approach?

(A) µarch
parameter
exceeded?

120

Why does (1) rise in the
way that it does?

What happens at (A)?

Why does (2) sink in the
way that it does?

What happens at (B)?

Why does (3) rise in the
way that it does?

What happens at (C)?

(B) Dominant
factor changes?

A few concluding thoughts
• You are now (fairly) familiar with:

• DTrace as an instrumentation tool
• JupyterLab as a data collection, analysis, presentation tool

• You will now pick up new skills:
• Further DTrace experience – e.g., system-call provider, profile

provider, perhaps scheduling provider, etc.
• Performance counter experience (can be hard to interpret…)

• When gathering and analysing data:
• Start with short runs (even –n 1) to allow quick iteration
• Plot data to understand its behaviour
• Pay attention to inflection points, regions of commonality
• Mark up graphs with key hardware, software thresholds
• Remember that the cache/TLB footprint of a workload will

(almost certainly) not be the benchmark buffer size
• We are now doing comparative analysis…

Advanced Operating Systems - Lab 2 - IPC

How to contact us

• Attend the lab!

• Course slack outside of lab hours, or if unable to join
• advopsys.slack.com

• Also possible: Email to the lecturer
• robert.watson@cl.cam.ac.uk

20

