Definition. A [partial] function f is primitive recursive
(f € PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

In other words, the set PRIM of primitive recursive
functions is the smallest set (with respect to subset
inclusion) of partial functions containing the basic functions
and closed under the operations of composition and
primitive recursion.

FACT © eveny, £ € PRI 1S o t5tad mm hon

A ‘ 2

</

L8 92

L9

Definition. A partial function f is partial recursive

(f € PR) if it can be built up in finitely many steps from
the basic functions by use of the operations of composition,
primitive recursion and minimization.

The members of PR that are total are called recursive
functions.

Fact: there are recursive functions that are not primitive
recursive. For example. ..

101

add = Pl (?m"):-,succ- Tro_,z)
ped = P°(-z,wt)°q>voj L)

e = 'Y"“J?,]%emh lSucc
\ f’,o[—e,.—-J Qa]
l Ph Ke,e,)

Definition. A partial function f is partial recursive

(f € PR) if it can be built up in finitely many steps from
the basic functions by use of the operations of composition,
primitive recursion and minimization.

The members of PR that are total are called recursive
functions.

Fact: there are recursive functions that are not primitive
recursive. For example. ..

'ﬁ’g fpasgi\ole, Fo Lonstudkt a Oompb\}‘l\b\.e
funChon € TV XV — IV sakisty ing
e(nx) = value if W PRIM . aE ¢
A Wagom khtodhon mrgumaent Shows ¢ QL:?R(;V\
. (See CST 2017.36, 94)

101

Examples of recursive definitions

fz(l) =1 ﬁf:ger: xth Fibonacci
f(x+2) = fa(x) + fo(x+1)

‘FZ e PRIM evern %owa\/\ Hnis)\ 1S ek

o Primitive Rumsive Ou,jZm;h'oﬂ

(see (ST 1Y%, poypr 6, I nestion L}—)

L7 85

Ackermann’s function
There is a (unique) function ack € IN?>-IN satisfying

ack(0,x;) = x+1
ack(x; +1,0) = ack(xy,1)
ack(x1+1,x,+1) = ack(xy, ack(x;+1,x3))

L9 102

L9

Ackermann’s function

There is a (unique) function ack € IN?>-IN satisfying
ack(0,x;) = x+1
ack(x; +1,0) ack(x1,1)
ack(x1+1,x,+1) = ack(xy, ack(x;+1,x3))

» ack is computable, hence recursive [proof: exercise].

102

0Caml version 4.00.1

let rec ack (x : int)(y : int) : int =
match x ,y with
0,y > y+l
| x , 0 -> ack (x-1) 1
| x ,y => ack (x-1) (ack x (y-1));;
val ack : int -> int -> int = <fun>
ack 0
- : int
ack 1
- : int
ack 2
- : int
ack 3 3;;
- : int 61
ack 4 4;;
Stack overflow during evaluation (looping recursion?).
#

NI~ 1o
C 0 e e

7

- w

Chat GpT S‘m;p. .

what is the next number in the sequence 1, 3,7, 617?

It is difficult to determine the next number in this sequence as it does not
follow any recognizable pattern. The first three numbers, 1, 3, and 7, are
consecutive odd numbers and may lead one to believe that the sequence
involves odd numbers. However, the fourth number, 61, is not an odd
number, and it is not immediately clear how it is related to the previous three
numbers.

Without any additional information or context, it is impossible to determine
the next number in the sequence. It is possible that there is a typo or an error
in the sequence, or that it is part of a larger pattern or context that is not
immediately apparent.

R

N C

136
23 E
10221

The OEIS is supported by the many generous donors to the OEIS Foundation.
THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

13761 Search Hiss
(Greetings from The On-Line Encyclopedia of Integer Sequence:

o ke 2 =N

T
3
0
2
1

Search: seq:1,3,7,61

Displaying 1-4 of 4 results found.

page |
Sort: relevance | references | number | modified | created _ Format: long | short | data.
AI83174 Numbers n such that (10A2n+1)-6*10An-1)/3 is prime.

