
Partial recursive functions

L7 84

Aim
A more abstract, machine-independent description of the
collection of computable partial functions than provided by
register/Turing machines:

they form the smallest collection of partial
functions containing some basic functions and
closed under some fundamental operations for
forming new functions from old—composition,
primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of
Gödel and Herbrand.

L8 86

Primitive recursion
Theorem. Given f ∈ Nn

⇀N and g ∈ Nn+2
⇀N, there

is a unique h ∈ Nn+1
⇀N satisfying

{

h("x, 0) ≡ f("x)

h("x, x + 1) ≡ g("x, x, h("x, x))

for all "x ∈ Nn and x ∈ N.

We write ρn(f , g) for h and call it the partial function
defined by primitive recursion from f and g.

L8 87

Example: addition

Addition add ∈ N2
!N satisfies:

{

add(x1, 0) ≡ x1

add(x1, x + 1) ≡ add(x1, x) + 1

So add = ρ1(f , g) where

{

f(x1) ! x1

g(x1, x2, x3) ! x3 + 1

Note that f = proj1
1 and g = succ ◦ proj3

3; so add can
be built up from basic functions using composition and
primitive recursion: add = ρ1(proj1

1, succ ◦ proj3
3).

L8 89

Example: predecessor

Predecessor pred ∈ N!N satisfies:

{

pred(0) ≡ 0

pred(x + 1) ≡ x

So pred = ρ0(f , g) where

{

f() ! 0

g(x1, x2) ! x1

Thus pred can be built up from basic functions using
primitive recursion: pred = ρ0(zero0, proj2

1).

L8 90

Example: multiplication

Multiplication mult ∈ N2
!N satisfies:

{

mult(x1, 0) ≡ 0

mult(x1, x + 1) ≡ mult(x1, x) + x1

and thus mult = ρ1(zero1, add ◦ (proj3
3, proj3

1)).

So mult can be built up from basic functions using
composition and primitive recursion (since add can be).

L8 91

Definition. A [partial] function f is primitive recursive
(f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

In other words, the set PRIM of primitive recursive
functions is the smallest set (with respect to subset
inclusion) of partial functions containing the basic functions
and closed under the operations of composition and
primitive recursion.

L8 92

Definition. A [partial] function f is primitive recursive
(f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

Theorem. Every f ∈ PRIM is computable.

Proof. Already proved: basic functions are computable; composition
preserves computability. So just have to show:

ρn(f , g) ∈ Nn+1
⇀N computable if f ∈ Nn

⇀N and
g ∈ Nn+2

⇀N are.

Suppose f and g are computed by RM programs F and G (with our
usual I/O conventions). Then the RM specified on the next slide
computes ρn(f , g). (We assume X1, . . . , Xn+1, C are some registers not
mentioned in F and G; and that the latter only use registers
R0, . . . , RN , where N ≥ n + 2.)

L8 92

START (X1,...,Xn+1,Rn+1)::=(R1,...,Rn+1,0)

F

C+ C=Xn+1? yes

no

HALT

(R1,...,Rn,Rn+1,Rn+2)::=(X1,...,Xn,C,R0)

G (R0,Rn+3,...,RN)::=(0,0,...,0)

L8 93

START (X1,...,Xn+1,Rn+1)::=(R1,...,Rn+1,0)

F

C+ C=Xn+1? yes

no

HALT

(R1,...,Rn,Rn+1,Rn+2)::=(X1,...,Xn,C,R0)

G (R0,Rn+3,...,RN)::=(0,0,...,0)

L8 93

Definition. A [partial] function f is primitive recursive
(f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

Every f ∈ PRIM is a total function, because:

" all the basic functions are total
" if f , g1, . . . , gn are total, then so is f ◦ (g1, . . . , gn)

[why?]
" if f and g are total, then so is ρn(f , g) [why?]

L8 92

Aim
A more abstract, machine-independent description of the
collection of computable partial functions than provided by
register/Turing machines:

they form the smallest collection of partial
functions containing some basic functions and
closed under some fundamental operations for
forming new functions from old—composition,
primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of
Gödel and Herbrand.

L8 94

Minimization
Given a partial function f ∈ Nn+1

⇀N, define
µn f ∈ Nn

⇀N by
µn f("x) ! least x such that f("x, x) = 0 and

for each i = 0, . . . , x− 1, f("x, i)
is defined and > 0
(undefined if there is no such x)

In other words

µn f = {("x, x) ∈ N
n+1 | ∃y0, . . . , yx

(
x
∧

i=0

f("x, i) = yi)∧ (
x−1
∧

i=0

yi > 0)∧ yx = 0}

L8 95

Example of minimization

integer part of x1/x2 ≡ least x3 such that
(undefined if x2=0) x1 < x2(x3 + 1)

(In fact, if we make the ‘integer part of x1/x2’ function total by

defining it to be 0 when x2 = 0, it can be shown to be in PRIM.)

