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Manifolds
Informally, if we can take any local patch from the surface, and flatten it somehow and possibly with some
distortion into a disk on a plane, we call that surface a manifold.

« Asurface is a closed 2-manifold if it is locally
homeomorphic to a disk everywhere
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Manifolds

The formal definition is just stating this with different terms.

« For every point x in M, there is an open ball B, (r) of
radius 7 centered at & such that M N B, (r)
IS homeomorphic to an open disk
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Manifolds
Similarly, for a manifold with boundary, there are some neighborhoods, which we can map to half-disks. These
correspond to the patches that intersect the boundary.

« Each boundary point is homeomorphic to a half-disk
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Differential Geometry Basics

For manifolds, we can define differential geometry.

It explains local properties of surfaces.

Let’s first assume we have a local parametrization with « and wv.

Things that can be discovered by local observation

continuous 1-1 mapping

A
v

o 0 0°> 0?
ou Ov 0%u Oudv
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Local Coordinates
As we have seen before, with such a parametrization, we can go on and define the tangent vectors spanning the
tangent plane around the point p.
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Surface Normal

The surface normal is defined as the vector orthogonal to the tangent plane.

Note that this slide is exactly the same as the one we had for parametric surfaces. The difference here is that we
have a local parametric surface and hence it applies to all kinds of manifold surfaces.

_ op(u,v) _ op(u,v)

pu 8’11, ) p’U 8”(]

Regular parametrization:
A Pu X Py # 0

_ Pu X Po
n(u,v) =
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Normal Curvature

Now we can define what curvature is.

Imagine you have a vector rotating on the plane.

This can be represented with a simple formula if we assume that the two basis vectors p, and p, are orthogonal.

Unit-length t in the tangent plane

If p, and pv are orthogonal:

t =cosyp + sin @

||pu|| Hva
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Normal Curvature

There is a curve formed by the intersection of the surface and a plane spanned by the vectors t and n.
Normal curvature is the curvature of that curve at the point p.
Normal curvature is thus direction dependent.

The curve v is the intersection
of the surface with the plane
through n and t.

Normal curvature:

() = kn(V(P))




Surface Curvatures
Other curvature-related definitions are derived from the normal curvature.

* Principal curvatures
— Minimal curvature K1 = Kmin = Min Ky ()
©p

— Maximal curvature ko

Krax = mgx Kn ()

1 27
. Mean curvature H = 2 TR 2 K (0)dp
2 27 0

 Gaussian curvature K = k1 - ko
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Principle Directions

Recall that principle curvatures are the minimum and maximum normal curvatures.

The directions that correspond to these curvatures are the principal directions.

Euler’s theorem says: we can write any curvature as a linear combination of the principle curvatures.
The angle here is between the direction for the curvature and that for the minimum normal curvature.

normal
vector Euler’'s Theorem:

Planes of principal curvature
are orthogonal and independent

tangent of parameterization.
plane

planes
of principle
curvatures \1

kin () = K1 cos? © + Ko sin® @

© = angle with t4

5 UNIVERSITY OF
P CAMBRIDGE 1




Local Shape by Curvatures
We can characterize surfaces /ocally via curvatures. E.g. isotropic, i.e. the same curvature in all directions.

spherical (umbilical) planar

Isotropic:
all directions are
principal directions

K >0,k = ko K=0
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Local Shape by Curvatures

elliptic parabolic hyperbolic
Anisotropic: ;<0
2 distinct
principal
directions
K <0
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Discrete Differential Geometry

So far, we have talked about surface normal and curvatures for smooth manifold surfaces.

In computer graphics, we often have discrete surfaces, e.g. triangle meshes.

How do we define these differential quantities then? We will talk about two methods: local and global and focus
on the latter.

« Approximate surface normal and curvature via

Local surface approximation Global: discrete Laplace-Beltrami
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Laplace Operator

Let’s start with the global method.

We first need to define the Laplace operator in a Euclidean space.

When applied to a function, it is equivalent to first applying the gradient and then the divergence operators.

Laplace gradient 2nd partial
operator operator derivatives

f:R’>—= R
Af =divVf

Af:la3—>la/ \ —

function in divergence Cartesian
Euclidean space operator coordinates
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Laplace Operator
Recall the definitions of gradient and divergence.
If you apply these, you simple get sum of the second derivatives, assuming the function lives in a Euclidean space.

fR—=R Af:R>—= R

N T
Af—leVf—@—l—a—yQ—l—@

of of Of
ox’ Oy’ 0z

OF, OF, OF.