1, 3, 7, 61, 90, 52, 269, 298, 321, 371, 776, 1567

12635, 24512, 32521, 43982 (list; graph; refs; listen; history; text;
oFFSET

I fo

1,2

a(23) > 10°5. - Robert Price, Jan 29 2016

C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28,
No. 1, 1996-97, pp. 1-9.

, 2384, 2566, 3088, 5866, 8051, 9498,

0,2
The next term is 2%(2°(2%(2°16))) - 3, which is too large to display in the
‘A line:

LINKS Table of n, a(n) for n=1..22.
Patrick Do Geest, WorldiOf Numbers, Palindromic Hing Prines (PWP's)
Tndex antries for peines tavoteing ress
FORMULA a(n) = (AQ27775(n)-1)/2.
MATHEMATICA Do[If(PrimeQ[(10*(2n + 1) - 6*10"n - 1)/3], Print(n]], {n, 3000}]
PROG (PARI) for(n=1l, le3, if(ispseudoprime((10"(2*n+1)-6+10"n-1)/3), printl(n",
')l) \\ Charles R Greathouse IV, Jul 15 2011
CROSSREFS ce. , A077775-A077798, Al07123-A107127, Al07648, Al07649, Al15073,
ALB3174A1e3187
KEYWORD nonn, base
AuUTHOR Ray_Chandler, Dec 28 2010
EXTENSIONS a(21)-a(22) from Robert Price, Jan 29 2016
STATUS approved
A046859 Simplified Ackermann function (main diagonal of Ackermann-Péter function). ”‘;
1, 3, 7, 61 (list praph; refs; listen; history: text; internal format)

L9

Ackermann’s function

There is a (unique) function ack € IN?>-IN satisfying
ack(0,x;) = x+1
ack(x; +1,0) ack(x1,1)
ack(x1+1,x,+1) = ack(xy, ack(x;+1,x3))

» Fact: ack grows faster than any primitive recursive
function f € IN?>-IN:
ANy Vg, x2 > Nf (f(x1,x2) < ack(xq,x2)).
Hence ack is not primitive recursive.

102

Ackermann’s function

There is a (unique) function ack € IN?>-IN satisfying
ack(0,x;) = x+1
ack(x; +1,0) ack(x1,1)
ack(x1+1,x,+1) = ack(xy, ack(x;+1,x3))

Thn fadk, w;w\g A fov adk(x,-) e N, o hag
Ry () = KQ'>L°"‘°0'JL>(1) &)‘Wg is o e
aa'f\m%tm

V\M rec,

Comguse Yy Hmes 0{. wjmr Hyper

L9 102

Lambda calculus

Notions of computability

» Church (1936): A-calculus
» Turing (1936): Turing machines.

Turing showed that the two very different approaches
determine the same class of computable functions. Hence:

Church-Turing Thesis. Every algorithm [in intuitive sense
of Lect. 1] can be realized as a Turing machine.

L9 104

Notakion for funchon definitions in matematical digourse :

NA MED

"k § ke He fandion :)((1): L4t (7.

AN O NY MOMUS

e funddhon X Lt x+ |

\\

A\

" e fanckon Ax - X+ |

X

LAmEbA NoTATIo N

L9

A-Terms, M

are built up from a given, countable collection of
» variables x,y, z,...
by two operations for forming A-terms:

» A-abstraction: (Ax.M)
(where x is a variable and M is a A-term)

» application: (M M")
(where M and M’ are A-terms).

Some random examples of A-terms:

x (Axx) ((Ay-(xy))x) (Ay-((Ay.(xy))x))

105

L9

A-Terms, M

Notational conventions:

» (Ax1x2...x,.M) means
(Ax1.(Axz... (Ax,.M)...))