L8 96

Example of minimization

integer part of x1/x2 ≡ least x3 such that
(undefined if x2=0) x1 < x2(x3 + 1)

≡ µ2 f(x1, x2)

where f ∈ N3
!N is

f(x1, x2, x3) !

{

1 if x1 ≥ x2(x3 + 1)

0 if x1 < x2(x3 + 1)

(In fact, if we make the ‘integer part of x1/x2’ function total by

defining it to be 0 when x2 = 0, it can be shown to be in PRIM.)

L8 96

Definition. A partial function f is partial recursive
(f ∈ PR) if it can be built up in finitely many steps from
the basic functions by use of the operations of composition,
primitive recursion and minimization.

In other words, the set PR of partial recursive functions is
the smallest set (with respect to subset inclusion) of partial
functions containing the basic functions and closed under
the operations of composition, primitive recursion and
minimization.

L8 97

Definition. A partial function f is partial recursive
(f ∈ PR) if it can be built up in finitely many steps from
the basic functions by use of the operations of composition,
primitive recursion and minimization.

Theorem. Every f ∈ PR is computable.

Proof. Just have to show:

µn f ∈ Nn
⇀N is computable if f ∈ Nn+1

⇀N is.

Suppose f is computed by RM program F (with our usual I/O
conventions). Then the RM specified on the next slide computes µn f .
(We assume X1, . . . , Xn, C are some registers not mentioned in F; and
that the latter only uses registers R0, . . . , RN , where N ≥ n + 1.)

L8 97

START

(X1,...,Xn)::=(R1,...,Rn)

(R1,...,Rn,Rn+1)::=(X1,...,Xn,C)

C+ (R0,Rn+2,...,RN)::=(0,0,...,0)

F

R−0 R0::=C HALT
L8 98

START

(X1,...,Xn)::=(R1,...,Rn)

(R1,...,Rn,Rn+1)::=(X1,...,Xn,C)

C+ (R0,Rn+2,...,RN)::=(0,0,...,0)

F

R−0 R0::=C HALT
L8 98

Computable = partial recursive
Theorem. Not only is every f ∈ PR computable, but
conversely, every computable partial function is partial
recursive.

Proof (sketch). Let f ∈ Nn
⇀N be computed by RM M with

N ≥ n registers, say. Recall how we coded instantaneous
configurations c = (#, r0, . . . , rN) of M as numbers #[#, r0, . . . , rN]$.
It is possible to construct primitive recursive functions
lab, val0, nextM ∈ N!N satisfying

lab(#[#, r0, . . . , rN]$) = #

val0(#[#, r0, . . . , rN]$) = r0

nextM(#[#, r0, . . . , rN]$) = code of M’s next configuration

(Showing that nextM ∈ PRIM is tricky—proof omitted.)

L8 99

Proof sketch, cont.

Writing "x for x1, . . . , xn, let configM("x, t) be the code of M’s
configuration after t steps, starting with initial register values
R0 = 0, R1 = x1, . . . , Rn = xn, Rn+1 = 0, . . . , RN = 0. It’s in PRIM
because:

{

configM("x, 0) = #[0, 0,"x,"0]$

configM("x, t + 1) = nextM(configM("x, t))

L8 100

Proof sketch, cont.

Writing "x for x1, . . . , xn, let configM("x, t) be the code of M’s
configuration after t steps, starting with initial register values
R0 = 0, R1 = x1, . . . , Rn = xn, Rn+1 = 0, . . . , RN = 0. It’s in PRIM
because:

{

configM("x, 0) = #[0, 0,"x,"0]$

configM("x, t + 1) = nextM(configM("x, t))

Can assume M has a single HALT as last instruction, Ith say (and no
erroneous halts). Let haltM("x) be the number of steps M takes to
halt when started with initial register values "x (undefined if M does not
halt). It satisfies

haltM("x) ≡ least t such that I− lab(configM("x, t)) = 0

and hence is in PR (because lab, configM , I− () ∈ PRIM).

L8 100

Proof sketch, cont.

Writing "x for x1, . . . , xn, let configM("x, t) be the code of M’s
configuration after t steps, starting with initial register values
R0 = 0, R1 = x1, . . . , Rn = xn, Rn+1 = 0, . . . , RN = 0. It’s in PRIM
because:

{

configM("x, 0) = #[0, 0,"x,"0]$

configM("x, t + 1) = nextM(configM("x, t))

Can assume M has a single HALT as last instruction, Ith say (and no
erroneous halts). Let haltM("x) be the number of steps M takes to
halt when started with initial register values "x (undefined if M does not
halt). It satisfies

haltM("x) ≡ least t such that I− lab(configM("x, t)) = 0

and hence is in PR (because lab, configM , I− () ∈ PRIM).

So f ∈ PR, because f("x) ≡ val0(configM("x, haltM("x))).
L8 100