Ox oy 0z

gradf:Vf:< > divF =V - F =
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Laplace-Beltrami Operator
The Laplace operator has an extension to manifold surfaces.

Let’s assume we have a function that lives on the surface, which is not a Euclidean space in general.
We then have the same operators defined a bit differently. This is a generalization of the Laplace operator.

 Extension to manifold surfaces

Laplace- gradient
Beltrami operator

fiM—R N -/
Voow Bf =iy

7N

function on divergence

surface M operator
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Laplace-Beltrami Operator

As a side note, this is a very important operator to solve differential equations on surfaces.

An example is how heat diffuses on a surface. You can already see from the figures that this is related to
curvature and local surface characteristics.

In general, this operator is very important for geometry processing. If interested, you may read here.

« Example: heat equation

[Crane et al. 2013]

Af=0 Amf=0
s.t. flaf2 = fo s.t. boundary conditions
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http://ddg.cs.columbia.edu/SGP2014/LaplaceBeltrami.pdf

Laplace-Beltrami Operator

A very interesting property of this operator is: if you apply it to the coordinate function, i.e. the coordinates of a
point on the surface in 3D, you get the scaled surface normal at that point. The scaling is exactly -2 times the
mean curvature. We will not go into the proof.

* Apply to coordinate function
f(x7y7z):x p:(CE,y,Z)

Laplace- grzci;etgt mean t
Beltrami P curvature

~ / e

Aup =divuyVump = —2Hn € R
functionon -~ \ divergence \ unit

surface M operator surface
normal

3
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Laplace-Beltrami Operator

Now we can see why this operator is so important: it provides us a way to define curvature and normal in terms of
the application of it to the coordinate function. If we can define the application to the coordinate function on a
discrete surface, we get the mean curvature and surface normal.

* Apply to coordinate function
f(x7y7z):x p:(CE,y,Z)

Laplace-
Beltrami

mean
curvature

surface
normal

surface M
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Discrete Laplace-Beltrami

For a mesh, a very simple definition is: for a vertex, take the mean of the difference vectors to the neighbors.
This is the same as averaging the neighboring vertex locations and subtracting from the location of the vertex.
This gives us an approximation of -2 An.

AMP — —2Hn




Discrete Laplace-Beltrami

For a general mesh, we need to be more careful with the weights to get a good approximation.

One general scheme for triangular meshes is using the so-called cotangent weights.

For a given vertex, an angle is defined per neighbor as below. We define the area A, in the next slide.

1 1
L (Vz) = — Z 5 COt Qi j + cot Bij)(vj — Vz’)

: FEN(3)
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Discrete Laplace-Beltrami

The area A; has a slightly complex definition.

It is a sum of each of the areas defined for each neighboring vertex.
Below, /\ defines a triangle.

. — circumcenter of A(v;, v, v,11) if 0 <m/2
7| midpoint of edge (v;,v,i1) if 0 > m/2

A, = Z Area (A(Vz', Cj, Cj+1))
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Relation to Normal and Curvature

Once we compute this approximation, we can compute the mean curvature as below.

We can further approximate the Gaussian curvature (stated without proof) with a formula involving the angles 6
The principle curvatures can then be obtained from the mean and Gaussian curvatures.

* Mean curvature (sign according to normal)
[H(vi)| = || Le(va)ll/2
Gaussian curvature ‘

K(v;) = 2#—26’
.\

* Principal curvatures

ki=H —VH2 - K  ky=H+VH? -
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Discrete Curvatures

Mean Curvature
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Discrete Laplace-Beltrami

We have considered meshes as a discrete surface so far.

We can do the same for graphs and point clouds: define an approximation of the application of the Laplace-
Beltrami operator to the coordinate function and approximate the curvatures.

In this case, the approximation is with Gaussian weights instead of cotangent weights.

» Extension to graphs and point clouds

hulai,a;) = e~/

_ o llxi—x; 1%/t
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Discrete Laplace-Beltrami
This approximation allows us to capture complex domains. In fact, any domain that can be point-sampled.

» Extension to graphs and point clouds
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