» (MyM,...M,) means (... (M M) ...M,)
(i.e. application is left-associative)

» drop outermost parentheses and those enclosing the
body of a A-abstraction. E.g. write

(Ax.(x(Ay.(y x)))) as Ax.x(Ay.y x).
» x # M means that the variable x does not occur
anywhere in the A-term M.

105

L9

Free and bound variables

In Ax.M, we call x the bound variable and M the body of
the A-abstraction.

An occurrence of x in a A-term M is called

» binding if in between A and .
(e.g. (Ax.yx)x)

» bound if in the body of a binding occurrence of x
(e.g. (Ax.yx)x)

» free if neither binding nor bound

(e.g. (Ax.yx)x).

106

Free and bound variables

Sets of free and bound variables:

FV(x) = {x}
FV(Ax.M) = FV(M) — {x}
FV(MN) = FV(M)UFV(N)
BV(x) = @
BV(Ax.M) = BV(M)U {x}
BV(MN) = BV(M)UBV(N)

Eg- Fv (Oxyx)) = {x gy
Bv (- y0)x)= {xY

L9

Free and bound variables

Sets of free and bound variables:

FV(x) = {x}
FV(Ax.M) = FV(M) — {x}
FV(MN) = FV(M)UFV(N)
BV(x) = @
BV(Ax.M) = BV(M)U {x}
BV(MN) = BV(M)UBV(N)

If FV(M) = @, M is called a closed term, or combinator.

106

w-Equivalence M =, M’
Ax.M is intended to represent the function f such that

f(x) = M for all x.

So the name of the bound variable is immaterial: if

M’ = M{x'Ix} is the result of taking M and changing all
occurrences of x to some variable x’ # M, then Ax.M and
Ax'.M’ both represent the same function.

For example, Ax.x and Ay.y represent the same function
(the identity function).

L9 107

w-Equivalence M =, M’

is the binary relation inductively generated by the rules:

z#(MN) M{z/x} =, N{zly}
X =4 X Ax.M =, Ay.N

M=, M N =, N’
MN =, M’ N’

where M{z/x} is M with all occurrences of x replaced by
z.

L9 107

L9

w-Equivalence M =, M’

For example:

Ax.(Axx'.x) x' =4 Ay.(Axx'.x)x’

because

107

L9

w-Equivalence M =, M’

For example:
Ax.(Axx'.x) x' =, Ay.(Axx’.x)x’
because (Azx'.z2)x' =, (Axx".x)x’
because

107

w-Equivalence M =, M’

For example:

Ax.(Axx'.x) x' =, Ay.(Axx’.x)x’
because (Azx'.z)x’ =, (Axx'.x)x’
because Azx’.z =, Axx’.x and ¥’ =, &’
because

L9

107

w-Equivalence M =, M’

For example:

Ax.(Axx'.x) x' =, Ay.(Axx’.x)x’

because (Azx'.z)x’ =, (Axx'.x)x’
because Azx'.z =, Axx’.x and ¥’ =, x’
because Ax'.u =, Ax’.u and ¥’ =, ¥’

because

L9

107

w-Equivalence M =, M’

For example:

Ax.(Axx'.x) x' =, Ay.(Axx’.x)x’

because (Azx'.z)x’ =, (Axx'.x)x’
because Azx'.z =, Axx’.x and ¥’ =, x’
because Ax' =, Ax" . and x' =, x’

because u =, uand x’ =, x’.

L9

107

L9

M=, M’

Fact: =, is an equivalence relation (reflexive, symmetric
and transitive).

We do not care about the particular names of bound variables, just
about the distinctions between them. So a-equivalence classes of
A-terms are more important than A-terms themselves.

» Textbooks (and these lectures) suppress any notation for
n-equivalence classes and refer to an equivalence class via a
representative A-term (look for phrases like “we identify terms up
to a-equivalence” or “we work up to a-equivalence").

» For implementations and computer-assisted reasoning, there are
various devices for picking canonical representatives of
a-equivalence classes (e.g. de Bruijn indexes, graphical
representations, .. .).

107

